1
|
Çi Ftçi B, Teki N R. Prediction of viral families and hosts of single-stranded RNA viruses based on K-Mer coding from phylogenetic gene sequences. Comput Biol Chem 2024; 112:108114. [PMID: 38852362 DOI: 10.1016/j.compbiolchem.2024.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/06/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
There are billions of virus species worldwide, and viruses, the smallest parasitic entities, pose a serious threat. Therefore, fighting associated disorders requires an understanding of the genetic structure of viruses. Considering the wide diversity and rapid evolution of viruses, there is a critical need to quickly and accurately classify viral species and their potential hosts to better understand transmission dynamics, facilitating the development of targeted therapies. Recognizing this, this study has investigated the classes of RNA viruses based on their genomic sequences using Machine Learning (ML) and Deep Learning (DL) models. The PhyVirus dataset, consisting of pathogenic Single-stranded RNA viruses of Baltimore group four (+ssRNA) and five (-ssRNA) with different hosts and species, was analyzed. The dataset containing viral gene sequences was analyzed using the K-Mer coding technique, which is based on base words of various lengths. The study used classical ML algorithms (Random Forest, Gradient Boosting and Extra Trees) and the Fully Connected Deep Neural Network, a Deep Learning algorithm, to predict viral families and hosts. Detailed analyses were performed on the classifier performance in scenarios with different train-test ratios and different word lengths (k-values) for K-Mer. The observed results show that Fully Connected Deep Neural Network has a high success rate of 99.60 % in predicting virus families. In predicting virus hosts, the Extra Trees classifier achieved the highest success rate of 81.53 %. This study is considered to be the first classification study in the literature on this dataset, which has a very large family and host diversity consisting of gene sequences of Single-stranded RNA viruses. Our detailed investigations on how varying word lengths based on K-Mer coding in gene sequences affect the classification into viral families and hosts make this study particularly valuable. This study shows that ML and DL methods have the potential to produce valuable results in phylogenetic studies. In addition, the results and high-performance values show that these methods can be successfully used in regenerative applications of gene sequences or in studies such as the elimination of losses in gene sequences.
Collapse
Affiliation(s)
- Bahar Çi Ftçi
- Batman University, Institute of Graduate Studies, Department of Electrical and Electronic Engineering, Turkey; Siirt University, Distance Education Application and Research Center, Turkey.
| | - Ramazan Teki N
- Batman University, Faculty of Engineering and Architecture, Department of Computer Engineering, Turkey.
| |
Collapse
|
2
|
Guo S, Yang Q, Fan Y, Ran M, Shi Q, Song Z. Characterization and expression profiles of toll-like receptor genes (TLR2 and TLR5) in immune tissues of hybrid yellow catfish under bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109627. [PMID: 38754649 DOI: 10.1016/j.fsi.2024.109627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
The yellow catfish (Pelteobagrus fulvidraco) is one of the most economically important freshwater species in Asia. However, pathogenic bacterial infections often cause high rates of mortality and economic losses in practical aquaculture. Previous studies in mammals have shown that Toll-like receptor 2 (TLR2) and Toll-like receptor 5 (TLR5) are involved in the recognition of cell wall components such as lipopolysaccharides and flagella of various bacteria, thereby acting as key regulators in the innate immunity response. However, TLR2 and TLR5 in yellow catfish have not been characterized. In the present study, TLR2 and TLR5 were examined through comparative genomic approaches. The gene structure, collinearity, protein spatial structure, and phylogenetic relationships were compared with those in multiple representative vertebrates. Meanwhile, quantitative real-time PCR was conducted to explore transcriptional changes in TLR2 and TLR5 in immune tissues after infection with exogenous A. hydrophila and E. tarda. The results demonstrated the presence of TLR2 and TLR5 in yellow catfish. However, a systematic analysis showed that TLR2 was not associated with the arrangement of diverse neighboring genes. The expression of hybrid yellow catfish TLR2 transcripts in multiple tissues (including liver, spleen, kidney, and intestine) was significantly up-regulated after infection with A. hydrophila and E. tarda, suggesting that hybrid yellow catfish TLR2 and TLR5 may participate in the immune process. Taken together, the results indicate that TLR2 and TLR5 are conserved in terms of evolution and possess significant antibacterial activity as well as regulatory properties in immune-related tissues and thus play key roles in host defense against pathogen invasion.
Collapse
Affiliation(s)
- Shengtao Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China; Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Qingzhuoma Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yuxin Fan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Miling Ran
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qiong Shi
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
3
|
Nowak TA, Burke RL, Diuk-Wasser MA, Lin YP. Lizards and the enzootic cycle of Borrelia burgdorferi sensu lato. Mol Microbiol 2024; 121:1262-1272. [PMID: 38830767 DOI: 10.1111/mmi.15271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024]
Abstract
Emerging and re-emerging pathogens often stem from zoonotic origins, cycling between humans and animals, and are frequently vectored and maintained by hematophagous arthropod vectors. The efficiency by which these disease agents are successfully transmitted between vertebrate hosts is influenced by many factors, including the host on which a vector feeds. The Lyme disease bacterium Borrelia burgdorferi sensu lato has adapted to survive in complex host environments, vectored by Ixodes ticks, and maintained in multiple vertebrate hosts. The versatility of Lyme borreliae in disparate host milieus is a compelling platform to investigate mechanisms dictating pathogen transmission through complex networks of vertebrates and ticks. Squamata, one of the most diverse clade of extant reptiles, is comprised primarily of lizards, many of which are readily fed upon by Ixodes ticks. Yet, lizards are one of the least studied taxa at risk of contributing to the transmission and life cycle maintenance of Lyme borreliae. In this review, we summarize the current evidence, spanning from field surveillance to laboratory infection studies, supporting their contributions to Lyme borreliae circulation. We also summarize the current understanding of divergent lizard immune responses that may explain the underlying molecular mechanisms to confer Lyme spirochete survival in vertebrate hosts. This review offers a critical perspective on potential enzootic cycles existing between lizard-tick-Borrelia interactions and highlights the importance of an eco-immunology lens for zoonotic pathogen transmission studies.
Collapse
Affiliation(s)
- Tristan A Nowak
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, State University of New York at Albany, Albany, New York, USA
| | - Russell L Burke
- Department of Biology, Hofstra University, Hempstead, New York, USA
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, State University of New York at Albany, Albany, New York, USA
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| |
Collapse
|
4
|
O’Connor RE, Kretschmer R, Romanov MN, Griffin DK. A Bird's-Eye View of Chromosomic Evolution in the Class Aves. Cells 2024; 13:310. [PMID: 38391923 PMCID: PMC10886771 DOI: 10.3390/cells13040310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Birds (Aves) are the most speciose of terrestrial vertebrates, displaying Class-specific characteristics yet incredible external phenotypic diversity. Critical to agriculture and as model organisms, birds have adapted to many habitats. The only extant examples of dinosaurs, birds emerged ~150 mya and >10% are currently threatened with extinction. This review is a comprehensive overview of avian genome ("chromosomic") organization research based mostly on chromosome painting and BAC-based studies. We discuss traditional and contemporary tools for reliably generating chromosome-level assemblies and analyzing multiple species at a higher resolution and wider phylogenetic distance than previously possible. These results permit more detailed investigations into inter- and intrachromosomal rearrangements, providing unique insights into evolution and speciation mechanisms. The 'signature' avian karyotype likely arose ~250 mya and remained largely unchanged in most groups including extinct dinosaurs. Exceptions include Psittaciformes, Falconiformes, Caprimulgiformes, Cuculiformes, Suliformes, occasional Passeriformes, Ciconiiformes, and Pelecaniformes. The reasons for this remarkable conservation may be the greater diploid chromosome number generating variation (the driver of natural selection) through a greater possible combination of gametes and/or an increase in recombination rate. A deeper understanding of avian genomic structure permits the exploration of fundamental biological questions pertaining to the role of evolutionary breakpoint regions and homologous synteny blocks.
Collapse
Affiliation(s)
- Rebecca E. O’Connor
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.E.O.); (M.N.R.)
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Campus Universitário Capão do Leão, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil;
| | - Michael N. Romanov
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.E.O.); (M.N.R.)
- L. K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, 142132 Podolsk, Moscow Oblast, Russia
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.E.O.); (M.N.R.)
| |
Collapse
|
5
|
Davalos-Dehullu E, Baty SM, Fisher RN, Scott PA, Dolby GA, Munguia-Vega A, Cortez D. Chromosome-Level Genome Assembly of the Blacktail Brush Lizard, Urosaurus nigricaudus, Reveals Dosage Compensation in an Endemic Lizard. Genome Biol Evol 2023; 15:evad210. [PMID: 38056449 PMCID: PMC10699878 DOI: 10.1093/gbe/evad210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 12/08/2023] Open
Abstract
Urosaurus nigricaudus is a phrynosomatid lizard endemic to the Baja California Peninsula in Mexico. This work presents a chromosome-level genome assembly and annotation from a male individual. We used PacBio long reads and HiRise scaffolding to generate a high-quality genomic assembly of 1.87 Gb distributed in 327 scaffolds, with an N50 of 279 Mb and an L50 of 3. Approximately 98.4% of the genome is contained in 14 scaffolds, with 6 large scaffolds (334-127 Mb) representing macrochromosomes and 8 small scaffolds (63-22 Mb) representing microchromosomes. Using standard gene modeling and transcriptomic data, we predicted 17,902 protein-coding genes on the genome. The repeat content is characterized by a large proportion of long interspersed nuclear elements that are relatively old. Synteny analysis revealed some microchromosomes with high repeat content are more prone to rearrangements but that both macro- and microchromosomes are well conserved across reptiles. We identified scaffold 14 as the X chromosome. This microchromosome presents perfect dosage compensation where the single X of males has the same expression levels as two X chromosomes in females. Finally, we estimated the effective population size for U. nigricaudus was extremely low, which may reflect a reduction in polymorphism related to it becoming a peninsular endemic.
Collapse
Affiliation(s)
- Elizabeth Davalos-Dehullu
- Centro de Ciencias Genómicas, Programa de Biología de Sistemas, UNAM, Cuernavaca, Morelos, Mexico
- Baja GeoGenomics Consortium
| | - Sarah M Baty
- Baja GeoGenomics Consortium
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Robert N Fisher
- Western Ecological Research Center, U.S. Geological Survey, San Diego, California, USA
| | - Peter A Scott
- Natural Sciences Collegium, Eckerd College, St Petersburg, Florida, USA
| | - Greer A Dolby
- Baja GeoGenomics Consortium
- Department of Biology, University of Alabama at Birmingham, Alabama USA
| | - Adrian Munguia-Vega
- Baja GeoGenomics Consortium
- Conservation Genetics Laboratory, The University of Arizona, Tucson, Arizona, USA
- Applied Genomics Lab, La Paz, Baja California Sur, Mexico
| | - Diego Cortez
- Centro de Ciencias Genómicas, Programa de Biología de Sistemas, UNAM, Cuernavaca, Morelos, Mexico
- Baja GeoGenomics Consortium
| |
Collapse
|
6
|
Sales-Oliveira V, Altmanová M, Gvoždík V, Kretschmer R, Ezaz T, Liehr T, Padutsch N, Badjedjea G, Utsunomia R, Tanomtong A, Cioffi M. Cross-species chromosome painting and repetitive DNA mapping illuminate the karyotype evolution in true crocodiles (Crocodylidae). Chromosoma 2023; 132:289-303. [PMID: 37493806 DOI: 10.1007/s00412-023-00806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023]
Abstract
Crocodilians have maintained very similar karyotype structures and diploid chromosome numbers for around 100 million years, with only minor variations in collinearity. Why this karyotype structure has largely stayed unaltered for so long is unclear. In this study, we analyzed the karyotypes of six species belonging to the genera Crocodylus and Osteolaemus (Crocodylidae, true crocodiles), among which the Congolian endemic O. osborni was included and investigated. We utilized various techniques (differential staining, fluorescence in situ hybridization with repetitive DNA and rDNA probes, whole chromosome painting, and comparative genomic hybridization) to better understand how crocodile chromosomes evolved. We studied representatives of three of the four main diploid chromosome numbers found in crocodiles (2n = 30/32/38). Our data provided new information about the species studied, including the identification of four major chromosomal rearrangements that occurred during the karyotype diversification process in crocodiles. These changes led to the current diploid chromosome numbers of 2n = 30 (fusion) and 2n = 38 (fissions), derived from the ancestral state of 2n = 32. The conserved cytogenetic tendency in crocodilians, where extant species keep near-ancestral state, contrasts with the more dynamic karyotype evolution seen in other major reptile groups.
Collapse
Affiliation(s)
- Vanessa Sales-Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Marie Altmanová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, 12844, Prague, Czech Republic
| | - Václav Gvoždík
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Zoology, National Museum of the Czech Republic, Prague, Czech Republic
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Niklas Padutsch
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Gabriel Badjedjea
- Department of Aquatic Ecology, Biodiversity Monitoring Center, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | | | - Alongklod Tanomtong
- Department of Biology Faculty of Science, Khon Kaen University, Muang, Khon Kaen, 40002, Thailand
| | - Marcelo Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil.
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
7
|
Genome Evolution and the Future of Phylogenomics of Non-Avian Reptiles. Animals (Basel) 2023; 13:ani13030471. [PMID: 36766360 PMCID: PMC9913427 DOI: 10.3390/ani13030471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 02/01/2023] Open
Abstract
Non-avian reptiles comprise a large proportion of amniote vertebrate diversity, with squamate reptiles-lizards and snakes-recently overtaking birds as the most species-rich tetrapod radiation. Despite displaying an extraordinary diversity of phenotypic and genomic traits, genomic resources in non-avian reptiles have accumulated more slowly than they have in mammals and birds, the remaining amniotes. Here we review the remarkable natural history of non-avian reptiles, with a focus on the physical traits, genomic characteristics, and sequence compositional patterns that comprise key axes of variation across amniotes. We argue that the high evolutionary diversity of non-avian reptiles can fuel a new generation of whole-genome phylogenomic analyses. A survey of phylogenetic investigations in non-avian reptiles shows that sequence capture-based approaches are the most commonly used, with studies of markers known as ultraconserved elements (UCEs) especially well represented. However, many other types of markers exist and are increasingly being mined from genome assemblies in silico, including some with greater information potential than UCEs for certain investigations. We discuss the importance of high-quality genomic resources and methods for bioinformatically extracting a range of marker sets from genome assemblies. Finally, we encourage herpetologists working in genomics, genetics, evolutionary biology, and other fields to work collectively towards building genomic resources for non-avian reptiles, especially squamates, that rival those already in place for mammals and birds. Overall, the development of this cross-amniote phylogenomic tree of life will contribute to illuminate interesting dimensions of biodiversity across non-avian reptiles and broader amniotes.
Collapse
|
8
|
Card DC, Van Camp AG, Santonastaso T, Jensen-Seaman MI, Anthony NM, Edwards SV. Structure and evolution of the squamate major histocompatibility complex as revealed by two Anolis lizard genomes. Front Genet 2022; 13:979746. [PMID: 36425073 PMCID: PMC9679377 DOI: 10.3389/fgene.2022.979746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
The major histocompatibility complex (MHC) is an important genomic region for adaptive immunity and has long been studied in ecological and evolutionary contexts, such as disease resistance and mate and kin selection. The MHC has been investigated extensively in mammals and birds but far less so in squamate reptiles, the third major radiation of amniotes. We localized the core MHC genomic region in two squamate species, the green anole (Anolis carolinensis) and brown anole (A. sagrei), and provide the first detailed characterization of the squamate MHC, including the presence and ordering of known MHC genes in these species and comparative assessments of genomic structure and composition in MHC regions. We find that the Anolis MHC, located on chromosome 2 in both species, contains homologs of many previously-identified mammalian MHC genes in a single core MHC region. The repetitive element composition in anole MHC regions was similar to those observed in mammals but had important distinctions, such as higher proportions of DNA transposons. Moreover, longer introns and intergenic regions result in a much larger squamate MHC region (11.7 Mb and 24.6 Mb in the green and brown anole, respectively). Evolutionary analyses of MHC homologs of anoles and other representative amniotes uncovered generally monophyletic relationships between species-specific homologs and a loss of the peptide-binding domain exon 2 in one of two mhc2β gene homologs of each anole species. Signals of diversifying selection in each anole species was evident across codons of mhc1, many of which appear functionally relevant given known structures of this protein from the green anole, chicken, and human. Altogether, our investigation fills a major gap in understanding of amniote MHC diversity and evolution and provides an important foundation for future squamate-specific or vertebrate-wide investigations of the MHC.
Collapse
Affiliation(s)
- Daren C. Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States
- *Correspondence: Daren C. Card,
| | - Andrew G. Van Camp
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States
| | - Trenten Santonastaso
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, United States
| | | | - Nicola M. Anthony
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, United States
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
9
|
Wu L, Jiao X, Zhang D, Cheng Y, Song G, Qu Y, Lei F. Comparative Genomics and Evolution of Avian Specialized Traits. Curr Genomics 2021; 22:496-511. [PMID: 35386431 PMCID: PMC8905638 DOI: 10.2174/1389202923666211227143952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022] Open
Abstract
Genomic data are important for understanding the origin and evolution of traits. Under the context of rapidly developing of sequencing technologies and more widely available genome sequences, researchers are able to study evolutionary mechanisms of traits via comparative genomic methods. Compared with other vertebrates, bird genomes are relatively small and exhibit conserved synteny with few repetitive elements, which makes them suitable for evolutionary studies. Increasing genomic progress has been reported on the evolution of powered flight, body size variation, beak morphology, plumage colouration, high-elevation colonization, migration, and vocalization. By summarizing previous studies, we demonstrate the genetic bases of trait evolution, highlighting the roles of small-scale sequence variation, genomic structural variation, and changes in gene interaction networks. We suggest that future studies should focus on improving the quality of reference genomes, exploring the evolution of regulatory elements and networks, and combining genomic data with morphological, ecological, behavioural, and developmental biology data.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaolu Jiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
10
|
Tissue and Temperature-Specific RNA-Seq Analysis Reveals Genomic Versatility and Adaptive Potential in Wild Sea Turtle Hatchlings ( Caretta caretta). Animals (Basel) 2021; 11:ani11113013. [PMID: 34827746 PMCID: PMC8614379 DOI: 10.3390/ani11113013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Digital transcriptomics is rapidly emerging as a powerful new technology for modelling the environmental dynamics of the adaptive landscape in diverse lineages. This is particularly valuable in taxa such as turtles and tortoises (order Testudines) which contain a large fraction of endangered species at risk due to anthropogenic impacts on the environment, including pollution, overharvest, habitat degradation, and climate change. Sea turtles (family Cheloniidae) in particular invite a genomics-enabled approach to investigating their remarkable portfolio of adaptive evolution. Our de novo transcriptome assemblies and measurements of tissue- and temperature- specific global gene expression in the loggerhead sea turtle (Caretta caretta) reveal the genomic basis for potential resiliency in this endangered flagship species, and are crucial to future management and conservation strategies with attention to changing climates. We summarize the interactions among differentially expressed genes by producing network visualizations, and highlight the shared biological pathways related to development, migration, immunity, and longevity reported in the avian and reptilian literature. Our original results for loggerhead sea turtles provide a large, new comparative genomic resource for the investigation of genotype–phenotype relationships in amniotes. Abstract Background: Digital transcriptomics is rapidly emerging as a powerful new technology for modelling the environmental dynamics of the adaptive landscape in diverse lineages. This is particularly valuable in taxa such as turtles and tortoises (order Testudines) which contain a large fraction of endangered species at risk due to anthropogenic impacts on the environment, including pollution, overharvest, habitat degradation, and climate change. Sea turtles (family Cheloniidae) in particular invite a genomics-enabled approach to investigating their remarkable portfolio of adaptive evolution. The sex of the endangered loggerhead sea turtle (Caretta caretta) is subject to temperature-dependent sex determination (TSD), a mechanism by which exposure to temperatures during embryonic development irreversibly determines sex. Higher temperatures produce mainly female turtles and lower temperatures produce mainly male turtles. Incubation temperature can have long term effects on the immunity, migratory ability, and ultimately longevity of hatchlings. We perform RNA-seq differential expression analysis to investigate tissue- and temperature-specific gene expression within brain (n = 7) and gonadal (n = 4) tissue of male and female loggerhead hatchlings. Results: We assemble tissue- and temperature-specific transcriptomes and identify differentially expressed genes relevant to sexual development and life history traits of broad adaptive interest to turtles and other amniotic species. We summarize interactions among differentially expressed genes by producing network visualizations, and highlight shared biological pathways related to migration, immunity, and longevity reported in the avian and reptile literature. Conclusions: The measurement of tissue- and temperature-specific global gene expression of an endangered, flagship species such as the loggerhead sea turtle (Caretta caretta) reveals the genomic basis for potential resiliency and is crucial to future management and conservation strategies with attention to changing climates. Brain and gonadal tissue collected from experimentally reared loggerhead male and female hatchlings comprise an exceedingly rare dataset that permits the identification of genes enriched in functions related to sexual development, immunity, longevity, and migratory behavior and will serve as a large, new genomic resource for the investigation of genotype–phenotype relationships in amniotes.
Collapse
|
11
|
Westfall AK, Telemeco RS, Grizante MB, Waits DS, Clark AD, Simpson DY, Klabacka RL, Sullivan AP, Perry GH, Sears MW, Cox CL, Cox RM, Gifford ME, John-Alder HB, Langkilde T, Angilletta MJ, Leaché AD, Tollis M, Kusumi K, Schwartz TS. A chromosome-level genome assembly for the eastern fence lizard (Sceloporus undulatus), a reptile model for physiological and evolutionary ecology. Gigascience 2021; 10:giab066. [PMID: 34599334 PMCID: PMC8486681 DOI: 10.1093/gigascience/giab066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 04/16/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND High-quality genomic resources facilitate investigations into behavioral ecology, morphological and physiological adaptations, and the evolution of genomic architecture. Lizards in the genus Sceloporus have a long history as important ecological, evolutionary, and physiological models, making them a valuable target for the development of genomic resources. FINDINGS We present a high-quality chromosome-level reference genome assembly, SceUnd1.0 (using 10X Genomics Chromium, HiC, and Pacific Biosciences data), and tissue/developmental stage transcriptomes for the eastern fence lizard, Sceloporus undulatus. We performed synteny analysis with other snake and lizard assemblies to identify broad patterns of chromosome evolution including the fusion of micro- and macrochromosomes. We also used this new assembly to provide improved reference-based genome assemblies for 34 additional Sceloporus species. Finally, we used RNAseq and whole-genome resequencing data to compare 3 assemblies, each representing an increased level of cost and effort: Supernova Assembly with data from 10X Genomics Chromium, HiRise Assembly that added data from HiC, and PBJelly Assembly that added data from Pacific Biosciences sequencing. We found that the Supernova Assembly contained the full genome and was a suitable reference for RNAseq and single-nucleotide polymorphism calling, but the chromosome-level scaffolds provided by the addition of HiC data allowed synteny and whole-genome association mapping analyses. The subsequent addition of PacBio data doubled the contig N50 but provided negligible gains in scaffold length. CONCLUSIONS These new genomic resources provide valuable tools for advanced molecular analysis of an organism that has become a model in physiology and evolutionary ecology.
Collapse
Affiliation(s)
- Aundrea K Westfall
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Rory S Telemeco
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
- Department of Biology, California State University Fresno, Fresno, CA 93740, USA
| | | | - Damien S Waits
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Amanda D Clark
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Dasia Y Simpson
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Randy L Klabacka
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Alexis P Sullivan
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - George H Perry
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael W Sears
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Christian L Cox
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Robert M Cox
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Matthew E Gifford
- Department of Biology, University of Central Arkansas, Conway, AR 72035, USA
| | - Henry B John-Alder
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - Tracy Langkilde
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Adam D Leaché
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
| | - Marc Tollis
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
12
|
Mezzasalma M, Guarino FM, Odierna G. Lizards as Model Organisms of Sex Chromosome Evolution: What We Really Know from a Systematic Distribution of Available Data? Genes (Basel) 2021; 12:1341. [PMID: 34573323 PMCID: PMC8468487 DOI: 10.3390/genes12091341] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 01/19/2023] Open
Abstract
Lizards represent unique model organisms in the study of sex determination and sex chromosome evolution. Among tetrapods, they are characterized by an unparalleled diversity of sex determination systems, including temperature-dependent sex determination (TSD) and genetic sex determination (GSD) under either male or female heterogamety. Sex chromosome systems are also extremely variable in lizards. They include simple (XY and ZW) and multiple (X1X2Y and Z1Z2W) sex chromosome systems and encompass all the different hypothesized stages of diversification of heterogametic chromosomes, from homomorphic to heteromorphic and completely heterochromatic sex chromosomes. The co-occurrence of TSD, GSD and different sex chromosome systems also characterizes different lizard taxa, which represent ideal models to study the emergence and the evolutionary drivers of sex reversal and sex chromosome turnover. In this review, we present a synthesis of general genome and karyotype features of non-snakes squamates and discuss the main theories and evidences on the evolution and diversification of their different sex determination and sex chromosome systems. We here provide a systematic assessment of the available data on lizard sex chromosome systems and an overview of the main cytogenetic and molecular methods used for their identification, using a qualitative and quantitative approach.
Collapse
Affiliation(s)
- Marcello Mezzasalma
- Department of Biology, University of Naples Federico II, I-80126 Naples, Italy; (F.M.G.); (G.O.)
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Rua Padre Armando Quintas 7, 4485-661 Vairaõ, Portugal
| | - Fabio M. Guarino
- Department of Biology, University of Naples Federico II, I-80126 Naples, Italy; (F.M.G.); (G.O.)
| | - Gaetano Odierna
- Department of Biology, University of Naples Federico II, I-80126 Naples, Italy; (F.M.G.); (G.O.)
| |
Collapse
|
13
|
Oliveira VCS, Altmanová M, Viana PF, Ezaz T, Bertollo LAC, Ráb P, Liehr T, Al-Rikabi A, Feldberg E, Hatanaka T, Scholz S, Meurer A, de Bello Cioffi M. Revisiting the Karyotypes of Alligators and Caimans (Crocodylia, Alligatoridae) after a Half-Century Delay: Bridging the Gap in the Chromosomal Evolution of Reptiles. Cells 2021; 10:cells10061397. [PMID: 34198806 PMCID: PMC8228166 DOI: 10.3390/cells10061397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
Although crocodilians have attracted enormous attention in other research fields, from the cytogenetic point of view, this group remains understudied. Here, we analyzed the karyotypes of eight species formally described from the Alligatoridae family using differential staining, fluorescence in situ hybridization with rDNA and repetitive motifs as a probe, whole chromosome painting (WCP), and comparative genome hybridization. All Caimaninae species have a diploid chromosome number (2n) 42 and karyotypes dominated by acrocentric chromosomes, in contrast to both species of Alligatorinae, which have 2n = 32 and karyotypes that are predominantly metacentric, suggesting fusion/fission rearrangements. Our WCP results supported this scenario by revealing the homeology of the largest metacentric pair present in both Alligator spp. with two smaller pairs of acrocentrics in Caimaninae species. The clusters of 18S rDNA were found on one chromosome pair in all species, except for Paleosuchus spp., which possessed three chromosome pairs bearing these sites. Similarly, comparative genomic hybridization demonstrated an advanced stage of sequence divergence among the caiman genomes, with Paleosuchus standing out as the most divergent. Thus, although Alligatoridae exhibited rather low species diversity and some level of karyotype stasis, their genomic content indicates that they are not as conserved as previously thought. These new data deepen the discussion of cytotaxonomy in this family.
Collapse
Affiliation(s)
- Vanessa C. S. Oliveira
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil; (V.C.S.O.); (L.A.C.B.); (T.H.); (M.d.B.C.)
| | - Marie Altmanová
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic;
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic;
| | - Patrik F. Viana
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus 69083-000, Brazil; (P.F.V.); (E.F.)
| | - Tariq Ezaz
- Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Bruce, ACT 2617, Australia;
| | - Luiz A. C. Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil; (V.C.S.O.); (L.A.C.B.); (T.H.); (M.d.B.C.)
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic;
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany;
- Correspondence: ; Tel.: +49-36-41-939-68-50; Fax: +49-3641-93-96-852
| | - Ahmed Al-Rikabi
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany;
| | - Eliana Feldberg
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus 69083-000, Brazil; (P.F.V.); (E.F.)
| | - Terumi Hatanaka
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil; (V.C.S.O.); (L.A.C.B.); (T.H.); (M.d.B.C.)
| | | | | | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil; (V.C.S.O.); (L.A.C.B.); (T.H.); (M.d.B.C.)
| |
Collapse
|
14
|
Schield DR, Pasquesi GIM, Perry BW, Adams RH, Nikolakis ZL, Westfall AK, Orton RW, Meik JM, Mackessy SP, Castoe TA. Snake Recombination Landscapes Are Concentrated in Functional Regions despite PRDM9. Mol Biol Evol 2021; 37:1272-1294. [PMID: 31926008 DOI: 10.1093/molbev/msaa003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Meiotic recombination in vertebrates is concentrated in hotspots throughout the genome. The location and stability of hotspots have been linked to the presence or absence of PRDM9, leading to two primary models for hotspot evolution derived from mammals and birds. Species with PRDM9-directed recombination have rapid turnover of hotspots concentrated in intergenic regions (i.e., mammals), whereas hotspots in species lacking PRDM9 are concentrated in functional regions and have greater stability over time (i.e., birds). Snakes possess PRDM9, yet virtually nothing is known about snake recombination. Here, we examine the recombination landscape and test hypotheses about the roles of PRDM9 in rattlesnakes. We find substantial variation in recombination rate within and among snake chromosomes, and positive correlations between recombination rate and gene density, GC content, and genetic diversity. Like mammals, snakes appear to have a functional and active PRDM9, but rather than being directed away from genes, snake hotspots are concentrated in promoters and functional regions-a pattern previously associated only with species that lack a functional PRDM9. Snakes therefore provide a unique example of recombination landscapes in which PRDM9 is functional, yet recombination hotspots are associated with functional genic regions-a combination of features that defy existing paradigms for recombination landscapes in vertebrates. Our findings also provide evidence that high recombination rates are a shared feature of vertebrate microchromosomes. Our results challenge previous assumptions about the adaptive role of PRDM9 and highlight the diversity of recombination landscape features among vertebrate lineages.
Collapse
Affiliation(s)
- Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington, TX
| | | | - Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, TX
| | - Richard H Adams
- Department of Biology, University of Texas at Arlington, Arlington, TX.,Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL
| | | | | | - Richard W Orton
- Department of Biology, University of Texas at Arlington, Arlington, TX
| | - Jesse M Meik
- Department of Biological Sciences, Tarleton State University, Stephenville, TX
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX
| |
Collapse
|
15
|
Singchat W, Ahmad SF, Laopichienpong N, Suntronpong A, Panthum T, Griffin DK, Srikulnath K. Snake W Sex Chromosome: The Shadow of Ancestral Amniote Super-Sex Chromosome. Cells 2020; 9:cells9112386. [PMID: 33142713 PMCID: PMC7692289 DOI: 10.3390/cells9112386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
: Heteromorphic sex chromosomes, particularly the ZZ/ZW sex chromosome system of birds and some reptiles, undergo evolutionary dynamics distinct from those of autosomes. The W sex chromosome is a unique karyological member of this heteromorphic pair, which has been extensively studied in snakes to explore the origin, evolution, and genetic diversity of amniote sex chromosomes. The snake W sex chromosome offers a fascinating model system to elucidate ancestral trajectories that have resulted in genetic divergence of amniote sex chromosomes. Although the principal mechanism driving evolution of the amniote sex chromosome remains obscure, an emerging hypothesis, supported by studies of W sex chromosomes of squamate reptiles and snakes, suggests that sex chromosomes share varied genomic blocks across several amniote lineages. This implies the possible split of an ancestral super-sex chromosome via chromosomal rearrangements. We review the major findings pertaining to sex chromosomal profiles in amniotes and discuss the evolution of an ancestral super-sex chromosome by collating recent evidence sourced mainly from the snake W sex chromosome analysis. We highlight the role of repeat-mediated sex chromosome conformation and present a genomic landscape of snake Z and W chromosomes, which reveals the relative abundance of major repeats, and identifies the expansion of certain transposable elements. The latest revolution in chromosomics, i.e., complete telomere-to-telomere assembly, offers mechanistic insights into the evolutionary origin of sex chromosomes.
Collapse
Affiliation(s)
- Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Nararat Laopichienpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Aorarat Suntronpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | | | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, (CASTNAR, NRU-KU, Thailand), Bangkok 10900, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
- Correspondence: ; Tel.: +66-2562-5644
| |
Collapse
|
16
|
Diniz-Sousa R, Moraes JDN, Rodrigues-da-Silva TM, Oliveira CS, Caldeira CADS. A brief review on the natural history, venomics and the medical importance of bushmaster ( Lachesis) pit viper snakes. Toxicon X 2020; 7:100053. [PMID: 32793880 PMCID: PMC7408722 DOI: 10.1016/j.toxcx.2020.100053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/17/2022] Open
Abstract
Snakes of the genus Lachesis, commonly known as bushmasters, are the largest venomous snakes in the Americas. Because these snakes have their habitats in areas of remote forests they are difficult to find, and consequently there are few studies of Lachesis taxa in their natural ecosystems. Bushmasters are distributed in tropical forest areas of South and Central America. In Brazil they can be found in the Amazon Rainforest and the Atlantic Forest. Despite the low incidence of cases, laquetic envenoming causes severe permanent sequelae due to the high amount of inoculated venom. These accidents are characterized by local pain, hemorrhage and myonecrosis that can be confused with bothropic envenomings. However, victims of Lachesis bites develop symptoms characteristic of Lachesis envenoming, known as vagal syndrome. An important message of this bibliographic synthesis exercise is that, despite having the proteomic profiles of all the taxa of the genus available, very few structure-function correlation studies have been carried out. Therefore the motivation for this review was to fill a gap in the literature on the genus Lachesis, about which there is no recent review. Here we discuss data scattered in a number of original articles published in specialized journals, spanning the evolutionary history and extant phylogeographic distribution of the bushmasters, their venom composition and diet, as well as the pathophysiology of their bites to humans and the biological activities and possible biotechnological applicability of their venom toxins.
Collapse
Affiliation(s)
- Rafaela Diniz-Sousa
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil
- Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil
- Sao Lucas University Center (UniSL), Porto Velho, RO, Brazil
| | - Jeane do N. Moraes
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil
- Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil
| | | | - Cláudia S. Oliveira
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil
- Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Cleópatra A. da S. Caldeira
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil
- Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil
| |
Collapse
|
17
|
Nuclear organization and morphology of catecholaminergic neurons and certain pallial terminal networks in the brain of the Nile crocodile, Crocodylus niloticus. J Chem Neuroanat 2020; 109:101851. [PMID: 32717392 DOI: 10.1016/j.jchemneu.2020.101851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/05/2023]
Abstract
In the current study, we use tyrosine hydroxylase (TH) immunohistochemistry to detail the nuclear parcellation and cellular morphology of neurons belonging to the catecholaminergic system in the brain of the Nile crocodile. In general, our results are similar to that found in another crocodilian (the spectacled caiman) and indeed other vertebrates, but certain differences of both evolutionary and functional significance were noted. TH immunopositive (TH+) neurons forming distinct nuclei were observed in the olfactory bulb (A16), hypothalamus (A11, A13-15), midbrain (A8-A10), pons (A5-A7) and medulla oblongata (area postrema, C1, C2, A1, A2), encompassing the more commonly observed nuclear complexes of this system across vertebrates. In addition, TH + neurons forming distinct nuclei not commonly identified in vertebrates were observed in the anterior olfactory nucleus, the pretectal nuclear complex, adjacent to the posterior commissure, and within nucleus laminaris, nucleus magnocellularis lateralis and the lateral vestibular nucleus. Palely stained TH + neurons were observed in some of the serotonergic nuclei, including the medial and lateral divisions of the superior raphe nucleus and the inferior raphe and inferior reticular nucleus, but not in other serotonergic nuclei. In birds, a high density of TH + fibres and pericellular baskets in the dorsal ventricular ridge marks the location of the nidopallium caudolaterale (NCL), a putative avian analogue of mammalian prefrontal cortex. In the dorsal ventricular ridge (DVR) of the crocodile a small region in the caudolateral anterior DVR (ADVRcl) revealed a slightly higher density of TH + fibres and some pericellular baskets (formed by only few TH + fibres). These results are discussed in an evolutionary and functional framework.
Collapse
|
18
|
Ahmad SF, Singchat W, Jehangir M, Panthum T, Srikulnath K. Consequence of Paradigm Shift with Repeat Landscapes in Reptiles: Powerful Facilitators of Chromosomal Rearrangements for Diversity and Evolution. Genes (Basel) 2020; 11:E827. [PMID: 32708239 PMCID: PMC7397244 DOI: 10.3390/genes11070827] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
Reptiles are notable for the extensive genomic diversity and species richness among amniote classes, but there is nevertheless a need for detailed genome-scale studies. Although the monophyletic amniotes have recently been a focus of attention through an increasing number of genome sequencing projects, the abundant repetitive portion of the genome, termed the "repeatome", remains poorly understood across different lineages. Consisting predominantly of transposable elements or mobile and satellite sequences, these repeat elements are considered crucial in causing chromosomal rearrangements that lead to genomic diversity and evolution. Here, we propose major repeat landscapes in representative reptilian species, highlighting their evolutionary dynamics and role in mediating chromosomal rearrangements. Distinct karyotype variability, which is typically a conspicuous feature of reptile genomes, is discussed, with a particular focus on rearrangements correlated with evolutionary reorganization of micro- and macrochromosomes and sex chromosomes. The exceptional karyotype variation and extreme genomic diversity of reptiles are used to test several hypotheses concerning genomic structure, function, and evolution.
Collapse
Affiliation(s)
- Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Maryam Jehangir
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Integrative Genomics Lab-LGI, Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok 10900, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
| |
Collapse
|
19
|
Cross-Species BAC Mapping Highlights Conservation of Chromosome Synteny across Dragon Lizards (Squamata: Agamidae). Genes (Basel) 2020; 11:genes11060698. [PMID: 32630412 PMCID: PMC7348930 DOI: 10.3390/genes11060698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/23/2023] Open
Abstract
Dragon lizards (Squamata: Agamidae) comprise about 520 species in six subfamilies distributed across Asia, Australasia and Africa. Only five species are known to have sex chromosomes. All of them possess ZZ/ZW sex chromosomes, which are microchromosomes in four species from the subfamily Amphibolurinae, but much larger in Phrynocephalus vlangalii from the subfamily Agaminae. In most previous studies of these sex chromosomes, the focus has been on Australian species from the subfamily Amphibolurinae, but only the sex chromosomes of the Australian central bearded dragon (Pogona vitticeps) are well-characterized cytogenetically. To determine the level of synteny of the sex chromosomes of P. vitticeps across agamid subfamilies, we performed cross-species two-colour FISH using two bacterial artificial chromosome (BAC) clones from the pseudo-autosomal regions of P. vitticeps. We mapped these two BACs across representative species from all six subfamilies as well as two species of chameleons, the sister group to agamids. We found that one of these BAC sequences is conserved in macrochromosomes and the other in microchromosomes across the agamid lineages. However, within the Amphibolurinae, there is evidence of multiple chromosomal rearrangements with one of the BACs mapping to the second-largest chromosome pair and to the microchromosomes in multiple species including the sex chromosomes of P. vitticeps. Intriguingly, no hybridization signal was observed in chameleons for either of these BACs, suggesting a likely agamid origin of these sequences. Our study shows lineage-specific evolution of sequences/syntenic blocks and successive rearrangements and reveals a complex history of sequences leading to their association with important biological processes such as the evolution of sex chromosomes and sex determination.
Collapse
|
20
|
Chow JC, Anderson PE, Shedlock AM. Sea Turtle Population Genomic Discovery: Global and Locus-Specific Signatures of Polymorphism, Selection, and Adaptive Potential. Genome Biol Evol 2020; 11:2797-2806. [PMID: 31504487 PMCID: PMC6786478 DOI: 10.1093/gbe/evz190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
In the era of genomics, single-nucleotide polymorphisms (SNPs) have become a preferred molecular marker to study signatures of selection and population structure and to enable improved population monitoring and conservation of vulnerable populations. We apply a SNP calling pipeline to assess population differentiation, visualize linkage disequilibrium, and identify loci with sex-specific genotypes of 45 loggerhead sea turtles (Caretta caretta) sampled from the southeastern coast of the United States, including 42 individuals experimentally confirmed for gonadal sex. By performing reference-based SNP calling in independent runs of Stacks, 3,901–6,998 SNPs and up to 30 potentially sex-specific genotypes were identified. Up to 68 pairs of loci were found to be in complete linkage disequilibrium, potentially indicating regions of natural selection and adaptive evolution. This study provides a valuable SNP diagnostic workflow and a large body of new biomarkers for guiding targeted studies of sea turtle genome evolution and for managing legally protected nonmodel iconic species that have high economic and ecological importance but limited genomic resources.
Collapse
Affiliation(s)
- Julie C Chow
- Integrative Genetics and Genomics Graduate Group, University of California, Davis
| | - Paul E Anderson
- Department of Computer Science, College of Charleston, Charleston, South Carolina.,Department of Computer Science and Software Engineering, California Polytechnic State University, San Luis Obispo, CA 93407
| | - Andrew M Shedlock
- Department of Biology, College of Charleston, Charleston, South Carolina.,College of Graduate Studies, Medical University of South Carolina.,Marine Genomics Division, Hollings Marine Laboratory, Charleston, South Carolina
| |
Collapse
|
21
|
Ng CS, Li WH. Genetic and Molecular Basis of Feather Diversity in Birds. Genome Biol Evol 2018; 10:2572-2586. [PMID: 30169786 PMCID: PMC6171735 DOI: 10.1093/gbe/evy180] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2018] [Indexed: 12/16/2022] Open
Abstract
Feather diversity is striking in many aspects. Although the development of feather has been studied for decades, genetic and genomic studies of feather diversity have begun only recently. Many questions remain to be answered by multidisciplinary approaches. In this review, we discuss three levels of feather diversity: Feather morphotypes, intraspecific variations, and interspecific variations. We summarize recent studies of feather evolution in terms of genetics, genomics, and developmental biology and provide perspectives for future research. Specifically, this review includes the following topics: 1) Diversity of feather morphotype; 2) feather diversity among different breeds of domesticated birds, including variations in pigmentation pattern, in feather length or regional identity, in feather orientation, in feather distribution, and in feather structure; and 3) diversity of feathers among avian species, including plumage color and morph differences between species and the regulatory differences in downy feather development between altricial and precocial birds. Finally, we discussed future research directions.
Collapse
Affiliation(s)
- Chen Siang Ng
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Hsiung Li
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Department of Ecology and Evolution, University of Chicago
| |
Collapse
|
22
|
Yuan Z, Zhou T, Bao L, Liu S, Shi H, Yang Y, Gao D, Dunham R, Waldbieser G, Liu Z. The annotation of repetitive elements in the genome of channel catfish (Ictalurus punctatus). PLoS One 2018; 13:e0197371. [PMID: 29763462 PMCID: PMC5953449 DOI: 10.1371/journal.pone.0197371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/01/2018] [Indexed: 11/18/2022] Open
Abstract
Channel catfish (Ictalurus punctatus) is a highly adaptive species and has been used as a research model for comparative immunology, physiology, and toxicology among ectothermic vertebrates. It is also economically important for aquaculture. As such, its reference genome was generated and annotated with protein coding genes. However, the repetitive elements in the catfish genome are less well understood. In this study, over 417.8 Megabase (MB) of repetitive elements were identified and characterized in the channel catfish genome. Among them, the DNA/TcMar-Tc1 transposons are the most abundant type, making up ~20% of the total repetitive elements, followed by the microsatellites (14%). The prevalence of repetitive elements, especially the mobile elements, may have provided a driving force for the evolution of the catfish genome. A number of catfish-specific repetitive elements were identified including the previously reported Xba elements whose divergence rate was relatively low, slower than that in untranslated regions of genes but faster than the protein coding sequences, suggesting its evolutionary restrictions.
Collapse
Affiliation(s)
- Zihao Yuan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Tao Zhou
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Lisui Bao
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Shikai Liu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Huitong Shi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Yujia Yang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Dongya Gao
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Geoff Waldbieser
- USDA-ARS Warmwater Aquaculture Research Unit, Stoneville, Mississippi, United States of America
| | - Zhanjiang Liu
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Radhakrishnan S, Valenzuela N. Chromosomal Context Affects the Molecular Evolution of Sex-linked Genes and Their Autosomal Counterparts in Turtles and Other Vertebrates. J Hered 2018; 108:720-730. [PMID: 29036698 DOI: 10.1093/jhered/esx082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/20/2017] [Indexed: 12/11/2022] Open
Abstract
Sex chromosomes evolve differently from autosomes because natural selection acts distinctly on them given their reduced recombination and smaller population size. Various studies of sex-linked genes compared with different autosomal genes within species support these predictions. Here, we take a novel alternative approach by comparing the rate of evolution between subsets of genes that are sex-linked in selected reptiles/vertebrates and the same genes located in autosomes in other amniotes. We report for the first time the faster evolution of Z-linked genes in a turtle (the Chinese softshell turtle Pelodiscus sinensis) relative to autosomal orthologs in other taxa, including turtles with temperature-dependent sex determination (TSD). This faster rate was absent in its close relative, the spiny softshell turtle (Apalone spinifera), thus revealing important lineage effects, and was only surpassed by mammalian-X linked genes. In contrast, we found slower evolution of X-linked genes in the musk turtle Staurotypus triporcatus (XX/XY) and homologous Z-linked chicken genes. TSD lineages displayed overall faster sequence evolution than taxa with genotypic sex determination (GSD), ruling out global effects of GSD on molecular evolution beyond those by sex-linkage. Notably, results revealed a putative selective sweep around two turtle genes involved in vertebrate gonadogenesis (Pelodiscus-Z-linked Nf2 and Chrysemys-autosomal Tspan7). Our observations reveal important evolutionary changes at the gene level mediated by chromosomal context in turtles despite their low overall evolutionary rate and illuminate sex chromosome evolution by empirically testing expectations from theoretical models. Genome-wide analyses are warranted to test the generality and prevalence of the observed patterns.
Collapse
Affiliation(s)
- Srihari Radhakrishnan
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011
| | - Nicole Valenzuela
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011
| |
Collapse
|
24
|
Suh A, Smeds L, Ellegren H. Abundant recent activity of retrovirus-like retrotransposons within and among flycatcher species implies a rich source of structural variation in songbird genomes. Mol Ecol 2017; 27:99-111. [DOI: 10.1111/mec.14439] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Alexander Suh
- Department of Evolutionary Biology; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
| | - Linnéa Smeds
- Department of Evolutionary Biology; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
| |
Collapse
|
25
|
Koludarov I, Jackson TN, Brouw BOD, Dobson J, Dashevsky D, Arbuckle K, Clemente CJ, Stockdale EJ, Cochran C, Debono J, Stephens C, Panagides N, Li B, Manchadi MLR, Violette A, Fourmy R, Hendrikx I, Nouwens A, Clements J, Martelli P, Kwok HF, Fry BG. Enter the Dragon: The Dynamic and Multifunctional Evolution of Anguimorpha Lizard Venoms. Toxins (Basel) 2017; 9:E242. [PMID: 28783084 PMCID: PMC5577576 DOI: 10.3390/toxins9080242] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 01/08/2023] Open
Abstract
While snake venoms have been the subject of intense study, comparatively little work has been done on lizard venoms. In this study, we have examined the structural and functional diversification of anguimorph lizard venoms and associated toxins, and related these results to dentition and predatory ecology. Venom composition was shown to be highly variable across the 20 species of Heloderma, Lanthanotus, and Varanus included in our study. While kallikrein enzymes were ubiquitous, they were also a particularly multifunctional toxin type, with differential activities on enzyme substrates and also ability to degrade alpha or beta chains of fibrinogen that reflects structural variability. Examination of other toxin types also revealed similar variability in their presence and activity levels. The high level of venom chemistry variation in varanid lizards compared to that of helodermatid lizards suggests that venom may be subject to different selection pressures in these two families. These results not only contribute to our understanding of venom evolution but also reveal anguimorph lizard venoms to be rich sources of novel bioactive molecules with potential as drug design and development lead compounds.
Collapse
Affiliation(s)
- Ivan Koludarov
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Timothy Nw Jackson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
- Australian Venom Research Unit, School of Biomedical Sciences, Level 2 Medical Building, University of Melbourne, Victoria 3010, Australia.
| | - Bianca Op den Brouw
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - James Dobson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Daniel Dashevsky
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Kevin Arbuckle
- Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK.
| | - Christofer J Clemente
- University of the Sunshine Coast, School of Science and Engineering, Sippy Downs, Queensland 4558, Australia.
| | | | - Chip Cochran
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Jordan Debono
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Carson Stephens
- School of Biomedical Sciences, Queensland University of Technology, Brisbane QLD 4001, Australia.
| | - Nadya Panagides
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Bin Li
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau.
| | | | - Aude Violette
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium.
| | - Rudy Fourmy
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium.
| | - Iwan Hendrikx
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Amanda Nouwens
- School of Chemistry and Molecular Biology, University of Queenslnd, St. Lucia QLD 4072, Australia.
| | - Judith Clements
- School of Biomedical Sciences, Queensland University of Technology, Brisbane QLD 4001, Australia.
| | | | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau.
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| |
Collapse
|
26
|
Abstract
Genome size in mammals and birds shows remarkably little interspecific variation compared with other taxa. However, genome sequencing has revealed that many mammal and bird lineages have experienced differential rates of transposable element (TE) accumulation, which would be predicted to cause substantial variation in genome size between species. Thus, we hypothesize that there has been covariation between the amount of DNA gained by transposition and lost by deletion during mammal and avian evolution, resulting in genome size equilibrium. To test this model, we develop computational methods to quantify the amount of DNA gained by TE expansion and lost by deletion over the last 100 My in the lineages of 10 species of eutherian mammals and 24 species of birds. The results reveal extensive variation in the amount of DNA gained via lineage-specific transposition, but that DNA loss counteracted this expansion to various extents across lineages. Our analysis of the rate and size spectrum of deletion events implies that DNA removal in both mammals and birds has proceeded mostly through large segmental deletions (>10 kb). These findings support a unified "accordion" model of genome size evolution in eukaryotes whereby DNA loss counteracting TE expansion is a major determinant of genome size. Furthermore, we propose that extensive DNA loss, and not necessarily a dearth of TE activity, has been the primary force maintaining the greater genomic compaction of flying birds and bats relative to their flightless relatives.
Collapse
|
27
|
Mutation, Duplication, and More in the Evolution of Venomous Animals and Their Toxins. EVOLUTION OF VENOMOUS ANIMALS AND THEIR TOXINS 2017. [DOI: 10.1007/978-94-007-6458-3_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Kapusta A, Suh A. Evolution of bird genomes-a transposon's-eye view. Ann N Y Acad Sci 2016; 1389:164-185. [DOI: 10.1111/nyas.13295] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Aurélie Kapusta
- Department of Human Genetics; University of Utah School of Medicine; Salt Lake City Utah
| | - Alexander Suh
- Department of Evolutionary Biology (EBC); Uppsala University; Uppsala Sweden
| |
Collapse
|
29
|
Noronha RCR, Barros LMR, Araújo REF, Marques DF, Nagamachi CY, Martins C, Pieczarka JC. New insights of karyoevolution in the Amazonian turtles Podocnemis expansa and Podocnemis unifilis (Testudines, Podocnemidae). Mol Cytogenet 2016; 9:73. [PMID: 27708713 PMCID: PMC5039792 DOI: 10.1186/s13039-016-0281-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/07/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cytogenetic studies were conducted in the Brazilian Amazon turtles, Podocnemis expansa Schweigger, 1912 (PEX) and Podocnemis unifilis Troschel, 1848 (PUN) to understand their karyoevolution. Their chromosomal complements were compared using banding techniques (C, G-, Ag-NOR and Chromomycin A3) and fluorescence in situ hybridization (FISH), and efforts were made to establish evolutionary chromosomal relationships within the Podocnemidae family. RESULTS Our results revealed that both species have a chromosome complement of 2n = 28. For PEX and PUN, the fundamental numbers (FNs) were 54 and 52, respectively and the karyotypic formulas (KFs) were 24 m/sm + 2st + 2a and 22 m/sm + 2st + 4a, respectively. G-banding evidenced homologies between the two species and allowed identify a heteromorphic pair (chromosome pair 10) in PUN. In PEX, constitutive heterochromatin (CH) was found in the centromeric regions of pairs 1, 2, 4, 6 and 11 and on 9p. In PUN, CH was observed in the centromeric regions of all chromosomes, and in small proximal bands on 1p, 2p, 3q, 4q, 5q, 9q, 10q and 11q. Moreover, CH amplification was seen in one of the homologs of pair 10 (the heteromorphic pair). The CMA3 staining results were consistent with the CH findings. Ag-NOR staining showed that nucleolar organizing regions (NORs) were localized in the pericentromeric region of pair 1 in both species, and this result was confirmed by the 18S rDNA FISH probe. FISH with telomeric probes identified telomeric sequences in the distal regions of all chromosomes. In addition, interstitial telomeric sequences (ITSs) were present in seven chromosome pairs of PUN, perhaps reflecting the amplification of telomere-like sequences. FISH with a probe against the transposable element (TE), Rex 6, revealed that it is dispersed in euchromatic regions of the first chromosome pairs of both species. This is the first report describing the FISH-based analysis of PEX and PUN for the 18S rDNA, Rex 6 and human telomeric sequences. CONCLUSIONS Our results contribute to clarifying the chromosomal homologies and rearrangement mechanisms that occurred during the evolution of these species, and may help researchers uncover new markers that will improve our understanding of the taxonomy and systematic classification of Podocnemidae. TRIAL REGISTRATION ISRCTN ISRCTN73824458. Registered 28 September 2014. Retrospectively registered.
Collapse
Affiliation(s)
- R C R Noronha
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil
| | - L M R Barros
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil
| | - R E F Araújo
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil
| | - D F Marques
- Laboratório Genômica Integrativa, Universidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP Brazil
| | - C Y Nagamachi
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil ; CNPq Researcher, Belém, Pará Brazil
| | - C Martins
- Laboratório Genômica Integrativa, Universidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP Brazil ; CNPq Researcher, Belém, Pará Brazil
| | - J C Pieczarka
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01 - Guamá, 66075-110 Belém, PA Brazil ; CNPq Researcher, Belém, Pará Brazil
| |
Collapse
|
30
|
Mezzasalma M, Visone V, Petraccioli A, Odierna G, Capriglione T, Guarino FM. Non-random accumulation of LINE1-like sequences on differentiated snake W chromosomes. J Zool (1987) 2016. [DOI: 10.1111/jzo.12355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- M. Mezzasalma
- Department of Biology; University of Naples Federico II; Naples Italy
| | - V. Visone
- Department of Biology; University of Naples Federico II; Naples Italy
| | - A. Petraccioli
- Department of Biology; University of Naples Federico II; Naples Italy
| | - G. Odierna
- Department of Biology; University of Naples Federico II; Naples Italy
| | - T. Capriglione
- Department of Biology; University of Naples Federico II; Naples Italy
| | - F. M. Guarino
- Department of Biology; University of Naples Federico II; Naples Italy
| |
Collapse
|
31
|
Adams RH, Blackmon H, Reyes-Velasco J, Schield DR, Card DC, Andrew AL, Waynewood N, Castoe TA. Microsatellite landscape evolutionary dynamics across 450 million years of vertebrate genome evolution. Genome 2016; 59:295-310. [PMID: 27064176 DOI: 10.1139/gen-2015-0124] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The evolutionary dynamics of simple sequence repeats (SSRs or microsatellites) across the vertebrate tree of life remain largely undocumented and poorly understood. In this study, we analyzed patterns of genomic microsatellite abundance and evolution across 71 vertebrate genomes. The highest abundances of microsatellites exist in the genomes of ray-finned fishes, squamate reptiles, and mammals, while crocodilian, turtle, and avian genomes exhibit reduced microsatellite landscapes. We used comparative methods to infer evolutionary rates of change in microsatellite abundance across vertebrates and to highlight particular lineages that have experienced unusually high or low rates of change in genomic microsatellite abundance. Overall, most variation in microsatellite content, abundance, and evolutionary rate is observed among major lineages of reptiles, yet we found that several deeply divergent clades (i.e., squamate reptiles and mammals) contained relatively similar genomic microsatellite compositions. Archosauromorph reptiles (turtles, crocodilians, and birds) exhibit reduced genomic microsatellite content and the slowest rates of microsatellite evolution, in contrast to squamate reptile genomes that have among the highest rates of microsatellite evolution. Substantial branch-specific shifts in SSR content in primates, monotremes, rodents, snakes, and fish are also evident. Collectively, our results support multiple major shifts in microsatellite genomic landscapes among vertebrates.
Collapse
Affiliation(s)
- Richard H Adams
- a Department of Biology, 501 S. Nedderman Dr., University of Texas at Arlington, TX 76019, USA
| | - Heath Blackmon
- b Department of Ecology, Evolution & Behavior, 1987 Upper Buford Cir., University of Minnesota, Saint Paul, MN 55108-6097, USA
| | - Jacobo Reyes-Velasco
- a Department of Biology, 501 S. Nedderman Dr., University of Texas at Arlington, TX 76019, USA
| | - Drew R Schield
- a Department of Biology, 501 S. Nedderman Dr., University of Texas at Arlington, TX 76019, USA
| | - Daren C Card
- a Department of Biology, 501 S. Nedderman Dr., University of Texas at Arlington, TX 76019, USA
| | - Audra L Andrew
- a Department of Biology, 501 S. Nedderman Dr., University of Texas at Arlington, TX 76019, USA
| | - Nyimah Waynewood
- a Department of Biology, 501 S. Nedderman Dr., University of Texas at Arlington, TX 76019, USA
| | - Todd A Castoe
- a Department of Biology, 501 S. Nedderman Dr., University of Texas at Arlington, TX 76019, USA
| |
Collapse
|
32
|
Carvalho NDM, Pinheiro VSS, Carmo EJ, Goll LG, Schneider CH, Gross MC. The Organization of Repetitive DNA in the Genomes of Amazonian Lizard Species in the Family Teiidae. Cytogenet Genome Res 2016; 147:161-8. [PMID: 26867142 DOI: 10.1159/000443714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2015] [Indexed: 11/19/2022] Open
Abstract
Repetitive DNA is the largest fraction of the eukaryote genome and comprises tandem and dispersed sequences. It presents variations in relation to its composition, number of copies, distribution, dynamics, and genome organization, and participates in the evolutionary diversification of different vertebrate species. Repetitive sequences are usually located in the heterochromatin of centromeric and telomeric regions of chromosomes, contributing to chromosomal structures. Therefore, the aim of this study was to physically map repetitive DNA sequences (5S rDNA, telomeric sequences, tropomyosin gene 1, and retroelements Rex1 and SINE) of mitotic chromosomes of Amazonian species of teiids (Ameiva ameiva, Cnemidophorus sp. 1, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin) to understand their genome organization and karyotype evolution. The mapping of repetitive sequences revealed a distinct pattern in Cnemidophorus sp. 1, whereas the other species showed all sequences interspersed in the heterochromatic region. Physical mapping of the tropomyosin 1 gene was performed for the first time in lizards and showed that in addition to being functional, this gene has a structural function similar to the mapped repetitive elements as it is located preferentially in centromeric regions and termini of chromosomes.
Collapse
Affiliation(s)
- Natalia D M Carvalho
- Laboratx00F3;rio de Citogenx00F4;mica Animal, Instituto de Cix00EA;ncias Biolx00F3;gicas, Universidade Federal do Amazonas, Manaus, Brazil
| | | | | | | | | | | |
Collapse
|
33
|
Malhotra A, Creer S, Harris JB, Thorpe RS. The importance of being genomic: Non-coding and coding sequences suggest different models of toxin multi-gene family evolution. Toxicon 2015; 107:344-58. [DOI: 10.1016/j.toxicon.2015.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/31/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
|
34
|
Major Histocompatibility Complex Genes Map to Two Chromosomes in an Evolutionarily Ancient Reptile, the Tuatara Sphenodon punctatus. G3-GENES GENOMES GENETICS 2015; 5:1439-51. [PMID: 25953959 PMCID: PMC4502378 DOI: 10.1534/g3.115.017467] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Major histocompatibility complex (MHC) genes are a central component of the vertebrate immune system and usually exist in a single genomic region. However, considerable differences in MHC organization and size exist between different vertebrate lineages. Reptiles occupy a key evolutionary position for understanding how variation in MHC structure evolved in vertebrates, but information on the structure of the MHC region in reptiles is limited. In this study, we investigate the organization and cytogenetic location of MHC genes in the tuatara (Sphenodon punctatus), the sole extant representative of the early-diverging reptilian order Rhynchocephalia. Sequencing and mapping of 12 clones containing class I and II MHC genes from a bacterial artificial chromosome library indicated that the core MHC region is located on chromosome 13q. However, duplication and translocation of MHC genes outside of the core region was evident, because additional class I MHC genes were located on chromosome 4p. We found a total of seven class I sequences and 11 class II β sequences, with evidence for duplication and pseudogenization of genes within the tuatara lineage. The tuatara MHC is characterized by high repeat content and low gene density compared with other species and we found no antigen processing or MHC framework genes on the MHC gene-containing clones. Our findings indicate substantial differences in MHC organization in tuatara compared with mammalian and avian MHCs and highlight the dynamic nature of the MHC. Further sequencing and annotation of tuatara and other reptile MHCs will determine if the tuatara MHC is representative of nonavian reptiles in general.
Collapse
|
35
|
Figuet E, Ballenghien M, Romiguier J, Galtier N. Biased gene conversion and GC-content evolution in the coding sequences of reptiles and vertebrates. Genome Biol Evol 2014; 7:240-50. [PMID: 25527834 PMCID: PMC4316630 DOI: 10.1093/gbe/evu277] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mammalian and avian genomes are characterized by a substantial spatial heterogeneity of GC-content, which is often interpreted as reflecting the effect of local GC-biased gene conversion (gBGC), a meiotic repair bias that favors G and C over A and T alleles in high-recombining genomic regions. Surprisingly, the first fully sequenced nonavian sauropsid (i.e., reptile), the green anole Anolis carolinensis, revealed a highly homogeneous genomic GC-content landscape, suggesting the possibility that gBGC might not be at work in this lineage. Here, we analyze GC-content evolution at third-codon positions (GC3) in 44 vertebrates species, including eight newly sequenced transcriptomes, with a specific focus on nonavian sauropsids. We report that reptiles, including the green anole, have a genome-wide distribution of GC3 similar to that of mammals and birds, and we infer a strong GC3-heterogeneity to be already present in the tetrapod ancestor. We further show that the dynamic of coding sequence GC-content is largely governed by karyotypic features in vertebrates, notably in the green anole, in agreement with the gBGC hypothesis. The discrepancy between third-codon positions and noncoding DNA regarding GC-content dynamics in the green anole could not be explained by the activity of transposable elements or selection on codon usage. This analysis highlights the unique value of third-codon positions as an insertion/deletion-free marker of nucleotide substitution biases that ultimately affect the evolution of proteins.
Collapse
Affiliation(s)
- Emeric Figuet
- CNRS, Université Montpellier 2, UMR 5554, Institut des Sciences de l'Evolution de Montpellier, France
| | - Marion Ballenghien
- CNRS, Université Montpellier 2, UMR 5554, Institut des Sciences de l'Evolution de Montpellier, France
| | - Jonathan Romiguier
- CNRS, Université Montpellier 2, UMR 5554, Institut des Sciences de l'Evolution de Montpellier, France Department of Ecology and Evolution, Biophore, University of Lausanne, Switzerland
| | - Nicolas Galtier
- CNRS, Université Montpellier 2, UMR 5554, Institut des Sciences de l'Evolution de Montpellier, France
| |
Collapse
|
36
|
Suh A, Churakov G, Ramakodi MP, Platt RN, Jurka J, Kojima KK, Caballero J, Smit AF, Vliet KA, Hoffmann FG, Brosius J, Green RE, Braun EL, Ray DA, Schmitz J. Multiple lineages of ancient CR1 retroposons shaped the early genome evolution of amniotes. Genome Biol Evol 2014; 7:205-17. [PMID: 25503085 PMCID: PMC4316615 DOI: 10.1093/gbe/evu256] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chicken repeat 1 (CR1) retroposons are long interspersed elements (LINEs) that are ubiquitous within amniote genomes and constitute the most abundant family of transposed elements in birds, crocodilians, turtles, and snakes. They are also present in mammalian genomes, where they reside as numerous relics of ancient retroposition events. Yet, despite their relevance for understanding amniote genome evolution, the diversity and evolution of CR1 elements has never been studied on an amniote-wide level. We reconstruct the temporal and quantitative activity of CR1 subfamilies via presence/absence analyses across crocodilian phylogeny and comparative analyses of 12 crocodilian genomes, revealing relative genomic stasis of retroposition during genome evolution of extant Crocodylia. Our large-scale phylogenetic analysis of amniote CR1 subfamilies suggests the presence of at least seven ancient CR1 lineages in the amniote ancestor; and amniote-wide analyses of CR1 successions and quantities reveal differential retention (presence of ancient relics or recent activity) of these CR1 lineages across amniote genome evolution. Interestingly, birds and lepidosaurs retained the fewest ancient CR1 lineages among amniotes and also exhibit smaller genome sizes. Our study is the first to analyze CR1 evolution in a genome-wide and amniote-wide context and the data strongly suggest that the ancestral amniote genome contained myriad CR1 elements from multiple ancient lineages, and remnants of these are still detectable in the relatively stable genomes of crocodilians and turtles. Early mammalian genome evolution was thus characterized by a drastic shift from CR1 prevalence to dominance and hyperactivity of L2 LINEs in monotremes and L1 LINEs in therians.
Collapse
Affiliation(s)
- Alexander Suh
- Institute of Experimental Pathology (ZMBE), University of Münster, Germany Department of Evolutionary Biology (EBC), Uppsala University, Sweden
| | - Gennady Churakov
- Institute of Experimental Pathology (ZMBE), University of Münster, Germany
| | - Meganathan P Ramakodi
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University Present address: Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA Present address: Department of Biology, Temple University, Philadelphia, PA
| | - Roy N Platt
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University Department of Biological Sciences, Texas Tech University
| | - Jerzy Jurka
- Genetic Information Research Institute, Mountain View, California
| | - Kenji K Kojima
- Genetic Information Research Institute, Mountain View, California
| | | | - Arian F Smit
- Institute for Systems Biology, Seattle, Washington
| | | | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University
| | - Jürgen Brosius
- Institute of Experimental Pathology (ZMBE), University of Münster, Germany
| | - Richard E Green
- Department of Biomolecular Engineering, University of California
| | - Edward L Braun
- Department of Biology and Genetics Institute, University of Florida
| | - David A Ray
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University Department of Biological Sciences, Texas Tech University
| | - Jürgen Schmitz
- Institute of Experimental Pathology (ZMBE), University of Münster, Germany
| |
Collapse
|
37
|
Pettinello R, Dooley H. The immunoglobulins of cold-blooded vertebrates. Biomolecules 2014; 4:1045-69. [PMID: 25427250 PMCID: PMC4279169 DOI: 10.3390/biom4041045] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 12/27/2022] Open
Abstract
Although lymphocyte-like cells secreting somatically-recombining receptors have been identified in the jawless fishes (hagfish and lamprey), the cartilaginous fishes (sharks, skates, rays and chimaera) are the most phylogenetically distant group relative to mammals in which bona fide immunoglobulins (Igs) have been found. Studies of the antibodies and humoral immune responses of cartilaginous fishes and other cold-blooded vertebrates (bony fishes, amphibians and reptiles) are not only revealing information about the emergence and roles of the different Ig heavy and light chain isotypes, but also the evolution of specialised adaptive features such as isotype switching, somatic hypermutation and affinity maturation. It is becoming increasingly apparent that while the adaptive immune response in these vertebrate lineages arose a long time ago, it is most definitely not primitive and has evolved to become complex and sophisticated. This review will summarise what is currently known about the immunoglobulins of cold-blooded vertebrates and highlight the differences, and commonalities, between these and more “conventional” mammalian species.
Collapse
Affiliation(s)
- Rita Pettinello
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
38
|
Carbajo RJ, Sanz L, Perez A, Calvete JJ. NMR structure of bitistatin – a missing piece in the evolutionary pathway of snake venom disintegrins. FEBS J 2014; 282:341-60. [PMID: 25363287 DOI: 10.1111/febs.13138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/13/2014] [Accepted: 10/29/2014] [Indexed: 11/28/2022]
Abstract
Extant disintegrins, as found in the venoms of Viperidae and Crotalidae snakes (vipers and rattlesnakes, represent a family of polypeptides that block the function of β1 and β3 integrin receptors, both potently and with a high degree of selectivity. This toxin family owes its origin to the neofunctionalization of the extracellular region of an ADAM (a disintegrin and metalloprotease) molecule recruited into the snake venom gland proteome in the Jurassic. The evolutionary structural diversification of the disintegrin scaffold, from the ancestral long disintegrins to the more recently evolved medium-sized, dimeric and short disintegrins, involved the stepwise loss of pairs of class-specific disulfide linkages and the processing of the N-terminal region. NMR and crystal structures of medium-sized, dimeric and short disintegrins have been solved. However, the structure of a long disintegrin remained unknown. The present study reports the NMR solution structures of two disulfide bond conformers of the long disintegrin bitistatin from the African puff adder Bitis arietans. The findings provide insight into how a structural domain of the extracellular region of an ADAM molecule, recruited into and selectively expressed in the snake venom gland proteome as a PIII metalloprotease in the Jurassic, has subsequently been tranformed into a family of integrin receptor antagonists.
Collapse
Affiliation(s)
- Rodrigo J Carbajo
- Laboratory of Structural Biochemistry, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | |
Collapse
|
39
|
Leaché AD, Harris RB, Maliska ME, Linkem CW. Comparative species divergence across eight triplets of spiny lizards (Sceloporus) using genomic sequence data. Genome Biol Evol 2014; 5:2410-9. [PMID: 24259316 PMCID: PMC3879974 DOI: 10.1093/gbe/evt186] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Species divergence is typically thought to occur in the absence of gene flow, but many empirical studies are discovering that gene flow may be more pervasive during species formation. Although many examples of divergence with gene flow have been identified, few clades have been investigated in a comparative manner, and fewer have been studied using genome-wide sequence data. We contrast species divergence genetic histories across eight triplets of North American Sceloporus lizards using a maximum likelihood implementation of the isolation–migration (IM) model. Gene flow at the time of species divergence is modeled indirectly as variation in species divergence time across the genome or explicitly using a migration rate parameter. Likelihood ratio tests (LRTs) are used to test the null model of no gene flow at speciation against these two alternative gene flow models. We also use the Akaike information criterion to rank the models. Hundreds of loci are needed for the LRTs to have statistical power, and we use genome sequencing of reduced representation libraries to obtain DNA sequence alignments at many loci (between 340 and 3,478; mean = 1,678) for each triplet. We find that current species distributions are a poor predictor of whether a species pair diverged with gene flow. Interrogating the genome using the triplet method expedites the comparative study of species divergence history and the estimation of genetic parameters associated with speciation.
Collapse
|
40
|
Olivieri DN, von Haeften B, Sánchez-Espinel C, Faro J, Gambón-Deza F. Genomic V exons from whole genome shotgun data in reptiles. Immunogenetics 2014; 66:479-92. [DOI: 10.1007/s00251-014-0784-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/23/2014] [Indexed: 10/25/2022]
|
41
|
Tollis M, Boissinot S. Lizards and LINEs: selection and demography affect the fate of L1 retrotransposons in the genome of the green anole (Anolis carolinensis). Genome Biol Evol 2014; 5:1754-68. [PMID: 24013105 PMCID: PMC3787681 DOI: 10.1093/gbe/evt133] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Autonomous retrotransposons lacking long terminal repeats (LTR) account for much of the variation in genome size and structure among vertebrates. Mammalian genomes contain hundreds of thousands of non-LTR retrotransposon copies, mostly resulting from the amplification of a single clade known as L1. The genomes of teleost fish and squamate reptiles contain a much more diverse array of non-LTR retrotransposon families, whereas copy number is relatively low. The majority of non-LTR retrotransposon insertions in nonmammalian vertebrates also appear to be very recent, suggesting strong purifying selection limits the accumulation of non-LTR retrotransposon copies. It is however unclear whether this turnover model, originally proposed in Drosophila, applies to nonmammalian vertebrates. Here, we studied the population dynamics of L1 in the green anole lizard (Anolis carolinensis). We found that although most L1 elements are recent in this genome, truncated insertions accumulate readily, and many are fixed at both the population and species level. In contrast, full-length L1 insertions are found at lower population frequencies, suggesting that the turnover model only applies to longer L1 elements in Anolis. We also found that full-length L1 inserts are more likely to be fixed in populations of small effective size, suggesting that the strength of purifying selection against deleterious alleles is highly dependent on host demographic history. Similar mechanisms seem to be controlling the fate of non-LTR retrotransposons in both Anolis and teleostean fish, which suggests that mammals have considerably diverged from the ancestral vertebrate in terms of how they interact with their intragenomic parasites.
Collapse
Affiliation(s)
- Marc Tollis
- Biology Department, Queens College, City University of New York, Flushing
| | | |
Collapse
|
42
|
Sequence and gene content of a large fragment of a lizard sex chromosome and evaluation of candidate sex differentiating gene R-spondin 1. BMC Genomics 2013; 14:899. [PMID: 24344927 PMCID: PMC3880147 DOI: 10.1186/1471-2164-14-899] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/13/2013] [Indexed: 12/23/2022] Open
Abstract
Background Scant genomic information from non-avian reptile sex chromosomes is available, and for only a few lizards, several snakes and one turtle species, and it represents only a small fraction of the total sex chromosome sequences in these species. Results We report a 352 kb of contiguous sequence from the sex chromosome of a squamate reptile, Pogona vitticeps, with a ZZ/ZW sex microchromosome system. This contig contains five protein coding genes (oprd1, rcc1, znf91, znf131, znf180), and major families of repetitive sequences with a high number of copies of LTR and non-LTR retrotransposons, including the CR1 and Bov-B LINEs. The two genes, oprd1 and rcc1 are part of a homologous syntenic block, which is conserved among amniotes. While oprd1 and rcc1 have no known function in sex determination or differentiation in amniotes, this homologous syntenic block in mammals and chicken also contains R-spondin 1 (rspo1), the ovarian differentiating gene in mammals. In order to explore the probability that rspo1 is sex determining in dragon lizards, genomic BAC and cDNA clones were mapped using fluorescence in situ hybridisation. Their location on an autosomal microchromosome pair, not on the ZW sex microchromosomes, eliminates rspo1 as a candidate sex determining gene in P. vitticeps. Conclusion Our study has characterized the largest contiguous stretch of physically mapped sex chromosome sequence (352 kb) from a ZZ/ZW lizard species. Although this region represents only a small fraction of the sex chromosomes of P. vitticeps, it has revealed several features typically associated with sex chromosomes including the accumulation of large blocks of repetitive sequences.
Collapse
|
43
|
Schuett GW, Repp RA, Hoss SK, Herrmann HW. Environmentally cued parturition in a desert rattlesnake,Crotalus atrox. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Gordon W. Schuett
- Department of Biology and Center for Behavioral Neuroscience; Georgia State University; 33 Gilmer Street, SE, Unit 8 Atlanta GA 30303-3088 USA
| | - Roger A. Repp
- National Optical Astronomy Observatory; 950 North Cherry Avenue Tucson AZ 85719 USA
| | - Shannon K. Hoss
- Department of Biology; San Diego State University; 5500 Campanile Drive San Diego CA 92182-4614 USA
| | - Hans-Werner Herrmann
- School of Natural Resources and the Environment; University of Arizona; Tucson AZ 85721 USA
| |
Collapse
|
44
|
Arkhipova IR, Rodriguez F. Genetic and epigenetic changes involving (retro)transposons in animal hybrids and polyploids. Cytogenet Genome Res 2013; 140:295-311. [PMID: 23899811 DOI: 10.1159/000352069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transposable elements (TEs) are discrete genetic units that have the ability to change their location within chromosomal DNA, and constitute a major and rapidly evolving component of eukaryotic genomes. They can be subdivided into 2 distinct types: retrotransposons, which use an RNA intermediate for transposition, and DNA transposons, which move only as DNA. Rapid advances in genome sequencing significantly improved our understanding of TE roles in genome shaping and restructuring, and studies of transcriptomes and epigenomes shed light on the previously unknown molecular mechanisms underlying genetic and epigenetic TE controls. Knowledge of these control systems may be important for better understanding of reticulate evolution and speciation in the context of bringing different genomes together by hybridization and perturbing the established regulatory balance by ploidy changes. See also sister article focusing on plants by Bento et al. in this themed issue.
Collapse
Affiliation(s)
- I R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA. iarkhipova @ mbl.edu
| | | |
Collapse
|
45
|
Magadán-Mompó S, Sánchez-Espinel C, Gambón-Deza F. IgH loci of American alligator and saltwater crocodile shed light on IgA evolution. Immunogenetics 2013; 65:531-41. [PMID: 23558556 DOI: 10.1007/s00251-013-0692-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/01/2013] [Indexed: 11/26/2022]
Abstract
Immunoglobulin loci of two representatives of the order Crocodylia were studied from full genome sequences. Both Alligator mississippiensis and Crocodylus porosus have 13 genes for the heavy chain constant regions of immunoglobulins. The IGHC locus contains genes encoding four immunoglobulins M (IgM), one immunoglobulin D (IgD), three immunoglobulins A (IgA), three immunoglobulins Y (IgY), and two immunoglobulins D2 (IgD2). IgA and IgD2 genes were found in reverse transcriptional orientation compared to the other Ig genes. The IGHD gene contains 11 exons, four of which containing stop codons or sequence alterations. As described in other reptiles, the IgD2 is a chimeric Ig with IgA- and IgD-related domains. This work clarifies the origin of bird IgA and its evolutionary relationship with amphibian immunoglobulin X (IgX) as well as their links with mammalian IgA.
Collapse
Affiliation(s)
- Susana Magadán-Mompó
- Oceanographic Center of Vigo, Spanish Institute of Oceanography-IEO, Subida a Radio Faro 50, 36390 Vigo, Pontevedra, Spain
| | | | | |
Collapse
|
46
|
Bradley Shaffer H, Minx P, Warren DE, Shedlock AM, Thomson RC, Valenzuela N, Abramyan J, Amemiya CT, Badenhorst D, Biggar KK, Borchert GM, Botka CW, Bowden RM, Braun EL, Bronikowski AM, Bruneau BG, Buck LT, Capel B, Castoe TA, Czerwinski M, Delehaunty KD, Edwards SV, Fronick CC, Fujita MK, Fulton L, Graves TA, Green RE, Haerty W, Hariharan R, Hernandez O, Hillier LW, Holloway AK, Janes D, Janzen FJ, Kandoth C, Kong L, de Koning APJ, Li Y, Literman R, McGaugh SE, Mork L, O'Laughlin M, Paitz RT, Pollock DD, Ponting CP, Radhakrishnan S, Raney BJ, Richman JM, St John J, Schwartz T, Sethuraman A, Spinks PQ, Storey KB, Thane N, Vinar T, Zimmerman LM, Warren WC, Mardis ER, Wilson RK. The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol 2013; 14:R28. [PMID: 23537068 PMCID: PMC4054807 DOI: 10.1186/gb-2013-14-3-r28] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/15/2013] [Accepted: 03/28/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND We describe the genome of the western painted turtle, Chrysemys picta bellii, one of the most widespread, abundant, and well-studied turtles. We place the genome into a comparative evolutionary context, and focus on genomic features associated with tooth loss, immune function, longevity, sex differentiation and determination, and the species' physiological capacities to withstand extreme anoxia and tissue freezing. RESULTS Our phylogenetic analyses confirm that turtles are the sister group to living archosaurs, and demonstrate an extraordinarily slow rate of sequence evolution in the painted turtle. The ability of the painted turtle to withstand complete anoxia and partial freezing appears to be associated with common vertebrate gene networks, and we identify candidate genes for future functional analyses. Tooth loss shares a common pattern of pseudogenization and degradation of tooth-specific genes with birds, although the rate of accumulation of mutations is much slower in the painted turtle. Genes associated with sex differentiation generally reflect phylogeny rather than convergence in sex determination functionality. Among gene families that demonstrate exceptional expansions or show signatures of strong natural selection, immune function and musculoskeletal patterning genes are consistently over-represented. CONCLUSIONS Our comparative genomic analyses indicate that common vertebrate regulatory networks, some of which have analogs in human diseases, are often involved in the western painted turtle's extraordinary physiological capacities. As these regulatory pathways are analyzed at the functional level, the painted turtle may offer important insights into the management of a number of human health disorders.
Collapse
Affiliation(s)
- H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA 90095-1496, USA
| | - Patrick Minx
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Daniel E Warren
- Department of Biology, Saint Louis University, St Louis, MO 63103, USA
| | - Andrew M Shedlock
- College of Charleston Biology Department and Grice Marine Laboratory, Charleston, SC 29424, USA
- Medical University of South Carolina College of Graduate Studies and Center for Marine Biomedicine and Environmental Sciences, Charleston, SC 29412, USA
| | - Robert C Thomson
- Department of Biology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - John Abramyan
- Faculty of Dentistry, Life Sciences Institute University of British Columbia, Vancouver BC, Canada
| | - Chris T Amemiya
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101 USA
| | - Daleen Badenhorst
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Kyle K Biggar
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada K1S 5B6, Canada
| | - Glen M Borchert
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
- Department of Biological Sciences, Life Sciences Building, University of South Alabama, Mobile, AL 36688-0002, USA
| | | | - Rachel M Bowden
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL 32611 USA
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Cardiovascular Research Institute and Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Leslie T Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5, Canada
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Todd A Castoe
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Mike Czerwinski
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kim D Delehaunty
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Catrina C Fronick
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Matthew K Fujita
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lucinda Fulton
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Tina A Graves
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Richard E Green
- Baskin School of Engineering University of California, Santa Cruz Santa Cruz, CA 95064, USA
| | - Wilfried Haerty
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, Henry Wellcome Building of Gene Function, University of Oxford, Oxford, OX13PT, UK
| | - Ramkumar Hariharan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud P.O, Thiruvananthapuram, Kerala 695014, India
| | - Omar Hernandez
- FUDECI, Fundación para el Desarrollo de las Ciencias Físicas, Matemáticas y Naturales. Av, Universidad, Bolsa a San Francisco, Palacio de Las Academias, Caracas, Venezuela
| | - LaDeana W Hillier
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Alisha K Holloway
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Daniel Janes
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Fredric J Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Cyriac Kandoth
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Lesheng Kong
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, Henry Wellcome Building of Gene Function, University of Oxford, Oxford, OX13PT, UK
| | - AP Jason de Koning
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Yang Li
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, Henry Wellcome Building of Gene Function, University of Oxford, Oxford, OX13PT, UK
| | - Robert Literman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | | | - Lindsey Mork
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michelle O'Laughlin
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Ryan T Paitz
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - David D Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Chris P Ponting
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, Henry Wellcome Building of Gene Function, University of Oxford, Oxford, OX13PT, UK
| | - Srihari Radhakrishnan
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Brian J Raney
- Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, CA 95064, USA
| | - Joy M Richman
- Faculty of Dentistry, Life Sciences Institute University of British Columbia, Vancouver BC, Canada
| | - John St John
- Baskin School of Engineering University of California, Santa Cruz Santa Cruz, CA 95064, USA
| | - Tonia Schwartz
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Arun Sethuraman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Phillip Q Spinks
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA 90095-1496, USA
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada K1S 5B6, Canada
| | - Nay Thane
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Tomas Vinar
- Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina, Bratislava 84248, Slovakia
| | - Laura M Zimmerman
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Wesley C Warren
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Elaine R Mardis
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Richard K Wilson
- The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| |
Collapse
|
47
|
Grechko VV. The problems of molecular phylogenetics with the example of squamate reptiles: Mitochondrial DNA markers. Mol Biol 2013. [DOI: 10.1134/s0026893313010056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Mota NR, Araujo-Jnr EV, Paixão-Côrtes VR, Bortolini MC, Bau CHD. Linking dopamine neurotransmission and neurogenesis: The evolutionary history of the NTAD (NCAM1-TTC12-ANKK1-DRD2) gene cluster. Genet Mol Biol 2012; 35:912-8. [PMID: 23412349 PMCID: PMC3571431 DOI: 10.1590/s1415-47572012000600004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Genetic studies have long suggested the important role of the DRD2 gene in psychiatric disorders and behavior. Further research has shown a conjoined effect of genes in the Chr11q22–23 region, which includes the NCAM1, TTC12, ANKK1 and DRD2 genes, or NTAD cluster. Despite a growing need to unravel the role of this cluster, few studies have taken into account interspecies and evolutionary approaches. This study shows that behaviorally relevant SNPs from the NTAD cluster, such as rs1800497 (Taq1A) and rs6277, are ancient polymorphisms that date back to the common ancestor between modern humans and Neanderthals/Denisovans. Conserved synteny and neighborhood indicate the NTAD cluster seems to have been established at least 400 million years ago, when the first Sarcopterygians emerged. The NTAD genes are apparently co-regulated and this could be attributed to adaptive functional properties, including those that emerged when the central nervous system became more complex. Finally, our findings indicate that NTAD genes, which are related to neurogenesis and dopaminergic neurotransmission, should be approached as a unit in behavioral and psychiatric genetic studies.
Collapse
Affiliation(s)
- Nina Roth Mota
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Matsubara K, Kuraku S, Tarui H, Nishimura O, Nishida C, Agata K, Kumazawa Y, Matsuda Y. Intra-genomic GC heterogeneity in sauropsids: evolutionary insights from cDNA mapping and GC(3) profiling in snake. BMC Genomics 2012; 13:604. [PMID: 23140509 PMCID: PMC3549455 DOI: 10.1186/1471-2164-13-604] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 10/24/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Extant sauropsids (reptiles and birds) are divided into two major lineages, the lineage of Testudines (turtles) and Archosauria (crocodilians and birds) and the lineage of Lepidosauria (tuatara, lizards, worm lizards and snakes). Karyotypes of these sauropsidan groups generally consist of macrochromosomes and microchromosomes. In chicken, microchromosomes exhibit a higher GC-content than macrochromosomes. To examine the pattern of intra-genomic GC heterogeneity in lepidosaurian genomes, we constructed a cytogenetic map of the Japanese four-striped rat snake (Elaphe quadrivirgata) with 183 cDNA clones by fluorescence in situ hybridization, and examined the correlation between the GC-content of exonic third codon positions (GC3) of the genes and the size of chromosomes on which the genes were localized. RESULTS Although GC3 distribution of snake genes was relatively homogeneous compared with those of the other amniotes, microchromosomal genes showed significantly higher GC3 than macrochromosomal genes as in chicken. Our snake cytogenetic map also identified several conserved segments between the snake macrochromosomes and the chicken microchromosomes. Cross-species comparisons revealed that GC3 of most snake orthologs in such macrochromosomal segments were GC-poor (GC3 < 50%) whereas those of chicken orthologs in microchromosomes were relatively GC-rich (GC3 ≥ 50%). CONCLUSION Our results suggest that the chromosome size-dependent GC heterogeneity had already occurred before the lepidosaur-archosaur split, 275 million years ago. This character was probably present in the common ancestor of lepidosaurs and but lost in the lineage leading to Anolis during the diversification of lepidosaurs. We also identified several genes whose GC-content might have been influenced by the size of the chromosomes on which they were harbored over the course of sauropsid evolution.
Collapse
Affiliation(s)
- Kazumi Matsubara
- Department of Information and Biological Sciences, Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|