1
|
Ishorst N, Hölzel S, Greve C, Yilmaz Ö, Lindenberg T, Lambertz J, Drichel D, Zametica B, Mingardo E, Kalanithy JC, Channab K, Kibris D, Henne S, Degenhardt F, Siewert A, Dixon M, Kruse T, Ongkosuwito E, Girisha KM, Pande S, Nowak S, Hagelueken G, Geyer M, Carels C, van Rooij IALM, Ludwig KU, Odermatt B, Mangold E. Role of ZFHX4 in orofacial clefting based on human genetic data and zebrafish models. Eur J Hum Genet 2024:10.1038/s41431-024-01775-9. [PMID: 39702590 DOI: 10.1038/s41431-024-01775-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
Orofacial clefting (OFC) is a frequent congenital anomaly and can occur either in the context of underlying syndromes or in isolation (nonsyndromic). The two common OFC phenotypes are cleft lip with/without cleft palate (CL/P) and cleft palate only (CPO). In this study, we searched for penetrant CL/P genes, by evaluating de novo copy number variants (CNV) from an exome sequencing dataset of 50 nonsyndromic patient-parent trios. We detected a heterozygous 86 kb de novo deletion affecting exons 4-11 of ZFHX4, a gene previously associated with OFC. Genetic and phenotypic data from our in-house and the AGORA cohort (710 and 229 individuals with nonsyndromic CL/P) together with literature and database reviews demonstrate that ZFHX4 variants can lead to both nonsyndromic and syndromic forms not only of CL/P but also CPO. Expression analysis in published single-cell RNA-sequencing data (mouse embryo, zebrafish larva) at relevant time-points support an important role of Zfhx4/zfhx4 in craniofacial development. To characterize the role of zfhx4 in zebrafish craniofacial development, we knocked out/down the zebrafish orthologue. Cartilage staining of the zfhx4 CRISPR F0 knockout and morpholino knockdown at 4 days post-fertilization showed an underdeveloped and abnormally shaped ethmoid plate and cartilaginous jaw (resembling micrognathia). While there is evidence for the dominant inheritance of ZFHX4 variants in OFC, we here present a patient with a possible recessive inheritance. In conclusion, ZFHX4 has a highly heterogeneous phenotypic spectrum and variable mode of inheritance. Our data highlight that ZFHX4 should be considered in genetic testing in patients with nonsyndromic clefting.
Collapse
Affiliation(s)
- Nina Ishorst
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany.
- Institute of Anatomy, Division of Neuroanatomy, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany.
| | - Selina Hölzel
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Anatomy and Cell Biology, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Carola Greve
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
| | - Öznur Yilmaz
- Institute of Anatomy, Division of Neuroanatomy, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Tobias Lindenberg
- Institute of Anatomy, Division of Neuroanatomy, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Jessica Lambertz
- Institute of Anatomy, Division of Neuroanatomy, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Dmitriy Drichel
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Berina Zametica
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Enrico Mingardo
- Institute of Anatomy and Cell Biology, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Faculty of Life Science, Nutritional Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Jeshurun C Kalanithy
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Anatomy, Division of Neuroanatomy, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Khadija Channab
- Institute of Anatomy and Cell Biology, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Duygu Kibris
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Anatomy, Division of Neuroanatomy, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Sabrina Henne
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Anna Siewert
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Michael Dixon
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PL, UK
| | - Teresa Kruse
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Orthodontics, Cologne, Germany
| | - Edwin Ongkosuwito
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Shruti Pande
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Stefanie Nowak
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | | | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Carine Carels
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Iris A L M van Rooij
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kerstin U Ludwig
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Benjamin Odermatt
- Institute of Anatomy, Division of Neuroanatomy, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany.
- Institute of Anatomy and Cell Biology, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany.
| | - Elisabeth Mangold
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Ranji P, Pairet E, Helaers R, Bayet B, Gerdom A, Gil-da-Silva-Lopes VL, Revencu N, Vikkula M. Four putative pathogenic ARHGAP29 variants in patients with non-syndromic orofacial clefts (NsOFC). Eur J Hum Genet 2024:10.1038/s41431-024-01727-3. [PMID: 39506048 DOI: 10.1038/s41431-024-01727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
The pathophysiological basis of non-syndromic orofacial cleft (NsOFC) is still largely unclear. However, exome sequencing (ES) has led to identify several causative genes, often with reduced penetrance. Among these, the Rho GTPase activating protein 29 (ARHGAP29) has been previously implicated in 7 families with NsOFC. We investigated a cohort of 224 NsOFCs for which no genetic pathogenic variant had been identified by diagnostic testing. We used ES and bioinformatic variant filtering and identified four novel putative pathogenic variants in ARHGAP29 in four families. One was a missense variant leading to the substitution of the first methionine with threonine, two were heterozygous frameshift variants leading to a premature termination codon, and one was a nonsense variant. All variants were predicted to result in loss of function, either through mRNA decay, truncated ARHGAP29, or abnormal N-terminal initiation of translation of ARHGAP29. The truncated ARHGAP29 proteins would lack the important RhoGAP domain. The variants were either absent or rare in the control population databases, and the loss of intolerance score (pLI) of ARHGAP29 is 1.0, suggesting that ARHGAP29 haploinsufficiency is not tolerated. Phenotypes ranged from microform cleft lip (CL) to complete bilateral cleft lip and palate (CLP), with one unaffected mutation carrier. These results extend the mutational spectrum of ARHGAP29 and show that it is an important gene underlying variable NsOFC phenotypes. ARHGAP29 should be included in diagnostic genetic testing for NsOFC, especially familial cases, as it may be mutated in ∼4% of them (4/97 in our cohort) with high penetrance (89%).
Collapse
Affiliation(s)
- Peyman Ranji
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Eleonore Pairet
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Raphael Helaers
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Bénédicte Bayet
- Centre Labio-Palatin, Division of Plastic Surgery, Cliniques universitaires Saint-Luc, University of Louvain, Brussels, Belgium
| | - Alexander Gerdom
- Centre Labio-Palatin, Division of Plastic Surgery, Cliniques universitaires Saint-Luc, University of Louvain, Brussels, Belgium
| | - Vera Lúcia Gil-da-Silva-Lopes
- Department of Translational Medicine, Area of Medical Genetics and Genomic Medicine, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Nicole Revencu
- Center for Human Genetics, Cliniques universitaires Saint-Luc, University of Louvain, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium.
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
3
|
Fell M, Fitzsimons KJ, Hamilton MJ, Medina J, Butterworth S, Park MH, Van der Meulen J, Lewis S, Chong D, Russell CJ. Cleft lip Sidedness and the Association with Additional Congenital Malformations. Cleft Palate Craniofac J 2024:10556656241261918. [PMID: 38870388 DOI: 10.1177/10556656241261918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
OBJECTIVE To investigate the association between the sidedness of orofacial clefts and additional congenital malformations. DESIGN Linkage of a national registry of cleft births to national administrative data of hospital admissions. SETTING National Health Service, England. PARTICIPANTS 2007 children born with cleft lip ± alveolus (CL ± A) and 2724 with cleft lip and palate (CLP) born between 2000 and 2012. MAIN OUTCOME MEASURE The proportion of children with ICD-10 codes for additional congenital malformations by the sidedness (left, right or bilateral) of orofacial clefts. RESULTS For CL ± A phenotypes, there was no evidence for a difference in the prevalence of additional anomalies between left (22%, reference), right (22%, aOR 1.02, 95% CI 0.80 to 1.28; P = .90) and bilateral clefts (23%, aOR 1.09, 95% CI 0.75 to 1.57; P = .66). For CLP phenotypes, there was evidence of a lower prevalence of additional malformations in left (23%, reference) compared to right (32%, aOR 1.54, 95% CI 1.25 to 1.91; P < .001) and bilateral clefts (33%, aOR 1.64, 95% CI 1.35 to 1.99; P < .001). CONCLUSIONS The prevalence of additional congenital malformations was similar across sidedness subtypes with CL ± A phenotypes but was different for sidedness subtypes within CLP cases. These data support the hypothesis that CL ± A has a different underlying aetiology from CLP and that within the CLP phenotype, right sided CLP may lie closer in aetiology to bilateral CLP than it does to left sided CLP.
Collapse
Affiliation(s)
- Matthew Fell
- Spires Cleft Centre, John Radcliffe Hospital, Oxford, UK
- The Cleft Collective, Bristol Dental School, University of Bristol, Bristol, UK
| | - Kate J Fitzsimons
- Cleft Registry and Audit Network, Clinical Effectiveness Unit, The Royal College of Surgeons of England, London UK
| | - Mark J Hamilton
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow UK
| | - Jibby Medina
- Cleft Registry and Audit Network, Clinical Effectiveness Unit, The Royal College of Surgeons of England, London UK
| | - Sophie Butterworth
- Cleft Registry and Audit Network, Clinical Effectiveness Unit, The Royal College of Surgeons of England, London UK
| | - Min Hae Park
- Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London UK
| | - Jan Van der Meulen
- Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London UK
| | - Sarah Lewis
- The Cleft Collective, Bristol Dental School, University of Bristol, Bristol, UK
| | - David Chong
- The Royal Children's Hospital, Melbourne, Australia
| | - Craig Jh Russell
- Royal Hospital for Children, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
4
|
Liang X, He Q, Jiao Y, Yang H, Huang W, Liu K, Lin H, Xu L, Hou Y, Ding Y, Zhang Y, Huang H, Zhao H. Identification of rare variants in PTCH2 associated with non-syndromic orofacial clefts. Gene 2024; 907:148280. [PMID: 38360123 DOI: 10.1016/j.gene.2024.148280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Orofacial clefts (OFCs) represent the most prevalent congenital craniofacial anomalies, significantly impacting patients' appearance, oral function, and psychological well-being. Among these, non-syndromic OFCs (NSOFCs) are the most predominant type, with the etiology attributed to a combination of genetic and environmental factors. Rare variants of key genes involved in craniofacial development-related signaling pathway are crucial in the occurrence of NSOFCs, and our recent studies have identified PTCH1, a receptor-coding gene in the Hedgehog signaling pathway, as a causative gene for NSOFCs. However, the role of PTCH2, the paralog of PTCH1, in pathogenesis of NSOFCs remains unclear. Here, we perform whole-exome sequencing to explore the genetic basis of 144 sporadic NSOFC patients. We identify five heterozygous variants of PTCH2 in four patients: p.L104P, p.A131G, p.R557H, p.I927S, and p.V978D, with the latter two co-occurring in a single patient. These variants, all proven to be rare through multiple genomic databases, with p.I927S and p.V978D being novel variants and previously unreported. Sequence alignment suggests that these affected amino acids are evolutionarily conserved across vertebrates. Utilizing predictive structural modeling tools such as AlphaFold and SWISS-MODEL, we propose that these variants may disrupt the protein's structure and function. In summary, our findings suggest that PTCH2 may be a novel candidate gene predicted to be associated with NSOFCs, thereby broadening the spectrum of causative genes implicated in the craniofacial anomalies.
Collapse
Affiliation(s)
- Xuqin Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Qing He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yuhua Jiao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Hui Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Wenbin Huang
- Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Department of Orthodontics, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, PR China
| | - Kangying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Hongmei Lin
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Linping Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yuxia Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yi Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yue Zhang
- Department of Stomatology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region, PR China.
| | - Huimei Huang
- Department of Nephrology, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Huaxiang Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
5
|
Robinson K, Curtis SW, Leslie EJ. The heterogeneous genetic architectures of orofacial clefts. Trends Genet 2024; 40:410-421. [PMID: 38480105 DOI: 10.1016/j.tig.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 05/09/2024]
Abstract
Orofacial clefts (OFCs) are common, affecting 1:1000 live births. OFCs occur across a phenotypic spectrum - including cleft lip (CL), cleft lip and palate (CLP), or cleft palate (CP) - and can be further subdivided based on laterality, severity, or specific structures affected. Herein we review what is known about the genetic architecture underlying each of these subtypes, considering both shared and subtype-specific risks. While there are more known genetic similarities between CL and CLP than CP, recent research supports both shared and subtype-specific genetic risk factors within and between phenotypic classifications of OFCs. Larger sample sizes and deeper phenotyping data will be of increasing importance for the discovery of novel genetic risk factors for OFCs and various subtypes going forward.
Collapse
Affiliation(s)
- Kelsey Robinson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
6
|
Alhazmi N, Alamoud KA, Albalawi F, Alalola B, Farook FF. The application of zebrafish model in the study of cleft lip and palate development: A systematic review. Heliyon 2024; 10:e28322. [PMID: 38533046 PMCID: PMC10963633 DOI: 10.1016/j.heliyon.2024.e28322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Objective Craniofacial growth and development are more than a scientific curiosity; it is of tremendous interest to clinicians. Insights into the genetic etiology of cleft lip and palate development are essential for improving diagnosis and treatment planning. The purpose of this systematic review was to utilize a zebrafish model to highlight the role of the IRF6 gene in cleft lip and palate development in humans. Data This review adhered to the guidelines outlined in the PRISMA statement. Nine studies were included in the analysis. Sources This study used major scientific databases such as MEDLINE, EMBASE, Web of Science, and the Zebrafish Information Network and yielded 1275 articles. Two reviewers performed the screening using COVIDENCE™ independently, and a third reviewer resolved any conflicts. Study selection After applying the inclusion and exclusion criteria and screening, nine studies were included in the analysis. The Systematic Review Center for Laboratory Animal Experimentation's (SYRCLE's) risk-of-bias tool was used to assess the quality of the included studies. Results The main outcome supports the role of the IRF6 gene in zebrafish periderm development and embryogenesis, and IRF6 variations result in cleft lip and palate development. The overall SYRCLE risk of bias was low-medium. Conclusion In conclusion, this review indicated the critical role of the IRF6 gene and its downstream genes (GRHL3, KLF17, and ESRP1/2) in the development of cleft lip and palate in zebrafish models. Genetic mutation zebrafish models provide a high level of insights into zebrafish craniofacial development. Clinical relevance this review provides a productive avenue for understanding the powerful and conserved zebrafish model for investigating the pathogenesis of human cleft lip and palate.
Collapse
Affiliation(s)
- Nora Alhazmi
- Preventive Dental Science Department, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia
- Ministry of the National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Khalid A. Alamoud
- Preventive Dental Science Department, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia
- Ministry of the National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Farraj Albalawi
- Preventive Dental Science Department, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia
- Ministry of the National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Bassam Alalola
- Preventive Dental Science Department, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia
- Ministry of the National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Fathima F. Farook
- Preventive Dental Science Department, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia
- Ministry of the National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| |
Collapse
|
7
|
Sabbagh HJ, AlSharif MT, Abdulhameed FD, Aljohar AJ, Alhussain RM, Alghamdi SM, Alrejaye NS, AlGudaibi LY, Sallout BI, Albaqawi BS, Alnamnakani EA, Brekeit LK, Basri OA, Almalik MI, Al Soqih NS, Alshaikh AB, Aburiziza AJ, Al Qahtani FA, Alghamdi BM, Alraddadi AK, Khaja HH, Alamoudi RA. Maternal Exposure to Stress During Covid-19 and Non-Syndromic Orofacial Clefts: A Cohort Retrospective Study. Cleft Palate Craniofac J 2024:10556656231224198. [PMID: 38239006 DOI: 10.1177/10556656231224198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024] Open
Abstract
OBJECTIVE The coronavirus (COVID-19) pandemic presents an opportunity to study stress's effect on the development of non-syndromic orofacial clefts (NSOFCs). This study was aimed at assessing maternal stress exposure during the pregestational to first trimester pregnancy periods and the development of NSOFCs during a year of the COVID-19 pandemic. DESIGN Cohort study of infants with NSOFCs and controls matched based on recruitment site and age. SETTING Government hospitals in Saudi Arabia between November 2020 and November 2021. MAIN OUTCOME MEASURES Data collection included NSOFC clinical examination and maternal stress exposure assessment using the Modified Life Events Questionnaire, the Fear of COVID-19 Scale, and a focus on the lack of pregnancy planning and a threatened miscarriage. RESULTS Of the 557 infants recruited, 191 had NSOFCs. Logistic regression analysis with adjusted odds ratios (AORs) that removed the effects of confounders showed that any of the seven stressful life events (AOR:3.78, P < .001) and the family histories of relatives with NSOFCs (AOR:9.73, P < .001) increased the AOR for NSOFC development. In contrast, maternal folic acid (AOR:0.56, P.010), threatened miscarriage (AOR:0.17, P = .001), fear of COVID-19 (AOR:0.83, P = .038), and suspected COVID-19 infection (AOR:0.43, P = .008) decreased the AOR for NSOFC development. CONCLUSION Along with an established risk associated with family history of birth defects, stressful life events may be a risk factor for NSOFC development. Beyond folic acid's known benefit, it may be that higher maternal health concerns contribute to increased protective health behaviors during pregnancy. Ongoing research is needed to specify the maternal risk factors for NSOFC.
Collapse
Affiliation(s)
- Heba Jafar Sabbagh
- Pediatric Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Talal AlSharif
- Department of Dental Public Health, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatma Dawood Abdulhameed
- Pediatric Surgery Department, King Salman Medical City, Maternity and Children's Hospital, Madinah, Saudi Arabia
| | - Aziza Johar Aljohar
- Consultant Pedodontist, Department of Dentistry, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Reema Mahdi Alhussain
- Pediatric Dentistry Department, Dammam Medical Complex, Eastern Province, Saudi Arabia
| | - Sultan Musaad Alghamdi
- Pediatric Dentistry Department, Bisha Dental Centre, Ministry of Health, Bisha, Saudi Arabia
| | - Najla Sulaiman Alrejaye
- Preventive Dental Science Department, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Latifa Yousef AlGudaibi
- Resident in the Saudi Board of Orthodontics and Dentofacial Orthopedics Program, King Abdulaziz Medical City, Ministry of National Guard Health Affairs; King Saud bin Abdulaziz University for Health Sciences, College of Dentistry; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Bahauddin Ibraheem Sallout
- Consultant in Obstetrics and Gynecology, Maternal Fetal Medicine, Women's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Badi Shoaib Albaqawi
- Consultant, Maternal Fetal Medicine, Women's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Lougin Khalid Brekeit
- Orthodontic Resident, Orthodontics and Dentofacial Orthopedics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Osama Adel Basri
- Craniofacial Orthodontists, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Manal Ibrahim Almalik
- Consultant Pedodontist, Dental Department, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Norah Suliman Al Soqih
- Department of Pediatrics, Qassim University, College of Medicine, Buraidah, Saudi Arabia
| | - Ali Bakr Alshaikh
- Resident in Pediatric Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Faisal Ali Al Qahtani
- Pediatric Dentistry Department, Faculty of Dentistry, King Khalid University, Abha, Saudi Arabia
| | | | | | - Hadeel Hamza Khaja
- Center of Congenital Malformations in Fetuses and Newborns, King Salman bin Abdulaziz Medical City, Madinah, Saudi Arabia
| | - Rana Abdullah Alamoudi
- Pediatric Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Goida J, Pilmane M. The presence and distribution of various genes in postnatal CLP-affected palatine tissue. Maxillofac Plast Reconstr Surg 2024; 46:1. [PMID: 38227085 DOI: 10.1186/s40902-024-00412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Worldwide cleft lip with or without a cleft palate (CL/P) is the most common craniofacial birth defect. Apart from changes in facial appearance, additionally affected individuals often suffer from various associated comorbidities requiring complex multidisciplinary treatment with overall high expenses. Understanding the complete pathogenetic mechanisms of CL/P might aid in developing new preventative strategies and therapeutic approaches, help with genetic counselling, and improve quality of life. Many genes have been associated with the development of orofacial clefts; however, the majority require further research. Based on the role of PAX7, PAX9, SHH, SOX3, WNT3A, and WNT9B in orofacial development, the intention was to use chromogenic in situ hybridization to detect the six genes in postnatal CLP-affected palatine tissue and compare their distribution within the tissue samples. RESULTS Statistically significant differences in the distribution of PAX7, PAX9, WNT3A, and WNT9B were observed. In total, 19 pairs of moderate to very strong positive correlations were noted. CONCLUSIONS Changes in the cleft-affected palatine epithelium primarily seem to be associated with the PAX7 gene; however, PAX9, WNT3A, WNT9B, and SOX3 role seems to be more limited. Whilst connective tissue changes seem to depend on PAX7 only, SHH seems to participate individually and indistinctly. Numerous positive correlations reflect the complicating interactions of the pathways and their components in the orofacial cleft morphopathogenesis.
Collapse
Affiliation(s)
- Jana Goida
- Institute of Anatomy and Anthropology, Riga Stradins University, Riga, LV-1010, Latvia.
| | - Mara Pilmane
- Institute of Anatomy and Anthropology, Riga Stradins University, Riga, LV-1010, Latvia
| |
Collapse
|
9
|
Fell M, Bradley D, Chadha A, Butterworth S, Davies A, Russell C, Richard B, Wren Y, Lewis S, Chong D. Sidedness in Unilateral Orofacial Clefts: A Systematic Scoping Review. Cleft Palate Craniofac J 2023:10556656231221027. [PMID: 38092732 DOI: 10.1177/10556656231221027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVE An overview of the literature relating to the sidedness of unilateral cleft lip with or without cleft palate to map current knowledge on the cause and impact of directional asymmetry. DESIGN Scoping review with a systematic search of Medline and Embase from inception to May 2023. PATIENTS, PARTICIPANTS Humans born with a left or right unilateral cleft lip with or without a cleft palate. MAIN OUTCOME MEASURES Cleft sidedness as a co-occurrence, an outcome or an exposure. RESULTS Forty studies were eligible for inclusion and confirmed the predilection for the occurrence of left sided cleft lips; 12 studies reported cleft sidedness co-occurring with another phenotype, 11 studies report sidedness as an outcome and 17 studies as an exposure. Phenotypes which were reported to co-occur with either left or right sided clefts included congenital dental anomalies, handedness and additional congenital anomalies. Variables investigated as a potential cause of left or right sided clefts as an outcome included chromosomal anomalies, genetic variants and environmental factors. Outcomes investigated in relation to cleft sidedness as an exposure included facial anatomical features, facial growth, educational attainment, functional and psychological characteristics. More studies showed worse outcomes in right sided clefts versus left sided clefts than vice versa, although studies were inconsistent, and a quality assessment was not performed. CONCLUSIONS The field of cleft sidedness research is expanding and there are promising early findings to differentiate cause and outcome by sidedness of the cleft.
Collapse
Affiliation(s)
- Matthew Fell
- Spires Cleft Centre, John Radcliffe Hospital, Oxford, UK
- The Cleft Collective, Bristol Dental School, University of Bristol, Bristol, UK
| | | | - Ambika Chadha
- Cleft.Net.East, University of Cambridge NHS Hospitals Trust, Cambridge, UK
- Department of Perinatal Imaging and Health, Kings College London & South Thames Cleft Service, St. Thomas Hospital, London, UK
| | - Sophie Butterworth
- Cleft Registry and Audit Network, Clinical Excellence Unit, The Royal College of Surgeons of England, London, UK
| | - Amy Davies
- The Cleft Collective, Bristol Dental School, University of Bristol, Bristol, UK
| | - Craig Russell
- Cleft Care Scotland, Royal Hospital for Children, Queen Elizabeth University Hospital, Glasgow, UK
| | - Bruce Richard
- West Midlands Cleft Service, Birmingham Women and Children's Hospital, Birmingham, UK
| | - Yvonne Wren
- The Cleft Collective, Bristol Dental School, University of Bristol, Bristol, UK
- Speech and language therapy research unit, North Bristol NHS Trust, Bristol, UK
| | - Sarah Lewis
- The Cleft Collective, Bristol Dental School, University of Bristol, UK
| | - David Chong
- Plastic and Maxillofacial Surgery, The Royal Children's Hospital, Melbourne, Australia
| |
Collapse
|
10
|
Yu Z, Wang G, Song S, Zhang Y, Wu Y, Zhang Y, Duan W, Liu X. Associations between the proliferation of palatal mesenchymal cells, Tgfβ2 promoter methylation, Meg3 expression, and Smad signaling in atRA-induced cleft palate. Reprod Toxicol 2023; 122:108486. [PMID: 37866657 DOI: 10.1016/j.reprotox.2023.108486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
All-trans retinoic acid (atRA) is a teratogen that can induce cleft palate formation. During palatal development, murine embryonic palate mesenchymal (MEPM) cell proliferation is required for the appropriate development of the palatal frame, with Meg3 serving as a key regulator of the proliferative activity of these cells and the associated epithelial-mesenchymal transition process. DNA methylation and signaling via the TGFβ/Smad pathway are key in regulating embryonic development. Here, the impact of atRA on MEPM cell proliferation and associations between Tgfβ2 promoter methylation, Meg3, and signaling via the Smad pathway were explored using C57BL/6 N mice treated with atRA (100 mg/kg) to induce fetal cleft palate formation. Immunohistochemistry and BrdU assays were used to detect MEPM proliferation and DNA methylation assays were performed to detect Tgfβ2 promoter expression. These analyses revealed that atRA suppressed MEPM cell proliferation, promoted the upregulation of Meg3, and reduced the levels of Smad2 and Tgfβ2 expression phosphorylation, whereas Tgfβ2 promoter methylation was unaffected. RNA immunoprecipitation experiments indicated that the TgfβI receptor is directly targeted by Meg3, suggesting that the ability of atRA to induce cleft palate may be mediated through the Tgfβ/Smad signaling pathway.
Collapse
Affiliation(s)
- Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guoxu Wang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaixing Song
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yaxin Zhang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Wu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yuwei Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Wenjing Duan
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
11
|
Hong JW, Yu Y, Wang LS, Li Z, Zhang R, Wang Q, Ding Z, Zhang JP, Zhang MR, Xu LC. BMP4 Regulates EMT to be Involved in non-Syndromic Cleft lip With or Without Palate. Cleft Palate Craniofac J 2023; 60:1462-1473. [PMID: 35702016 DOI: 10.1177/10556656221105762] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE In the previous study, we identified bone morphogenetic protein 4 (BMP4) responsible for non-syndromic cleft lip with or without cleft palate (NSCL/P). We aimed to elucidate the effects and mechanisms of BMP4 on epithelial-mesenchymal transition (EMT) through Smad1 signaling pathway to be involved in NSCL/P. METHODS The human oral epidermoid carcinoma cells (KBs) were transfected with plasmids or small interfering RNA (siRNA) to build the models. The migration of the cells was evaluated by transwell assay. Western blotting and quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) were used to detect the expressions of BMP4, E-cadherin, N-cadherin, EMT-related transcription factors snal1 and snal2, matrix metalloproteinase 2 (MMP2), MMP9, Smad1, and phosphorylated Smad1. RESULTS In the overexpression group, the migration number of cells was increased significantly. The protein expression of E-cadherin was decreased significantly, while the protein expression level of the N-cadherin was increased significantly. The protein and mRNA expressions of MMP2, MMP9, snal1, and snal2 were significantly higher. The expression level of Smad1 was not significantly changed, while the phosphorylation of Smad1 was significantly increased. In the BMP4-siRNA group, the migrating number cells was significantly decreased. The protein expression of E-cadherin was increased significantly, while the expression of N-cadherin was significantly decreased. The protein and mRNA expressions of MMP2, MMP9, snal1, and snal2 were significantly lower than that of the control group. The expressions of Smad1 and phosphorylation of Smad1 were not significantly changed. CONCLUSIONS BMP4 enhances cell migration and promotes cell EMT through Smad1 signaling pathway. Abnormal BMP4 mediates migration and EMT through other relevant signaling pathways resulting in NSCL/P. The study provides new insight into the mechanisms of NSCL/P associated with BMP4.n.
Collapse
Affiliation(s)
- Jia-Wei Hong
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Yue Yu
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Lu-Shan Wang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Zheng Li
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Rui Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Qi Wang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Zhen Ding
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Jin-Peng Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Mei-Rong Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Li-Chun Xu
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| |
Collapse
|
12
|
Curtis SW, Carlson JC, Beaty TH, Murray JC, Weinberg SM, Marazita ML, Cotney JL, Cutler DJ, Epstein MP, Leslie EJ. Rare variant modifier analysis identifies variants in SEC24D associated with orofacial cleft subtypes. Hum Genet 2023; 142:1531-1541. [PMID: 37676273 DOI: 10.1007/s00439-023-02596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023]
Abstract
As one of the most common structural birth defects, orofacial clefts (OFCs) have been studied for decades, and recent studies have demonstrated that there are genetic differences between the different phenotypic presentations of OFCs. However, the contribution of rare genetic variation genome-wide to different subtypes of OFCs has been understudied, with most studies focusing on common genetic variation or rare variation within targeted regions of the genome. Therefore, we used whole-genome sequencing data from the Gabriella Miller Kids First Pediatric Research Program to conduct a gene-based burden analysis to test for genetic modifiers of cleft lip (CL) vs cleft lip and palate (CLP). We found that there was a significantly increased burden of rare variants in SEC24D in CL cases compared to CLP cases (p = 6.86 [Formula: see text] 10-7). Of the 15 variants within SEC24D, 53.3% were synonymous, but overlapped a known craniofacial enhancer. We then tested whether these variants could alter predicted transcription factor binding sites (TFBS), and found that the rare alleles destroyed binding sites for 9 transcription factors (TFs), including Pax1 (p = 0.0009), and created binding sites for 23 TFs, including Pax6 (p = 6.12 [Formula: see text] 10-5) and Pax9 (p = 0.0001), which are known to be involved in normal craniofacial development, suggesting a potential mechanism by which these synonymous variants could have a functional impact. Overall, this study indicates that rare genetic variation may contribute to the phenotypic heterogeneity of OFCs and suggests that regulatory variation may also contribute and warrant further investigation in future studies of genetic variants controlling risk to OFC.
Collapse
Affiliation(s)
- Sarah W Curtis
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Jenna C Carlson
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, 15621, USA
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Seth M Weinberg
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Mary L Marazita
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Justin L Cotney
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, 06030, USA
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
13
|
Diaz Perez KK, Chung S, Head ST, Epstein MP, Hecht JT, Wehby GL, Weinberg SM, Murray JC, Marazita ML, Leslie EJ. Rare variants found in multiplex families with orofacial clefts: Does expanding the phenotype make a difference? Am J Med Genet A 2023; 191:2558-2570. [PMID: 37350193 PMCID: PMC10528230 DOI: 10.1002/ajmg.a.63336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/25/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Exome sequencing (ES) is now a relatively straightforward process to identify causal variants in Mendelian disorders. However, the same is not true for ES in families where the inheritance patterns are less clear, and a complex etiology is suspected. Orofacial clefts (OFCs) are highly heritable birth defects with both Mendelian and complex etiologies. The phenotypic spectrum of OFCs may include overt clefts and several subclinical phenotypes, such as discontinuities in the orbicularis oris muscle (OOM) in the upper lip, velopharyngeal insufficiency (VPI), microform clefts or bifid uvulas. We hypothesize that expanding the OFC phenotype to include these phenotypes can clarify inheritance patterns in multiplex families, making them appear more Mendelian. We performed exome sequencing to find rare, likely causal genetic variants in 31 multiplex OFC families, which included families with multiple individuals with OFCs and individuals with subclinical phenotypes. We identified likely causal variants in COL11A2, IRF6, SHROOM3, SMC3, TBX3, and TP63 in six families. Although we did not find clear evidence supporting the subclinical phenotype hypothesis, our findings support a role for rare variants in the etiology of OFCs.
Collapse
Affiliation(s)
- Kimberly K Diaz Perez
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sydney Chung
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - S Taylor Head
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical, School and School of Dentistry, UT Health at Houston, Houston, Texas, USA
| | - George L Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, Iowa, USA
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, USA
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Diaz Perez KK, Curtis SW, Sanchis-Juan A, Zhao X, Head T, Ho S, Carter B, McHenry T, Bishop MR, Valencia-Ramirez LC, Restrepo C, Hecht JT, Uribe LM, Wehby G, Weinberg SM, Beaty TH, Murray JC, Feingold E, Marazita ML, Cutler DJ, Epstein MP, Brand H, Leslie EJ. Rare variants found in clinical gene panels illuminate the genetic and allelic architecture of orofacial clefting. Genet Med 2023; 25:100918. [PMID: 37330696 PMCID: PMC10592535 DOI: 10.1016/j.gim.2023.100918] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023] Open
Abstract
PURPOSE Orofacial clefts (OFCs) are common birth defects including cleft lip, cleft lip and palate, and cleft palate. OFCs have heterogeneous etiologies, complicating clinical diagnostics because it is not always apparent if the cause is Mendelian, environmental, or multifactorial. Sequencing is not currently performed for isolated or sporadic OFCs; therefore, we estimated the diagnostic yield for 418 genes in 841 cases and 294 controls. METHODS We evaluated 418 genes using genome sequencing and curated variants to assess their pathogenicity using American College of Medical Genetics criteria. RESULTS 9.04% of cases and 1.02% of controls had "likely pathogenic" variants (P < .0001), which was almost exclusively driven by heterozygous variants in autosomal genes. Cleft palate (17.6%) and cleft lip and palate (9.09%) cases had the highest yield, whereas cleft lip cases had a 2.80% yield. Out of 39 genes with likely pathogenic variants, 9 genes, including CTNND1 and IRF6, accounted for more than half of the yield (4.64% of cases). Most variants (61.8%) were "variants of uncertain significance", occurring more frequently in cases (P = .004), but no individual gene showed a significant excess of variants of uncertain significance. CONCLUSION These results underscore the etiological heterogeneity of OFCs and suggest sequencing could reduce the diagnostic gap in OFCs.
Collapse
Affiliation(s)
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Alba Sanchis-Juan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, Department of Neurology and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Xuefang Zhao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, Department of Neurology and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Taylor Head
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Samantha Ho
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Bridget Carter
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA; Agnes Scott College, Decatur, GA
| | - Toby McHenry
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA
| | - Madison R Bishop
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | | | | | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical, School and School of Dentistry, UT Health at Houston, Houston, TX
| | - Lina M Uribe
- Department of Orthodontics, University of Iowa, Iowa City, IA
| | - George Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, IA
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA; Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, Department of Neurology and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA.
| |
Collapse
|
15
|
da Silva AM, de Lavôr JR, Freitas VS, Vieira AR. Coast-or Inland Residence and Differences in the Occurrence of Cleft Lip and Cleft Palate. Cleft Palate Craniofac J 2023:10556656231204503. [PMID: 37743563 DOI: 10.1177/10556656231204503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
OBJETIVE To analyze if differences in lifestyle and environment between coastal and inland areas are associated with differences in frequency of orofacial cleft types. DESIGN Populational cross-sectional study. SETTING All live borns with orofacial cleft registered at Brazilian Live Birth Information System between 1999 and 2020. PARTICIPANTS 33,699 live borns with orofacial cleft. INTERVENTION Data from borns with orofacial cleft were collected at Brazilian Live Birth Information System. MAIN OUTCOME MEASURE Differences in frequencies between the cleft types and covariates were determined using chi-square. Bivariate analysis was done to obtain the prevalence ratio of types of clefts by geographic origin. Multiple logistic regression analysis was used to determine adjusted odds ratios, controlling for covariates, establishing a significance level of p value <0.05. RESULTS The frequency of cleft types was statistically significant different according to geographic origin (inland x coast). For syndromic clefts, the prevalence ratio for cleft lip with/without palate was 3.6 times higher inland (p value = 0.000). Regarding non-syndromics, the prevalence ratio for cleft lip with/without palate was two times higher inland (p value = 0.000). Logistic regression suggested cleft lip with/without palate was 6.33 more likely to occur in inland regions (p value = 0.000). CONCLUSION Geographic origin was associated with the type of cleft in Brazil, with a higher prevalence of cleft lip with/without palate in inland areas, compared to cleft palate, which was higher in the coast.
Collapse
Affiliation(s)
- Adriana Mendonça da Silva
- Public Health PhD Graduate Program, State University of Feira de Santana, Feira de Santana, BA, Brazil
- Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juliane Rolim de Lavôr
- Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Pediatric Dentistry PhD Graduate Program, State University of Pernambuco, Recife, PE, Brazil
| | - Valéria Souza Freitas
- Department of Health, State University of Feira de Santana, Feira de Santana, BA, Brazil
| | | |
Collapse
|
16
|
Yu X, Yang S, Xia W, Zhou X, Gao M, Shi H, Zhou Y. Identification of a Novel Variant of PDGFC Associated with Nonsyndromic Cleft Lip and Palate in a Chinese Family. Int J Genomics 2023; 2023:8814046. [PMID: 37779880 PMCID: PMC10539090 DOI: 10.1155/2023/8814046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Nonsyndromic cleft lip with or without cleft palate (NSCL/P) accounts for 70% of the total number of patients with cleft lip with or without cleft palate (CL/P) and is the most common type of congenital deformity of the craniomaxillofacial region. In this study, whole exome sequencing (WES) and Sanger sequencing were performed on affected members of a Han Chinese family, and a missense variant in the platelet-derived growth factor C (PDGFC) gene (NM_016205: c.G93T: p.Q31H) was identified to be associated with NSCL/P. Bioinformatic studies demonstrated that the amino acid corresponding to this variation is highly conserved in many mammals and leads to a glutamine-to-histidine substitution in an evolutionarily conserved DNA-binding domain. It was found that the expression of PDGFC was significantly decreased in the dental pulp stem cells (DPSCs) of NSCL/P cases, compared to the controls, and that the variant (NM_016205: c.G93T) reduced the expression of PDGFC. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that Pdgfc deficiency disrupted NSCL/P-related signaling pathways such as the MAPK signaling pathway and cell adhesion molecules. In conclusion, our study identified a missense variant (NM_016205: c.G93T) in exon 1 of PDGFC potentially associated with susceptibility to NSCL/P.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthodontics, Prosthodontics and Periodontology, Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Simin Yang
- Department of Orthodontics, Prosthodontics and Periodontology, Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Wenqian Xia
- Department of Orthodontics, Prosthodontics and Periodontology, Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Meiqin Gao
- Department of Stomatology, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Hui Shi
- Department of Orthodontics, Prosthodontics and Periodontology, Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Yan Zhou
- Department of Orthodontics, Prosthodontics and Periodontology, Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| |
Collapse
|
17
|
Zawiślak A, Woźniak K, Kawala B, Gupta S, Znamirowska-Bajowska A, Janiszewska-Olszowska J, Lubiński J, Calvo-Guirado JL, Grocholewicz K, Jakubowska A. IRF6 and FGF1 polymorphisms in non-syndromic cleft lip with or without cleft palate in the Polish population. Open Med (Wars) 2023; 18:20230677. [PMID: 37020525 PMCID: PMC10068750 DOI: 10.1515/med-2023-0677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/26/2022] [Accepted: 02/06/2023] [Indexed: 04/05/2023] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCL/P) is the most common developmental defect that significantly affects the morphology and function of the stomatognathic system in children. The etiology of these birth defects is multifactorial, and single nucleotide polymorphisms (SNPs) in IRF6 and FGF1 have been associated with NSCL/P. This study aimed to evaluate whether SNPs in IRF6, namely rs2013162, rs642961, rs2235373, and rs34010 in FGF1, are associated with NSCL/P occurrence in the Polish population. The study included 627 participants: 209 children with NSCL/P and 418 healthy controls. DNA was isolated from saliva in the study group and from umbilical cord blood in controls. Genotyping of polymorphisms was performed using quantitative PCR. There was no statistically significant association of IRF6 gene variants with NSCL/P occurrence, although for rs2013162, AA genotype, odds ratio (OR) = 1.16 and for AC genotype, OR = 0.83; for rs642961, AA genotype, OR = 0.84 and for AG genotype, OR = 1.41; and for rs2235373, AA genotype, OR = 0.79 and for AG, OR = 0.85. In the instance of rs34010 polymorphism in FGF1, the presence of the AA genotype was statistically significant in reducing the risk of NSCL/P (OR = 0.31, p = 0.001). Genetic variation in FGF1 is an important risk marker of NSCL/P in the Polish population, which cannot be stated for the polymorphisms in the IRF6 gene.
Collapse
Affiliation(s)
- Alicja Zawiślak
- Department of Maxillofacial Orthopaedics and Orthodontics, Institute of Mother and Child, 01-211 Warsaw, Poland
- Department of Interdisciplinary Dentistry, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Krzysztof Woźniak
- Department of Orthodontics, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Beata Kawala
- Department of Dentofacial Orthopaedics and Orthodontics, Wrocław Medical University, 50-425 Wrocław, Poland
| | - Satish Gupta
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Anna Znamirowska-Bajowska
- Department of Dentofacial Orthopaedics and Orthodontics, Wrocław Medical University, 50-425 Wrocław, Poland
| | | | - Jan Lubiński
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - José Luis Calvo-Guirado
- Department of Oral Surgery and Implant Dentistry, Faculty of Health Sciences, Universidad Católica de Murcia, UCAM, 30107, Murcia, Spain
| | - Katarzyna Grocholewicz
- Department of Interdisciplinary Dentistry, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Anna Jakubowska
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
18
|
Curtis SW, Carlson JC, Beaty TH, Murray JC, Weinberg SM, Marazita ML, Cotney JL, Cutler DJ, Epstein MP, Leslie EJ. Rare genetic variants in SEC24D modify orofacial cleft phenotypes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.24.23287714. [PMID: 37034635 PMCID: PMC10081436 DOI: 10.1101/2023.03.24.23287714] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
As one of the most common structural birth defects, orofacial clefts (OFCs) have been studied for decades, and recent studies have demonstrated that there are genetic differences between the different phenotypic presentations of OFCs. However, the contribution of rare genetic variation genome-wide to different subtypes of OFCs has been understudied, with most studies focusing on common genetic variation or rare variation within targeted regions of the genome. Therefore, we used whole-genome sequencing data from the Gabriella Miller Kids First Pediatric Research Program to conduct a gene-based burden analysis to test for genetic modifiers of cleft lip (CL) vs cleft lip and palate (CLP). We found that there was a significantly increased burden of rare variants in SEC24D in CL cases compared to CLP cases (p=6.86×10-7). Of the 15 variants within SEC24D, 53.3% were synonymous, but overlapped a known craniofacial enhancer. We then tested whether these variants could alter predicted transcription factor binding sites (TFBS), and found that the rare alleles destroyed binding sites for 9 transcription factors (TFs), including Pax1 (p=0.0009), and created binding sites for 23 TFs, including Pax6 (p=6.12×10-5) and Pax9 (p= 0.0001), which are known to be involved in normal craniofacial development, suggesting a potential mechanism by which these synonymous variants could have a functional impact. Overall, this study demonstrates that rare genetic variation contributes to the phenotypic heterogeneity of OFCs and suggests that regulatory variation may also contribute and warrant further investigation in future studies of genetic variants controlling risk to OFC.
Collapse
Affiliation(s)
- Sarah W Curtis
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Jenna C Carlson
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, 15621, USA
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205,USA
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Seth M Weinberg
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Mary L Marazita
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Justin L Cotney
- Department of Genetics and Genome Sciences, University of Connecticut, CT, 06030, USA
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | | |
Collapse
|
19
|
Identification of putative regulatory single-nucleotide variants in NTN1 gene associated with NSCL/P. J Hum Genet 2023:10.1038/s10038-023-01137-1. [PMID: 36879001 DOI: 10.1038/s10038-023-01137-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common polygenetic disease. Although genome-wide association studies (GWAS) identified NTN1 gene as a high-priority candidate of NSCL/P, the comprehensive genetic architecture of NTN1 weren't yet known. Thus, this study aimed to determine full-scale genetic variants of NTN1 for NSCL/P in Chinese Han people. Initially, targeted sequencing of NTN1 gene was performed on 159 NSCL/P patients to identify susceptible single nucleotide polymorphisms (SNPs) associated with NSCL/P. Then, association analysis and burden analysis were separately used to validate the common variants and rare variants identified among large size of samples (1608 NSCL/P cases and 2255 controls). Additionally, NSCL/P subtype association analysis was applied to elucidate the etiology discrepancy of non-syndromic cleft lip with palate (NSCLP) and non-syndromic cleft lip only (NSCLO). Lastly, bioinformatics analysis was performed to annotate and prioritize candidate variants. We found 15 NSCL/P-associated SNPs including rs4791774 (P = 1.10E-08, OR = 1.467, 95% CI: 1.286~1.673) and rs9788972 (P = 1.28E-07, OR = 1.398, 95% CI : 1.235~1.584) originally detected by previous GWASs in Chinese Han ancestry. Four NSCLO risk-associated SNPs and eight specific NSCLP associated SNPs were found. Three SNPs (rs4791331, rs4791774 and rs9900753) were predicted to locate at regulatory region of NTN1. Our study validated the association between NTN1 gene and pathogenesis of NSCL/P and reinforced the hypothesis that NSCLP have a different etiology from NSCLO. We also identified three putative regulatory SNPs in NTN1 gene.
Collapse
|
20
|
Perez KKD, Chung S, Head ST, Epstein MP, Hecht JT, Wehby GL, Weinberg SM, Murray JC, Marazita ML, Leslie EJ. Rare variants found in multiplex families with orofacial clefts: Does expanding the phenotype make a difference? MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.01.23285340. [PMID: 36798250 PMCID: PMC9934724 DOI: 10.1101/2023.02.01.23285340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Whole-exome sequencing (WES) is now a relatively straightforward process to identify causal variants in Mendelian disorders. However, the same is not true for WES in families where the inheritance patterns are less clear, and a complex etiology is suspected. Orofacial clefts (OFCs) are highly heritable birth defects with both Mendelian and complex etiologies. The phenotypic spectrum of OFCs may include overt clefts and several subclinical phenotypes, such as discontinuities in the orbicularis oris muscle (OOM) in the upper lip, velopharyngeal insufficiency (VPI), microform clefts or bifid uvulas. We hypothesize that expanding the OFC phenotype to include these phenotypes can clarify inheritance patterns in multiplex families, making them appear more Mendelian. We performed whole-exome sequencing to find rare, likely causal genetic variants in 31 multiplex OFC families, which included families with multiple individuals with OFCs and individuals with subclinical phenotypes. We identified likely causal variants in COL11A2, IRF6, KLF4, SHROOM3, SMC3, TP63 , and TBX3 in seven families. Although we did not find clear evidence supporting the subclinical phenotype hypothesis, our findings support a role for rare variants in the etiology of OFCs.
Collapse
Affiliation(s)
- Kimberly K Diaz Perez
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sydney Chung
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - S Taylor Head
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical, School and School of Dentistry, UT Health at Houston, Houston, TX 77030, USA
| | - George L Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, IA, 52242, USA
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, 15213, USA
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, 15213, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
21
|
Nasroen SL, Maskoen AM, Soedjana H, Hilmanto D, Gani BA. The IRF6 AP-2α binding site polymorphism relate to the severity of non-syndromic orofacial cleft of Indonesian patients. Minerva Dent Oral Sci 2023; 72:8-15. [PMID: 36847740 DOI: 10.23736/s2724-6329.21.04572-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
BACKGROUND IRF6 AP-2α binding site polymorphism is known as IRF6 rs642961. It has been associated with a nonsyndromic orofacial cleft (NS OFC). This study aimed to determine the IRF6 rs642961 as a risk factor associated with NS OFC and its phenotypes. METHODS The case-control design used for 264 subjects consists of 158 NS CLP subjects (42 CU CLP, 34 CB CLP, 33 CLO, 49 CPOs) and 106 healthy controls. The DNA is extracted from venous blood. The segment of IRF6 rs642961 amplified by polymerase chain reaction (PCR) followed by restriction fragment length of polymorphisms (RFLPs) used the MspI digestion enzyme. The qPCR method to identify the mRNA expression levels of the IRF6 gene rs642961 was analyzed by the Livak method. RESULTS The study results show that in NS CB CLP phenotype as the most severe phenotype of NS OFC, the Odds Ratio (OR) of A mutant allele was 5.094 (CI=1.456-17.820; P=0.011) and the OR of AA homozygous mutant genotype was 13.481 (CI=2.648-68.635; P=0.001). There are different levels of mRNA expression changes from NS OFC and its phenotypes. It is substantial among the 2-ΔΔCt and the group of AA, GA, and GG genotypes (P<0.05); in the NS CPO phenotype, it shows IRF6 mRNA under-expression in GA, AA genotypes while in other phenotypes it shows IRF6 mRNA overexpression. CONCLUSIONS The IRF6 AP-2α binding site polymorphism is strongly associated with the severity of NS OFC, and this polymorphism has a functional role in affecting IRF6 mRNA expression that is variable in each phenotype.
Collapse
Affiliation(s)
- Saskia L Nasroen
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Jenderal Achmad Yani Cimahi, Bandung, Indonesia -
| | - Ani M Maskoen
- Department of Oral Biology, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Hardisiswo Soedjana
- Division of Plastic Surgery Reconstruction and Esthetic, Department of Surgery, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Dany Hilmanto
- Department of Pediatrics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Basri A Gani
- Department of Oral Biology, Faculty of Dentistry, Universitas Syiah Kuala, Aceh, Indonesia
| |
Collapse
|
22
|
Abstract
This chapter reviews the evidence of gene×environment interactions (G×E) in the etiology of orofacial cleft birth defects (OFCs), specifically cleft lip (CL), cleft palate (CP), and cleft lip with or without cleft palate (CL/P). We summarize the current state of our understanding of the genetic architecture of nonsyndromic OFCs and the evidence that maternal exposures during pregnancy influence risk of OFCs. Further, we present possible candidate gene pathways for these exposures including metabolism of folates, metabolism of retinoids, retinoic acid receptor signaling, aryl hydrocarbon receptor signaling, glucocorticoid receptor signaling, and biotransformation and transport. We review genes in these pathways with prior evidence of association with OFCs, genes with evidence from prior candidate gene G×E studies, and genes identified from genome-wide searches specifically for identifying G×E. Finally, we suggest future directions for G×E research in OFCs.
Collapse
Affiliation(s)
- Mary L Marazita
- Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States; Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States; Clinical and Translational Science Institute, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
23
|
Wojciech Tynior, Joanna Katarzyna Strzelczyk. A Brief Landscape of Epigenetic Mechanisms in Dental Pathologies. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722050115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Affiliation(s)
- F Schwendicke
- Department of Oral Diagnostics, Digital Health, Health Services Research, Charité - Universitätsmedizin, Berlin, Germany
| | - M L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, and Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Chen J, Kanekar S. Imaging of Congenital Craniofacial Anomalies and Syndromes. Clin Perinatol 2022; 49:771-790. [PMID: 36113934 DOI: 10.1016/j.clp.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Craniofacial malformation is one of the most commonly encountered birth defects in the prenatal and postnatal periods. Higher-resolution and 3D antenatal ultrasonography and multidetector computed tomographic scan with 3D reformatted images have improved the definition of the soft tissue and bone structures of the craniofacial anatomy and its malformations. Early diagnosis of these conditions is important to make the clinical decisions and more so in understanding the possibility of malformation recurring in the next pregnancy, which is one of the major concerns for the parents and the treating physicians.
Collapse
Affiliation(s)
- Jing Chen
- Radiology Research, Division of Neuroradiology, Penn State Health, Penn State College of Medicine, Mail Code H066 500 University Drive, Hershey, PA 17033, USA
| | - Sangam Kanekar
- Radiology Research, Division of Neuroradiology, Penn State Health, Penn State College of Medicine, Mail Code H066 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
26
|
Anderson PJ, Liu KJ, Marazita ML, Dworkin S. Editorial: Genetic, Environmental and Synergistic Gene-Environment Contributions to Craniofacial Defects. Front Cell Dev Biol 2022; 10:887051. [PMID: 35399526 PMCID: PMC8987493 DOI: 10.3389/fcell.2022.887051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Peter J Anderson
- Australian Craniofacial Unit, Women's and Children's Hospital, Adelaide, SA, Australia.,Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia.,Nanjing Medical University, Nanjing, China
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Mary L Marazita
- Department of Oral Biology, School of Dental Medicine, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Psychiatry and Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sebastian Dworkin
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Caceres Manfio AS, Suri S, Dupuis A, Stevens K. Eruption path of permanent maxillary canines after secondary alveolar bone graft in patients with nonsyndromic complete unilateral cleft lip and palate. Am J Orthod Dentofacial Orthop 2022; 161:e416-e428. [DOI: 10.1016/j.ajodo.2021.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/01/2022]
|
28
|
Carlson JC, Shaffer JR, Deleyiannis F, Hecht JT, Wehby GL, Christensen K, Feingold E, Weinberg SM, Marazita ML, Leslie EJ. Genome-wide Interaction Study Implicates VGLL2 and Alcohol Exposure and PRL and Smoking in Orofacial Cleft Risk. Front Cell Dev Biol 2022; 10:621261. [PMID: 35223824 PMCID: PMC8866867 DOI: 10.3389/fcell.2022.621261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common birth defect, affecting approximately 1 in 700 births. NSCL/P has complex etiology including several known genes and environmental factors; however, known genetic risk variants only account for a small fraction of the heritability of NSCL/P. It is commonly suggested that gene-by-environment (G×E) interactions may help explain some of the “missing” heritability of NSCL/P. We conducted a genome-wide G×E interaction study in cases and controls of European ancestry with three common maternal exposures during pregnancy: alcohol, smoking, and vitamin use using a two-stage design. After selecting 127 loci with suggestive 2df tests for gene and G x E effects, 40 loci showed significant G x E effects after correcting for multiple tests. Notable interactions included SNPs of 6q22 near VGLL2 with alcohol and 6p22.3 near PRL with smoking. These interactions could provide new insights into the etiology of CL/P and new opportunities to modify risk through behavioral changes.
Collapse
Affiliation(s)
- Jenna C. Carlson
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, United States
| | - John R. Shaffer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, United States
| | | | - Jacqueline T. Hecht
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, United States
| | - George L. Wehby
- Department of Health Management and Policy, College of Public Health, University of Iowa, Iowa City, United States
| | - Kaare Christensen
- Department of Epidemiology, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Eleanor Feingold
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, United States
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, United States
| | - Seth M. Weinberg
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, United States
- Department of Epidemiology, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Mary L. Marazita
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, United States
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Elizabeth J. Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, United States
- *Correspondence: Elizabeth J. Leslie,
| |
Collapse
|
29
|
Li MJ, Shi JY, Zhu QS, Shi B, Jia ZL. Targeted Re-Sequencing of the 2p21 Locus Identifies Non-Syndromic Cleft Lip Only Novel Susceptibility Gene ZFP36L2. Front Genet 2022; 13:802229. [PMID: 35242166 PMCID: PMC8886408 DOI: 10.3389/fgene.2022.802229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
rs7590268 present on the 2p21 locus was identified to be associated with non-syndromic cleft lip with or without cleft palate (NSCL/P) in several populations, including the Chinese Han population, indicating that 2p21 was a susceptibility locus for NSCL/P. However, previous studies have only identified common single-nucleotide polymorphism (SNP) within the THADA gene, neglecting the rare variants and other genes in 2p21; thus, this study was designed to investigate additional variants and novel susceptibility genes in 2p21. A total of 159 NSCL/P patients and 542 controls were recruited in the discovery phase, whereas 1830 NSCL/P patients and 2,436 controls were recruited in the replication phase. After targeted region sequencing, we performed association and burden analyses for the common and rare variants, respectively. Furthermore, RNA-seq, proliferation assay and cell cycle analysis were performed to clarify the possible function of the candidate gene ZFP36L2. Association analysis showed that four SNPs were specifically associated with non-syndromic cleft lip only (NSCLO) and two SNPs were associated with both NSCLO and NSCL/P. Burden analysis indicated that ZFP36L2 was associated with NSCLO (p = .0489, OR = 2.41, 95% CI: 0.98–5.90). Moreover, SNPs in the ZFP36L2 targeted gene JUP were also associated with NSCLO. ZFP36L2 also inhibited cell proliferation and induced G2 phase arrest in the GMSM-K cell line. Therefore, we proposed that ZFP36L2 is a novel susceptibility gene of NSCLO in the 2p21 locus, which could lead to NSCLO by modulating cell proliferation and cycle.
Collapse
Affiliation(s)
- Mu-Jia Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Cleft Lip and Palate, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jia-Yu Shi
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Qiu-Shuang Zhu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Cleft Lip and Palate, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Cleft Lip and Palate, West China School of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Bing Shi, ; Zhong-Lin Jia,
| | - Zhong-Lin Jia
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Cleft Lip and Palate, West China School of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Bing Shi, ; Zhong-Lin Jia,
| |
Collapse
|
30
|
Jaruga A, Ksiazkiewicz J, Kuzniarz K, Tylzanowski P. Orofacial Cleft and Mandibular Prognathism-Human Genetics and Animal Models. Int J Mol Sci 2022; 23:ijms23020953. [PMID: 35055138 PMCID: PMC8779325 DOI: 10.3390/ijms23020953] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Many complex molecular interactions are involved in the process of craniofacial development. Consequently, the network is sensitive to genetic mutations that may result in congenital malformations of varying severity. The most common birth anomalies within the head and neck are orofacial clefts (OFCs) and prognathism. Orofacial clefts are disorders with a range of phenotypes such as the cleft of the lip with or without cleft palate and isolated form of cleft palate with unilateral and bilateral variations. They may occur as an isolated abnormality (nonsyndromic-NSCLP) or coexist with syndromic disorders. Another cause of malformations, prognathism or skeletal class III malocclusion, is characterized by the disproportionate overgrowth of the mandible with or without the hypoplasia of maxilla. Both syndromes may be caused by the presence of environmental factors, but the majority of them are hereditary. Several mutations are linked to those phenotypes. In this review, we summarize the current knowledge regarding the genetics of those phenotypes and describe genotype-phenotype correlations. We then present the animal models used to study these defects.
Collapse
Affiliation(s)
- Anna Jaruga
- Laboratory of Molecular Genetics, Department of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (A.J.); (J.K.)
| | - Jakub Ksiazkiewicz
- Laboratory of Molecular Genetics, Department of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (A.J.); (J.K.)
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Krystian Kuzniarz
- Department of Maxillofacial Surgery, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland;
| | - Przemko Tylzanowski
- Laboratory of Molecular Genetics, Department of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (A.J.); (J.K.)
- Department of Development and Regeneration, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
31
|
Peña-Soto C, Arriola-Guillén LE, Díaz-Suyo A, Flores-Fraile J. Clinical and epidemiological profile of cleft lip and palate patients in Peru, 2006 - 2019. J Clin Exp Dent 2021; 13:e1118-e1123. [PMID: 34824698 PMCID: PMC8601701 DOI: 10.4317/jced.58976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/11/2021] [Indexed: 11/06/2022] Open
Abstract
Background The purpose of this study was to determine the clinical-epidemiological profile of patients with cleft lip and / or palate in Peru from 2006 to 2019.
Material and Methods This retrospective and cross-sectional study analyzed 3,923 patients with cleft lip and palate attended by surgical missions of the Operación Sonrisa Perú from January 2006 to December 2019. The clinical profile of the patients treated included: type of cleft (cleft lip CL, cleft palate CP, cleft lip and palate CLP and submucosal SM), surgery performed (cheiloplasty, palatoplasty, cleft rhinoplasty, fistula repair, pharyngeal flap), surgical time according to number of interventions. Likewise, affiliation variables such as sex, age and birthplace were recorded. Descriptive analysis was performed. Associations were determined using the Pearson’s Chi-square test and Two-sample test of proportions were used for comparing the percentages during time. A p value <0.005 was considered significant.
Results The most frequent diagnosis was CP (n = 1411, 35.97%). We identified a statistically significant association between the diagnosis of CL, CP and gender (p = 0.045), being more prevalent in males. A higher prevalence of CL was also observed on the left side and in males (n = 183). Cheiloplasty was the most frequent first surgical intervention performed (n = 837, 47.42%) followed by fistula repair as the second intervention (n = 428, 42.29%).
Conclusions Cleft lip and palate are more frequent in males, with CP being the most frequent. CL is more frequent on the left side and the first surgical approach in these patients is lip closure. Key words:Epidemiology, cleft lip and palate, surgical missions.
Collapse
Affiliation(s)
- Claudio Peña-Soto
- PhD, Associate Professor of Faculty of Sciences of Life and Health, School of Dentistry, Universidad Científica del Sur, Lima, Peru
| | - Luis-Ernesto Arriola-Guillén
- PhD, Associate Professor Division of Orthodontics, School of Dentistry, Universidad Científica del Sur, Lima, Peru
| | - Antonio Díaz-Suyo
- MsC, Professor of Faculty of Sciences of Life and Health, School of Dentistry, Universidad Científica del Sur, Lima, Peru
| | - Javier Flores-Fraile
- PhD, Professor of Department of Surgery, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
32
|
Association of ABCA4 Gene Polymorphisms with Cleft Lip with or without Cleft Palate in the Polish Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111483. [PMID: 34769998 PMCID: PMC8583664 DOI: 10.3390/ijerph182111483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/01/2022]
Abstract
Background: Non-syndromic cleft lip with/without cleft palate (NSCL/P) is a common congenital condition with a complex aetiology reflecting multiple genetic and environmental factors. Single nucleotide polymorphisms (SNPs) in ABCA4 have been associated with NSCL/P in several studies, although there are some inconsistent results. This study aimed to evaluate whether two SNPs in ABCA4, namely rs4147811 and rs560426, are associated with NSCL/P occurrence in the Polish population. Methods: The study included 627 participants: 209 paediatric patients with NSCL/P and 418 healthy newborn controls. DNA was isolated from the saliva of NSCL/P patients and from umbilical cord blood in the controls. Genotyping of rs4147811 and rs560426 was performed using quantitative PCR. Results: The rs4147811 (AG genotype) SNP in ABCA4 was associated with a decreased risk of NSCL/P (odds ratio (OR) 0.57; 95% confidence interval (CI) 0.39–0.84; p = 0.004), whereas the rs560426 (GG genotype) SNP was associated with an increased risk of NSCL/P (OR 2.13; 95% CI 1.31–3.48; p = 0.002). Limitations: This study—based on the correlation between single genetic variants and the occurrence of different phenotypes—might have limited power in detecting relevant, complex inheritance patterns. ORs are often low to moderate when investigating the association of single genes with the risk of a complex trait. Another limitation was the small number of available NSCL/P samples. Conclusions: The results suggest that genetic variations in ABCA4 are important risk markers of NSCL/P in the Polish population. Further investigation in a larger study group is warranted.
Collapse
|
33
|
Awotoye W, Comnick C, Pendleton C, Zeng E, Alade A, Mossey PA, Gowans LJJ, Eshete MA, Adeyemo WL, Naicker T, Adeleke C, Busch T, Li M, Petrin A, Olotu J, Hassan M, Pape J, Miller SE, Donkor P, Anand D, Lachke SA, Marazita ML, Adeyemo AA, Murray JC, Albokhari D, Sobreira N, Butali A. Genome-wide Gene-by-Sex Interaction Studies Identify Novel Nonsyndromic Orofacial Clefts Risk Locus. J Dent Res 2021; 101:465-472. [PMID: 34689653 DOI: 10.1177/00220345211046614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Risk loci identified through genome-wide association studies have explained about 25% of the phenotypic variations in nonsyndromic orofacial clefts (nsOFCs) on the liability scale. Despite the notable sex differences in the incidences of the different cleft types, investigation of loci for sex-specific effects has been understudied. To explore the sex-specific effects in genetic etiology of nsOFCs, we conducted a genome-wide gene × sex (GxSex) interaction study in a sub-Saharan African orofacial cleft cohort. The sample included 1,019 nonsyndromic orofacial cleft cases (814 cleft lip with or without cleft palate and 205 cleft palate only) and 2,159 controls recruited from 3 sites (Ethiopia, Ghana, and Nigeria). An additive logistic model was used to examine the joint effects of the genotype and GxSex interaction. Furthermore, we examined loci with suggestive significance (P < 1E-5) in the additive model for the effect of the GxSex interaction only. We identified a novel risk locus on chromosome 8p22 with genome-wide significant joint and GxSex interaction effects (rs2720555, p2df = 1.16E-08, pGxSex = 1.49E-09, odds ratio [OR] = 0.44, 95% CI = 0.34 to 0.57). For males, the risk of cleft lip with or without cleft palate at this locus decreases with additional copies of the minor allele (p < 0.0001, OR = 0.60, 95% CI = 0.48 to 0.74), but the effect is reversed for females (p = 0.0004, OR = 1.36, 95% CI = 1.15 to 1.60). We replicated the female-specific effect of this locus in an independent cohort (p = 0.037, OR = 1.30, 95% CI = 1.02 to 1.65), but no significant effect was found for the males (p = 0.29, OR = 0.86, 95% CI = 0.65 to 1.14). This locus is in topologically associating domain with craniofacially expressed and enriched genes during embryonic development. Rare coding mutations of some of these genes were identified in nsOFC cohorts through whole exome sequencing analysis. Our study is additional proof that genome-wide GxSex interaction analysis provides an opportunity for novel findings of loci and genes that contribute to the risk of nsOFCs.
Collapse
Affiliation(s)
- W Awotoye
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA
| | - C Comnick
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - C Pendleton
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - E Zeng
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - A Alade
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA.,Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - P A Mossey
- Department of Orthodontics, University of Dundee, Dundee, UK
| | - L J J Gowans
- Komfo Anokye Teaching Hospital and Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - M A Eshete
- Department of Surgery, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - W L Adeyemo
- Department of Oral and Maxillofacial Surgery, University of Lagos, Lagos, Nigeria
| | - T Naicker
- Department of Pediatrics, University of KwaZulu-Natal, Durban, South Africa
| | - C Adeleke
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - T Busch
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - M Li
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - A Petrin
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA
| | - J Olotu
- Department of Anatomy, University of Port Harcourt, Choba, Nigeria
| | - M Hassan
- Department of Orthodontics, University of Dundee, Dundee, UK
| | - J Pape
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - S E Miller
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA
| | - P Donkor
- Department of Orthodontics, University of Dundee, Dundee, UK
| | - D Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - S A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - M L Marazita
- Center for Craniofacial and Dental Genetics, Departments of Oral Biology and Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - A A Adeyemo
- National Human Genomic Research Institute, Bethesda, MD, USA
| | - J C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - D Albokhari
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - N Sobreira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - A Butali
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA.,Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
34
|
Ji C, Yang Z, Yin L, Deng X, Pan Q, Lu B, Zhang J, Jiang W, Jiang X. The application of three-dimensional ultrasound with reformatting technique in the diagnosis of fetal cleft lip/palate. JOURNAL OF CLINICAL ULTRASOUND : JCU 2021; 49:307-314. [PMID: 33665816 DOI: 10.1002/jcu.22994] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/22/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To evaluate the clinical value of three-dimensional ultrasound (3D-US) with reformatting technique in the diagnosis of fetal cleft lip/palate (CL/P), especially those involving the secondary palate. METHODS A total of 113 fetuses suspected with cleft lip (CL) on two-dimensional ultrasound (2D-US) were further evaluated by 2D-US and 3D-US with reformatting technique, in order to clarify the type of oral cleft. Lesions were classified as cleft lip (CL), cleft lip and alveolus (CLA), and cleft lip and palate (CLP) (including primary and secondary palate). All fetuses were followed until birth or termination of pregnancy. The diagnostic accuracies of 2D-US and 3D-US with reformatting technology were compared. RESULTS Both 2D-US and 3D-US with reformatting successfully detected CLs in the final 103 participants. Among these, 29, 25, and 49 cases were confirmed to have CL, CLA, and CLP, respectively. CL, CLA, and CLP were diagnosed by 2D-US in 34, 66, and 3 cases, respectively, and by 3D-US with reformatting technology in 31, 27, and 45 cases, respectively. The sensitivities of 2D-US and 3D-US with reformatting technology in the diagnosis of CLA were 80% (20/25) and 92.0% (23/25), respectively, and the difference was not statistically significant. For CLP, however, the sensitivities were 6.1% (3/49) and 91.8% (45/49), respectively (P < .001). CONCLUSIONS Both 2D-US and 3D-US with reformatting technique have high diagnostic accuracy for CL and CLA. However, 3D-US has a much higher diagnostic accuracy for CLP.
Collapse
Affiliation(s)
- Chunya Ji
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Zhong Yang
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Linliang Yin
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Xuedong Deng
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Qi Pan
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Bing Lu
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Jun Zhang
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Wei Jiang
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Xiaoli Jiang
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| |
Collapse
|
35
|
Cronin A, Verdon S, McLeod S. Persistence, strength, isolation, and trauma: An ethnographic exploration of raising children with cleft palate. JOURNAL OF COMMUNICATION DISORDERS 2021; 91:106102. [PMID: 33945933 DOI: 10.1016/j.jcomdis.2021.106102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/03/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The lives of families of young children with cleft palate (±lip) are complex. Multiple interventions are required as part of the long-term multidisciplinary treatment for children with CP±L, with an impairment-focused approach prevailing. Research with young children with CP±L has focused on treatment and intervention, and previous qualitative research has been collected predominantly via interviews, so little is understood about the day-to-day lives of families of young children with CP±L. AIMS (1) To increase understanding of the lives of children with CP±L and their families by applying an ethnographic lens to improve clinical practice (2) to identify key interactions and encounters that shape the experiences of children with CP±L and their families (3) to examine how family-centered practice can enhance practitioner-family relationships in providing effective and evidence-based care for children with CP±L. METHOD Ethnographic observations of seven families of children with CP±L and their families and educators including parents, siblings, aunts, grandparents, and teachers involved multiple site visits. Rich data were collected to gather information about different aspects of their lives (such as their strengths, routines, preferences, challenges and experiences). There were 84 artefacts collected: 18 interviews, 29 videos, one extended audio recording of a mealtime, seven photos contributed by families, seven case history questionnaires, and 22 field notes. These data were analyzed inductively using thematic analysis. RESULTS Three overarching themes and 11 subthemes were identified: (1) the whole child (persistence, communication, activities, mealtimes), (2) family strength and support (strong families, external support, attitudes, advocacy, positive medical experiences) and (3) family isolation and trauma (negative medical experiences, traumatic and challenging experiences). CONCLUSION This is the first study to use ethnographic methodology to facilitate the collection of unique insights into the lives of young children with CP±L and their families to improve clinical practice for SLPs. The unique application of family-centered practice with these families promoted trust and highlighted their challenges and strengths which could be considered by SLPs to provide holistic intervention.
Collapse
Affiliation(s)
- Anna Cronin
- School of Teacher Education, Charles Sturt University, Australia.
| | - Sarah Verdon
- School of Community Health, Charles Sturt University, Australia
| | - Sharynne McLeod
- School of Teacher Education, Charles Sturt University, Australia
| |
Collapse
|
36
|
Yamaguchi H, Kitami K, Wu X, He L, Wang J, Wang B, Komatsu Y. Alteration of DNA Damage Response Causes Cleft Palate. Front Physiol 2021; 12:649492. [PMID: 33854442 PMCID: PMC8039291 DOI: 10.3389/fphys.2021.649492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cleft palate is one of the most common craniofacial birth defects, however, little is known about how changes in the DNA damage response (DDR) cause cleft palate. To determine the role of DDR during palatogenesis, the DDR process was altered using a pharmacological intervention approach. A compromised DDR caused by a poly (ADP-ribose) polymerase (PARP) enzyme inhibitor resulted in cleft palate in wild-type mouse embryos, with increased DNA damage and apoptosis. In addition, a mouse genetic approach was employed to disrupt breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2), known as key players in DDR. An ectomesenchymal-specific deletion of Brca1 or Brca2 resulted in cleft palate due to attenuation of cell survival. This was supported by the phenotypes of the ectomesenchymal-specific Brca1/Brca2 double-knockout mice. The cleft palate phenotype was rescued by superimposing p53 null alleles, demonstrating that the BRCA1/2-p53 DDR pathway is critical for palatogenesis. Our study highlights the importance of DDR in palatogenesis.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, United States
| | - Kohei Kitami
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, United States
| | - Xiao Wu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Li He
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, United States
| | - Jianbo Wang
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, United States
| | - Bin Wang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Yoshihiro Komatsu
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, United States.,Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
37
|
Indencleef K, Hoskens H, Lee MK, White JD, Liu C, Eller RJ, Naqvi S, Wehby GL, Moreno Uribe LM, Hecht JT, Long RE, Christensen K, Deleyiannis FW, Walsh S, Shriver MD, Richmond S, Wysocka J, Peeters H, Shaffer JR, Marazita ML, Hens G, Weinberg SM, Claes P. The Intersection of the Genetic Architectures of Orofacial Clefts and Normal Facial Variation. Front Genet 2021; 12:626403. [PMID: 33692830 PMCID: PMC7937973 DOI: 10.3389/fgene.2021.626403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/26/2021] [Indexed: 01/06/2023] Open
Abstract
Unaffected relatives of individuals with non-syndromic cleft lip with or without cleft palate (NSCL/P) show distinctive facial features. The presence of this facial endophenotype is potentially an expression of underlying genetic susceptibility to NSCL/P in the larger unselected population. To explore this hypothesis, we first partitioned the face into 63 partially overlapping regions representing global-to-local facial morphology and then defined endophenotypic traits by contrasting the 3D facial images from 264 unaffected parents of individuals with NSCL/P versus 3,171 controls. We observed distinct facial features between parents and controls across 59 global-to-local facial segments at nominal significance (p ≤ 0.05) and 52 segments at Bonferroni corrected significance (p < 1.2 × 10-3), respectively. Next, we quantified these distinct facial features as univariate traits in another dataset of 8,246 unaffected European individuals and performed a genome-wide association study. We identified 29 independent genetic loci that were associated (p < 5 × 10-8) with at least one of the tested endophenotypic traits, and nine genetic loci also passed the study-wide threshold (p < 8.47 × 10-10). Of the 29 loci, 22 were in proximity of loci previously associated with normal facial variation, 18 were near genes that show strong evidence in orofacial clefting (OFC), and another 10 showed some evidence in OFC. Additionally, polygenic risk scores for NSCL/P showed associations with the endophenotypic traits. This study thus supports the hypothesis of a shared genetic architecture of normal facial development and OFC.
Collapse
Affiliation(s)
- Karlijne Indencleef
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
| | - Hanne Hoskens
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Myoung Keun Lee
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Julie D. White
- Department of Anthropology, Pennsylvania State University, State College, PA, United States
| | - Chenxing Liu
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ryan J. Eller
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - George L. Wehby
- Department of Health Management and Policy, College of Public Health, University of Iowa, Iowa City, IA, United States
| | - Lina M. Moreno Uribe
- Department of Orthodontics & The Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA, United States
| | - Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School and School of Dentistry, UT Health at Houston, Houston, TX, United States
| | - Ross E. Long
- Lancaster Cleft Palate Clinic, Lancaster, PA, United States
| | - Kaare Christensen
- Department of Epidemiology, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | | | - Susan Walsh
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
| | - Mark D. Shriver
- Department of Anthropology, Pennsylvania State University, State College, PA, United States
| | - Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Hilde Peeters
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - John R. Shaffer
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mary L. Marazita
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Greet Hens
- Department of Otorhinolaryngology, KU Leuven, Leuven, Belgium
| | - Seth M. Weinberg
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Peter Claes
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Carroll SH, Macias Trevino C, Li EB, Kawasaki K, Myers N, Hallett SA, Alhazmi N, Cotney J, Carstens RP, Liao EC. An Irf6- Esrp1/2 regulatory axis controls midface morphogenesis in vertebrates. Development 2020; 147:dev194498. [PMID: 33234718 PMCID: PMC7774891 DOI: 10.1242/dev.194498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/02/2020] [Indexed: 12/25/2022]
Abstract
Irf6 and Esrp1 are important for palate development across vertebrates. In zebrafish, we found that irf6 regulates the expression of esrp1 We detailed overlapping Irf6 and Esrp1/2 expression in mouse orofacial epithelium. In zebrafish, irf6 and esrp1/2 share expression in periderm, frontonasal ectoderm and oral epithelium. Genetic disruption of irf6 and esrp1/2 in zebrafish resulted in cleft of the anterior neurocranium. The esrp1/2 mutant also developed cleft of the mouth opening. Lineage tracing of cranial neural crest cells revealed that the cleft resulted not from migration defect, but from impaired chondrogenesis. Analysis of aberrant cells within the cleft revealed expression of sox10, col1a1 and irf6, and these cells were adjacent to krt4+ and krt5+ cells. Breeding of mouse Irf6; Esrp1; Esrp2 compound mutants suggested genetic interaction, as the triple homozygote and the Irf6; Esrp1 double homozygote were not observed. Further, Irf6 heterozygosity reduced Esrp1/2 cleft severity. These studies highlight the complementary analysis of Irf6 and Esrp1/2 in mouse and zebrafish, and identify a unique aberrant cell population in zebrafish expressing sox10, col1a1 and irf6 Future work characterizing this cell population will yield additional insight into cleft pathogenesis.
Collapse
Affiliation(s)
- Shannon H. Carroll
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Claudio Macias Trevino
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | | | - Kenta Kawasaki
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Nikita Myers
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shawn A. Hallett
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nora Alhazmi
- Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Justin Cotney
- Department of Genetics and Genome Sciences, University of Connecticut Health, CT 06030, USA
| | - Russ P. Carstens
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric C. Liao
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Shriners Hospital for Children, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
39
|
A Novel IRF6 Variant Detected in a Family With Nonsyndromic Cleft Lip and Palate by Whole Exome Sequencing. J Craniofac Surg 2020; 32:265-269. [PMID: 33136784 DOI: 10.1097/scs.0000000000007000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is the most common congenital craniofacial malformation, and its harmful effects on affected individuals and families are apparent. The causative genes and their mechanisms are not completely clear, although several studies have been conducted. Accordingly, in the present study, we recruited a Han Chinese family with hereditary NSCL/P to explore the possible causative variants of this disease using whole exome sequencing. Bioinformatics screening and analysis, mutation function prediction, species conservation analysis, and homology protein modeling were used to identify the variants and evaluate their influence. A mutation in the interferon regulatory factor 6 (IRF6) gene (c.961C>T; p.Val321Met) was detected as a candidate causative variant and predicted to be deleterious. The codon was found to be conserved in many species, and the residue change caused by this mutation changed the structure of IRF6 to a certain degree. The findings suggest that this IRF6 variant is probably the pathogenic cause of NSCL/P in this family. Our results further provide evidence that IRF6 variants play a role in the etiology of NSCL/P.
Collapse
|
40
|
Reynolds K, Zhang S, Sun B, Garland M, Ji Y, Zhou CJ. Genetics and signaling mechanisms of orofacial clefts. Birth Defects Res 2020; 112:1588-1634. [PMID: 32666711 PMCID: PMC7883771 DOI: 10.1002/bdr2.1754] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Craniofacial development involves several complex tissue movements including several fusion processes to form the frontonasal and maxillary structures, including the upper lip and palate. Each of these movements are controlled by many different factors that are tightly regulated by several integral morphogenetic signaling pathways. Subject to both genetic and environmental influences, interruption at nearly any stage can disrupt lip, nasal, or palate fusion and result in a cleft. Here, we discuss many of the genetic risk factors that may contribute to the presentation of orofacial clefts in patients, and several of the key signaling pathways and underlying cellular mechanisms that control lip and palate formation, as identified primarily through investigating equivalent processes in animal models, are examined.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Michael Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Chengji J. Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| |
Collapse
|
41
|
Oliver JD, Madhoun W, Graham EM, Hendrycks R, Renouard M, Hu MS. Stem Cells Regenerating the Craniofacial Skeleton: Current State-Of-The-Art and Future Directions. J Clin Med 2020; 9:jcm9103307. [PMID: 33076266 PMCID: PMC7602501 DOI: 10.3390/jcm9103307] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
The craniofacial region comprises the most complex and intricate anatomical structures in the human body. As a result of developmental defects, traumatic injury, or neoplastic tissue formation, the functional and aesthetic intricacies of the face and cranium are often disrupted. While reconstructive techniques have long been innovated in this field, there are crucial limitations to the surgical restoration of craniomaxillofacial form and function. Fortunately, the rise of regenerative medicine and surgery has expanded the possibilities for patients affected with hard and soft tissue deficits, allowing for the controlled engineering and regeneration of patient-specific defects. In particular, stem cell therapy has emerged in recent years as an adjuvant treatment for the targeted regeneration of craniomaxillofacial structures. This review outlines the current state of the art in stem cell therapies utilized for the engineered restoration and regeneration of skeletal defects in the craniofacial region.
Collapse
Affiliation(s)
- Jeremie D. Oliver
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- School of Dentistry, School of Medicine, School of Pharmacy, University of Utah Health, Salt Lake City, UT 84112, USA; (E.M.G.); (R.H.); (M.R.)
- Correspondence: ; Tel.: +1-801-821-0630
| | - Wasila Madhoun
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA;
| | - Emily M. Graham
- School of Dentistry, School of Medicine, School of Pharmacy, University of Utah Health, Salt Lake City, UT 84112, USA; (E.M.G.); (R.H.); (M.R.)
| | - Russell Hendrycks
- School of Dentistry, School of Medicine, School of Pharmacy, University of Utah Health, Salt Lake City, UT 84112, USA; (E.M.G.); (R.H.); (M.R.)
| | - Maranda Renouard
- School of Dentistry, School of Medicine, School of Pharmacy, University of Utah Health, Salt Lake City, UT 84112, USA; (E.M.G.); (R.H.); (M.R.)
| | - Michael S. Hu
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| |
Collapse
|
42
|
Transcriptional analysis of cleft palate in TGFβ3 mutant mice. Sci Rep 2020; 10:14940. [PMID: 32913205 PMCID: PMC7483747 DOI: 10.1038/s41598-020-71636-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/17/2020] [Indexed: 12/30/2022] Open
Abstract
Cleft palate (CP) is one of the most common craniofacial birth defects, impacting about 1 in 800 births in the USA. Tgf-β3 plays a critical role in regulating murine palate development, and Tgf-β3 null mutants develop cleft palate with 100% penetrance. In this study, we compared global palatal transcriptomes of wild type (WT) and Tgf-β3 −/− homozygous (HM) mouse embryos at the crucial palatogenesis stages of E14.5, and E16.5, using RNA-seq data. We found 1,809 and 2,127 differentially expressed genes at E16.5 vs. E14.5 in the WT and HM groups, respectively (adjusted p < 0.05; |fold change|> 2.0). We focused on the genes that were uniquely up/downregulated in WT or HM at E16.5 vs. E14.5 to identify genes associated with CP. Systems biology analysis relating to cell behaviors and function of WT and HM specific genes identified functional non-Smad pathways and preference of apoptosis to epithelial-mesenchymal transition. We identified 24 HM specific and 11 WT specific genes that are CP-related and/or involved in Tgf-β3 signaling. We validated the expression of 29 of the 35 genes using qRT-PCR and the trend of mRNA expression is similar to that of RNA-seq data . Our results enrich our understanding of genes associated with CP that are directly or indirectly regulated via TGF-β.
Collapse
|
43
|
Pi X, Qiao Y, Wang C, Li Z, Liu J, Wang L, Jin L, Ren A. Concentrations of organochlorine pesticides in placental tissue are not associated with risk for fetal orofacial clefts. Reprod Toxicol 2020; 98:99-106. [PMID: 32920085 DOI: 10.1016/j.reprotox.2020.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 11/28/2022]
Abstract
Previous epidemiological studies have shown that prenatal exposure to organochlorine pesticides (OCPs) entails a variety of adverse impacts on fetal health, but it is not yet known whether it is associated with risk for orofacial clefts (OFCs). This study of 103 fetuses or newborns with a diagnosis of OFCs (cases) and 103 healthy newborns without malformations (controls) examined whether prenatal exposure to OCPs, as indicated by their concentrations in placental tissue, is a risk factor for OFCs. No differences were found in the median concentrations of OCPs between cases and controls, with exception of o,p'-dichlorodiphenyldichloroethylene, o,p'-dichlorodiphenyldichloroethane, and total o,p'-dichlorodiphenyltrichloroethane (DDTs), whose concentrations were higher in controls than in cases (Ps < 0.05). Although higher concentrations of placental δhexachlorocyclohexane and isodrin were found to be associated with decreased risk for OFCs in logistic regression, no association was observed in the Bayesian kernel machine regression, a novel statistical model in analyzing exposure mixtures. Women who reported periconceptional folic acid supplementation had lower placental concentrations of DDTs than women who did not. In conclusion, no association between levels of OCPs in placental tissue and risk for OFCs was observed in this population. Supplementation with folic acid may help decrease the levels of DDTs in placental tissue, but further studies are needed to confirm this unexpected finding.
Collapse
Affiliation(s)
- Xin Pi
- Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Peking University, Beijing 100191, China; Department of Social Medicine and Health Education, Peking University School of Public Health, Beijing 100191, China
| | - Yiran Qiao
- Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Peking University, Beijing 100191, China
| | - Chengrong Wang
- Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Peking University, Beijing 100191, China; Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Peking University, Beijing 100191, China
| | - Jufen Liu
- Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Peking University, Beijing 100191, China
| | - Linlin Wang
- Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Peking University, Beijing 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Peking University, Beijing 100191, China.
| | - Aiguo Ren
- Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Peking University, Beijing 100191, China; Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China.
| |
Collapse
|
44
|
Çınar S, Koc G. The Effect of Nursing Care Provided to Turkish Mothers of Infants Born With Cleft Lip and Palate on Maternal Attachment and Self-efficacy: A Quasi-Experimental Study. J Pediatr Nurs 2020; 53:e80-e86. [PMID: 32139235 DOI: 10.1016/j.pedn.2020.02.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE The present study evaluated the effect of the nursing care provided to the mothers of the infants born with a cleft lip and palate (CLP) until the time of cleft palate (CP) repair surgery, on maternal attachment and self-efficacy. DESIGN AND METHODS The present study was designed as a quasi-experimental study with a pre-test and post-test control group design. The study included 32 mothers whose infants were born with CLP and had undergone CL repair surgery. Nursing care was provided to the mothers and the infants included in the study group through a total of seven home visits over a period of nine weeks. The data for the study were collected using a socio-demographic form, a home-care needs evaluation form, the Maternal Attachment Inventory (MAI), and the Parental Self-Efficacy Scale (PSE). RESULTS The scores for the mothers in the intervention group increased as the visits progressed, and it was observed that by the end of the ninth week, the difference between the mothers in the intervention group and those in the control group in terms of post-test MAI and PSE had become statistically significant. CONCLUSIONS Providing nine weeks of home-based nursing care to the mothers and the infants has the potential of reducing the problems experienced by the mothers of infants born with CLP. PRACTICE IMPLICATIONS Obtaining a better understanding of the barriers to the nursing care provided to the mothers of the infants born with CLP in-home setting would contribute immensely to the development of appropriate nursing-care practices.
Collapse
Affiliation(s)
- Sevil Çınar
- Pediatric Nursing Department, Faculty of Health Sciences, Artvin Çoruh University, Artvin, Turkey.
| | - Gulten Koc
- Faculty of Nursing, Department of Obstetrics and Gynecologic Nursing, Hacettepe University, Ankara, Turkey
| |
Collapse
|
45
|
Oliver JD, Turner EC, Halpern LR, Jia S, Schneider P, D'Souza RN. Molecular Diagnostics and In Utero Therapeutics for Orofacial Clefts. J Dent Res 2020; 99:1221-1227. [PMID: 32609569 DOI: 10.1177/0022034520936245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Orofacial clefts and their management impose a substantial burden on patients, on their families, and on the health system. Under the current standard of care, affected patients are subjected to a lifelong journey of corrective surgeries and multidisciplinary management to replace bone and soft tissues, as well as restore esthetics and physiologic functions while restoring self-esteem and psychological health. Hence, a better understanding of the dynamic interplay of molecular signaling pathways at critical phases of palate development is necessary to pioneer novel prenatal interventions. Such pathways include transforming growth factor-β (Tgfβ), sonic hedgehog (Shh), wingless-integrated site (Wnt)/β-catenin, bone morphogenetic protein (Bmp), and fibroblast growth factor (Fgf) and its associated receptors, among others. Here, we summarize commonly used surgical methods used to correct cleft defects postnatally. We also review the advances made in prenatal diagnostics of clefts through imaging and genomics and the various in utero surgical corrections that have been attempted thus far. An overview of how key mediators of signaling that drive palatogenesis are emphasized in the context of the framework and rationale for the development and testing of therapeutics in animal model systems and in humans is provided. The pros and cons of in utero therapies that can potentially restore molecular homeostasis needed for the proper growth and fusion of palatal shelves are presented. The theme advanced throughout this review is the need to develop preclinical molecular therapies that could ultimately be translated into human trials that can correct orofacial clefts at earlier stages of development.
Collapse
Affiliation(s)
- J D Oliver
- School of Medicine and School of Dentistry, University of Utah Health, Salt Lake City, UT, USA.,Department of Biomedical Engineering, College of Engineering, University of Utah, Salt Lake City, UT, USA
| | - E C Turner
- University of Western Australia Dental School, Perth, Western Australia
| | - L R Halpern
- School of Medicine and School of Dentistry, University of Utah Health, Salt Lake City, UT, USA
| | - S Jia
- School of Medicine and School of Dentistry, University of Utah Health, Salt Lake City, UT, USA
| | - P Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - R N D'Souza
- School of Medicine and School of Dentistry, University of Utah Health, Salt Lake City, UT, USA.,Department of Biomedical Engineering, College of Engineering, University of Utah, Salt Lake City, UT, USA.,University of Utah, Departments of Neurobiology and Anatomy, Pathology, and Surgery, Salt Lake City, UT, USA
| |
Collapse
|
46
|
Linnenkamp BDW, Raskin S, Esposito SE, Herai RH. A comprehensive analysis of AHRR gene as a candidate for cleft lip with or without cleft palate. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 785:108319. [PMID: 32800270 DOI: 10.1016/j.mrrev.2020.108319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Cleft lip and palate (CL/P) is among the most common congenital malformations and affects 1 in 700 newborns. CL/P is caused by genetic and environmental factors (maternal smoking, alcohol or drug use and others). Many genes and loci were associated with cleft lip/palate but the amount of heterogeneity justifies identifying new causal genes and variants. AHRR (Aryl-Hydrocarbon Receptor Repressor) gene has recently been related to CL/P however, few functional studies analyze the genotypephenotype interaction of AHRR with CL/P. Several studies associate the molecular pathway of AHRR to CL/P which indicates this gene as a functional candidate in CL/P etiology. METHODS Systematic Literature Review was performed using PUBMED database with the keywords cleft lip, cleft palate, orofacial cleft, AHRR and synonyms. SLR resulted in 37 included articles. RESULTS AHRR is a positional and functional candidate gene for CL/P. In silico analysis detected interactions with other genes previously associated to CL/P like ARNT and CYP1A1. AHRR protein regulates cellular toxicity through TCDD mediated AHR pathway. Exposure to TCDD in animal embryos is AHR mediated and lead to cleft palate due to palate fusion failure and post fusion rupture. AHRR regulates cellular growth and differentiation, fundamental to lip and palatogenesis. AHRR decreases carcinogenesis and recently a higher tumor risk has been described in CL/P patients and families. AHRR is also a smoking biomarker due to changed methylation sites found in smokers DNA although folate intake may partially revert these methylation alterations. This corroborates the role of maternal smoking and lack of folate supplementation as risk factors for CL/P. CONCLUSION This research identified the importance of AHRR in dioxin response and demonstrated an example of genetic and environmental interaction, indispensable in the development of many complex diseases.
Collapse
Affiliation(s)
- Bianca Domit Werner Linnenkamp
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Salmo Raskin
- School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Selene Elifio Esposito
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil; School of Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Roberto Hirochi Herai
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil; Research Department, Lico Kaesemodel Institute (ILK), Curitiba, Paraná, Brazil.
| |
Collapse
|
47
|
Hall EG, Wenger LW, Wilson NR, Undurty-Akella SS, Standley J, Augustine-Akpan EA, Kousa YA, Acevedo DS, Goering JP, Pitstick L, Natsume N, Paroya SM, Busch TD, Ito M, Mori A, Imura H, Schultz-Rogers LE, Klee EW, Babovic-Vuksanovic D, Kroc SA, Adeyemo WL, Eshete MA, Bjork BC, Suzuki S, Murray JC, Schutte BC, Butali A, Saadi I. SPECC1L regulates palate development downstream of IRF6. Hum Mol Genet 2020; 29:845-858. [PMID: 31943082 PMCID: PMC7104672 DOI: 10.1093/hmg/ddaa002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 12/23/2022] Open
Abstract
SPECC1L mutations have been identified in patients with rare atypical orofacial clefts and with syndromic cleft lip and/or palate (CL/P). These mutations cluster in the second coiled-coil and calponin homology domains of SPECC1L and severely affect the ability of SPECC1L to associate with microtubules. We previously showed that gene-trap knockout of Specc1l in mouse results in early embryonic lethality. We now present a truncation mutant mouse allele, Specc1lΔC510, that results in perinatal lethality. Specc1lΔC510/ΔC510 homozygotes showed abnormal palate rugae but did not show cleft palate. However, when crossed with a gene-trap allele, Specc1lcGT/ΔC510 compound heterozygotes showed a palate elevation delay with incompletely penetrant cleft palate. Specc1lcGT/ΔC510 embryos exhibit transient oral epithelial adhesions at E13.5, which may delay shelf elevation. Consistent with oral adhesions, we show periderm layer abnormalities, including ectopic apical expression of adherens junction markers, similar to Irf6 hypomorphic mutants and Arhgap29 heterozygotes. Indeed, SPECC1L expression is drastically reduced in Irf6 mutant palatal shelves. Finally, we wanted to determine if SPECC1L deficiency also contributed to non-syndromic (ns) CL/P. We sequenced 62 Caucasian, 89 Filipino, 90 Ethiopian, 90 Nigerian and 95 Japanese patients with nsCL/P and identified three rare coding variants (p.Ala86Thr, p.Met91Iso and p.Arg546Gln) in six individuals. These variants reside outside of SPECC1L coiled-coil domains and result in milder functional defects than variants associated with syndromic clefting. Together, our data indicate that palate elevation is sensitive to deficiency of SPECC1L dosage and function and that SPECC1L cytoskeletal protein functions downstream of IRF6 in palatogenesis.
Collapse
Affiliation(s)
- Everett G Hall
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Luke W Wenger
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nathan R Wilson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sraavya S Undurty-Akella
- Department of Pediatrics, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Standley
- Department of Pediatrics, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Eno-Abasi Augustine-Akpan
- Department of Oral Pathology, Radiology and Medicine/Dow Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA
| | - Youssef A Kousa
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Diana S Acevedo
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jeremy P Goering
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Lenore Pitstick
- Department of Biochemistry, Midwestern University, Downers Grove, IL 60515, USA
| | - Nagato Natsume
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University Hospital, 2-11 Suemori-Dori, Nagoya, Chikusa-ku, Japan
| | - Shahnawaz M Paroya
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tamara D Busch
- Department of Pediatrics, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Masaaki Ito
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University Hospital, 2-11 Suemori-Dori, Nagoya, Chikusa-ku, Japan
| | - Akihiro Mori
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University Hospital, 2-11 Suemori-Dori, Nagoya, Chikusa-ku, Japan
| | - Hideto Imura
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University Hospital, 2-11 Suemori-Dori, Nagoya, Chikusa-ku, Japan
| | | | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Sarah A Kroc
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Wasiu L Adeyemo
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos, PMB 12003, Nigeria
| | - Mekonen A Eshete
- Department of Plastic and Reconstructive Surgery, Addis Ababa University, Addis Ababa, PO Box 26493, Ethiopia
| | - Bryan C Bjork
- Department of Biochemistry, Midwestern University, Downers Grove, IL 60515, USA
| | - Satoshi Suzuki
- Department of Pediatrics, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University Hospital, 2-11 Suemori-Dori, Nagoya, Chikusa-ku, Japan
| | - Jeffrey C Murray
- Department of Pediatrics, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Brian C Schutte
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine/Dow Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA
| | - Irfan Saadi
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
48
|
Boztepe H, Çınar S, Özgür, MD FF. Parenting Stress in Turkish Mothers of Infants With Cleft Lip and/or Palate. Cleft Palate Craniofac J 2020; 57:753-761. [DOI: 10.1177/1055665619898592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: To explore parenting stress and factors affecting the mothers of infants with cleft lip and/or palate (CL/P) in Turkey. Design and Participants: The study compared mothers of infants born with CL/P (n = 90) with mothers of healthy infants (n = 90). Mothers completed the data collection form, the Parenting Stress Index-Short Form, and the Multidimensional Scale of Perceived Social Support. Results: Mothers of infants born with CL/P had higher mean parenting stress scores than the control mothers. A significant negative relationship was found between social support and parenting stress for mothers of infants born with CL/P but was not related for control mothers. Among mothers with an infant with CL/P, the mean parenting stress scores were higher for mothers preoperatively than mothers responding postoperatively. Among mothers with an infant with a cleft, higher stress was found for diagnosis after birth, not breastfeeding, feeding difficulties, lack of fathers’ support, perceived difficult infant temperament, blame, anger, and concern for the future. Conclusion: Parenting stress was higher and social support was lower for mothers of infants with a cleft. Treatment teams can design interventions aimed at factors related to stress, such as addressing feeding issues, teaching coping skills, and linking to social support.
Collapse
Affiliation(s)
- Handan Boztepe
- Department of Nursing, Faculty of Health Sciences, Atılım University, Ankara, Turkey
| | - Sevil Çınar
- Pediatric Nursing Department, Faculty of Health Sciences, Artvin Çoruh University, Artvin, Turkey
| | - Fatma Figen Özgür, MD
- Department of Plastic, Reconstructive and Esthetic Surgery, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
49
|
Iskandar RPD, Alida, Triwardhani A, Narmada IB, Hanum F, Kusumo AH, Nidom CA, Sudjarwo SA. Soluble Human Leukocyte Antigen Molecules Detected in Orofacial Cleft Patients: A Case-Control Study. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2020. [DOI: 10.1590/pboci.2020.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Alida
- Universitas Airlangga, Indonesia
| | | | | | | | | | | | | |
Collapse
|
50
|
Liu D, Wang M, Yuan Y, Schwender H, Wang H, Wang P, Zhou Z, Li J, Wu T, Zhu H, Beaty TH. Gene-gene interaction among cell adhesion genes and risk of nonsyndromic cleft lip with or without cleft palate in Chinese case-parent trios. Mol Genet Genomic Med 2019; 7:e00872. [PMID: 31419083 PMCID: PMC6785639 DOI: 10.1002/mgg3.872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/27/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is a common birth defect with complex etiology. One strategy for studying the genetic risk factors of NSCL/P is to consider gene-gene interaction (G × G) among gene pathways having a role in craniofacial development. The present study aimed to investigate the G × G among cell adhesion gene pathway. METHODS We carried out an interaction analysis of eight genes involved in cell adherens junctions among 806 NSCL/P Chinese case-parent trios originally recruited for a genome-wide association study (GWAS). Regression-based approach was used to test for two-way G × G interaction, while machine learning algorithm was run for exploring both two-way and multi-way interaction that may affect the risk of NSCL/P. RESULTS A two-way ACTN1 × CTNNB1 interaction reached the adjusted significance level. The single nucleotide polymorphisms pair composed of rs17252114 (CTNNB1) and rs1274944 (ACTN1) yielded a p value of .0002, and this interaction was also supported by the logic regression algorithm. Higher order interactions involving ACTN1, CTNNB1, and CDH1 were picked out by logic regression, suggesting a potential role in NSCL/P risk. CONCLUSION This study suggests for the first time evidence of both two-way and multi-way G × G interactions among cell adhesion genes contributing to the NSCL/P risk.
Collapse
Affiliation(s)
- Dongjing Liu
- School of Public HealthPeking UniversityBeijingChina
| | - Mengying Wang
- School of Public HealthPeking UniversityBeijingChina
| | - Yuan Yuan
- School of Public HealthPeking UniversityBeijingChina
| | - Holger Schwender
- Mathematical InstituteHeinrich Heine University DuesseldorfDuesseldorfGermany
| | - Hong Wang
- School of Public HealthPeking UniversityBeijingChina
| | - Ping Wang
- Beijing Center for Disease Prevention and ControlBeijingChina
| | - Zhibo Zhou
- School of StomatologyPeking UniversityBeijingChina
| | - Jing Li
- School of StomatologyPeking UniversityBeijingChina
| | - Tao Wu
- School of Public HealthPeking UniversityBeijingChina
- Key Laboratory of Reproductive HealthMinistry of HealthBeijingChina
| | - Hongping Zhu
- School of StomatologyPeking UniversityBeijingChina
| | - Terri H. Beaty
- School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|