1
|
Xiao R, Huang X, Gao S, Duan J, Zhang Y, Zhang M. Microglia in retinal diseases: From pathogenesis towards therapeutic strategies. Biochem Pharmacol 2024; 230:116550. [PMID: 39307318 DOI: 10.1016/j.bcp.2024.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Microglia, a widely dispersed cohort of immune cells in the retina, are intricately involved in a diverse range of pivotal biological processes, including inflammation, vascular development, complement activation, antigen presentation, and phagocytosis. Within the retinal milieu, microglia are crucial for the clearance of dead cells and cellular debris, release of anti-inflammatory agents, and orchestration of vascular network remodeling to maintain homeostasis. In addition, microglia are key mediators of neuroinflammation. Triggered by oxidative stress, elevated intraocular pressure, genetic anomalies, and immune dysregulation, microglia release numerous inflammatory cytokines, contributing to the pathogenesis of various retinal disorders. Recent studies on the ontogeny and broad functions of microglia in the retina have elucidated their characteristics during retinal development, homeostasis, and disease. Furthermore, therapeutic strategies that target microglia and their effector cytokines have been developed and shown positive results for some retinal diseases. Therefore, we systematically review the microglial ontogeny in the retina, elucidate their dual roles in retinal homeostasis and disease pathogenesis, and demonstrate microglia-based targeted therapeutic strategies for retinal diseases.
Collapse
Affiliation(s)
- Ruihan Xiao
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xi Huang
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sheng Gao
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianan Duan
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yun Zhang
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meixia Zhang
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Malamud M, Brown GD. The Dectin-1 and Dectin-2 clusters: C-type lectin receptors with fundamental roles in immunity. EMBO Rep 2024; 25:5239-5264. [PMID: 39482490 PMCID: PMC11624271 DOI: 10.1038/s44319-024-00296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
The ability of myeloid cells to recognize and differentiate endogenous or exogenous ligands rely on the presence of different transmembrane protein receptors. C-type lectin receptors (CLRs), defined by the presence of a conserved structural motif called C-type lectin-like domain (CTLD), are a crucial family of receptors involved in this process, being able to recognize a diverse range of ligands from glycans to proteins or lipids and capable of initiating an immune response. The Dectin-1 and Dectin-2 clusters involve two groups of CLRs, with genes genomically linked within the natural killer cluster of genes in both humans and mice, and all characterized by the presence of a single extracellular CTLD. Fundamental immune cell functions such as antimicrobial effector mechanisms as well as internalization and presentation of antigens are induced and/or regulated through activatory, or inhibitory signalling pathways triggered by these receptors after ligand binding. In this review, we will discuss the most recent concepts regarding expression, ligands, signaling pathways and functions of each member of the Dectin clusters of CLRs, highlighting the importance and diversity of their functions.
Collapse
Affiliation(s)
- Mariano Malamud
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| | - Gordon D Brown
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| |
Collapse
|
3
|
Jang B, Kim Y, Song J, Kim YW, Lee WY. Identifying Herbal Candidates and Active Ingredients Against Postmenopausal Osteoporosis Using Biased Random Walk on a Multiscale Network. Int J Mol Sci 2024; 25:12322. [PMID: 39596387 PMCID: PMC11594441 DOI: 10.3390/ijms252212322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Postmenopausal osteoporosis is a major global health concern, particularly affecting aging women, and necessitates innovative treatment options. Herbal medicine, with its multi-compound, multi-target characteristics, offers a promising approach for complex diseases. In this study, we applied multiscale network and random walk-based analyses to identify candidate herbs and their active ingredients for postmenopausal osteoporosis, focusing on their underlying mechanisms. A dataset of medicinal herbs, their active ingredients, and protein targets was compiled, and diffusion profiles were calculated to assess the propagation effects. Through correlation analysis, we prioritized herbs based on their relevance to osteoporosis, identifying the top candidates like Benincasae Semen, Glehniae Radix, Corydalis Tuber, and Houttuyniae Herba. Gene Set Enrichment Analysis (GSEA) revealed that the 49 core protein targets of these herbs were significantly associated with pathways related to inflammation, osteoclast differentiation, and estrogen metabolism. Notably, compounds such as falcarindiol from Glehniae Radix and tetrahydrocoptisine from Corydalis Tuber-previously unstudied for osteoporosis-were predicted to interact with inflammation-related proteins, including IL6, IL1B, and TNF, affecting key biological processes like apoptosis and cell proliferation. This study advances the understanding of herbal therapies for osteoporosis and offers a framework for discovering novel therapeutic agents.
Collapse
Affiliation(s)
- Boyun Jang
- IntegroMediLab Co., Ltd., Seoul 04626, Republic of Korea
| | - Youngsoo Kim
- IntegroMediLab Co., Ltd., Seoul 04626, Republic of Korea
| | - Jungbin Song
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Young-Woo Kim
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Won-Yung Lee
- School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
- Research Center of Traditional Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
4
|
Leinung N, Mentrup T, Hodzic S, Schröder B. Molecular and functional in vivo characterisation of murine Dectin-1 isoforms. Eur J Immunol 2024; 54:e2451092. [PMID: 39194380 DOI: 10.1002/eji.202451092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Dectin-1 is a C-type lectin-receptor involved in sensing fungi by innate immune cells. Encoded by the Clec7a gene, Dectin-1 exists in two major splice isoforms, Dectin-1a and 1b, which differ in the presence of a membrane-proximal stalk domain. As reported previously, this domain determines degradative routes for Dectin-1a and 1b leading to the generation of a stable N-terminal fragment exclusively from Dectin-1a. Here, we narrow down the responsible part of the stalk and demonstrate the stabilisation of the Dectin-1a N-terminal fragment in tetraspanin-enriched microdomains. C57BL/6 and BALB/c mice show divergent Dectin-1 isoform expression patterns, which are caused by a single nucleotide polymorphism in exon 3 of the Clec7a gene, leading to a non-sense Dectin-1a mRNA in C57BL/6 mice. Using backcrossing, we generated mice with the C57BL/6 Clec7a allele on a BALB/c background and compared these to the parental strains. Expression of the C57BL/6 allele leads to the exclusive presence of the Dectin-1b protein. Furthermore, it was associated with higher Dectin-1 mRNA expression, but less Dectin-1 at the cell surface according to flow cytometry. In neutrophils, this altered ROS production induced by Dectin-1 model ligands, while cellular responses in macrophages and dendritic cells were not significantly influenced by the Dectin-1 isoform pattern.
Collapse
Affiliation(s)
- Nadja Leinung
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Torben Mentrup
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sajma Hodzic
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bernd Schröder
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Li Y, Huang M, Cardinale S, Su Y, Peters DE, Slusher BS, Zhu X. Dectin-1 as a therapeutic target for inflammatory bowel disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:237-264. [PMID: 39521602 DOI: 10.1016/bs.apha.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Inflammatory bowel disease (IBD) encompasses chronic inflammatory conditions of the distal gastrointestinal tract, including Crohn's disease and ulcerative colitis. This chapter explores the potential of Dendritic cell-associated C-type lectin-1 (Dectin-1), a pattern recognition receptor, as a therapeutic target for IBD. We delve into the multifaceted roles of Dectin-1 in immune response modulation, focusing on its interactions with the gut microbiota and immune system. Key sections include an examination of intestinal dysbiosis and its impact on IBD, highlighting the critical role of fungal dysbiosis and immune responses mediated by Dectin-1. The chapter discusses the dual functions of Dectin-1 in maintaining gut homeostasis and its contribution to disease pathogenesis through interactions with the gut's fungal community. Furthermore, the genetic and molecular mechanisms underpinning Dectin-1's role in IBD susceptibility are explored, alongside its signaling pathways and their effects on immune modulation. We also present therapeutic strategies targeting Dectin-1, including innovative drug delivery systems that leverage its natural binding affinity for β-glucans, enhancing targeted delivery to inflamed tissues. The chapter underscores the potential of dietary modulation of Dectin-1 pathways to restore gut microbiota balance and suggests future research directions to fully exploit Dectin-1's therapeutic potential in managing IBD. By elucidating the complex interplay between Dectin-1 and the gut microbiota, this chapter provides insights into novel therapeutic approaches aimed at mitigating IBD symptoms and improving patient outcomes.
Collapse
Affiliation(s)
- Yannan Li
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Meixiang Huang
- Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Santiago Cardinale
- Department of Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yu Su
- Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Diane E Peters
- Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Barbara S Slusher
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiaolei Zhu
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
6
|
Shao Z, Wang L, Cao L, Chen T, Jia XM, Sun W, Gao C, Xiao H. The protein segregase VCP/p97 promotes host antifungal defense via regulation of SYK activation. PLoS Pathog 2024; 20:e1012674. [PMID: 39471181 PMCID: PMC11548748 DOI: 10.1371/journal.ppat.1012674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/08/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024] Open
Abstract
C-type lectin receptors (CLRs) are essential to execute host defense against fungal infection. Nevertheless, a comprehensive understanding of the molecular underpinnings of CLR signaling remains a work in progress. Here, we searched for yet-to-be-identified tyrosine-phosphorylated proteins in Dectin-1 signaling and linked the stress-response protein valosin containing protein (VCP)/p97 to Dectin-1 signaling. Knockdown of VCP expression or chemical inhibition of VCP's segregase activity dampened Dectin-1-elicited SYK activation in BMDMs and BMDCs, leading to attenuated expression of proinflammatory cytokines/chemokines such as TNF-α, IL-6 and CXCL1. Biochemical analyses demonstrated that VCP and its cofactor UFD1 form a complex with SYK and its phosphatase SHP-1 following Dectin-1 ligation, and knockdown of VCP led to a more prominent SYK and SHP-1 association. Further, SHP-1 became polyubiquitinated upon Dectin-1 activation, and VCP or UFD1 overexpression accelerated SHP-1 degradation. Conceivably, VCP may promote Dectin-1 signaling by pulling the ubiquitinated SHP-1 out of the SYK complex for degradation. Finally, genetic ablation of VCP in the neutrophil and macrophage compartment rendered the mice highly susceptible to infection by Candida albicans, an observation also phenocopied by administering the VCP inhibitor. These results collectively demonstrate that VCP is a previously unappreciated signal transducer of the Dectin-1 pathway and a crucial component of antifungal defense, and suggest a new mechanism regulating SYK activation.
Collapse
Affiliation(s)
- Zhugui Shao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Li Wang
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Limin Cao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Tian Chen
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P. R. China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Xin-Ming Jia
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Wanwei Sun
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Hui Xiao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| |
Collapse
|
7
|
Niveau C, Sosa Cuevas E, Saas P, Aspord C. Glycans in melanoma: Drivers of tumour progression but sweet targets to exploit for immunotherapy. Immunology 2024; 173:33-52. [PMID: 38742251 DOI: 10.1111/imm.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Aberrant glycosylation recently emerged as an unmissable hallmark of cancer progression in many cancers. In melanoma, there is growing evidence that the tumour 'glycocode' plays a major role in promoting cell proliferation, invasion, migration, but also dictates the nature of the immune infiltrate, which strongly affects immune cell function, and clinical outcome. Aberrant glycosylation patterns dismantle anti-tumour defence through interactions with lectins on immune cells, which are crucial to shape anti-tumour immunity but also to trigger immune evasion. The glycan/lectin axis represents a new immune subversion pathway that is exploited by melanoma to hijack immune cells and escape from immune control. In this review, we describe the glycosylation features of melanoma tumour cells, and further gather findings related to the role of glycosylation in melanoma tumour progression, deciphering in detail its impact on immunity. We also depict glycan-based strategies aiming at restoring a functional anti-tumour response in melanoma patients. Glycans/lectins emerge as key immune checkpoints with promising translational properties. Exploitation of these pathways could reshape potent anti-tumour immunity while impeding immunosuppressive circuits triggered by aberrant tumour glycosylation patterns, holding great promise for cancer therapy.
Collapse
Affiliation(s)
- Camille Niveau
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Philippe Saas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| |
Collapse
|
8
|
Stewart EL, Counoupas C, Steain M, Ashley C, Alca S, Hartley-Tassell L, von Itzstein M, Britton WJ, Petrovsky N, Triccas JA. Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) is a cellular receptor for delta inulin adjuvant. Immunol Cell Biol 2024; 102:593-604. [PMID: 38757764 PMCID: PMC11296934 DOI: 10.1111/imcb.12774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Delta inulin, or Advax, is a polysaccharide vaccine adjuvant that significantly enhances vaccine-mediated immune responses against multiple pathogens and was recently licensed for use in the coronavirus disease 2019 (COVID-19) vaccine SpikoGen. Although Advax has proven effective as an immune adjuvant, its specific binding targets have not been characterized. In this report, we identify a cellular receptor for Advax recognition. In vitro uptake of Advax particles by macrophage cell lines was substantially greater than that of latex beads of comparable size, suggesting an active uptake mechanism by phagocytic cells. Using a lectin array, Advax particles were recognized by lectins specific for various carbohydrate structures including mannosyl, N-acetylgalactosamine and galactose moieties. Expression in nonphagocytic cells of dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), a C-type lectin receptor, resulted in enhanced uptake of fluorescent Advax particles compared with mock-transfected cells. Advax uptake was reduced with the addition of ethylenediaminetetraacetic acid and mannan to cells, which are known inhibitors of DC-SIGN function. Finally, a specific blockade of DC-SIGN using a neutralizing antibody abrogated Advax uptake in DC-SIGN-expressing cells. Together, these results identify DC-SIGN as a putative receptor for Advax. Given the known immunomodulatory role of DC-SIGN, the findings described here have implications for the use of Advax adjuvants in humans and inform future mechanistic studies.
Collapse
Affiliation(s)
- Erica L Stewart
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown NSW 2006, Australia
| | - Claudio Counoupas
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown NSW 2006, Australia
| | - Megan Steain
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown NSW 2006, Australia
| | - Caroline Ashley
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown NSW 2006, Australia
| | - Sibel Alca
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown NSW 2006, Australia
| | | | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Warwick J Britton
- Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown NSW 2006, Australia
| | | | - James A Triccas
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown NSW 2006, Australia
| |
Collapse
|
9
|
Pierre N, Huynh-Thu VA, Baiwir D, Vieujean S, Bequet E, Reenaers C, Van Kemseke C, Salée C, Massot C, Fléron M, Mazzucchelli G, Trzpiot L, Eppe G, De Pauw E, Louis E, Meuwis MA. Serum proteome signatures associated with ileal and colonic ulcers in Crohn's disease. J Proteomics 2024; 302:105199. [PMID: 38763457 DOI: 10.1016/j.jprot.2024.105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
At a clinical level, ileal and colonic Crohn's disease (CD) are considered as separate entities. These subphenotypes need to be better supported by biological data to develop personalised medicine in CD. To this end, we combined different technologies (proximity extension assay, selected reaction monitoring, and high-sensitivity turbidimetric immunoassay (hsCRP)) to measure 207 immune-related serum proteins in CD patients presenting no endoscopic lesions (endoscopic remission) (n = 23), isolated ileal ulcers (n = 17), or isolated colonic ulcers (n = 16). We showed that isolated ileal ulcers and isolated colonic ulcers were specifically associated with 6 and 18 serum proteins, respectively: (high level: JUN, CNTNAP2; low level: FCRL6, LTA, CLEC4A, NTF4); (high level: hsCRP, IL6, APCS, CFB, MBL2, IL7, IL17A, CCL19, CXCL10, CSF3, IL10, CLEC4G, MMP12, VEGFA; low level: CLEC3B, GSN, TNFSF12, TPSAB1). Isolated ileal ulcers and isolated colonic ulcers were detected by hsCRP with an area under the receiver operating characteristics curve of 0.64 (p-value = 0.07) and 0.77 (p-value = 0.001), respectively. We highlighted distinct serum proteome profiles associated with ileal and colonic ulcers in CD, this finding might support the development of therapeutics and biomarkers tailored to disease location. SIGNIFICANCE: Although ileal and colonic Crohn's disease present important clinical differences (eg, progression, response to treatment and reliability of biomarkers), these two entities are managed with the same therapeutic strategy. The biological specificities of ileal and colonic Crohn's disease need to be better characterised to develop more personalised approaches. The present study used robust technologies (selected reaction monitoring, proximity extension assays and turbidimetric immunoassay) to quantify precisely 207 serum immune-related proteins in three groups of Crohn's disease patients presenting: 1) no endoscopic lesions (endoscopic remission) (n = 23); 2) isolated ileal ulcers (n = 17); 3) isolated colonic ulcers (n = 16). We found distinct serum proteome signatures associated with ileal and colonic ulcers. Our findings could foster the development of biomarkers and treatments tailored to Crohn's disease location.
Collapse
Affiliation(s)
- Nicolas Pierre
- Laboratory of Translational Gastroenterology, GIGA-institute, University of Liege, Liege, Belgium.
| | - Vân Anh Huynh-Thu
- Department of Electrical Engineering and Computer Science, University of Liege, Liege, Belgium
| | | | - Sophie Vieujean
- Laboratory of Translational Gastroenterology, GIGA-institute, University of Liege, Liege, Belgium; Hepato-Gastroenterology and Digestive Oncology Department, Liege University Hospital, Liege, Belgium
| | - Emeline Bequet
- Laboratory of Translational Gastroenterology, GIGA-institute, University of Liege, Liege, Belgium; Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Liege University Hospital, Liege, Belgium
| | - Catherine Reenaers
- Hepato-Gastroenterology and Digestive Oncology Department, Liege University Hospital, Liege, Belgium
| | - Catherine Van Kemseke
- Hepato-Gastroenterology and Digestive Oncology Department, Liege University Hospital, Liege, Belgium
| | - Catherine Salée
- Laboratory of Translational Gastroenterology, GIGA-institute, University of Liege, Liege, Belgium
| | - Charlotte Massot
- Laboratory of Translational Gastroenterology, GIGA-institute, University of Liege, Liege, Belgium
| | | | - Gabriel Mazzucchelli
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liege, Liege, Belgium
| | - Lisette Trzpiot
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liege, Liege, Belgium
| | - Gauthier Eppe
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liege, Liege, Belgium
| | - Edwin De Pauw
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liege, Liege, Belgium
| | - Edouard Louis
- Laboratory of Translational Gastroenterology, GIGA-institute, University of Liege, Liege, Belgium; Hepato-Gastroenterology and Digestive Oncology Department, Liege University Hospital, Liege, Belgium
| | - Marie-Alice Meuwis
- Laboratory of Translational Gastroenterology, GIGA-institute, University of Liege, Liege, Belgium; Hepato-Gastroenterology and Digestive Oncology Department, Liege University Hospital, Liege, Belgium
| |
Collapse
|
10
|
Yu L, Gao F, Li Y, Su D, Han L, Li Y, Zhang X, Feng Z. Role of pattern recognition receptors in the development of MASLD and potential therapeutic applications. Biomed Pharmacother 2024; 175:116724. [PMID: 38761424 DOI: 10.1016/j.biopha.2024.116724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become one of the most prevalent liver diseases worldwide, and its occurrence is strongly associated with obesity, insulin resistance (IR), genetics, and metabolic stress. Ranging from simple fatty liver to metabolic dysfunction-associated steatohepatitis (MASH), even to severe complications such as liver fibrosis and advanced cirrhosis or hepatocellular carcinoma, the underlying mechanisms of MASLD progression are complex and involve multiple cellular mediators and related signaling pathways. Pattern recognition receptors (PRRs) from the innate immune system, including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs), RIG-like receptors (RLRs), and DNA receptors, have been demonstrated to potentially contribute to the pathogenesis for MASLD. Their signaling pathways can induce inflammation, mediate oxidative stress, and affect the gut microbiota balance, ultimately resulting in hepatic steatosis, inflammatory injury and fibrosis. Here we review the available literature regarding the involvement of PRR-associated signals in the pathogenic and clinical features of MASLD, in vitro and in animal models of MASLD. We also discuss the emerging targets from PRRs for drug developments that involved agent therapies intended to arrest or reverse disease progression, thus enabling the refinement of therapeutic targets that can accelerate drug development.
Collapse
Affiliation(s)
- Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Feifei Gao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Yaoxin Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Dan Su
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Liping Han
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yueming Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Xuehan Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.
| |
Collapse
|
11
|
Lefèbre J, Falk T, Ning Y, Rademacher C. Secondary Sites of the C-type Lectin-Like Fold. Chemistry 2024; 30:e202400660. [PMID: 38527187 DOI: 10.1002/chem.202400660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
C-type lectins are a large superfamily of proteins involved in a multitude of biological processes. In particular, their involvement in immunity and homeostasis has rendered them attractive targets for diverse therapeutic interventions. They share a characteristic C-type lectin-like domain whose adaptability enables them to bind a broad spectrum of ligands beyond the originally defined canonical Ca2+-dependent carbohydrate binding. Together with variable domain architecture and high-level conformational plasticity, this enables C-type lectins to meet diverse functional demands. Secondary sites provide another layer of regulation and are often intricately linked to functional diversity. Located remote from the canonical primary binding site, secondary sites can accommodate ligands with other physicochemical properties and alter protein dynamics, thus enhancing selectivity and enabling fine-tuning of the biological response. In this review, we outline the structural determinants allowing C-type lectins to perform a large variety of tasks and to accommodate the ligands associated with it. Using the six well-characterized Ca2+-dependent and Ca2+-independent C-type lectin receptors DC-SIGN, langerin, MGL, dectin-1, CLEC-2 and NKG2D as examples, we focus on the characteristics of non-canonical interactions and secondary sites and their potential use in drug discovery endeavors.
Collapse
Affiliation(s)
- Jonathan Lefèbre
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Torben Falk
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Yunzhan Ning
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| |
Collapse
|
12
|
Nenciarini S, Renzi S, di Paola M, Meriggi N, Cavalieri D. The yeast-human coevolution: Fungal transition from passengers, colonizers, and invaders. WIREs Mech Dis 2024; 16:e1639. [PMID: 38146626 DOI: 10.1002/wsbm.1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Fungi are the cause of more than a billion infections in humans every year, although their interactions with the host are still neglected compared to bacteria. Major systemic fungal infections are very unusual in the healthy population, due to the long history of coevolution with the human host. Humans are routinely exposed to environmental fungi and can host a commensal mycobiota, which is increasingly considered as a key player in health and disease. Here, we review the current knowledge on host-fungi coevolution and the factors that regulate their interaction. On one hand, fungi have learned to survive and inhabit the host organisms as a natural ecosystem, on the other hand, the host immune system finely tunes the response toward fungi. In turn, recognition of fungi as commensals or pathogens regulates the host immune balance in health and disease. In the human gut ecosystem, yeasts provide a fingerprint of the transient microbiota. Their status as passengers or colonizers is related to the integrity of the gut barrier and the risk of multiple disorders. Thus, the study of this less known component of the microbiota could unravel the rules of the transition from passengers to colonizers and invaders, as well as their dependence on the innate component of the host's immune response. This article is categorized under: Infectious Diseases > Environmental Factors Immune System Diseases > Environmental Factors Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
| | - Sonia Renzi
- Department of Biology, University of Florence, Florence, Italy
| | - Monica di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
13
|
Xue Q, Yang B, Luo K, Luan S, Kong J, Li X, Meng X. Molecular Characterization and Expression Analysis of the C-Type Lectin Domain Family 4 Member F in Litopenaeus vannamei against White Spot Syndrome Virus. Animals (Basel) 2024; 14:1137. [PMID: 38672285 PMCID: PMC11047491 DOI: 10.3390/ani14081137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
White spot disease (WSD) outbreaks pose a significant threat to the Pacific white shrimp (Litopenaeus vannamei) farming industry. The causative agent is the white spot syndrome virus (WSSV). There are no effective treatments for WSD so far. Therefore, understanding the resistance mechanisms of L. vannamei against the WSSV is crucial. C-type lectins (CTLs) are important pattern recognition receptors (PRRs) that promote agglutination, phagocytosis, encapsulation, bacteriostasis, and antiviral infections. This study cloned the C-type lectin domain family 4 member F (LvCLEC4F) from L. vannamei. LvCLEC4F contains a 492 bp open reading frame (ORF) encoding a protein of 163 amino acids, including a carbohydrate recognition domain (CRD). Following a challenge with the WSSV, the expression profile of LvCLEC4F was significantly altered. Using RNA interference (RNAi) technology, it was found that LvCLEC4F promotes WSSV replication and affects the expression levels of genes related to the regulation of apoptosis, signaling and cellular stress response, and immune defense. Meanwhile, the hemolymph agglutination phenomenon in vivo was weakened when LvCLEC4F was knocked down. These results indicated that LvCLEC4F may play an important role in the interaction between L. vannamei and WSSV.
Collapse
Affiliation(s)
- Qian Xue
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.)
- School of Fishery, Zhejiang Ocean University, Zhoushan 316021, China
| | - Bingbing Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.)
| | - Kun Luo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.)
| | - Sheng Luan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jie Kong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xupeng Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xianhong Meng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
14
|
Zhang T, Pang C, Xu M, Zhao Q, Hu Z, Jiang X, Guo M. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities. Hum Immunol 2024; 85:110765. [PMID: 38369442 DOI: 10.1016/j.humimm.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Chenxu Pang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qianqian Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhijie Hu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
15
|
Kim HW, Ko MK, Park SH, Shin S, Kim GS, Kwak DY, Park JH, Kim SM, Lee JS, Lee MJ. D-galacto-D-mannan-mediated Dectin-2 activation orchestrates potent cellular and humoral immunity as a viral vaccine adjuvant. Front Immunol 2024; 15:1330677. [PMID: 38433834 PMCID: PMC10904532 DOI: 10.3389/fimmu.2024.1330677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Conventional foot-and-mouth disease (FMD) vaccines have been developed to enhance their effectiveness; however, several drawbacks remain, such as slow induction of antibody titers, short-lived immune response, and local side effects at the vaccination site. Therefore, we created a novel FMD vaccine that simultaneously induces cellular and humoral immune responses using the Dectin-2 agonist, D-galacto-D-mannan, as an adjuvant. Methods We evaluated the innate and adaptive (cellular and humoral) immune responses elicited by the novel FMD vaccine and elucidated the signaling pathway involved both in vitro and in vivo using mice and pigs, as well as immune cells derived from these animals. Results D-galacto-D-mannan elicited early, mid-, and long-term immunity via simultaneous induction of cellular and humoral immune responses by promoting the expression of immunoregulatory molecules. D-galacto-D-mannan also enhanced the immune response and coordinated vaccine-mediated immune response by suppressing genes associated with excessive inflammatory responses, such as nuclear factor kappa B, via Sirtuin 1 expression. Conclusion Our findings elucidated the immunological mechanisms induced by D-galacto-D-mannan, suggesting a background for the robust cellular and humoral immune responses induced by FMD vaccines containing D-galacto-D-mannan. Our study will help to facilitate the improvement of conventional FMD vaccines and the design of next-generation FMD vaccines.
Collapse
Affiliation(s)
- Hyeong Won Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Mi-Kyeong Ko
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - So Hui Park
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Seokwon Shin
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Gang Sik Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Dong Yun Kwak
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Jong-Hyeon Park
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Su-Mi Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Min Ja Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
16
|
Minute L, Bergón-Gutiérrez M, Mata-Martínez P, Fernández-Pascual J, Terrón V, Bravo-Robles L, Bıçakcıoğlu G, Zapata-Fernández G, Aguiló N, López-Collazo E, del Fresno C. Heat-killed Mycobacterium tuberculosis induces trained immunity in vitro and in vivo administered systemically or intranasally. iScience 2024; 27:108869. [PMID: 38318361 PMCID: PMC10838711 DOI: 10.1016/j.isci.2024.108869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/03/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Trained immunity (TI) represents a memory-like process of innate immune cells. TI can be initiated with various compounds such as fungal β-glucan or the tuberculosis vaccine, Bacillus Calmette-Guérin. Nevertheless, considering the clinical applications of harnessing TI against infections and cancer, there is a growing need for new, simple, and easy-to-use TI inducers. Here, we demonstrate that heat-killed Mycobacterium tuberculosis (HKMtb) induces TI both in vitro and in vivo. In human monocytes, this effect represents a truly trained process, as HKMtb confers boosted inflammatory responses against various heterologous challenges, such as lipopolysaccharide (Toll-like receptor [TLR] 4 ligand) and R848 (TLR7/8 ligand). Mechanistically, HKMtb-induced TI relies on epigenetic mechanisms in a Syk/HIF-1α-dependent manner. In vivo, HKMtb induced TI when administered both systemically and intranasally, with the latter generating a more robust TI response. Summarizing, our research has demonstrated that HKMtb has the potential to act as a mucosal immunotherapy that can successfully induce trained responses.
Collapse
Affiliation(s)
- Luna Minute
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Marta Bergón-Gutiérrez
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Pablo Mata-Martínez
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Jaime Fernández-Pascual
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Verónica Terrón
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Tumor Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Laura Bravo-Robles
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Gülce Bıçakcıoğlu
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Gabriela Zapata-Fernández
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Nacho Aguiló
- Department of Microbiology, Pediatrics, Radiology, and Public Health, University of Zaragoza/IIS Aragon, Zaragoza, Spain
- CIBERES, CIBERINFEC, Carlos III Health Institute, Madrid, Spain
| | - Eduardo López-Collazo
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Tumor Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
- CIBERES, CIBERINFEC, Carlos III Health Institute, Madrid, Spain
| | - Carlos del Fresno
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
17
|
Niveau C, Sosa Cuevas E, Roubinet B, Pezet M, Thépaut M, Mouret S, Charles J, Fieschi F, Landemarre L, Chaperot L, Saas P, Aspord C. Melanoma tumour-derived glycans hijack dendritic cell subsets through C-type lectin receptor binding. Immunology 2024; 171:286-311. [PMID: 37991344 DOI: 10.1111/imm.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023] Open
Abstract
Dendritic cell (DC) subsets play a crucial role in shaping anti-tumour immunity. Cancer escapes from the control immune system by hijacking DC functions. Yet, bases for such subversion are only partially understood. Tumour cells display aberrant glycan motifs on surface glycoproteins and glycolipids. Such carbohydrate patterns can be sensed by DCs through C-type lectin receptors (CLRs) that are critical to shape and orientate immune responses. We recently demonstrated that melanoma tumour cells harboured an aberrant 'glyco-code,' and that circulating and tumour-infiltrating DCs from melanoma patients displayed major perturbations in their CLR profiles. To decipher whether melanoma, through aberrant glycan patterns, may exploit CLR pathways to mislead DCs and evade immune control, we explored the impact of glycan motifs aberrantly found in melanoma (neoglycoproteins [NeoGP] functionalised with Gal, Man, GalNAc, s-Tn, fucose [Fuc] and GlcNAc residues) on features of human DC subsets (cDC2s, cDC1s and pDCs). We examined the ability of glycans to bind to purified DCs, and assessed their impact on DC basal properties and functional features using flow cytometry, confocal microscopy and multiplex secreted protein analysis. DC subsets differentially bound and internalised NeoGP depending on the nature of the glycan. Strikingly, Fuc directly remodelled the expression of activation markers and immune checkpoints, as well as the cytokine/chemokine secretion profile of DC subsets. NeoGP interfered with Toll like receptor (TLR)-signalling and pre-conditioned DCs to exhibit an altered response to subsequent TLR stimulation, dampening antitumor mediators while triggering pro-tumoral factors. We further demonstrated that DC subsets can bind NeoGP through CLRs, and identified GalNAc/MGL and s-Tn/ C-type lectin-like receptor 2 (CLEC2) as potential candidates. Moreover, DC dysfunction induced by tumour-associated carbohydrate molecules may be reversed by interfering with the glycan/CLR axis. These findings revealed the glycan/CLR axis as a promising checkpoint to exploit in order to reshape potent antitumor immunity while impeding immunosuppressive pathways triggered by aberrant tumour glycosylation patterns. This may rescue DCs from tumour hijacking and improve clinical success in cancer patients.
Collapse
Affiliation(s)
- Camille Niveau
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | | | - Mylène Pezet
- Institute for Advanced Biosciences, Plateforme de Microscopie Photonique-Imagerie Cellulaire et Cytométrie en Flux (Microcell), Inserm U1209-CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Michel Thépaut
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Stéphane Mouret
- Dermatology, Allergology & Photobiology Department, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Julie Charles
- Dermatology, Allergology & Photobiology Department, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Franck Fieschi
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| | | | - Laurence Chaperot
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Philippe Saas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| |
Collapse
|
18
|
Truthe S, Klassert TE, Schmelz S, Jonigk D, Blankenfeldt W, Slevogt H. Role of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Inflammation and Pathogen-Associated Interactions. J Innate Immun 2024; 16:105-132. [PMID: 38232720 PMCID: PMC10866614 DOI: 10.1159/000535793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is known as a major receptor for oxidized low-density lipoproteins (oxLDL) and plays a significant role in the genesis of atherosclerosis. Recent research has shown its involvement in cancer, ischemic stroke, and diabetes. LOX-1 is a C-type lectin receptor and is involved in the activation of immune cells and inflammatory processes. It may further interact with pathogens, suggesting a role in infections or the host's response. SUMMARY This review compiles the current knowledge of potential implications of LOX-1 in inflammatory processes and in host-pathogen interactions with a particular emphasis on its regulatory role in immune responses. Also discussed are genomic and structural variations found in LOX-1 homologs across different species as well as potential involvements of LOX-1 in inflammatory processes from the angle of different cell types and organ-specific interactions. KEY MESSAGES The results presented reveal both similar and different structures in human and murine LOX-1 and provide clues as to the possible origins of different modes of interaction. These descriptions raise concerns about the suitability, particularly of mouse models, that are often used in the analysis of its functionality in humans. Further research should also aim to better understand the mostly unknown binding and interaction mechanisms between LOX-1 and different pathogens. This pursuit will not only enhance our understanding of LOX-1 involvement in inflammatory processes but also identify potential targets for immunomodulatory approaches.
Collapse
Affiliation(s)
- Sarah Truthe
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany,
- Dynamics of Respiratory Infection Group, Helmholtz Centre for Infection Research, Braunschweig, Germany,
- Hannover Biomedical Research School (HRBS) and ZIB (Centre of Infection Biology), Braunschweig, Germany,
| | - Tilman E Klassert
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany
- Dynamics of Respiratory Infection Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Schmelz
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Danny Jonigk
- Institute of Pathology, RWTH Medical University Aachen, Aachen, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Hortense Slevogt
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany
- Dynamics of Respiratory Infection Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
19
|
Ponnusamy B, Rajagopal P, Jayaraman S. Pharmacological and Nutritional Approaches to Modulate Microglial Polarization in Cognitive Senescence. GUT MICROBIOME AND BRAIN AGEING 2024:243-259. [DOI: 10.1007/978-981-99-8803-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Belardo C, Jebali J, Boccella S, Infantino R, Fusco A, Perrone M, Bonsale R, Manzo I, Iannotta M, Scuteri D, Ferraraccio F, Panarese I, Ferrara G, Guida F, Luongo L, Palazzo E, Srairi-Abid N, Marrakchi N, Maione S. Biphasic Hormetic-like Effect of Lebecetin, a C-type Lectin of Snake Venom, on Formalin-induced Inflammation in Mice. Curr Neuropharmacol 2024; 22:1391-1405. [PMID: 38073106 PMCID: PMC11092918 DOI: 10.2174/1570159x22999231207105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Integrins, important extracellular matrix (ECM) receptor proteins, are affected by inflammation and can participate in the maintenance of many painful conditions. Although they are ubiquitous and changeable across all cell types, the roles of these cell adhesion molecules in pathological pain have not been fully explored. OBJECTIVE We evaluated the effects of the subcutaneous injection of lebecetin, a C-type lectin isolated from Macrovipera lebetina snake venom, previously reported to inhibit α5β1 and αv integrin activity, on different components of inflammation induced by the formalin administration in the hind paw of mice. METHODS The formalin-induced nocifensive behavior, edema, and histopathological changes in the hind paw associated with cytokine, iNOS, and COX2 expression, nociceptive-specific neuron activity, and microglial activation analysis in the spinal cord were evaluated in mice receiving vehicle or lebecetin pretreatment. RESULTS Lebecetin inhibited the nocifensive responses in the formalin test, related edema, and cell infiltration in the injected paw in a biphasic, hormetic-like, and dose-dependent way. According to that hormetic trend, a reduction in pro-inflammatory cytokines IL-6, IL-8, and TNF-alpha and upregulation of the anti-inflammatory cytokine IL-10 in the spinal cord were found with the lowest doses of lebecetin. Moreover, COX2 and iNOS expression in serum and spinal cord followed the same biphasic pattern of cytokines. Finally, nociceptive neurons sensitization and activated microglia were normalized in the dorsal horn of the spinal cord by lebecetin. CONCLUSION These findings implicate specific roles of integrins in inflammation and tonic pain, as well as in the related central nervous system sequelae.
Collapse
Affiliation(s)
- Carmela Belardo
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Jed Jebali
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Serena Boccella
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Rosmara Infantino
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Antimo Fusco
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Michela Perrone
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Roozbe Bonsale
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Iolanda Manzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Damiana Scuteri
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Franca Ferraraccio
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Iacopo Panarese
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Giovanna Ferrara
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Enza Palazzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Najet Srairi-Abid
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Naziha Marrakchi
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| |
Collapse
|
21
|
Kirikovich SS, Levites EV, Proskurina AS, Ritter GS, Peltek SE, Vasilieva AR, Ruzanova VS, Dolgova EV, Oshihmina SG, Sysoev AV, Koleno DI, Danilenko ED, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. The Molecular Aspects of Functional Activity of Macrophage-Activating Factor GcMAF. Int J Mol Sci 2023; 24:17396. [PMID: 38139225 PMCID: PMC10743851 DOI: 10.3390/ijms242417396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Group-specific component macrophage-activating factor (GcMAF) is the vitamin D3-binding protein (DBP) deglycosylated at Thr420. The protein is believed to exhibit a wide range of therapeutic properties associated with the activation of macrophagal immunity. An original method for GcMAF production, DBP conversion to GcMAF, and the analysis of the activating potency of GcMAF was developed in this study. Data unveiling the molecular causes of macrophage activation were obtained. GcMAF was found to interact with three CLEC10A derivatives having molecular weights of 29 kDa, 63 kDa, and 65 kDa. GcMAF interacts with high-molecular-weight derivatives via Ca2+-dependent receptor engagement. Binding to the 65 kDa or 63 kDa derivative determines the pro- and anti-inflammatory direction of cytokine mRNA expression: 65 kDa-pro-inflammatory (TNF-α, IL-1β) and 63 kDa-anti-inflammatory (TGF-β, IL-10). No Ca2+ ions are required for the interaction with the canonical 29 kDa CLEC10A. Both forms, DBP protein and GcMAF, bind to the 29 kDa CLEC10A. This interaction is characterized by the stochastic mRNA synthesis of the analyzed cytokines. Ex vivo experiments have demonstrated that when there is an excess of GcMAF ligand, CLEC10A forms aggregate, and the mRNA synthesis of analyzed cytokines is inhibited. A schematic diagram of the presumable mechanism of interaction between the CLEC10A derivatives and GcMAF is provided. The principles and elements of standardizing the GcMAF preparation are elaborated.
Collapse
Affiliation(s)
- Svetlana S. Kirikovich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Evgeniy V. Levites
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Anastasia S. Proskurina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Genrikh S. Ritter
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Sergey E. Peltek
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Asya R. Vasilieva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Vera S. Ruzanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Evgeniya V. Dolgova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Sofya G. Oshihmina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Alexandr V. Sysoev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.S.); (D.I.K.)
| | - Danil I. Koleno
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.S.); (D.I.K.)
| | - Elena D. Danilenko
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia; (E.D.D.); (O.S.T.)
| | - Oleg S. Taranov
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia; (E.D.D.); (O.S.T.)
| | - Alexandr A. Ostanin
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.O.); (E.R.C.)
| | - Elena R. Chernykh
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.O.); (E.R.C.)
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Sergey S. Bogachev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| |
Collapse
|
22
|
Clemente B, Denis M, Silveira CP, Schiavetti F, Brazzoli M, Stranges D. Straight to the point: targeted mRNA-delivery to immune cells for improved vaccine design. Front Immunol 2023; 14:1294929. [PMID: 38090568 PMCID: PMC10711611 DOI: 10.3389/fimmu.2023.1294929] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
With the deepening of our understanding of adaptive immunity at the cellular and molecular level, targeting antigens directly to immune cells has proven to be a successful strategy to develop innovative and potent vaccines. Indeed, it offers the potential to increase vaccine potency and/or modulate immune response quality while reducing off-target effects. With mRNA-vaccines establishing themselves as a versatile technology for future applications, in the last years several approaches have been explored to target nanoparticles-enabled mRNA-delivery systems to immune cells, with a focus on dendritic cells. Dendritic cells (DCs) are the most potent antigen presenting cells and key mediators of B- and T-cell immunity, and therefore considered as an ideal target for cell-specific antigen delivery. Indeed, improved potency of DC-targeted vaccines has been proved in vitro and in vivo. This review discusses the potential specific targets for immune system-directed mRNA delivery, as well as the different targeting ligand classes and delivery systems used for this purpose.
Collapse
|
23
|
Liao Y, Yan Q, Cheng T, Yao H, Zhao Y, Fu D, Ji Y, Shi B. Sulforaphene Inhibits Periodontitis through Regulating Macrophage Polarization via Upregulating Dendritic Cell Immunoreceptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15538-15552. [PMID: 37823224 DOI: 10.1021/acs.jafc.3c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Periodontitis is one of the most prevalent chronic inflammatory diseases that may eventually lead to the loss of teeth. Macrophage polarization plays an important role in the development of periodontitis, and several naturally occurring food compounds have recently been reported to regulate macrophage polarization. In this study, we aimed to investigate the therapeutic potential of sulforaphene (SFE) in macrophage polarization and its impact on periodontitis. Through in vitro and in vivo experiments, our study demonstrated that SFE effectively inhibits M1 polarization while promoting M2 polarization, ultimately leading to the suppression of periodontitis. Transcriptome sequencing showed that SFE significantly upregulated the expression of dendritic cell immunoreceptor (DCIR, also known as CLEC4A2). We further validated the crucial role of DCIR in macrophage polarization through knockdown and overexpression experiments and demonstrated that SFE regulates macrophage polarization by upregulating DCIR expression. In summary, the results of this study suggest that SFE can regulate macrophage polarization and inhibit periodontitis. Moreover, this research identified DCIR (dendritic cell immunoreceptor) as a potential novel target for regulating macrophage polarization. These findings provide new insights into the treatment of periodontitis and other immune-related diseases.
Collapse
Affiliation(s)
- Yilin Liao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qi Yan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Tiange Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hantao Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yaoyu Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Dongjie Fu
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bin Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
24
|
Generalov E, Yakovenko L. Receptor basis of biological activity of polysaccharides. Biophys Rev 2023; 15:1209-1222. [PMID: 37975017 PMCID: PMC10643635 DOI: 10.1007/s12551-023-01102-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 11/19/2023] Open
Abstract
Polysaccharides, the most diverse forms of organic molecules in nature, exhibit a large number of different biological activities, such as immunomodulatory, radioprotective, antioxidant, regenerative, metabolic, signaling, antitumor, and anticoagulant. The reaction of cells to a polysaccharide is determined by its specific interaction with receptors present on the cell surface, the type of cells, and their condition. The effect of many polysaccharides depends non-linearly on their concentration. The same polysaccharide in different conditions can have very different effects on cells and organisms, up to the opposite; therefore, when conducting studies of the biological activity of polysaccharides, both for the purpose of developing new drugs or approaches to the treatment of patients, and in order to clarify the features of intracellular processes, information about already known research results is needed. There is a lot of scattered data on the biological activities of polysaccharides, but there are few reviews that would consider natural polysaccharides from various sources and possible molecular mechanisms of their action. The purpose of this review is to present the main results published at different times in order to facilitate the search for information necessary for conducting relevant studies.
Collapse
Affiliation(s)
- Evgenii Generalov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, 119991 Russia
| | - Leonid Yakovenko
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, 119991 Russia
| |
Collapse
|
25
|
Zihad SNK, Sifat N, Islam MA, Monjur-Al-Hossain A, Sikdar KYK, Sarker MMR, Shilpi JA, Uddin SJ. Role of pattern recognition receptors in sensing Mycobacterium tuberculosis. Heliyon 2023; 9:e20636. [PMID: 37842564 PMCID: PMC10570006 DOI: 10.1016/j.heliyon.2023.e20636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 09/06/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
Mycobacterium tuberculosis is one of the major invasive intracellular pathogens causing most deaths by a single infectious agent. The interaction between host immune cells and this pathogen is the focal point of the disease, Tuberculosis. Host immune cells not only mount the protective action against this pathogen but also serve as the primary niche for growth. Thus, recognition of this pathogen by host immune cells and following signaling cascades are key dictators of the disease state. Immune cells, mainly belonging to myeloid cell lineage, recognize a wide variety of Mycobacterium tuberculosis ligands ranging from carbohydrate and lipids to proteins to nucleic acids by different membrane-bound and soluble pattern recognition receptors. Simultaneous interaction between different host receptors and pathogen ligands leads to immune-inflammatory response as well as contributes to virulence. This review summarizes the contribution of pattern recognition receptors of host immune cells in recognizing Mycobacterium tuberculosis and subsequent initiation of signaling pathways to provide the molecular insight of the specific Mtb ligands interacting with specific PRR, key adaptor molecules of the downstream signaling pathways and the resultant effector functions which will aid in identifying novel drug targets, and developing novel drugs and adjuvants.
Collapse
Affiliation(s)
| | - Nazifa Sifat
- Department of Pharmacy, ASA University of Bangladesh, Dhaka, 1207, Bangladesh
| | | | | | | | - Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhaka, 1205, Bangladesh
- Department of Pharmacy, Gono University, Nolam, Mirzanagar, Savar, Dhaka 1344, Bangladesh
| | - Jamil A. Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
26
|
Chen K, Geng H, Liu J, Ye C. Alteration in gut mycobiota of patients with polycystic ovary syndrome. Microbiol Spectr 2023; 11:e0236023. [PMID: 37702484 PMCID: PMC10580825 DOI: 10.1128/spectrum.02360-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 09/14/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a serious disease characterized by high androgen, insulin resistance (IR), hyperglycemia, and obesity, leading to infertility. The gut mycobiota has been reported to evolve in metabolic diseases including obesity, hyperglycemia, and fatty liver. However, little is known about the gut mycobiota and PCOS. In the current study, we recruited 17 PCOS patients and 17 age-matched healthy controls for community structure and functional analysis of the gut mycobiota. The results showed that PCOS patients have reduced diversity and richness of the gut microbiota compared with healthy controls. β-Diversity analysis showed that the community structure of the gut microbiota of patients with PCOS was significantly different from healthy controls. At the phylum level, PCOS patients have reduced Basidiomycota and increased Ascomycota compared with healthy controls. At the family level, the higher relative abundance of Saccharomycetaceae and lower Trichosporonaceae and Ascomycota_unclassified were detected in PCOS patients than in healthy controls. At the genus level, different microbial compositions were also observed between PCOS patients and healthy controls. In addition, PICRUSt2 showed that patients with PCOS have different microbial functions in the gut compared with healthy controls. LEfSe indicated that Saccharomyces and Lentinula were enriched in the fecal samples of PCOS patients, while Aspergillus was depleted compared with healthy controls. Our finding indicates that PCOS patients have different community structures and functions of the gut mycobiota, which provides new insight into PCOS pathogenesis and intervention. IMPORTANCE It was found that intestinal fungi as well as serum metabolites in PCOS patients were significantly different from those in healthy subjects. However, no studies have been done to show exactly which fungus interacts with which bacteria in humans or which fungus acts alone. As fungal research progresses, it will be possible to fill this gap.
Collapse
Affiliation(s)
- Ke Chen
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Huafeng Geng
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Junbao Liu
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Cong Ye
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
27
|
Álvarez B, Revilla C, Poderoso T, Ezquerra A, Domínguez J. Porcine Macrophage Markers and Populations: An Update. Cells 2023; 12:2103. [PMID: 37626913 PMCID: PMC10453229 DOI: 10.3390/cells12162103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Besides its importance as a livestock species, pig is increasingly being used as an animal model for biomedical research. Macrophages play critical roles in immunity to pathogens, tissue development, homeostasis and tissue repair. These cells are also primary targets for replication of viruses such as African swine fever virus, classical swine fever virus, and porcine respiratory and reproductive syndrome virus, which can cause huge economic losses to the pig industry. In this article, we review the current status of knowledge on porcine macrophages, starting by reviewing the markers available for their phenotypical characterization and following with the characteristics of the main macrophage populations described in different organs, as well as the effect of polarization conditions on their phenotype and function. We will also review available cell lines suitable for studies on the biology of porcine macrophages and their interaction with pathogens.
Collapse
Affiliation(s)
| | | | | | - Angel Ezquerra
- Departamento de Biotecnología, CSIC INIA, Ctra. De La Coruña, km7.5, 28040 Madrid, Spain; (B.Á.); (C.R.); (T.P.); (J.D.)
| | | |
Collapse
|
28
|
Lee MK, Ryu H, Van JY, Kim MJ, Jeong HH, Jung WK, Jun JY, Lee B. The Role of Macrophage Populations in Skeletal Muscle Insulin Sensitivity: Current Understanding and Implications. Int J Mol Sci 2023; 24:11467. [PMID: 37511225 PMCID: PMC10380189 DOI: 10.3390/ijms241411467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance is a crucial factor in the development of type 2 diabetes mellitus (T2DM) and other metabolic disorders. Skeletal muscle, the body's largest insulin-responsive tissue, plays a significant role in the pathogenesis of T2DM due to defects in insulin signaling. Recently, there has been growing evidence that macrophages, immune cells essential for tissue homeostasis and injury response, also contribute to the development of skeletal muscle insulin resistance. This review aims to summarize the current understanding of the role of macrophages in skeletal muscle insulin resistance. Firstly, it provides an overview of the different macrophage populations present in skeletal muscle and their specific functions in the development of insulin resistance. Secondly, it examines the underlying mechanisms by which macrophages promote or alleviate insulin resistance in skeletal muscle, including inflammation, oxidative stress, and altered metabolism. Lastly, the review discusses potential therapeutic strategies targeting macrophages to improve skeletal muscle insulin sensitivity and metabolic health.
Collapse
Affiliation(s)
- Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (M.-K.L.); (H.R.)
| | - Heeyeon Ryu
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (M.-K.L.); (H.R.)
| | - Ji Yun Van
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (J.Y.V.)
| | - Myeong-Jin Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (M.-K.L.); (H.R.)
| | - Hyeon Hak Jeong
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (J.Y.V.)
| | - Won-Kyo Jung
- Division of Biomedical Engineering and Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea;
| | - Joo Yun Jun
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA;
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (M.-K.L.); (H.R.)
| |
Collapse
|
29
|
Macri C, Jenika D, Ouslinis C, Mintern JD. Targeting dendritic cells to advance cross-presentation and vaccination outcomes. Semin Immunol 2023; 68:101762. [PMID: 37167898 DOI: 10.1016/j.smim.2023.101762] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023]
Abstract
Dendritic cells (DCs) are a complex network of specialised antigen-presenting cells that are critical initiators of adaptive immunity. Targeting antigen directly to DCs in situ is a vaccination strategy that selectively delivers antigen to receptors expressed by DC subtypes. This approach exploits specific DC subset functions of antigen uptake and presentation. Here, we review DC-targeted vaccination strategies that are designed to elicit effective cross-presentation for CD8+ T cell immunity. In particular, we focus on approaches that exploit receptors highly expressed by mouse and human cDCs equipped with superior cross-presentation capacity. These receptors include DEC205, Clec9A and XCR1. Targeting DC receptors Clec12A, Clec4A4 and mannose receptor is also reviewed. Outcomes of DC-targeted vaccination in mouse models through to human clinical trials is discussed. This is a promising new vaccination approach capable of directly targeting the cross-presentation pathway for prevention and treatment of tumours and infectious diseases.
Collapse
Affiliation(s)
- Christophe Macri
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria 3010, Australia
| | - Devi Jenika
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria 3010, Australia
| | - Cassandra Ouslinis
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria 3010, Australia
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria 3010, Australia.
| |
Collapse
|
30
|
Reilly CS, Borges ÁH, Baker JV, Safo SE, Sharma S, Polizzotto MN, Pankow JS, Hu X, Sherman BT, Babiker AG, Lundgren JD, Lane HC. Investigation of Causal Effects of Protein Biomarkers on Cardiovascular Disease in Persons With HIV. J Infect Dis 2023; 227:951-960. [PMID: 36580481 PMCID: PMC10319949 DOI: 10.1093/infdis/jiac496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND There is an incompletely understood increased risk for cardiovascular disease (CVD) among people with HIV (PWH). We investigated if a collection of biomarkers were associated with CVD among PWH. Mendelian randomization (MR) was used to identify potentially causal associations. METHODS Data from follow-up in 4 large trials among PWH were used to identify 131 incident CVD cases and they were matched to 259 participants without incident CVD (controls). Tests of associations between 460 baseline protein levels and case status were conducted. RESULTS Univariate analysis found CLEC6A, HGF, IL-6, IL-10RB, and IGFBP7 as being associated with case status and a multivariate model identified 3 of these: CLEC6A (odds ratio [OR] = 1.48, P = .037), HGF (OR = 1.83, P = .012), and IL-6 (OR = 1.45, P = .016). MR methods identified 5 significantly associated proteins: AXL, CHI3L1, GAS6, IL-6RA, and SCGB3A2. CONCLUSIONS These results implicate inflammatory and fibrotic processes as contributing to CVD. While some of these biomarkers are well established in the general population and in PWH (IL-6 and its receptor), some are novel to PWH (HGF, AXL, and GAS6) and some are novel overall (CLEC6A). Further investigation into the uniqueness of these biomarkers in PWH and the role of these biomarkers as targets among PWH is warranted.
Collapse
Affiliation(s)
- Cavan S Reilly
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Jason V Baker
- HIV Medicine, Infectious Diseases, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Sandra E Safo
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shweta Sharma
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark N Polizzotto
- Department of Medicine, Australian National University, Canberra, Australia
| | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaojun Hu
- Animal and Plant Inspection Service, US Department of Agriculture, Beltsville, Maryland, USA
| | - Brad T Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratories, Frederick, Maryland, USA
| | - Abdel G Babiker
- Epidemiology and Medical Statistics, University College London, London, United Kingdom
| | - Jens D Lundgren
- Department of Infectious Diseases, University of Copenhagen, Copenhagen, Denmark
| | - H Clifford Lane
- Division of Clinical Research, National Institutes of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Tao H, Mo Y, Liu W, Wang H. A review on gout: Looking back and looking ahead. Int Immunopharmacol 2023; 117:109977. [PMID: 37012869 DOI: 10.1016/j.intimp.2023.109977] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/11/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
Gout is a metabolic disease caused by the deposition of monosodium urate (MSU) crystals inside joints, which leads to inflammation and tissue damage. Increased concentration of serum urate is an essential step in the development of gout. Serum urate is regulated by urate transporters in the kidney and intestine, especially GLUT9 (SLC2A9), URAT1 (SLC22A12) and ABCG. Activation of NLRP3 inflammasome bodies and subsequent release of IL-1β by monosodium urate crystals induce the crescendo of acute gouty arthritis, while neutrophil extracellular traps (NETs) are considered to drive the self-resolving of gout within a few days. If untreated, acute gout may eventually develop into chronic tophaceous gout characterized by tophi, chronic gouty synovitis, and structural joint damage, leading the crushing burden of treatment. Although the research on the pathological mechanism of gout has been gradually deepened in recent years, many clinical manifestations of gout are still unable to be fully elucidated. Here, we reviewed the molecular pathological mechanism behind various clinical manifestations of gout, with a view to making contributions to further understanding and treatment.
Collapse
|
32
|
Mes L, Steffen U, Chen HJ, Veth J, Hoepel W, Griffith GR, Schett G, den Dunnen J. IgA2 immune complexes selectively promote inflammation by human CD103+ dendritic cells. Front Immunol 2023; 14:1116435. [PMID: 37006318 PMCID: PMC10061090 DOI: 10.3389/fimmu.2023.1116435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
While immunoglobulin A (IgA) is well known for its neutralizing and anti-inflammatory function, it is becoming increasingly clear that IgA can also induce human inflammatory responses by various different immune cells. Yet, little is known about the relative role of induction of inflammation by the two IgA subclasses i.e. IgA1, most prominent subclass in circulation, and IgA2, most prominent subclass in the lower intestine. Here, we set out to study the inflammatory function of IgA subclasses on different human myeloid immune cell subsets, including monocytes, and in vitro differentiated macrophages and intestinal CD103+ dendritic cells (DCs). While individual stimulation with IgA immune complexes only induced limited inflammatory responses by human immune cells, both IgA subclasses strongly amplified pro-inflammatory cytokine production upon co-stimulation with Toll-like receptor (TLR) ligands such as Pam3CSK4, PGN, and LPS. Strikingly, while IgA1 induced slightly higher or similar levels of pro-inflammatory cytokines by monocytes and macrophages, respectively, IgA2 induced substantially more inflammation than IgA1 by CD103+ DCs. In addition to pro-inflammatory cytokine proteins, IgA2 also induced higher mRNA expression levels, indicating that amplification of pro-inflammatory cytokine production is at least partially regulated at the level of gene transcription. Interestingly, cytokine amplification by IgA1 was almost completely dependent on Fc alpha receptor I (FcαRI), whilst blocking this receptor only partially reduced cytokine induction by IgA2. In addition, IgA2-induced amplification of pro-inflammatory cytokines was less dependent on signaling through the kinases Syk, PI3K, and TBK1/IKKϵ. Combined, these findings indicate that IgA2 immune complexes, which are most abundantly expressed in the lower intestine, particularly promote inflammation by human CD103+ intestinal DCs. This may serve an important physiological function upon infection, by enabling inflammatory responses by this otherwise tolerogenic DC subset. Since various inflammatory disorders are characterized by disturbances in IgA subclass balance, this may also play a role in the induction or exacerbation of chronic intestinal inflammation.
Collapse
Affiliation(s)
- Lynn Mes
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
- Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Ulrike Steffen
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hung-Jen Chen
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Jennifer Veth
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Willianne Hoepel
- Department of Experimental Immunology, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers (UMC), Amsterdam Rheumatology and Immunology Center, Amsterdam, Netherlands
| | - Guillermo Romeo Griffith
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
- *Correspondence: Jeroen den Dunnen,
| |
Collapse
|
33
|
C-Type Lectin Receptor Mediated Modulation of T2 Immune Responses to Allergens. Curr Allergy Asthma Rep 2023; 23:141-151. [PMID: 36720753 PMCID: PMC9985561 DOI: 10.1007/s11882-023-01067-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW Allergic diseases represent a major health problem of increasing prevalence worldwide. In allergy, dendritic cells (DCs) contribute to both the pathophysiology and the induction of healthy immune responses to the allergens. Different studies have reported that some common allergens contain glycans in their structure. C-type lectin receptors (CLRs) expressed by DCs recognize carbohydrate structures and are crucial in allergen uptake, presentation, and polarization of T cell responses. This review summarizes the recent literature regarding the role of CLRs in the regulation of type 2 immune responses to allergens. RECENT FINDINGS In this review, we highlight the capacity of CLRs to recognize carbohydrates in common allergens triggering different signaling pathways involved in the polarization of CD4+ T cells towards specific Th2 responses. Under certain conditions, specific CLRs could also promote tolerogenic responses to allergens, which might well be exploited to develop novel therapeutic approaches of allergen-specific immunotherapy (AIT), the single treatment with potential disease-modifying capacity for allergic disease. At this regard, polymerized allergens conjugated to non-oxidized mannan (allergoid-mannan conjugated) are next-generation vaccines targeting DCs via CLRs that promote regulatory T cells, thus favoring allergen tolerance both in preclinical models and clinical trials. A better understanding of the role of CLRs in the development of allergy and in the induction of allergen tolerance might well pave the way for the design of novel strategies for allergic diseases.
Collapse
|
34
|
Tereshchenko SY, Smolnikova MV, Freidin MB. Ficolin-3 and MASP-2 gene variants in Siberian arctic populations: Summarized evidence of selective pressure for the high frequency of lectin complement pathway deficiency. Scand J Immunol 2023; 97:e13249. [PMID: 36574978 DOI: 10.1111/sji.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Herewith, we provide novel original data about the prevalence of FCN3 rs532781899 and MASP2 rs72550870 variants among the newborns of aboriginal Siberian Arctic populations (Nenets and Dolgan-Nganasans) and Russians of East Siberia. This novel data has been analysed along with the genetic data about other proteins of the lectin pathway of the complement system (mannose-binding lectin and ficolin-2) obtained earlier. A total of 926 specimens of dried blood spots of the newborns were genotyped. The newborns represented four populations: Nenets, Dolgan-Nganasans, Mixed aboriginal population, and Russians (Caucasians) to study the prevalence of single nucleotide polymorphisms of FCN3 rs532781899 and MASP2 rs72550870. The prevalence of the deletion allele of the rs532781899 variant in the FCN3 gene associated with the decreased production of ficolin-3 was found to be increased in Russians compared to the Nenets aboriginal populations (P = .002). The prevalence of the rs72550870*G allele in the MASP2 gene associated with low serum protease activity was found to be increased in Russians compared with Nenets and Dolgan-Nganasans (P < .001 and P = .03, respectively). The results of the current study and our previous findings corroborate with a hypothesis that human evolution has been directed toward the accumulation of genotypes associated with low activity of the lectin complement activation pathway.
Collapse
Affiliation(s)
- Sergey Yu Tereshchenko
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Research Institute of Medical Problems of the North, Krasnoyarsk, Russia
| | - Marina V Smolnikova
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Research Institute of Medical Problems of the North, Krasnoyarsk, Russia
| | - Maxim B Freidin
- Tomsk National Research Medical Centre, Research Institute of Medical Genetics, Tomsk, Russia.,King's College London, School of Life Course Sciences, Department of Twin Research and Genetic Epidemiology, London, UK
| |
Collapse
|
35
|
Assandri MH, Malamud M, Trejo FM, Serradell MDLA. S-layer proteins as immune players: tales from pathogenic and non-pathogenic bacteria. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100187. [PMID: 37064268 PMCID: PMC10102220 DOI: 10.1016/j.crmicr.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
In bacteria, as in other microorganisms, surface compounds interact with different pattern recognition receptors expressed by host cells, which usually triggers a variety of cellular responses that result in immunomodulation. The S-layer is a two-dimensional macromolecular crystalline structure formed by (glyco)-protein subunits that covers the surface of many species of Bacteria and almost all Archaea. In Bacteria, the presence of S-layer has been described in both pathogenic and non-pathogenic strains. As surface components, special attention deserves the role that S-layer proteins (SLPs) play in the interaction of bacterial cells with humoral and cellular components of the immune system. In this sense, some differences can be predicted between pathogenic and non-pathogenic bacteria. In the first group, the S-layer constitutes an important virulence factor, which in turn makes it a potential therapeutic target. For the other group, the growing interest to understand the mechanisms of action of commensal microbiota and probiotic strains has prompted the studies of the role of the S-layer in the interaction between the host immune cells and bacteria bearing this surface structure. In this review, we aim to summarize the main latest reports and the perspectives of bacterial SLPs as immune players, focusing on those from pathogenic and commensal/probiotic most studied species.
Collapse
|
36
|
Madel MB, Halper J, Ibáñez L, Claire L, Rouleau M, Boutin A, Mahler A, Pontier-Bres R, Ciucci T, Topi M, Hue C, Amiaud J, Iborra S, Sancho D, Heymann D, Garchon HJ, Czerucka D, Apparailly F, Duroux-Richard I, Wakkach A, Blin-Wakkach C. Specific targeting of inflammatory osteoclastogenesis by the probiotic yeast S. boulardii CNCM I-745 reduces bone loss in osteoporosis. eLife 2023; 12:e82037. [PMID: 36848406 PMCID: PMC9977286 DOI: 10.7554/elife.82037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/12/2023] [Indexed: 03/01/2023] Open
Abstract
Bone destruction is a hallmark of chronic inflammation, and bone-resorbing osteoclasts arising under such a condition differ from steady-state ones. However, osteoclast diversity remains poorly explored. Here, we combined transcriptomic profiling, differentiation assays and in vivo analysis in mouse to decipher specific traits for inflammatory and steady-state osteoclasts. We identified and validated the pattern-recognition receptors (PRR) Tlr2, Dectin-1, and Mincle, all involved in yeast recognition as major regulators of inflammatory osteoclasts. We showed that administration of the yeast probiotic Saccharomyces boulardii CNCM I-745 (Sb) in vivo reduced bone loss in ovariectomized but not sham mice by reducing inflammatory osteoclastogenesis. This beneficial impact of Sb is mediated by the regulation of the inflammatory environment required for the generation of inflammatory osteoclasts. We also showed that Sb derivatives as well as agonists of Tlr2, Dectin-1, and Mincle specifically inhibited directly the differentiation of inflammatory but not steady-state osteoclasts in vitro. These findings demonstrate a preferential use of the PRR-associated costimulatory differentiation pathway by inflammatory osteoclasts, thus enabling their specific inhibition, which opens new therapeutic perspectives for inflammatory bone loss.
Collapse
Affiliation(s)
- Maria-Bernadette Madel
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Julia Halper
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Lidia Ibáñez
- Department of Pharmacy, Cardenal Herrera-CEU UniversityValenciaSpain
| | | | - Matthieu Rouleau
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Antoine Boutin
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Adrien Mahler
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Rodolphe Pontier-Bres
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
- Centre Scientifiquede MonacoMonaco
| | - Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Majlinda Topi
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Christophe Hue
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammationMontigny-Le-BretonneuxFrance
| | | | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT. School of Medicine, Universidad Complutense de MadridMadridSpain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Dominique Heymann
- Université de Nantes, Institut de Cancérologie de l’OuestSaint HerblainFrance
| | - Henri-Jean Garchon
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammationMontigny-Le-BretonneuxFrance
- Genetics Division, Ambroise Paré Hospital, AP-HPBoulogne-BillancourtFrance
| | - Dorota Czerucka
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
- Centre Scientifiquede MonacoMonaco
| | | | | | - Abdelilah Wakkach
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| | - Claudine Blin-Wakkach
- Université Côte d’Azur, CNRS, LP2MNiceFrance
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur - Centre Scientifique de MonacoNice and MonacoFrance
| |
Collapse
|
37
|
Klatt AB, Diersing C, Lippmann J, Mayer-Lambertz S, Stegmann F, Fischer S, Caesar S, Fiocca Vernengo F, Hönzke K, Hocke AC, Ruland J, Witzenrath M, Lepenies B, Opitz B. CLEC12A Binds to Legionella pneumophila but Has No Impact on the Host's Antibacterial Response. Int J Mol Sci 2023; 24:ijms24043891. [PMID: 36835297 PMCID: PMC9967056 DOI: 10.3390/ijms24043891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Legionella pneumophila is an intracellular pathogen that can cause severe pneumonia after the inhalation of contaminated aerosols and replication in alveolar macrophages. Several pattern recognition receptors (PRRs) have been identified that contribute to the recognition of L. pneumophila by the innate immune system. However, the function of the C-type lectin receptors (CLRs), which are mainly expressed by macrophages and other myeloid cells, remains largely unexplored. Here, we used a library of CLR-Fc fusion proteins to search for CLRs that can bind the bacterium and identified the specific binding of CLEC12A to L. pneumophila. Subsequent infection experiments in human and murine macrophages, however, did not provide evidence for a substantial role of CLEC12A in controlling innate immune responses to the bacterium. Consistently, antibacterial and inflammatory responses to Legionella lung infection were not significantly influenced by CLEC12A deficiency. Collectively, CLEC12A is able to bind to L. pneumophila-derived ligands but does not appear to play a major role in the innate defense against L. pneumophila.
Collapse
Affiliation(s)
- Ann-Brit Klatt
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Christina Diersing
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Juliane Lippmann
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- Max Planck Institute for Infection Biology, Vector Biology, 10117 Berlin, Germany
| | - Sabine Mayer-Lambertz
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Felix Stegmann
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Swantje Fischer
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sandra Caesar
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Facundo Fiocca Vernengo
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Katja Hönzke
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus—Senftenberg, 03046 Cottbus, Germany
| | - Andreas C. Hocke
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Center for Lung Research (DZL), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, 80333 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), 81675 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
- German Research Center (DKFZ), 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 17493 Greifswald, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Center for Lung Research (DZL), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Bernd Lepenies
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Correspondence: (B.L.); (B.O.)
| | - Bastian Opitz
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Center for Lung Research (DZL), Augustenburger Platz 1, 13353 Berlin, Germany
- Correspondence: (B.L.); (B.O.)
| |
Collapse
|
38
|
Wang M, Zhang Z, Dong X, Zhu B. Targeting β-glucans, vital components of the Pneumocystis cell wall. Front Immunol 2023; 14:1094464. [PMID: 36845149 PMCID: PMC9947646 DOI: 10.3389/fimmu.2023.1094464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
β-glucan is the most abundant polysaccharide in the cell wall of Pneumocystis jirovecii, which has attracted extensive attention because of its unique immunobiological characteristics. β-glucan binds to various cell surface receptors, which produces an inflammatory response and accounts for its immune effects. A deeper comprehension of the processes by Pneumocystis β-glucan recognizes its receptors, activates related signaling pathways, and regulates immunity as required. Such understanding will provide a basis for developing new therapies against Pneumocystis. Herein, we briefly review the structural composition of β-glucans as a vital component of the Pneumocystis cell wall, the host immunity mediated by β-glucans after their recognition, and discuss opportunities for the development of new strategies to combat Pneumocystis.
Collapse
Affiliation(s)
- Mengyan Wang
- Department II of Infectious Diseases, Xixi Hospital of Hangzhou, Hangzhou, China,Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhongdong Zhang
- Department II of Infectious Diseases, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Xiaotian Dong
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Biao Zhu
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Biao Zhu,
| |
Collapse
|
39
|
Hatinguais R, Willment JA, Brown GD. C-type lectin receptors in antifungal immunity: Current knowledge and future developments. Parasite Immunol 2023; 45:e12951. [PMID: 36114607 PMCID: PMC10078331 DOI: 10.1111/pim.12951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 01/31/2023]
Abstract
C-type lectin receptors (CLRs) constitute a category of innate immune receptors that play an essential role in the antifungal immune response. For over two decades, scientists have uncovered what are the fungal ligands recognized by CLRs and how these receptors initiate the immune response. Such studies have allowed the identification of genetic polymorphisms in genes encoding for CLRs or for proteins involved in the signalisation cascade they trigger. Nevertheless, our understanding of how these receptors functions and the full extent of their function during the antifungal immune response is still at its infancy. In this review, we summarize some of the main findings about CLRs in antifungal immunity and discuss what the future might hold for the field.
Collapse
Affiliation(s)
- Remi Hatinguais
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Janet A Willment
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Gordon D Brown
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
40
|
Yeasts and Yeast-based Products in Poultry Nutrition. J APPL POULTRY RES 2023. [DOI: 10.1016/j.japr.2023.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
41
|
Bulanawichit W, Nguyen TNY, Ritprajak P, Nowwarote N, Osathanon T. Cell Wall Mannan of Candida Attenuates Osteogenic Differentiation by Human Dental Pulp Cells. J Endod 2023; 49:190-197. [PMID: 36586575 DOI: 10.1016/j.joen.2022.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Candida spp. has recently been introduced to interact with conventional carious bacteria, leading to dental caries progression and virulence ability. Evidence regarding the influence of Candida spp. on human dental pulp cell response remains unknown. This study aimed to investigate the effects of Candida albicans mannans on cytotoxicity, cell proliferation, osteogenic differentiation, and inflammatory-related gene expression in human dental pulp cells (hDPCs). METHODS hDPCs were treated with cell wall mannans isolated from C. albicans, Candida krusei, Candida glabrata, Candida tropocalis, Candida parapsilosis, and Candida dubliniensis. Cell viability was performed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay. Osteogenic differentiation- and inflammatory-related gene expression were determined using a real-time polymerase chain reaction. Mineralization was examined using alizarin red S staining. RESULTS The treatment of mannans isolated from C. albicans, C. krusei, C. glabrata, C. tropocalis, C. parapsilosis, and C. dubliniensis at concentrations ranging from 10-100 μg/mL did not affect cytotoxicity or cell proliferation. Mannans isolated from C. albicans, C. glabrata, and C. tropocalis significantly attenuated mineralization. However, cell wall mannans isolated from C. krusei, C. parapsilosis, and C. dubliniensis did not significantly influence mineral deposition in hDPCs. C. albicans cell wall mannans significantly attenuated osteogenic differentiation-related gene expression (RUNX2, ALP, and ENPP1). Interestingly, IL12 messenger RNA expression was significantly upregulated when treated with C. albicans cell wall mannans. The addition of recombinant IL12 significantly decreased mineralization in hDPCs. CONCLUSIONS C. albicans cell wall mannans attenuated osteogenic differentiation in hDPCs and up-regulated inflammatory-related gene IL12 expression.
Collapse
Affiliation(s)
- Wajathip Bulanawichit
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thu Ngoc Yen Nguyen
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials and Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials and Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Nunthawan Nowwarote
- Oral Biology Department, Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR1138, Molecular Oral Pathophysiology and Université Paris Cité, Dental Faculty, Paris, France.
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
42
|
Microglial Activation in Metal Neurotoxicity: Impact in Neurodegenerative Diseases. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7389508. [PMID: 36760476 PMCID: PMC9904912 DOI: 10.1155/2023/7389508] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Neurodegenerative processes encompass a large variety of diseases with different pathological patterns and clinical features, such as Alzheimer's and Parkinson's diseases. Exposure to metals has been hypothesized to increase oxidative stress in brain cells leading to cell death and neurodegeneration. Neurotoxicity of metals has been demonstrated by several in vitro and in vivo experimental studies, and most probably, each metal has its specific pathway to trigger cell death. As a result, exposure to essential metals, such as manganese, iron, copper, zinc, and cobalt, and nonessential metals, including lead, aluminum, and cadmium, perturbs metal homeostasis at the cellular and organism levels leading to neurodegeneration. In this contribution, a comprehensive review of the molecular mechanisms by which metals affect microglia physiology and signaling properties is presented. Furthermore, studies that validate the disruption of microglia activation pathways as an essential mechanism of metal toxicity that can contribute to neurodegenerative disease are also presented and discussed.
Collapse
|
43
|
Wu C, Jiang ML, Jiang R, Pang T, Zhang CJ. The roles of fungus in CNS autoimmune and neurodegeneration disorders. Front Immunol 2023; 13:1077335. [PMID: 36776399 PMCID: PMC9910218 DOI: 10.3389/fimmu.2022.1077335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
Fungal infection or proliferation in our body is capable of initiation of strong inflammation and immune responses that result in different consequences, including infection-trigged organ injury and inflammation-related remote organ dysfunction. Fungi associated infectious diseases have been well recognized in the clinic. However, whether fungi play an important role in non-infectious central nervous system disease is still to be elucidated. Recently, a growing amount of evidence point to a non-negligible role of peripheral fungus in triggering unique inflammation, immune response, and exacerbation of a range of non-infectious CNS disorders, including Multiple sclerosis, Neuromyelitis optica, Parkinson's disease, Alzheimer's disease, and Amyotrophic lateral sclerosis et al. In this review, we summarized the recent advances in recognizing patterns and inflammatory signaling of fungi in different subsets of immune cells, with a specific focus on its function in CNS autoimmune and neurodegeneration diseases. In conclusion, the fungus is capable of triggering unique inflammation by multiple mechanisms in the progression of a body of CNS non-infectious diseases, suggesting it serves as a key factor and critical novel target for the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Chuyu Wu
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Mei-Ling Jiang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,*Correspondence: Cun-Jin Zhang, ; Mei-Ling Jiang, ; Tao Pang,
| | - Runqui Jiang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China,*Correspondence: Cun-Jin Zhang, ; Mei-Ling Jiang, ; Tao Pang,
| | - Cun-Jin Zhang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University of Chinese Medicine, Nanjing University, Nanjing, Jiangsu, China,Institute of Brain Sciences, Institute of Brain Disorder Translational Medicine, Nanjing University, Nanjing, Jiangsu, China,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China,*Correspondence: Cun-Jin Zhang, ; Mei-Ling Jiang, ; Tao Pang,
| |
Collapse
|
44
|
Sosa Cuevas E, Roubinet B, Mouret S, Thépaut M, de Fraipont F, Charles J, Fieschi F, Landemarre L, Chaperot L, Aspord C. The melanoma tumor glyco-code impacts human dendritic cells' functionality and dictates clinical outcomes. Front Immunol 2023; 14:1120434. [PMID: 36891308 PMCID: PMC9986448 DOI: 10.3389/fimmu.2023.1120434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Subversion of immunity is a hallmark of cancer development. Dendritic cells (DCs) are strategic immune cells triggering anti-tumor immune responses, but tumor cells exploit their versatility to subvert their functions. Tumor cells harbor unusual glycosylation patterns, which can be sensed through glycan-binding receptors (lectins) expressed by immune cells that are crucial for DCs to shape and orientate antitumor immunity. Yet, the global tumor glyco-code and its impact on immunity has not been explored in melanoma. To decrypt the potential link between aberrant glycosylation patterns and immune evasion in melanoma, we investigated the melanoma tumor glyco-code through the GLYcoPROFILE™ methodology (lectin arrays), and depicted its impact on patients' clinical outcome and DC subsets' functionality. Specific glycan patterns correlated with clinical outcome of melanoma patients, GlcNAc, NeuAc, TF-Ag and Fuc motifs being associated with poor outcome, whereas Man and Glc residues elicited better survival. Strikingly, tumor cells differentially impacting cytokine production by DCs harbored distinct glyco-profiles. GlcNAc exhibited a negative influence on cDC2s, whereas Fuc and Gal displayed inhibitory impacts on cDC1s and pDCs. We further identified potential booster glycans for cDC1s and pDCs. Targeting specific glycans on melanoma tumor cells restored DCs' functionality. The tumor glyco-code was also linked to the nature of the immune infiltrate. This study unveils the impact of melanoma glycan patterns on immunity, and paves the way for innovative therapeutic options. Glycans/lectins interactions arise as promising immune checkpoints to rescue DCs from tumor' hijacking to reshape antitumor immunity and inhibit immunosuppressive circuits triggered by aberrant tumor glycosylation.
Collapse
Affiliation(s)
- Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | | | - Stephane Mouret
- Dermatology, Allergology and Photobiology Department, CHU Grenoble Alpes, Grenoble, France
| | - Michel Thépaut
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Florence de Fraipont
- Medical Unit of Molecular Genetic (Hereditary Diseases and Oncology), Grenoble University Hospital, Grenoble, France
| | - Julie Charles
- Dermatology, Allergology and Photobiology Department, CHU Grenoble Alpes, Grenoble, France
| | - Franck Fieschi
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France.,Institut Universitaire de France (IUF), Paris, France
| | | | - Laurence Chaperot
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| |
Collapse
|
45
|
Characterization of effects of chitooligosaccharide monomer addition on immunomodulatory activity in macrophages. Food Res Int 2023; 163:112268. [PMID: 36596179 DOI: 10.1016/j.foodres.2022.112268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
The present study aimed to investigate the effects of five chitooligosaccharide monomers of different molecular weights on immunomodulatory activity in macrophage-like RAW264.7 cells. The incubation of various chitooligosaccharide monomers enhanced phagocytosis and pinocytosis activity toward Staphylococcus aureus and Escherichia coli in RAW264.7 cells. The incorporation of chitooligosaccharide monomers significantly boosted the generation of reactive oxygen species and reactive nitrogen species, as well as the release of inflammatory cytokines. To further explore the mechanism of inflammation regulated by chitooligosaccharide, the activation inhibitors of NF-кB (CAPE) and TLR-4 (TAK-242) were utilized, the determination data demonstrated that chitobiose suppressed the expression of inflammatory cytokines and NF-кB p65. In addition, the investigation results revealed that the presence of the mannose receptor inhibitor (mannan) suppressed chitohexaose-induced phagocytic activity and inflammatory cytokines. These results suggested that the five distinct chitooligosaccharide monomers had inconsistent effects, the chitobiose and chitohexaose exhibiting the best biological activity in activating RAW264.7 cells, promoting cell proliferation, and increasing non-specific immunity.
Collapse
|
46
|
Han F, Chen Y, Zhu Y, Huang Z. Antigen receptor structure and signaling. Adv Immunol 2023; 157:1-28. [PMID: 37061286 DOI: 10.1016/bs.ai.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
The key to mounting an immune response is that the host cells must be coordinated to generate an appropriate immune response against the pathogenic invaders. Antigen receptors recognize specific molecular structures and recruit adaptors through their effector domains, triggering trans-membrane transduction signaling pathway to exert immune response. The T cell antigen receptor (TCR) and B cell antigen receptor (BCR) are the primary determinant of immune responses to antigens. Their structure determines the mode of signaling and signal transduction determines cell fate, leading to changes at the molecular and cellular level. Studies of antigen receptor structure and signaling revealed the basis of immune response triggering, providing clues to antigen receptor priming and a foundation for the rational design of immunotherapies. In recent years, the increased research on the structure of antigen receptors has greatly contributed to the understanding of immune response, different immune-related diseases and even tumors. In this review, we describe in detail the current view and advances of the antigen structure and signaling.
Collapse
Affiliation(s)
- Fang Han
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yan Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuwei Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
47
|
Nishimura N, Tomiyasu N, Torigoe S, Mizuno S, Fukano H, Ishikawa E, Katano H, Hoshino Y, Matsuo K, Takahashi M, Izumi Y, Bamba T, Akashi K, Yamasaki S. Mycobacterial mycolic acids trigger inhibitory receptor Clec12A to suppress host immune responses. Tuberculosis (Edinb) 2023; 138:102294. [PMID: 36542980 DOI: 10.1016/j.tube.2022.102294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Mycobacteria often cause chronic infection. To establish persistence in the host, mycobacteria need to evade host immune responses. However, the molecular mechanisms underlying the evasion strategy are not fully understood. Here, we demonstrate that mycobacterial cell wall lipids trigger an inhibitory receptor to suppress host immune responses. Mycolic acids are major cell wall components and are essential for survival of mycobacteria. By screening inhibitory receptors that react with mycobacterial lipids, we found that mycolic acids from various mycobacterial species bind to mouse Clec12A, and more potently to human Clec12A. Clec12A is a conserved inhibitory C-type lectin receptor containing immunoreceptor tyrosine-based inhibitory motif (ITIM). Innate immune responses, such as MCP-1 production, and PPD-specific recall T cell responses were augmented in Clec12A-deficient mice after infection. In contrast, human Clec12A transgenic mice were susceptible to infection with M. tuberculosis. These results suggest that mycobacteria dampen host immune responses by hijacking an inhibitory host receptor through their specific and essential lipids, mycolic acids. The blockade of this interaction might provide a therapeutic option for the treatment or prevention of mycobacterial infection.
Collapse
Affiliation(s)
- Naoya Nishimura
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan; Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Noriyuki Tomiyasu
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shota Torigoe
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Japan; Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, 189-0002, Japan; Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Satoru Mizuno
- Research and Development Department, Japan BCG Laboratory, Tokyo, 204-0022, Japan
| | - Hanako Fukano
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, 189-0002, Japan
| | - Eri Ishikawa
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Disease, Tokyo, 162-8640, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, 189-0002, Japan
| | - Kazuhiro Matsuo
- Research and Development Department, Japan BCG Laboratory, Tokyo, 204-0022, Japan
| | - Masatomo Takahashi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshihiro Izumi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Takeshi Bamba
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University (CiDER), Suita, 565-0871, Japan; Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan; Division of Molecular Design, Research Center for Systems Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
48
|
Achmad H, Saleh Ibrahim Y, Mohammed Al-Taee M, Gabr GA, Waheed Riaz M, Hamoud Alshahrani S, Alexis Ramírez-Coronel A, Turki Jalil A, Setia Budi H, Sawitri W, Elena Stanislavovna M, Gupta J. Nanovaccines in cancer immunotherapy: Focusing on dendritic cell targeting. Int Immunopharmacol 2022; 113:109434. [DOI: 10.1016/j.intimp.2022.109434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022]
|
49
|
McLeish KR, Fernandes MJ. Understanding inhibitory receptor function in neutrophils through the lens of
CLEC12A. Immunol Rev 2022; 314:50-68. [PMID: 36424898 DOI: 10.1111/imr.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neutrophils are the first leukocytes recruited from the circulation in response to invading pathogens or injured cells. To eradicate pathogens and contribute to tissue repair, recruited neutrophils generate and release a host of toxic chemicals that can also damage normal cells. To avoid collateral damage leading to tissue injury and organ dysfunction, molecular mechanisms evolved that tightly control neutrophil response threshold to activating signals, the strength and location of the response, and the timing of response termination. One mechanism of response control is interruption of activating intracellular signaling pathways by the 20 inhibitory receptors expressed by neutrophils. The two inhibitory C-type lectin receptors expressed by neutrophils, CLEC12A and DCIR, exhibit both common and distinct molecular and functional mechanisms, and they are associated with different diseases. In this review, we use studies on CLEC12A as a model of inhibitory receptor regulation of neutrophil function and participation in disease. Understanding the molecular mechanisms leading to inhibitory receptor specificity offers the possibility of using physiologic control of neutrophil functions as a pharmacologic tool to control inflammatory diseases.
Collapse
Affiliation(s)
- Kenneth R. McLeish
- Department of Medicine University of Louisville School of Medicine Louisville Kentucky USA
| | - Maria J. Fernandes
- Infectious and Immune Diseases Division CHU de Québec‐Laval University Research Center Québec Québec Canada
- Department of Microbiology‐Infectious Diseases and Immunology, Faculty of Medicine Laval University Québec Québec Canada
| |
Collapse
|
50
|
Abstract
The term "lectin" is derived from the Latin word lego- (aggregate) (Boyd & Shapleigh, 1954). Indeed, lectins' folds can flexibly alter their pocket structures just like Lego blocks, which enables them to grab a wide-variety of substances. Thus, this useful fold is well-conserved among various organisms. Through evolution, prototypic soluble lectins acquired transmembrane regions and signaling motifs to become C-type lectin receptors (CLRs). While CLRs seem to possess certain intrinsic affinity to self, some CLRs adapted to efficiently recognize glycoconjugates present in pathogens as pathogen-associated molecular patterns (PAMPs) and altered self. CLRs further extended their diversity to recognize non-glycosylated targets including pathogens and self-derived molecules. Thus, CLRs seem to have developed to monitor the internal/external stresses to maintain homeostasis by sensing various "unfamiliar" targets. In this review, we will summarize recent advances in our understanding of CLRs, their ligands and functions and discuss future perspectives.
Collapse
Affiliation(s)
- Carla Guenther
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.
| |
Collapse
|