1
|
Liu WN, Harden SL, Tan SLW, Tan RJR, Fong SY, Tan SY, Liu M, Karnik I, Shuen TWH, Toh HC, Fan Y, Lim SG, Chan JKY, Chen Q. Single-cell RNA sequencing reveals anti-tumor potency of CD56 + NK cells and CD8 + T cells in humanized mice via PD-1 and TIGIT co-targeting. Mol Ther 2024; 32:3895-3914. [PMID: 39318093 DOI: 10.1016/j.ymthe.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/16/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
In solid tumors, the exhaustion of natural killer (NK) cells and cytotoxic T cells in the immunosuppressive tumor microenvironment poses challenges for effective tumor control. Conventional humanized mouse models of hepatocellular carcinoma patient-derived xenografts (HCC-PDX) encounter limitations in NK cell infiltration, hindering studies on NK cell immunobiology. Here, we introduce an improved humanized mouse model with restored NK cell reconstitution and infiltration in HCC-PDX, coupled with single-cell RNA sequencing (scRNA-seq) to identify potential anti-HCC treatments. A single administration of adeno-associated virus carrying human interleukin-15 reinstated persistent NK cell reconstitution and infiltration in HCC-PDX in humanized mice. scRNA-seq revealed NK cell and T cell subpopulations with heightened PDCD1 and TIGIT levels. Notably, combination therapy with anti-PD-1 and anti-TIGIT antibodies alleviated HCC burden in humanized mice, demonstrating NK cell-dependent efficacy. Bulk-RNA sequencing analysis also revealed significant alterations in the tumor transcriptome that may contribute to further resistance after combination therapy, warranting further investigations. As an emerging strategy, ongoing clinical trials with anti-PD-1 and anti-TIGIT antibodies provide limited data. The improved humanized mouse HCC-PDX model not only sheds light on the pivotal role of NK cells but also serves as a robust platform for evaluating safety and anti-tumor efficacy of combination therapies and other potential regimens, complementing clinical insights.
Collapse
MESH Headings
- Animals
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Humans
- Mice
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/metabolism
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- CD56 Antigen/metabolism
- CD56 Antigen/genetics
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/genetics
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Interleukin-15/metabolism
- Interleukin-15/genetics
- Xenograft Model Antitumor Assays
- Single-Cell Analysis/methods
- Tumor Microenvironment/immunology
- Disease Models, Animal
- Cell Line, Tumor
- Sequence Analysis, RNA/methods
- Dependovirus/genetics
Collapse
Affiliation(s)
- Wai Nam Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Sarah L Harden
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Shawn Lu Wen Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Rachel Jun Rou Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Shin Yie Fong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Sue Yee Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Min Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Isha Karnik
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Timothy Wai Ho Shuen
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Republic of Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Republic of Singapore
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Seng Gee Lim
- Division of Gastroenterology and Hepatology, National University Hospital, Singapore 119228, Republic of Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Republic of Singapore; Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Republic of Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Republic of Singapore; Singapore Immunology Network (SIgN), A∗STAR, 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore.
| |
Collapse
|
2
|
Grattoni A, Korbutt G, Tomei AA, García AJ, Pepper AR, Stabler C, Brehm M, Papas K, Citro A, Shirwan H, Millman JR, Melero-Martin J, Graham M, Sefton M, Ma M, Kenyon N, Veiseh O, Desai TA, Nostro MC, Marinac M, Sykes M, Russ HA, Odorico J, Tang Q, Ricordi C, Latres E, Mamrak NE, Giraldo J, Poznansky MC, de Vos P. Harnessing cellular therapeutics for type 1 diabetes mellitus: progress, challenges, and the road ahead. Nat Rev Endocrinol 2024:10.1038/s41574-024-01029-0. [PMID: 39227741 DOI: 10.1038/s41574-024-01029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is a growing global health concern that affects approximately 8.5 million individuals worldwide. T1DM is characterized by an autoimmune destruction of pancreatic β cells, leading to a disruption in glucose homeostasis. Therapeutic intervention for T1DM requires a complex regimen of glycaemic monitoring and the administration of exogenous insulin to regulate blood glucose levels. Advances in continuous glucose monitoring and algorithm-driven insulin delivery devices have improved the quality of life of patients. Despite this, mimicking islet function and complex physiological feedback remains challenging. Pancreatic islet transplantation represents a potential functional cure for T1DM but is hindered by donor scarcity, variability in harvested cells, aggressive immunosuppressive regimens and suboptimal clinical outcomes. Current research is directed towards generating alternative cell sources, improving transplantation methods, and enhancing cell survival without chronic immunosuppression. This Review maps the progress in cell replacement therapies for T1DM and outlines the remaining challenges and future directions. We explore the state-of-the-art strategies for generating replenishable β cells, cell delivery technologies and local targeted immune modulation. Finally, we highlight relevant animal models and the regulatory aspects for advancing these technologies towards clinical deployment.
Collapse
Affiliation(s)
- Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| | - Gregory Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Alice A Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrew R Pepper
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Cherie Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
- Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Michael Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Klearchos Papas
- Department of Surgery, The University of Arizona, Tucson, AZ, USA
| | - Antonio Citro
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Haval Shirwan
- Department of Pediatrics, Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Jeffrey R Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Juan Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Melanie Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Michael Sefton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Norma Kenyon
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Tejal A Desai
- University of California, San Francisco, Department of Bioengineering and Therapeutic Sciences, San Francisco, CA, USA
- Brown University, School of Engineering, Providence, RI, USA
| | - M Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Megan Sykes
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
- Department of Surgery, Columbia University, New York, NY, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jon Odorico
- UW Health Transplant Center, Madison, WI, USA
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Qizhi Tang
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California San Francisco, San Francisco, CA, US
- Gladstone Institute of Genomic Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Esther Latres
- Research Department, Breakthrough T1D, New York, NY, USA
| | | | - Jaime Giraldo
- Research Department, Breakthrough T1D, New York, NY, USA.
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands.
| |
Collapse
|
3
|
Pascual-Pasto G, McIntyre B, Hines MG, Giudice AM, Garcia-Gerique L, Hoffmann J, Mishra P, Matlaga S, Lombardi S, Shraim R, Schürch PM, Yarmarkovich M, Hofmann TJ, Alikarami F, Martinez D, Tsang M, Gil-de-Gómez L, Spear TT, Bernt KM, Wolpaw AJ, Dimitrov DS, Li W, Bosse KR. CAR T-cell-mediated delivery of bispecific innate immune cell engagers for neuroblastoma. Nat Commun 2024; 15:7141. [PMID: 39164224 PMCID: PMC11336212 DOI: 10.1038/s41467-024-51337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 08/06/2024] [Indexed: 08/22/2024] Open
Abstract
Novel chimeric antigen receptor (CAR) T-cell approaches are needed to improve therapeutic efficacy in solid tumors. High-risk neuroblastoma is an aggressive pediatric solid tumor that expresses cell-surface GPC2 and GD2 with a tumor microenvironment infiltrated by CD16a-expressing innate immune cells. Here we engineer T-cells to express a GPC2-directed CAR and simultaneously secrete a bispecific innate immune cell engager (BiCE) targeting both GD2 and CD16a. In vitro, GPC2.CAR-GD2.BiCE T-cells induce GPC2-dependent cytotoxicity and secrete GD2.BiCE that promotes GD2-dependent activation of antitumor innate immunity. In vivo, GPC2.CAR-GD2.BiCE T-cells locally deliver GD2.BiCE and increase intratumor retention of NK-cells. In mice bearing neuroblastoma patient-derived xenografts and reconstituted with human CD16a-expressing immune cells, GD2.BiCEs enhance GPC2.CAR antitumor efficacy. A CAR.BiCE strategy should be considered for tumor histologies where antigen escape limits CAR efficacy, especially for solid tumors like neuroblastoma that are infiltrated by innate immune cells.
Collapse
Affiliation(s)
- Guillem Pascual-Pasto
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Brendan McIntyre
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Margaret G Hines
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Anna M Giudice
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Laura Garcia-Gerique
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jennifer Hoffmann
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Pamela Mishra
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Stephanie Matlaga
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Simona Lombardi
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Rawan Shraim
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Patrick M Schürch
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Mark Yarmarkovich
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- New York University, Perlmutter Cancer Center, Grossman School of Medicine, New York, NY, 10016, USA
| | - Ted J Hofmann
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Fatemeh Alikarami
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Daniel Martinez
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Matthew Tsang
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Luis Gil-de-Gómez
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Molecular Biology, University of Cantabria School of Medicine, Santander, Cantabria, 39011, Spain
| | - Timothy T Spear
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kathrin M Bernt
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam J Wolpaw
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dimiter S Dimitrov
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Wei Li
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Kristopher R Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Bin Y, Ren J, Zhang H, Zhang T, Liu P, Xin Z, Yang H, Feng Z, Chen Z, Zhang H. Against all odds: The road to success in the development of human immune reconstitution mice. Animal Model Exp Med 2024; 7:460-470. [PMID: 38591343 PMCID: PMC11369039 DOI: 10.1002/ame2.12407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/17/2024] [Indexed: 04/10/2024] Open
Abstract
The mouse genome has a high degree of homology with the human genome, and its physiological, biochemical, and developmental regulation mechanisms are similar to those of humans; therefore, mice are widely used as experimental animals. However, it is undeniable that interspecies differences between humans and mice can lead to experimental errors. The differences in the immune system have become an important factor limiting current immunological research. The application of immunodeficient mice provides a possible solution to these problems. By transplanting human immune cells or tissues, such as peripheral blood mononuclear cells or hematopoietic stem cells, into immunodeficient mice, a human immune system can be reconstituted in the mouse body, and the engrafted immune cells can elicit human-specific immune responses. Researchers have been actively exploring the development and differentiation conditions of host recipient animals and grafts in order to achieve better immune reconstitution. Through genetic engineering methods, immunodeficient mice can be further modified to provide a favorable developmental and differentiation microenvironment for the grafts. From initially only being able to reconstruct single T lymphocyte lineages, it is now possible to reconstruct lymphoid and myeloid cells, providing important research tools for immunology-related studies. In this review, we compare the differences in immune systems of humans and mice, describe the development history of human immune reconstitution from the perspectives of immunodeficient mice and grafts, and discuss the latest advances in enhancing the efficiency of human immune cell reconstitution, aiming to provide important references for immunological related researches.
Collapse
Affiliation(s)
- Yixiao Bin
- School of Basic Medical SciencesShaanxi University of Chinese MedicineXianyangChina
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Jing Ren
- School of Basic Medical SciencesShaanxi University of Chinese MedicineXianyangChina
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Haowei Zhang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Tianjiao Zhang
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Peijuan Liu
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Zhiqian Xin
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Haijiao Yang
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Zhuan Feng
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Zhinan Chen
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Hai Zhang
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| |
Collapse
|
5
|
Kim KH, Lee SW, Baek IJ, Song HY, Jo SJ, Ryu JW, Ryu SH, Seo JH, Kim JC, Heo SH. CD47;Rag2;IL-2rγ triple knock-out mice pre-conditioning with busulfan could be a novel platform for generating hematopoietic stem cells engrafted humanized mice. Front Immunol 2024; 15:1365946. [PMID: 39131155 PMCID: PMC11310007 DOI: 10.3389/fimmu.2024.1365946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Humanized mouse models to recapitulate human biological systems still have limitations, such as the onset of lethal graft-versus-host disease (GvHD), a variable success rate, and the low accessibility of total body irradiation (TBI). Recently, mice modified with the CD47-SIRPA axis have been studied to improve humanized mouse models. However, such trials have been rarely applied in NOD mice. In this study, we created a novel mouse strain, NOD-CD47nullRag2nullIL-2rγnull (RTKO) mice, and applied it to generate humanized mice. Methods Four-week-old female NOD-Rag2nullIL-2rγnull (RID) and RTKO mice pre-conditioned with TBI or busulfan (BSF) injection were used for generating human CD34+ hematopoietic stem cell (HSC) engrafted humanized mice. Clinical signs were observed twice a week, and body weight was measured once a week. Flow cytometry for human leukocyte antigens was performed at intervals of four weeks or two weeks, and mice were sacrificed at 48 weeks after HSC injection. Results For a long period from 16 to 40 weeks post transplantation, the percentage of hCD45 was mostly maintained above 25% in all groups, and it was sustained the longest and highest in the RTKO BSF group. Reconstruction of human leukocytes, including hCD3, was also most prominent in the RTKO BSF group. Only two mice died before 40 weeks post transplantation in all groups, and there were no life-threatening GvHD lesions except in the dead mice. The occurrence of GvHD has been identified as mainly due to human T cells infiltrating tissues and their related cytokines. Discussion Humanized mouse models under all conditions applied in this study are considered suitable models for long-term experiments based on the improvement of human leukocytes reconstruction and the stable animal health. Especially, RTKO mice pretreated with BSF are expected to be a valuable platform not only for generating humanized mice but also for various immune research fields.
Collapse
Affiliation(s)
- Kang-Hyun Kim
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Sang-wook Lee
- Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea
| | - In-Jeoung Baek
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
- Asan Institute for Lifesciences, Asan Medical Center, Seoul, Republic of Korea
| | - Hye-Young Song
- Asan Institute for Lifesciences, Asan Medical Center, Seoul, Republic of Korea
| | - Seon-Ju Jo
- Asan Institute for Lifesciences, Asan Medical Center, Seoul, Republic of Korea
| | - Je-Won Ryu
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Seung-Hee Ryu
- Asan Institute for Lifesciences, Asan Medical Center, Seoul, Republic of Korea
| | - Jin-Hee Seo
- Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Seung-Ho Heo
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
- Asan Institute for Lifesciences, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
6
|
Arumugam P, Carey BC, Wikenheiser-Brokamp KA, Krischer J, Wessendarp M, Shima K, Chalk C, Stock J, Ma Y, Black D, Imbrogno M, Collins M, Kalenda Yombo DJ, Sakthivel H, Suzuki T, Lutzko C, Cancelas JA, Adams M, Hoskins E, Lowe-Daniels D, Reeves L, Kaiser A, Trapnell BC. A toxicology study of Csf2ra complementation and pulmonary macrophage transplantation therapy of hereditary PAP in mice. Mol Ther Methods Clin Dev 2024; 32:101213. [PMID: 38596536 PMCID: PMC11001781 DOI: 10.1016/j.omtm.2024.101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/13/2024] [Indexed: 04/11/2024]
Abstract
Pulmonary macrophage transplantation (PMT) is a gene and cell transplantation approach in development as therapy for hereditary pulmonary alveolar proteinosis (hPAP), a surfactant accumulation disorder caused by mutations in CSF2RA/B (and murine homologs). We conducted a toxicology study of PMT of Csf2ra gene-corrected macrophages (mGM-Rα+Mϕs) or saline-control intervention in Csf2raKO or wild-type (WT) mice including single ascending dose and repeat ascending dose studies evaluating safety, tolerability, pharmacokinetics, and pharmacodynamics. Lentiviral-mediated Csf2ra cDNA transfer restored GM-CSF signaling in mGM-Rα+Mϕs. Following PMT, mGM-Rα+Mϕs engrafted, remained within the lungs, and did not undergo uncontrolled proliferation or result in bronchospasm, pulmonary function abnormalities, pulmonary or systemic inflammation, anti-transgene product antibodies, or pulmonary fibrosis. Aggressive male fighting caused a similarly low rate of serious adverse events in saline- and PMT-treated mice. Transient, minor pulmonary neutrophilia and exacerbation of pre-existing hPAP-related lymphocytosis were observed 14 days after PMT of the safety margin dose but not the target dose (5,000,000 or 500,000 mGM-Rα+Mϕs, respectively) and only in Csf2raKO mice but not in WT mice. PMT reduced lung disease severity in Csf2raKO mice. Results indicate PMT of mGM-Rα+Mϕs was safe, well tolerated, and therapeutically efficacious in Csf2raKO mice, and established a no adverse effect level and 10-fold safety margin.
Collapse
Affiliation(s)
- Paritha Arumugam
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Brenna C. Carey
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Kathryn A. Wikenheiser-Brokamp
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
- Division of Pathology & Laboratory Medicine, CCHMC, Cincinnati, OH, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey Krischer
- Departments of Pediatrics and Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Matthew Wessendarp
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
| | - Kenjiro Shima
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
| | - Claudia Chalk
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
| | - Jennifer Stock
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
| | - Yan Ma
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
| | - Diane Black
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
| | - Michelle Imbrogno
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, UCMC, Cincinnati, OH, USA
| | - Margaret Collins
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, UCMC, Cincinnati, OH, USA
| | - Dan Justin Kalenda Yombo
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, UCMC, Cincinnati, OH, USA
| | - Haripriya Sakthivel
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Takuji Suzuki
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
| | - Carolyn Lutzko
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Cell Manipulations Laboratory, CCHMC, Cincinnati, OH, USA
| | | | - Michelle Adams
- Office for Clinical and Translational Research, CCHMC, Cincinnati, OH, USA
| | - Elizabeth Hoskins
- Office for Clinical and Translational Research, CCHMC, Cincinnati, OH, USA
| | | | - Lilith Reeves
- Translational Core Laboratory, CCHMC, Cincinnati, OH, USA
| | - Anne Kaiser
- Office of Research Compliance & Regulatory Affairs, CCHMC, Cincinnati, OH, USA
| | - Bruce C. Trapnell
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, UCMC, Cincinnati, OH, USA
- Division of Pulmonary Medicine, CCHMC, Cincinnati, OH, USA
| |
Collapse
|
7
|
Yadav R, Mahajan S, Singh H, Mehra NK, Madan J, Doijad N, Singh PK, Guru SK. Emerging In Vitro and In Vivo Models: Hope for the Better Understanding of Cancer Progression and Treatment. Adv Biol (Weinh) 2024; 8:e2300487. [PMID: 38581078 DOI: 10.1002/adbi.202300487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Various cancer models have been developed to aid the understanding of the underlying mechanisms of tumor development and evaluate the effectiveness of various anticancer drugs in preclinical studies. These models accurately reproduce the critical stages of tumor initiation and development to mimic the tumor microenvironment better. Using these models for target validation, tumor response evaluation, resistance modeling, and toxicity comprehension can significantly enhance the drug development process. Herein, various in vivo or animal models are presented, typically consisting of several mice and in vitro models ranging in complexity from transwell models to spheroids and CRISPR-Cas9 technologies. While in vitro models have been used for decades and dominate the early stages of drug development, they are still limited primary to simplistic tests based on testing on a single cell type cultivated in Petri dishes. Recent advancements in developing new cancer therapies necessitate the generation of complicated animal models that accurately mimic the tumor's complexity and microenvironment. Mice make effective tumor models as they are affordable, have a short reproductive cycle, exhibit rapid tumor growth, and are simple to manipulate genetically. Human cancer mouse models are crucial to understanding the neoplastic process and basic and clinical research improvements. The following review summarizes different in vitro and in vivo metastasis models, their advantages and disadvantages, and their ability to serve as a model for cancer research.
Collapse
Affiliation(s)
- Rachana Yadav
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Hoshiyar Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Nandkumar Doijad
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
8
|
Wang X, Zhang Y, Xue S. Recent progress in chimeric antigen receptor therapy for acute myeloid leukemia. Ann Hematol 2024; 103:1843-1857. [PMID: 38381173 DOI: 10.1007/s00277-023-05601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/21/2023] [Indexed: 02/22/2024]
Abstract
Although CAR-T cell therapy has been particularly successful as a treatment for B cell malignancies, effectively treating acute myeloid leukemia with CAR remains a greater challenge. Multiple preclinical studies and clinical trials are underway, including on AML-related surface markers that CAR-T cells can target, such as CD123, CD33, NKG2D, CLL1, CD7, FLT3, Lewis Y and CD70, all of which provide opportunities for developing CAR-T therapies with improved specificity and efficacy. We also explored specific strategies for CAR-T cell treatment of AML, including immune checkpoints, suicide genes, dual targeting, genomic tools and the potential for universal CAR. In addition, CAR-T cell therapy for AML still has certain risks and challenges, including cytokine release syndrome (CRS) and haematotoxicity. Despite these challenges, as a new targeting method for AML treatment, CAR-T cell therapy still has great prospects. Ongoing research aims to further optimize this treatment mode.
Collapse
Affiliation(s)
- Xiangyu Wang
- Department of Hematology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, 223002, China
| | - Yanming Zhang
- Department of Hematology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, 223002, China.
| | - Shengli Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
9
|
Hasler MF, Speck RF, Kadzioch NP. Humanized mice for studying HIV latency and potentially its eradication. Curr Opin HIV AIDS 2024; 19:157-167. [PMID: 38547338 DOI: 10.1097/coh.0000000000000855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PURPOSE OF THE REVIEW The quest for an HIV cure faces a formidable challenge: the persistent presence of latent viral infections within the cells and tissues of infected individuals. This review provides a thorough examination of discussions surrounding HIV latency, the use of humanized mouse models, and strategies aimed at eliminating the latent HIV reservoir. It explores the hurdles and advancements in understanding HIV pathogenesis, mainly focusing on establishing latent reservoirs in CD4 + T cells and macrophages. Introducing the concepts of functional and sterile cures, the review underscores the indispensable role of humanized mouse models in HIV research, offering crucial insights into the efficacy of cART and the ongoing pursuit of an HIV cure. RECENT FINDINGS Here, we highlight studies investigating molecular mechanisms and pathogenesis related to HIV latency in humanized mice and discuss novel strategies for eradicating latent HIV. Emphasizing the importance of analytical cART interruption in humanized mouse studies to gauge its impact on the latent reservoir accurately, the review underlines the ongoing progress and challenges in harnessing humanized mouse models for HIV research. SUMMARY This review suggests that humanized mice models provide valuable insights into HIV latency and potential eradication strategies, contributing significantly to the quest for an HIV cure.
Collapse
Affiliation(s)
- Moa F Hasler
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
10
|
Zhang T, Liu W, Yang YG. B cell development and antibody responses in human immune system mice: current status and future perspective. SCIENCE CHINA. LIFE SCIENCES 2024; 67:645-652. [PMID: 38270770 DOI: 10.1007/s11427-023-2462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/28/2023] [Indexed: 01/26/2024]
Abstract
Humanized immune system (HIS) mice have been developed and used as a small surrogate model to study human immune function under normal or disease conditions. Although variations are found between models, most HIS mice show robust human T cell responses. However, there has been unsuccessful in constructing HIS mice that produce high-affinity human antibodies, primarily due to defects in terminal B cell differentiation, antibody affinity maturation, and development of primary follicles and germinal centers. In this review, we elaborate on the current knowledge about and previous attempts to improve human B cell development in HIS mice, and propose a potential strategy for constructing HIS mice with improved humoral immunity by transplantation of human follicular dendritic cells (FDCs) to facilitate the development of secondary follicles.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, 130061, China
| | - Wentao Liu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, 130061, China.
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, 130061, China.
- International Center of Future Science, Jilin University, Changchun, 130061, China.
| |
Collapse
|
11
|
Das S, Rruga F, Montepeloso A, Dimartino A, Spadini S, Corre G, Patel J, Cavalca E, Ferro F, Gatti A, Milazzo R, Galy A, Politi LS, Rizzardi GP, Vallanti G, Poletti V, Biffi A. An empowered, clinically viable hematopoietic stem cell gene therapy for the treatment of multisystemic mucopolysaccharidosis type II. Mol Ther 2024; 32:619-636. [PMID: 38310355 PMCID: PMC10928283 DOI: 10.1016/j.ymthe.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/14/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Mucopolysaccharidosis type II (MPS II), or Hunter syndrome, is a rare X-linked recessive lysosomal storage disorder due to a mutation in the lysosomal enzyme iduronate-2-sulfatase (IDS) gene. IDS deficiency leads to a progressive, multisystem accumulation of glycosaminoglycans (GAGs) and results in central nervous system (CNS) manifestations in the severe form. We developed up to clinical readiness a new hematopoietic stem cell (HSC) gene therapy approach for MPS II that benefits from a novel highly effective transduction protocol. We first provided proof of concept of efficacy of our approach aimed at enhanced IDS enzyme delivery to the CNS in a murine study of immediate translational value, employing a lentiviral vector (LV) encoding a codon-optimized human IDS cDNA. Then the therapeutic LV was tested for its ability to efficiently and safely transduce bona fide human HSCs in clinically relevant conditions according to a standard vs. a novel protocol that demonstrated superior ability to transduce bona fide long-term repopulating HSCs. Overall, these results provide strong proof of concept for the clinical translation of this approach for the treatment of Hunter syndrome.
Collapse
Affiliation(s)
- Sabyasachi Das
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Fatlum Rruga
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, 35128 Padua, Italy
| | - Annita Montepeloso
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Agnese Dimartino
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, 35128 Padua, Italy
| | - Silvia Spadini
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, 35128 Padua, Italy
| | | | - Janki Patel
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Eleonora Cavalca
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Francesca Ferro
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | | | | | | | - Letterio S Politi
- Humanitas University and IRCCS Humanitas Research Hospital, 20090 Pieve Emanuele (MI), Italy
| | | | | | - Valentina Poletti
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, 35128 Padua, Italy
| | - Alessandra Biffi
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, 35128 Padua, Italy.
| |
Collapse
|
12
|
Pizzato HA, Alonso-Guallart P, Woods J, Connelly JP, Fehniger TA, Atkinson JP, Pruett-Miller SM, Monsma FJ, Bhattacharya D. Engineering human pluripotent stem cell lines to evade xenogeneic transplantation barriers. Stem Cell Reports 2024; 19:299-313. [PMID: 38215755 PMCID: PMC10874864 DOI: 10.1016/j.stemcr.2023.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/14/2024] Open
Abstract
Successful allogeneic human pluripotent stem cell (hPSC)-derived therapies must overcome immunological rejection by the recipient. To build reagents to define these barriers, we genetically ablated β2M, TAP1, CIITA, CD74, MICA, and MICB to limit expression of HLA-I, HLA-II, and natural killer (NK) cell activating ligands in hPSCs. Transplantation of these cells that also expressed covalent single chain trimers of Qa1 and H2-Kb to inhibit NK cells and CD55, Crry, and CD59 to inhibit complement deposition led to persistent teratomas in wild-type mice. Transplantation of HLA-deficient hPSCs into mice genetically deficient in complement and depleted of NK cells also led to persistent teratomas. Thus, T cell, NK cell, and complement evasion are necessary to prevent immunological rejection of hPSCs and their progeny. These cells and versions expressing human orthologs of immune evasion factors can be used to define cell type-specific immune barriers and conduct preclinical testing in immunocompetent mouse models.
Collapse
Affiliation(s)
- Hannah A Pizzato
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | | - James Woods
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Jon P Connelly
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shondra M Pruett-Miller
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Frederick J Monsma
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA; Department of Surgery, University of Arizona College of Medicine, Tucson, AZ 85724, USA; BIO5 Institute, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
13
|
Yue H, Bai L. Progress, implications, and challenges in using humanized immune system mice in CAR-T therapy-Application evaluation and improvement. Animal Model Exp Med 2024; 7:3-11. [PMID: 37823214 PMCID: PMC10961865 DOI: 10.1002/ame2.12353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/17/2023] [Indexed: 10/13/2023] Open
Abstract
In recent years, humanized immune system (HIS) mice have been gradually used as models for preclinical research in pharmacotherapies and cell therapies with major breakthroughs in tumor and other fields, better mimicking the human immune system and the tumor immune microenvironment, compared to traditional immunodeficient mice. To better promote the application of HIS mice in preclinical research, we selectively summarize the current prevalent and breakthrough research and evaluation of chimeric antigen receptor (CAR) -T cells in various antiviral and antitumor treatments. By exploring its application in preclinical research, we find that it can better reflect the actual clinical patient condition, with the advantages of providing high-efficiency detection indicators, even for progressive research and development. We believe that it has better clinical patient simulation and promotion for the updated design of CAR-T cell therapy than directly transplanted immunodeficient mice. The characteristics of the main models are proposed to improve the use defects of the existing models by reducing the limitation of antihost reaction, combining multiple models, and unifying sources and organoid substitution. Strategy study of relapse and toxicity after CAR-T treatment also provides more possibilities for application and development.
Collapse
Affiliation(s)
- Hanwei Yue
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal SciencesCAMS and PUMCChao‐yang District, BeijingChina
| | - Lin Bai
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal SciencesCAMS and PUMCChao‐yang District, BeijingChina
| |
Collapse
|
14
|
Kaushik S, Kumari L, Deepak RK. Humanized mouse model for vaccine evaluation: an overview. Clin Exp Vaccine Res 2024; 13:10-20. [PMID: 38362371 PMCID: PMC10864885 DOI: 10.7774/cevr.2024.13.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 02/17/2024] Open
Abstract
Animal models are essential in medical research for testing drugs and vaccines. These models differ from humans in various respects, so their results are not directly translatable in humans. To address this issue, humanized mice engrafted with functional human cells or tissue can be helpful. We propose using humanized mice that support the engraftment of human hematopoietic stem cells (HSCs) without irradiation to evaluate vaccines that influence patient immunity. For infectious diseases, several types of antigens and adjuvants have been developed and evaluated for vaccination. Peptide vaccines are generally used for their capability to fight cancer and infectious diseases. Evaluation of adjuvants is necessary as they induce inflammation, which is effective for an enhanced immune response but causes adverse effects in some individuals. A trial can be done on humanized mice to check the immunogenicity of a particular adjuvant and peptide combination. Messenger RNA has also emerged as a potential vaccine against viruses. These vaccines need to be tested with human immune cells because they work by producing a particular peptide of the pathogen. Humanized mice with human HSCs that can produce both myeloid and lymphoid cells show a similar immune response that these vaccines will produce in a patient.
Collapse
Affiliation(s)
| | - Lata Kumari
- All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
15
|
Saito Y, Iida-Norita R, Afroj T, Refaat A, Hazama D, Komori S, Ohata S, Takai T, Oduori OS, Kotani T, Funakoshi Y, Koma YI, Murata Y, Yakushijin K, Matsuoka H, Minami H, Yokozaki H, Manz MG, Matozaki T. Preclinical evaluation of the efficacy of an antibody to human SIRPα for cancer immunotherapy in humanized mouse models. Front Immunol 2023; 14:1294814. [PMID: 38162643 PMCID: PMC10757636 DOI: 10.3389/fimmu.2023.1294814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are abundant in the tumor microenvironment and are considered potential targets for cancer immunotherapy. To examine the antitumor effects of agents targeting human TAMs in vivo, we here established preclinical tumor xenograft models based on immunodeficient mice that express multiple human cytokines and have been reconstituted with a human immune system by transplantation of human CD34+ hematopoietic stem and progenitor cells (HIS-MITRG mice). HIS-MITRG mice supported the growth of both human cell line (Raji)- and patient-derived B cell lymphoma as well as the infiltration of human macrophages into their tumors. We examined the potential antitumor action of an antibody to human SIRPα (SE12C3) that inhibits the interaction of CD47 on tumor cells with SIRPα on human macrophages and thereby promotes Fcγ receptor-mediated phagocytosis of the former cells by the latter. Treatment with the combination of rituximab (antibody to human CD20) and SE12C3 inhibited Raji tumor growth in HIS-MITRG mice to a markedly greater extent than did rituximab monotherapy. This enhanced antitumor effect was dependent on human macrophages and attributable to enhanced rituximab-dependent phagocytosis of lymphoma cells by human macrophages. Treatment with rituximab and SE12C3 also induced reprogramming of human TAMs toward a proinflammatory phenotype. Furthermore, the combination treatment essentially prevented the growth of patient-derived diffuse large B cell lymphoma in HIS-MITRG mice. Our findings thus support the study of HIS-MITRG mice as a model for the preclinical evaluation in vivo of potential therapeutics, such as antibodies to human SIRPα, that target human TAMs.
Collapse
Affiliation(s)
- Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Rie Iida-Norita
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tania Afroj
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Alaa Refaat
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Daisuke Hazama
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satomi Komori
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Ohata
- Division of Medical Oncology and Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Takai
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Okechi S. Oduori
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yohei Funakoshi
- Division of Medical Oncology and Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu-Ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kimikazu Yakushijin
- Division of Medical Oncology and Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Matsuoka
- Division of Medical Oncology and Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Bioresource Research and Development, Department of Social/Community Medicine and Health Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hironobu Minami
- Division of Medical Oncology and Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich at the University of Zurich, Zurich, Switzerland
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
16
|
Piau O, Brunet-Manquat M, L'Homme B, Petit L, Birebent B, Linard C, Moeckes L, Zuliani T, Lapillonne H, Benderitter M, Douay L, Chapel A, Guyonneau-Harmand L, Jaffredo T. Generation of transgene-free hematopoietic stem cells from human induced pluripotent stem cells. Cell Stem Cell 2023; 30:1610-1623.e7. [PMID: 38065068 DOI: 10.1016/j.stem.2023.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023]
Abstract
Hematopoietic stem cells (HSCs) are the rare cells responsible for the lifelong curative effects of hematopoietic cell (HC) transplantation. The demand for clinical-grade HSCs has increased significantly in recent decades, leading to major difficulties in treating patients. A promising but not yet achieved goal is the generation of HSCs from pluripotent stem cells. Here, we have obtained vector- and stroma-free transplantable HSCs by differentiating human induced pluripotent stem cells (hiPSCs) using an original one-step culture system. After injection into immunocompromised mice, cells derived from hiPSCs settle in the bone marrow and form a robust multilineage hematopoietic population that can be serially transplanted. Single-cell RNA sequencing shows that this repopulating activity is due to a hematopoietic population that is transcriptionally similar to human embryonic aorta-derived HSCs. Overall, our results demonstrate the generation of HSCs from hiPSCs and will help identify key regulators of HSC production during human ontogeny.
Collapse
Affiliation(s)
- Olivier Piau
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, CRSA, 75012 Paris, France; Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 9 Quai St-Bernard, 75005 Paris, France
| | - Mathias Brunet-Manquat
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, CRSA, 75012 Paris, France; EFS Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire, 94017 Créteil, France
| | - Bruno L'Homme
- Laboratoire de radiobiologie des expositions médicales (LRMed), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262 Fontenay-aux-Roses, France
| | - Laurence Petit
- Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 9 Quai St-Bernard, 75005 Paris, France
| | - Brigitte Birebent
- EFS Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire, 94017 Créteil, France
| | - Christine Linard
- Laboratoire de radiobiologie des expositions médicales (LRMed), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262 Fontenay-aux-Roses, France
| | - Laetitia Moeckes
- Etablissement Français du Sang - Atlantic Bio GMP - 2, rue Aronnax, 44800 Saint-Herblain, France
| | - Thomas Zuliani
- Etablissement Français du Sang - Atlantic Bio GMP - 2, rue Aronnax, 44800 Saint-Herblain, France
| | - Hélène Lapillonne
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, CRSA, 75012 Paris, France; AP-HP, Hôpital St Antoine/Trousseau, Service d'Hématologie Biologique, 75012 Paris, France
| | - Marc Benderitter
- Laboratoire de radiobiologie des expositions médicales (LRMed), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262 Fontenay-aux-Roses, France
| | - Luc Douay
- AP-HP, Hôpital St Antoine/Trousseau, Service d'Hématologie Biologique, 75012 Paris, France
| | - Alain Chapel
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, CRSA, 75012 Paris, France; Laboratoire de radiobiologie des expositions médicales (LRMed), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262 Fontenay-aux-Roses, France
| | - Laurence Guyonneau-Harmand
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, CRSA, 75012 Paris, France; EFS Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire, 94017 Créteil, France.
| | - Thierry Jaffredo
- EFS Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire, 94017 Créteil, France.
| |
Collapse
|
17
|
Wang X, Chen M, Hu L, Tan C, Li X, Xue P, Jiang Y, Bao P, Yu T, Li F, Xiao Y, Ran Q, Li Z, Chen L. Humanized mouse models for inherited thrombocytopenia studies. Platelets 2023; 34:2267676. [PMID: 37849076 DOI: 10.1080/09537104.2023.2267676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Inherited thrombocytopenia (IT) is a group of hereditary disorders characterized by a reduced platelet count as the main clinical manifestation, and often with abnormal platelet function, which can subsequently lead to impaired hemostasis. In the past decades, humanized mouse models (HMMs), that are mice engrafted with human cells or genes, have been widely used in different research areas including immunology, oncology, and virology. With advances of the development of immunodeficient mice, the engraftment, and reconstitution of functional human platelets in HMM permit studies of occurrence and development of platelet disorders including IT and treatment strategies. This article mainly reviews the development of humanized mice models, the construction methods, research status, and problems of using humanized mice for the in vivo study of human thrombopoiesis.
Collapse
Affiliation(s)
- Xiaojie Wang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Maoshan Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
- Laboratory of Precision Medicine, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Lanyue Hu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Chengning Tan
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoliang Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Peipei Xue
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yangzhou Jiang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Peipei Bao
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Teng Yu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Fengjie Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yanni Xiao
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qian Ran
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Zhongjun Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
- Laboratory of Precision Medicine, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Li Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
- Laboratory of Precision Medicine, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
18
|
Glisovic-Aplenc T, Diorio C, Chukinas JA, Veliz K, Shestova O, Shen F, Nunez-Cruz S, Vincent TL, Miao F, Milone MC, June CH, Teachey DT, Tasian SK, Aplenc R, Gill S. CD38 as a pan-hematologic target for chimeric antigen receptor T cells. Blood Adv 2023; 7:4418-4430. [PMID: 37171449 PMCID: PMC10440474 DOI: 10.1182/bloodadvances.2022007059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023] Open
Abstract
Many hematologic malignancies are not curable with chemotherapy and require novel therapeutic approaches. Chimeric antigen receptor (CAR) T-cell therapy is 1 such approach that involves the transfer of T cells engineered to express CARs for a specific cell-surface antigen. CD38 is a validated tumor antigen in multiple myeloma (MM) and T-cell acute lymphoblastic leukemia (T-ALL) and is also overexpressed in acute myeloid leukemia (AML). Here, we developed human CD38-redirected T cells (CART-38) as a unified approach to treat 3 different hematologic malignancies that occur across the pediatric-to-adult age spectrum. Importantly, CD38 expression on activated T cells did not impair CART-38 cells expansion or in vitro function. In xenografted mice, CART-38 mediated the rejection of AML, T-ALL, and MM cell lines and primary samples and prolonged survival. In a xenograft model of normal human hematopoiesis, CART-38 resulted in the expected reduction of hematopoietic progenitors, which warrants caution and careful monitoring of this potential toxicity when translating this new immunotherapy into the clinic. Deploying CART-38 against multiple CD38-expressing malignancies is significant because it expands the potential for this novel therapy to affect diverse patient populations.
Collapse
Affiliation(s)
- Tina Glisovic-Aplenc
- Division of Oncology, Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, PA
| | - Caroline Diorio
- Division of Oncology, Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - John A. Chukinas
- Division of Oncology, Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, PA
| | - Kimberly Veliz
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Olga Shestova
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Feng Shen
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Selene Nunez-Cruz
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Tiffaney L. Vincent
- Division of Oncology, Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, PA
| | - Fei Miao
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Michael C. Milone
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Carl H. June
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - David T. Teachey
- Division of Oncology, Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sarah K. Tasian
- Division of Oncology, Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Richard Aplenc
- Division of Oncology, Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Saar Gill
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
19
|
Lang Y, Lyu Y, Tan Y, Hu Z. Progress in construction of mouse models to investigate the pathogenesis and immune therapy of human hematological malignancy. Front Immunol 2023; 14:1195194. [PMID: 37646021 PMCID: PMC10461088 DOI: 10.3389/fimmu.2023.1195194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023] Open
Abstract
Hematological malignancy is a disease arisen by complicate reasons that seriously endangers human health. The research on its pathogenesis and therapies depends on the usage of animal models. Conventional animal model cannot faithfully mirror some characteristics of human features due to the evolutionary divergence, whereas the mouse models hosting human hematological malignancy are more and more applied in basic as well as translational investigations in recent years. According to the construction methods, they can be divided into different types (e.g. cell-derived xenograft (CDX) and patient-derived xenograft model (PDX) model) that have diverse characteristics and application values. In addition, a variety of strategies have been developed to improve human hematological malignant cell engraftment and differentiation in vivo. Moreover, the humanized mouse model with both functional human immune system and autologous human hematological malignancy provides a unique tool for the evaluation of the efficacy of novel immunotherapeutic drugs/approaches. Herein, we first review the evolution of the mouse model of human hematological malignancy; Then, we analyze the characteristics of different types of models and summarize the ways to improve the models; Finally, the way and value of humanized mouse model of human immune system in the immunotherapy of human hematological malignancy are discussed.
Collapse
Affiliation(s)
- Yue Lang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
- Department of Dermatology, The First Hospital, Jilin University, Changchun, China
| | - Yanan Lyu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
| | - Yehui Tan
- Department of Hematology, The First Hospital, Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
20
|
Fukuhara T, Ueda Y, Lee SI, Odaka T, Nakajima S, Fujisawa JI, Okuma K, Naganuma M, Okazaki K, Kondo N, Kamioka Y, Matsumoto M, Kinashi T. Thymocyte Development of Humanized Mice Is Promoted by Interactions with Human-Derived Antigen Presenting Cells upon Immunization. Int J Mol Sci 2023; 24:11705. [PMID: 37511462 PMCID: PMC10380196 DOI: 10.3390/ijms241411705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Immune responses in humanized mice are generally inefficient without co-transplantation of human thymus or HLA transgenes. Previously, we generated humanized mice via the intra-bone marrow injection of CD133+ cord blood cells into irradiated adult immunodeficient mice (IBMI-huNSG mice), which could mount functional immune responses against HTLV-1, although the underlying mechanisms were still unknown. Here, we investigated thymocyte development in IBMI-huNSG mice, focusing on the roles of human and mouse MHC restriction. IBMI-huNSG mice had normal developmental profiles but aberrant thymic structures. Surprisingly, the thymic medulla-like regions expanded after immunization due to enhanced thymocyte expansion in association with the increase in HLA-DR+ cells, including CD205+ dendritic cells (DCs). The organ culture of thymus from immunized IBMI-huNSG mice with a neutralizing antibody to HLA-DR showed the HLA-DR-dependent expansion of CD4 single positive thymocytes. Mature peripheral T-cells exhibited alloreactive proliferation when co-cultured with human peripheral blood mononuclear cells. Live imaging of the thymus from immunized IBMI-huNSG mice revealed dynamic adhesive contacts of human-derived thymocytes and DCs accompanied by Rap1 activation. These findings demonstrate that an increase in HLA-DR+ cells by immunization promotes HLA-restricted thymocyte expansion in humanized mice, offering a unique opportunity to generate humanized mice with ease.
Collapse
Affiliation(s)
- Takataro Fukuhara
- Division of Gastroenterology and Hepatology, The Third Department of Internal Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Yoshihiro Ueda
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Sung-Il Lee
- Department of Model Animal, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Tokifumi Odaka
- Department of Microbiology, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Shinsuke Nakajima
- Department of Microbiology, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Jun-Ichi Fujisawa
- Department of Microbiology, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Kazu Okuma
- Department of Microbiology, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Makoto Naganuma
- Division of Gastroenterology and Hepatology, The Third Department of Internal Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Kazuichi Okazaki
- Division of Gastroenterology and Hepatology, The Third Department of Internal Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Naoyuki Kondo
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Yuji Kamioka
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Kuramoto 770-8503, Tokushima, Japan
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| |
Collapse
|
21
|
Yan C, Nebhan CA, Saleh N, Shattuck-Brandt R, Chen SC, Ayers GD, Weiss V, Richmond A, Vilgelm AE. Generation of Orthotopic Patient-Derived Xenografts in Humanized Mice for Evaluation of Emerging Targeted Therapies and Immunotherapy Combinations for Melanoma. Cancers (Basel) 2023; 15:3695. [PMID: 37509357 PMCID: PMC10377652 DOI: 10.3390/cancers15143695] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Current methodologies for developing PDX in humanized mice in preclinical trials with immune-based therapies are limited by GVHD. Here, we compared two approaches for establishing PDX tumors in humanized mice: (1) PDX are first established in immune-deficient mice; or (2) PDX are initially established in humanized mice; then established PDX are transplanted to a larger cohort of humanized mice for preclinical trials. With the first approach, there was rapid wasting of PDX-bearing humanized mice with high levels of activated T cells in the circulation and organs, indicating immune-mediated toxicity. In contrast, with the second approach, toxicity was less of an issue and long-term human melanoma tumor growth and maintenance of human chimerism was achieved. Preclinical trials from the second approach revealed that rigosertib, but not anti-PD-1, increased CD8/CD4 T cell ratios in spleen and blood and inhibited PDX tumor growth. Resistance to anti-PD-1 was associated with PDX tumors established from tumors with limited CD8+ T cell content. Our findings suggest that it is essential to carefully manage immune editing by first establishing PDX tumors in humanized mice before expanding PDX tumors into a larger cohort of humanized mice to evaluate therapy response.
Collapse
Affiliation(s)
- Chi Yan
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (C.Y.); (N.S.); (R.S.-B.)
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA;
| | - Caroline A. Nebhan
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA;
- Division of Hematology & Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nabil Saleh
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (C.Y.); (N.S.); (R.S.-B.)
| | - Rebecca Shattuck-Brandt
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (C.Y.); (N.S.); (R.S.-B.)
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA;
| | - Sheau-Chiann Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.-C.C.); (G.D.A.)
| | - Gregory D. Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.-C.C.); (G.D.A.)
| | - Vivian Weiss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Ann Richmond
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (C.Y.); (N.S.); (R.S.-B.)
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA;
| | - Anna E. Vilgelm
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center—Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Chiorazzi M, Martinek J, Krasnick B, Zheng Y, Robbins KJ, Qu R, Kaufmann G, Skidmore Z, Juric M, Henze LA, Brösecke F, Adonyi A, Zhao J, Shan L, Sefik E, Mudd J, Bi Y, Goedegebuure SP, Griffith M, Griffith O, Oyedeji A, Fertuzinhos S, Garcia-Milian R, Boffa D, Detterbeck F, Dhanasopon A, Blasberg J, Judson B, Gettinger S, Politi K, Kluger Y, Palucka K, Fields RC, Flavell RA. Autologous humanized PDX modeling for immuno-oncology recapitulates features of the human tumor microenvironment. J Immunother Cancer 2023; 11:e006921. [PMID: 37487666 PMCID: PMC10373695 DOI: 10.1136/jitc-2023-006921] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Interactions between immune and tumor cells are critical to determining cancer progression and response. In addition, preclinical prediction of immune-related drug efficacy is limited by interspecies differences between human and mouse, as well as inter-person germline and somatic variation. To address these gaps, we developed an autologous system that models the tumor microenvironment (TME) from individual patients with solid tumors. METHOD With patient-derived bone marrow hematopoietic stem and progenitor cells (HSPCs), we engrafted a patient's hematopoietic system in MISTRG6 mice, followed by transfer of patient-derived xenograft (PDX) tissue, providing a fully genetically matched model to recapitulate the individual's TME. We used this system to prospectively study tumor-immune interactions in patients with solid tumor. RESULTS Autologous PDX mice generated innate and adaptive immune populations; these cells populated the TME; and tumors from autologously engrafted mice grew larger than tumors from non-engrafted littermate controls. Single-cell transcriptomics revealed a prominent vascular endothelial growth factor A (VEGFA) signature in TME myeloid cells, and inhibition of human VEGF-A abrogated enhanced growth. CONCLUSIONS Humanization of the interleukin 6 locus in MISTRG6 mice enhances HSPC engraftment, making it feasible to model tumor-immune interactions in an autologous manner from a bedside bone marrow aspirate. The TME from these autologous tumors display hallmarks of the human TME including innate and adaptive immune activation and provide a platform for preclinical drug testing.
Collapse
Affiliation(s)
- Michael Chiorazzi
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jan Martinek
- Jackson Laboratory - Farmington, Farmington, Connecticut, USA
| | - Bradley Krasnick
- Alvin J Siteman Cancer Center, St Louis, Missouri, USA
- Department of Surgery, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - Yunjiang Zheng
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Keenan J Robbins
- Alvin J Siteman Cancer Center, St Louis, Missouri, USA
- Department of Surgery, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - Rihao Qu
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gabriel Kaufmann
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Zachary Skidmore
- Alvin J Siteman Cancer Center, St Louis, Missouri, USA
- Department of Surgery, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - Melani Juric
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Laura A Henze
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Frederic Brösecke
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Adam Adonyi
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jun Zhao
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Liang Shan
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Esen Sefik
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jacqueline Mudd
- Alvin J Siteman Cancer Center, St Louis, Missouri, USA
- Department of Surgery, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - Ye Bi
- Alvin J Siteman Cancer Center, St Louis, Missouri, USA
- Department of Surgery, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - S Peter Goedegebuure
- Alvin J Siteman Cancer Center, St Louis, Missouri, USA
- Department of Surgery, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - Malachi Griffith
- Alvin J Siteman Cancer Center, St Louis, Missouri, USA
- Department of Surgery, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - Obi Griffith
- Alvin J Siteman Cancer Center, St Louis, Missouri, USA
- Department of Surgery, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - Abimbola Oyedeji
- Alvin J Siteman Cancer Center, St Louis, Missouri, USA
- Department of Surgery, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - Sofia Fertuzinhos
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, Connecticut, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, Connecticut, USA
| | - Daniel Boffa
- Department of Surgery, Section of Thoracic Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Frank Detterbeck
- Department of Surgery, Section of Thoracic Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Andrew Dhanasopon
- Department of Surgery, Section of Thoracic Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Justin Blasberg
- Department of Surgery, Section of Thoracic Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Benjamin Judson
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Scott Gettinger
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Katerina Politi
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yuval Kluger
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Ryan C Fields
- Alvin J Siteman Cancer Center, St Louis, Missouri, USA
- Department of Surgery, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, New York, New York, USA
| |
Collapse
|
23
|
Alisjahbana A, Mohammad I, Gao Y, Evren E, Willinger T. Single-cell RNA sequencing of human lung innate lymphoid cells in the vascular and tissue niche reveals molecular features of tissue adaptation. DISCOVERY IMMUNOLOGY 2023; 2:kyad007. [PMID: 38650756 PMCID: PMC11034571 DOI: 10.1093/discim/kyad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 04/25/2024]
Abstract
Innate lymphoid cells (ILCs) are sentinels of healthy organ function, yet it is unknown how ILCs adapt to distinct anatomical niches within tissues. Here, we used a unique humanized mouse model, MISTRG mice transplanted with human hematopoietic stem and progenitor cells (HSPCs), to define the gene signatures of human ILCs in the vascular versus the tissue (extravascular) compartment of the lung. Single-cell RNA sequencing in combination with intravascular cell labeling demonstrated that heterogeneous populations of human ILCs and natural killer (NK) cells occupied the vascular and tissue niches in the lung of HSPC-engrafted MISTRG mice. Moreover, we discovered that niche-specific cues shape the molecular programs of human ILCs in the distinct sub-anatomical compartments of the lung. Specifically, extravasation of ILCs into the lung tissue was associated with the upregulation of genes involved in the acquisition of tissue residency, cell positioning within the lung, sensing of tissue-derived signals, cellular stress responses, nutrient uptake, and interaction with other tissue-resident immune cells. We also defined a core tissue signature shared between human ILCs and NK cells in the extravascular space of the lung, consistent with imprinting by signals from the local microenvironment. The molecular characterization of human ILCs and NK cells in the vascular and tissue niches of the lung provides new knowledge on the mechanisms of ILC tissue adaptation and represents a resource for further studies.
Collapse
Affiliation(s)
- Arlisa Alisjahbana
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Imran Mohammad
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu Gao
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Elza Evren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Tim Willinger
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
24
|
Ren AL, Wu JY, Lee SY, Lim M. Translational Models in Glioma Immunotherapy Research. Curr Oncol 2023; 30:5704-5718. [PMID: 37366911 DOI: 10.3390/curroncol30060428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Immunotherapy is a promising therapeutic domain for the treatment of gliomas. However, clinical trials of various immunotherapeutic modalities have not yielded significant improvements in patient survival. Preclinical models for glioma research should faithfully represent clinically observed features regarding glioma behavior, mutational load, tumor interactions with stromal cells, and immunosuppressive mechanisms. In this review, we dive into the common preclinical models used in glioma immunology, discuss their advantages and disadvantages, and highlight examples of their utilization in translational research.
Collapse
Affiliation(s)
- Alexander L Ren
- School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Janet Y Wu
- School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Si Yeon Lee
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA 94304, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA 94304, USA
| |
Collapse
|
25
|
Chen A, Neuwirth I, Herndler-Brandstetter D. Modeling the Tumor Microenvironment and Cancer Immunotherapy in Next-Generation Humanized Mice. Cancers (Basel) 2023; 15:2989. [PMID: 37296949 PMCID: PMC10251926 DOI: 10.3390/cancers15112989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer immunotherapy has brought significant clinical benefits to numerous patients with malignant disease. However, only a fraction of patients experiences complete and durable responses to currently available immunotherapies. This highlights the need for more effective immunotherapies, combination treatments and predictive biomarkers. The molecular properties of a tumor, intratumor heterogeneity and the tumor immune microenvironment decisively shape tumor evolution, metastasis and therapy resistance and are therefore key targets for precision cancer medicine. Humanized mice that support the engraftment of patient-derived tumors and recapitulate the human tumor immune microenvironment of patients represent a promising preclinical model to address fundamental questions in precision immuno-oncology and cancer immunotherapy. In this review, we provide an overview of next-generation humanized mouse models suitable for the establishment and study of patient-derived tumors. Furthermore, we discuss the opportunities and challenges of modeling the tumor immune microenvironment and testing a variety of immunotherapeutic approaches using human immune system mouse models.
Collapse
Affiliation(s)
| | | | - Dietmar Herndler-Brandstetter
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, 1090 Vienna, Austria; (A.C.); (I.N.)
| |
Collapse
|
26
|
Baroncini L, Bredl S, Nicole KP, Speck RF. The Humanized Mouse Model: What Added Value Does It Offer for HIV Research? Pathogens 2023; 12:pathogens12040608. [PMID: 37111494 PMCID: PMC10142098 DOI: 10.3390/pathogens12040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In the early 2000s, novel humanized mouse models based on the transplantation of human hematopoietic stem and progenitor cells (HSPCs) into immunocompromised mice were introduced (hu mice). The human HSPCs gave rise to a lymphoid system of human origin. The HIV research community has greatly benefitted from these hu mice. Since human immunodeficiency virus (HIV) type 1 infection results in a high-titer disseminated HIV infection, hu mice have been of great value for all types of HIV research from pathogenesis to novel therapies. Since the first description of this new generation of hu mice, great efforts have been expended to improve humanization by creating other immunodeficient mouse models or supplementing mice with human transgenes to improve human engraftment. Many labs have their own customized hu mouse models, making comparisons quite difficult. Here, we discuss the different hu mouse models in the context of specific research questions in order to define which characteristics should be considered when determining which hu mouse model is appropriate for the question posed. We strongly believe that researchers must first define their research question and then determine whether a hu mouse model exists, allowing the research question to be studied.
Collapse
Affiliation(s)
- Luca Baroncini
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Simon Bredl
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Kadzioch P Nicole
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Roberto F Speck
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
27
|
Martinez-Sanz P, Laurent ARG, Slot E, Hoogenboezem M, Bąbała N, van Bruggen R, Rongvaux A, Flavell RA, Tytgat GAM, Franke K, Matlung HL, Kuijpers TW, Amsen D, Karrich JJ. Humanized MISTRG as a preclinical in vivo model to study human neutrophil-mediated immune processes. Front Immunol 2023; 14:1105103. [PMID: 36969261 PMCID: PMC10032520 DOI: 10.3389/fimmu.2023.1105103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionMISTRG mice have been genetically modified to allow development of a human myeloid compartment from engrafted human CD34+ haemopoietic stem cells, making them particularly suited to study the human innate immune system in vivo. Here, we characterized the human neutrophil population in these mice to establish a model that can be used to study the biology and contribution in immune processes of these cells in vivo.Methods and resultsWe could isolate human bone marrow neutrophils from humanized MISTRG mice and confirmed that all neutrophil maturation stages from promyelocytes (CD11b–CD16–) to end-stage segmented cells (CD11b+CD16+) were present. We documented that these cells possessed normal functional properties, including degranulation, reactive oxygen species production, adhesion, and antibody-dependent cellular cytotoxicity towards antibody-opsonized tumor cells ex vivo. The acquisition of functional capacities positively correlated with the maturation state of the cell. We found that human neutrophils were retained in the bone marrow of humanized MISTRG mice during steady state. However, the mature segmented CD11b+CD16+ human neutrophils were released from the bone marrow in response to two well-established neutrophil-mobilizing agents (i.e., G-CSF and/or CXCR4 antagonist Plerixafor). Moreover, the neutrophil population in the humanized MISTRG mice actively reacted to thioglycolate-induced peritonitis and could infiltrate implanted human tumors, as shown by flow cytometry and fluorescent microscopy.DiscussionThese results show that functional human neutrophils are generated and can be studied in vivo using the humanized MISTRG mice, providing a model to study the various functions of neutrophils in inflammation and in tumors.
Collapse
Affiliation(s)
- Paula Martinez-Sanz
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Paula Martinez-Sanz, ; Julien J. Karrich, ; Derk Amsen,
| | - Adrien R. G. Laurent
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Edith Slot
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mark Hoogenboezem
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Nikolina Bąbała
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Robin van Bruggen
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Anthony Rongvaux
- Department of Immunology, University of Washington, Seattle, WA, United States
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, United States
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, United States
| | - Godelieve A. M. Tytgat
- Princess Maxima Center for Pediatric Oncology, Department of Pediatric Oncology, Utrecht, Netherlands
| | - Katka Franke
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hanke L. Matlung
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Rheumatology and Infectious Diseases, Emma Children's Hospital, Department of Pediatric Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Derk Amsen
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Paula Martinez-Sanz, ; Julien J. Karrich, ; Derk Amsen,
| | - Julien J. Karrich
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Paula Martinez-Sanz, ; Julien J. Karrich, ; Derk Amsen,
| |
Collapse
|
28
|
Lee J, Wang J, Ally R, Trzaska S, Hickey J, Mujica A, Miloscio L, Mastaitis J, Morse B, Smith J, Atanasio A, Chiao E, Chen H, Latuszek A, Hu Y, Valenzuela D, Romano C, Zambrowicz B, Auerbach W. Production of large, defined genome modifications in rats by targeting rat embryonic stem cells. Stem Cell Reports 2023; 18:394-409. [PMID: 36525967 PMCID: PMC9860120 DOI: 10.1016/j.stemcr.2022.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Rats were more frequently used than mice to model human disease before mouse embryonic stem cells (mESCs) revolutionized genetic engineering in mice. Rat ESCs (rESCs) were first reported over 10 years ago, yet they are not as frequently used as mESCs. CRISPR-based gene editing in zygotes is widely used in rats but is limited by the difficulty of inserting or replacing DNA sequences larger than about 10 kb. We report here the generation of germline-competent rESC lines from several rat strains. These rESC lines maintain their potential for germline transmission after serial targeting with bacterial artificial chromosome (BAC)-based targeting vectors, and CRISPR-Cas9 cutting can increase targeting efficiency. Using these methods, we have successfully replaced entire rat genes spanning up to 101 kb with the human ortholog.
Collapse
Affiliation(s)
- Jeffrey Lee
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA.
| | | | - Roxanne Ally
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Sean Trzaska
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Alejo Mujica
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | - Brian Morse
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Janell Smith
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Eric Chiao
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Henry Chen
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Ying Hu
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | | | |
Collapse
|
29
|
Ding L, Chen X, Zhang W, Dai X, Guo H, Pan X, Xu Y, Feng J, Yuan M, Gao X, Wang J, Xu X, Li S, Wu H, Cao J, He Q, Yang B. Canagliflozin primes antitumor immunity by triggering PD-L1 degradation in endocytic recycling. J Clin Invest 2023; 133:e154754. [PMID: 36594471 PMCID: PMC9797339 DOI: 10.1172/jci154754] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/26/2022] [Indexed: 01/04/2023] Open
Abstract
Understanding the regulatory mechanisms of PD-L1 expression in tumors provides key clues for improving immune checkpoint blockade efficacy or developing novel oncoimmunotherapy. Here, we showed that the FDA-approved sodium-glucose cotransporter-2 (SGLT2) inhibitor canagliflozin dramatically suppressed PD-L1 expression and enhanced T cell-mediated cytotoxicity. Mechanistic study revealed that SGLT2 colocalized with PD-L1 at the plasma membrane and recycling endosomes and thereby prevented PD-L1 from proteasome-mediated degradation. Canagliflozin disturbed the physical interaction between SGLT2 and PD-L1 and subsequently allowed the recognition of PD-L1 by Cullin3SPOP E3 ligase, which triggered the ubiquitination and proteasome-mediated degradation of PD-L1. In mouse models and humanized immune-transformation models, either canagliflozin treatment or SGLT2 silencing significantly reduced PD-L1 expression and limited tumor progression - to a level equal to the PD-1 mAb - which was correlated with an increase in the activity of antitumor cytotoxic T cells. Notably, prolonged progression-free survival and overall survival curves were observed in the group of PD-1 mAb-treated patients with non-small cell lung cancer with high expression of SGLT2. Therefore, our study identifies a regulator of cell surface PD-L1, provides a ready-to-use small-molecule drug for PD-L1 degradation, and highlights a potential therapeutic target to overcome immune evasion by tumor cells.
Collapse
Affiliation(s)
- Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Xi Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Xiaoyang Dai
- Center of Drug Safety Evaluation and Research, Zhejiang University, Hangzhou, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Xiaohui Pan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Yanjun Xu
- Department of Medical Thoracic Oncology and
| | - Jianguo Feng
- Institute of Basic Medicine and Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, China
| | - Meng Yuan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Xiaomeng Gao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Jian Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Xiaqing Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Sicheng Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
- The Innovation Institute for Artificial Intelligence in Medicine and
- Cancer Center of Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, and
- The Innovation Institute for Artificial Intelligence in Medicine and
| |
Collapse
|
30
|
Ito R, Katano I, Kwok IWH, Ng LG, Ida-Tanaka M, Ohno Y, Mu Y, Morita H, Nishinaka E, Nishime C, Mochizuki M, Kawai K, Chien TH, Yunqian Z, Yiping F, Hua LH, Celhar T, Yen Chan JK, Takahashi T, Goto M, Ogura T, Takahashi R, Ito M. Efficient differentiation of human neutrophils with recapitulation of emergency granulopoiesis in human G-CSF knockin humanized mice. Cell Rep 2022; 41:111841. [PMID: 36543125 DOI: 10.1016/j.celrep.2022.111841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/28/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Neutrophils are critical mediators during the early stages of innate inflammation in response to bacterial or fungal infections. A human hematopoietic system reconstituted in humanized mice aids in the study of human hematology and immunology. However, the poor development of human neutrophils is a well-known limitation of humanized mice. Here, we generate a human granulocyte colony-stimulating factor (hG-CSF) knockin (KI) NOD/Shi-scid-IL2rgnull (NOG) mouse in which hG-CSF is systemically expressed while the mouse G-CSF receptor is disrupted. These mice generate high numbers of mature human neutrophils, which can be readily mobilized into the periphery, compared with conventional NOG mice. Moreover, these neutrophils exhibit infection-mediated emergency granulopoiesis and are capable of efficient phagocytosis and reactive oxygen species production. Thus, hG-CSF KI mice provide a useful model for studying the development of human neutrophils, emergency granulopoiesis, and a potential therapeutic model for sepsis.
Collapse
Affiliation(s)
- Ryoji Ito
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan.
| | - Ikumi Katano
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Immanuel W H Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Miyuki Ida-Tanaka
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Yusuke Ohno
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Yunmei Mu
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Hanako Morita
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Eiko Nishinaka
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Chiyoko Nishime
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Misa Mochizuki
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Kenji Kawai
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Tay Hui Chien
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Zhao Yunqian
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Fan Yiping
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Liew Hui Hua
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Teja Celhar
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Takeshi Takahashi
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Motohito Goto
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Tomoyuki Ogura
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Riichi Takahashi
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Mamoru Ito
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| |
Collapse
|
31
|
Zhang S, Wang G, Lyu Y, Tian H, Shu C, Chen B, Fan W, Xu W, Shan Y, He J, Yang YG, Hu Z, Sun L. Human growth hormone supplement promotes human lymphohematopoietic cell reconstitution in immunodeficient mice. Immunotherapy 2022; 14:1383-1392. [PMID: 36468406 DOI: 10.2217/imt-2021-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: To investigate the potential of human growth hormone (hGH) to improve human hematopoietic reconstitution in humanized mice. Materials & methods: Immunodeficient mice were conditioned by total body irradiation and transplanted with human CD34+ fetal liver cells. Peripheral blood, spleen and bone marrow were harvested, and levels of human lymphohematopoietic cells were determined by flow cytometry. Results: Supplementation with hGH elevated human lymphohematopoietic chimerism by more than twofold. Treatment with hGH resulted in significantly increased reconstitution of human B cells and myeloid cells in lymphoid organs, enhanced human erythropoiesis in the bone morrow, and improved engraftment of human hematopoietic stem cells. Conclusion: hGH supplementation promotes human lymphohematopoietic reconstitution in humanized mice.
Collapse
Affiliation(s)
- Siwen Zhang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China
| | - Guixia Wang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China
| | - Yanan Lyu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China
| | - Huimin Tian
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China
| | - Chang Shu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China
| | - Bing Chen
- China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Wei Fan
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China
| | - Wenshu Xu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China
| | - Yanhong Shan
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China
| | - Jin He
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China.,International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China
| | - Liguang Sun
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China
| |
Collapse
|
32
|
Zhang R, Zhang J, Zhou X, Zhao A, Yu C. The establishment and application of CD3E humanized mice in immunotherapy. Exp Anim 2022; 71:442-450. [PMID: 35570001 PMCID: PMC9671771 DOI: 10.1538/expanim.22-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/13/2022] [Indexed: 07/22/2024] Open
Abstract
In the field of cancer immunotherapy, monoclonal antibody drugs, bispecific antibodies, and antibody-conjugated drugs have become the focus of current research, and gene-edited animal models play an essential role in the entire drug development process. In this study, CD3E humanized mice were established by replacing the second to the seventh exon of the Cd3e mouse gene with the same exon of the human gene. The expression of human CD3E in CD3E humanized mice was detected by RT-PCR as well as flow cytometry, also a tumor model was established based on CD3E humanized mice, and the pharmacodynamic effects of CD3E monoclonal antibodies were evaluated. The results showed that CD3E humanized mice expressed only human CD3E, and the proportion of each lymphocyte in the thymus and spleen was not significantly changed compared with wild-type mice. CD3E monoclonal antibody could promote tumor growth after treatment, which may be related to the activation-induced cell death effect caused by this CD3E antibody. In contrast, Bispecific antibody blinatumomab inhibited tumor growth significantly. Thus, the CD3E humanized mice provided an adequate animal model for evaluating the efficacy and safety of CD3E antibody drugs.
Collapse
Affiliation(s)
- Rufeng Zhang
- College of life science and technology, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P.R. China
| | - Jing Zhang
- Biocytogen Pharmaceuticals (Beijing) Co., Ltd., 12 Baoshen South Street, Daxing District,102609, Beijing, P.R. China
| | - Xiaofei Zhou
- Biocytogen Pharmaceuticals (Beijing) Co., Ltd., 12 Baoshen South Street, Daxing District,102609, Beijing, P.R. China
| | - Ang Zhao
- Biocytogen Pharmaceuticals (Beijing) Co., Ltd., 12 Baoshen South Street, Daxing District,102609, Beijing, P.R. China
| | - Changyuan Yu
- College of life science and technology, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P.R. China
| |
Collapse
|
33
|
Lang J, Leal AD, Marín-Jiménez JA, Hartman SJ, Shulman J, Navarro NM, Lewis MS, Capasso A, Bagby SM, Yacob BW, MacBeth M, Freed BM, Eckhardt SG, Jordan K, Blatchford PJ, Pelanda R, Lieu CH, Messersmith WA, Pitts TM. Cabozantinib sensitizes microsatellite stable colorectal cancer to immune checkpoint blockade by immune modulation in human immune system mouse models. Front Oncol 2022; 12:877635. [PMID: 36419897 PMCID: PMC9676436 DOI: 10.3389/fonc.2022.877635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/17/2022] [Indexed: 12/23/2023] Open
Abstract
Immune checkpoint inhibitors have been found to be effective in metastatic MSI-high colorectal cancers (CRC), however, have no efficacy in microsatellite stable (MSS) cancers, which comprise the majority of mCRC cases. Cabozantinib is a small molecule multi-tyrosine kinase inhibitor that is FDA approved in advanced renal cell, medullary thyroid, and hepatocellular carcinoma. Using Human Immune System (HIS) mice, we tested the ability of cabozantinib to prime MSS-CRC tumors to enhance the potency of immune checkpoint inhibitor nivolumab. In four independent experiments, we implanted distinct MSS-CRC patient-derived xenografts (PDXs) into the flanks of humanized BALB/c-Rag2nullIl2rγnullSirpαNOD (BRGS) mice that had been engrafted with human hematopoietic stem cells at birth. For each PDX, HIS-mice cohorts were treated with vehicle, nivolumab, cabozantinib, or the combination. In three out of the four models, the combination had a lower tumor growth rate compared to vehicle or nivolumab-treated groups. Furthermore, interrogation of the HIS in immune organs and tumors by flow cytometry revealed increased Granzyme B+, TNFα+ and IFNγ+ CD4+ T cells among the human tumor infiltrating leukocytes (TIL) that correlated with reduced tumor growth in the combination-treated HIS-mice. Notably, slower growth correlated with increased expression of the CD4+ T cell ligand, HLA-DR, on the tumor cells themselves. Finally, the cabozantinib/nivolumab combination was tested in comparison to cobimetinib/atezolizumab. Although both combinations showed tumor growth inhibition, cabozantinib/nivolumab had enhanced cytotoxic IFNγ and TNFα+ T cells. This pre-clinical in vivo data warrants testing the combination in clinical trials for patients with MSS-CRC.
Collapse
Affiliation(s)
- Julie Lang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Alexis D. Leal
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Juan A. Marín-Jiménez
- Department of Medical Oncology, Catalan Institute of Oncology (ICO-L´Hospitalet), Barcelona, Spain
| | - Sarah J. Hartman
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jeremy Shulman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Natalie M. Navarro
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Matthew S. Lewis
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Anna Capasso
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | - Stacey M. Bagby
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Bethlehem W. Yacob
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Morgan MacBeth
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Brian M. Freed
- Division of Allergy and Clinical Immunology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - S. Gail Eckhardt
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | - Kimberly Jordan
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Patrick J. Blatchford
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, United States
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Christopher H. Lieu
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Wells A. Messersmith
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Todd M. Pitts
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
34
|
Zheng Y, Sefik E, Astle J, Karatepe K, Öz HH, Solis AG, Jackson R, Luo HR, Bruscia EM, Halene S, Shan L, Flavell RA. Human neutrophil development and functionality are enabled in a humanized mouse model. Proc Natl Acad Sci U S A 2022; 119:e2121077119. [PMID: 36269862 PMCID: PMC9618085 DOI: 10.1073/pnas.2121077119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/09/2022] [Indexed: 02/03/2023] Open
Abstract
Mice with a functional human immune system serve as an invaluable tool to study the development and function of the human immune system in vivo. A major technological limitation of all current humanized mouse models is the lack of mature and functional human neutrophils in circulation and tissues. To overcome this, we generated a humanized mouse model named MISTRGGR, in which the mouse granulocyte colony-stimulating factor (G-CSF) was replaced with human G-CSF and the mouse G-CSF receptor gene was deleted in existing MISTRG mice. By targeting the G-CSF cytokine-receptor axis, we dramatically improved the reconstitution of mature circulating and tissue-infiltrating human neutrophils in MISTRGGR mice. Moreover, these functional human neutrophils in MISTRGGR are recruited upon inflammatory and infectious challenges and help reduce bacterial burden. MISTRGGR mice represent a unique mouse model that finally permits the study of human neutrophils in health and disease.
Collapse
Affiliation(s)
- Yunjiang Zheng
- Department of Immunobiology, Yale University, New Haven, CT 06520
| | - Esen Sefik
- Department of Immunobiology, Yale University, New Haven, CT 06520
| | - John Astle
- Department of Immunobiology, Yale University, New Haven, CT 06520
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Kutay Karatepe
- Department of Cell Biology, Yale University, New Haven, CT 06520
- Yale Stem Cell Center, Yale University, New Haven, CT 06520
| | - Hasan H. Öz
- Section of Pediatric Pulmonology, Allergy, Immunology & Sleep Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Angel G. Solis
- Department of Immunobiology, Yale University, New Haven, CT 06520
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ruaidhrí Jackson
- Department of Immunobiology, Yale University, New Haven, CT 06520
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Hongbo R. Luo
- Department of Laboratory Medicine, The Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Emanuela M. Bruscia
- Section of Pediatric Pulmonology, Allergy, Immunology & Sleep Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06520
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520
| | - Liang Shan
- Department of Immunobiology, Yale University, New Haven, CT 06520
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Richard A. Flavell
- Department of Immunobiology, Yale University, New Haven, CT 06520
- Howard Hughes Medical Institute (HHMI), New Haven, CT 06520
| |
Collapse
|
35
|
Chen J, Liao S, Xiao Z, Pan Q, Wang X, Shen K, Wang S, Yang L, Guo F, Liu HF, Pan Q. The development and improvement of immunodeficient mice and humanized immune system mouse models. Front Immunol 2022; 13:1007579. [PMID: 36341323 PMCID: PMC9626807 DOI: 10.3389/fimmu.2022.1007579] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
Animal models play an indispensable role in the study of human diseases. However, animal models of different diseases do not fully mimic the complex internal environment of humans. Immunodeficient mice are deficient in certain genes and do not express these or show reduced expression in some of their cells, facilitating the establishment of humanized mice and simulation of the human environment in vivo. Here, we summarize the developments in immunodeficient mice, from the initial nude mice lacking T lymphocytes to NOD/SCID rgnull mice lacking T, B, and NK cell populations. We describe existing humanized immune system mouse models based on immunodeficient mice in which human cells or tissues have been transplanted to establish a human immune system, including humanized-peripheral blood mononuclear cells (Hu-PBMCs), humanized hematopoietic stem cells (Hu-HSCs), and humanized bone marrow, liver, thymus (Hu-BLT) mouse models. The different methods for their development involve varying levels of complexity and humanization. Humanized mice are widely used in the study of various diseases to provide a transitional stage for clinical research. However, several challenges persist, including improving the efficiency of reconstructing the human B cell immune response, extending lifespan, improving the survival rate of mice to extend the observation period, and improving the development of standardized commercialized models and as well as their use. Overall, there are many opportunities and challenges in the development of humanized immune system mouse models which can provide novel strategies for understanding the mechanisms and treatments of human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qingjun Pan
- *Correspondence: Hua-feng Liu, ; Qingjun Pan,
| |
Collapse
|
36
|
Zanella ER, Grassi E, Trusolino L. Towards precision oncology with patient-derived xenografts. Nat Rev Clin Oncol 2022; 19:719-732. [PMID: 36151307 DOI: 10.1038/s41571-022-00682-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 11/09/2022]
Abstract
Under the selective pressure of therapy, tumours dynamically evolve multiple adaptive mechanisms that make static interrogation of genomic alterations insufficient to guide treatment decisions. Clinical research does not enable the assessment of how various regulatory circuits in tumours are affected by therapeutic insults over time and space. Likewise, testing different precision oncology approaches informed by composite and ever-changing molecular information is hard to achieve in patients. Therefore, preclinical models that incorporate the biology and genetics of human cancers, facilitate analyses of complex variables and enable adequate population throughput are needed to pinpoint randomly distributed response predictors. Patient-derived xenograft (PDX) models are dynamic entities in which cancer evolution can be monitored through serial propagation in mice. PDX models can also recapitulate interpatient diversity, thus enabling the identification of response biomarkers and therapeutic targets for molecularly defined tumour subgroups. In this Review, we discuss examples from the past decade of the use of PDX models for precision oncology, from translational research to drug discovery. We elaborate on how and to what extent preclinical observations in PDX models have confirmed and/or anticipated findings in patients. Finally, we illustrate emerging methodological efforts that could broaden the application of PDX models by honing their predictive accuracy or improving their versatility.
Collapse
Affiliation(s)
| | - Elena Grassi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Candiolo, Italy
| | - Livio Trusolino
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Italy. .,Department of Oncology, University of Torino, Candiolo, Italy.
| |
Collapse
|
37
|
Medetgul-Ernar K, Davis MM. Standing on the shoulders of mice. Immunity 2022; 55:1343-1353. [PMID: 35947979 PMCID: PMC10035762 DOI: 10.1016/j.immuni.2022.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 01/13/2023]
Abstract
While inbred mice have informed most of what we know about the immune system in the modern era, they have clear limitations with respect to their ability to be informative regarding genetic heterogeneity or microbial influences. They have also not been very predictive as models of human disease or vaccination results. Although there are concerted attempts to compensate for these flaws, the rapid rise of human studies, driven by both technical and conceptual advances, promises to fill in these gaps, as well as provide direct information about human diseases and vaccination responses. Work on human immunity has already provided important additional perspectives on basic immunology such as the importance of clonal deletion to self-tolerance, and while many challenges remain, it seems inevitable that "the human model" will continue to inform us about the immune system and even allow for the discovery of new mechanisms.
Collapse
Affiliation(s)
- Kwat Medetgul-Ernar
- Immunology Program, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Mark M Davis
- Howard Hughes Medical Institute, Institute for Immunity, Transplantation and Infection, Department of Microbiology and Immunology, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| |
Collapse
|
38
|
Rodriguez-Irizarry VJ, Schneider AC, Ahle D, Smith JM, Suarez-Martinez EB, Salazar EA, McDaniel Mims B, Rasha F, Moussa H, Moustaïd-Moussa N, Pruitt K, Fonseca M, Henriquez M, Clauss MA, Grisham MB, Almodovar S. Mice with humanized immune system as novel models to study HIV-associated pulmonary hypertension. Front Immunol 2022; 13:936164. [PMID: 35990658 PMCID: PMC9390008 DOI: 10.3389/fimmu.2022.936164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
People living with HIV and who receive antiretroviral therapy have a significantly improved lifespan, compared to the early days without therapy. Unfortunately, persisting viral replication in the lungs sustains chronic inflammation, which may cause pulmonary vascular dysfunction and ultimate life-threatening Pulmonary Hypertension (PH). The mechanisms involved in the progression of HIV and PH remain unclear. The study of HIV-PH is limited due to the lack of tractable animal models that recapitulate infection and pathobiological aspects of PH. On one hand, mice with humanized immune systems (hu-mice) are highly relevant to HIV research but their suitability for HIV-PH research deserves investigation. On another hand, the Hypoxia-Sugen is a well-established model for experimental PH that combines hypoxia with the VEGF antagonist SU5416. To test the suitability of hu-mice, we combined HIV with either SU5416 or hypoxia. Using right heart catheterization, we found that combining HIV+SU5416 exacerbated PH. HIV infection increases human pro-inflammatory cytokines in the lungs, compared to uninfected mice. Histopathological examinations showed pulmonary vascular inflammation with arterial muscularization in HIV-PH. We also found an increase in endothelial-monocyte activating polypeptide II (EMAP II) when combining HIV+SU5416. Therefore, combinations of HIV with SU5416 or hypoxia recapitulate PH in hu-mice, creating well-suited models for infectious mechanistic pulmonary vascular research in small animals.
Collapse
Affiliation(s)
- Valerie J. Rodriguez-Irizarry
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States,Department of Biology, University of Puerto Rico in Ponce, Ponce, PR, United States
| | - Alina C. Schneider
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Daniel Ahle
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Justin M. Smith
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Ethan A. Salazar
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brianyell McDaniel Mims
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Fahmida Rasha
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Hanna Moussa
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Naima Moustaïd-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Marcelo Fonseca
- Program of Physiology and Biophysics, University of Chile, Santiago, Chile
| | - Mauricio Henriquez
- Program of Physiology and Biophysics, University of Chile, Santiago, Chile
| | - Matthias A. Clauss
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University, Indianapolis, IN, United States
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Sharilyn Almodovar
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,*Correspondence: Sharilyn Almodovar,
| |
Collapse
|
39
|
Voillet V, Berger TR, McKenna KM, Paulson KG, Tan WH, Smythe KS, Hunter DS, Valente WJ, Weaver S, Campbell JS, Kim TS, Byrd DR, Bielas JH, Pierce RH, Chapuis AG, Gottardo R, Rongvaux A. An In Vivo Model of Human Macrophages in Metastatic Melanoma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:606-620. [PMID: 35817516 PMCID: PMC9377377 DOI: 10.4049/jimmunol.2101109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
Despite recent therapeutic progress, advanced melanoma remains lethal for many patients. The composition of the immune tumor microenvironment (TME) has decisive impacts on therapy response and disease outcome, and high-dimensional analyses of patient samples reveal the heterogeneity of the immune TME. Macrophages infiltrate TMEs and generally associate with tumor progression, but the underlying mechanisms are incompletely understood. Because experimental systems are needed to elucidate the functional properties of these cells, we developed a humanized mouse model reconstituted with human immune cells and human melanoma. We used two strains of recipient mice, supporting or not supporting the development of human myeloid cells. We found that human myeloid cells favored metastatic spread of the primary tumor, thereby recapitulating the cancer-supportive role of macrophages. We next analyzed the transcriptome of human immune cells infiltrating tumors versus other tissues. This analysis identified a cluster of myeloid cells present in the TME, but not in other tissues, which do not correspond to canonical M2 cells. The transcriptome of these cells is characterized by high expression of glycolytic enzymes and multiple chemokines and by low expression of gene sets associated with inflammation and adaptive immunity. Compared with humanized mouse results, we found transcriptionally similar myeloid cells in patient-derived samples of melanoma and other cancer types. The humanized mouse model described here thus complements patient sample analyses, enabling further elucidation of fundamental principles in melanoma biology beyond M1/M2 macrophage polarization. The model can also support the development and evaluation of candidate antitumor therapies.
Collapse
Affiliation(s)
- Valentin Voillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Cape Town HIV Vaccine Trials Network Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town, South Africa
| | - Trisha R Berger
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Kelly M McKenna
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA
- Medical Scientist Training Program, University of Washington, Seattle, WA
| | - Kelly G Paulson
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Wei Hong Tan
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Kimberly S Smythe
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Daniel S Hunter
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - William J Valente
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA
- Medical Scientist Training Program, University of Washington, Seattle, WA
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Stephanie Weaver
- Experimental Histopathology, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jean S Campbell
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA
| | - Teresa S Kim
- Department of Surgery, University of Washington, Seattle, WA
| | - David R Byrd
- Department of Surgery, University of Washington, Seattle, WA
| | - Jason H Bielas
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA
| | - Robert H Pierce
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Aude G Chapuis
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Raphaël Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Biostatistics, University of Washington, Seattle, WA; and
| | - Anthony Rongvaux
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA;
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
40
|
Gao Y, Alisjahbana A, Boey DZH, Mohammad I, Sleiers N, Dahlin JS, Willinger T. A single-cell map of vascular and tissue lymphocytes identifies proliferative TCF-1+ human innate lymphoid cells. Front Immunol 2022; 13:902881. [PMID: 35967297 PMCID: PMC9364238 DOI: 10.3389/fimmu.2022.902881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Innate lymphoid cells (ILCs) play important roles in tissue homeostasis and host defense, but the proliferative properties and migratory behavior of especially human ILCs remain poorly understood. Here we mapped at single-cell resolution the spatial distribution of quiescent and proliferative human ILCs within the vascular versus tissue compartment. For this purpose, we employed MISTRG humanized mice as an in-vivo model to study human ILCs. We uncovered subset-specific differences in the proliferative status between vascular and tissue ILCs within lymphoid and non-lymphoid organs. We also identified CD117-CRTH2-CD45RA+ ILCs in the spleen that were highly proliferative and expressed the transcription factor TCF-1. These proliferative ILCs were present during the neonatal period in human blood and emerged early during population of the human ILC compartment in MISTRG mice transplanted with human hematopoietic stem and progenitor cells (HSPCs). Single-cell RNA-sequencing combined with intravascular cell labeling suggested that proliferative ILCs actively migrated from the local vasculature into the spleen tissue. Collectively, our comprehensive map reveals the proliferative topography of human ILCs, linking cell migration and spatial compartmentalization with cell division.
Collapse
Affiliation(s)
- Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Arlisa Alisjahbana
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Daryl Zhong Hao Boey
- Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Imran Mohammad
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Natalie Sleiers
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Joakim S. Dahlin
- Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tim Willinger
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- *Correspondence: Tim Willinger,
| |
Collapse
|
41
|
Tan S, Fang M, Fan W, Wang Z, Lv Y, Zou J, Wang X, Liu B, Yang YG, Hu Z. Improvement of human myeloid and natural killer cell development in humanized mice via hydrodynamic injection of transposon plasmids containing multiple human cytokine genes. Immunol Cell Biol 2022; 100:624-635. [PMID: 35662247 DOI: 10.1111/imcb.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/12/2021] [Accepted: 06/03/2022] [Indexed: 11/29/2022]
Abstract
Humanized mice reconstituted with a functional human immune system (HIS) are instrumental in studying human immunity and immune disorders in vivo. The poor or lack of cross-reactivity between mouse cytokines and human cells limits the development and/or function of human immune cell subsets including human myeloid, natural killer and B cells. Here we explored the potential to achieve long-term production of human cytokines in immunodeficient mice using a transposon-plasmid-based hydrodynamic injection approach. We constructed a transposon-plasmid carrying five human cytokine coding sequences (named PB-5F), and observed that four of the cytokines (granulocyte-macrophage colony-stimulating factor, interleukin (IL)-15, IL-6 and IL-3) were detectable in sera and three (granulocyte-macrophage colony-stimulating factor, IL-15 and IL-6) showed long-term production in immunodeficient mice that received a single hydrodynamic injection of PB-5F plus the transposase plasmid (Super PB). Furthermore, a single injection of PB-5F/Super PB markedly enhanced the reconstitution of human myeloid cells and natural killer cells, and promoted human B-cell maturation in HIS mice. Taken together, our data revealed that hydrodynamic injection of the PB-5F/Super PB vectors may serve as a convenient and efficacious means to promote human immune function in HIS mice.
Collapse
Affiliation(s)
- Shulian Tan
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Minghui Fang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Wei Fan
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Zhaowei Wang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Yanan Lv
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Jun Zou
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xue Wang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
42
|
Sefik E, Israelow B, Mirza H, Zhao J, Qu R, Kaffe E, Song E, Halene S, Meffre E, Kluger Y, Nussenzweig M, Wilen CB, Iwasaki A, Flavell RA. A humanized mouse model of chronic COVID-19. Nat Biotechnol 2022; 40:906-920. [PMID: 34921308 PMCID: PMC9203605 DOI: 10.1038/s41587-021-01155-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease that can present as an uncontrolled, hyperactive immune response, causing severe immunological injury. Existing rodent models do not recapitulate the sustained immunopathology of patients with severe disease. Here we describe a humanized mouse model of COVID-19 that uses adeno-associated virus to deliver human ACE2 to the lungs of humanized MISTRG6 mice. This model recapitulates innate and adaptive human immune responses to severe acute respiratory syndrome coronavirus 2 infection up to 28 days after infection, with key features of chronic COVID-19, including weight loss, persistent viral RNA, lung pathology with fibrosis, a human inflammatory macrophage response, a persistent interferon-stimulated gene signature and T cell lymphopenia. We used this model to study two therapeutics on immunopathology, patient-derived antibodies and steroids and found that the same inflammatory macrophages crucial to containing early infection later drove immunopathology. This model will enable evaluation of COVID-19 disease mechanisms and treatments.
Collapse
Affiliation(s)
- Esen Sefik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Benjamin Israelow
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Haris Mirza
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Jun Zhao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Rihao Qu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Eleanna Kaffe
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Eric Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie Halene
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Michel Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Craig B Wilen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
43
|
Donnadieu E, Luu M, Alb M, Anliker B, Arcangeli S, Bonini C, De Angelis B, Choudhary R, Espie D, Galy A, Holland C, Ivics Z, Kantari-Mimoun C, Kersten MJ, Köhl U, Kuhn C, Laugel B, Locatelli F, Marchiq I, Markman J, Moresco MA, Morris E, Negre H, Quintarelli C, Rade M, Reiche K, Renner M, Ruggiero E, Sanges C, Stauss H, Themeli M, Van den Brulle J, Hudecek M, Casucci M. Time to evolve: predicting engineered T cell-associated toxicity with next-generation models. J Immunother Cancer 2022; 10:jitc-2021-003486. [PMID: 35577500 PMCID: PMC9115021 DOI: 10.1136/jitc-2021-003486] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Despite promising clinical results in a small subset of malignancies, therapies based on engineered chimeric antigen receptor and T-cell receptor T cells are associated with serious adverse events, including cytokine release syndrome and neurotoxicity. These toxicities are sometimes so severe that they significantly hinder the implementation of this therapeutic strategy. For a long time, existing preclinical models failed to predict severe toxicities seen in human clinical trials after engineered T-cell infusion. However, in recent years, there has been a concerted effort to develop models, including humanized mouse models, which can better recapitulate toxicities observed in patients. The Accelerating Development and Improving Access to CAR and TCR-engineered T cell therapy (T2EVOLVE) consortium is a public–private partnership directed at accelerating the preclinical development and increasing access to engineered T-cell therapy for patients with cancer. A key ambition in T2EVOLVE is to design new models and tools with higher predictive value for clinical safety and efficacy, in order to improve and accelerate the selection of lead T-cell products for clinical translation. Herein, we review existing preclinical models that are used to test the safety of engineered T cells. We will also highlight limitations of these models and propose potential measures to improve them.
Collapse
Affiliation(s)
| | - Maik Luu
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Miriam Alb
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Brigitte Anliker
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Silvia Arcangeli
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, Milan, Italy.,Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Biagio De Angelis
- Department of Pediatric Hematology and Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Sapienza University of Rome, Rome, Italy
| | - Rashmi Choudhary
- Takeda Development Centers Americas, Inc, Lexington, Massachusetts, USA
| | - David Espie
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France.,CAR-T Cells Department, Invectys, Paris, France
| | - Anne Galy
- Accelerator of Technological Research in Genomic Therapy, INSERM US35, Corbeil-Essonnes, France
| | - Cam Holland
- Janssen Research and Development LLC, Spring House, PA, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Marie Jose Kersten
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Chantal Kuhn
- Takeda Development Centers Americas, Inc, Lexington, Massachusetts, USA
| | - Bruno Laugel
- Institut de Recherches Servier, Croissy sur seine, France
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Sapienza University of Rome, Rome, Italy
| | | | - Janet Markman
- Takeda Development Centers Americas, Inc, Lexington, Massachusetts, USA
| | - Marta Angiola Moresco
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Emma Morris
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Helene Negre
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Concetta Quintarelli
- Department of Pediatric Hematology and Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Sapienza University of Rome, Rome, Italy
| | - Michael Rade
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Kristin Reiche
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Matthias Renner
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmen Sanges
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Hans Stauss
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Maria Themeli
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Monica Casucci
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
44
|
Oswald E, Bug D, Grote A, Lashuk K, Bouteldja N, Lenhard D, Löhr A, Behnke A, Knauff V, Edinger A, Klingner K, Gaedicke S, Niedermann G, Merhof D, Feuerhake F, Schueler J. Immune cell infiltration pattern in non-small cell lung cancer PDX models is a model immanent feature and correlates with a distinct molecular and phenotypic make-up. J Immunother Cancer 2022; 10:jitc-2021-004412. [PMID: 35483746 PMCID: PMC9052060 DOI: 10.1136/jitc-2021-004412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The field of cancer immunology is rapidly moving towards innovative therapeutic strategies, resulting in the need for robust and predictive preclinical platforms reflecting the immunological response to cancer. Well characterized preclinical models are essential for the development of predictive biomarkers in the oncology as well as the immune-oncology space. In the current study, gold standard preclinical models are being refined and combined with novel image analysis tools to meet those requirements. METHODS A panel of 14 non-small cell lung cancer patient-derived xenograft models (NSCLC PDX) was propagated in humanized NOD/Shi-scid/IL-2Rnull mice. The models were comprehensively characterized for relevant phenotypic and molecular features, including flow cytometry, immunohistochemistry, histology, whole exome sequencing and cytokine secretion. RESULTS Models reflecting hot (>5% tumor-infiltrating lymphocytes/TILs) as opposed to cold tumors (<5% TILs) significantly differed regarding their cytokine profiles, molecular genetic aberrations, stroma content, and programmed cell death ligand-1 status. Treatment experiments including anti cytotoxic T-lymphocyte-associated protein 4, anti-programmed cell death 1 or the combination thereof across all 14 models in the single mouse trial format showed distinctive tumor growth response and spatial immune cell patterns as monitored by computerized analysis of digitized whole-slide images. Image analysis provided for the first time qualitative evaluation of the extent to which PDX models retain the histological features from their original human donors. CONCLUSIONS Deep phenotyping of PDX models in a humanized setting by combinations of computational pathology, immunohistochemistry, flow cytometry and proteomics enables the exhaustive analysis of innovative preclinical models and paves the way towards the development of translational biomarkers for immuno-oncology drugs.
Collapse
Affiliation(s)
- Eva Oswald
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Daniel Bug
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Anne Grote
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Kanstantsin Lashuk
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Nassim Bouteldja
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Dorothee Lenhard
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Anne Löhr
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Anke Behnke
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Volker Knauff
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Anna Edinger
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Kerstin Klingner
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| | - Simone Gaedicke
- Department of Radiation Oncology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Freiburg, Germany.,German Cancer Consortium, Heidelberg, Germany
| | - Dorit Merhof
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | | | - Julia Schueler
- Charles River Discovery Research Services Gemany GmbH, Charles River Laboratories Inc, Freiburg, Germany
| |
Collapse
|
45
|
Gbyli R, Song Y, Liu W, Gao Y, Biancon G, Chandhok NS, Wang X, Fu X, Patel A, Sundaram R, Tebaldi T, Mamillapalli P, Zeidan AM, Flavell RA, Prebet T, Bindra RS, Halene S. In vivo anti-tumor effect of PARP inhibition in IDH1/2 mutant MDS/AML resistant to targeted inhibitors of mutant IDH1/2. Leukemia 2022; 36:1313-1323. [PMID: 35273342 PMCID: PMC9103411 DOI: 10.1038/s41375-022-01536-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022]
Abstract
Treatment options for patients with relapsed/ refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such as mutations in isocitrate dehydrogenase-1 and −2 (IDH1/2) are found in subsets of AML and MDS, are therapeutically targeted by mutant enzyme-specific small molecule inhibitors (IDHmi). IDH mutations induce diverse metabolic and epigenetic changes that drive malignant transformation. IDHmi alone are not curative and resistance commonly develops, underscoring the importance of alternate therapeutic options. We were first to report that IDH1/2 mutations induce a homologous recombination (HR) defect which confers sensitivity to poly (ADP)-ribose polymerase inhibitors (PARPi). Here, we show that the PARPi olaparib is effective against primary patient-derived IDH1/2-mutant AML/ MDS xeno-grafts (PDXs). Olaparib efficiently reduced overall engraftment and leukemia-initiating cell frequency as evident in serial transplantation assays in IDH1/2-mutant but not -wildtype AML/MDS PDXs. Importantly, we show that olaparib is effective in both IDHmi-naïve and -resistant AML PDXs, critical given the high relapse and refractoriness rates to IDHmi. Our pre-clinical studies provide a strong rationale for the translation of PARP inhibition to patients with IDH1/2-mutant AML/ MDS, providing an additional line of therapy for patients who do not respond to or relapse after targeted mutant IDH inhibition.
Collapse
Affiliation(s)
- Rana Gbyli
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yuanbin Song
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA. .,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510062, China.
| | - Wei Liu
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yimeng Gao
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Giulia Biancon
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Namrata S Chandhok
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA.,Section of Hematology, Department of Internal Medicine, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Xiaman Wang
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA.,Department of Hematology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. of China
| | - Xiaoying Fu
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA.,Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen, P. R. of China
| | - Amisha Patel
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ranjini Sundaram
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA
| | - Toma Tebaldi
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA.,Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, 38121, Italy
| | - Padmavathi Mamillapalli
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| | - Thomas Prebet
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA.,Department of Pathology, Yale University, New Haven, CT, 06520, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA. .,Department of Pathology, Yale University, New Haven, CT, 06520, USA. .,Yale Stem Cell Center and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
46
|
Georgiev P, Muise ES, Linn DE, Hinton MC, Wang Y, Cai M, Cadzow L, Wilson DC, Sukumar S, Caniga M, Chen L, Xiao H, Yearley JH, Sriram V, Nebozhyn M, Sathe M, Blumenschein WM, Kerr KS, Hirsch HA, Javaid S, Olow AK, Moy LY, Chiang DY, Loboda A, Cristescu R, Sadekova S, Long BJ, McClanahan TK, Pinheiro EM. Reverse Translating Molecular Determinants of Anti-Programmed Death 1 Immunotherapy Response in Mouse Syngeneic Tumor Models. Mol Cancer Ther 2022; 21:427-439. [PMID: 34965960 PMCID: PMC9377732 DOI: 10.1158/1535-7163.mct-21-0561] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/22/2021] [Accepted: 12/22/2021] [Indexed: 01/07/2023]
Abstract
Targeting the programmed death 1/programmed death ligand 1 (PD-1/PD-L1) pathway with immunotherapy has revolutionized the treatment of many cancers. Somatic tumor mutational burden (TMB) and T-cell-inflamed gene expression profile (GEP) are clinically validated pan-tumor genomic biomarkers that can predict responsiveness to anti-PD-1/PD-L1 monotherapy in many tumor types. We analyzed the association between these biomarkers and the efficacy of PD-1 inhibitor in 11 commonly used preclinical syngeneic tumor mouse models using murinized rat anti-mouse PD-1 DX400 antibody muDX400, a surrogate for pembrolizumab. Response to muDX400 treatment was broadly classified into three categories: highly responsive, partially responsive, and intrinsically resistant to therapy. Molecular and cellular profiling validated differences in immune cell infiltration and activation in the tumor microenvironment of muDX400-responsive tumors. Baseline and on-treatment genomic analysis showed an association between TMB, murine T-cell-inflamed gene expression profile (murine-GEP), and response to muDX400 treatment. We extended our analysis to investigate a canonical set of cancer and immune biology-related gene signatures, including signatures of angiogenesis, myeloid-derived suppressor cells, and stromal/epithelial-to-mesenchymal transition/TGFβ biology previously shown to be inversely associated with the clinical efficacy of immune checkpoint blockade. Finally, we evaluated the association between murine-GEP and preclinical efficacy with standard-of-care chemotherapy or antiangiogenic agents that previously demonstrated promising clinical activity, in combination with muDX400. Our profiling studies begin to elucidate the underlying biological mechanisms of response and resistance to PD-1/PD-L1 blockade represented by these models, thereby providing insight into which models are most appropriate for the evaluation of orthogonal combination strategies.
Collapse
Affiliation(s)
- Peter Georgiev
- Department of Discovery Oncology, Merck & Co., Inc., Kenilworth, New Jersey
| | - Eric S. Muise
- Department of Genome and Biomarker Sciences, Merck & Co., Inc., Kenilworth, New Jersey
| | - Douglas E. Linn
- Department of Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey
| | - Marlene C. Hinton
- Department of Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey
| | - Yun Wang
- Department of Discovery Oncology, Merck & Co., Inc., Kenilworth, New Jersey
| | - Mingmei Cai
- Department of Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey
| | - Louise Cadzow
- Department of Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey
| | - Douglas C. Wilson
- Department of Genome and Biomarker Sciences, Merck & Co., Inc., Kenilworth, New Jersey
| | - Selvakumar Sukumar
- Department of Discovery Oncology, Merck & Co., Inc., Kenilworth, New Jersey
| | - Michael Caniga
- Department of Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey
| | - Lan Chen
- Department of Informatics IT, Merck & Co., Inc., Kenilworth, New Jersey
| | - Hui Xiao
- Department of Informatics IT, Merck & Co., Inc., Kenilworth, New Jersey
| | - Jennifer H. Yearley
- Department of Genome and Biomarker Sciences, Merck & Co., Inc., Kenilworth, New Jersey
| | | | - Michael Nebozhyn
- Department of Genome and Biomarker Sciences, Merck & Co., Inc., Kenilworth, New Jersey
| | - Manjiri Sathe
- Department of Genome and Biomarker Sciences, Merck & Co., Inc., Kenilworth, New Jersey
| | - Wendy M. Blumenschein
- Department of Genome and Biomarker Sciences, Merck & Co., Inc., Kenilworth, New Jersey
| | - Kimberly S. Kerr
- Department of Genome and Biomarker Sciences, Merck & Co., Inc., Kenilworth, New Jersey
| | - Heather A. Hirsch
- Department of Genome and Biomarker Sciences, Merck & Co., Inc., Kenilworth, New Jersey
| | - Sarah Javaid
- Department of Genome and Biomarker Sciences, Merck & Co., Inc., Kenilworth, New Jersey
| | - Aleksandra K. Olow
- Department of Genome and Biomarker Sciences, Merck & Co., Inc., Kenilworth, New Jersey
| | - Lily Y. Moy
- Department of Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey
| | - Derek Y. Chiang
- Department of Genome and Biomarker Sciences, Merck & Co., Inc., Kenilworth, New Jersey
| | - Andrey Loboda
- Department of Genome and Biomarker Sciences, Merck & Co., Inc., Kenilworth, New Jersey
| | - Razvan Cristescu
- Department of Genome and Biomarker Sciences, Merck & Co., Inc., Kenilworth, New Jersey
| | - Svetlana Sadekova
- Department of Discovery Oncology, Merck & Co., Inc., Kenilworth, New Jersey
| | - Brian J. Long
- Department of Quantitative Biosciences, Merck & Co., Inc., Kenilworth, New Jersey
| | - Terrill K. McClanahan
- Department of Genome and Biomarker Sciences, Merck & Co., Inc., Kenilworth, New Jersey.,Corresponding Author: Terrill K. McClanahan, Department of Genome and Biomarker Sciences, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033. Phone: 650-518-9161; E-mail:
| | - Elaine M. Pinheiro
- Department of Discovery Oncology, Merck & Co., Inc., Kenilworth, New Jersey
| |
Collapse
|
47
|
Evren E, Ringqvist E, Doisne JM, Thaller A, Sleiers N, Flavell RA, Di Santo JP, Willinger T. CD116+ fetal precursors migrate to the perinatal lung and give rise to human alveolar macrophages. J Exp Med 2022; 219:212959. [PMID: 35019940 PMCID: PMC8759608 DOI: 10.1084/jem.20210987] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 12/27/2022] Open
Abstract
Despite their importance in lung health and disease, it remains unknown how human alveolar macrophages develop early in life. Here we define the ontogeny of human alveolar macrophages from embryonic progenitors in vivo, using a humanized mouse model expressing human cytokines (MISTRG mice). We identified alveolar macrophage progenitors in human fetal liver that expressed the GM-CSF receptor CD116 and the transcription factor MYB. Transplantation experiments in MISTRG mice established a precursor-product relationship between CD34-CD116+ fetal liver cells and human alveolar macrophages in vivo. Moreover, we discovered circulating CD116+CD64-CD115+ macrophage precursors that migrated from the liver to the lung. Similar precursors were present in human fetal lung and expressed the chemokine receptor CX3CR1. Fetal CD116+CD64- macrophage precursors had a proliferative gene signature, outcompeted adult precursors in occupying the perinatal alveolar niche, and developed into functional alveolar macrophages. The discovery of the fetal alveolar macrophage progenitor advances our understanding of human macrophage origin and ontogeny.
Collapse
Affiliation(s)
- Elza Evren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Ringqvist
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jean-Marc Doisne
- Innate Immunity Unit, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1223, Paris, France
| | - Anna Thaller
- Innate Immunity Unit, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1223, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Natalie Sleiers
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT.,Howard Hughes Medical Institute, Chevy Chase, MD
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1223, Paris, France
| | - Tim Willinger
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
48
|
Khosravi-Maharlooei M, Madley R, Borsotti C, Ferreira LMR, Sharp RC, Brehm MA, Greiner DL, Parent AV, Anderson MS, Sykes M, Creusot RJ. Modeling human T1D-associated autoimmune processes. Mol Metab 2022; 56:101417. [PMID: 34902607 PMCID: PMC8739876 DOI: 10.1016/j.molmet.2021.101417] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease characterized by impaired immune tolerance to β-cell antigens and progressive destruction of insulin-producing β-cells. Animal models have provided valuable insights for understanding the etiology and pathogenesis of this disease, but they fall short of reflecting the extensive heterogeneity of the disease in humans, which is contributed by various combinations of risk gene alleles and unique environmental factors. Collectively, these factors have been used to define subgroups of patients, termed endotypes, with distinct predominating disease characteristics. SCOPE OF REVIEW Here, we review the gaps filled by these models in understanding the intricate involvement and regulation of the immune system in human T1D pathogenesis. We describe the various models developed so far and the scientific questions that have been addressed using them. Finally, we discuss the limitations of these models, primarily ascribed to hosting a human immune system (HIS) in a xenogeneic recipient, and what remains to be done to improve their physiological relevance. MAJOR CONCLUSIONS To understand the role of genetic and environmental factors or evaluate immune-modifying therapies in humans, it is critical to develop and apply models in which human cells can be manipulated and their functions studied under conditions that recapitulate as closely as possible the physiological conditions of the human body. While microphysiological systems and living tissue slices provide some of these conditions, HIS mice enable more extensive analyses using in vivo systems.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Rachel Madley
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Chiara Borsotti
- Department of Health Sciences, Histology laboratory, Università del Piemonte Orientale, Novara, Italy
| | - Leonardo M R Ferreira
- Departments of Microbiology & Immunology, and Regenerative Medicine & Cell Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Robert C Sharp
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Michael A Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Audrey V Parent
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Mark S Anderson
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Remi J Creusot
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
49
|
Wang Y, Wang L, Fu C, Wang X, Zuo S, Shu C, Shan Y, He J, Zhou Q, Li W, Yang YG, Hu Z, Hua S. Exploration of Human Lung-Resident Immunity and Response to Respiratory Viral Immunization in a Humanized Mouse Model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:420-428. [PMID: 34903640 DOI: 10.4049/jimmunol.2100122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
There are urgent needs for humanized mouse models of viral respiratory diseases to study immunopathogenesis and therapeutic interventions. Although human immune system (HIS) mice permit analysis in real time of human immune responses in vivo, evolutionary divergences preclude their usefulness for the respiratory viruses that do not infect mouse lungs. In this study, we sought to use HIS mice with human lung (HL) tissue xenografts (HISL mice) to address this issue. The grafted HL tissue maintained histologically normal structure, and populated with human tissue-resident immune cells, including CD11c+ dendritic cells and CD4+ and CD8+ tissue-resident memory T cells. HISL mice showed a marked expansion of tissue-resident memory T cells and generation of viral Ag-specific T cells in the HL xenografts, and production of antiviral IgM and IgG Abs upon immunization of the HL xenograft by H1N1 influenza viruses. RNA-seq analysis on H1N1-infected and control HL xenografts identified a total of 5089 differentially expressed genes with enrichments for genes involved in respiratory diseases, viral infections, and associated immune responses. Furthermore, prophylactic viral exposures resulted in protection against subsequent lethal challenge by intranasal viral inoculation. This study supports the usefulness of this preclinical model in exploring the immunopathology and therapies of respiratory viral diseases.
Collapse
Affiliation(s)
- Yixin Wang
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Lei Wang
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Cong Fu
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Xue Wang
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Siyao Zuo
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Chang Shu
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Yanhong Shan
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Jin He
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; and
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; and
| | - Yong-Guang Yang
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China;
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Zheng Hu
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China;
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Shucheng Hua
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China;
| |
Collapse
|
50
|
Shan L, Flavell RA, Herndler-Brandstetter D. Development of Humanized Mouse Models for Studying Human NK Cells in Health and Disease. Methods Mol Biol 2022; 2463:53-66. [PMID: 35344167 PMCID: PMC9116980 DOI: 10.1007/978-1-0716-2160-8_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Humanized mice, which we define as immunodeficient mice that have been reconstituted with a human immune system, represent promising preclinical models for translational research and precision medicine as they allow modeling and therapy of human diseases in vivo. The first generation of humanized mice showed insufficient development, diversity and function of human immune cells, in particular human natural killer (NK) cells and type 1 innate lymphoid cells (ILC1). This limited the applicability of humanized mice for studying ILC1 and NK cells in the context of human cancers and immunotherapeutic manipulation. However, since 2014, several next-generation humanized mouse models have been developed that express human IL-15 either as a transgene or knock-in (NOG-IL15, NSG-IL15, NSG-IL7-IL15, SRG-15) or show improved development of human myeloid cells, which express human IL-15 and thereby promote human NK cell development (NSG-SGM3, MISTRG, BRGSF). Here we compare the various next-generation humanized mouse models and describe the methodological procedures for creating mice with a functioning human immune system and how they can be used to study and manipulate human NK cells in health and disease.
Collapse
Affiliation(s)
- Liang Shan
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.
| | - Dietmar Herndler-Brandstetter
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|