1
|
Vijayakumar P, Mishra A, Deka RP, Pinto SM, Subbannayya Y, Sood R, Prasad TSK, Raut AA. Proteomics Analysis of Duck Lung Tissues in Response to Highly Pathogenic Avian Influenza Virus. Microorganisms 2024; 12:1288. [PMID: 39065055 PMCID: PMC11278641 DOI: 10.3390/microorganisms12071288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 07/28/2024] Open
Abstract
Domestic ducks (Anas platyrhynchos domesticus) are resistant to most of the highly pathogenic avian influenza virus (HPAIV) infections. In this study, we characterized the lung proteome and phosphoproteome of ducks infected with the HPAI H5N1 virus (A/duck/India/02CA10/2011/Agartala) at 12 h, 48 h, and 5 days post-infection. A total of 2082 proteins were differentially expressed and 320 phosphorylation sites mapping to 199 phosphopeptides, corresponding to 129 proteins were identified. The functional annotation of the proteome data analysis revealed the activation of the RIG-I-like receptor and Jak-STAT signaling pathways, which led to the induction of interferon-stimulated gene (ISG) expression. The pathway analysis of the phosphoproteome datasets also confirmed the activation of RIG-I, Jak-STAT signaling, NF-kappa B signaling, and MAPK signaling pathways in the lung tissues. The induction of ISG proteins (STAT1, STAT3, STAT5B, STAT6, IFIT5, and PKR) established a protective anti-viral immune response in duck lung tissue. Further, the protein-protein interaction network analysis identified proteins like AKT1, STAT3, JAK2, RAC1, STAT1, PTPN11, RPS27A, NFKB1, and MAPK1 as the main hub proteins that might play important roles in disease progression in ducks. Together, the functional annotation of the proteome and phosphoproteome datasets revealed the molecular basis of the disease progression and disease resistance mechanism in ducks infected with the HPAI H5N1 virus.
Collapse
Affiliation(s)
- Periyasamy Vijayakumar
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Salem 600051, Tamil Nadu, India
| | - Anamika Mishra
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
| | - Ram Pratim Deka
- International Livestock Research Institute, National Agricultural Science Complex, Pusa 110012, New Delhi, India;
| | - Sneha M. Pinto
- Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; (S.M.P.); (Y.S.)
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Yashwanth Subbannayya
- Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; (S.M.P.); (Y.S.)
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Richa Sood
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
| | | | - Ashwin Ashok Raut
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
| |
Collapse
|
2
|
Luz IS, Takaya R, Ribeiro DG, Castro MS, Fontes W. Proteomics: Unraveling the Cross Talk Between Innate Immunity and Disease Pathophysiology, Diagnostics, and Treatment Options. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:221-242. [PMID: 38409424 DOI: 10.1007/978-3-031-50624-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Inflammation is crucial in diseases, and proteins play a key role in the interplay between innate immunity and pathology. This review explores how proteomics helps understanding this relationship, focusing on diagnosis and treatment. We explore the dynamic innate response and the significance of proteomic techniques in deciphering the complex network of proteins involved in prevalent diseases, including infections, cancer, autoimmune and neurodegenerative disorders. Proteomics identifies key proteins in host-pathogen interactions, shedding light on infection mechanisms and inflammation. These discoveries hold promise for diagnostic tools, therapies, and vaccines. In cancer research, proteomics reveals innate signatures associated with tumor development, immune evasion, and therapeutic response. Additionally, proteomic analysis has unveiled autoantigens and dysregulation of the innate immune system in autoimmunity, offering opportunities for early diagnosis, disease monitoring, and new therapeutic targets. Moreover, proteomic analysis has identified altered protein expression patterns in neurodegenerative diseases like Alzheimer's and Parkinson's, providing insights into potential therapeutic strategies. Proteomics of the innate immune system provides a comprehensive understanding of disease mechanisms, identifies biomarkers, and enables effective interventions in various diseases. Despite still in its early stages, this approach holds great promise to revolutionize innate immunity research and significantly improve patient outcomes across a wide range of diseases.
Collapse
Affiliation(s)
- Isabelle Souza Luz
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Raquel Takaya
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Daiane Gonzaga Ribeiro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Mariana S Castro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil.
| |
Collapse
|
3
|
María Irene CC, Juan Germán RC, Gamaliel LL, Dulce Adriana ME, Estela Isabel B, Brenda Nohemí M, Payan Jorge B, Zyanya Lucía ZB, Myriam BDV, Fernanda CG, Adrian OL, Martha Isabel M, Rogelio HP. Profiling the immune response to Mycobacterium tuberculosis Beijing family infection: a perspective from the transcriptome. Virulence 2021; 12:1689-1704. [PMID: 34228582 PMCID: PMC8265813 DOI: 10.1080/21505594.2021.1936432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/24/2021] [Accepted: 05/14/2021] [Indexed: 01/15/2023] Open
Abstract
Tuberculosis continues to be an important public health problem. Particularly considering Beijing-family strains of Mycobacterium tuberculosis, which have been associated with drug-resistance and hypervirulence. The Beijing-like SIT190 (BL) is the most prevalent Beijing strain in Colombia. The pathogenic mechanism and immune response against this pathogen is unknown. Thus, we compared the course of pulmonary TB in BALB/c mice infected with Classical-Beijing strain 391 and BL strain 323. The disease course was different among infected animals with Classical-Beijing and BL strain. Mice infected with BL had a 100% mortality at 45 days post-infection (dpi), with high bacillary loads and massive pneumonia, whereas infected animals with Classical-Beijing survived until 60 dpi and showed extensive pneumonia and necrosis. Lung RNA extraction was carried out at early (day 3 dpi), intermediate (day 14 dpi), and late (days 28 and 60 dpi) time points of infection. Transcriptional analysis of infected mice with Classical-Beijing showed several over-expressed genes, associated with a pro-inflammatory profile, including those for coding for CCL3 and CCL4 chemokines, both biomarkers of disease severity. Conversely, mice infected with BL displayed a profile which included the over-expression of several genes associated with immune-suppression, including Nkiras, Dleu2, and Sphk2, highlighting an anti-inflammatory milieu which would allow high bacterial replication followed by an intense inflammatory response. In summary, both Beijing strains induced a non-protective immune response which induced extensive tissue damage, BL strain induced rapidly extensive pneumonia and death, whereas Classical-Beijing strain produced slower extensive pneumonia later associated with extensive necrosis.
Collapse
Affiliation(s)
- Cerezo-Cortés María Irene
- Universidad Nacional De Colombia, Facultad De Medicina, Departamento De Microbiología, Laboratorio De Micobacterias
| | | | - López-Leal Gamaliel
- Departamento De Microbiología Molecular, Instituto De Biotecnología, Universidad Nacional Autónoma De México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, México
| | - Mata-Espinosa Dulce Adriana
- Sección De Patología Experimental, Departamento De Patología, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Ciudad De México, México
| | - Bini Estela Isabel
- Sección De Patología Experimental, Departamento De Patología, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Ciudad De México, México
| | - Marquina–Casitllo Brenda Nohemí
- Sección De Patología Experimental, Departamento De Patología, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Ciudad De México, México
| | - Barrios Payan Jorge
- Sección De Patología Experimental, Departamento De Patología, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Ciudad De México, México
| | - Zatarain-Barrón Zyanya Lucía
- Sección De Patología Experimental, Departamento De Patología, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Ciudad De México, México
| | - Bobadilla del Valle Myriam
- Departamento De Microbiología Clínica, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán Ciudad De México, México
| | - Cornejo-Granados Fernanda
- Departamento De Microbiología Molecular, Instituto De Biotecnología, Universidad Nacional Autónoma De México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, México
| | - Ochoa-Leyva Adrian
- Departamento De Microbiología Molecular, Instituto De Biotecnología, Universidad Nacional Autónoma De México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, México
| | - Murcia Martha Isabel
- Universidad Nacional De Colombia, Facultad De Medicina, Departamento De Microbiología, Laboratorio De Micobacterias
| | - Hernández-Pando Rogelio
- Sección De Patología Experimental, Departamento De Patología, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Ciudad De México, México
| |
Collapse
|
4
|
Lunazzi G, Buxadé M, Riera-Borrull M, Higuera L, Bonnin S, Huerga Encabo H, Gaggero S, Reyes-Garau D, Company C, Cozzuto L, Ponomarenko J, Aramburu J, López-Rodríguez C. NFAT5 Amplifies Antipathogen Responses by Enhancing Chromatin Accessibility, H3K27 Demethylation, and Transcription Factor Recruitment. THE JOURNAL OF IMMUNOLOGY 2021; 206:2652-2667. [PMID: 34031145 DOI: 10.4049/jimmunol.2000624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
The ability of innate immune cells to respond to pathogen-associated molecular patterns across a wide range of intensities is fundamental to limit the spreading of infections. Studies on transcription responses to pathogen-activated TLRs have often used relatively high TLR ligand concentrations, and less is known about their regulation under mild stimulatory conditions. We had shown that the transcription factor NFAT5 facilitates expression of antipathogen genes under TLR stimulation conditions corresponding to low pathogen loads. In this study, we analyze how NFAT5 optimizes TLR-activated responses in mouse macrophages. We show that NFAT5 was required for effective recruitment of central effectors p65/NF-κB and c-Fos to specific proinflammatory target genes, such as Nos2, Il6, and Tnf in primary macrophages responding to low doses of the TLR4 ligand LPS. By contrast, NFAT5 was not required for p65/NF-κB recruitment in response to high LPS doses. Using the transposase-accessible chromatin with high-throughput sequencing assay, we show that NFAT5 facilitated chromatin accessibility mainly at promoter regions of multiple TLR4-responsive genes. Analysis of various histone marks that regulate gene expression in response to pathogens identified H3K27me3 demethylation as an early NFAT5-dependent mechanism that facilitates p65 recruitment to promoters of various TLR4-induced genes. Altogether, these results advance our understanding about specific mechanisms that optimize antipathogen responses to limit infections.
Collapse
Affiliation(s)
- Giulia Lunazzi
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Maria Buxadé
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Marta Riera-Borrull
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Laura Higuera
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | | | - Hector Huerga Encabo
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Silvia Gaggero
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Diana Reyes-Garau
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | | | | | - Julia Ponomarenko
- Centre for Genomic Regulation, Barcelona, Spain.,Barcelona Institute for Science and Technology, Barcelona, Spain; and.,Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - José Aramburu
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain;
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain;
| |
Collapse
|
5
|
Fulop T, Larbi A, Hirokawa K, Cohen AA, Witkowski JM. Immunosenescence is both functional/adaptive and dysfunctional/maladaptive. Semin Immunopathol 2020; 42:521-536. [PMID: 32930852 PMCID: PMC7490574 DOI: 10.1007/s00281-020-00818-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023]
Abstract
Alterations in the immune system with aging are considered to underlie many age-related diseases. However, many elderly individuals remain healthy until even a very advanced age. There is also an increase in numbers of centenarians and their apparent fitness. We should therefore change our unilaterally detrimental consideration of age-related immune changes. Recent data taking into consideration the immunobiography concept may allow for meaningful distinctions among various aging trajectories. This implies that the aging immune system has a homeodynamic characteristic balanced between adaptive and maladaptive aspects. The survival and health of an individual depends from the equilibrium of this balance. In this article, we highlight which parts of the aging of the immune system may be considered adaptive in contrast to those that may be maladaptive.
Collapse
Affiliation(s)
- T Fulop
- Department of Geriatrics, Faculty of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada.
| | - A Larbi
- Biology of Aging Program and Immunomonitoring Platform, Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, 138648, Singapore
| | - K Hirokawa
- Institute of Health and Life Science, Tokyo and Nito-memory Nakanosogo Hospital, Department of Pathology, Tokyo Med. Dent. University, Tokyo, Japan
| | - A A Cohen
- Department of Family Medicine, Faculty of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - J M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
6
|
Cuevas AG, Ong AD, Carvalho K, Ho T, Chan SW(C, Allen JD, Chen R, Rodgers J, Biba U, Williams DR. Discrimination and systemic inflammation: A critical review and synthesis. Brain Behav Immun 2020; 89:465-479. [PMID: 32688027 PMCID: PMC8362502 DOI: 10.1016/j.bbi.2020.07.017] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022] Open
Abstract
Exposure to discrimination or unfair treatment has emerged as an important risk factor for illness and disease that disproportionately affects racial and ethnic minorities. Discriminatory experiences may operate like other stressors in that they activate physiological responses that adversely affect the maintenance of homeostasis. Research suggests that inflammation plays a critical role in the pathophysiology of stress-related diseases. Recent findings on discrimination and inflammation are discussed. We highlight limitations in the current evidence and provide recommendations for future studies that seek to examine the association between discrimination and inflammation.
Collapse
Affiliation(s)
- Adolfo G. Cuevas
- Department of Community Health, Tufts University, United States,Corresponding author at: Tufts University, Department of Community Health, 574 Boston Ave, Suite 208, Medford, MA 02155, United States. (A.G. Cuevas)
| | - Anthony D. Ong
- Department of Human Development, Cornell University, United States,Department of Medicine, Weill Cornell Medical College, United States
| | - Keri Carvalho
- Department of Community Health, Tufts University, United States
| | - Thao Ho
- Department of Community Health, Tufts University, United States
| | | | | | - Ruijia Chen
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, United States
| | - Justin Rodgers
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, United States
| | - Ursula Biba
- Department of Community Health, Tufts University, United States
| | - David R. Williams
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, United States,Department of African and African American Studies, Harvard University, United States
| |
Collapse
|
7
|
Vila IK, Fretaud M, Vlachakis D, Laguette N, Langevin C. Animal Models for the Study of Nucleic Acid Immunity: Novel Tools and New Perspectives. J Mol Biol 2020; 432:5529-5543. [PMID: 32860771 PMCID: PMC7611023 DOI: 10.1016/j.jmb.2020.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 02/08/2023]
Abstract
Unresolved inflammation fosters and supports a wide range of human pathologies. There is growing evidence for a role played by cytosolic nucleic acids in initiating and supporting pathological chronic inflammation. In particular, the cGAS-STING pathway has emerged as central to the mounting of nucleic acid-dependent type I interferon responses, leading to the identification of small-molecule modulators of STING that have raised clinical interest. However, several new challenges have emerged, representing potential obstacles to efficient clinical translation. Indeed, the current literature underscores that nucleic acid-induced inflammatory responses are subjected to several layers of regulation, further suggesting complex coordination at the cell-type, tissue or organism level. Untangling the underlying processes is paramount to the identification of specific therapeutic strategies targeting deleterious inflammation. Herein, we present an overview of human pathologies presenting with deregulated interferon levels and with accumulation of cytosolic nucleic acids. We focus on the central role of the STING adaptor protein in these pathologies and discuss how in vivo models have forged our current understanding of nucleic acid immunity. We present our opinion on the advantages and limitations of zebrafish and mice models to highlight their complementarity for the study of inflammatory human pathologies and the development of therapeutics. Finally, we discuss high-throughput screening strategies that generate multi-parametric datasets that allow integrative analysis of heterogeneous information (imaging and omics approaches). These approaches are likely to structure the future of screening strategies for the treatment of human pathologies.
Collapse
Affiliation(s)
- Isabelle K Vila
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France.
| | - Maxence Fretaud
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; University Research Institute of Maternal and Child Health & Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nadine Laguette
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France
| | | |
Collapse
|
8
|
PPARα exacerbates necroptosis, leading to increased mortality in postinfluenza bacterial superinfection. Proc Natl Acad Sci U S A 2020; 117:15789-15798. [PMID: 32581129 DOI: 10.1073/pnas.2006343117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Patients infected with influenza are at high risk of secondary bacterial infection, which is a major proximate cause of morbidity and mortality. We have shown that in mice, prior infection with influenza results in increased inflammation and mortality upon Staphylococcus aureus infection, recapitulating the human disease. Lipidomic profiling of the lungs of superinfected mice revealed an increase in CYP450 metabolites during lethal superinfection. These lipids are endogenous ligands for the nuclear receptor PPARα, and we demonstrate that Ppara -/- mice are less susceptible to superinfection than wild-type mice. PPARα is an inhibitor of NFκB activation, and transcriptional profiling of cells isolated by bronchoalveolar lavage confirmed that influenza infection inhibits NFκB, thereby dampening proinflammatory and prosurvival signals. Furthermore, network analysis indicated an increase in necrotic cell death in the lungs of superinfected mice compared to mice infected with S. aureus alone. Consistent with this, we observed reduced NFκB-mediated inflammation and cell survival signaling in cells isolated from the lungs of superinfected mice. The kinase RIPK3 is required to induce necrotic cell death and is strongly induced in cells isolated from the lungs of superinfected mice compared to mice infected with S. aureus alone. Genetic and pharmacological perturbations demonstrated that PPARα mediates RIPK3-dependent necroptosis and that this pathway plays a central role in mortality following superinfection. Thus, we have identified a molecular circuit in which infection with influenza induces CYP450 metabolites that activate PPARα, leading to increased necrotic cell death in the lung which correlates with the excess mortality observed in superinfection.
Collapse
|
9
|
Muldoon JJ, Chuang Y, Bagheri N, Leonard JN. Macrophages employ quorum licensing to regulate collective activation. Nat Commun 2020; 11:878. [PMID: 32054845 PMCID: PMC7018708 DOI: 10.1038/s41467-020-14547-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 12/19/2019] [Indexed: 01/23/2023] Open
Abstract
Macrophage-initiated inflammation is tightly regulated to eliminate threats such as infections while suppressing harmful immune activation. However, individual cells’ signaling responses to pro-inflammatory cues are heterogeneous, with subpopulations emerging with high or low activation states. Here, we use single-cell tracking and dynamical modeling to develop and validate a revised model for lipopolysaccharide (LPS)-induced macrophage activation that invokes a mechanism we term quorum licensing. The results show that bimodal phenotypic partitioning of macrophages is primed during the resting state, dependent on cumulative history of cell density, predicted by extrinsic noise in transcription factor expression, and independent of canonical LPS-induced intercellular feedback in the tumor necrosis factor (TNF) response. Our analysis shows how this density-dependent coupling produces a nonlinear effect on collective TNF production. We speculate that by linking macrophage density to activation, this mechanism could amplify local responses to threats and prevent false alarms. Macrophage activation is tightly regulated to maintain immune homeostasis, yet activation is also heterogeneous. Here, the authors show that macrophages coordinate activation by partitioning into two phenotypes that can nonlinearly amplify collective inflammatory cytokine production as a function of cell density.
Collapse
Affiliation(s)
- Joseph J Muldoon
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA.,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yishan Chuang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Neda Bagheri
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA. .,Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA. .,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA. .,Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, 60208, USA. .,Biology and Chemical Engineering, University of Washington, Seattle, WA, 98195, USA.
| | - Joshua N Leonard
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA. .,Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA. .,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA. .,Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
10
|
Chen C, Su X, Hu Z. Immune promotive effect of bioactive peptides may be mediated by regulating the expression of SOCS1/miR-155. Exp Ther Med 2019; 18:1850-1862. [PMID: 31410147 DOI: 10.3892/etm.2019.7734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 04/26/2019] [Indexed: 02/06/2023] Open
Abstract
The present study was designed to evaluate the effect of bioactive hepatic peptide (BHP) on the immune function of mice and to examine the mechanism mediated by the related factors cytokine suppressor of cytokine signaling 1 (SOCS1) and microRNA (miR)-155. The mice were divided into eight groups, including a normal mouse group, normal peptide groups (low-dose, mid-dose and high-dose), an immunosuppressed group, and immunosuppressed with peptide groups (low-dose, mid-dose and high-dose). The proliferative ability of splenic lymphocytes was determined in vitro using a Cell Counting kit-8 assay. Wright's staining was used to assess the phagocytic function of macrophages. Histological changes in the spleen were evaluated by hematoxylin-eosin staining. The relevant factors SOCS1/miR-155 were assessed by immunohistochemistry and reverse transcription fluorescence-quantitative polymerase chain reaction analysis. The levels of the cytokines TGF-β1, IL-10 and IL-17A were determined by enzyme-linked immunosorbent assay. First, the organ index, percentage of lymphocytes, phagocytosis experiments and splenic lymphocyte proliferation test results revealed that the immunodeficient mouse model had been successfully established. Second, compared with the control mice, the normal peptide group mice exhibited increased spleen and thymus indices, percentages of lymphocyte subsets, macrophage phagocytosis percentages, phagocytic indices, splenic lymphocyte proliferation and expression of miR-155; however, the expression of SOCS1 was decreased in the normal peptide groups to varying extents. In addition, the expression of SOCS1 was upregulated, whereas that of miR-155 was downregulated in the immunosuppressed group. Compared with the mice in the immunosuppressed group, the mice in the immunosuppressed with peptide groups had increased spleen and thymus indices, percentages of lymphocyte subsets, macrophage phagocytosis percentages, phagocytic indices, splenic lymphocyte proliferation and expression of miR-155; however, the expression of SOCS1 was decreased in the immunosuppressed with peptide groups to varying extents. Following treatment with BHP, the secretion of TGF-β1 in the spleen of the normal mice and immunosuppressed mice was significantly decreased, and the secretion of IL-10 was significantly increased. No significant difference in the expression of IL-17A was observed among the groups. In summary, BHP improved the immune function of the normal mice and immunosuppressed mice. This data provides a scientific basis for the development of bioactive peptide health products.
Collapse
Affiliation(s)
- Caixia Chen
- Clinical Medicine Research Center of The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xiulan Su
- Clinical Medicine Research Center of The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Zhiwei Hu
- Clinical Medicine Research Center of The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China.,Department of Surgery, Division of Surgical Oncology, James Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Rani S, Sharma A, Goel M. Insights into archaeal chaperone machinery: a network-based approach. Cell Stress Chaperones 2018; 23:1257-1274. [PMID: 30178307 PMCID: PMC6237683 DOI: 10.1007/s12192-018-0933-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 11/30/2022] Open
Abstract
Molecular chaperones are a diverse group of proteins that ensure proteome integrity by helping the proteins fold correctly and maintain their native state, thus preventing their misfolding and subsequent aggregation. The chaperone machinery of archaeal organisms has been thought to closely resemble that found in humans, at least in terms of constituent players. Very few studies have been ventured into system-level analysis of chaperones and their functioning in archaeal cells. In this study, we attempted such an analysis of chaperone-assisted protein folding in archaeal organisms through network approach using Picrophilus torridus as model system. The study revealed that DnaK protein of Hsp70 system acts as hub in protein-protein interaction network. However, DnaK protein was present only in a subset of archaeal organisms and absent from many archaea, especially members of Crenarchaeota phylum. Therefore, a similar network was created for another archaeal organism, Sulfolobus solfataricus, a member of Crenarchaeota. The chaperone network of S. solfataricus suggested that thermosomes played an integral part of hub proteins in archaeal organisms, where DnaK was absent. We further compared the chaperone network of archaea with that found in eukaryotic systems, by creating a similar network for Homo sapiens. In the human chaperone network, the UBC protein, a part of ubiquitination system, was the most important module, and interestingly, this system is known to be absent in archaeal organisms. Comprehensive comparison of these networks leads to several interesting conclusions regarding similarities and differences within archaeal chaperone machinery in comparison to humans.
Collapse
Affiliation(s)
- Shikha Rani
- Department of Biophysics, University of Delhi South Campus, Benito Jurarez Road, New Delhi, 110021, India
| | - Ankush Sharma
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Center for Computational Science, University of Miami, Miami, FL, USA
| | - Manisha Goel
- Department of Biophysics, University of Delhi South Campus, Benito Jurarez Road, New Delhi, 110021, India.
| |
Collapse
|
12
|
Tugizimana F, Mhlongo MI, Piater LA, Dubery IA. Metabolomics in Plant Priming Research: The Way Forward? Int J Mol Sci 2018; 19:ijms19061759. [PMID: 29899301 PMCID: PMC6032392 DOI: 10.3390/ijms19061759] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 12/26/2022] Open
Abstract
A new era of plant biochemistry at the systems level is emerging, providing detailed descriptions of biochemical phenomena at the cellular and organismal level. This new era is marked by the advent of metabolomics—the qualitative and quantitative investigation of the entire metabolome (in a dynamic equilibrium) of a biological system. This field has developed as an indispensable methodological approach to study cellular biochemistry at a global level. For protection and survival in a constantly-changing environment, plants rely on a complex and multi-layered innate immune system. This involves surveillance of ‘self’ and ‘non-self,’ molecule-based systemic signalling and metabolic adaptations involving primary and secondary metabolites as well as epigenetic modulation mechanisms. Establishment of a pre-conditioned or primed state can sensitise or enhance aspects of innate immunity for faster and stronger responses. Comprehensive elucidation of the molecular and biochemical processes associated with the phenotypic defence state is vital for a better understanding of the molecular mechanisms that define the metabolism of plant–pathogen interactions. Such insights are essential for translational research and applications. Thus, this review highlights the prospects of metabolomics and addresses current challenges that hinder the realisation of the full potential of the field. Such limitations include partial coverage of the metabolome and maximising the value of metabolomics data (extraction of information and interpretation). Furthermore, the review points out key features that characterise both the plant innate immune system and enhancement of the latter, thus underlining insights from metabolomic studies in plant priming. Future perspectives in this inspiring area are included, with the aim of stimulating further studies leading to a better understanding of plant immunity at the metabolome level.
Collapse
Affiliation(s)
- Fidele Tugizimana
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park 2006, South Africa.
| | - Msizi I Mhlongo
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park 2006, South Africa.
| | - Lizelle A Piater
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park 2006, South Africa.
| | - Ian A Dubery
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park 2006, South Africa.
| |
Collapse
|
13
|
Llano M, Peña-Hernandez MA. Defining Pharmacological Targets by Analysis of Virus-Host Protein Interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 111:223-242. [PMID: 29459033 PMCID: PMC6322211 DOI: 10.1016/bs.apcsb.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Viruses are obligate parasites that depend on cellular factors for replication. Pharmacological inhibition of essential viral proteins, mostly enzymes, is an effective therapeutic alternative in the absence of effective vaccines. However, this strategy commonly encounters drug resistance mechanisms that allow these pathogens to evade control. Due to the dependency on host factors for viral replication, pharmacological disruption of the host-pathogen protein-protein interactions (PPIs) is an important therapeutic alternative to block viral replication. In this review we discuss salient aspects of PPIs implicated in viral replication and advances in the development of small molecules that inhibit viral replication through antagonism of these interactions.
Collapse
Affiliation(s)
- Manuel Llano
- University of Texas at El Paso, El Paso, TX, United States.
| | - Mario A Peña-Hernandez
- University of Texas at El Paso, El Paso, TX, United States; Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, Mexico
| |
Collapse
|
14
|
Holm M, Morken TS, Fichorova RN, VanderVeen DK, Allred EN, Dammann O, Leviton A. Systemic Inflammation-Associated Proteins and Retinopathy of Prematurity in Infants Born Before the 28th Week of Gestation. Invest Ophthalmol Vis Sci 2017; 58:6419-6428. [PMID: 29260199 PMCID: PMC5736326 DOI: 10.1167/iovs.17-21931] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose To assess the association between systemic levels of inflammation-associated proteins and severe retinopathy of prematurity (ROP) in extremely preterm infants. Methods We collected whole blood on filter paper on postnatal days 1, 7, 14, 21, and 28 from 1205 infants born before the 28th week of gestation, and measured the concentrations of 27 inflammation-associated, angiogenic, and neurotrophic proteins. We calculated odds ratios with 95% confidence intervals for the association between top quartile concentrations of each protein and prethreshold ROP. Results During the first three weeks after birth, high concentrations of VEGF-R1, myeloperoxidase (MPO), IL-8, intercellular adhesion molecule (ICAM)-1, matrix metalloproteinase 9, erythropoietin, TNF-α, and basic fibroblast growth factor were associated with an increased risk for prethreshold ROP. On day 28, high levels of serum amyloid A, MPO, IL-6, TNF-α, TNF-R1/-R2, IL-8, and ICAM-1 were associated with an increased risk. Top quartile concentrations of the proinflammatory cytokines TNF-α and IL-6 were associated with increased risks of ROP when levels of neuroprotective proteins and growth factors, including BDNF, insulin-like growth factor 1, IGFBP-1, VEGFR-1 and -2, ANG-1 and PlGF, were not in the top quartile. In contrast, high concentrations of NT-4 and BDNF appeared protective only in infants without elevated inflammatory mediators. Conclusions Systemic inflammation during the first postnatal month was associated with an increased risk of prethreshold ROP. Elevated concentrations of growth factors, angiogenic proteins, and neurotrophins appeared to modulate this risk, and were capable of reducing the risk even in the absence of systemic inflammation.
Collapse
Affiliation(s)
- Mari Holm
- Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Pediatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tora S Morken
- Department of Neuromedicine and Movement Science (INB), Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Ophthalmology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Raina N Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Deborah K VanderVeen
- Department of Ophthalmology, Children's Hospital Boston, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Harvard University, Boston, Massachusetts, United States
| | - Elizabeth N Allred
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Neurology, Harvard Medical School, Harvard University, Boston, Massachusetts, United States
| | - Olaf Dammann
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts, United States.,Perinatal Epidemiology Unit, Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Alan Leviton
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Neurology, Harvard Medical School, Harvard University, Boston, Massachusetts, United States
| | | |
Collapse
|
15
|
Trizzino M, Park Y, Holsbach-Beltrame M, Aracena K, Mika K, Caliskan M, Perry GH, Lynch VJ, Brown CD. Transposable elements are the primary source of novelty in primate gene regulation. Genome Res 2017; 27:1623-1633. [PMID: 28855262 PMCID: PMC5630026 DOI: 10.1101/gr.218149.116] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 08/17/2017] [Indexed: 12/11/2022]
Abstract
Gene regulation shapes the evolution of phenotypic diversity. We investigated the evolution of liver promoters and enhancers in six primate species using ChIP-seq (H3K27ac and H3K4me1) to profile cis-regulatory elements (CREs) and using RNA-seq to characterize gene expression in the same individuals. To quantify regulatory divergence, we compared CRE activity across species by testing differential ChIP-seq read depths directly measured for orthologous sequences. We show that the primate regulatory landscape is largely conserved across the lineage, with 63% of the tested human liver CREs showing similar activity across species. Conserved CRE function is associated with sequence conservation, proximity to coding genes, cell-type specificity, and transcription factor binding. Newly evolved CREs are enriched in immune response and neurodevelopmental functions. We further demonstrate that conserved CREs bind master regulators, suggesting that while CREs contribute to species adaptation to the environment, core functions remain intact. Newly evolved CREs are enriched in young transposable elements (TEs), including Long-Terminal-Repeats (LTRs) and SINE-VNTR-Alus (SVAs), that significantly affect gene expression. Conversely, only 16% of conserved CREs overlap TEs. We tested the cis-regulatory activity of 69 TE subfamilies by luciferase reporter assays, spanning all major TE classes, and showed that 95.6% of tested TEs can function as either transcriptional activators or repressors. In conclusion, we demonstrated the critical role of TEs in primate gene regulation and illustrated potential mechanisms underlying evolutionary divergence among the primate species through the noncoding genome.
Collapse
Affiliation(s)
- Marco Trizzino
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - YoSon Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marcia Holsbach-Beltrame
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Katherine Aracena
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Katelyn Mika
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Minal Caliskan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - George H Perry
- Departments of Anthropology and Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Vincent J Lynch
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
16
|
Bonamichi BDSF, Lee J. Unusual Suspects in the Development of Obesity-Induced Inflammation and Insulin Resistance: NK cells, iNKT cells, and ILCs. Diabetes Metab J 2017; 41:229-250. [PMID: 28537058 PMCID: PMC5583401 DOI: 10.4093/dmj.2017.41.4.229] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/27/2017] [Indexed: 11/08/2022] Open
Abstract
The notion that obesity-induced inflammation mediates the development of insulin resistance in animal models and humans has been gaining strong support. It has also been shown that immune cells in local tissues, in particular in visceral adipose tissue, play a major role in the regulation of obesity-induced inflammation. Specifically, obesity increases the numbers and activation of proinflammatory immune cells, including M1 macrophages, neutrophils, Th1 CD4 T cells, and CD8 T cells, while simultaneously suppressing anti-inflammatory cells such as M2 macrophages, CD4 regulatory T cells, regulatory B cells, and eosinophils. Recently, however, new cell types have been shown to participate in the development of obesity-induced inflammation and insulin resistance. Some of these cell types also appear to regulate obesity. These cells are natural killer (NK) cells and innate lymphoid cells (ILCs), which are closely related, and invariant natural killer T (iNKT) cells. It should be noted that, although iNKT cells resemble NK cells in name, they are actually a completely different cell type in terms of their development and functions in immunity and metabolism. In this review, we will focus on the roles that these relatively new players in the metabolism field play in obesity-induced insulin resistance and the regulation of obesity.
Collapse
Affiliation(s)
| | - Jongsoon Lee
- The Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Gain-of-Function Mutation of Tristetraprolin Impairs Negative Feedback Control of Macrophages In Vitro yet Has Overwhelmingly Anti-Inflammatory Consequences In Vivo. Mol Cell Biol 2017; 37:MCB.00536-16. [PMID: 28265004 PMCID: PMC5440651 DOI: 10.1128/mcb.00536-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/25/2017] [Indexed: 12/20/2022] Open
Abstract
The mRNA-destabilizing factor tristetraprolin (TTP) binds in a sequence-specific manner to the 3' untranslated regions of many proinflammatory mRNAs and recruits complexes of nucleases to promote rapid mRNA turnover. Mice lacking TTP develop a severe, spontaneous inflammatory syndrome characterized by the overexpression of tumor necrosis factor and other inflammatory mediators. However, TTP also employs the same mechanism to inhibit the expression of the potent anti-inflammatory cytokine interleukin 10 (IL-10). Perturbation of TTP function may therefore have mixed effects on inflammatory responses, either increasing or decreasing the expression of proinflammatory factors via direct or indirect mechanisms. We recently described a knock-in mouse strain in which the substitution of 2 amino acids of the endogenous TTP protein renders it constitutively active as an mRNA-destabilizing factor. Here we investigate the impact on the IL-10-mediated anti-inflammatory response. It is shown that the gain-of-function mutation of TTP impairs IL-10-mediated negative feedback control of macrophage function in vitro However, the in vivo effects of TTP mutation are uniformly anti-inflammatory despite the decreased expression of IL-10.
Collapse
|
18
|
Savarraj JPJ, Parsha K, Hergenroeder GW, Zhu L, Bajgur SS, Ahn S, Lee K, Chang T, Kim DH, Liu Y, Choi HA. Systematic model of peripheral inflammation after subarachnoid hemorrhage. Neurology 2017; 88:1535-1545. [PMID: 28314864 DOI: 10.1212/wnl.0000000000003842] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To investigate inflammatory processes after aneurysmal subarachnoid hemorrhage (aSAH) with network models. METHODS This is a retrospective observational study of serum samples from 45 participants with aSAH analyzed at multiple predetermined time points: <24 hours, 24 to 48 hours, 3 to 5 days, and 6 to 8 days after aSAH. Concentrations of cytokines were measured with a 41-plex human immunoassay kit, and the Pearson correlation coefficients between all possible cytokine pairs were computed. Systematic network models were constructed on the basis of correlations between cytokine pairs for all participants and across injury severity. Trends of individual cytokines and correlations between them were examined simultaneously. RESULTS Network models revealed that systematic inflammatory activity peaks at 24 to 48 hours after the bleed. Individual cytokine levels changed significantly over time, exhibiting increasing, decreasing, and peaking trends. Platelet-derived growth factor (PDGF)-AA, PDGF-AB/BB, soluble CD40 ligand, and tumor necrosis factor-α (TNF-α) increased over time. Colony-stimulating factor (CSF) 3, interleukin (IL)-13, and FMS-like tyrosine kinase 3 ligand decreased over time. IL-6, IL-5, and IL-15 peaked and decreased. Some cytokines with insignificant trends show high correlations with other cytokines and vice versa. Many correlated cytokine clusters, including a platelet-derived factor cluster and an endothelial growth factor cluster, were observed at all times. Participants with higher clinical severity at admission had elevated levels of several proinflammatory and anti-inflammatory cytokines, including IL-6, CCL2, CCL11, CSF3, IL-8, IL-10, CX3CL1, and TNF-α, compared to those with lower clinical severity. CONCLUSIONS Combining reductionist and systematic techniques may lead to a better understanding of the underlying complexities of the inflammatory reaction after aSAH.
Collapse
Affiliation(s)
| | - Kaushik Parsha
- From the University of Texas Health Science Center at Houston
| | | | - Liang Zhu
- From the University of Texas Health Science Center at Houston
| | - Suhas S Bajgur
- From the University of Texas Health Science Center at Houston
| | - Sungho Ahn
- From the University of Texas Health Science Center at Houston
| | - Kiwon Lee
- From the University of Texas Health Science Center at Houston
| | - Tiffany Chang
- From the University of Texas Health Science Center at Houston
| | - Dong H Kim
- From the University of Texas Health Science Center at Houston
| | - Yin Liu
- From the University of Texas Health Science Center at Houston
| | - H Alex Choi
- From the University of Texas Health Science Center at Houston.
| |
Collapse
|
19
|
Mishra A, Vijayakumar P, Raut AA. Emerging avian influenza infections: Current understanding of innate immune response and molecular pathogenesis. Int Rev Immunol 2017; 36:89-107. [PMID: 28272907 DOI: 10.1080/08830185.2017.1291640] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The highly pathogenic avian influenza viruses (HPAIVs) cause severe disease in gallinaceous poultry species, domestic ducks, various aquatic and terrestrial wild bird species as well as humans. The outcome of the disease is determined by complex interactions of multiple components of the host, the virus, and the environment. While the host-innate immune response plays an important role for clearance of infection, excessive inflammatory immune response (cytokine storm) may contribute to morbidity and mortality of the host. Therefore, innate immunity response in avian influenza infection has two distinct roles. However, the viral pathogenic mechanism varies widely in different avian species, which are not completely understood. In this review, we summarized the current understanding and gaps in host-pathogen interaction of avian influenza infection in birds. In first part of this article, we summarized influenza viral pathogenesis of gallinaceous and non-gallinaceous avian species. Then we discussed innate immune response against influenza infection, cytokine storm, differential host immune responses against different pathotypes, and response in different avian species. Finally, we reviewed the systems biology approach to study host-pathogen interaction in avian species for better characterization of molecular pathogenesis of the disease. Wild aquatic birds act as natural reservoir of AIVs. Better understanding of host-pathogen interaction in natural reservoir is fundamental to understand the properties of AIV infection and development of improved vaccine and therapeutic strategies against influenza.
Collapse
Affiliation(s)
- Anamika Mishra
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Periyasamy Vijayakumar
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Ashwin Ashok Raut
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| |
Collapse
|
20
|
Burnum-Johnson KE, Kyle JE, Eisfeld AJ, Casey CP, Stratton KG, Gonzalez JF, Habyarimana F, Negretti NM, Sims AC, Chauhan S, Thackray LB, Halfmann PJ, Walters KB, Kim YM, Zink EM, Nicora CD, Weitz KK, Webb-Robertson BJM, Nakayasu ES, Ahmer B, Konkel ME, Motin V, Baric RS, Diamond MS, Kawaoka Y, Waters KM, Smith RD, Metz TO. MPLEx: a method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling. Analyst 2017; 142:442-448. [PMID: 28091625 PMCID: PMC5283721 DOI: 10.1039/c6an02486f] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The continued emergence and spread of infectious agents is of great concern, and systems biology approaches to infectious disease research can advance our understanding of host-pathogen relationships and facilitate the development of new therapies and vaccines. Molecular characterization of infectious samples outside of appropriate biosafety containment can take place only subsequent to pathogen inactivation. Herein, we describe a modified Folch extraction using chloroform/methanol that facilitates the molecular characterization of infectious samples by enabling simultaneous pathogen inactivation and extraction of proteins, metabolites, and lipids for subsequent mass spectrometry-based multi-omics measurements. This single-sample metabolite, protein and lipid extraction (MPLEx) method resulted in complete inactivation of clinically important bacterial and viral pathogens with exposed lipid membranes, including Yersinia pestis, Salmonella Typhimurium, and Campylobacter jejuni in pure culture, and Yersinia pestis, Campylobacter jejuni, and West Nile, MERS-CoV, Ebola, and influenza H7N9 viruses in infection studies. In addition, >99% inactivation, which increased with solvent exposure time, was also observed for pathogens without exposed lipid membranes including community-associated methicillin-resistant Staphylococcus aureus, Clostridium difficile spores and vegetative cells, and adenovirus type 5. The overall pipeline of inactivation and subsequent proteomic, metabolomic, and lipidomic analyses was evaluated using a human epithelial lung cell line infected with wild-type and mutant influenza H7N9 viruses, thereby demonstrating that MPLEx yields biomaterial of sufficient quality for subsequent multi-omics analyses. Based on these experimental results, we believe that MPLEx will facilitate systems biology studies of infectious samples by enabling simultaneous pathogen inactivation and multi-omics measurements from a single specimen with high success for pathogens with exposed lipid membranes.
Collapse
Affiliation(s)
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Amie J Eisfeld
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Cameron P Casey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Kelly G Stratton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Juan F Gonzalez
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Fabien Habyarimana
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Nicholas M Negretti
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Amy C Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sadhana Chauhan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Larissa B Thackray
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin B Walters
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Erika M Zink
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Bobbie-Jo M Webb-Robertson
- Computational and Statistical Analytics Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Brian Ahmer
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Michael E Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Vladimir Motin
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
21
|
Rolland M, Eller M. Systems Vaccinology. HUMAN VACCINES 2017. [DOI: 10.1016/b978-0-12-802302-0.00004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
A time-resolved molecular map of the macrophage response to VSV infection. NPJ Syst Biol Appl 2016; 2:16027. [PMID: 28725479 PMCID: PMC5516859 DOI: 10.1038/npjsba.2016.27] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 01/30/2023] Open
Abstract
Studying the relationship between virus infection and cellular response is paradigmatic for our understanding of how perturbation changes biological systems. Immune response, in this context is a complex yet evolutionarily adapted and robust cellular change, and is experimentally amenable to molecular analysis. To visualize the full cellular response to virus infection, we performed temporal transcriptomics, proteomics, and phosphoproteomics analysis of vesicular stomatitis virus (VSV)-infected mouse macrophages. This enabled the understanding of how infection-induced changes in host gene and protein expression are coordinated with post-translational modifications by cells in time to best measure and control the infection process. The vast and complex molecular changes measured could be decomposed in a limited number of clusters within each category (transcripts, proteins, and protein phosphorylation) each with own kinetic parameter and characteristic pathways/processes, suggesting multiple regulatory options in the overall sensing and homeostatic program. Altogether, the data underscored a prevalent executive function to phosphorylation. Resolution of the molecular events affecting the RIG-I pathway, central to viral recognition, reveals that phosphorylation of the key innate immunity adaptor mitochondrial antiviral-signaling protein (MAVS) on S328/S330 is necessary for activation of type-I interferon and nuclear factor κ B (NFκB) pathways. To further understand the hierarchical relationships, we analyzed kinase–substrate relationships and found RAF1 and, to a lesser extent, ARAF to be inhibiting VSV replication and necessary for NFκB activation, and AKT2, but not AKT1, to be supporting VSV replication. Integrated analysis using the omics data revealed co-regulation of transmembrane transporters including SLC7A11, which was subsequently validated as a host factor in the VSV replication. The data sets are predicted to greatly empower future studies on the functional organization of the response of macrophages to viral challenges.
Collapse
|
23
|
Ciuffa R, Caron E, Leitner A, Uliana F, Gstaiger M, Aebersold R. Contribution of Mass Spectrometry-Based Proteomics to the Understanding of TNF-α Signaling. J Proteome Res 2016; 16:14-33. [PMID: 27762135 DOI: 10.1021/acs.jproteome.6b00728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NF-κB is a family of ubiquitous dimeric transcription factors that play a role in a myriad of cellular processes, ranging from differentiation to stress response and immunity. In inflammation, activation of NF-κB is mediated by pro-inflammatory cytokines, in particular the prototypic cytokines IL-1β and TNF-α, which trigger the activation of complex signaling cascades. In spite of decades of research, the system level understanding of TNF-α signaling is still incomplete. This is partially due to the limited knowledge at the proteome level. The objective of this review is to summarize and critically evaluate the current status of the proteomic research on TNF-α signaling. We will discuss the merits and flaws of the existing studies as well as the insights that they have generated into the proteomic landscape and architecture connected to this signaling pathway. Besides delineating past and current trends in TNF-α proteomic research, we will identify research directions and new methodologies that can further contribute to characterize the TNF-α associated proteome in space and time.
Collapse
Affiliation(s)
- Rodolfo Ciuffa
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland
| | - Etienne Caron
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland
| | - Federico Uliana
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland
| | - Matthias Gstaiger
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland.,Faculty of Science, University of Zurich , 8006 Zurich, Switzerland
| |
Collapse
|
24
|
Inkeles MS, Teles RM, Pouldar D, Andrade PR, Madigan CA, Lopez D, Ambrose M, Noursadeghi M, Sarno EN, Rea TH, Ochoa MT, Iruela-Arispe ML, Swindell WR, Ottenhoff TH, Geluk A, Bloom BR, Pellegrini M, Modlin RL. Cell-type deconvolution with immune pathways identifies gene networks of host defense and immunopathology in leprosy. JCI Insight 2016; 1:e88843. [PMID: 27699251 DOI: 10.1172/jci.insight.88843] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transcriptome profiles derived from the site of human disease have led to the identification of genes that contribute to pathogenesis, yet the complex mixture of cell types in these lesions has been an obstacle for defining specific mechanisms. Leprosy provides an outstanding model to study host defense and pathogenesis in a human infectious disease, given its clinical spectrum, which interrelates with the host immunologic and pathologic responses. Here, we investigated gene expression profiles derived from skin lesions for each clinical subtype of leprosy, analyzing gene coexpression modules by cell-type deconvolution. In lesions from tuberculoid leprosy patients, those with the self-limited form of the disease, dendritic cells were linked with MMP12 as part of a tissue remodeling network that contributes to granuloma formation. In lesions from lepromatous leprosy patients, those with disseminated disease, macrophages were linked with a gene network that programs phagocytosis. In erythema nodosum leprosum, neutrophil and endothelial cell gene networks were identified as part of the vasculitis that results in tissue injury. The present integrated computational approach provides a systems approach toward identifying cell-defined functional networks that contribute to host defense and immunopathology at the site of human infectious disease.
Collapse
Affiliation(s)
- Megan S Inkeles
- Department of Molecular, Cell, and Developmental Biology and
| | - Rosane Mb Teles
- Division of Dermatology, David Geffen School of Medicine at UCLA, California, USA
| | - Delila Pouldar
- Division of Dermatology, David Geffen School of Medicine at UCLA, California, USA
| | - Priscila R Andrade
- Division of Dermatology, David Geffen School of Medicine at UCLA, California, USA
| | - Cressida A Madigan
- Division of Dermatology, David Geffen School of Medicine at UCLA, California, USA
| | - David Lopez
- Department of Molecular, Cell, and Developmental Biology and
| | - Mike Ambrose
- Department of Molecular, Cell, and Developmental Biology and
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Euzenir N Sarno
- Leprosy Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Thomas H Rea
- Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California, USA
| | - Maria T Ochoa
- Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California, USA
| | | | - William R Swindell
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Tom Hm Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Barry R Bloom
- Harvard School of Public Health, Boston, Massachusetts, USA
| | | | - Robert L Modlin
- Division of Dermatology, David Geffen School of Medicine at UCLA, California, USA.,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| |
Collapse
|
25
|
Liu H, Liu J, Toups M, Soos T, Arendt C. Gene signature-based mapping of immunological systems and diseases. BMC Bioinformatics 2016; 17:171. [PMID: 27089880 PMCID: PMC4836068 DOI: 10.1186/s12859-016-1012-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/05/2016] [Indexed: 12/20/2022] Open
Abstract
Background The immune system is multifaceted, structured by diverse components that interconnect using multilayered dynamic cellular processes. Genomic technologies provide a means for investigating, at the molecular level, the adaptations of the immune system in host defense and its dysregulation in pathological conditions. A critical aspect of intersecting and investigating complex datasets is determining how to best integrate genomic data from diverse platforms and heterogeneous sample populations to capture immunological signatures in health and disease. Result We focus on gene signatures, representing highly enriched genes of immune cell subsets from both diseased and healthy tissues. From these, we construct a series of biomaps that illustrate the molecular linkages between cell subsets from different lineages, the connectivity between different immunological diseases, and the enrichment of cell subset signatures in diseased tissues. Finally, we overlay the downstream genes of drug targets with disease gene signatures to display the potential therapeutic applications for these approaches. Conclusion An in silico approach has been developed to characterize immune cell subsets and diseases based on the gene signatures that most differentiate them from other biological states. This modular ‘biomap’ reveals the linkages between different diseases and immune subtypes, and provides evidence for the presence of specific immunocyte subsets in mixed tissues. The over-represented genes in disease signatures of interest can be further investigated for their functions in both host defense and disease. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1012-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong Liu
- Bio-Innovation, Sanofi Global Biotherapeutics, 38 Sidney Street, Cambridge, MA, 02139, USA.
| | - Jessica Liu
- Bio-Innovation, Sanofi Global Biotherapeutics, 38 Sidney Street, Cambridge, MA, 02139, USA
| | - Michelle Toups
- Bioinformatics Program, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Timothy Soos
- Bio-Innovation, Sanofi Global Biotherapeutics, 38 Sidney Street, Cambridge, MA, 02139, USA
| | - Christopher Arendt
- Bio-Innovation, Sanofi Global Biotherapeutics, 38 Sidney Street, Cambridge, MA, 02139, USA
| |
Collapse
|
26
|
Poland GA, Whitaker JA, Poland CM, Ovsyannikova IG, Kennedy RB. Vaccinology in the third millennium: scientific and social challenges. Curr Opin Virol 2016; 17:116-125. [PMID: 27039875 PMCID: PMC4902778 DOI: 10.1016/j.coviro.2016.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/19/2016] [Accepted: 03/11/2016] [Indexed: 12/21/2022]
Abstract
The epidemiology of deaths due to vaccine-preventable diseases has been significantly and positively altered through the use of vaccines. Despite this, significant challenges remain in vaccine development and use in the third millennium. Both new (Ebola, Chikungunya, Zika, and West Nile) and re-emerging diseases (measles, mumps, and influenza) require the development of new or next-generation vaccines. The global aging of the population, and accumulating numbers of immunocompromised persons, will require new vaccine and adjuvant development to protect large segments of the population. After vaccine development, significant challenges remain globally in the cost and efficient use and acceptance of vaccines by the public. This article raises issues in these two areas and suggests a way forward that will benefit current and future generations.
Collapse
Affiliation(s)
- Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jennifer A Whitaker
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Caroline M Poland
- Taylor University Counseling Center, Taylor University, Upland, IN 46989, USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
27
|
Abstract
Dendritic cells (DCs) are immune sentinels of the body and play a key role in the orchestration of the communication between the innate and the adaptive immune systems. DCs can polarize innate and adaptive immunity toward a variety of functions, sometimes with opposite roles in the overall control of immune responses (e.g., tolerance or immunosuppression versus immunity) or in the balance between various defense mechanisms promoting the control of different types of pathogens (e.g., antiviral versus antibacterial versus anti-worm immunity). These multiple DC functions result both from the plasticity of individual DC to exert different activities and from the existence of various DC subsets specialized in distinct functions. Functional genomics represents a powerful, unbiased, approach to better characterize these two levels of DC plasticity and to decipher its molecular regulation. Indeed, more and more experimental immunologists are generating high-throughput data in order to better characterize different states of DC based, for example, on their belonging to a specific subpopulation and/or on their exposure to specific stimuli and/or on their ability to exert a specific function. However, the interpretation of this wealth of data is severely hampered by the bottleneck of their bioinformatics analysis. Indeed, most experimental immunologists lack advanced computational or bioinformatics expertise and do not know how to translate raw gene expression data into potential biological meaning. Moreover, subcontracting such analyses is generally disappointing or financially not sustainable, since companies generally propose canonical analysis pipelines that are often unadapted for the structure of the data to analyze or for the precise type of questions asked. Hence, there is an important need of democratization of the bioinformatics analyses of gene expression profiling studies, in order to accelerate interpretation of the results by the researchers at the origin of the research project, of the data and who know best the underlying biology. This chapter will focus on the analysis of DC subset transcriptomes as measured by microarrays. We will show that simple bioinformatics procedures, applied one after the other in the framework of a pipeline, can lead to the characterization of DC subsets. We will develop two tutorials based on the reanalysis of public gene expression data. The first tutorial aims at illustrating a strategy for establishing the identity of DC subsets studied in a novel context, here their in vitro generation in cultures of human CD34(+) hematopoietic progenitors. The second tutorial aims at illustrating how to perform a posteriori bioinformatics analyses in order to evaluate the risk of contamination or of improper identification of DC subsets during preparation of biological samples, such that this information is taken into account in the final interpretation of the data and can eventually help to redesign the sampling strategy.
Collapse
Affiliation(s)
- Thien-Phong Vu Manh
- Centre d'Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, 163 Avenue de Luminy, 13288, Marseille, France.
- U1104, INSERM, Marseille, France.
- UMR7280, CNRS, Marseille, France.
| | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, 163 Avenue de Luminy, 13288, Marseille, France
- U1104, INSERM, Marseille, France
- UMR7280, CNRS, Marseille, France
| |
Collapse
|
28
|
Tripathi S, Garcia-Sastre A. Antiviral innate immunity through the lens of systems biology. Virus Res 2015; 218:10-7. [PMID: 26657882 DOI: 10.1016/j.virusres.2015.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/30/2015] [Indexed: 12/25/2022]
Abstract
Cellular innate immunity poses the first hurdle against invading viruses in their attempt to establish infection. This antiviral response is manifested with the detection of viral components by the host cell, followed by transduction of antiviral signals, transcription and translation of antiviral effectors and leads to the establishment of an antiviral state. These events occur in a rather branched and interconnected sequence than a linear path. Traditionally, these processes were studied in the context of a single virus and a host component. However, with the advent of rapid and affordable OMICS technologies it has become feasible to address such questions on a global scale. In the discipline of Systems Biology', extensive omics datasets are assimilated using computational tools and mathematical models to acquire deeper understanding of complex biological processes. In this review we have catalogued and discussed the application of Systems Biology approaches in dissecting the antiviral innate immune responses.
Collapse
Affiliation(s)
- Shashank Tripathi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Adolfo Garcia-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, NY, USA.
| |
Collapse
|
29
|
Spitzer MH, Gherardini PF, Fragiadakis GK, Bhattacharya N, Yuan RT, Hotson AN, Finck R, Carmi Y, Zunder ER, Fantl WJ, Bendall SC, Engleman EG, Nolan GP. IMMUNOLOGY. An interactive reference framework for modeling a dynamic immune system. Science 2015; 349:1259425. [PMID: 26160952 DOI: 10.1126/science.1259425] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Immune cells function in an interacting hierarchy that coordinates the activities of various cell types according to genetic and environmental contexts. We developed graphical approaches to construct an extensible immune reference map from mass cytometry data of cells from different organs, incorporating landmark cell populations as flags on the map to compare cells from distinct samples. The maps recapitulated canonical cellular phenotypes and revealed reproducible, tissue-specific deviations. The approach revealed influences of genetic variation and circadian rhythms on immune system structure, enabled direct comparisons of murine and human blood cell phenotypes, and even enabled archival fluorescence-based flow cytometry data to be mapped onto the reference framework. This foundational reference map provides a working definition of systemic immune organization to which new data can be integrated to reveal deviations driven by genetics, environment, or pathology.
Collapse
Affiliation(s)
- Matthew H Spitzer
- Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA. Department of Pathology, Stanford University, Stanford, CA 94305, USA. Program in Immunology, Stanford University, Stanford, CA 94305, USA.
| | - Pier Federico Gherardini
- Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Gabriela K Fragiadakis
- Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | | | - Robert T Yuan
- Department of Pathology, Stanford University, Stanford, CA 94305, USA. Program in Immunology, Stanford University, Stanford, CA 94305, USA
| | - Andrew N Hotson
- Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Rachel Finck
- Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Yaron Carmi
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Eli R Zunder
- Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Wendy J Fantl
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Stanford University, Stanford, CA 94305, USA
| | - Sean C Bendall
- Department of Pathology, Stanford University, Stanford, CA 94305, USA. Program in Immunology, Stanford University, Stanford, CA 94305, USA
| | - Edgar G Engleman
- Department of Pathology, Stanford University, Stanford, CA 94305, USA. Program in Immunology, Stanford University, Stanford, CA 94305, USA
| | - Garry P Nolan
- Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA. Program in Immunology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
30
|
Wertheim B. Genomic basis of evolutionary change: evolving immunity. Front Genet 2015; 6:222. [PMID: 26150830 PMCID: PMC4473141 DOI: 10.3389/fgene.2015.00222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/08/2015] [Indexed: 12/20/2022] Open
Abstract
Complex traits are manifestations of intricate gene interaction networks. Evolution of complex traits revolves around the genetic variation in such networks. Genomics has increased our ability to investigate the complex gene interaction networks, and characterize the extent of genetic variation in these networks. Immunity is a complex trait, for which the ecological drivers and molecular networks are fairly well understood in Drosophila. By characterizing the natural variation in immunity, and mapping how the genome changes during the evolution of immunity in Drosophila, we can integrate our knowledge on the complex genetic architecture of traits and the molecular basis of evolutionary processes.
Collapse
Affiliation(s)
- Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen , Groningen, Netherlands
| |
Collapse
|
31
|
Shi W, Liao Y, Willis SN, Taubenheim N, Inouye M, Tarlinton DM, Smyth GK, Hodgkin PD, Nutt SL, Corcoran LM. Transcriptional profiling of mouse B cell terminal differentiation defines a signature for antibody-secreting plasma cells. Nat Immunol 2015; 16:663-73. [PMID: 25894659 DOI: 10.1038/ni.3154] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 03/24/2015] [Indexed: 12/15/2022]
Abstract
When B cells encounter an antigen, they alter their physiological state and anatomical localization and initiate a differentiation process that ultimately produces antibody-secreting cells (ASCs). We have defined the transcriptomes of many mature B cell populations and stages of plasma cell differentiation in mice. We provide a molecular signature of ASCs that highlights the stark transcriptional divide between B cells and plasma cells and enables the demarcation of ASCs on the basis of location and maturity. Changes in gene expression correlated with cell-division history and the acquisition of permissive histone modifications, and they included many regulators that had not been previously implicated in B cell differentiation. These findings both highlight and expand the core program that guides B cell terminal differentiation and the production of antibodies.
Collapse
Affiliation(s)
- Wei Shi
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. [2] Department of Computing and Information Systems, The University of Melbourne, Parkville, Victoria, Australia
| | - Yang Liao
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Simon N Willis
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Nadine Taubenheim
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Inouye
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. [2] Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia. [3] Department of Microbiology &Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - David M Tarlinton
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Gordon K Smyth
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. [2] Department of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Philip D Hodgkin
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephen L Nutt
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lynn M Corcoran
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
32
|
Joyner C, Barnwell JW, Galinski MR. No more monkeying around: primate malaria model systems are key to understanding Plasmodium vivax liver-stage biology, hypnozoites, and relapses. Front Microbiol 2015; 6:145. [PMID: 25859242 PMCID: PMC4374475 DOI: 10.3389/fmicb.2015.00145] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/07/2015] [Indexed: 01/17/2023] Open
Abstract
Plasmodium vivax is a human malaria parasite responsible for significant morbidity worldwide and potentially death. This parasite possesses formidable liver-stage biology that involves the formation of dormant parasites known as hypnozoites. Hypnozoites are capable of activating weeks, months, or years after a primary blood-stage infection causing relapsing bouts of illness. Elimination of this dormant parasitic reservoir will be critical for global malaria eradication. Although hypnozoites were first discovered in 1982, few advancements have been made to understand their composition and biology. Until recently, in vitro models did not exist to study these forms and studying them from human ex vivo samples was virtually impossible. Today, non-human primate (NHP) models and modern systems biology approaches are poised as tools to enable the in-depth study of P. vivax liver-stage biology, including hypnozoites and relapses. NHP liver-stage model systems for P. vivax and the related simian malaria species P. cynomolgi are discussed along with perspectives regarding metabolite biomarker discovery, putative roles of extracellular vesicles, and relapse immunobiology.
Collapse
Affiliation(s)
- Chester Joyner
- Malaria Host–Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory UniversityAtlanta, GA, USA
| | - John W. Barnwell
- Malaria Host–Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory UniversityAtlanta, GA, USA
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and PreventionAtlanta, GA, USA
| | - Mary R. Galinski
- Malaria Host–Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory UniversityAtlanta, GA, USA
- Division of Infectious Diseases, Department of Medicine, Emory UniversityAtlanta, GA, USA
| |
Collapse
|
33
|
Soumelis V, Pattarini L, Michea P, Cappuccio A. Systems approaches to unravel innate immune cell diversity, environmental plasticity and functional specialization. Curr Opin Immunol 2015; 32:42-7. [PMID: 25588554 DOI: 10.1016/j.coi.2014.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/19/2014] [Indexed: 12/24/2022]
Abstract
Innate immune cells are generated through central and peripheral differentiation pathways, and receive multiple signals from tissue microenvironment. The complex interplay between immune cell state and environmental signals is crucial for the adaptation and efficient response to pathogenic threats. Here, we discuss how systems biology approaches have brought global view and high resolution to the characterization of (1) immune cell diversity, (2) phenotypic, transcriptional and functional changes in response to environmental signals, (3) integration of multiple stimuli. We will mostly focus on systems level studies in dendritic cells and macrophages. Generalization of these approaches should elucidate innate immune cell diversity and plasticity, and may be used in the human to generate hypothesis on cell filiation and novel strategies for immunotherapy.
Collapse
Affiliation(s)
- Vassili Soumelis
- Integrative Biology of Human Dendritic Cells and T Cells Laboratory, U932 Immunity and Cancer, Institut Curie, 26 Rue d'Ulm, 75005 Paris, France.
| | - Lucia Pattarini
- Integrative Biology of Human Dendritic Cells and T Cells Laboratory, U932 Immunity and Cancer, Institut Curie, 26 Rue d'Ulm, 75005 Paris, France
| | - Paula Michea
- Integrative Biology of Human Dendritic Cells and T Cells Laboratory, U932 Immunity and Cancer, Institut Curie, 26 Rue d'Ulm, 75005 Paris, France
| | - Antonio Cappuccio
- Integrative Biology of Human Dendritic Cells and T Cells Laboratory, U932 Immunity and Cancer, Institut Curie, 26 Rue d'Ulm, 75005 Paris, France
| |
Collapse
|