1
|
Du Pasquier L. The future of comparative immunology. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105240. [PMID: 39182539 DOI: 10.1016/j.dci.2024.105240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/03/2024] [Indexed: 08/27/2024]
Abstract
« Prediction is very difficult, especially if it is about the future of comparative immunology" could one say to paraphrase Niels Bohr. Yet, if one avoids mistakes of the past and fashions, if one remains ready to welcome surprises an do not to get drowned in big data while profiting from new technologies, if one keeps common sense between expanding and restricting one's scope of investigation in front of the enormous diversity of the tree of life, comparative immunologists are going, in new areas of research and with new tools, to keep contributing enormously to immunology. They will reveal, with the eyes open to homologies and analogies among multiple species, more variations on the theme of immunity and will put the human immune system in perspective a necessary situation to face the questions that remain to be answered in order to improve health or to understand evolution of immune systems. There will always be room in comparative immunology for fundamental approaches to these subjects. A proper education, aimed at combining competences, will be essential to achieve these goals.
Collapse
Affiliation(s)
- Louis Du Pasquier
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, CH-4051, Basel, Switzerland.
| |
Collapse
|
2
|
Sirimanapong W, Thaijongrak P, Sudpraseart C, Bela-Ong DB, Rodelas-Angelia AJD, Angelia MRN, Hong S, Kim J, Thompson KD, Jung TS. Passive immunoprophylaxis with Ccombodies against Vibrio parahaemolyticus in Pacific white shrimp (Penaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109973. [PMID: 39426641 DOI: 10.1016/j.fsi.2024.109973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/12/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The Vibrio parahaemolyticus strain causing acute hepatopancreatic necrosis disease (AHPND) in shrimp secretes toxins A and B (PirAVp/PirBVp). These toxins have been implicated in pathogenesis and are targets for developing anti-AHPND therapeutics or prophylactics that include passive immunization. We have previously reported that Ccombodies (recombinant hagfish variable lymphocyte receptor B antibodies; VLRB) targeting PirBVp conferred protection against V. parahaemolyticus in shrimp when administered as a feed supplement. In this study, we screened a phage-displayed library of engineered VLRBs for PirAVp-targeting Ccombodies that were mass-produced in a bacterial expression system. We then introduced these Ccombodies into the diet of Pacific white shrimp (Penaeus vannamei) over a seven-day period. Subsequently, the shrimp were exposed to a challenge with V. parahaemolyticus. Mortality rates were then observed and recorded over the following seven days. Administering shrimp feed supplemented with Ccombodies at a high dose (100 mg per 100 g feed) reduced mortality in recipient animals (2.96-5.19 %) statistically similar to mock-challenged control (1.48 %), but significantly different from the Ccombody-deficient control (74.81 %). This suggests that the Ccombodies provided strong protection against the bacterium. Feeding shrimp with a median dose (10 mg/100 g feed) gave statistically comparable low mortality (5.93-6.67 %) as the high dose. Reducing the Ccombody dose to 1 mg/100 g feed showed variable effects. Ccombody A2 showed mortality (11.85 %) significantly lower than that of the Ccombody-deficient group (74.81 %), suggesting that it can effectively protect against the bacterial challenge at a low dose. Our results demonstrate the ability of the phage-displayed VLRB library to generate antigen-specific Ccombodies rapidly and simply, with the expression of high protein levels in bacteria. The protective effect provided by these Ccombodies aligns with our earlier results, strongly supporting the use of VLRB antibodies as a substitute for IgY in passive immunoprophylaxis against AHPND in shrimp.
Collapse
Affiliation(s)
- Wanna Sirimanapong
- Veterinary Aquatic Animal Research Health Care Unit, Department of Clinical Science and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phutthamonthon Sai 4, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Prawporn Thaijongrak
- Veterinary Aquatic Animal Research Health Care Unit, Department of Clinical Science and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phutthamonthon Sai 4, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Chiranan Sudpraseart
- Veterinary Aquatic Animal Research Health Care Unit, Department of Clinical Science and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phutthamonthon Sai 4, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Dennis Berbulla Bela-Ong
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Abigail Joy D Rodelas-Angelia
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Mark Rickard N Angelia
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea; Institute of Chemistry, University of the Philippines Los Banos, College, 4031, Laguna, Philippines
| | - Seungbeom Hong
- Earwynbio Co., Ltd., 206 Sungjangjiwon-dong, 991 Worasan-ro, Munsan, Jinju, Gyeongnam, 52839, Republic of Korea
| | - Jaesung Kim
- Earwynbio Co., Ltd., 206 Sungjangjiwon-dong, 991 Worasan-ro, Munsan, Jinju, Gyeongnam, 52839, Republic of Korea
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, Scotland, United Kingdom
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea; Earwynbio Co., Ltd., 206 Sungjangjiwon-dong, 991 Worasan-ro, Munsan, Jinju, Gyeongnam, 52839, Republic of Korea.
| |
Collapse
|
3
|
Boehm T. Understanding vertebrate immunity through comparative immunology. Nat Rev Immunol 2024:10.1038/s41577-024-01083-9. [PMID: 39317775 DOI: 10.1038/s41577-024-01083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
Evolutionary immunology has entered a new era. Classical studies, using just a handful of model animal species, combined with clinical observations, provided an outline of how innate and adaptive immunity work together to ensure tissue homeostasis and to coordinate the fight against infections. However, revolutionary advances in cellular and molecular biology, genomics and methods of genetic modification now offer unprecedented opportunities. They provide immunologists with the possibility to consider, at unprecedented scale, the impact of the astounding phenotypic diversity of vertebrates on immune system function. This Perspective is intended to highlight some of the many interesting, but largely unexplored, biological phenomena that are related to immune function among the roughly 60,000 existing vertebrate species. Importantly, hypotheses arising from such wide-ranging comparative studies can be tested in representative and genetically tractable species. The emerging general principles and the discovery of their evolutionarily selected variations may inspire the future development of novel therapeutic strategies for human immune disorders.
Collapse
Affiliation(s)
- Thomas Boehm
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center, Freiburg, Germany.
- Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Maggs X. A synthetic review: natural history of amniote reproductive modes in light of comparative evolutionary genomics. Biol Rev Camb Philos Soc 2024. [PMID: 39300750 DOI: 10.1111/brv.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
There is a current lack of consensus on whether the ancestral parity mode was oviparity (egg-laying) or viviparity (live-birth) in amniotes and particularly in squamates (snakes, lizards, and amphisbaenids). How transitions between parity modes occur at the genomic level has primary importance for how science conceptualises the origin of amniotes, and highly variable parity modes in Squamata. Synthesising literature from medicine, poultry science, reproductive biology, and evolutionary biology, I review the genomics and physiology of five broad processes (here termed the 'Main Five') expected to change during transitions between parity modes: eggshell formation, embryonic retention, placentation, calcium transport, and maternal-fetal immune dynamics. Throughout, I offer alternative perspectives and testable hypotheses regarding proximate causes of parity mode evolution in amniotes and squamates. If viviparity did evolve early in the history of lepidosaurs, I offer the nucleation site hypothesis as a proximate explanation. The framework of this hypothesis can be extended to amniotes to infer their ancestral state. I also provide a mechanism and hypothesis on how squamates may transition from viviparity to oviparity and make predictions about the directionality of transitions in three species. After considering evidence for differing perspectives on amniote origins, I offer a framework that unifies (i) the extended embryonic retention model and (ii) the traditional model which describes the amniote egg as an adaptation to the terrestrial environment. Additionally, this review contextualises the origin of amniotes and parity mode evolution within Medawar's paradigm. Medawar posited that pregnancy could be supported by immunosuppression, inertness, evasion, or immunological barriers. I demonstrate that this does not support gestation or gravidity across most amniotes but may be an adequate paradigm to explain how the first amniote tolerated internal fertilization and delayed egg deposition. In this context, the eggshell can be thought of as an immunological barrier. If serving as a barrier underpins the origin of the amniote eggshell, there should be evidence that oviparous gravidity can be met with a lack of immunological responses in utero. Rare examples of two species that differentially express very few genes during gravidity, suggestive of an absent immunological reaction to oviparous gravidity, are two skinks Lampropholis guichenoti and Lerista bougainvillii. These species may serve as good models for the original amniote egg. Overall, this review grounds itself in the historical literature while offering a modern perspective on the origin of amniotes. I encourage the scientific community to utilise this review as a resource in evolutionary and comparative genomics studies, embrace the complexity of the system, and thoughtfully consider the frameworks proposed.
Collapse
Affiliation(s)
- X Maggs
- Richard Gilder Graduate School at The American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
- Christopher S. Bond Life Science Center at the University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- School of Life and Environmental Sciences at the University of Sydney, Heydon-Laurence Building A08, Sydney, NSW, 2006, Australia
| |
Collapse
|
5
|
Huang Y, Liu X, Li S, Li C, Wang HY, Liu Q, Chen JY, Zhang Y, Li Y, Zhang X, Wang Q, Liu K, Liu YY, Pang Y, Liu S, Fan G, Shao C. Discovery of an unconventional lamprey lymphocyte lineage highlights divergent features in vertebrate adaptive immune system evolution. Nat Commun 2024; 15:7626. [PMID: 39227584 PMCID: PMC11372201 DOI: 10.1038/s41467-024-51763-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Lymphocyte receptors independently evolved in both jawed and jawless vertebrates with similar adaptive immune responses. However, the diversity of functional subtypes and molecular architecture in jawless vertebrate lymphocytes, comparable to jawed species, is not well defined. Here, we profile the gills, intestines, and blood of the lamprey, Lampetra morii, with single-cell RNA sequencing, using a full-length transcriptome as a reference. Our findings reveal higher tissue-specific heterogeneity among T-like cells in contrast to B-like cells. Notably, we identify a unique T-like cell subtype expressing a homolog of the nonlymphoid hematopoietic growth factor receptor, MPL-like (MPL-L). These MPL-L+ T-like cells exhibit features distinct from T cells of jawed vertebrates, particularly in their elevated expression of hematopoietic genes. We further discovered that MPL-L+ VLRA+ T-like cells are widely present in the typhlosole, gill, liver, kidney, and skin of lamprey and they proliferate in response to both a T cell mitogen and recombinant human thrombopoietin. These findings provide new insights into the adaptive immune response in jawless vertebrates, shedding new light on the evolution of adaptive immunity.
Collapse
Affiliation(s)
- Yingyi Huang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Xiang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
| | - Shuo Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Chen Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Hong-Yan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Qun Liu
- BGI Research, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jian-Yang Chen
- BGI Research, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, China
| | - Yingying Zhang
- BGI Research, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, China
| | - Yanan Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Xianghui Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Qian Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Kaiqiang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Yu-Yan Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, China
| | - Shanshan Liu
- BGI Research, Shenzhen, China
- MGI Tech, Shenzhen, China
| | - Guangyi Fan
- BGI Research, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, China
- BGI Research, Shenzhen, China
| | - Changwei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China.
| |
Collapse
|
6
|
Flajnik MF. The Janus (dual) model of immunoglobulin isotype evolution: Conservation and plasticity are the defining paradigms. Immunol Rev 2024. [PMID: 39223989 DOI: 10.1111/imr.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The study of antibodies in jawed vertebrates (gnathostomes) provides every immunologist with a bird's eye view of how human immunoglobulins (Igs) came into existence and subsequently evolved into their present forms. It is a fascinating Darwinian history of conservation on the one hand and flexibility on the other, exemplified by the Ig heavy chain (H) isotypes IgM and IgD/W, respectively. The cartilaginous fish (e.g., sharks) Igs provide a glimpse of "how everything got off the ground," while the amphibians (e.g., the model Xenopus) reveal how the adaptive immune system made an about face with the emergence of Ig isotype switching and IgG-like structure/function. The evolution of mucosal Igs is a captivating account of malleability, convergence, and conservation, and a call to arms for future study! In between there are spellbinding chronicles of antibody evolution in each class of vertebrates and rather incredible stories of how antibodies can adapt to occupy niches, for example, single-domain variable regions, cold-adapted Igs, convergent mechanisms to dampen antibody function, provision of mucosal defense, and many more. The purpose here is not to provide an encyclopedic examination of antibody evolution, but rather to hit the high points and entice readers to appreciate how things "came to be."
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Daëron M. The function of antibodies. Immunol Rev 2024. [PMID: 39180466 DOI: 10.1111/imr.13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Antibodies have multiple biological activities. They can both recognize and act on specific antigens. They can protect against and cause serious diseases, enhance and inhibit antibody responses, enable survival, and threaten life. Which among their many, often antagonistic properties explains that antibodies were selected half a billion years ago and transmitted to mammals across millions of generations? In other words, what is the function of antibodies? Here I examine how their structure endows antibodies with unique cognitive and effector properties that contribute to their multiple biological activities. I show that rather than specific properties, antibodies have large functional repertoires. They have a cognitive repertoire and an effector repertoire that are selected from larger available repertoires, themselves drawn at random from even larger virtual repertoires. These virtual repertoires provide the adaptive immune system with immense, constantly renewed, reservoirs of cognitive and effector functions that can be actualized at any time according to the context. I propose that such a flexibility, which enables living individuals to adapt to a rapidly changing environment, and even deal with an unknown future, may provide a better selective advantage than any particular function.
Collapse
Affiliation(s)
- Marc Daëron
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université-CNRS-Inserm, Marseille, France
- Institut Pasteur-Université Paris Cité, Paris, France
- Institut d'histoire et de philosophie des sciences et des techniques (IHPST), Université Paris 1 Panthéon Sorbonne-CNRS, Paris, France
| |
Collapse
|
8
|
Zia A, Orozco A, Fang ISY, Tang AM, Mendoza Viruega AS, Dong S, Leung LYT, Devraj VM, Oludada OE, Ehrhardt GRA. High throughput long-read sequencing of circulating lymphocytes of the evolutionarily distant sea lamprey reveals diversity and common elements of the variable lymphocyte receptor B (VLRB) repertoire. Front Immunol 2024; 15:1427075. [PMID: 39170622 PMCID: PMC11335541 DOI: 10.3389/fimmu.2024.1427075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
The leucine-rich repeat-based variable lymphocyte receptor B (VLRB) antibody system of jawless vertebrates is capable of generating an antibody repertoire equal to or exceeding the diversity of antibody repertoires of jawed vertebrates. Unlike immunoglobulin-based immune repertoires, the VLRB repertoire diversity is characterized by variable lengths of VLRB encoding transcripts, rendering conventional immunoreceptor repertoire sequencing approaches unsuitable for VLRB repertoire sequencing. Here we demonstrate that long-read single-molecule real-time (SMRT) sequencing (PacBio) approaches permit the efficient large-scale assessment of the VLRB repertoire. We present a computational pipeline for sequence data processing and provide the first repertoire-based analysis of VLRB protein characteristics including properties of its subunits and regions of diversity within each structural leucine-rich repeat subunit. Our study provides a template to explore changes in the VLRB repertoire during immune responses and to establish large scale VLRB repertoire databases for computational approaches aimed at isolating monoclonal VLRB reagents for biomedical research and clinical applications.
Collapse
Affiliation(s)
| | - Ariel Orozco
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Irene S. Y. Fang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Aspen M. Tang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Shilan Dong
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Vijaya M. Devraj
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
9
|
Rangel V, Sterrenberg JN, Garawi A, Mezcord V, Folkerts ML, Calderon SE, Garcia YE, Wang J, Soyfer EM, Eng OS, Valerin JB, Tanjasiri SP, Quintero-Rivera F, Seldin MM, Masri S, Frock RL, Fleischman AG, Pannunzio NR. Increased AID results in mutations at the CRLF2 locus implicated in Latin American ALL health disparities. Nat Commun 2024; 15:6331. [PMID: 39068148 PMCID: PMC11283463 DOI: 10.1038/s41467-024-50537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 07/10/2024] [Indexed: 07/30/2024] Open
Abstract
Activation-induced cytidine deaminase (AID) is a B cell-specific mutator required for antibody diversification. However, it is also implicated in the etiology of several B cell malignancies. Evaluating the AID-induced mutation load in patients at-risk for certain blood cancers is critical in assessing disease severity and treatment options. We have developed a digital PCR (dPCR) assay that allows us to quantify mutations resulting from AID modification or DNA double-strand break (DSB) formation and repair at sites known to be prone to DSBs. Implementation of this assay shows that increased AID levels in immature B cells increase genome instability at loci linked to chromosomal translocation formation. This includes the CRLF2 locus that is often involved in translocations associated with a subtype of acute lymphoblastic leukemia (ALL) that disproportionately affects Hispanics, particularly those with Latin American ancestry. Using dPCR, we characterize the CRLF2 locus in B cell-derived genomic DNA from both Hispanic ALL patients and healthy Hispanic donors and found increased mutations in both, suggesting that vulnerability to DNA damage at CRLF2 may be driving this health disparity. Our ability to detect and quantify these mutations will potentiate future risk identification, early detection of cancers, and reduction of associated cancer health disparities.
Collapse
Affiliation(s)
- Valeria Rangel
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Jason N Sterrenberg
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Aya Garawi
- School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Vyanka Mezcord
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Melissa L Folkerts
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Sabrina E Calderon
- School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Yadhira E Garcia
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Jinglong Wang
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Eli M Soyfer
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Oliver S Eng
- Division of Surgical Oncology, Department of Surgery, University of California, Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Jennifer B Valerin
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Sora Park Tanjasiri
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
- Department of Health, Society and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Fabiola Quintero-Rivera
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Richard L Frock
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Angela G Fleischman
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Nicholas R Pannunzio
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA.
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
10
|
Bela-Ong DB, Kim J, Thompson KD, Jung TS. Leveraging the biotechnological promise of the hagfish variable lymphocyte receptors: tools for aquatic microbial diseases. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109565. [PMID: 38636740 DOI: 10.1016/j.fsi.2024.109565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
The jawless vertebrates (agnathans/cyclostomes) are ancestral animals comprising lampreys and hagfishes as the only extant representatives. They possess an alternative adaptive immune system (AIS) that uses leucine-rich repeats (LRR)-based variable lymphocyte receptors (VLRs) instead of the immunoglobulin (Ig)-based antigen receptors of jawed vertebrates (gnathostomes). The different VLR types are expressed on agnathan lymphocytes and functionally resemble gnathostome antigen receptors. In particular, VLRB is functionally similar to the B cell receptor and is expressed and secreted by B-like lymphocytes as VLRB antibodies that bind antigens with high affinity and specificity. The potential repertoire scale of VLR-based antigen receptors is believed to be at least comparable to that of Ig-based systems. VLR proteins inherently possess characteristics that render them excellent candidates for biotechnological development, including tractability to recombinant approaches. In recent years, scientists have explored the biotechnological development and utility of VLRB proteins as alternatives to conventional mammalian antibodies. The VLRB antibody platform represents a non-traditional approach to generating a highly diverse repertoire of unique antibodies. In this review, we first describe some aspects of the biology of the AIS of the jawless vertebrates, which recognizes antigens by means of unique receptors. We then summarize reports on the development of VLRB-based antibodies and their applications, particularly those from the inshore hagfish (Eptatretus burgeri) and their potential uses to address microbial diseases in aquaculture. Hagfish VLRB antibodies (we call Ccombodies) are being developed and improved, while obstacles to the advancement of the VLRB platform are being addressed to utilize VLRBs effectively as tools in immunology. VLRB antibodies for novel antigen targets are expected to emerge to provide new opportunities to tackle various scientific questions. We anticipate a greater interest in the agnathan AIS in general and particularly in the hagfish AIS for greater elucidation of the evolution of adaptive immunity and its applications to address microbial pathogens in farmed aquatic animals and beyond.
Collapse
Affiliation(s)
- Dennis B Bela-Ong
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Jaesung Kim
- Earwynbio Co., Ltd., 206 Sungjangjiwon-dong, 991 Worasan-ro, Munsan, Jinju, Gyeongnam, 52839, Republic of Korea
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK, Scotland, United Kingdom
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea; Earwynbio Co., Ltd., 206 Sungjangjiwon-dong, 991 Worasan-ro, Munsan, Jinju, Gyeongnam, 52839, Republic of Korea.
| |
Collapse
|
11
|
Yu D, Ren Y, Uesaka M, Beavan AJS, Muffato M, Shen J, Li Y, Sato I, Wan W, Clark JW, Keating JN, Carlisle EM, Dearden RP, Giles S, Randle E, Sansom RS, Feuda R, Fleming JF, Sugahara F, Cummins C, Patricio M, Akanni W, D'Aniello S, Bertolucci C, Irie N, Alev C, Sheng G, de Mendoza A, Maeso I, Irimia M, Fromm B, Peterson KJ, Das S, Hirano M, Rast JP, Cooper MD, Paps J, Pisani D, Kuratani S, Martin FJ, Wang W, Donoghue PCJ, Zhang YE, Pascual-Anaya J. Hagfish genome elucidates vertebrate whole-genome duplication events and their evolutionary consequences. Nat Ecol Evol 2024; 8:519-535. [PMID: 38216617 DOI: 10.1038/s41559-023-02299-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/04/2023] [Indexed: 01/14/2024]
Abstract
Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to the divergence of gnathostomes (jawed vertebrates) and cyclostomes (jawless hagfishes and lampreys) is unresolved and whether these WGD events underlie vertebrate phenotypic diversification remains elusive. Here we present the genome of the inshore hagfish, Eptatretus burgeri. Through comparative analysis with lamprey and gnathostome genomes, we reconstruct the early events in cyclostome genome evolution, leveraging insights into the ancestral vertebrate genome. Genome-wide synteny and phylogenetic analyses support a scenario in which 1R occurred in the vertebrate stem-lineage during the early Cambrian, and 2R occurred in the gnathostome stem-lineage, maximally in the late Cambrian-earliest Ordovician, after its divergence from cyclostomes. We find that the genome of stem-cyclostomes experienced an additional independent genome triplication. Functional genomic and morphospace analyses demonstrate that WGD events generally contribute to developmental evolution with similar changes in the regulatory genome of both vertebrate groups. However, appreciable morphological diversification occurred only in the gnathostome but not in the cyclostome lineage, calling into question the general expectation that WGDs lead to leaps of bodyplan complexity.
Collapse
Affiliation(s)
- Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yandong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Masahiro Uesaka
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Alan J S Beavan
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Jieyu Shen
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongxin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Iori Sato
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Wenting Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - James W Clark
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
- Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
| | - Joseph N Keating
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Emily M Carlisle
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Richard P Dearden
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Sam Giles
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Emma Randle
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Robert S Sansom
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - James F Fleming
- Keio University Institute for Advanced Biosciences, Tsuruoka, Japan
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Fumiaki Sugahara
- Division of Biology, Hyogo Medical University, Nishinomiya, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Carla Cummins
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Mateus Patricio
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Wasiu Akanni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Salvatore D'Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, Napoli, Italy
| | - Cristiano Bertolucci
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, Napoli, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Naoki Irie
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Cantas Alev
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ignacio Maeso
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Masayuki Hirano
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Jonathan P Rast
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Max D Cooper
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Jordi Paps
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Juan Pascual-Anaya
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.
- Department of Animal Biology, Faculty of Science, University of Málaga (UMA), Málaga, Spain.
- Edificio de Bioinnovación, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
12
|
Putnam CD, Broderick L, Hoffman HM. The discovery of NLRP3 and its function in cryopyrin-associated periodic syndromes and innate immunity. Immunol Rev 2024; 322:259-282. [PMID: 38146057 PMCID: PMC10950545 DOI: 10.1111/imr.13292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023]
Abstract
From studies of individual families to global collaborative efforts, the NLRP3 inflammasome is now recognized to be a key regulator of innate immunity. Activated by a panoply of pathogen-associated and endogenous triggers, NLRP3 serves as an intracellular sensor that drives carefully coordinated assembly of the inflammasome, and downstream inflammation mediated by IL-1 and IL-18. Initially discovered as the cause of the autoinflammatory spectrum of cryopyrin-associated periodic syndrome (CAPS), NLRP3 is now also known to play a role in more common diseases including cardiovascular disease, gout, and liver disease. We have seen cohesion in results from clinical studies in CAPS patients, ex vivo studies of human cells and murine cells, and in vivo murine models leading to our understanding of the downstream pathways, cytokine secretion, and cell death pathways that has solidified the role of autoinflammation in the pathogenesis of human disease. Recent advances in our understanding of the structure of the inflammasome have provided ways for us to visualize normal and mutant protein function and pharmacologic inhibition. The subsequent development of targeted therapies successfully used in the treatment of patients with CAPS completes the bench to bedside translational loop which has defined the study of this unique protein.
Collapse
Affiliation(s)
- Christopher D. Putnam
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Lori Broderick
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Rady Children’s Hospital, San Diego, California, USA
| | - Hal M. Hoffman
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Rady Children’s Hospital, San Diego, California, USA
| |
Collapse
|
13
|
Wang Y, Meng FL, Yeap LS. DNA flexibility can shape the preferential hypermutation of antibody genes. Trends Immunol 2024; 45:167-176. [PMID: 38402044 DOI: 10.1016/j.it.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/26/2024]
Abstract
Antibody-coding genes accumulate somatic mutations to achieve antibody affinity maturation. Genetic dissection using various mouse models has shown that intrinsic hypermutations occur preferentially and are predisposed in the DNA region encoding antigen-contacting residues. The molecular basis of nonrandom/preferential mutations is a long-sought question in the field. Here, we summarize recent findings on how single-strand (ss)DNA flexibility facilitates activation-induced cytidine deaminase (AID) activity and fine-tunes the mutation rates at a mesoscale within the antibody variable domain exon. We propose that antibody coding sequences are selected based on mutability during the evolution of adaptive immunity and that DNA mechanics play a noncoding role in the genome. The mechanics code may also determine other cellular DNA metabolism processes, which awaits future investigation.
Collapse
Affiliation(s)
- Yanyan Wang
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fei-Long Meng
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Leng-Siew Yeap
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
14
|
Acuto O. T-cell virtuosity in ''knowing thyself". Front Immunol 2024; 15:1343575. [PMID: 38415261 PMCID: PMC10896960 DOI: 10.3389/fimmu.2024.1343575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024] Open
Abstract
Major Histocompatibility Complex (MHC) I and II and the αβ T-cell antigen receptor (TCRαβ) govern fundamental traits of adaptive immunity. They form a membrane-borne ligand-receptor system weighing host proteome integrity to detect contamination by nonself proteins. MHC-I and -II exhibit the "MHC-fold", which is able to bind a large assortment of short peptides as proxies for self and nonself proteins. The ensuing varying surfaces are mandatory ligands for Ig-like TCRαβ highly mutable binding sites. Conserved molecular signatures guide TCRαβ ligand binding sites to focus on the MHC-fold (MHC-restriction) while leaving many opportunities for its most hypervariable determinants to contact the peptide. This riveting molecular strategy affords many options for binding energy compatible with specific recognition and signalling aimed to eradicated microbial pathogens and cancer cells. While the molecular foundations of αβ T-cell adaptive immunity are largely understood, uncertainty persists on how peptide-MHC binding induces the TCRαβ signals that instruct cell-fate decisions. Solving this mystery is another milestone for understanding αβ T-cells' self/nonself discrimination. Recent developments revealing the innermost links between TCRαβ structural dynamics and signalling modality should help dissipate this long-sought-after enigma.
Collapse
Affiliation(s)
- Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Xu X, Xu J, Qiu M, Yu Y, Gou M, Pang Y, Li Q, Su P. A Comparative Transcriptomic Study and Key Gene Targeting of Lamprey Gonadal Immune Response. Immunol Invest 2024; 53:241-260. [PMID: 38078455 DOI: 10.1080/08820139.2023.2289070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The mammalian testis and ovary possess special immunocompetence, which is central to provide protection against pathogens. However, the innate immune responses to immune challenges in lamprey gonads are poorly understood. In this study, we extracted RNA from testis and ovary tissues of lampreys at 0 hour, 8 hours and 17 days after lipopolysaccharides (LPS) stimulation and performed transcriptome sequencing. While the transcriptome profiles of the two tissues were different for the most part, genes LIP, LECT2, LAL2, GRN, ITLN, and C1q were found to be the most significantly up-regulated genes in both. Quantitative Real-time PCR (qRT-PCR) analysis confirmed that these genes were upregulated after stimulation. Furthermore, immunohistochemical staining showed that these genes in lamprey gonads are expressed in high quantities and have a specific distribution. Taken together, our results suggest that these genes could play an essential role in response of the gonads to LPS induction. This research establishes a basis for investigating the immune mechanism of vertebrate gonads and presents a fresh concept for gaining insight into the evolutionary development of jawless vertebrates.
Collapse
Affiliation(s)
- Xiangting Xu
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jing Xu
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- Functional laboratory, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Mingyue Qiu
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yang Yu
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- Department of Urology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
16
|
Zhou Y, Yan Z, Pang Y, Jiang Y, Zhuang R, Zhang S, Nurmamat A, Xiu M, Li D, Zhao L, Liu X, Li Q, Han Y. Exploring the Multiple Roles of Notch1 in Biological Development: An Analysis and Study Based on Phylogenetics and Transcriptomics. Int J Mol Sci 2024; 25:611. [PMID: 38203782 PMCID: PMC10778765 DOI: 10.3390/ijms25010611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
At present, there is a research gap concerning the specific functions and mechanisms of the Notch gene family and its signaling pathway in jawless vertebrates. In this study, we identified a Notch1 homologue (Lr. Notch1) in the Lethenteron reissneri database. Through bioinformatics analysis, we identified Lr. Notch1 as the likely common ancestor gene of the Notch gene family in higher vertebrates, indicating a high degree of conservation in the Notch gene family and its signaling pathways. To validate the biological function of Lr. Notch1, we conducted targeted silencing of Lr. Notch1 in L. reissneri and analyzed the resultant gene expression profile before and after silencing using transcriptome analysis. Our findings revealed that the silencing of Lr. Notch1 resulted in differential expression of pathways and genes associated with signal transduction, immune regulation, and metabolic regulation, mirroring the biological function of the Notch signaling pathway in higher vertebrates. This article systematically elucidated the origin and evolution of the Notch gene family while also validating the biological function of Lr. Notch1. These insights offer valuable clues for understanding the evolution of the Notch signaling pathway and establish a foundation for future research on the origin of the Notch signaling pathway, as well as its implications in human diseases and immunomodulation.
Collapse
Affiliation(s)
- Yuesi Zhou
- Key Research Base of Humanities and Social Sciences of Ministry of Education, Institute of Marine Sustainable Development, Liaoning Normal University, Dalian 116029, China;
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Zihao Yan
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Ya Pang
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Yao Jiang
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Ruyu Zhuang
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Shuyuan Zhang
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Ayqeqan Nurmamat
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Min Xiu
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Ding Li
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Liang Zhao
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Xin Liu
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Qingwei Li
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yinglun Han
- Key Research Base of Humanities and Social Sciences of Ministry of Education, Institute of Marine Sustainable Development, Liaoning Normal University, Dalian 116029, China;
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
17
|
Zhang G, Swann JB, Felder M, O'Meara C, Boehm T. Lymphocyte pathway analysis using naturally lymphocyte-deficient fish. Eur J Immunol 2023; 53:e2350577. [PMID: 37593947 DOI: 10.1002/eji.202350577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
Comparative phylogenetic analyses are of potential value to establish the essential components of genetic networks underlying physiological traits. For species that naturally lack particular lymphocyte lineages, we show here that this strategy readily distinguishes trait-specific actors from pleiotropic components of the genetic network governing lymphocyte differentiation. Previously, three of the four members of the DNA polymerase X family have been implicated in the junctional diversification process during the somatic assembly of antigen receptors. Our phylogenetic analysis indicates that the presence of terminal deoxynucleotidyl transferase is strictly associated with the facility of V(D)J recombination, whereas PolL and PolM genes are retained even in species lacking Rag-mediated somatic diversification of antigen receptor genes.
Collapse
Affiliation(s)
- Gaoqun Zhang
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jeremy B Swann
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Marius Felder
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Connor O'Meara
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Boehm T. The chilling origin of germinal centers. Sci Immunol 2023; 8:eadl1470. [PMID: 38039380 DOI: 10.1126/sciimmunol.adl1470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
Germinal center-like structures have been identified in ectothermic vertebrates, establishing germinal centers as a universal component of humoral immunity (see related Research Article by Shibasaki et al.).
Collapse
Affiliation(s)
- Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, D-79110 Freiburg, Germany
| |
Collapse
|
19
|
Maina JN. A critical assessment of the cellular defences of the avian respiratory system: are birds in general and poultry in particular relatively more susceptible to pulmonary infections/afflictions? Biol Rev Camb Philos Soc 2023; 98:2152-2187. [PMID: 37489059 DOI: 10.1111/brv.13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023]
Abstract
In commercial poultry farming, respiratory diseases cause high morbidities and mortalities, begetting colossal economic losses. Without empirical evidence, early observations led to the supposition that birds in general, and poultry in particular, have weak innate and adaptive pulmonary defences and are therefore highly susceptible to injury by pathogens. Recent findings have, however, shown that birds possess notably efficient pulmonary defences that include: (i) a structurally complex three-tiered airway arrangement with aerodynamically intricate air-flow dynamics that provide efficient filtration of inhaled air; (ii) a specialised airway mucosal lining that comprises air-filtering (ciliated) cells and various resident phagocytic cells such as surface and tissue macrophages, dendritic cells and lymphocytes; (iii) an exceptionally efficient mucociliary escalator system that efficiently removes trapped foreign agents; (iv) phagocytotic atrial and infundibular epithelial cells; (v) phagocytically competent surface macrophages that destroy pathogens and injurious particulates; (vi) pulmonary intravascular macrophages that protect the lung from the vascular side; and (vii) proficiently phagocytic pulmonary extravasated erythrocytes. Additionally, the avian respiratory system rapidly translocates phagocytic cells onto the respiratory surface, ostensibly from the subepithelial space and the circulatory system: the mobilised cells complement the surface macrophages in destroying foreign agents. Further studies are needed to determine whether the posited weak defence of the avian respiratory system is a global avian feature or is exclusive to poultry. This review argues that any inadequacies of pulmonary defences in poultry may have derived from exacting genetic manipulation(s) for traits such as rapid weight gain from efficient conversion of food into meat and eggs and the harsh environmental conditions and severe husbandry operations in modern poultry farming. To reduce pulmonary diseases and their severity, greater effort must be directed at establishment of optimal poultry housing conditions and use of more humane husbandry practices.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Auckland Park Campus, Kingsway Avenue, Johannesburg, 2006, South Africa
| |
Collapse
|
20
|
Pannunzio N, Rangel V, Sterrenberg J, Garawi A, Mezcord V, Folkerts M, Caulderon S, Wang J, Soyfer E, Eng O, Valerin J, Tanjasiri S, Quintero-Rivera F, Masri S, Seldin M, Frock R, Fleischman A. Increased AID Results in Mutations at the CRLF2 Locus Implicated in Latin American ALL Health Disparities. RESEARCH SQUARE 2023:rs.3.rs-3332673. [PMID: 37790327 PMCID: PMC10543404 DOI: 10.21203/rs.3.rs-3332673/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Activation-induced cytidine deaminase (AID) is a B cell-specific base editor required during class switch recombination and somatic hypermutation for B cell maturation and antibody diversification. However, it has also been implicated as a factor in the etiology of several B cell malignancies. Evaluating the AID-induced mutation load in patients at-risk for certain types of blood cancers is critical in assessing disease severity and treatment options. Here, we have developed a digital PCR (dPCR) assay that allows us to track the mutational landscape resulting from AID modification or DNA double-strand break (DSB) formation and repair at sites known to be prone to DSBs. Implementation of this new assay showed that increased AID levels in immature B cells increases genome instability at loci linked to translocation formation. This included the CRLF2 locus that is often involved in chromosomal translocations associated with a subtype of acute lymphoblastic leukemia (ALL) that disproportionately affects Latin Americans (LAs). To support this LA-specific identification of AID mutation signatures, we characterized DNA from immature B cells isolated from the bone marrow of ALL patients. Our ability to detect and quantify these mutation signatures will potentiate future risk identification, early detection of cancers, and reduction of associated cancer health disparities.
Collapse
|
21
|
Das S, Boehm T, Holland SJ, Rast JP, Fontenla-Iglesias F, Morimoto R, Valadez JG, Heimroth RD, Hirano M, Cooper MD. Evolution of two distinct variable lymphocyte receptors in lampreys: VLRD and VLRE. Cell Rep 2023; 42:112933. [PMID: 37542721 PMCID: PMC11160967 DOI: 10.1016/j.celrep.2023.112933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/20/2023] [Accepted: 07/18/2023] [Indexed: 08/07/2023] Open
Abstract
Jawless vertebrates possess an alternative adaptive immune system in which antigens are recognized by variable lymphocyte receptors (VLRs) generated by combinatorial assembly of leucine-rich repeat (LRR) cassettes. Three types of receptors, VLRA, VLRB, and VLRC, have been previously identified. VLRA- and VLRC-expressing cells are T cell-like, whereas VLRB-expressing cells are B cell-like. Here, we report two types of VLRs in lampreys, VLRD and VLRE, phylogenetically related to VLRA and VLRC. The germline VLRD and VLRE genes are flanked by 39 LRR cassettes used in the assembly of mature VLRD and VLRE, with cassettes from chromosomes containing the VLRA and VLRC genes also contributing to VLRD and VLRE assemblies. VLRD and VLRE transcription is highest in the triple-negative (VLRA-/VLRB-/VLRC-) population of lymphocytes, albeit also detectable in VLRA+ and VLRC+ populations. Tissue distribution studies suggest that lamprey VLRD+ and VLRE+ lymphocytes comprise T-like sublineages of cells.
Collapse
Affiliation(s)
- Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30317, USA.
| | - Thomas Boehm
- Department of Developmental Immunology, Max-Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacher Str. 153, 79110 Freiburg, Germany.
| | - Stephen J Holland
- Department of Developmental Immunology, Max-Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Jonathan P Rast
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30317, USA
| | - Francisco Fontenla-Iglesias
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30317, USA
| | - Ryo Morimoto
- Department of Developmental Immunology, Max-Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - J Gerardo Valadez
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30317, USA
| | - Ryan D Heimroth
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30317, USA
| | - Masayuki Hirano
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30317, USA
| | - Max D Cooper
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30317, USA.
| |
Collapse
|
22
|
Giorgetti OB, O'Meara CP, Schorpp M, Boehm T. Origin and evolutionary malleability of T cell receptor α diversity. Nature 2023:10.1038/s41586-023-06218-x. [PMID: 37344590 PMCID: PMC10322711 DOI: 10.1038/s41586-023-06218-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
Lymphocytes of vertebrate adaptive immune systems acquired the capability to assemble, from split genes in the germline, billions of functional antigen receptors1-3. These receptors show specificity; unlike the broadly tuned receptors of the innate system, antibodies (Ig) expressed by B cells, for instance, can accurately distinguish between the two enantiomers of organic acids4, whereas T cell receptors (TCRs) reliably recognize single amino acid replacements in their peptide antigens5. In developing lymphocytes, antigen receptor genes are assembled from a comparatively small set of germline-encoded genetic elements in a process referred to as V(D)J recombination6,7. Potential self-reactivity of some antigen receptors arising from the quasi-random somatic diversification is suppressed by several robust control mechanisms8-12. For decades, scientists have puzzled over the evolutionary origin of somatically diversifying antigen receptors13-16. It has remained unclear how, at the inception of this mechanism, immunologically beneficial expanded receptor diversity was traded against the emerging risk of destructive self-recognition. Here we explore the hypothesis that in early vertebrates, sequence microhomologies marking the ends of recombining elements became the crucial targets of selection determining the outcome of non-homologous end joining-based repair of DNA double-strand breaks generated during RAG-mediated recombination. We find that, across the main clades of jawed vertebrates, TCRα repertoire diversity is best explained by species-specific extents of such sequence microhomologies. Thus, selection of germline sequence composition of rearranging elements emerges as a major factor determining the degree of diversity of somatically generated antigen receptors.
Collapse
Affiliation(s)
- Orlando B Giorgetti
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Connor P O'Meara
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Michael Schorpp
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
23
|
Tsygankov AY. TULA Proteins in Men, Mice, Hens, and Lice: Welcome to the Family. Int J Mol Sci 2023; 24:ijms24119126. [PMID: 37298079 DOI: 10.3390/ijms24119126] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
The two members of the UBASH3/STS/TULA protein family have been shown to critically regulate key biological functions, including immunity and hemostasis, in mammalian biological systems. Negative regulation of signaling through immune receptor tyrosine-based activation motif (ITAM)- and hemITAM-bearing receptors mediated by Syk-family protein tyrosine kinases appears to be a major molecular mechanism of the down-regulatory effect of TULA-family proteins, which possess protein tyrosine phosphatase (PTP) activity. However, these proteins are likely to carry out some PTP-independent functions as well. Whereas the effects of TULA-family proteins overlap, their characteristics and their individual contributions to cellular regulation also demonstrate clearly distinct features. Protein structure, enzymatic activity, molecular mechanisms of regulation, and biological functions of TULA-family proteins are discussed in this review. In particular, the usefulness of the comparative analysis of TULA proteins in various metazoan taxa, for identifying potential roles of TULA-family proteins outside of their functions already established in mammalian systems, is examined.
Collapse
Affiliation(s)
- Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
24
|
Guo J, Lyu S, Qi Y, Chen X, Yang L, Zhao C, Wang H. Molecular evolution and gene expression of ferritin family involved in immune defense of lampreys. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104729. [PMID: 37187445 DOI: 10.1016/j.dci.2023.104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/06/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
Ferritin, one of the key regulators of iron homeostasis, is widely present throughout almost all species. The vertebrate ferritin family, which originates from a single gene in the ancestral invertebrates, contains the widest variety of ferritin subtypes among all animal species. However, the evolutionary history of the vertebrate ferritin family remains to be further clarified. In this study, genome-wide identification of the ferritin homologs is performed in lampreys, which are the extant representatives of jawless vertebrates that diverged from the future jawed vertebrates more than 500 million years ago. Molecular evolutionary analyses show that four members of the lamprey ferritin family, L-FT1-4, are derived from a common ancestor with jawed vertebrate ferritins prior to the divergence of the jawed vertebrate ferritin subtypes. The lamprey ferritin family shares evolutionarily conserved characteristics of the ferritin H subunit with higher vertebrates, but certain members such as L-FT1 additionally accumulate some features of the M or L subunits. Expression profiling reveals that lamprey ferritins are highly expressed in the liver. The transcription of L-FT1 is significantly induced in the liver and heart during lipopolysaccharide stimulation, indicating that L-FTs may play a role in the innate immune response to bacterial infection in lampreys. Furthermore, the transcriptional expression of L-FT1 in quiescent and LPS-activated leukocytes is up- and down-regulated by the lamprey TGF-β2, an essential regulator of the inflammatory response, respectively. Our results provide new insights into the origin and evolution of the vertebrate ferritin family and reveal that lamprey ferritins may be involved in immune regulation as target genes of the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Junfu Guo
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116081, China
| | - Shuangyu Lyu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116081, China
| | - Yanchen Qi
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Xuanyi Chen
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116081, China
| | - Lu Yang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116081, China
| | - Chunhui Zhao
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China.
| | - Hao Wang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116081, China.
| |
Collapse
|
25
|
Zhang L, Park JJ, Dong MB, Arsala D, Xia S, Chen J, Sosa D, Atlas JE, Long M, Chen S. Human gene age dating reveals an early and rapid evolutionary construction of the adaptive immune system. Genome Biol Evol 2023; 15:evad081. [PMID: 37170918 PMCID: PMC10210621 DOI: 10.1093/gbe/evad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
T cells are a type of white blood cell that play a critical role in the immune response against foreign pathogens through a process called T Cell Adaptive Immunity (TCAI). However, the evolution of the genes and nucleotide sequences involved in TCAI is not well understood. To investigate this, we performed comparative studies of gene annotations and genome assemblies of 28 vertebrate species and identified sets of human genes that are involved in TCAI, carcinogenesis, and ageing. We found that these gene sets share interaction pathways which may have contributed to the evolution of longevity in the vertebrate lineage leading to humans. Our human gene age dating analyses revealed that there was rapid origination of genes with TCAI-related functions prior to the Cretaceous eutherian radiation and these new genes mainly encode negative regulators. We identified no new TCAI-related genes after the divergence of placental mammals, but we did detect an extensive number of amino acid substitutions under strong positive selection in recently evolved human immunity genes suggesting they are co-evolving with adaptive immunity. More specifically, we observed that antigen processing and presentation and checkpoint genes are significantly enriched among new genes evolving under positive selection. These observations reveal an evolutionary process of T Cell Adaptive Immunity that were associated with rapid gene duplication in the early stages of vertebrates and subsequent sequence changes in TCAI-related genes. These processes together suggest an early genetic construction of the vertebrate immune system and subsequent molecular adaptation to diverse antigens.
Collapse
Affiliation(s)
- Li Zhang
- System Biology Institute, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Yale M.D.-Ph.D. Program, New Haven, Connecticut, USA
| | - Jonathan J Park
- System Biology Institute, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Yale M.D.-Ph.D. Program, New Haven, Connecticut, USA
| | - Matthew B Dong
- System Biology Institute, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Yale M.D.-Ph.D. Program, New Haven, Connecticut, USA
- Immunobiology Program, The Anlyan Center, New Haven, Connecticut, USA
- Department of Immunobiology, The Anlyan Center, New Haven, Connecticut, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Jianhai Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Dylan Sosa
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Jared E Atlas
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, USA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Sidi Chen
- System Biology Institute, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, Connecticut, USA
- Yale M.D.-Ph.D. Program, New Haven, Connecticut, USA
- Immunobiology Program, The Anlyan Center, New Haven, Connecticut, USA
- Yale Comprehensive Cancer Center, New Haven, Connecticut, USA
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
26
|
Maxson Jones K, Morgan JR. Lampreys and spinal cord regeneration: "a very special claim on the interest of zoologists," 1830s-present. Front Cell Dev Biol 2023; 11:1113961. [PMID: 37228651 PMCID: PMC10203415 DOI: 10.3389/fcell.2023.1113961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Employing history of science methods, including analyses of the scientific literature, archival documents, and interviews with scientists, this paper presents a history of lampreys in neurobiology from the 1830s to the present. We emphasize the lamprey's roles in helping to elucidate spinal cord regeneration mechanisms. Two attributes have long perpetuated studies of lampreys in neurobiology. First, they possess large neurons, including multiple classes of stereotypically located, 'identified' giant neurons in the brain, which project their large axons into the spinal cord. These giant neurons and their axonal fibers have facilitated electrophysiological recordings and imaging across biological scales, ranging from molecular to circuit-level analyses of nervous system structures and functions and including their roles in behavioral output. Second, lampreys have long been considered amongst the most basal extant vertebrates on the planet, so they have facilitated comparative studies pointing to conserved and derived characteristics of vertebrate nervous systems. These features attracted neurologists and zoologists to studies of lampreys between the 1830s and 1930s. But, the same two attributes also facilitated the rise of the lamprey in neural regeneration research after 1959, when biologists first wrote about the spontaneous, robust regeneration of some identified CNS axons in larvae after spinal cord injuries, coupled with recovery of normal swimming. Not only did large neurons promote fresh insights in the field, enabling studies incorporating multiple scales with existing and new technologies. But investigators also were able to attach a broad scope of relevance to their studies, interpreting them as suggesting conserved features of successful, and sometimes even unsuccessful, CNS regeneration. Lamprey research demonstrated that functional recovery takes place without the reformation of the original neuronal connections, for instance, by way of imperfect axonal regrowth and compensatory plasticity. Moreover, research performed in the lamprey model revealed that factors intrinsic to neurons are integral in promoting or hindering regeneration. As this work has helped illuminate why basal vertebrates accomplish CNS regeneration so well, whereas mammals do it so poorly, this history presents a case study in how biological and medical value have been, and could continue to be, gleaned from a non-traditional model organism for which molecular tools have been developed only relatively recently.
Collapse
Affiliation(s)
- Kathryn Maxson Jones
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
- Department of History, Purdue University, West Lafayette, IN, United States
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA, United States
| | - Jennifer R. Morgan
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA, United States
| |
Collapse
|
27
|
Abstract
Immunity to infection has been extensively studied in humans and mice bearing naturally occurring or experimentally introduced germline mutations. Mouse studies are sometimes neglected by human immunologists, on the basis that mice are not humans and the infections studied are experimental and not natural. Conversely, human studies are sometimes neglected by mouse immunologists, on the basis of the uncontrolled conditions of study and small numbers of patients. However, both sides would agree that the infectious phenotypes of patients with inborn errors of immunity often differ from those of the corresponding mutant mice. Why is that? We argue that this important question is best addressed by revisiting and reinterpreting the findings of both mouse and human studies from a genetic perspective. Greater caution is required for reverse-genetics studies than for forward-genetics studies, but genetic analysis is sufficiently strong to define the studies likely to stand the test of time. Genetically robust mouse and human studies can provide invaluable complementary insights into the mechanisms of immunity to infection common and specific to these two species.
Collapse
Affiliation(s)
- Philippe Gros
- McGill University Research Center on Complex Traits, Department of Biochemistry, and Department of Human Genetics, McGill University, Montréal, Québec, Canada;
| | - Jean-Laurent Casanova
- Howard Hughes Medical Institute and St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, and University of Paris Cité, Imagine Institute and Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
28
|
Lv X, Li S, Yu Y, Jin S, Zhang X, Li F. LvCD14L Acts as a Novel Pattern Recognition Receptor and a Regulator of the Toll Signaling Pathway in Shrimp. Int J Mol Sci 2023; 24:ijms24097770. [PMID: 37175476 PMCID: PMC10178686 DOI: 10.3390/ijms24097770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Leucine-rich repeat (LRR) is a structural motif has important recognition function in immune receptors, such as Tolls and NOD-like receptors (NLRs). The immune-related LRR proteins can be divided into two categories, LRR-containing proteins and LRR-only proteins. The latter contain LRR motifs while they are without other functional domains. However, the functional mechanisms of the LRR-only proteins were still unclear in invertebrates. Here, we identified a gene encoding a secretory LRR-only protein, which possessed similarity with vertebrate CD14 and was designated as LvCD14L, from the Pacific whiteleg shrimp Litopenaeus vannamei. Its transcripts in shrimp hemocytes were apparently responsive to the infection of Vibrio parahaemolyticus. Knockdown of LvCD14L with dsRNA resulted in significant increase of the viable bacteria in the hepatopancreas of shrimp upon V. parahaemolyticus infection. Further functional studies revealed that LvCD14L could bind to microorganisms' PAMPs, showed interaction with LvToll1 and LvToll2, and regulated the expression of LvDorsal and LvALF2 in hemocytes. These results suggest that LvCD14L functions as a pattern recognition receptor and activates the NF-κB pathway through interaction with LvTolls. The present study reveals a shrimp LvCD14L-Tolls-NF-κB signaling pathway like the CD14/TLR4/NF-κB signaling pathway in mammalians, which enriches the functional mechanism of secretory LRR-only immune receptors during pathogens infection in invertebrates.
Collapse
Affiliation(s)
- Xinjia Lv
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Songjun Jin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
29
|
Zhan Y, Zhao CS, Qu X, Xiao Z, Deng C, Li Y. Identification of a novel amphioxus leucine-rich repeat receptor involved in phagocytosis reveals a role for Slit2-N-type LRR in bacterial elimination. J Biol Chem 2023; 299:104689. [PMID: 37044216 DOI: 10.1016/j.jbc.2023.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
The basal chordate amphioxus is a model for tracing the origin and evolution of vertebrate immunity. To explore the evolution of immunoreceptor signaling pathways, we searched the associated receptors of the amphioxus B. belcheri (Bb) homolog of immunoreceptor signaling adaptor protein Grb2. Mass-spectrum analysis of BbGrb2 immunoprecipitates from B. belcheri intestine lysates revealed a folate receptor (FR) domain- and leucine-rich repeat (LRR)-containing protein (FrLRR). Sequence and structural analysis showed that FrLRR is a membrane protein with a predicted curved solenoid structure. The N-terminal Fr domain contains very few folate-binding sites; the following LRR region is a Slit2-type LRR, and a GPI-anchored site was predicted at the C-terminus. RT-PCR analysis showed FrLRR is a transcription-mediated fusion gene of BbFR-like and BbSlit2-N-like genes. Genomic DNA structure analysis implied the B. belcheri FrLRR gene locus and the corresponding locus in B. floridae might be generated by exon shuffling of a Slit2-N-like gene into an FR gene. RT-qPCR, immunostaining and immunoblot results showed that FrLRR was primarily distributed in B. belcheri intestinal tissue. We further demonstrated that FrLRR localized to the cell membrane and lysosomes. Functionally, FrLRR mediated and promoted bacteria-binding and phagocytosis, and FrLRR antibody blocking or Grb2 knockdown inhibited FrLRR-mediated phagocytosis. Interestingly, we found that human Slit2-N (hSlit2-N) also mediated direct bacteria-binding and phagocytosis which was inhibited by Slit2-N antibody blocking or Grb2 knockdown. Together, these results indicate FrLRR and hSlit2-N may function as phagocytotic-receptors to promote phagocytosis through Grb2, implying the Slit2-N-type-LRR-containing proteins play a role in bacterial binding and elimination.
Collapse
Affiliation(s)
- Yanli Zhan
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chen-Si Zhao
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xuemei Qu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhihui Xiao
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chong Deng
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yingqiu Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
30
|
Wu K, Xu J, Jia Z, Wang J, Wang Z, Feng J, Zhu X, Liu Q, Wang B, Li M, Pang Y, Zou J. Phylogeny and expression of ADAM10 and ADAM17 homologs in lamprey. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:321-334. [PMID: 36964830 DOI: 10.1007/s10695-023-01184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 03/10/2023] [Indexed: 05/04/2023]
Abstract
The ADAMs (a disintegrin and metalloproteinase) play regulatory roles in cell adhesion, migration and proteolysis. To explore the origin and evolution of ADAMs, this study identified the homologs of adam10 and adam17 in Lampetra morii and Lampetra japonica. Sequence analysis revealed that they share the same genomic structures with their counterparts in jawed vertebrates. The putative proteins possess conserved motifs, including a furin cut site (RXXR) for precursor processing, an enzyme catalytic motif (HEXGEHXXGXXH) for hydrolysis, and a Ca2+-binding motif (CGNXXXEXGEXCD) for stabilizing protein structure. In addition, a substrate recognition domain is present at the membrane-proximal region of lamprey ADAM17. The cytoplasmic region of lamprey ADAM10 contains a potential threonine phosphorylation site which has been shown to be activated by protein kinase C (PKC) in mammals. Both the adam10 and adam17 genes were constitutively expressed in the brain, kidney, and gills and were differentially regulated in the primary blood leukocytes by lipopolysaccharide (LPS) and pokeweed mitogen (PWM). Adam10 was induced by LPS but not PWM; conversely, adam17 was induced by PWM but not LPS. Taken together, our results suggest that the activation pathways and functions of ADAM10 and ADAM17 are conserved in agnathans.
Collapse
Affiliation(s)
- Kaizheng Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zixuan Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianhua Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaozhen Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Qin Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Bangjie Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Mingjie Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yue Pang
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, 201306, China.
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
31
|
Zinner D, Paciência FMD, Roos C. Host-Parasite Coevolution in Primates. Life (Basel) 2023; 13:823. [PMID: 36983978 PMCID: PMC10058613 DOI: 10.3390/life13030823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/26/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Organisms adapt to their environment through evolutionary processes. Environments consist of abiotic factors, but also of other organisms. In many cases, two or more species interact over generations and adapt in a reciprocal way to evolutionary changes in the respective other species. Such coevolutionary processes are found in mutualistic and antagonistic systems, such as predator-prey and host-parasite (including pathogens) relationships. Coevolution often results in an "arms race" between pathogens and hosts and can significantly affect the virulence of pathogens and thus the severity of infectious diseases, a process that we are currently witnessing with SARS-CoV-2. Furthermore, it can lead to co-speciation, resulting in congruent phylogenies of, e.g., the host and parasite. Monkeys and other primates are no exception. They are hosts to a large number of pathogens that have shaped not only the primate immune system but also various ecological and behavioral adaptions. These pathogens can cause severe diseases and most likely also infect multiple primate species, including humans. Here, we briefly review general aspects of the coevolutionary process in its strict sense and highlight the value of cophylogenetic analyses as an indicator for coevolution.
Collapse
Affiliation(s)
- Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Department of Primate Cognition, Georg-August-University of Göttingen, 37077 Göttingen, Germany
- Leibniz Science Campus Primate Cognition, 37077 Göttingen, Germany
| | | | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| |
Collapse
|
32
|
Xu Y, Yang Y, Zheng J, Cui Z. Alternative splicing derived invertebrate variable lymphocyte receptor displays diversity and specificity in immune system of crab Eriocheir sinensis. Front Immunol 2023; 13:1105318. [PMID: 36999166 PMCID: PMC10045472 DOI: 10.3389/fimmu.2022.1105318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/22/2022] [Indexed: 03/16/2023] Open
Abstract
Variable lymphocyte receptors (VLRs) play vital roles in adaptive immune system of agnathan vertebrate. In the present study, we first discover a novel VLR gene, VLR2, from an invertebrate, the Chinese mitten crab, Eriocheir sinensis. VLR2 has ten different isoforms formed via alternative splicing, which is different from that in agnathan vertebrate with the assembly of LRR modules. The longest isoform, VLR2-L, responds to Gram-positive bacteria Staphylococcus aureus challenge specifically, while shows no response to Gram-negative bacteria Vibrio parahaemolyticus challenge, confirmed by recombinant expression and bacterial binding experiments. Interestingly, VLR2s with short LRRs regions (VLR2-S8 and VLR2-S9) tend to bind to Gram-negative bacteria rather than Gram-positive bacteria. Antibacterial activity assay proves six isoforms of VLR2 have pluralistic antibacterial effects on bacteria which were never reported in invertebrate. These results suggest that the diversity and specificity of VLR2 resulted from alternative splicing and the length of the LRRs region. This pathogen-binding receptor diversity will lay the foundation for the study of immune priming. Furthermore, studying the immune function of VLR2 will provide a new insight into the disease control strategy of crustacean culture.
Collapse
Affiliation(s)
- Yuanfeng Xu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Zhaoxia Cui,
| |
Collapse
|
33
|
Xu Y, Zheng J, Yang Y, Cui Z. New insight of variable lymphocyte receptor-likes in anti-bacteria activity from Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108592. [PMID: 36746226 DOI: 10.1016/j.fsi.2023.108592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The Chinese mitten crab, Eriocheir sinensis, is a vital freshwater aquaculture species in China, however, is also facing various crab disease threats. In the present study, we identify three novel variable lymphocyte receptor-like (VLR-like) genes-VLR-like1, VLR-like3 and VLR-like4-from E. sinensis, which play vital roles in adaptive immune system of agnathan vertebrates. The bacterial challenge, bacterial binding and antibacterial-activity experiments were applied to study immune functions of VLR-likes, and the transcriptomic data from previous E. sinensis bacterial challenge experiments were analyzed to speculate the possible signaling pathway. VLR-like1 and VLR-like4 can respond to Staphylococcus aureus challenge and inhibit S. aureus specifically. VLR-like1 and VLR-like4 possess broad-spectrum bacteria-binding ability whereas VLR-like3 do not. VLR-likes in E. sinensis could associate with the Toll-like receptor (TLR) signaling pathway. The above results suggest that VLR-likes defend against bacteria invasion though exerting anti-bacteria activity, and probably connect with the TLR signaling pathway. Furthermore, studying the immune functions of these VLR-likes will provide a new insight into the disease control strategy of crustacean culture.
Collapse
Affiliation(s)
- Yuanfeng Xu
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China.
| | - Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China.
| | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China.
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
34
|
Fardoos R, Nyquist SK, Asowata OE, Kazer SW, Singh A, Ngoepe A, Giandhari J, Mthabela N, Ramjit D, Singh S, Karim F, Buus S, Anderson F, Porterfield JZ, Sibiya AL, Bipath R, Moodley K, Kuhn W, Berger B, Nguyen S, de Oliveira T, Ndung’u T, Goulder P, Shalek AK, Leslie A, Kløverpris HN. HIV specific CD8 + T RM-like cells in tonsils express exhaustive signatures in the absence of natural HIV control. Front Immunol 2022; 13:912038. [PMID: 36330531 PMCID: PMC9623418 DOI: 10.3389/fimmu.2022.912038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Lymphoid tissues are an important HIV reservoir site that persists in the face of antiretroviral therapy and natural immunity. Targeting these reservoirs by harnessing the antiviral activity of local tissue-resident memory (TRM) CD8+ T-cells is of great interest, but limited data exist on TRM-like cells within lymph nodes of people living with HIV (PLWH). Here, we studied tonsil CD8+ T-cells obtained from PLWH and uninfected controls from South Africa. We show that these cells are preferentially located outside the germinal centers (GCs), the main reservoir site for HIV, and display a low cytolytic and a transcriptionally TRM-like profile distinct from blood CD8+ T-cells. In PLWH, CD8+ TRM-like cells are expanded and adopt a more cytolytic, activated, and exhausted phenotype not reversed by antiretroviral therapy (ART). This phenotype was enhanced in HIV-specific CD8+ T-cells from tonsils compared to matched blood suggesting a higher antigen burden in tonsils. Single-cell transcriptional and clonotype resolution showed that these HIV-specific CD8+ T-cells in the tonsils express heterogeneous signatures of T-cell activation, clonal expansion, and exhaustion ex-vivo. Interestingly, this signature was absent in a natural HIV controller, who expressed lower PD-1 and CXCR5 levels and reduced transcriptional evidence of T-cell activation, exhaustion, and cytolytic activity. These data provide important insights into lymphoid tissue-derived HIV-specific CD8+ TRM-like phenotypes in settings of HIV remission and highlight their potential for immunotherapy and targeting of the HIV reservoirs.
Collapse
Affiliation(s)
- Rabiah Fardoos
- Africa Health Research Institute (AHRI), Durban, South Africa
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sarah K. Nyquist
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | - Samuel W. Kazer
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Alveera Singh
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Abigail Ngoepe
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Dirhona Ramjit
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Samita Singh
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Farina Karim
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Søren Buus
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Frank Anderson
- Discipline of General Surgery, Inkosi Albert Luthuli Central Hospital, University of KwaZulu-Natal, Durban, South Africa
| | - J. Zachary Porterfield
- Africa Health Research Institute (AHRI), Durban, South Africa
- Department of Otolaryngology-Head & Neck Surgery, Division of Infectious Diseases, University of Kentucky, Lexington, KY, United States
- Department of Microbiology, Immunology and Molecular Genetics, - Division of Infectious Diseases, University of Kentucky, Lexington, KY, United States
- Department of Internal Medicine - Division of Infectious Diseases, University of Kentucky, Lexington, KY, United States
| | - Andile L. Sibiya
- Department of Otorhinolaryngology & Head & Neck Surgery, Inkosi Albert Luthuli Central Hospital, University of KwaZulu-Natal, Durban, South Africa
| | - Rishan Bipath
- Department of Otorhinolaryngology, King Edward VIII hospital, University of KwaZulu-Natal, Durban, South Africa
| | - Kumeshan Moodley
- Department of Ear Nose and Throat, General Justice Gizenga Mpanza Regional Hospital (Stanger Hospital), University of KwaZulu-Natal, Durban, South Africa
| | - Warren Kuhn
- Department of Otorhinolaryngology & Head & Neck Surgery, Inkosi Albert Luthuli Central Hospital, University of KwaZulu-Natal, Durban, South Africa
- Department of Ear Nose and Throat, General Justice Gizenga Mpanza Regional Hospital (Stanger Hospital), University of KwaZulu-Natal, Durban, South Africa
| | - Bonnie Berger
- Computer Science & Artificial Intelligence Lab and Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Son Nguyen
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung’u
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu Natal, Durban, South Africa
- University College London, Division of Infection and Immunity, London, United Kingdom
| | - Philip Goulder
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu Natal, Durban, South Africa
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Alex K. Shalek
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, United States
- Ragon Institute of MGH, Harvard, Cambridge, MA, United States
| | - Alasdair Leslie
- Africa Health Research Institute (AHRI), Durban, South Africa
- University College London, Division of Infection and Immunity, London, United Kingdom
| | - Henrik N. Kløverpris
- Africa Health Research Institute (AHRI), Durban, South Africa
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- University College London, Division of Infection and Immunity, London, United Kingdom
| |
Collapse
|
35
|
Boulay JL, Du Pasquier L, Cooper MD. Cytokine Receptor Diversity in the Lamprey Predicts the Minimal Essential Cytokine Networks of Vertebrates. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1013-1020. [PMID: 35914837 DOI: 10.4049/jimmunol.2200274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/10/2022] [Indexed: 07/28/2023]
Abstract
The vertebrate adaptive immune systems (Agnatha and Gnathostomata) use sets of T and B lymphocyte lineages that somatically generate highly diverse repertoires of Ag-specific receptors and Abs. In Gnathostomata, cytokine networks regulate the activation of lymphoid and myeloid cells, whereas little is known about these components in Agnathans. Most gnathostome cytokines are four-helix bundle cytokines with poorly conserved primary sequences. In contrast, sequence conservation across bilaterians has been observed for cognate cytokine receptor chains, allowing their structural classification into two classes, and for downstream JAK/STAT signaling mediators. With conserved numbers among Gnathostomata, human cytokine receptor chains (comprising 34 class I and 12 class II) are able to interact with 28 class I helical cytokines (including most ILs) and 16 class II cytokines (including all IFNs), respectively. Hypothesizing that the arsenal of cytokine receptors and transducers may reflect homologous cytokine networks, we analyzed the lamprey genome and transcriptome to identify genes and transcripts for 23 class I and five class II cytokine receptors alongside one JAK signal mediator and four STAT transcription factors. On the basis of deduction of their respective orthologs, we predict that these receptors may interact with 16 class I and 3 class II helical cytokines (including IL-4, IL-6, IL-7, IL-12, IL-10, IFN-γ, and thymic stromal lymphoprotein homologs). On the basis of their respective activities in mammals, this analysis suggests the existence of lamprey cytokine networks that may regulate myeloid and lymphoid cell differentiation, including potential Th1/Th2 polarization. The predicted networks thus appear remarkably homologous to those of Gnathostomata, albeit reduced to essential functions.
Collapse
Affiliation(s)
- Jean-Louis Boulay
- Laboratory of Brain Tumor Immunotherapy and Biology, Department of BioMedicine, University Hospital of Basel and University of Basel, Basel, Switzerland;
| | - Louis Du Pasquier
- Laboratory of Zoology and Evolutionary Biology, Department of Environmental Sciences, University of Basel, Basel, Switzerland; and
| | - Max D Cooper
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, GA
| |
Collapse
|
36
|
Some thoughts about what non-mammalian jawed vertebrates are telling us about antigen processing and peptide loading of MHC molecules. Curr Opin Immunol 2022; 77:102218. [PMID: 35687979 PMCID: PMC9586880 DOI: 10.1016/j.coi.2022.102218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/19/2022] [Accepted: 05/10/2022] [Indexed: 12/11/2022]
Abstract
The major histocompatibility complex (MHC) of mammals encodes highly polymorphic classical class I and class II molecules with crucial roles in immune responses, as well as various nonclassical molecules encoded by the MHC and elsewhere in the genome that have a variety of functions. These MHC molecules are supported by antigen processing and peptide loading pathways which are well-understood in mammals. This review considers what has been learned about the MHC, MHC molecules and the supporting pathways in non-mammalian jawed vertebrates. From the initial understanding from work with the chicken MHC, a great deal of diversity in the structure and function has been found. Are there underlying principles? The genomic organisation of the MHC varies enormously across jawed vertebrates. Total numbers of MHC genes vary among vertebrates, with only a few classical MHC genes. Some nonclassical MHC and classical pathway genes appear earlier than others. Obvious co-evolution within MHC pathways occurs in some species, but not others. The promiscuity of interactions may correlate with differences in genomic organisation.
Collapse
|
37
|
Alesci A, Capillo G, Fumia A, Messina E, Albano M, Aragona M, Lo Cascio P, Spanò N, Pergolizzi S, Lauriano ER. Confocal Characterization of Intestinal Dendritic Cells from Myxines to Teleosts. BIOLOGY 2022; 11:1045. [PMID: 36101424 PMCID: PMC9312193 DOI: 10.3390/biology11071045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) are antigen-presenting cells (APCs) that regulate the beginning of adaptive immune responses. The mechanisms of tolerance to antigens moving through the digestive tract are known to be regulated by intestinal DCs. Agnatha and Gnathostoma are descendants of a common ancestor. The Ostracoderms gave rise to Cyclostomes, whereas the Placoderms gave rise to Chondrichthyes. Sarcopterygii and Actinopterygii are two evolutionary lines of bony fishes. Brachiopterygii and Neopterygii descend from the Actinopterygii. From Neopterygii, Holostei and Teleostei evolved. Using immunohistochemistry with TLR-2, Langerin/CD207, and MHC II, this study aimed to characterize intestinal DCs, from myxines to teleosts. The findings reveal that DCs are positive for the antibodies tested, highlighting the presence of DCs and DC-like cells phylogenetically from myxines, for the first time, to teleosts. These findings may aid in improving the level of knowledge about the immune system's evolution and these sentinel cells, which are crucial to the body's defense.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (E.M.); (M.A.); (P.L.C.); (S.P.); (E.R.L.)
| | - Gioele Capillo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
- Institute of Marine Biological Resources and Biotechnology, National Research Council (IRBIM, CNR), 98164 Messina, Italy;
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico “G. Martino”, 98124 Messina, Italy;
| | - Emmanuele Messina
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (E.M.); (M.A.); (P.L.C.); (S.P.); (E.R.L.)
| | - Marco Albano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (E.M.); (M.A.); (P.L.C.); (S.P.); (E.R.L.)
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (E.M.); (M.A.); (P.L.C.); (S.P.); (E.R.L.)
| | - Nunziacarla Spanò
- Institute of Marine Biological Resources and Biotechnology, National Research Council (IRBIM, CNR), 98164 Messina, Italy;
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (E.M.); (M.A.); (P.L.C.); (S.P.); (E.R.L.)
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (E.M.); (M.A.); (P.L.C.); (S.P.); (E.R.L.)
| |
Collapse
|
38
|
Abstract
Adaptive immunity in jawed vertebrates relies on the assembly of antigen receptor genes by the recombination activating gene 1 (RAG1)-RAG2 (collectively RAG) recombinase in a reaction known as V(D)J recombination. Extensive biochemical and structural evidence indicates that RAG and V(D)J recombination evolved from the components of a RAG-like (RAGL) transposable element through a process known as transposon molecular domestication. This Review describes recent advances in our understanding of the functional and structural transitions that occurred during RAG evolution. We use the structures of RAG and RAGL enzymes to trace the evolutionary adaptations that yielded a RAG recombinase with exquisitely regulated cleavage activity and a multilayered array of mechanisms to suppress transposition. We describe how changes in modes of DNA binding, alterations in the dynamics of protein-DNA complexes, single amino acid mutations and a modular design likely enabled RAG family enzymes to survive and spread in the genomes of eukaryotes. These advances highlight the insight that can be gained from viewing evolution of vertebrate immunity through the lens of comparative genome analyses coupled with structural biology and biochemistry.
Collapse
|
39
|
Aravind L, Iyer LM, Burroughs AM. Discovering Biological Conflict Systems Through Genome Analysis: Evolutionary Principles and Biochemical Novelty. Annu Rev Biomed Data Sci 2022; 5:367-391. [PMID: 35609893 DOI: 10.1146/annurev-biodatasci-122220-101119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biological replicators, from genes within a genome to whole organisms, are locked in conflicts. Comparative genomics has revealed a staggering diversity of molecular armaments and mechanisms regulating their deployment, collectively termed biological conflict systems. These encompass toxins used in inter- and intraspecific interactions, self/nonself discrimination, antiviral immune mechanisms, and counter-host effectors deployed by viruses and intragenomic selfish elements. These systems possess shared syntactical features in their organizational logic and a set of effectors targeting genetic information flow through the Central Dogma, certain membranes, and key molecules like NAD+. These principles can be exploited to discover new conflict systems through sensitive computational analyses. This has led to significant advances in our understanding of the biology of these systems and furnished new biotechnological reagents for genome editing, sequencing, and beyond. We discuss these advances using specific examples of toxins, restriction-modification, apoptosis, CRISPR/second messenger-regulated systems, and other enigmatic nucleic acid-targeting systems. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
40
|
Gangopadhyay K, Roy S, Sen Gupta S, Chandradasan A, Chowdhury S, Das R. Regulating the discriminatory response to antigen by T-cell receptor. Biosci Rep 2022; 42:BSR20212012. [PMID: 35260878 PMCID: PMC8965820 DOI: 10.1042/bsr20212012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The cell-mediated immune response constitutes a robust host defense mechanism to eliminate pathogens and oncogenic cells. T cells play a central role in such a defense mechanism and creating memories to prevent any potential infection. T cell recognizes foreign antigen by its surface receptors when presented through antigen-presenting cells (APCs) and calibrates its cellular response by a network of intracellular signaling events. Activation of T-cell receptor (TCR) leads to changes in gene expression and metabolic networks regulating cell development, proliferation, and migration. TCR does not possess any catalytic activity, and the signaling initiates with the colocalization of several enzymes and scaffold proteins. Deregulation of T cell signaling is often linked to autoimmune disorders like severe combined immunodeficiency (SCID), rheumatoid arthritis, and multiple sclerosis. The TCR remarkably distinguishes the minor difference between self and non-self antigen through a kinetic proofreading mechanism. The output of TCR signaling is determined by the half-life of the receptor antigen complex and the time taken to recruit and activate the downstream enzymes. A longer half-life of a non-self antigen receptor complex could initiate downstream signaling by activating associated enzymes. Whereas, the short-lived, self-peptide receptor complex disassembles before the downstream enzymes are activated. Activation of TCR rewires the cellular metabolic response to aerobic glycolysis from oxidative phosphorylation. How does the early event in the TCR signaling cross-talk with the cellular metabolism is an open question. In this review, we have discussed the recent developments in understanding the regulation of TCR signaling, and then we reviewed the emerging role of metabolism in regulating T cell function.
Collapse
Affiliation(s)
- Kaustav Gangopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Swarnendu Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Soumee Sen Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Athira C. Chandradasan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Subhankar Chowdhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Rahul Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| |
Collapse
|
41
|
Abstract
Healthy development and function of essentially all physiological systems and organs, including the brain, require exposure to the microbiota of our mothers and of the natural environment, especially in early life. We also know that some infections, if we survive them, modulate the immune system in relevant ways. If we study the evolution of the immune and metabolic systems, we can understand how these requirements developed and the nature of the organisms that we need to encounter. We can then begin to identify the mechanisms of the beneficial effects of these exposures. Against this evolutionary background, we can analyze the ways in which the modern urban lifestyle, particularly for individuals experiencing low socioeconomic status (SES), results in deficient or distorted microbial exposures and microbiomes. Thus, an evolutionary approach facilitates the identification of practical solutions to the growing scandal of health disparities linked to inequality.
Collapse
|
42
|
Liu S, Guo J, Cheng X, Li W, Lyu S, Chen X, Li Q, Wang H. Molecular Evolution of Transforming Growth Factor-β (TGF-β) Gene Family and the Functional Characterization of Lamprey TGF-β2. Front Immunol 2022; 13:836226. [PMID: 35309318 PMCID: PMC8931421 DOI: 10.3389/fimmu.2022.836226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
The transforming growth factor-βs (TGF-βs) are multifunctional cytokines capable of regulating a wide range of cellular behaviors and play a key role in maintaining the homeostasis of the immune system. The TGF-β subfamily, which is only present in deuterostomes, expands from a single gene in invertebrates to multiple members in jawed vertebrates. However, the evolutionary processes of the TGF-β subfamily in vertebrates still lack sufficient elucidation. In this study, the TGF-β homologs are identified at the genome-wide level in the reissner lamprey (Lethenteron reissneri), the sea lamprey (Petromyzon marinus), and the Japanese lamprey (Lampetra japonica), which are the extant representatives of jawless vertebrates with a history of more than 350 million years. The molecular evolutionary analyses reveal that the lamprey TGF-β subfamily contains two members representing ancestors of TGF-β2 and 3 in vertebrates, respectively, but TGF-β1 is absent. The transcriptional expression patterns show that the lamprey TGF-β2 may play a central regulatory role in the innate immune response of the lamprey since it exhibits a more rapid and significant upregulation of expression than TGF-β3 during lipopolysaccharide stimuli. The incorporation of BrdU assay reveals that the lamprey TGF-β2 recombinant protein exerts the bipolar regulation on the proliferation of the supraneural myeloid body cells (SMB cells) in the quiescent and LPS-activated state, while plays an inhibitory role in the proliferation of quiescent and activated leukocytes in lampreys. Furthermore, caspase-3/7 activity analysis indicates that the lamprey TGF-β2 protects SMB cells from apoptosis after serum deprivation, in contrast to promoting apoptosis of leukocytes. Our composite results offer valuable clues to the origin and evolution of the TGF-β subfamily and imply that TGF-βs are among the most ancestral immune regulators in vertebrates.
Collapse
Affiliation(s)
- Siqi Liu
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Junfu Guo
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xianda Cheng
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Wenna Li
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shuangyu Lyu
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xuanyi Chen
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- *Correspondence: Hao Wang, ; Qingwei Li,
| | - Hao Wang
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- *Correspondence: Hao Wang, ; Qingwei Li,
| |
Collapse
|
43
|
|
44
|
Dornburg A, Yoder JA. On the relationship between extant innate immune receptors and the evolutionary origins of jawed vertebrate adaptive immunity. Immunogenetics 2022; 74:111-128. [PMID: 34981186 DOI: 10.1007/s00251-021-01232-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 01/17/2023]
Abstract
For over half a century, deciphering the origins of the genomic loci that form the jawed vertebrate adaptive immune response has been a major topic in comparative immunogenetics. Vertebrate adaptive immunity relies on an extensive and highly diverse repertoire of tandem arrays of variable (V), diversity (D), and joining (J) gene segments that recombine to produce different immunoglobulin (Ig) and T cell receptor (TCR) genes. The current consensus is that a recombination-activating gene (RAG)-like transposon invaded an exon of an ancient innate immune VJ-bearing receptor, giving rise to the extant diversity of Ig and TCR loci across jawed vertebrates. However, a model for the evolutionary relationships between extant non-recombining innate immune receptors and the V(D)J receptors of the jawed vertebrate adaptive immune system has only recently begun to come into focus. In this review, we provide an overview of non-recombining VJ genes, including CD8β, CD79b, natural cytotoxicity receptor 3 (NCR3/NKp30), putative remnants of an antigen receptor precursor (PRARPs), and the multigene family of signal-regulatory proteins (SIRPs), that play a wide range of roles in immune function. We then focus in detail on the VJ-containing novel immune-type receptors (NITRs) from ray-finned fishes, as recent work has indicated that these genes are at least 50 million years older than originally thought. We conclude by providing a conceptual model of the evolutionary origins and phylogenetic distribution of known VJ-containing innate immune receptors, highlighting opportunities for future comparative research that are empowered by this emerging evolutionary perspective.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, USA.
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
45
|
Wang X, Chi Y, Li J, Pang Y, Li Q. Morphological characteristics and a single-cell analysis provide insights into function of immune and fat storage in the lamprey supraneural body. Int J Biochem Cell Biol 2022; 142:106131. [PMID: 34838690 DOI: 10.1016/j.biocel.2021.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
The supraneural body, also known as dorsal fat body is considered from adipose progenitors, and possesses hematopoietic activity. However, in-depth knowledge of cell-type by single-cell transcriptome sequencing and physiological functions are still lacking. Here, we determined at least four types of cells, such as white adipocytes, granulocytes, lymphocytes, and red blood cells by using 10 ×Genomics single-cell RNA sequencing (scRNA-Seq), hematoxylin-eosin (HE) staining, electron microscopy, immunofluorescence, and histochemistry. Additionally, most immune cells contain scattered small fat droplets except for white adipocytes with one large lipid droplet. The content of triglyceride in supraneural body is the highest compared with other tissues. The mRNA expression of both lipolysis-related genes and brown adipocytes-specific marker genes were up-regulated in supraneural body cells in response to epinephrine. Taken together, these data indicate that the supraneural body may play an important role in immune and fat storage. Our findings not only provided detailed insights into the unique molecular make-up of the supraneural body tissue, but also shed new light on future analyses of physiological functions in immune or lipid regulating.
Collapse
Affiliation(s)
- Xiaotong Wang
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Yan Chi
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Jun Li
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China.
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
46
|
Bommakanti G. Lamprey Variable Lymphocyte Receptor Monoclonal Antibodies for Whole-Cell Surface Antigens. Methods Mol Biol 2022; 2421:115-125. [PMID: 34870815 DOI: 10.1007/978-1-0716-1944-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lamprey antibodies, the variable lymphocyte receptor B proteins (VLRB), have unique properties that make them promising alternatives to jawed vertebrate immunoglobulin domain antibodies. These leucine-rich repeat proteins exhibit a diversity on par with that of jawed vertebrate antibodies but are structurally completely distinct. VLRB antibodies have been successfully raised to a variety of antigens. A procedure for high-throughput screening of full-length lamprey VLRB libraries using whole cells is described here. Lamprey antibodies against cell surface antigens can be generated and screened quickly using this method.
Collapse
|
47
|
Evolution of variable lymphocyte receptor B antibody loci in jawless vertebrates. Proc Natl Acad Sci U S A 2021; 118:2116522118. [PMID: 34880135 DOI: 10.1073/pnas.2116522118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 11/18/2022] Open
Abstract
Three types of variable lymphocyte receptor (VLR) genes, VLRA, VLRB, and VLRC, encode antigen recognition receptors in the extant jawless vertebrates, lampreys and hagfish. The somatically diversified repertoires of these VLRs are generated by serial stepwise copying of leucine-rich repeat (LRR) sequences into an incomplete germline VLR gene. Lymphocytes that express VLRA or VLRC are T cell-like, while VLRB-expressing cells are B cell-like. Here, we analyze the composition of the VLRB locus in different jawless vertebrates to elucidate its configuration and evolutionary modification. The incomplete germline VLRB genes of two hagfish species contain short noncoding intervening sequences, whereas germline VLRB genes in six representative lamprey species have much longer intervening sequences that exhibit notable genomic variation. Genomic clusters of potential LRR cassette donors, fragments of which are copied to complete VLRB gene assembly, are identified in Japanese lamprey and sea lamprey. In the sea lamprey, 428 LRR cassettes are located in five clusters spread over a total of 1.7 Mbp of chromosomal DNA. Preferential usage of the different donor cassettes for VLRB assemblage is characterized in our analysis, which reveals evolutionary modifications of the lamprey VLRB genes, elucidates the organization of the complex VLRB locus, and provides a comprehensive catalog of donor VLRB cassettes in sea lamprey and Japanese lamprey.
Collapse
|
48
|
Rast JP, D'Alessio S, Kraev I, Lange S. Post-translational protein deimination signatures in sea lamprey (Petromyzon marinus) plasma and plasma-extracellular vesicles. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104225. [PMID: 34358577 DOI: 10.1016/j.dci.2021.104225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Lampreys are a jawless vertebrate species belonging to an ancient vertebrate lineage that diverged from a common ancestor with humans ~500 million years ago. The sea lamprey (Petromyzon marinus) has a filter feeding ammocoete larval stage that metamorphoses into a parasitic adult, feeding both on teleost and elasmobranch fish. Lampreys are a valuable comparative model species for vertebrate immunity and physiology due to their unique phylogenetic position, unusual adaptive immune system, and physiological adaptions such as tolerance to salinity changes and urea. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family which catalyses post-translational deimination/citrullination in target proteins, enabling proteins to gain new functions (moonlighting). The identification of deiminated protein targets in species across phylogeny may provide novel insights into post-translational regulation of physiological and pathophysiological processes. Extracellular vesicles (EVs) are membrane vesicles released from cells that carry cargos of small molecules and proteins for cellular communication, involved in both normal and pathological processes. The current study identified deimination signatures in proteins of both total plasma and plasma-EVs in sea lamprey and furthermore reports the first characterisation of plasma-EVs in lamprey. EVs were poly-dispersed in the size range of 40-500 nm, similar to what is observed in other taxa, positive for CD63 and Flotillin-1. Plasma-EV morphology was confirmed by transmission electron microscopy. Assessment of deimination/citrullination signatures in lamprey plasma and plasma-EVs, revealed 72 deimination target proteins involved in immunity, metabolism and gene regulation in whole plasma, and 37 target proteins in EVs, whereof 24 were shared targets. Furthermore, the presence of deiminated histone H3, indicative of gene-regulatory mechanisms and also a marker of neutrophil extracellular trap formation (NETosis), was confirmed in lamprey plasma. Functional protein network analysis revealed some differences in KEGG and GO pathways of deiminated proteins in whole plasma compared with plasma-EVs. For example, while common STRING network clusters in plasma and plasma-EVs included Peptide chain elongation, Viral mRNA translation, Glycolysis and gluconeogenesis, STRING network clusters specific for EVs only included: Cellular response to heat stress, Muscle protein and striated muscle thin filament, Nucleosome, Protein processing in endoplasmic reticulum, Nucleosome and histone deacetylase complex. STRING network clusters specific for plasma were: Adipokinetic hormone receptor activity, Fibrinogen alpha/beta chain family, peptidase S1A, Glutathione synthesis and recycling-arginine, Fructose 1,6-bisphosphate metabolic process, Carbon metabolism and lactate dehydrogenase activity, Post-translational protein phosphorylation, Regulation of insulin-like growth factor transport and clotting cascade. Overall, for the EV citrullinome, five STRING network clusters, 10 KEGG pathways, 15 molecular GO pathways and 29 Reactome pathways were identified, compared with nine STRING network clusters, six KEGG pathways, two Molecular GO pathways and one Reactome pathway specific for whole plasma; while further pathways were shared. The reported findings indicate that major pathways relevant for immunity and metabolism are targets of deimination in lamprey plasma and plasma-EVs, with some differences, and may help elucidating roles for the conserved PAD enzyme family in regulation of immune and metabolic function throughout phylogeny.
Collapse
Affiliation(s)
- Jonathan P Rast
- Emory University School of Medicine, Pathology & Laboratory Medicine, Atlanta, GA, 30322, USA.
| | - Stefania D'Alessio
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
49
|
Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution. Nat Commun 2021; 12:4489. [PMID: 34301952 PMCID: PMC8302630 DOI: 10.1038/s41467-021-24573-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Ancient polyploidization events have had a lasting impact on vertebrate genome structure, organization and function. Some key questions regarding the number of ancient polyploidization events and their timing in relation to the cyclostome-gnathostome divergence have remained contentious. Here we generate de novo long-read-based chromosome-scale genome assemblies for the Japanese lamprey and elephant shark. Using these and other representative genomes and developing algorithms for the probabilistic macrosynteny model, we reconstruct high-resolution proto-vertebrate, proto-cyclostome and proto-gnathostome genomes. Our reconstructions resolve key questions regarding the early evolutionary history of vertebrates. First, cyclostomes diverged from the lineage leading to gnathostomes after a shared tetraploidization (1R) but before a gnathostome-specific tetraploidization (2R). Second, the cyclostome lineage experienced an additional hexaploidization. Third, 2R in the gnathostome lineage was an allotetraploidization event, and biased gene loss from one of the subgenomes shaped the gnathostome genome by giving rise to remarkably conserved microchromosomes. Thus, our reconstructions reveal the major evolutionary events and offer new insights into the origin and evolution of vertebrate genomes.
Collapse
|
50
|
Leung LYT, Khan S, Budylowski P, Li Z, Goroshko S, Liu Y, Dong S, Carlyle JR, Rini JM, Ostrowski M, Ehrhardt GRA. Detection and Neutralization of SARS-CoV-2 Using Non-conventional Variable Lymphocyte Receptor Antibodies of the Evolutionarily Distant Sea Lamprey. Front Immunol 2021; 12:659071. [PMID: 34234774 PMCID: PMC8256154 DOI: 10.3389/fimmu.2021.659071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/07/2021] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 is a newly emerged betacoronavirus and the causative agent for the COVID-19 pandemic. Antibodies recognizing the viral spike protein are instrumental in natural and vaccine-induced immune responses to the pathogen and in clinical diagnostic and therapeutic applications. Unlike conventional immunoglobulins, the variable lymphocyte receptor antibodies of jawless vertebrates are structurally distinct, indicating that they may recognize different epitopes. Here we report the isolation of monoclonal variable lymphocyte receptor antibodies from immunized sea lamprey larvae that recognize the spike protein of SARS-CoV-2 but not of other coronaviruses. We further demonstrate that these monoclonal variable lymphocyte receptor antibodies can efficiently neutralize the virus and form the basis of a rapid, single step SARS-CoV-2 detection system. This study provides evidence for monoclonal variable lymphocyte receptor antibodies as unique biomedical research and potential clinical diagnostic reagents targeting SARS-CoV-2.
Collapse
Affiliation(s)
| | - Srijit Khan
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Zhijie Li
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sofiya Goroshko
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Yanling Liu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Shilan Dong
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - James R. Carlyle
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - James M. Rini
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mario Ostrowski
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|