1
|
Valentin C, Brito Rodrigues P, Verce M, Delbauve S, La Palombara L, Demaret F, Allard J, Salmon I, Cani PD, Köhler A, Everard A, Flamand V. Maternal probiotic exposure enhances CD8 T cell protective neonatal immunity and modulates offspring metabolome to control influenza virus infection. Gut Microbes 2025; 17:2442526. [PMID: 39710590 DOI: 10.1080/19490976.2024.2442526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
Maternal gut microbiota composition contributes to the status of the neonatal immune system and could influence the early life higher susceptibility to viral respiratory infections. Using a novel protocol of murine maternal probiotic supplementation, we report that perinatal exposure to Lacticaseibacillus rhamnosus (L.rh) or Bifidobacterium animalis subsp. lactis (B.lac) increases the influenza A/PR8 virus (IAV) clearance in neonates. Following either supplementation, type 1 conventional dendritic cells (cDC1) were amplified in the lymph nodes leading to an enhanced IAV antigen-experienced IFN-γ producing effector CD8 T cells in neonates and IAV-specific resident memory CD8 T cells in adulthood. This was compatible with a higher protection of the offspring upon a secondary infection. Interestingly, only mice born to L.rh supplemented mothers further displayed an increased activation of IFN-γ producing virtual memory CD8 T cells and a production of IL-10 by CD4 and CD8 T cells that could explain a better control of the lung damages upon infection. In the offspring and the mothers, no disturbance of the gut microbiota was observed but, as analyzed through an untargeted metabolomic approach, both exposures modified neonatal plasma metabolites. Among them, we further demonstrated that genistein and 3-(3-hydroxyphenyl)propionic acid recapitulate viral clearance or cDC1 activation in neonates exposed to IAV. We conclude that maternal L.rh or B.lac supplementation confers the neonates specific metabolomic modulations with a better CD8 T cell-mediated immune protection against IAV infection.
Collapse
Affiliation(s)
- Clara Valentin
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Patricia Brito Rodrigues
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Marko Verce
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Sandrine Delbauve
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Léa La Palombara
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Florine Demaret
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Justine Allard
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Gosselies, Belgium
| | - Isabelle Salmon
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Gosselies, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Arnaud Köhler
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Véronique Flamand
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| |
Collapse
|
2
|
Ehx G, Ritacco C, Baron F. Pathophysiology and preclinical relevance of experimental graft-versus-host disease in humanized mice. Biomark Res 2024; 12:139. [PMID: 39543777 PMCID: PMC11566168 DOI: 10.1186/s40364-024-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantations (allo-HCT) used for the treatment of hematological malignancies and other blood-related disorders. Until recently, the discovery of actionable molecular targets to treat GVHD and their preclinical testing was almost exclusively based on modeling allo-HCT in mice by transplanting bone marrow and splenocytes from donor mice into MHC-mismatched recipient animals. However, due to fundamental differences between human and mouse immunology, the translation of these molecular targets into the clinic can be limited. Therefore, humanized mouse models of GVHD were developed to circumvent this limitation. In these models, following the transplantation of human peripheral blood mononuclear cells (PBMCs) into immunodeficient mice, T cells recognize and attack mouse organs, inducing GVHD. Thereby, humanized mice provide a platform for the evaluation of the effects of candidate therapies on GVHD mediated by human immune cells in vivo. Understanding the pathophysiology of this xenogeneic GVHD is therefore crucial for the design and interpretation of experiments performed with this model. In this article, we comprehensively review the cellular and molecular mechanisms governing GVHD in the most commonly used model of xenogeneic GVHD: PBMC-engrafted NOD/LtSz-PrkdcscidIL2rγtm1Wjl (NSG) mice. By re-analyzing public sequencing data, we also show that the clonal expansion and the transcriptional program of T cells in humanized mice closely reflect those in humans. Finally, we highlight the strengths and limitations of this model, as well as arguments in favor of its biological relevance for studying T-cell reactions against healthy tissues or cancer cells.
Collapse
Affiliation(s)
- Grégory Ehx
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium.
| | - Caroline Ritacco
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
| | - Frédéric Baron
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
- Department of Medicine, Division of Hematology, CHU of Liege, University of Liege, Liege, Belgium
| |
Collapse
|
3
|
Coler C, King-Nakaoka E, Every E, Chima S, Vong A, Del Rosario B, VanAbel R, Adams Waldorf KM. Impact of Infections During Pregnancy on Transplacental Antibody Transfer. Vaccines (Basel) 2024; 12:1199. [PMID: 39460363 PMCID: PMC11512415 DOI: 10.3390/vaccines12101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Vaccination in pregnancy is important to protect the mother and fetus from infectious diseases. The transfer of maternal antibodies across the placenta during pregnancy can continue to protect the neonate for several months after birth while the neonatal adaptive immune system develops. Several pathogens have been shown to impair the transplacental transfer of maternal antibodies, including human immunodeficiency virus, malaria, the severe acute respiratory syndrome coronavirus 2, and cytomegalovirus. This review discusses the mechanisms contributing to decreased transplacental antibody transfer in the setting of maternal infections, such as changes in antibody glycosylation profile, maternal hypergammaglobulinemia, and placental injury. The frequency of epidemics is increasing, and pregnant people are more likely to become exposed to novel pathogens now than they were in the past. Understanding the mechanisms by which infectious diseases impair maternal-fetal antibody transfer is important for pandemic preparedness to maximize the impact of maternal vaccination for child health.
Collapse
Affiliation(s)
- Celeste Coler
- School of Medicine, University of Washington, Seattle, WA 98195, USA; (C.C.); (E.K.-N.); (E.E.)
| | - Elana King-Nakaoka
- School of Medicine, University of Washington, Seattle, WA 98195, USA; (C.C.); (E.K.-N.); (E.E.)
| | - Emma Every
- School of Medicine, University of Washington, Seattle, WA 98195, USA; (C.C.); (E.K.-N.); (E.E.)
| | - Sophia Chima
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98109, USA; (S.C.); (A.V.); (B.D.R.)
- Department of Global Health, University of Washington, Seattle, WA 98105, USA
| | - Ashley Vong
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98109, USA; (S.C.); (A.V.); (B.D.R.)
| | - Briana Del Rosario
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98109, USA; (S.C.); (A.V.); (B.D.R.)
| | - Roslyn VanAbel
- College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Kristina M. Adams Waldorf
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98109, USA; (S.C.); (A.V.); (B.D.R.)
- Department of Global Health, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
4
|
Woods Acevedo MA, Lan J, Maya S, Jones JE, Williams JV, Freeman MC, Dermody TS. Immune cells promote paralytic disease in mice infected with enterovirus D68. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618341. [PMID: 39463956 PMCID: PMC11507732 DOI: 10.1101/2024.10.14.618341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Enterovirus D68 (EV-D68) is associated with acute flaccid myelitis (AFM), a poliomyelitis-like illness causing paralysis in young children. However, mechanisms of paralysis are unclear, and antiviral therapies are lacking. To better understand EV-D68 disease, we inoculated newborn mice intracranially to assess viral tropism, virulence, and immune responses. Wild-type (WT) mice inoculated intracranially with a neurovirulent strain of EV-D68 showed infection of spinal cord neurons and developed paralysis. Spinal tissue from infected mice revealed increased levels of chemokines, inflammatory monocytes, macrophages, and T cells relative to controls, suggesting that immune cell infiltration influences pathogenesis. To define the contribution of cytokine-mediated immune cell recruitment to disease, we inoculated mice lacking CCR2, a receptor for several EV-D68-upregulated cytokines, or RAG1, which is required for lymphocyte maturation. WT, Ccr2 -/- , and Rag1 -/- mice had comparable viral titers in spinal tissue. However, Ccr2 -/- and Rag1 -/- mice had significantly less paralysis relative to WT mice. Consistent with impaired T cell recruitment to sites of infection in Ccr2 -/- and Rag1 -/- mice, antibody-mediated depletion of CD4 + or CD8 + T cells from WT mice diminished paralysis. These results indicate that immune cell recruitment to the spinal cord promotes EV-D68-associated paralysis and illuminate new targets for therapeutic intervention.
Collapse
|
5
|
Donald K, Finlay BB. Mechanisms of microbe-mediated immune development in the context of antibiotics and asthma. FRONTIERS IN ALLERGY 2024; 5:1469426. [PMID: 39469482 PMCID: PMC11513386 DOI: 10.3389/falgy.2024.1469426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/28/2024] [Indexed: 10/30/2024] Open
Abstract
The gut houses 70%-80% of the body's immune cells and represents the main point of contact between the immune system and the outside world. Immune maturation occurs largely after birth and is guided by the gut microbiota. In addition to the many human clinical studies that have identified relationships between gut microbiota composition and disease outcomes, experimental research has demonstrated a plethora of mechanisms by which specific microbes and microbial metabolites train the developing immune system. The healthy maturation of the gut microbiota has been well-characterized and discreet stages marked by changes in abundance of specific microbes have been identified. Building on Chapter 8, which discusses experimental models used to study the relationship between the gut microbiota and asthma, the present review aims to dive deeper into the specific microbes and metabolites that drive key processes in immune development. The implications of microbiota maturation patterns in the context of asthma and allergies, as well as the effects of antibiotics on microbe-immune crosstalk, will also be discussed.
Collapse
Affiliation(s)
- Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Departmentof Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Departmentof Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Burattin FV, Vadalà R, Panepuccia M, Ranzani V, Crosti M, Colombo FA, Ruberti C, Erba E, Prati D, Nittoli T, Montini G, Ronchi A, Pugni L, Mosca F, Ricciardi S, Abrignani S, Pietrasanta C, Marasca F, Bodega B. LINE1 modulate human T cell function by regulating protein synthesis during the life span. SCIENCE ADVANCES 2024; 10:eado2134. [PMID: 39383231 PMCID: PMC11463280 DOI: 10.1126/sciadv.ado2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
The molecular mechanisms responsible for the heightened reactivity of quiescent T cells in human early life remain largely elusive. Our previous research identified that quiescent adult naïve CD4+ T cells express LINE1 (long interspersed nuclear elements 1) spliced in previously unknown isoforms, and their down-regulation marks the transition to activation. Here, we unveil that neonatal naïve T cell quiescence is characterized by enhanced energy production and protein synthesis. This phenotype is associated with the absence of LINE1 expression attributed to tonic T cell receptor/mTOR complex 1 (mTORC1) signaling and (polypyrimidine tract-binding protein 1 (PTBP1)-mediated LINE1 splicing suppression. The absence of LINE1 expression primes these cells for rapid execution of the activation program by directly regulating protein synthesis. LINE1 expression progressively increases in childhood and adults, peaking in elderly individuals, and, by decreasing protein synthesis, contributes to immune senescence in aging. Our study proposes LINE1 as a critical player of human T cell function across the human life span.
Collapse
Affiliation(s)
- Filippo V. Burattin
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Rebecca Vadalà
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Michele Panepuccia
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- SEMM, European School of Molecular Medicine, Milan 20139, Italy
| | - Valeria Ranzani
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
| | - Mariacristina Crosti
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
| | - Federico A. Colombo
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Cristina Ruberti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Elisa Erba
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Daniele Prati
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Teresa Nittoli
- Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Giovanni Montini
- Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Andrea Ronchi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Lorenza Pugni
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Fabio Mosca
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Sara Ricciardi
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Carlo Pietrasanta
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Federica Marasca
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
| | - Beatrice Bodega
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- Department of Biosciences, University of Milan, Milan 20133, Italy
| |
Collapse
|
7
|
Baldwin I, Robey EA. Adjusting to self in the thymus: CD4 versus CD8 lineage commitment and regulatory T cell development. J Exp Med 2024; 221:e20230896. [PMID: 38980291 PMCID: PMC11232887 DOI: 10.1084/jem.20230896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
During thymic development, thymocytes adjust their TCR response based on the strength of their reactivity to self-peptide MHC complexes. This tuning process allows thymocytes with a range of self-reactivities to survive positive selection and contribute to a diverse T cell pool. In this review, we will discuss recent advances in our understanding of how thymocytes tune their responsiveness during positive selection, and we present a "sequential selection" model to explain how MHC specificity influences lineage choice. We also discuss recent evidence for cell type diversity in the medulla and discuss how this heterogeneity may contribute to medullary niches for negative selection and regulatory T cell development.
Collapse
Affiliation(s)
- Isabel Baldwin
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ellen A. Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
8
|
Giannoni E, Sanchez Sanchez G, Verdebout I, Papadopoulou M, Rezwani M, Ahmed R, Ladell K, Miners KL, McLaren JE, Fraser DJ, Price DA, Eberl M, Agyeman PKA, Schlapbach LJ, Vermijlen D. Sepsis shapes the human γδ TCR repertoire in an age- and pathogen-dependent manner. Eur J Immunol 2024; 54:e2451190. [PMID: 39072722 DOI: 10.1002/eji.202451190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
Sepsis affects 25 million children per year globally, leading to 2.9 million deaths and substantial disability in survivors. Extensive characterization of interactions between the host and bacteria in children is required to design novel preventive and therapeutic strategies tailored to this age group. Vγ9Vδ2 T cells are the first T cells generated in humans. These cells are defined by the expression of Vγ9Vδ2 T-cell receptors (TCRs, using the TRGV9 and TRDV2 gene segments), which react strongly against the prototypical bacterial phosphoantigen HMBPP. We investigated this reactivity by analyzing the TCR δ (TRD) repertoire in the blood of 76 children (0-16 years) with blood culture-proven bacterial sepsis caused by HMBPP-positive Escherichia coli or by HMBPP-negative Staphylococcus aureus or by HMBPP-negative Streptococcus pneumoniae. Strikingly, we found that S. aureus, and to a lesser extent E. coli but not S. pneumoniae, shaped the TRDV2 repertoire in young children (<2 years) but not in older children or adults. This dichotomy was due to the selective expansion of a fetal TRDV2 repertoire. Thus, young children possess fetal-derived Vγ9Vδ2 T cells that are highly responsive toward specific bacterial pathogens.
Collapse
Affiliation(s)
- Eric Giannoni
- Clinic of Neonatology, Department Mother-Woman-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Isoline Verdebout
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Moosa Rezwani
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Raya Ahmed
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Kristin Ladell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Kelly L Miners
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - James E McLaren
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Donald J Fraser
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
- Wales Kidney Research Unit, Heath Park Campus, Cardiff, UK
- Directorate of Nephrology and Transplantation, Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK
| | - David A Price
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Philipp K A Agyeman
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luregn J Schlapbach
- Department of Intensive Care and Neonatology, and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
9
|
Loh L, Carcy S, Krovi HS, Domenico J, Spengler A, Lin Y, Torres J, Prabakar RK, Palmer W, Norman PJ, Stone M, Brunetti T, Meyer HV, Gapin L. Unraveling the phenotypic states of human innate-like T cells: Comparative insights with conventional T cells and mouse models. Cell Rep 2024; 43:114705. [PMID: 39264810 PMCID: PMC11552652 DOI: 10.1016/j.celrep.2024.114705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024] Open
Abstract
The "innate-like" T cell compartment, known as Tinn, represents a diverse group of T cells that straddle the boundary between innate and adaptive immunity. We explore the transcriptional landscape of Tinn compared to conventional T cells (Tconv) in the human thymus and blood using single-cell RNA sequencing (scRNA-seq) and flow cytometry. In human blood, the majority of Tinn cells share an effector program driven by specific transcription factors, distinct from those governing Tconv cells. Conversely, only a fraction of thymic Tinn cells displays an effector phenotype, while others share transcriptional features with developing Tconv cells, indicating potential divergent developmental pathways. Unlike the mouse, human Tinn cells do not differentiate into multiple effector subsets but develop a mixed type 1/type 17 effector potential. Cross-species analysis uncovers species-specific distinctions, including the absence of type 2 Tinn cells in humans, which implies distinct immune regulatory mechanisms across species.
Collapse
Affiliation(s)
- Liyen Loh
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Salomé Carcy
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Joanne Domenico
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrea Spengler
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yong Lin
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Joshua Torres
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Rishvanth K Prabakar
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - William Palmer
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul J Norman
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Tonya Brunetti
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hannah V Meyer
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - Laurent Gapin
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
10
|
Millet N, Sekar J, Solis NV, Millet A, Aggor FE, Wildeman A, Lionakis MS, Gaffen SL, Jendzjowsky N, Filler SG, Swidergall M. Non-canonical IL-22 receptor signaling remodels the mucosal barrier during fungal immunosurveillance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.08.611873. [PMID: 39314368 PMCID: PMC11419061 DOI: 10.1101/2024.09.08.611873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mucosal barrier integrity is vital for homeostasis with commensal organisms while preventing pathogen invasion. We unexpectedly found that fungal-induced immunosurveillance enhances resistance to fungal outgrowth and tissue invasion by remodeling the oral mucosal epithelial barrier in mouse models of adult and neonatal Candida albicans colonization. Epithelial subset expansion and tissue remodeling were dependent on interleukin-22 (IL-22) and signal transducer and activator of transcription 3 (STAT3) signaling, through a non-canonical receptor complex composed of glycoprotein 130 (gp130) coupled with IL-22RA1 and IL-10RB. Immunosurveillance-induced epithelial remodeling was restricted to the oral mucosa, whereas barrier architecture was reset once fungal-specific immunity developed. Collectively, these findings identify fungal-induced transient mucosal remodeling as a critical determinant of resistance to mucosal fungal infection during early stages of microbial colonization.
Collapse
Affiliation(s)
- Nicolas Millet
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jinendiran Sekar
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Norma V. Solis
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Antoine Millet
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Felix E.Y. Aggor
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA, USA
| | - Asia Wildeman
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Sarah L. Gaffen
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA, USA
| | - Nicholas Jendzjowsky
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Marc Swidergall
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
11
|
Hulinkova I, Medova V, Soltysova A, Dobsinska V, Ficek A, Ciznar P. Severe congenital T-lymphocytopenia may affect the outcome of neonatal intensive care. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2024; 168:235-242. [PMID: 37431618 DOI: 10.5507/bp.2023.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/14/2023] [Indexed: 07/12/2023] Open
Abstract
AIM Circular DNA segments TREC (T-cell receptor excision circles) formed during T-lymphocyte maturation in the thymus, are a sensitive marker of thymic lymphocyte production in a broader manner. Quantification using qPCR is proposed as a surrogate marker of T cell malfunction in various primary and secondary conditions in a non-SCID selected risk newborn population. METHODS We collected 207 dry blood spot samples during the years 2015-2018, from newly admitted risk newborns. TREC values calculated per 106 cells were determined and a cut-off values of 5th percentile was set. The positive control group consisted of patients (n=13) with genetically confirmed SCID. RESULTS The median TREC value was 34,591.56 (18,074.08-60,228.58) for girls resp. 28,391.20 (13,835.01-51,835.93) per 106 cells for boys, P=0.046. Neonates born by C-section have been found to have higher TREC levels compared to neonates born by spontaneous delivery (P=0.018). In the group of preterm newborns (n=104), 3.8% had TREC value < 5th percentile, half of them died due to sepsis as opposed to no fatalities in preterm newborns with sepsis and TREC value > 5th percentile. In the group of term newborns (n=103) 9 children (8.7%) had TREC < 5th percentile, half of them were treated for asphyxia, with no fatal complications. CONCLUSION TREC levels calculated for the 5th percentile of a risk neonatal group is suggested as a surrogate marker for increased risk of fatal septic complication. Early recognition of these newborns within a risk scoring system using TREC levels could lead to potentially lifesaving interventions.
Collapse
Affiliation(s)
- Ivana Hulinkova
- Department of Paediatrics, Faculty of Medicine, Comenius University and National Institute of Children's Diseases, Bratislava, Slovak Republic
| | - Veronika Medova
- Institute for Clinical and Translational Research, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Andrea Soltysova
- Institute for Clinical and Translational Research, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - Veronika Dobsinska
- Department of Paediatric Haematology and Oncology, Bone Marrow Transplantation Unit, Faculty of Medicine, Comenius University and National Institute of Children's Diseases, Bratislava, Slovak Republic
| | - Andrej Ficek
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - Peter Ciznar
- Department of Paediatrics, Faculty of Medicine, Comenius University and National Institute of Children's Diseases, Bratislava, Slovak Republic
| |
Collapse
|
12
|
Gray JI, Farber DL. γδ T cells: The first line of defense for neonates. J Exp Med 2024; 221:e20240628. [PMID: 38819378 PMCID: PMC11143380 DOI: 10.1084/jem.20240628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
A distinct CD83-expressing subset of γδ T cells are enriched in preterm infants with sepsis, providing insights into their functional maturation dynamics in settings of homeostasis and disease (León-Lara et al. https://doi.org/10.1084/jem.20231987).
Collapse
Affiliation(s)
- Joshua I. Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Donna L. Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
13
|
Kempis-Calanis LA, Rodríguez-Jorge O, Gutiérrez-Reyna DY, Ventura-Martínez CJ, Spicuglia S, Medina-Rivera A, Thieffry D, González A, Santana MA. Neonatal CD4+ T cells have a characteristic transcriptome and epigenome and respond to TCR stimulation with proliferation and yet a limited immune response. J Leukoc Biol 2024; 116:64-76. [PMID: 38146769 DOI: 10.1093/jleuko/qiad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023] Open
Abstract
The adaptive immune response is coordinated by CD4+ T cells, which determine the type and strength of the immune response and the effector cells involved. It has been reported that CD4+ T cells are less responsive in neonates, leading to low activation of the cellular response and poor antibody production by B cells. This low response is essential for the tolerant window that favors birth transition from the sterile environment in the womb to the outside world but leaves neonates vulnerable to infection, which is still an important health issue. Neonates have a high morbidity and mortality rate due to infections, and the molecular reasons are still understudied. We asked whether the neonatal naive CD4+ T cells have a genomic program that predisposes them to a low response. Therefore, we evaluated the transcriptome and epigenome of human neonatal and adult naive CD4+ T cells. Our results point to a gene expression profile forming a distinct regulatory network in neonatal cells, which favors proliferation and a low T-cell response. Such expression profile is supported by a characteristic epigenetic landscape of neonatal CD4+ T cells, which correlates with the characteristic transcriptome of the neonatal cells. These results were confirmed by experiments showing a low response to activation signals, higher proliferation, and lower expression of cytokines of neonatal CD4+ T cells as compared to adult cells. Understanding this network could lead to novel vaccine formulations and better deal with life-threatening diseases during this highly vulnerable period of our lives.
Collapse
Affiliation(s)
- Linda Aimara Kempis-Calanis
- Laboratorio de Inmunología Celular y de Sistemas, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Chamilpa 62209 Cuernavaca, México
| | - Otoniel Rodríguez-Jorge
- Laboratorio de Inmunología Celular y de Sistemas, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Chamilpa 62209 Cuernavaca, México
| | - Darely Yarazeth Gutiérrez-Reyna
- Laboratorio de Inmunología Celular y de Sistemas, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Chamilpa 62209 Cuernavaca, México
| | - Carlos Jesús Ventura-Martínez
- Laboratorio de Inmunología Celular y de Sistemas, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Chamilpa 62209 Cuernavaca, México
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, TAGC, UMR1090, Equipe Labélisée LIGUE contre le Cancer, 163 Avenue de Luminy, 13288 Marseille, France
| | - Alejandra Medina-Rivera
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus UNAM 3002, Blvd. 3001, 76230 Juriquilla, Querétaro, México
| | - Denis Thieffry
- Département de Biologie de l'Ecole Normale Supérieure, PSL University, 46 rue d'Ulm, 75005 Paris, France
| | - Aitor González
- Aix-Marseille University, Inserm, TAGC, UMR1090, Equipe Labélisée LIGUE contre le Cancer, 163 Avenue de Luminy, 13288 Marseille, France
| | - María Angélica Santana
- Laboratorio de Inmunología Celular y de Sistemas, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Chamilpa 62209 Cuernavaca, México
| |
Collapse
|
14
|
Sankaran DG, Zhu H, Maymi VI, Forlastro IM, Jiang Y, Laniewski N, Scheible KM, Rudd BD, Grimson AW. Gene Regulatory Programs that Specify Age-Related Differences during Thymocyte Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599011. [PMID: 38948840 PMCID: PMC11212896 DOI: 10.1101/2024.06.14.599011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
T cell development is fundamental to immune system establishment, yet how this development changes with age remains poorly understood. Here, we construct a transcriptional and epigenetic atlas of T cell developmental programs in neonatal and adult mice, revealing the ontogeny of divergent gene regulatory programs and their link to age-related differences in phenotype and function. Specifically, we identify a gene module that diverges with age from the earliest stages of genesis and includes programs that govern effector response and cell cycle regulation. Moreover, we reveal that neonates possess more accessible chromatin during early thymocyte development, likely establishing poised gene expression programs that manifest later in thymocyte development. Finally, we leverage this atlas, employing a CRISPR-based perturbation approach coupled with single-cell RNA sequencing as a readout to uncover a conserved transcriptional regulator, Zbtb20, that contributes to age-dependent differences in T cell development. Altogether, our study defines transcriptional and epigenetic programs that regulate age-specific differences in T cell development.
Collapse
|
15
|
Eddens T, Parks OB, Zhang Y, Manni ML, Casanova JL, Ogishi M, Williams JV. PD-1 signaling in neonates restrains CD8 + T cell function and protects against respiratory viral immunopathology. Mucosal Immunol 2024; 17:476-490. [PMID: 38176655 PMCID: PMC11180597 DOI: 10.1016/j.mucimm.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Respiratory viral infections, including human metapneumovirus (HMPV), remain a leading cause of morbidity and mortality in neonates and infants. However, the mechanisms behind the increased sensitivity to those respiratory viral infections in neonates are poorly understood. Neonates, unlike adults, have several anti-inflammatory mechanisms in the lung, including elevated baseline expression of programmed death ligand 1 (PD-L1), a ligand for the inhibitory receptor programmed cell death protein 1 (PD-1). We thus hypothesized that neonates would rely on PD-1:PD-L1 signaling to restrain antiviral CD8 responses. To test this, we developed a neonatal primary HMPV infection model using wild-type C57BL/6 (B6) and Pdcd1-/- (lacking PD-1) mice. HMPV-infected neonatal mice had increased PD-L1/PD-L2 co-expression on innate immune cells but a similar number of antigen-specific CD8+ T cells and upregulation of PD-1 to that of adult B6 mice. Neonatal CD8+ T cells had reduced interferon-gamma (IFN-γ), granzyme B, and interleukin-2 production compared with B6 adults. Pdcd1-/- neonatal CD8+ T cells had markedly increased production of IFN-γ and granzyme B compared with B6 neonates. Pdcd1-/- neonates had increased acute pathology with HMPV or influenza. Pdcd1-/- neonates infected with HMPV had long-term changes in pulmonary physiology with evidence of immunopathology and a persistent CD8+ T-cell response with increased granzyme B production. Using single-cell ribonucleic acid sequencing from a child lacking PD-1 signaling, a similar activated CD8+ T-cell signature with increased granzyme B expression was observed. These data indicate that PD-1 signaling critically limits CD8+ T-cell effector functions and prevents immunopathology in response to neonatal respiratory viral infections.
Collapse
Affiliation(s)
- Taylor Eddens
- Division of Allergy and Immunology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA; University of Pittsburgh School of Medicine, Department of Pediatrics, Pittsburgh, Pennsylvania, USA
| | - Olivia B Parks
- University of Pittsburgh Medical Scientist Training Program, Pittsburgh, Pennsylvania, USA
| | - Yu Zhang
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, Pennsylvania, USA
| | - Michelle L Manni
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA; Howard Hughes Medical Institute, New York, New York, USA; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - John V Williams
- University of Pittsburgh School of Medicine, Department of Pediatrics, Pittsburgh, Pennsylvania, USA; Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
16
|
Montenegro C, Perdomo-Celis F, Franco MA. Update on Early-Life T Cells: Impact on Oral Rotavirus Vaccines. Viruses 2024; 16:818. [PMID: 38932111 PMCID: PMC11209100 DOI: 10.3390/v16060818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Rotavirus infection continues to be a significant public health problem in developing countries, despite the availability of several vaccines. The efficacy of oral rotavirus vaccines in young children may be affected by significant immunological differences between individuals in early life and adults. Therefore, understanding the dynamics of early-life systemic and mucosal immune responses and the factors that affect them is essential to improve the current rotavirus vaccines and develop the next generation of mucosal vaccines. This review focuses on the advances in T-cell development during early life in mice and humans, discussing how immune homeostasis and response to pathogens is established in this period compared to adults. Finally, the review explores how this knowledge of early-life T-cell immunity could be utilized to enhance current and novel rotavirus vaccines.
Collapse
Affiliation(s)
| | | | - Manuel A. Franco
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110221, Colombia; (C.M.); (F.P.-C.)
| |
Collapse
|
17
|
Stevens J, Culberson E, Kinder J, Ramiriqui A, Gray J, Bonfield M, Shao TY, Al Gharabieh F, Peterson L, Steinmeyer S, Zacharias W, Pryhuber G, Paul O, Sengupta S, Alenghat T, Way SS, Deshmukh H. Microbiota-derived inosine programs protective CD8 + T cell responses against influenza in newborns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588427. [PMID: 38645130 PMCID: PMC11030415 DOI: 10.1101/2024.04.09.588427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The immunological defects causing susceptibility to severe viral respiratory infections due to early-life dysbiosis remain ill-defined. Here, we show that influenza virus susceptibility in dysbiotic infant mice is caused by CD8+ T cell hyporesponsiveness and diminished persistence as tissue-resident memory cells. We describe a previously unknown role for nuclear factor interleukin 3 (NFIL3) in repression of memory differentiation of CD8+ T cells in dysbiotic mice involving epigenetic regulation of T cell factor 1 (TCF 1) expression. Pulmonary CD8+ T cells from dysbiotic human infants share these transcriptional signatures and functional phenotypes. Mechanistically, intestinal inosine was reduced in dysbiotic human infants and newborn mice, and inosine replacement reversed epigenetic dysregulation of Tcf7 and increased memory differentiation and responsiveness of pulmonary CD8+ T cells. Our data unveils new developmental layers controlling immune cell activation and identifies microbial metabolites that may be used therapeutically in the future to protect at-risk newborns.
Collapse
Affiliation(s)
- Joseph Stevens
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
- Medical Scientist Training Program, University of Cincinnati College of Medicine
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center
| | - Erica Culberson
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
- Medical Scientist Training Program, University of Cincinnati College of Medicine
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center
| | - Jeremy Kinder
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center
| | - Alicia Ramiriqui
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
| | - Jerilyn Gray
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
| | - Madeline Bonfield
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center
| | - Tzu-Yu Shao
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center
| | - Faris Al Gharabieh
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
| | - Laura Peterson
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
| | - Shelby Steinmeyer
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
| | - William Zacharias
- Department of Pediatrics, University of Cincinnati College of Medicine
- Medical Scientist Training Program, University of Cincinnati College of Medicine
| | - Gloria Pryhuber
- Department of Pediatrics, University of Rochester, School of Medicine
| | - Oindrila Paul
- Division of Neonatology, Children’s Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania
| | - Shaon Sengupta
- Division of Neonatology, Children’s Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania
| | - Theresa Alenghat
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center
| | - Sing Sing Way
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center
| | - Hitesh Deshmukh
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center
| |
Collapse
|
18
|
Borghesi A. Life-threatening infections in human newborns: Reconciling age-specific vulnerability and interindividual variability. Cell Immunol 2024; 397-398:104807. [PMID: 38232634 DOI: 10.1016/j.cellimm.2024.104807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
In humans, the interindividual variability of clinical outcome following exposure to a microorganism is immense, ranging from silent infection to life-threatening disease. Age-specific immune responses partially account for the high incidence of infection during the first 28 days of life and the related high mortality at population level. However, the occurrence of life-threatening disease in individual newborns remains unexplained. By contrast, inborn errors of immunity and their immune phenocopies are increasingly being discovered in children and adults with life-threatening viral, bacterial, mycobacterial and fungal infections. There is a need for convergence between the fields of neonatal immunology, with its in-depth population-wide characterization of newborn-specific immune responses, and clinical immunology, with its investigations of infections in patients at the cellular and molecular levels, to facilitate identification of the mechanisms of susceptibility to infection in individual newborns and the design of novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Alessandro Borghesi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, EU, Italy; School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland.
| |
Collapse
|
19
|
Bhattacharya S, Myers JA, Baker C, Guo M, Danopoulos S, Myers JR, Bandyopadhyay G, Romas ST, Huyck HL, Misra RS, Dutra J, Holden-Wiltse J, McDavid AN, Ashton JM, Al Alam D, Potter SS, Whitsett JA, Xu Y, Pryhuber GS, Mariani TJ. Single-Cell Transcriptomic Profiling Identifies Molecular Phenotypes of Newborn Human Lung Cells. Genes (Basel) 2024; 15:298. [PMID: 38540357 PMCID: PMC10970229 DOI: 10.3390/genes15030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 05/01/2024] Open
Abstract
While animal model studies have extensively defined the mechanisms controlling cell diversity in the developing mammalian lung, there exists a significant knowledge gap with regards to late-stage human lung development. The NHLBI Molecular Atlas of Lung Development Program (LungMAP) seeks to fill this gap by creating a structural, cellular and molecular atlas of the human and mouse lung. Transcriptomic profiling at the single-cell level created a cellular atlas of newborn human lungs. Frozen single-cell isolates obtained from two newborn human lungs from the LungMAP Human Tissue Core Biorepository, were captured, and library preparation was completed on the Chromium 10X system. Data was analyzed in Seurat, and cellular annotation was performed using the ToppGene functional analysis tool. Transcriptional interrogation of 5500 newborn human lung cells identified distinct clusters representing multiple populations of epithelial, endothelial, fibroblasts, pericytes, smooth muscle, immune cells and their gene signatures. Computational integration of data from newborn human cells and with 32,000 cells from postnatal days 1 through 10 mouse lungs generated by the LungMAP Cincinnati Research Center facilitated the identification of distinct cellular lineages among all the major cell types. Integration of the newborn human and mouse cellular transcriptomes also demonstrated cell type-specific differences in maturation states of newborn human lung cells. Specifically, newborn human lung matrix fibroblasts could be separated into those representative of younger cells (n = 393), or older cells (n = 158). Cells with each molecular profile were spatially resolved within newborn human lung tissue. This is the first comprehensive molecular map of the cellular landscape of neonatal human lung, including biomarkers for cells at distinct states of maturity.
Collapse
Affiliation(s)
- Soumyaroop Bhattacharya
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Jacquelyn A. Myers
- Genomic Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.A.M.); (C.B.); (J.R.M.); (J.M.A.)
| | - Cameron Baker
- Genomic Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.A.M.); (C.B.); (J.R.M.); (J.M.A.)
| | - Minzhe Guo
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA; (M.G.); (S.S.P.); (J.A.W.); (Y.X.)
| | - Soula Danopoulos
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, University of California Los Angeles, Los Angeles, CA 90024, USA; (S.D.)
| | - Jason R. Myers
- Genomic Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.A.M.); (C.B.); (J.R.M.); (J.M.A.)
| | - Gautam Bandyopadhyay
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Stephen T. Romas
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Heidie L. Huyck
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Ravi S. Misra
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Jennifer Dutra
- Clinical & Translational Science Institute, University of Rochester, Rochester, NY 14642, USA; (J.D.); (J.H.-W.)
| | - Jeanne Holden-Wiltse
- Clinical & Translational Science Institute, University of Rochester, Rochester, NY 14642, USA; (J.D.); (J.H.-W.)
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Andrew N. McDavid
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - John M. Ashton
- Genomic Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.A.M.); (C.B.); (J.R.M.); (J.M.A.)
| | - Denise Al Alam
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, University of California Los Angeles, Los Angeles, CA 90024, USA; (S.D.)
| | - S. Steven Potter
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA; (M.G.); (S.S.P.); (J.A.W.); (Y.X.)
| | - Jeffrey A. Whitsett
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA; (M.G.); (S.S.P.); (J.A.W.); (Y.X.)
| | - Yan Xu
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA; (M.G.); (S.S.P.); (J.A.W.); (Y.X.)
| | - Gloria S. Pryhuber
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Thomas J. Mariani
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| |
Collapse
|
20
|
Watson NB, Patel RK, Kean C, Veazey J, Oyesola OO, Laniewski N, Grenier JK, Wang J, Tabilas C, Yee Mon KJ, McNairn AJ, Peng SA, Wesnak SP, Nzingha K, Davenport MP, Tait Wojno ED, Scheible KM, Smith NL, Grimson A, Rudd BD. The gene regulatory basis of bystander activation in CD8 + T cells. Sci Immunol 2024; 9:eadf8776. [PMID: 38394230 DOI: 10.1126/sciimmunol.adf8776] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
CD8+ T cells are classically recognized as adaptive lymphocytes based on their ability to recognize specific foreign antigens and mount memory responses. However, recent studies indicate that some antigen-inexperienced CD8+ T cells can respond to innate cytokines alone in the absence of cognate T cell receptor stimulation, a phenomenon referred to as bystander activation. Here, we demonstrate that neonatal CD8+ T cells undergo a robust and diverse program of bystander activation, which corresponds to enhanced innate-like protection against unrelated pathogens. Using a multi-omics approach, we found that the ability of neonatal CD8+ T cells to respond to innate cytokines derives from their capacity to undergo rapid chromatin remodeling, resulting in the usage of a distinct set of enhancers and transcription factors typically found in innate-like T cells. We observed that the switch between innate and adaptive functions in the CD8+ T cell compartment is mediated by changes in the abundance of distinct subsets of cells. The innate CD8+ T cell subset that predominates in early life was also present in adult mice and humans. Our findings provide support for the layered immune hypothesis and indicate that the CD8+ T cell compartment is more functionally diverse than previously thought.
Collapse
Affiliation(s)
- Neva B Watson
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Ravi K Patel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Connor Kean
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Janelle Veazey
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Oyebola O Oyesola
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Nathan Laniewski
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jennifer K Grenier
- Genomics Innovation Hub and TREx Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - Jocelyn Wang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Cybelle Tabilas
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Kristel J Yee Mon
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Adrian J McNairn
- Genomics Innovation Hub and TREx Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - Seth A Peng
- Department of Clinical Science, Cornell University, Ithaca, NY 14853, USA
| | - Samantha P Wesnak
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Kito Nzingha
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Miles P Davenport
- Kirby Institute for Infection and Immunity, UNSW Australia, Sydney, NSW 2052, Australia
| | - Elia D Tait Wojno
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Kristin M Scheible
- Department of Pediatrics, University of Rochester, Rochester, NY 14642, USA
| | - Norah L Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
Liu J, Joseph S, Manohar K, Lee J, Brokaw JP, Shelley WC, Markel TA. Role of innate T cells in necrotizing enterocolitis. Front Immunol 2024; 15:1357483. [PMID: 38390341 PMCID: PMC10881895 DOI: 10.3389/fimmu.2024.1357483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a destructive gastrointestinal disease primarily affecting preterm babies. Despite advancements in neonatal care, NEC remains a significant cause of morbidity and mortality in neonatal intensive care units worldwide and the etiology of NEC is still unclear. Risk factors for NEC include prematurity, very low birth weight, feeding with formula, intestinal dysbiosis and bacterial infection. A review of the literature would suggest that supplementation of prebiotics and probiotics prevents NEC by altering the immune responses. Innate T cells, a highly conserved subpopulation of T cells that responds quickly to stimulation, develops differently from conventional T cells in neonates. This review aims to provide a succinct overview of innate T cells in neonates, encompassing their phenotypic characteristics, functional roles, likely involvement in the pathogenesis of NEC, and potential therapeutic implications.
Collapse
Affiliation(s)
- Jianyun Liu
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sharon Joseph
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Krishna Manohar
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jasmine Lee
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - John P. Brokaw
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - W. Christopher Shelley
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, United States
| | - Troy A. Markel
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, United States
| |
Collapse
|
22
|
Jamaleddine H, Rogers D, Perreault G, Postat J, Patel D, Mandl JN, Khadra A. Chronic infection control relies on T cells with lower foreign antigen binding strength generated by N-nucleotide diversity. PLoS Biol 2024; 22:e3002465. [PMID: 38300945 PMCID: PMC10833529 DOI: 10.1371/journal.pbio.3002465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/08/2023] [Indexed: 02/03/2024] Open
Abstract
The breadth of pathogens to which T cells can respond is determined by the T cell receptors (TCRs) present in an individual's repertoire. Although more than 90% of the sequence diversity among TCRs is generated by terminal deoxynucleotidyl transferase (TdT)-mediated N-nucleotide addition during V(D)J recombination, the benefit of TdT-altered TCRs remains unclear. Here, we computationally and experimentally investigated whether TCRs with higher N-nucleotide diversity via TdT make distinct contributions to acute or chronic pathogen control specifically through the inclusion of TCRs with lower antigen binding strengths (i.e., lower reactivity to peptide-major histocompatibility complex (pMHC)). When T cells with high pMHC reactivity have a greater propensity to become functionally exhausted than those of low pMHC reactivity, our computational model predicts a shift toward T cells with low pMHC reactivity over time during chronic, but not acute, infections. This TCR-affinity shift is critical, as the elimination of T cells with lower pMHC reactivity in silico substantially increased the time to clear a chronic infection, while acute infection control remained largely unchanged. Corroborating an affinity-centric benefit for TCR diversification via TdT, we found evidence that TdT-deficient TCR repertoires possess fewer T cells with weaker pMHC binding strengths in vivo and showed that TdT-deficient mice infected with a chronic, but not an acute, viral pathogen led to protracted viral clearance. In contrast, in the case of a chronic fungal pathogen where T cells fail to clear the infection, both our computational model and experimental data showed that TdT-diversified TCR repertoires conferred no additional protection to the hosts. Taken together, our in silico and in vivo data suggest that TdT-mediated TCR diversity is of particular benefit for the eventual resolution of prolonged pathogen replication through the inclusion of TCRs with lower foreign antigen binding strengths.
Collapse
Affiliation(s)
| | - Dakota Rogers
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Geneviève Perreault
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Jérémy Postat
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Dhanesh Patel
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Judith N. Mandl
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Monaco MH, Wang M, Hauser J, Yan J, Dilger RN, Donovan SM. Formula supplementation with human and bovine milk oligosaccharides modulates blood IgG and T-helper cell populations, and ex vivo LPS-stimulated cytokine production in a neonatal preclinical model. Front Immunol 2023; 14:1327853. [PMID: 38179055 PMCID: PMC10765566 DOI: 10.3389/fimmu.2023.1327853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Human milk contains structurally diverse oligosaccharides (HMO), which are multifunctional modulators of neonatal immune development. Our objective was to investigate formula supplemented with fucosylated (2'FL) + neutral (lacto-N-neotetraose, LNnt) oligosaccharides and/or sialylated bovine milk oligosaccharides (BMOS) on immunological outcomes. Methods Pigs (n=46) were randomized at 48h of age to four diets: sow milk replacer formula (CON), BMOS (CON + 6.5 g/L BMOS), HMO (CON + 1.0 g/L 2'FL + 0.5 g/L LNnT), or BMOS+HMO (CON + 6.5 g/L BMOS + 1.0 g/L 2'FL + 0.5 g/L LNnT). Blood and tissues were collected on postnatal day 33 for measurement of cytokines and IgG, phenotypic identification of immune cells, and ex vivo lipopolysaccharide (LPS)-stimulation of immune cells. Results Serum IgG was significantly lower in the HMO group than BMOS+HMO but did not differ from CON or BMOS. The percentage of PBMC T-helper cells was lower in BMOS+HMO than the other groups. Splenocytes from the BMOS group secreted more IL-1β when stimulated ex vivo with LPS compared to CON or HMO groups. For PBMCs, a statistical interaction of BMOS*HMO was observed for IL-10 secretion (p=0.037), with BMOS+HMO and HMO groups differing at p=0.1. Discussion The addition of a mix of fucosylated and sialylated oligosaccharides to infant formula provides specific activities in the immune system that differ from formulations supplemented with one oligosaccharide structure.
Collapse
Affiliation(s)
- Marcia H. Monaco
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Mei Wang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Jonas Hauser
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Jian Yan
- Nestlé Product Technology Center Nutrition, Vevey, Switzerland
| | - Ryan N. Dilger
- Department of Animal Sciences, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL, United States
| |
Collapse
|
24
|
Philpott JD, Miller J, Boribong BP, Charles S, Davis JP, Kazimierczyk S, Jimena B, Leonard MM, Shreffler WG, Fasano A, Yonker LM, Jain N. Antigen-specific T cell responses in SARS-CoV-2 mRNA-vaccinated children. Cell Rep Med 2023; 4:101298. [PMID: 38016480 PMCID: PMC10772322 DOI: 10.1016/j.xcrm.2023.101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023]
Abstract
SARS-CoV-2 mRNA vaccines elicit humoral responses in children that are comparable to those in adults. However, early-life T cell responses are distinct from adult ones, and questions remain about the nature and kinetics of mRNA vaccine-induced T cell responses in children. We report that Pfizer BNT162b2 mRNA vaccination elicits a significant antigen-specific CD4+ T cell response in the ≥12-year-old cohort. This response is weaker in magnitude in the 5- to 11-year-old cohort and is not improved by a higher vaccine dose (Moderna mRNA1273, 100 μg), suggesting distinct developmental programming that may underscore early-life T cell immunity. Increased effector phenotypes of antigen-specific T cells in younger children correspond with elevated anti-receptor binding domain antibody levels, albeit at the cost of memory generation. These studies highlight aspects of age-specific adaptive immune responses and the need for careful consideration of priming conditions including vaccine dose and adjuvant in the pediatric population.
Collapse
Affiliation(s)
- Jordan D Philpott
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16(th) Street, Charlestown, MA 02129, USA
| | - Jordan Miller
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16(th) Street, Charlestown, MA 02129, USA
| | - Brittany P Boribong
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16(th) Street, Charlestown, MA 02129, USA; Pediatric Allergy and Immunology and Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, 175 Cambridge Street, Boston, MA 02114, USA
| | - Saeina Charles
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16(th) Street, Charlestown, MA 02129, USA
| | - Jameson P Davis
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16(th) Street, Charlestown, MA 02129, USA
| | - Simon Kazimierczyk
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16(th) Street, Charlestown, MA 02129, USA
| | - Brittany Jimena
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16(th) Street, Charlestown, MA 02129, USA
| | - Maureen M Leonard
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16(th) Street, Charlestown, MA 02129, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Wayne G Shreffler
- Pediatric Allergy and Immunology and Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, 175 Cambridge Street, Boston, MA 02114, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16(th) Street, Charlestown, MA 02129, USA; Pediatric Allergy and Immunology and Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, 175 Cambridge Street, Boston, MA 02114, USA
| | - Lael M Yonker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16(th) Street, Charlestown, MA 02129, USA; Pediatric Allergy and Immunology and Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, 175 Cambridge Street, Boston, MA 02114, USA.
| | - Nitya Jain
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16(th) Street, Charlestown, MA 02129, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.
| |
Collapse
|
25
|
Locher V, Park S, Bunis DG, Makredes S, Mayer M, Burt TD, Fragiadakis GK, Halkias J. Homeostatic cytokines reciprocally modulate the emergence of prenatal effector PLZF+CD4+ T cells in humans. JCI Insight 2023; 8:e164672. [PMID: 37856221 PMCID: PMC10721317 DOI: 10.1172/jci.insight.164672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
The development of human prenatal adaptive immunity progresses faster than previously appreciated, with the emergence of memory CD4+ T cells alongside regulatory T cells by midgestation. We previously identified a prenatal specific population of promyelocytic leukemia zinc finger-positive (PLZF+) CD4+ T cells with heightened effector potential that were enriched in the developing intestine and accumulated in the cord blood of infants exposed to prenatal inflammation. However, the signals that drive their tissue distribution and effector maturation are unknown. Here, we define the transcriptional and functional heterogeneity of human prenatal PLZF+CD4+ T cells and identify the compartmentalization of T helper-like (Th-like) effector function across the small intestine (SI) and mesenteric lymph nodes (MLNs). IL-7 was more abundant in the SI relative to the MLNs and drove the preferential expansion of naive PLZF+CD4+ T cells via enhanced STAT5 and MEK/ERK signaling. Exposure to IL-7 was sufficient to induce the acquisition of CD45RO expression and rapid effector function in a subset of PLZF+CD4+ T cells, identifying a human analog of memory phenotype CD4+ T cells. Further, IL-7 modulated the differentiation of Th1- and Th17-like PLZF+CD4+ T cells and thus likely contributes to the anatomic compartmentalization of human prenatal CD4+ T cell effector function.
Collapse
Affiliation(s)
- Veronica Locher
- Division of Neonatology, Department of Pediatrics, and
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
| | - Sara Park
- Division of Neonatology, Department of Pediatrics, and
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
| | - Daniel G. Bunis
- Bakar ImmunoX Initiative and
- CoLabs, UCSF, San Francisco, California, USA
| | - Stephanie Makredes
- Division of Neonatology, Department of Pediatrics, and
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
| | - Margareta Mayer
- Division of Neonatology, Department of Pediatrics, and
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
| | - Trevor D. Burt
- Division of Neonatology and the Children’s Health & Discovery Initiative, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gabriela K. Fragiadakis
- Bakar ImmunoX Initiative and
- CoLabs, UCSF, San Francisco, California, USA
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Joanna Halkias
- Division of Neonatology, Department of Pediatrics, and
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
- Bakar ImmunoX Initiative and
| |
Collapse
|
26
|
Smith MJ, Penny T, Pham Y, Sutherland AE, Jenkin G, Fahey MC, Paton MCB, Finch-Edmondson M, Miller SL, McDonald CA. Neuroprotective Action of Tacrolimus before and after Onset of Neonatal Hypoxic-Ischaemic Brain Injury in Rats. Cells 2023; 12:2659. [PMID: 37998394 PMCID: PMC10669941 DOI: 10.3390/cells12222659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
(1) Background: Neonatal brain injury can lead to permanent neurodevelopmental impairments. Notably, suppressing inflammatory pathways may reduce damage. To determine the role of neuroinflammation in the progression of neonatal brain injury, we investigated the effect of treating neonatal rat pups with the immunosuppressant tacrolimus at two time points: before and after hypoxic-ischaemic (HI)-induced injury. (2) Methods: To induce HI injury, postnatal day (PND) 10 rat pups underwent single carotid artery ligation followed by hypoxia (8% oxygen, 90 min). Pups received daily tacrolimus (or a vehicle) starting either 3 days before HI on PND 7 (pre-HI), or 12 h after HI (post-HI). Four doses were tested: 0.025, 0.05, 0.1 or 0.25 mg/kg/day. Pups were euthanised at PND 17 or PND 50. (3) Results: All tacrolimus doses administered pre-HI significantly reduced brain infarct size and neuronal loss, increased the number of resting microglia and reduced cellular apoptosis (p < 0.05 compared to control). In contrast, only the highest dose of tacrolimus administered post-HI (0.25 mg/kg/day) reduced brain infarct size (p < 0.05). All doses of tacrolimus reduced pup weight compared to the controls. (4) Conclusions: Tacrolimus administration 3 days pre-HI was neuroprotective, likely mediated through neuroinflammatory and cell death pathways. Tacrolimus post-HI may have limited capacity to reduce brain injury, with higher doses increasing rat pup mortality. This work highlights the benefits of targeting neuroinflammation during the acute injurious period. More specific targeting of neuroinflammation, e.g., via T-cells, warrants further investigation.
Collapse
Affiliation(s)
- Madeleine J. Smith
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.J.S.); (T.P.); (Y.P.); (A.E.S.); (G.J.); (M.C.F.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Tayla Penny
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.J.S.); (T.P.); (Y.P.); (A.E.S.); (G.J.); (M.C.F.); (S.L.M.)
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.J.S.); (T.P.); (Y.P.); (A.E.S.); (G.J.); (M.C.F.); (S.L.M.)
| | - Amy E. Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.J.S.); (T.P.); (Y.P.); (A.E.S.); (G.J.); (M.C.F.); (S.L.M.)
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.J.S.); (T.P.); (Y.P.); (A.E.S.); (G.J.); (M.C.F.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Michael C. Fahey
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.J.S.); (T.P.); (Y.P.); (A.E.S.); (G.J.); (M.C.F.); (S.L.M.)
- Department of Paediatrics, Monash University, Clayton, VIC 3168, Australia
| | - Madison C. B. Paton
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia; (M.C.B.P.); (M.F.-E.)
| | - Megan Finch-Edmondson
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia; (M.C.B.P.); (M.F.-E.)
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.J.S.); (T.P.); (Y.P.); (A.E.S.); (G.J.); (M.C.F.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Courtney A. McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.J.S.); (T.P.); (Y.P.); (A.E.S.); (G.J.); (M.C.F.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
27
|
Bolandi Z, Hashemi SM, Abasi M, Musavi M, Aghamiri S, Miyanmahaleh N, Ghanbarian H. In vitro naive CD4 + T cell differentiation upon treatment with miR-29b-loaded exosomes from mesenchymal stem cells. Mol Biol Rep 2023; 50:9037-9046. [PMID: 37725284 DOI: 10.1007/s11033-023-08767-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Gene regulation by microRNA (miRNA) is central in T lymphocytes differentiation processes. Here, we investigate miRNA-29b (miR-29b) roles in the reprogramming of T cell differentiation, which can be a promising therapeutic avenue for various types of inflammatory disorders such as rheumatoid arthritis and multiple sclerosis. METHODS AND RESULTS Adipose Mesenchymal Stem Cell-derived exosomes (AMSC-Exo) enriched with miR-29b were delivered into naive CD4+ T (nCD4+) cells. The expression level of important transcription factors including RAR-related orphan receptor gamma (RORγt), GATA3 binding protein (GATA3), T-box transcription factor 21, and Forkhead box P3 was determined by quantitative Real-Time PCR. Moreover, flow cytometry and Enzyme-linked Immunosorbent Assay were respectively used to measure the frequency of T regulatory cells and the levels of cytokines production (Interleukin 17, Interleukin 4, Interferon-gamma, and transforming growth factor beta. This study indicates that the transfection of miR-29b mimics into T lymphocytes through AMSC-Exo can alter the CD4+ T cells' differentiation into other types of T cells. CONCLUSIONS In conclusion, AMSC-Exo-based delivery of miR-29b can be considered as a new fascinating avenue for T cell differentiation inhibition and the future treatment of several inflammatory disorders.
Collapse
Affiliation(s)
- Zohreh Bolandi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mozhgan Abasi
- Immunogenetics Research Center, Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Musavi
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Shahin Aghamiri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Miyanmahaleh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Donald K, Finlay BB. Early-life interactions between the microbiota and immune system: impact on immune system development and atopic disease. Nat Rev Immunol 2023; 23:735-748. [PMID: 37138015 DOI: 10.1038/s41577-023-00874-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/05/2023]
Abstract
Prenatal and early postnatal life represent key periods of immune system development. In addition to genetics and host biology, environment has a large and irreversible role in the immune maturation and health of an infant. One key player in this process is the gut microbiota, a diverse community of microorganisms that colonizes the human intestine. The diet, environment and medical interventions experienced by an infant determine the establishment and progression of the intestinal microbiota, which interacts with and trains the developing immune system. Several chronic immune-mediated diseases have been linked to an altered gut microbiota during early infancy. The recent rise in allergic disease incidence has been explained by the 'hygiene hypothesis', which states that societal changes in developed countries have led to reduced early-life microbial exposures, negatively impacting immunity. Although human cohort studies across the globe have established a correlation between early-life microbiota composition and atopy, mechanistic links and specific host-microorganism interactions are still being uncovered. Here, we detail the progression of immune system and microbiota maturation in early life, highlight the mechanistic links between microbes and the immune system, and summarize the role of early-life host-microorganism interactions in allergic disease development.
Collapse
Affiliation(s)
- Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
29
|
Reynolds HM, Bettini ML. Early-life microbiota-immune homeostasis. Front Immunol 2023; 14:1266876. [PMID: 37936686 PMCID: PMC10627000 DOI: 10.3389/fimmu.2023.1266876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
As the prevalence of allergy and autoimmune disease in industrialized societies continues to rise, improving our understanding of the mechanistic roles behind microbiota-immune homeostasis has become critical for informing therapeutic interventions in cases of dysbiosis. Of particular importance, are alterations to intestinal microbiota occurring within the critical neonatal window, during which the immune system is highly vulnerable to environmental exposures. This review will highlight recent literature concerning mechanisms of early-life microbiota-immune homeostasis as well as discuss the potential for therapeutics in restoring dysbiosis in early life.
Collapse
Affiliation(s)
| | - Matthew L. Bettini
- Department of Microbiology and Immunology, University of Utah, Salt Lake, UT, United States
| |
Collapse
|
30
|
Read JF, Serralha M, Armitage JD, Iqbal MM, Cruickshank MN, Saxena A, Strickland DH, Waithman J, Holt PG, Bosco A. Single cell transcriptomics reveals cell type specific features of developmentally regulated responses to lipopolysaccharide between birth and 5 years. Front Immunol 2023; 14:1275937. [PMID: 37920467 PMCID: PMC10619903 DOI: 10.3389/fimmu.2023.1275937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Background Human perinatal life is characterized by a period of extraordinary change during which newborns encounter abundant environmental stimuli and exposure to potential pathogens. To meet such challenges, the neonatal immune system is equipped with unique functional characteristics that adapt to changing conditions as development progresses across the early years of life, but the molecular characteristics of such adaptations remain poorly understood. The application of single cell genomics to birth cohorts provides an opportunity to investigate changes in gene expression programs elicited downstream of innate immune activation across early life at unprecedented resolution. Methods In this study, we performed single cell RNA-sequencing of mononuclear cells collected from matched birth cord blood and 5-year peripheral blood samples following stimulation (18hrs) with two well-characterized innate stimuli; lipopolysaccharide (LPS) and Polyinosinic:polycytidylic acid (Poly(I:C)). Results We found that the transcriptional response to LPS was constrained at birth and predominantly partitioned into classical proinflammatory gene upregulation primarily by monocytes and Interferon (IFN)-signaling gene upregulation by lymphocytes. Moreover, these responses featured substantial cell-to-cell communication which appeared markedly strengthened between birth and 5 years. In contrast, stimulation with Poly(I:C) induced a robust IFN-signalling response across all cell types identified at birth and 5 years. Analysis of gene regulatory networks revealed IRF1 and STAT1 were key drivers of the LPS-induced IFN-signaling response in lymphocytes with a potential developmental role for IRF7 regulation. Conclusion Additionally, we observed distinct activation trajectory endpoints for monocytes derived from LPS-treated cord and 5-year blood, which was not apparent among Poly(I:C)-induced monocytes. Taken together, our findings provide new insight into the gene regulatory landscape of immune cell function between birth and 5 years and point to regulatory mechanisms relevant to future investigation of infection susceptibility in early life.
Collapse
Affiliation(s)
- James F. Read
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Michael Serralha
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Jesse D. Armitage
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Muhammad Munir Iqbal
- Genomics WA, Joint Initiative of Telethon Kids Institute, Harry Perkins Institute of Medical Research and The University of Western Australia, Nedlands, WA, Australia
| | - Mark N. Cruickshank
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Alka Saxena
- Genomics WA, Joint Initiative of Telethon Kids Institute, Harry Perkins Institute of Medical Research and The University of Western Australia, Nedlands, WA, Australia
| | - Deborah H. Strickland
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- UWA Centre for Child Health Research, The University of Western Australia, Nedlands, WA, Australia
| | - Jason Waithman
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Patrick G. Holt
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- UWA Centre for Child Health Research, The University of Western Australia, Nedlands, WA, Australia
| | - Anthony Bosco
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
31
|
Bergeron HC, Hansen MR, Tripp RA. Interferons-Implications in the Immune Response to Respiratory Viruses. Microorganisms 2023; 11:2179. [PMID: 37764023 PMCID: PMC10535750 DOI: 10.3390/microorganisms11092179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Interferons (IFN) are an assemblage of signaling proteins made and released by various host cells in response to stimuli, including viruses. Respiratory syncytial virus (RSV), influenza virus, and SARS-CoV-2 are major causes of respiratory disease that induce or antagonize IFN responses depending on various factors. In this review, the role and function of type I, II, and III IFN responses to respiratory virus infections are considered. In addition, the role of the viral proteins in modifying anti-viral immunity is noted, as are the specific IFN responses that underly the correlates of immunity and protection from disease.
Collapse
Affiliation(s)
| | | | - Ralph A. Tripp
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30605, USA; (H.C.B.); (M.R.H.)
| |
Collapse
|
32
|
Connors TJ, Matsumoto R, Verma S, Szabo PA, Guyer R, Gray J, Wang Z, Thapa P, Dogra P, Poon MML, Rybkina K, Bradley MC, Idzikowski E, McNichols J, Kubota M, Pethe K, Shen Y, Atkinson MA, Brusko M, Brusko TM, Yates AJ, Sims PA, Farber DL. Site-specific development and progressive maturation of human tissue-resident memory T cells over infancy and childhood. Immunity 2023; 56:1894-1909.e5. [PMID: 37421943 PMCID: PMC10527943 DOI: 10.1016/j.immuni.2023.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/23/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023]
Abstract
Infancy and childhood are critical life stages for generating immune memory to protect against pathogens; however, the timing, location, and pathways for memory development in humans remain elusive. Here, we investigated T cells in mucosal sites, lymphoid tissues, and blood from 96 pediatric donors aged 0-10 years using phenotypic, functional, and transcriptomic profiling. Our results revealed that memory T cells preferentially localized in the intestines and lungs during infancy and accumulated more rapidly in mucosal sites compared with blood and lymphoid organs, consistent with site-specific antigen exposure. Early life mucosal memory T cells exhibit distinct functional capacities and stem-like transcriptional profiles. In later childhood, they progressively adopt proinflammatory functions and tissue-resident signatures, coincident with increased T cell receptor (TCR) clonal expansion in mucosal and lymphoid sites. Together, our findings identify staged development of memory T cells targeted to tissues during the formative years, informing how we might promote and monitor immunity in children.
Collapse
Affiliation(s)
- Thomas J Connors
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Rei Matsumoto
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shivali Verma
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rebecca Guyer
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Joshua Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Zicheng Wang
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Puspa Thapa
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Pranay Dogra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maya M L Poon
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ksenia Rybkina
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Marissa C Bradley
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Emma Idzikowski
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - James McNichols
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Masaru Kubota
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kalpana Pethe
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Maigan Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Andrew J Yates
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
33
|
Sedney CJ, Harvill ET. The Neonatal Immune System and Respiratory Pathogens. Microorganisms 2023; 11:1597. [PMID: 37375099 PMCID: PMC10301501 DOI: 10.3390/microorganisms11061597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Neonates are more susceptible to some pathogens, particularly those that cause infection in the respiratory tract. This is often attributed to an incompletely developed immune system, but recent work demonstrates effective neonatal immune responses to some infection. The emerging view is that neonates have a distinctly different immune response that is well-adapted to deal with unique immunological challenges of the transition from a relatively sterile uterus to a microbe-rich world, tending to suppress potentially dangerous inflammatory responses. Problematically, few animal models allow a mechanistic examination of the roles and effects of various immune functions in this critical transition period. This limits our understanding of neonatal immunity, and therefore our ability to rationally design and develop vaccines and therapeutics to best protect newborns. This review summarizes what is known of the neonatal immune system, focusing on protection against respiratory pathogens and describes challenges of various animal models. Highlighting recent advances in the mouse model, we identify knowledge gaps to be addressed.
Collapse
Affiliation(s)
| | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
34
|
Ait Djebbara S, Mcheik S, Percier P, Segueni N, Poncelet A, Truyens C. The macrophage infectivity potentiator of Trypanosoma cruzi induces innate IFN-γ and TNF-α production by human neonatal and adult blood cells through TLR2/1 and TLR4. Front Immunol 2023; 14:1180900. [PMID: 37304288 PMCID: PMC10250606 DOI: 10.3389/fimmu.2023.1180900] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
We previously identified the recombinant (r) macrophage (M) infectivity (I) potentiator (P) of the protozoan parasite Trypanosoma cruzi (Tc) (rTcMIP) as an immuno-stimulatory protein that induces the release of IFN-γ, CCL2 and CCL3 by human cord blood cells. These cytokines and chemokines are important to direct a type 1 adaptive immune response. rTcMIP also increased the Ab response and favored the production of the Th1-related isotype IgG2a in mouse models of neonatal vaccination, indicating that rTcMIP could be used as a vaccine adjuvant to enhance T and B cell responses. In the present study, we used cord and adult blood cells, and isolated NK cells and human monocytes to investigate the pathways and to decipher the mechanism of action of the recombinant rTcMIP. We found that rTcMIP engaged TLR1/2 and TLR4 independently of CD14 and activated the MyD88, but not the TRIF, pathway to induce IFN-γ production by IL-15-primed NK cells, and TNF-α secretion by monocytes and myeloid dendritic cells. Our results also indicated that TNF-α boosted IFN-γ expression. Though cord blood cells displayed lower responses than adult cells, our results allow to consider rTcMIP as a potential pro-type 1 adjuvant that might be associated to vaccines administered in early life or later.
Collapse
Affiliation(s)
- Sarra Ait Djebbara
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Saria Mcheik
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pauline Percier
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Service Immune Response, Sciensano, Brussels, Belgium
| | - Noria Segueni
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Antoine Poncelet
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Carine Truyens
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
35
|
Wang J, Metheny L. Umbilical cord blood derived cellular therapy: advances in clinical development. Front Oncol 2023; 13:1167266. [PMID: 37274288 PMCID: PMC10232824 DOI: 10.3389/fonc.2023.1167266] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
While cord blood (CB) is primarily utilized in allogeneic hematopoietic cell transplantation (HCT), the development of novel cell therapy products from CB is a growing and developing field. Compared to adult blood, CB is characterized by a higher percentage of hematopoietic stem cells (HSCs) and progenitor cells, less mature immune cells that retain a high capacity of proliferation, and stronger immune tolerance that requires less stringent HLA-matching when used in the allogenic setting. Given that CB is an FDA regulated product and along with its unique cellular composition, CB lends itself as a readily available and safe starting material for the development of off-the-shelf cell therapies. Moreover, non-hematologic cells such as mesenchymal stem cell (MSCs) residing in CB or CB tissue also have potential in regenerative medicine and inflammatory and autoimmune conditions. In this review, we will focus on recent clinical development on CB-derived cellular therapies in the field of oncology, including T-cell therapies such as chimeric antigen receptor (CAR) T-cells, regulatory T-cells, and virus-specific T-cells; NK-cell therapies, such as NK cell engagers and CAR NK-cells; CB-HCT and various modifications; as well as applications of MSCs in HCT.
Collapse
|
36
|
Abstract
Historically, the immune system was believed to develop along a linear axis of maturity from fetal life to adulthood. Now, it is clear that distinct layers of immune cells are generated from unique waves of hematopoietic progenitors during different windows of development. This model, known as the layered immune model, has provided a useful framework for understanding why distinct lineages of B cells and γδ T cells arise in succession and display unique functions in adulthood. However, the layered immune model has not been applied to CD8+ T cells, which are still often viewed as a uniform population of cells belonging to the same lineage, with functional differences between cells arising from environmental factors encountered during infection. Recent studies have challenged this idea, demonstrating that not all CD8+ T cells are created equally and that the functions of individual CD8+ T cells in adults are linked to when they were created in the host. In this review, we discuss the accumulating evidence suggesting there are distinct ontogenetic subpopulations of CD8+ T cells and propose that the layered immune model be extended to the CD8+ T cell compartment.
Collapse
Affiliation(s)
- Cybelle Tabilas
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
- Co-first author
| | - Norah L. Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
- Co-first author
| | - Brian D. Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
37
|
Molofsky AB, Locksley RM. The ins and outs of innate and adaptive type 2 immunity. Immunity 2023; 56:704-722. [PMID: 37044061 PMCID: PMC10120575 DOI: 10.1016/j.immuni.2023.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023]
Abstract
Type 2 immunity is orchestrated by a canonical group of cytokines primarily produced by innate lymphoid cells, group 2, and their adaptive counterparts, CD4+ helper type 2 cells, and elaborated by myeloid cells and antibodies that accumulate in response. Here, we review the cytokine and cellular circuits that mediate type 2 immunity. Building from insights in cytokine evolution, we propose that innate type 2 immunity evolved to monitor the status of microbe-rich epithelial barriers (outside) and sterile parenchymal borders (inside) to meet the functional demands of local tissue, and, when necessary, to relay information to the adaptive immune system to reinforce demarcating borders to sustain these efforts. Allergic pathology likely results from deviations in local sustaining units caused by alterations imposed by environmental effects during postnatal developmental windows and exacerbated by mutations that increase vulnerabilities. This framework positions T2 immunity as central to sustaining tissue repair and regeneration and provides a context toward understanding allergic disease.
Collapse
Affiliation(s)
- Ari B Molofsky
- Department of Lab Medicine, University of California, San Francisco, San Francisco, CA 94143-0451, USA
| | - Richard M Locksley
- Howard Hughes Medical Institute and Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0795, USA.
| |
Collapse
|
38
|
Kibler A, Seifert M, Budeus B. Age-related changes of the human splenic marginal zone B cell compartment. Immunol Lett 2023; 256-257:59-65. [PMID: 37044264 DOI: 10.1016/j.imlet.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
In this review, we will summarize the growing body of knowledge on the age-related changes of human splenic B cell composition and molecular evidence of immune maturation and discuss the contribution of these changes on splenic protective function. From birth on, the splenic marginal zone (sMZ) contains a specialized B cell subpopulation, which recruits and archives memory B cells from immune responses throughout the organism. The quality of sMZ B cell responses is augmented by germinal center (GC)-dependent maturation of memory B cells during childhood, however, in old age, these mechanisms likely contribute to waning of splenic protective function.
Collapse
Affiliation(s)
- Artur Kibler
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Marc Seifert
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany; Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, Düsseldorf, Germany.
| | - Bettina Budeus
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
39
|
Cowell E, Kris LP, Bracho-Granado G, Jaber H, Smith JR, Carr JM. Zika virus infection of retinal cells and the developing mouse eye induces host responses that contrasts to the brain and dengue virus infection. J Neurovirol 2023; 29:187-202. [PMID: 37022660 DOI: 10.1007/s13365-023-01123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
Zika virus (ZIKV) infection causes ocular and neurological pathologies with ZIKV-induction of developmental abnormalities following in utero infection a major concern. The study here has compared ZIKV and the related dengue virus (DENV) infection in the eye and brain. In vitro, both ZIKV and DENV could infect cell lines representing the retinal pigmented epithelium, endothelial cells, and Mueller cells, with distinct innate responses in each cell type. In a 1-day old mouse challenge model, both ZIKV and DENV infected the brain and eye by day 6 post-infection (pi). ZIKV was present at comparable levels in both tissues, with RNA increasing with time post-infection. DENV infected the brain, but RNA was detected in the eye of less than half of the mice challenged. NanoString analysis demonstrated comparable host responses in the brain for both viruses, including induction of mRNA for myosin light chain-2 (Mly2), and numerous antiviral and inflammatory genes. Notably, mRNA for multiple complement proteins were induced, but C2 and C4a were uniquely induced by ZIKV but not DENV. Consistent with the viral infection in the eye, DENV induced few responses while ZIKV induced substantial inflammatory and antiviral responses. Compared to the brain, ZIKV in the eye did not induce mRNAs such as C3, downregulated Retnla, and upregulated CSF-1. Morphologically, the ZIKV-infected retina demonstrated reduced formation of specific retinal layers. Thus, although ZIKV and DENV can both infect the eye and brain, there are distinct differences in host cell and tissue inflammatory responses that may be relevant to ZIKV replication and disease.
Collapse
Affiliation(s)
- E Cowell
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Room 5D-316, Flinders Medical Centre, Flinders Drive, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - L P Kris
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Room 5D-316, Flinders Medical Centre, Flinders Drive, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - G Bracho-Granado
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Room 5D-316, Flinders Medical Centre, Flinders Drive, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - H Jaber
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Room 5D-316, Flinders Medical Centre, Flinders Drive, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - J R Smith
- Eye and Vision Health, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - J M Carr
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Room 5D-316, Flinders Medical Centre, Flinders Drive, Bedford Park, Adelaide, South Australia, 5042, Australia.
| |
Collapse
|
40
|
Majer C, Lingel H, Arra A, Heuft HG, Bretschneider D, Balk S, Vogel K, Brunner-Weinzierl MC. PD-1/PD-L1 Control of Antigen-Specifically Activated CD4 T-Cells of Neonates. Int J Mol Sci 2023; 24:ijms24065662. [PMID: 36982735 PMCID: PMC10051326 DOI: 10.3390/ijms24065662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Newborns are highly susceptible to infections; however, the underlying mechanisms that regulate the anti-microbial T-helper cells shortly after birth remain incompletely understood. To address neonatal antigen-specific human T-cell responses against bacteria, Staphylococcus aureus (S. aureus) was used as a model pathogen and comparatively analyzed in terms of the polyclonal staphylococcal enterotoxin B (SEB) superantigen responses. Here, we report that neonatal CD4 T-cells perform activation-induced events upon S. aureus/APC-encounter including the expression of CD40L and PD-1, as well as the production of Th1 cytokines, concomitant to T-cell proliferation. The application of a multiple regression analysis revealed that the proliferation of neonatal T-helper cells was determined by sex, IL-2 receptor expression and the impact of the PD-1/PD-L1 blockade. Indeed, the treatment of S. aureus-activated neonatal T-helper cells with PD-1 and PD-L1 blocking antibodies revealed the specific regulation of the immediate neonatal T-cell responses with respect to the proliferation and frequencies of IFNγ producers, which resembled in part the response of adults’ memory T-cells. Intriguingly, the generation of multifunctional T-helper cells was regulated by the PD-1/PD-L1 axis exclusively in the neonatal CD4 T-cell lineage. Together, albeit missing memory T-cells in neonates, their unexperienced CD4 T-cells are well adapted to mount immediate and strong anti-bacterial responses that are tightly controlled by the PD-1/PD-L1 axis, thereby resembling the regulation of recalled memory T-cells of adults.
Collapse
Affiliation(s)
- Christiane Majer
- Department of Experimental Pediatrics, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Holger Lingel
- Department of Experimental Pediatrics, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Aditya Arra
- Department of Experimental Pediatrics, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Hans-Gert Heuft
- Institute of Transfusion Medicine and Immunohematology, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | | | - Silke Balk
- Department of Experimental Pediatrics, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Katrin Vogel
- Department of Experimental Pediatrics, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Monika C. Brunner-Weinzierl
- Department of Experimental Pediatrics, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-6724003
| |
Collapse
|
41
|
Beijnen EMS, Odumade OA, Haren SDV. Molecular Determinants of the Early Life Immune Response to COVID-19 Infection and Immunization. Vaccines (Basel) 2023; 11:vaccines11030509. [PMID: 36992093 DOI: 10.3390/vaccines11030509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/11/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Clinical manifestations from primary COVID infection in children are generally less severe as compared to adults, and severe pediatric cases occur predominantly in children with underlying medical conditions. However, despite the lower incidence of disease severity, the burden of COVID-19 in children is not negligible. Throughout the course of the pandemic, the case incidence in children has substantially increased, with estimated cumulative rates of SARS-CoV-2 infection and COVID-19 symptomatic illness in children comparable to those in adults. Vaccination is a key approach to enhance immunogenicity and protection against SARS-CoV-2. Although the immune system of children is functionally distinct from that of other age groups, vaccine development specific for the pediatric population has mostly been limited to dose-titration of formulations that were developed primarily for adults. In this review, we summarize the literature pertaining to age-specific differences in COVID-19 pathogenesis and clinical manifestation. In addition, we review molecular distinctions in how the early life immune system responds to infection and vaccination. Finally, we discuss recent advances in development of pediatric COVID-19 vaccines and provide future directions for basic and translational research in this area.
Collapse
Affiliation(s)
- Elisabeth M S Beijnen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Oludare A Odumade
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Division of Medicine Critical Care, Boston Children's Hospital, Boston, MA 02115, USA
| | - Simon D van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
42
|
Paiola M, Dimitrakopoulou D, Pavelka MS, Robert J. Amphibians as a model to study the role of immune cell heterogeneity in host and mycobacterial interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104594. [PMID: 36403788 DOI: 10.1016/j.dci.2022.104594] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Mycobacterial infections represent major concerns for aquatic and terrestrial vertebrates including humans. Although our current knowledge is mostly restricted to Mycobacterium tuberculosis and mammalian host interactions, increasing evidence suggests common features in endo- and ectothermic animals infected with non-tuberculous mycobacteria (NTMs) like those described for M. tuberculosis. Importantly, most of the pathogenic and non-pathogenic NTMs detected in amphibians from wild, farmed, and research facilities represent, in addition to the potential economic loss, a rising concern for human health. Upon mycobacterial infection in mammals, the protective immune responses involving the innate and adaptive immune systems are highly complex and therefore not fully understood. This complexity results from the versatility and resilience of mycobacteria to hostile conditions as well as from the immune cell heterogeneity arising from the distinct developmental origins according with the concept of layered immunity. Similar to the differing responses of neonates versus adults during tuberculosis development, the pathogenesis and inflammatory responses are stage-specific in Xenopus laevis during infection by the NTM M. marinum. That is, both in human fetal and neonatal development and in tadpole development, responses are characterized by hypo-responsiveness and a lower capacity to contain mycobacterial infections. Similar to a mammalian fetus and neonates, T cells and myeloid cells in Xenopus tadpoles and axolotls are different from the adult immune cells. Fetal and amphibian larval T cells, which are characterized by a lower T cell receptor (TCR) repertoire diversity, are biased toward regulatory function, and they have distinct progenitor origins from those of the adult immune cells. Some early developing T cells and likely macrophage subpopulations are conserved in adult anurans and mammals, and therefore, they likely play an important role in the host-pathogen interactions from early stages of development to adulthood. Thus, we propose the use of developing amphibians, which have the advantage of being free-living early in their development, as an alternative and complementary model to study the role of immune cell heterogeneity in host-mycobacteria interactions.
Collapse
Affiliation(s)
- Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Dionysia Dimitrakopoulou
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Martin S Pavelka
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
43
|
Gustafson CE, Weyand CM, Goronzy JJ. Immune Deficiencies at the Extremes of Age. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
44
|
Early microbial exposure shapes adult immunity by altering CD8+ T cell development. Proc Natl Acad Sci U S A 2022; 119:e2212548119. [PMID: 36442114 PMCID: PMC9894172 DOI: 10.1073/pnas.2212548119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Microbial exposure during development can elicit long-lasting effects on the health of an individual. However, how microbial exposure in early life leads to permanent changes in the immune system is unknown. Here, we show that the microbial environment alters the set point for immune susceptibility by altering the developmental architecture of the CD8+ T cell compartment. In particular, early microbial exposure results in the preferential expansion of highly responsive fetal-derived CD8+ T cells that persist into adulthood and provide the host with enhanced immune protection against intracellular pathogens. Interestingly, microbial education of fetal-derived CD8+ T cells occurs during thymic development rather than in the periphery and involves the acquisition of a more effector-like epigenetic program. Collectively, our results provide a conceptual framework for understanding how microbial colonization in early life leads to lifelong changes in the immune system.
Collapse
|
45
|
Gao Y, O’Hely M, Quinn TP, Ponsonby AL, Harrison LC, Frøkiær H, Tang MLK, Brix S, Kristiansen K, Burgner D, Saffery R, Ranganathan S, Collier F, Vuillermin P. Maternal gut microbiota during pregnancy and the composition of immune cells in infancy. Front Immunol 2022; 13:986340. [PMID: 36211431 PMCID: PMC9535361 DOI: 10.3389/fimmu.2022.986340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Preclinical studies have shown that maternal gut microbiota during pregnancy play a key role in prenatal immune development but the relevance of these findings to humans is unknown. The aim of this prebirth cohort study was to investigate the association between the maternal gut microbiota in pregnancy and the composition of the infant’s cord and peripheral blood immune cells over the first year of life. Methods The Barwon Infant Study cohort (n=1074 infants) was recruited using an unselected sampling frame. Maternal fecal samples were collected at 36 weeks of pregnancy and flow cytometry was conducted on cord/peripheral blood collected at birth, 6 and 12 months of age. Among a randomly selected sub-cohort with available samples (n=293), maternal gut microbiota was characterized by sequencing the 16S rRNA V4 region. Operational taxonomic units (OTUs) were clustered based on their abundance. Associations between maternal fecal microbiota clusters and infant granulocyte, monocyte and lymphocyte subsets were explored using compositional data analysis. Partial least squares (PLS) and regression models were used to investigate the relationships/associations between environmental, maternal and infant factors, and OTU clusters. Results We identified six clusters of co-occurring OTUs. The first two components in the PLS regression explained 39% and 33% of the covariance between the maternal prenatal OTU clusters and immune cell populations in offspring at birth. A cluster in which Dialister, Escherichia, and Ruminococcus were predominant was associated with a lower proportion of granulocytes (p=0.002), and higher proportions of both central naïve CD4+ T cells (CD4+/CD45RA+/CD31−) (p<0.001) and naïve regulatory T cells (Treg) (CD4+/CD45RA+/FoxP3low) (p=0.02) in cord blood. The association with central naïve CD4+ T cells persisted to 12 months of age. Conclusion This birth cohort study provides evidence consistent with past preclinical models that the maternal gut microbiota during pregnancy plays a role in shaping the composition of innate and adaptive elements of the infant’s immune system following birth.
Collapse
Affiliation(s)
- Yuan Gao
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Child Health Research Unit, Barwon Health, Geelong, VIC, Australia
- Faculty of Science, Copenhagen University, København, Denmark
| | - Martin O’Hely
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC, Australia
| | | | - Anne-Louise Ponsonby
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC, Australia
- The Early Brain Science Department, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Leonard C. Harrison
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Hanne Frøkiær
- Faculty of Science, Copenhagen University, København, Denmark
| | - Mimi L. K. Tang
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Dave Burgner
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC, Australia
| | - Richard Saffery
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Sarath Ranganathan
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Fiona Collier
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Peter Vuillermin
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Child Health Research Unit, Barwon Health, Geelong, VIC, Australia
- *Correspondence: Peter Vuillermin,
| |
Collapse
|
46
|
The Impact of Short-Chain Fatty Acids on Neonatal Regulatory T Cells. Nutrients 2022; 14:nu14183670. [PMID: 36145046 PMCID: PMC9503436 DOI: 10.3390/nu14183670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Over the first weeks of life, the neonatal gastrointestinal tract is rapidly colonised by a diverse range of microbial species that come to form the ‘gut microbiota’. Microbial colonisation of the neonatal gut is a well-established regulator of several physiological processes that contribute to immunological protection in postnatal life, including the development of the intestinal mucosa and adaptive immunity. However, the specific microbiota-derived signals that mediate these processes have not yet been fully characterised. Accumulating evidence suggests short-chain fatty acids (SCFAs), end-products of intestinal bacterial metabolism, as one of the key mediators of immune development in early life. Critical to neonatal health is the development of regulatory T (Treg) cells that promote and maintain immunological tolerance against self and innocuous antigens. Several studies have shown that SCFAs can induce the differentiation and expansion of Tregs but also mediate pathological effects in abnormal amounts. However, the exact mechanisms through which SCFAs regulate Treg development and pathologies in early life remain poorly defined. In this review, we summarise the current knowledge surrounding SCFAs and their potential impact on the neonatal immune system with a particular focus on Tregs, and the possible mechanisms through which SCFAs achieve their immune modulatory effect.
Collapse
|
47
|
TLR agonists induce sustained IgG to hemagglutinin stem and modulate T cells following newborn vaccination. NPJ Vaccines 2022; 7:102. [PMID: 36038596 PMCID: PMC9424286 DOI: 10.1038/s41541-022-00523-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The newborn immune system is characterized by diminished immune responses that leave infants vulnerable to virus-mediated disease and make vaccination more challenging. Optimal vaccination strategies for influenza A virus (IAV) in newborns should result in robust levels of protective antibodies, including those with broad reactivity to combat the variability in IAV strains across seasons. The stem region of the hemagglutinin (HA) molecule is a target of such antibodies. Using a nonhuman primate model, we investigate the capacity of newborns to generate and maintain antibodies to the conserved stem region following vaccination. We find adjuvanting an inactivated vaccine with the TLR7/8 agonist R848 is effective in promoting sustained HA stem-specific IgG. Unexpectedly, HA stem-specific antibodies were generated with a distinct kinetic pattern compared to the overall response. Administration of R848 was associated with increased influenza-specific T follicular helper cells as well as Tregs with a less suppressive phenotype, suggesting adjuvant impacts multiple cell types that have the potential to contribute to the HA-stem response.
Collapse
|
48
|
Negi S, Hashimoto-Hill S, Alenghat T. Neonatal microbiota-epithelial interactions that impact infection. Front Microbiol 2022; 13:955051. [PMID: 36090061 PMCID: PMC9453604 DOI: 10.3389/fmicb.2022.955051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
Despite modern therapeutic developments and prophylactic use of antibiotics during birth or in the first few months of life, enteric infections continue to be a major cause of neonatal mortality and morbidity globally. The neonatal period is characterized by initial intestinal colonization with microbiota and concurrent immune system development. It is also a sensitive window during which perturbations to the environment or host can significantly impact colonization by commensal microbes. Extensive research has demonstrated that these early life alterations to the microbiota can lead to enhanced susceptibility to enteric infections and increased systemic dissemination in newborns. Various contributing factors continue to pose challenges in prevention and control of neonatal enteric infections. These include alterations in the gut microbiota composition, impaired immune response, and effects of maternal factors. In addition, there remains limited understanding for how commensal microbes impact host-pathogen interactions in newborns. In this review, we discuss the recent recognition of initial microbiota-epithelial interactions that occur in neonates and can regulate susceptibility to intestinal infection. These studies suggest the development of neonatal prophylactic or therapeutic regimens that include boosting epithelial defense through microbiota-directed interventions.
Collapse
|
49
|
The Presence of PDL-1 on CD8+ Lymphocytes Is Linked to Survival in Neonatal Sepsis. CHILDREN 2022; 9:children9081171. [PMID: 36010061 PMCID: PMC9406495 DOI: 10.3390/children9081171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
Abstract
Sepsis is life-threatening organ dysfunction caused by a dysregulated host response to infection. Neonatal sepsis is the main cause of death in newborns, especially preterm infants. The pathogenesis of sepsis is based on a hyper-inflammatory syndrome combined with an immunosuppressive mechanism in sepsis. This study aimed to find critical parameters that are associated with the outcome of newborns with suspected sepsis. Understanding the association might have clinical relevance for immuno-monitoring, outcome prediction, and targeted therapy. Methods: A total of 210 newborn infants no older than 4 days with suspected sepsis at admission in Karaganda (Kazakhstan) were prospectively enrolled. Blood cultures were incubated, and pathogens in positive cultures were determined by MALDI-TOF. An immunological assay for blood cell components was conducted by flow cytometry with antibody cocktails. The diagnostic criteria for neonatal sepsis were identified by qualified neonatologists and included both clinical sepsis and/or positive blood culture. The analyzed infants were grouped into non-septic infants, surviving septic infants, and deceased septic infants. The results showed that deceased septic newborns had a lower level of CD8+ lymphocytes and higher PDL-1 expression in comparison with surviving septic newborns. PDL-1 expression on CD8+ T cells might play an immunosuppressive role during neonatal sepsis and might be used as a laboratory biomarker in the future.
Collapse
|
50
|
Trofimov A, Brouillard P, Larouche JD, Séguin J, Laverdure JP, Brasey A, Ehx G, Roy DC, Busque L, Lachance S, Lemieux S, Perreault C. Two types of human TCR differentially regulate reactivity to self and non-self antigens. iScience 2022; 25:104968. [PMID: 36111255 PMCID: PMC9468382 DOI: 10.1016/j.isci.2022.104968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/24/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Based on analyses of TCR sequences from over 1,000 individuals, we report that the TCR repertoire is composed of two ontogenically and functionally distinct types of TCRs. Their production is regulated by variations in thymic output and terminal deoxynucleotidyl transferase (TDT) activity. Neonatal TCRs derived from TDT-negative progenitors persist throughout life, are highly shared among subjects, and are reported as disease-associated. Thus, 10%–30% of most frequent cord blood TCRs are associated with common pathogens and autoantigens. TDT-dependent TCRs present distinct structural features and are less shared among subjects. TDT-dependent TCRs are produced in maximal numbers during infancy when thymic output and TDT activity reach a summit, are more abundant in subjects with AIRE mutations, and seem to play a dominant role in graft-versus-host disease. Factors decreasing thymic output (age, male sex) negatively impact TCR diversity. Males compensate for their lower repertoire diversity via hyperexpansion of selected TCR clonotypes. Over 108 TCR CDR3 sequences from ∼103 individuals and 7 cohorts were analyzed The TCR repertoire is composed of two layers: neonatal and TDT-dependent layer ∼70% of frequent cord blood TCRs are associated with common pathogens Acute graft-vs-host disease correlates with a high proportion of TDT-dependent TCRs
Collapse
Affiliation(s)
- Assya Trofimov
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Computer Science and Research Operations, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Quebec Institute for Learning Algorithms (Mila), Montreal, Quebec H2S 3H1, Canada
- Currently Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Currently Department of Physics, University of Washington, Seattle, WA 98195-1560, USA
| | - Philippe Brouillard
- Department of Computer Science and Research Operations, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Quebec Institute for Learning Algorithms (Mila), Montreal, Quebec H2S 3H1, Canada
| | - Jean-David Larouche
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Jonathan Séguin
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Jean-Philippe Laverdure
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Ann Brasey
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Gregory Ehx
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Currently Interdisciplinary Cluster for Applied Geno-Proteomics (GIGA-I3), University of Liege, Liege 4000, Belgium
| | | | - Lambert Busque
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Silvy Lachance
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Computer Science and Research Operations, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Biochemistry at University of Montreal, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Corresponding author
| | - Claude Perreault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
- Corresponding author
| |
Collapse
|