1
|
Deng D, Xu N, Wang M, Zhang G, Su Y, Fang H, Su Z. An artesunate-modified half-sandwich iridium(iii) complex inhibits colon cancer cell proliferation and metastasis through the STAT3 pathway. RSC Chem Biol 2024:d4cb00114a. [PMID: 39697768 PMCID: PMC11651070 DOI: 10.1039/d4cb00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Colon cancer is one of the most commonly diagnosed cancers and is recognized as the most aggressive tumor of the digestive system. Aberrant activation of signal transducer and activator of transcription 3 (STAT3) is associated with proliferation, metastasis and immunosuppression of the tumor cells. Here, to inhibit the STAT3 pathway and suppress metastasis in colon cancer cells, the half-sandwich iridium complex Ir-ART containing an artesunate-derived ligand was synthesized. The complex showed remarkable antiproliferative activity against human colon cancer HCT-116 cells and exhibited a concentration-dependent reduction in STAT3 protein expression. Mechanism study demonstrates that Ir-ART is located mainly in the nucleus and mitochondria, causing γ-H2AX and cyclin B1 reduction and reactive oxygen species accumulation and mitochondrial membrane potential loss, ultimately leading to autophagic cell death. The migration of cancer cells was also inhibited via metalloproteinase 9 downregulation. Furthermore, Ir-ART could initiate antitumor immune responses by eliciting immunogenic cell death and downregulating immunosuppressive cytokine cyclooxygenase-2. Taken together, Ir-ART is expected to be further applied to chemotherapy and immunotherapy for colon cancer.
Collapse
Affiliation(s)
- Dongping Deng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials/Nanjing Drum Tower Hospital, College of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Na Xu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials/Nanjing Drum Tower Hospital, College of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Mengmeng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials/Nanjing Drum Tower Hospital, College of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
- College of Life Science and Chemistry, Jiangsu Key Laboratory of Biological Functional Molecules, Jiangsu Second Normal University Nanjing 210013 China
| | - Guandong Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials/Nanjing Drum Tower Hospital, College of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials/Nanjing Drum Tower Hospital, College of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
- Department of Rheumatology and Immunology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University Nanjing 210002 China
| | - Hongbao Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials/Nanjing Drum Tower Hospital, College of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials/Nanjing Drum Tower Hospital, College of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| |
Collapse
|
2
|
Zhang X, He B, Lu J, Bao Q, Wang J, Yang Y. The crucial roles and research advances of cGAS‑STING pathway in liver diseases. Ann Med 2024; 56:2394588. [PMID: 39183465 PMCID: PMC11348815 DOI: 10.1080/07853890.2024.2394588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Inflammation responses have identified as a key mediator of in various liver diseases with high morbidity and mortality. cGAS-STING signalling is essential in innate immunity since it triggers release of type I interferons and various of proinflammatory cytokines. The potential connection between cGAS-STING pathway and liver inflammatory diseases has recently been reported widely. In our review, the impact of cGAS-STING on liver inflammation and regulatory mechanism are summarized. Furthermore, many inhibitors of cGAS-STING signalling as promising agents to cure liver inflammation are also explored in detail. A comprehensive knowledge of molecular mechanisms of cGAS-STING signalling in liver inflammation is vital for exploring novel treatments and providing recommendations and perspectives for future utilization.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiongling Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Li R, Liu H, Liu Y. The cGAS-STING pathway and female reproductive system diseases. Front Immunol 2024; 15:1447719. [PMID: 39445027 PMCID: PMC11496054 DOI: 10.3389/fimmu.2024.1447719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
The cGAS-STING pathway has become a crucial role in the detection of cytosolic DNA and the initiation of immune responses. The cGAS-STING pathway not only mediates protective immune defense against various DNA-containing pathogens but also detects tumor-derived DNA to generate intrinsic anti-tumor immunity. However, abnormal activation of the cGAS-STING pathway by self-DNA can also lead to autoimmune diseases and inflammatory disorders. This article reviews the mechanisms and functions of the cGAS-STING pathway, as well as the latest research progress in female reproductive-related diseases. We focus on the regulatory mechanisms and roles of this pathway in common female reproductive disorders, discuss the clinical potential of the cGAS-STING pathway as biomarkers and therapeutic agents for female reproductive diseases, as well as the research controversies, technical issues, and biological knowledge gaps that need to be resolved. Furthermore, we provide new ideas for the treatment and prevention of these diseases.
Collapse
Affiliation(s)
- Ruijie Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hengwei Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Zhu Q, Zhou H. The role of cGAS-STING signaling in rheumatoid arthritis: from pathogenesis to therapeutic targets. Front Immunol 2024; 15:1466023. [PMID: 39386207 PMCID: PMC11461283 DOI: 10.3389/fimmu.2024.1466023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease primarily characterized by erosive and symmetric polyarthritis. As a pivotal axis in the regulation of type I interferon (IFN-I) and innate immunity, the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway has been implicated in the pathogenesis of RA. This pathway mainly functions by regulating cell survival, pyroptosis, migration, and invasion. Therefore, understanding the sources of cell-free DNA and the mechanisms underlying the activation and regulation of cGAS-STING signaling in RA offers a promising avenue for targeted therapies. Early detection and interventions targeting the cGAS-STING signaling are important for reducing the medical burden on individuals and healthcare systems. Herein, we review the existing literature pertaining to the role of cGAS-STING signaling in RA, and discuss current applications and future directions for targeting the cGAS-STING signaling in RA treatments.
Collapse
Affiliation(s)
- Qiugang Zhu
- Department of Laboratory Medicine, Shangyu People’s Hospital of Shaoxing, Shaoxing University, Shaoxing, China
| | - Huimin Zhou
- Department of Laboratory Medicine, Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi, China
| |
Collapse
|
5
|
Ariefta NR, Sofian FF, Aboshi T, Kuncoro H, Dinata DI, Shiono Y, Nishikawa Y. Evaluation of the antiplasmodial and anti-Toxoplasma activities of several Indonesian medicinal plant extracts. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118269. [PMID: 38697409 DOI: 10.1016/j.jep.2024.118269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malaria, caused by Plasmodium parasites, remains a significant global health challenge, particularly in tropical and subtropical regions. At the same time, the prevalence of toxoplasmosis has been reported to be 30% worldwide. Traditional medicines have long played a vital role in discovering and developing novel drugs, and this approach is essential in the face of increasing resistance to current antimalarial and anti-Toxoplasma drugs. In Indonesian traditional medicine, various plants are used for their therapeutic properties. This study focuses on eleven medicinal plants from which nineteen extracts were obtained and screened for their potential medicinal benefits against malaria and toxoplasmosis. AIMS OF THE STUDY The aim of this study was to evaluate the efficacy of extracts from Indonesian medicinal plants to inhibit Plasmodium falciparum, a parasite responsible for malaria, and Toxoplasma gondii, an opportunistic parasite responsible for toxoplasmosis. METHODS Nineteen extracts from eleven plants were subjected to in vitro screening against P. falciparum 3D7 (a chloroquine-sensitive strain) and the T. gondii RH strain. In vitro treatments were conducted on P. falciparum 3D7 and K1 (multidrug-resistant strains) using the potent extracts, and in vivo assessments were carried out with mice infected with P. yoelii 17XNL. LCMS analysis was also conducted to identify the main components of the most effective extract. RESULTS Seven extracts showed significant antiplasmodial activity (>80% inhibition) at a concentration of 100 μg/ml. These extracts were obtained from Dysoxylum parasiticum (Osbeck) Kosterm., Elaeocarpus glaber (Bl.) Bijdr., Eleutherine americana Merr., Kleinhovia hospita L., Peronema canescens Jack, and Plectranthus scutellarioides (L.) R.Br. Notably, the D. parasiticum ethyl acetate extract exhibited high selectivity and efficacy both in vitro and in vivo. Herein, the key active compounds oleamide and erucamide were identified, which had IC50 values (P. falciparum 3D7/K1) of 17.49/23.63 μM and 32.49/51.59 μM, respectively. CONCLUSIONS The results of this study highlight the antimalarial potential of plant extracts collected from Indonesia. Particularly, extracts from D. parasiticum EtOH and EtOAc stood out for their low toxicity and strong antiplasmodial properties, with the EtOAc extract emerging as a notably promising antimalarial candidate. Key compounds identified within this extract demonstrate the complexity of extracts' action against malaria, potentially targeting both the parasite and the host. This suggests a promising approach for developing new antimalarial strategies that tackle the multifaceted challenges of drug resistance and disease management. Future investigations are necessary to unlock the full therapeutic potential of these extracts.
Collapse
Affiliation(s)
- Nanang Rudianto Ariefta
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Ferry Ferdiansyah Sofian
- Department of Life, Food, and Environmental Sciences, Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata, 997-8555, Japan; Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Sumedang, West Java, 45363, Indonesia.
| | - Takako Aboshi
- Department of Life, Food, and Environmental Sciences, Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata, 997-8555, Japan.
| | - Hadi Kuncoro
- Pharmaceutical Research and Development Laboratory of Farmaka Tropis, Faculty of Pharmacy, Universitas Mulawarman, Samarinda, East Kalimantan, 75119, Indonesia.
| | - Deden Indra Dinata
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Bhakti Kencana University, Soekarno-Hatta 754, Bandung, West Java, 40286, Indonesia.
| | - Yoshihito Shiono
- Department of Life, Food, and Environmental Sciences, Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata, 997-8555, Japan.
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
6
|
Xu Q, Xing J, Wang S, Peng H, Liu Y. The role of the cGAS-STING pathway in metabolic diseases. Heliyon 2024; 10:e33093. [PMID: 38988528 PMCID: PMC11234105 DOI: 10.1016/j.heliyon.2024.e33093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is a critical innate immune pathway primarily due to its vital DNA sensing mechanism in pathogen defence. Recent research advances have shown that excessive activation or damage to the cGAS-STING pathway can exacerbate chronic inflammatory responses, playing a significant role in metabolic dysfunction and aging, leading to the development of related diseases such as obesity, osteoporosis, and neurodegenerative diseases. This article reviews the structure and biological functions of the cGAS-STING signaling pathway and discusses in detail how this pathway regulates the occurrence and development of metabolic and age-related diseases. Additionally, this article introduces potential small molecule drugs targeting cGAS and STING, aiming to provide new research perspectives for studying the pathogenesis and treatment of metabolic-related diseases.
Collapse
Affiliation(s)
- Qian Xu
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, 212002, China
| | - Jie Xing
- Department of Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, 212002, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, 212002, China
| | - Huiyong Peng
- Department of Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, 212002, China
| | - Yingzhao Liu
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, 212002, China
| |
Collapse
|
7
|
An C, Li Z, Chen Y, Huang S, Yang F, Hu Y, Xu T, Zhang C, Ge S. The cGAS-STING pathway in cardiovascular diseases: from basic research to clinical perspectives. Cell Biosci 2024; 14:58. [PMID: 38720328 PMCID: PMC11080250 DOI: 10.1186/s13578-024-01242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
The cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase-stimulator of interferon genes (cGAS-STING) signaling pathway, an important component of the innate immune system, is involved in the development of several diseases. Ectopic DNA-induced inflammatory responses are involved in several pathological processes. Repeated damage to tissues and metabolic organelles releases a large number of damage-associated molecular patterns (mitochondrial DNA, nuclear DNA, and exogenous DNA). The DNA fragments released into the cytoplasm are sensed by the sensor cGAS to initiate immune responses through the bridging protein STING. Many recent studies have revealed a regulatory role of the cGAS-STING signaling pathway in cardiovascular diseases (CVDs) such as myocardial infarction, heart failure, atherosclerosis, and aortic dissection/aneurysm. Furthermore, increasing evidence suggests that inhibiting the cGAS-STING signaling pathway can significantly inhibit myocardial hypertrophy and inflammatory cell infiltration. Therefore, this review is intended to identify risk factors for activating the cGAS-STING pathway to reduce risks and to simultaneously further elucidate the biological function of this pathway in the cardiovascular field, as well as its potential as a therapeutic target.
Collapse
Affiliation(s)
- Cheng An
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Zhen Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yao Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Shaojun Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Fan Yang
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ying Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Chengxin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China.
| | - Shenglin Ge
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
8
|
Ye L, Gao Y, Mok SWF, Liao W, Wang Y, Chen C, Yang L, Zhang J, Shi L. Modulation of alveolar macrophage and mitochondrial fitness by medicinal plant-derived nanovesicles to mitigate acute lung injury and viral pneumonia. J Nanobiotechnology 2024; 22:190. [PMID: 38637808 PMCID: PMC11025283 DOI: 10.1186/s12951-024-02473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Acute lung injury (ALI) is generally caused by severe respiratory infection and characterized by overexuberant inflammatory responses and inefficient pathogens-containing, the two major processes wherein alveolar macrophages (AMs) play a central role. Dysfunctional mitochondria have been linked with distorted macrophages and hence lung disorders, but few treatments are currently available to correct these defects. Plant-derive nanovesicles have gained significant attention because of their therapeutic potential, but the targeting cells and the underlying mechanism remain elusive. We herein prepared the nanovesicles from Artemisia annua, a well-known medicinal plant with multiple attributes involving anti-inflammatory, anti-infection, and metabolism-regulating properties. By applying three mice models of acute lung injury caused by bacterial endotoxin, influenza A virus (IAV) and SARS-CoV-2 pseudovirus respectively, we showed that Artemisia-derived nanovesicles (ADNVs) substantially alleviated lung immunopathology and raised the survival rate of challenged mice. Macrophage depletion and adoptive transfer studies confirmed the requirement of AMs for ADNVs effects. We identified that gamma-aminobutyric acid (GABA) enclosed in the vesicles is a major molecular effector mediating the regulatory roles of ADNVs. Specifically, GABA acts on macrophages through GABA receptors, promoting mitochondrial gene programming and bioenergy generation, reducing oxidative stress and inflammatory signals, thereby enhancing the adaptability of AMs to inflammation resolution. Collectively, this study identifies a promising nanotherapeutics for alleviating lung pathology, and elucidates a mechanism whereby the canonical neurotransmitter modifies AMs and mitochondria to resume tissue homeostasis, which may have broader implications for treating critical pulmonary diseases such as COVID-19.
Collapse
Affiliation(s)
- Lusha Ye
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanan Gao
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Simon Wing Fai Mok
- Department of Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Wucan Liao
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yazhou Wang
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Changjiang Chen
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lijun Yang
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
| | - Junfeng Zhang
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liyun Shi
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China.
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
9
|
Li Q, Wu P, Du Q, Hanif U, Hu H, Li K. cGAS-STING, an important signaling pathway in diseases and their therapy. MedComm (Beijing) 2024; 5:e511. [PMID: 38525112 PMCID: PMC10960729 DOI: 10.1002/mco2.511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Since cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway was discovered in 2013, great progress has been made to elucidate the origin, function, and regulating mechanism of cGAS-STING signaling pathway in the past decade. Meanwhile, the triggering and transduction mechanisms have been continuously illuminated. cGAS-STING plays a key role in human diseases, particularly DNA-triggered inflammatory diseases, making it a potentially effective therapeutic target for inflammation-related diseases. Here, we aim to summarize the ancient origin of the cGAS-STING defense mechanism, as well as the triggers, transduction, and regulating mechanisms of the cGAS-STING. We will also focus on the important roles of cGAS-STING signal under pathological conditions, such as infections, cancers, autoimmune diseases, neurological diseases, and visceral inflammations, and review the progress in drug development targeting cGAS-STING signaling pathway. The main directions and potential obstacles in the regulating mechanism research and therapeutic drug development of the cGAS-STING signaling pathway for inflammatory diseases and cancers will be discussed. These research advancements expand our understanding of cGAS-STING, provide a theoretical basis for further exploration of the roles of cGAS-STING in diseases, and open up new strategies for targeting cGAS-STING as a promising therapeutic intervention in multiple diseases.
Collapse
Affiliation(s)
- Qijie Li
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Ping Wu
- Department of Occupational DiseasesThe Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital)ChengduSichuanChina
| | - Qiujing Du
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Ullah Hanif
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Center for Immunology and HematologyState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ka Li
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| |
Collapse
|
10
|
Paredes-Ruiz D, Martin-Iglesias D, Ruiz-Irastorza G. Balancing risks and benefits in the use of hydroxychloroquine and glucocorticoids in systemic lupus erythematosus. Expert Rev Clin Immunol 2024; 20:359-373. [PMID: 38112074 DOI: 10.1080/1744666x.2023.2294938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
INTRODUCTION Hydroxychloroquine (HCQ) and glucocorticoids (GCs) constitute the oldest and more used drugs in the treatment of systemic lupus erythematosus (SLE). Despite this long experience, both are still subject to a number of uncertainties, mainly regarding the dose. AREAS COVERED We review the main mechanisms of action, the clinical and toxic effects of HCQ and GCs and analyze the recommendations for the use of both in guidelines published since 2018. We offer a set of recommendations based on the pharmacology, mechanisms of action and clinical evidence. EXPERT OPINION HCQ is the backbone therapy for SLE, and a judicious use must be accomplished, using doses that allow a good control of lupus without compromising the safety of treatments very much prolonged over the time. Stable doses of 200 mg/day seem to accomplish both conditions. GCs should be used more judiciously, with methyl-prednisolone pulses as the main therapy for inducing rapid remission and doses ≤5-2.5 mg/day be never exceeded in long-term maintenance treatments.
Collapse
Affiliation(s)
- Diana Paredes-Ruiz
- Autoimmune Diseases Research Unit, Department of Internal Medicine, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, The Basque Country, Spain
| | - Daniel Martin-Iglesias
- Autoimmune Diseases Research Unit, Department of Internal Medicine, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, The Basque Country, Spain
| | - Guillermo Ruiz-Irastorza
- Autoimmune Diseases Research Unit, Department of Internal Medicine, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, The Basque Country, Spain
- Department of Medicine, University of the Basque Country, The Basque Country, Spain
| |
Collapse
|
11
|
He X, Wedn A, Wang J, Gu Y, Liu H, Zhang J, Lin Z, Zhou R, Pang X, Cui Y. IUPHAR ECR review: The cGAS-STING pathway: Novel functions beyond innate immune and emerging therapeutic opportunities. Pharmacol Res 2024; 201:107063. [PMID: 38216006 DOI: 10.1016/j.phrs.2024.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Stimulator of interferon genes (STING) is a crucial innate immune sensor responsible for distinguishing pathogens and cytosolic DNA, mediating innate immune signaling pathways to defend the host. Recent studies have revealed additional regulatory functions of STING beyond its innate immune-related activities, including the regulation of cellular metabolism, DNA repair, cellular senescence, autophagy and various cell deaths. These findings highlight the broader implications of STING in cellular physiology beyond its role in innate immunity. Currently, approximately 10 STING agonists have entered the clinical stage. Unlike inhibitors, which have a maximum inhibition limit, agonists have the potential for infinite amplification. STING signaling is a complex process that requires precise regulation of STING to ensure balanced immune responses and prevent detrimental autoinflammation. Recent research on the structural mechanism of STING autoinhibition and its negative regulation by adaptor protein complex 1 (AP-1) provides valuable insights into its different effects under physiological and pathological conditions, offering a new perspective for developing immune regulatory drugs. Herein, we present a comprehensive overview of the regulatory functions and molecular mechanisms of STING beyond innate immune regulation, along with updated details of its structural mechanisms. We discuss the implications of these complex regulations in various diseases, emphasizing the importance and feasibility of targeting the immunity-dependent or immunity-independent functions of STING. Moreover, we highlight the current trend in drug development and key points for clinical research, basic research, and translational research related to STING.
Collapse
Affiliation(s)
- Xu He
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Abdalla Wedn
- School of Medicine, University of Pittsburgh, 5051 Centre Avenue, Pittsburgh, PA, USA
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yanlun Gu
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing 100191, China
| | - Hongjin Liu
- Department of General Surgery, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Juqi Zhang
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Anhui 230601, China; Department of Orthopedics and Rehabilitation, Yale University School of Medicine, New Haven CT06519, USA.
| | - Xiaocong Pang
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China.
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China.
| |
Collapse
|
12
|
Zhang J, Chen C, Yan W, Fu Y. New sights of immunometabolism and agent progress in colitis associated colorectal cancer. Front Pharmacol 2024; 14:1303913. [PMID: 38273841 PMCID: PMC10808433 DOI: 10.3389/fphar.2023.1303913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Colitis associated colorectal cancer is a disease with a high incidence and complex course that develops from chronic inflammation and deteriorates after various immune responses and inflammation-induced attacks. Colitis associated colorectal cancer has the characteristics of both immune diseases and cancer, and the similarity of treatment models contributes to the similar treatment dilemma. Immunometabolism contributes to the basis of life and is the core of many immune diseases. Manipulating metabolic signal transduction can be an effective way to control the immune process, which is expected to become a new target for colitis associated colorectal cancer therapy. Immune cells participate in the whole process of colitis associated colorectal cancer development by transforming their functional condition via changing their metabolic ways, such as glucose, lipid, and amino acid metabolism. The same immune and metabolic processes may play different roles in inflammation, dysplasia, and carcinoma, so anti-inflammation agents, immunomodulators, and agents targeting special metabolism should be used in combination to prevent and inhibit the development of colitis associated colorectal cancer.
Collapse
Affiliation(s)
- Jingyue Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyue Chen
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Hu MM, Shu HB. Mitochondrial DNA-triggered innate immune response: mechanisms and diseases. Cell Mol Immunol 2023; 20:1403-1412. [PMID: 37932533 PMCID: PMC10687031 DOI: 10.1038/s41423-023-01086-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/12/2023] [Indexed: 11/08/2023] Open
Abstract
Various cellular stress conditions trigger mitochondrial DNA (mtDNA) release from mitochondria into the cytosol. The released mtDNA is sensed by the cGAS-MITA/STING pathway, resulting in the induced expression of type I interferon and other effector genes. These processes contribute to the innate immune response to viral infection and other stress factors. The deregulation of these processes causes autoimmune diseases, inflammatory metabolic disorders and cancer. Therefore, the cGAS-MITA/STING pathway is a potential target for intervention in infectious, inflammatory and autoimmune diseases as well as cancer. In this review, we focus on the mechanisms underlying the mtDNA-triggered activation of the cGAS-MITA/STING pathway, the effects of the pathway under various physiological and pathological conditions, and advances in the development of drugs that target cGAS and MITA/STING.
Collapse
Affiliation(s)
- Ming-Ming Hu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| | - Hong-Bing Shu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| |
Collapse
|
14
|
Huang Y, Liu B, Sinha SC, Amin S, Gan L. Mechanism and therapeutic potential of targeting cGAS-STING signaling in neurological disorders. Mol Neurodegener 2023; 18:79. [PMID: 37941028 PMCID: PMC10634099 DOI: 10.1186/s13024-023-00672-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
DNA sensing is a pivotal component of the innate immune system that is responsible for detecting mislocalized DNA and triggering downstream inflammatory pathways. Among the DNA sensors, cyclic GMP-AMP synthase (cGAS) is a primary player in detecting cytosolic DNA, including foreign DNA from pathogens and self-DNA released during cellular damage, culminating in a type I interferon (IFN-I) response through stimulator of interferon genes (STING) activation. IFN-I cytokines are essential in mediating neuroinflammation, which is widely observed in CNS injury, neurodegeneration, and aging, suggesting an upstream role for the cGAS DNA sensing pathway. In this review, we summarize the latest developments on the cGAS-STING DNA-driven immune response in various neurological diseases and conditions. Our review covers the current understanding of the molecular mechanisms of cGAS activation and highlights cGAS-STING signaling in various cell types of central and peripheral nervous systems, such as resident brain immune cells, neurons, and glial cells. We then discuss the role of cGAS-STING signaling in different neurodegenerative conditions, including tauopathies, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as aging and senescence. Finally, we lay out the current advancements in research and development of cGAS inhibitors and assess the prospects of targeting cGAS and STING as therapeutic strategies for a wide spectrum of neurological diseases.
Collapse
Affiliation(s)
- Yige Huang
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Bangyan Liu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Subhash C Sinha
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sadaf Amin
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
15
|
Mas-Bargues C. Mitochondria pleiotropism in stem cell senescence: Mechanisms and therapeutic approaches. Free Radic Biol Med 2023; 208:657-671. [PMID: 37739140 DOI: 10.1016/j.freeradbiomed.2023.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Aging is a complex biological process characterized by a progressive decline in cellular and tissue function, ultimately leading to organismal aging. Stem cells, with their regenerative potential, play a crucial role in maintaining tissue homeostasis and repair throughout an organism's lifespan. Mitochondria, the powerhouses of the cell, have emerged as key players in the aging process, impacting stem cell function and contributing to age-related tissue dysfunction. Here are discuss the mechanisms through which mitochondria influence stem cell fate decisions, including energy production, metabolic regulation, ROS signalling, and epigenetic modifications. Therefore, this review highlights the role of mitochondria in driving stem cell senescence and the subsequent impact on tissue function, leading to overall organismal aging and age-related diseases. Finally, we explore potential anti-aging therapies targeting mitochondrial health and discuss their implications for promoting healthy aging. This comprehensive review sheds light on the critical interplay between mitochondrial function, stem cell senescence, and organismal aging, offering insights into potential strategies for attenuating age-related decline and promoting healthy longevity.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010, Valencia, Spain.
| |
Collapse
|
16
|
Pennesi M, Benvenuto S. Lupus Nephritis in Children: Novel Perspectives. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1841. [PMID: 37893559 PMCID: PMC10607957 DOI: 10.3390/medicina59101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Childhood-onset systemic lupus erythematosus is an inflammatory and autoimmune condition characterized by heterogeneous multisystem involvement and a chronic course with unpredictable flares. Kidney involvement, commonly called lupus nephritis, mainly presents with immune complex-mediated glomerulonephritis and is more frequent and severe in adults. Despite a considerable improvement in long-term renal prognosis, children and adolescents with lupus nephritis still experience significant morbidity and mortality. Moreover, current literature often lacks pediatric-specific data, leading clinicians to rely exclusively on adult therapeutic approaches. This review aims to describe pediatric lupus nephritis and provide an overview of the novel perspectives on the pathogenetic mechanisms, histopathological classification, therapeutic approach, novel biomarkers, and follow-up targets in children and adolescents with lupus nephritis.
Collapse
Affiliation(s)
- Marco Pennesi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Simone Benvenuto
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
17
|
Muslimov A, Tereshchenko V, Shevyrev D, Rogova A, Lepik K, Reshetnikov V, Ivanov R. The Dual Role of the Innate Immune System in the Effectiveness of mRNA Therapeutics. Int J Mol Sci 2023; 24:14820. [PMID: 37834268 PMCID: PMC10573212 DOI: 10.3390/ijms241914820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Advances in molecular biology have revolutionized the use of messenger RNA (mRNA) as a therapeutic. The concept of nucleic acid therapy with mRNA originated in 1990 when Wolff et al. reported successful expression of proteins in target organs by direct injection of either plasmid DNA or mRNA. It took decades to bring the transfection efficiency of mRNA closer to that of DNA. The next few decades were dedicated to turning in vitro-transcribed (IVT) mRNA from a promising delivery tool for gene therapy into a full-blown therapeutic modality, which changed the biotech market rapidly. Hundreds of clinical trials are currently underway using mRNA for prophylaxis and therapy of infectious diseases and cancers, in regenerative medicine, and genome editing. The potential of IVT mRNA to induce an innate immune response favors its use for vaccination and immunotherapy. Nonetheless, in non-immunotherapy applications, the intrinsic immunostimulatory activity of mRNA directly hinders the desired therapeutic effect since it can seriously impair the target protein expression. Targeting the same innate immune factors can increase the effectiveness of mRNA therapeutics for some indications and decrease it for others, and vice versa. The review aims to present the innate immunity-related 'barriers' or 'springboards' that may affect the development of immunotherapies and non-immunotherapy applications of mRNA medicines.
Collapse
Affiliation(s)
- Albert Muslimov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Valeriy Tereshchenko
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Daniil Shevyrev
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Anna Rogova
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- Saint-Petersburg Chemical-Pharmaceutical University, Professora Popova 14, 197376 St. Petersburg, Russia
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russia
| | - Kirill Lepik
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Vasiliy Reshetnikov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Roman Ivanov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| |
Collapse
|
18
|
Kansara KG, Pawar PM, Dharmender J, Patel J, Joshi RR. A Ringed Enigma: A Case of Annular Elastolytic Giant Cell Granuloma Successfully Treated with Hydroxychloroquine. Indian Dermatol Online J 2023; 14:721-722. [PMID: 37727577 PMCID: PMC10506799 DOI: 10.4103/idoj.idoj_589_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/16/2022] [Accepted: 02/12/2023] [Indexed: 09/21/2023] Open
Affiliation(s)
- Kajal G. Kansara
- Department of Skin and V.D, Civil Hospital, B J Medical College, Ahmedabad, Gujarat, India
| | - Priyanka M. Pawar
- Department of Skin and V.D, Civil Hospital, B J Medical College, Ahmedabad, Gujarat, India
| | - J Dharmender
- Department of Skin and V.D, Civil Hospital, B J Medical College, Ahmedabad, Gujarat, India
| | - Jigna Patel
- Department of Skin and V.D, Civil Hospital, B J Medical College, Ahmedabad, Gujarat, India
| | - Rima R. Joshi
- Department of Skin and V.D, Civil Hospital, B J Medical College, Ahmedabad, Gujarat, India
| |
Collapse
|
19
|
Smith EMD, Aggarwal A, Ainsworth J, Al-Abadi E, Avcin T, Bortey L, Burnham J, Ciurtin C, Hedrich CM, Kamphuis S, Levy DM, Lewandowski LB, Maxwell N, Morand EF, Ozen S, Pain CE, Ravelli A, Saad Magalhaes C, Pilkington CA, Schonenberg-Meinema D, Scott C, Tullus K, Beresford MW. Towards development of treat to target (T2T) in childhood-onset systemic lupus erythematosus: PReS-endorsed overarching principles and points-to-consider from an international task force. Ann Rheum Dis 2023; 82:788-798. [PMID: 36627168 PMCID: PMC10314055 DOI: 10.1136/ard-2022-223328] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/09/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Application of 'treat-to-target' (T2T) in childhood-onset systemic lupus erythematosus (cSLE) may improve care and health outcomes. This initiative aimed to harmonise existing evidence and expert opinion regarding T2T for cSLE. METHODS An international T2T Task Force was formed of specialists in paediatric rheumatology, paediatric nephrology, adult rheumatology, patient and parent representatives. A steering committee formulated a set of draft overarching principles and points-to-consider, based on evidence from systematic literature review. Two on-line preconsensus meeting Delphi surveys explored healthcare professionals' views on these provisional overarching principles and points-to-consider. A virtual consensus meeting employed a modified nominal group technique to discuss, modify and vote on each overarching principle/point-to-consider. Agreement of >80% of Task Force members was considered consensus. RESULTS The Task Force agreed on four overarching principles and fourteen points-to-consider. It was agreed that both treatment targets and therapeutic strategies should be subject to shared decision making with the patient/caregivers, with full remission the preferred target, and low disease activity acceptable where remission cannot be achieved. Important elements of the points-to-consider included: aiming for prevention of flare and organ damage; glucocorticoid sparing; proactively addressing factors that impact health-related quality of life (fatigue, pain, mental health, educational challenges, medication side effects); and aiming for maintenance of the target over the long-term. An extensive research agenda was also formulated. CONCLUSIONS These international, consensus agreed overarching principles and points-to-consider for T2T in cSLE lay the foundation for future T2T approaches in cSLE, endorsed by the Paediatric Rheumatology European Society.
Collapse
Affiliation(s)
- Eve Mary Dorothy Smith
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool Faculty of Health and Life Sciences, Liverpool, UK
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Amita Aggarwal
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Jenny Ainsworth
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool Faculty of Health and Life Sciences, Liverpool, UK
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Eslam Al-Abadi
- Department of Paediatric Rheumatology, Birmingham Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Tadej Avcin
- Department of Pediatric Rheumatology and Clinical Immunology, University Medical Centre Ljubljana Division of Paediatrics, Ljubljana, Slovenia
| | - Lynette Bortey
- TARGET Lupus Public Patient Involvement and Engagement Group, University of Liverpool Faculty of Health and Life Sciences, Liverpool, UK
| | - Jon Burnham
- Department of Pediatric Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London, UK
| | - Christian M Hedrich
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool Faculty of Health and Life Sciences, Liverpool, UK
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Sylvia Kamphuis
- Department of Paediatric Rheumatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Deborah M Levy
- Department of Pediatric Rheumatology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatric Rheumatology, University of Toronto, Toronto, Ontario, Canada
| | - Laura B Lewandowski
- National Institutes of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases Systemic Autoimmunity Branch, Bethesda, Maryland, USA
| | - Naomi Maxwell
- TARGET Lupus Public Patient Involvement and Engagement Group, University of Liverpool Faculty of Health and Life Sciences, Liverpool, UK
| | - Eric F Morand
- Department of Rheumatology, Monash University, Clayton, Victoria, Australia
| | - Seza Ozen
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Clare E Pain
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool Faculty of Health and Life Sciences, Liverpool, UK
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Angelo Ravelli
- Direzione Scientifica, Istituto Giannina Gaslini Istituto Pediatrico di Ricovero e Cura a Carattere Scientifico, Genova, Liguria, Italy
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno Infantili (DINIGMI), Università degli Studi di Genova, Genova, Italy
| | - Claudia Saad Magalhaes
- Department of Pediatric Rheumatology, Botucatu Medical School, Sao Paulo University Faculty of Medicine, Sao Paulo, Brazil
| | - Clarissa A Pilkington
- Department of Paediatric Rheumatology, Great Ormond Street Hospital for Children, London, UK
| | - Dieneke Schonenberg-Meinema
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, University of Amsterdam, Amsterdam, The Netherlands
- Emma Children's Hospital, Amsterdam University Medical Centres, Duivendrecht, The Netherlands
| | - Christiaan Scott
- Department of Paediatric Rheumatology, University of Cape Town, Rondebosch, Western Cape, South Africa
| | - Kjell Tullus
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children, London, UK
| | - Michael William Beresford
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool Faculty of Health and Life Sciences, Liverpool, UK
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
20
|
Liu J, Xiang J, Jin C, Ye L, Wang L, Gao Y, Lv N, Zhang J, You F, Qiao H, Shi L. Medicinal plant-derived mtDNA via nanovesicles induces the cGAS-STING pathway to remold tumor-associated macrophages for tumor regression. J Nanobiotechnology 2023; 21:78. [PMID: 36879291 PMCID: PMC9990354 DOI: 10.1186/s12951-023-01835-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Plant-derived nanovesicles (PDNVs) have been proposed as a major mechanism for the inter-kingdom interaction and communication, but the effector components enclosed in the vesicles and the mechanisms involved are largely unknown. The plant Artemisia annua is known as an anti-malaria agent that also exhibits a wide range of biological activities including the immunoregulatory and anti-tumor properties with the mechanisms to be further addressed. Here, we isolated and purified the exosome-like particles from A. annua, which were characterized by nano-scaled and membrane-bound shape and hence termed artemisia-derived nanovesicles (ADNVs). Remarkably, the vesicles demonstrated to inhibit tumor growth and boost anti-tumor immunity in a mouse model of lung cancer, primarily through remolding the tumor microenvironment and reprogramming tumor-associated macrophages (TAMs). We identified plant-derived mitochondrial DNA (mtDNA), upon internalized into TAMs via the vesicles, as a major effector molecule to induce the cGAS-STING pathway driving the shift of pro-tumor macrophages to anti-tumor phenotype. Furthermore, our data showed that administration of ADNVs greatly improved the efficacy of PD-L1 inhibitor, a prototypic immune checkpoint inhibitor, in tumor-bearing mice. Together, the present study, for the first time, to our knowledge, unravels an inter-kingdom interaction wherein the medical plant-derived mtDNA, via the nanovesicles, induces the immunostimulatory signaling in mammalian immune cells for resetting anti-tumor immunity and promoting tumor eradication.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jiaxin Xiang
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Cuiyuan Jin
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
| | - Lusha Ye
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Lei Wang
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yanan Gao
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Nianyin Lv
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Junfeng Zhang
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, 100191, China
| | - Hongzhi Qiao
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liyun Shi
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China. .,Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
21
|
Yu J, Sheng S, Zou X, Shen Z. Dihydroartemisinin-ursodeoxycholic acid conjugate is a potential treatment agent for inflammatory bowel disease. Int Immunopharmacol 2023; 117:109918. [PMID: 36842236 DOI: 10.1016/j.intimp.2023.109918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/28/2023]
Abstract
BACKGROUND A novel artemisinin derivative, dihydroartemisinin-ursodeoxycholic acid conjugate (4), was found to exhibit strong immunosuppressive activity. Various methods were used to evaluate the immunosuppressive activity and mechanism of action of the compound to explore its potential applications. METHODS T cell proliferation, mixed lymphocyte reaction (MLR), and Th1/Th17 differentiation assays were used to evaluate the immunosuppressive activity of the compound. Differentially expressed genes from RNA sequencing were analysed with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, while enriched signalling pathways were further validated by western blotting (WB). In vivo efficacy was validated with delayed-type hypersensitivity (DTH) mouse models and dextran sodium sulphate (DSS)-induced inflammatory bowel disease (IBD) mouse model. RESULTS Compound 4 inhibited concanavalin A -induced mouse splenic T cell proliferation (IC50 = 15 nM) and anti-CD3/CD28-induced human primary T cell proliferation (IC50 = 30 nM) while also reducing the secretion of hIFN-γ. Compound 4 exhibited similar inhibitory activity in MLR assay. Compound 4 dose-dependently inhibited human Th1/Th17 differentiation. The KEGG pathway enrichment analysis indicated that the genes related to T cell activation signalling pathways PI3K-AKT, MAPK, and NF-κB were significantly enriched. WB confirmed that compound 4 inhibited the AKT/MAPK and NF-κB signalling pathways. Compound 4 dose-dependently inhibited ear and foot pad swelling in DTH mouse models. In the DSS-induced IBD mouse model, compound 4 significantly decreased the disease activity index and colon density, and inhibited splenomegaly of the mice. CONCLUSION The in vitro and in vivo results indicated that compound 4 has the potential to be developed into an anti-IBD drug.
Collapse
Affiliation(s)
- Jingfeng Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Sihan Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xiaosu Zou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Zhengwu Shen
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
22
|
Pan J, Fei CJ, Hu Y, Wu XY, Nie L, Chen J. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Zool Res 2023; 44:183-218. [PMID: 36579404 PMCID: PMC9841179 DOI: 10.24272/j.issn.2095-8137.2022.464] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The innate immune system protects the host from external pathogens and internal damage in various ways. The cGAS-STING signaling pathway, comprised of cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and downstream signaling adaptors, plays an essential role in protective immune defense against microbial DNA and internal damaged-associated DNA and is responsible for various immune-related diseases. After binding with DNA, cytosolic cGAS undergoes conformational change and DNA-linked liquid-liquid phase separation to produce 2'3'-cGAMP for the activation of endoplasmic reticulum (ER)-localized STING. However, further studies revealed that cGAS is predominantly expressed in the nucleus and strictly tethered to chromatin to prevent binding with nuclear DNA, and functions differently from cytosolic-localized cGAS. Detailed delineation of this pathway, including its structure, signaling, and regulatory mechanisms, is of great significance to fully understand the diversity of cGAS-STING activation and signaling and will be of benefit for the treatment of inflammatory diseases and cancer. Here, we review recent progress on the above-mentioned perspectives of the cGAS-STING signaling pathway and discuss new avenues for further study.
Collapse
Affiliation(s)
- Jing Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Xiang-Yu Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| |
Collapse
|
23
|
Zhang M, Zou Y, Zhou X, Zhou J. Inhibitory targeting cGAS-STING-TBK1 axis: Emerging strategies for autoimmune diseases therapy. Front Immunol 2022; 13:954129. [PMID: 36172373 PMCID: PMC9511411 DOI: 10.3389/fimmu.2022.954129] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The cGAS-STING signaling plays an integral role in the host immune response, and the abnormal activation of cGAS-STING is highly related to various autoimmune diseases. Therefore, targeting the cGAS-STING-TBK1 axis has become a promising strategy in therapy of autoimmune diseases. Herein, we summarized the key pathways mediated by the cGAS-STING-TBK1 axis and various cGAS-STING-TBK1 related autoimmune diseases, as well as the recent development of cGAS, STING, or TBK1 selective inhibitors and their potential application in therapy of cGAS-STING-TBK1 related autoimmune diseases. Overall, the review highlights that inhibiting cGAS-STING-TBK1 signaling is an attractive strategy for autoimmune disease therapy.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yan Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xujun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- *Correspondence: Jinming Zhou,
| |
Collapse
|
24
|
Du JM, Qian MJ, Yuan T, Chen RH, He QJ, Yang B, Ling Q, Zhu H. cGAS and cancer therapy: a double-edged sword. Acta Pharmacol Sin 2022; 43:2202-2211. [PMID: 35042992 PMCID: PMC9433456 DOI: 10.1038/s41401-021-00839-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/05/2021] [Indexed: 12/19/2022] Open
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate adenosine synthetase (cGAS) is a DNA sensor that detects and binds to cytosolic DNA to generate cyclic GMP-AMP (cGAMP). As a second messenger, cGAMP mainly activates the adapter protein STING, which induces the production of type I interferons (IFNs) and inflammatory cytokines. Mounting evidence shows that cGAS is extensively involved in the innate immune response, senescence, and tumor immunity, thereby exhibiting a tumor-suppressive function, most of which is mediated by the STING pathway. In contrast, cGAS can also act as an oncogenic factor, mostly by increasing genomic instability through inhibitory effects on DNA repair, suggesting its utility as an antitumor target. This article reviews the roles and the underlying mechanisms of cGAS in cancer, particularly focusing on its dual roles in carcinogenesis and tumor progression, which are probably attributable to its classical and nonclassical functions, as well as approaches targeting cGAS for cancer therapy.
Collapse
Affiliation(s)
- Jia-Min Du
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mei-Jia Qian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rui-Han Chen
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qiao-Jun He
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- The Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
| | - Bo Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qi Ling
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Hong Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| |
Collapse
|
25
|
Tian X, Xu F, Zhu Q, Feng Z, Dai W, Zhou Y, You QD, Xu X. Medicinal chemistry perspective on cGAS-STING signaling pathway with small molecule inhibitors. Eur J Med Chem 2022; 244:114791. [DOI: 10.1016/j.ejmech.2022.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022]
|
26
|
Skopelja-Gardner S, An J, Elkon KB. Role of the cGAS-STING pathway in systemic and organ-specific diseases. Nat Rev Nephrol 2022; 18:558-572. [PMID: 35732833 PMCID: PMC9214686 DOI: 10.1038/s41581-022-00589-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 12/21/2022]
Abstract
Cells are equipped with numerous sensors that recognize nucleic acids, which probably evolved for defence against viruses. Once triggered, these sensors stimulate the production of type I interferons and other cytokines that activate immune cells and promote an antiviral state. The evolutionary conserved enzyme cyclic GMP-AMP synthase (cGAS) is one of the most recently identified DNA sensors. Upon ligand engagement, cGAS dimerizes and synthesizes the dinucleotide second messenger 2',3'-cyclic GMP-AMP (cGAMP), which binds to the endoplasmic reticulum protein stimulator of interferon genes (STING) with high affinity, thereby unleashing an inflammatory response. cGAS-binding DNA is not restricted by sequence and must only be >45 nucleotides in length; therefore, cGAS can also be stimulated by self genomic or mitochondrial DNA. This broad specificity probably explains why the cGAS-STING pathway has been implicated in a number of autoinflammatory, autoimmune and neurodegenerative diseases; this pathway might also be activated during acute and chronic kidney injury. Therapeutic manipulation of the cGAS-STING pathway, using synthetic cyclic dinucleotides or inhibitors of cGAMP metabolism, promises to enhance immune responses in cancer or viral infections. By contrast, inhibitors of cGAS or STING might be useful in diseases in which this pro-inflammatory pathway is chronically activated.
Collapse
Affiliation(s)
| | - Jie An
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Keith B Elkon
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
27
|
Zhao J, Xiao R, Zeng R, He E, Zhang A. Small molecules targeting cGAS-STING pathway for autoimmune disease. Eur J Med Chem 2022; 238:114480. [DOI: 10.1016/j.ejmech.2022.114480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022]
|
28
|
Yu C, Li Y, Chen G, Wu C, Wang X, Zhang Y. Bioactive constituents of animal-derived traditional Chinese medicinal materials for breast cancer: opportunities and challenges. J Zhejiang Univ Sci B 2022; 23:547-563. [PMID: 35794685 PMCID: PMC9264107 DOI: 10.1631/jzus.b2101019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/20/2022] [Indexed: 11/11/2022]
Abstract
Breast cancer is globally the most common invasive cancer in women and remains one of the leading causes of cancer-related deaths. Surgery, radiotherapy, chemotherapy, immunotherapy, and endocrine therapy are currently the main treatments for this cancer type. However, some breast cancer patients are prone to drug resistance related to chemotherapy or immunotherapy, resulting in limited treatment efficacy. Consequently, traditional Chinese medicinal materials (TCMMs) as natural products have become an attractive source of novel drugs. In this review, we summarized the current knowledge on the active components of animal-derived TCMMs, including Ophiocordycepssinensis-derived cordycepin, the aqueous and ethanolic extracts of O.sinensis, norcantharidin (NCTD), Chansu, bee venom, deer antlers, Ostreagigas, and scorpion venom, with reference to marked anti-breast cancer effects due to regulating cell cycle arrest, proliferation, apoptosis, metastasis, and drug resistance. In future studies, the underlying mechanisms for the antitumor effects of these components need to be further investigated by utilizing multi-omics technologies. Furthermore, large-scale clinical trials are necessary to validate the efficacy of bioactive constituents alone or in combination with chemotherapeutic drugs for breast cancer treatment.
Collapse
Affiliation(s)
- Chaochao Yu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yi Li
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Guopeng Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Chaoyan Wu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xiuping Wang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yingwen Zhang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
29
|
Efficacy of Prednisolone/Zn Metal Complex and Artemisinin Either Alone or in Combination on Lung Functions after Excessive Exposure to Electronic Cigarettes Aerosol with Assessment of Antibacterial Activity. CRYSTALS 2022. [DOI: 10.3390/cryst12070972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The use of transition metal complexes as therapeutic compounds has become more and more pronounced. These complexes offer a great diversity of uses in their medicinal applications. Electronic cigarettes (ECs) are an electronic nicotine delivery system that contain aerosol (ECR). The ligation behavior of prednisolone, which is a synthetic steroid that is used to treat allergic diseases and asthma arthritis, and its Zn (II) metal complex were studied and characterized based on elemental analysis, molar conductance, Fourier-transform infrared (FT-IR) spectra, electronic spectra, XRD, scanning electron microscopy (SEM), energy dispersive x-ray (EDX), and transmission electron microscopy (TEM). The FT-IR spectral data revealed that PRD acts as a mono-dentate ligand via oxygen atoms of the carbonyl group. Electronic and FT-IR data revealed that the PRD/Zn (II) metal complexes have square planner geometry. Artemisinin (ART) is the active main constituent of Artemisia annua extract, and it has been demonstrated to exert an excellent antimalarial effect. The experiment was performed on 40 male mice that were divided into the following 7 groups: Control, EC group, PRD/Zn, ART, EC plus PRD/Zn, EC plus ART, and PRD plus combination of PRD/Zn and ART. Serum CRP, IL-6, and antioxidants biomarkers were determined. Pulmonary tissue histology was evaluated. When in combination with Zn administration, PRD showed potent protective effects against pulmonary biochemical alterations induced by ECR and suppressed severe oxidative stress and pulmonary structure alterations. Additionally, PRD/Zn combined with ART prevented any stress on the pulmonary tissues via antioxidant regulation, reducing inflammatory markers CRP and Il-6 and improving antioxidant enzymatic levels more than either PRD or ART alone. Therefore, PRD/Zn combined with ART produced a synergistic effect against any sort of oxidative stress and also improved the histological structure of the lung tissues. These findings are of great importance for saving pulmonary function, especially during pandemic diseases, such as during the COVID-19 pandemic.
Collapse
|
30
|
Zhang M, Wang L, Liu W, Wang T, De Sanctis F, Zhu L, Zhang G, Cheng J, Cao Q, Zhou J, Tagliabue A, Bronte V, Yan D, Wan X, Yu G. Targeting Inhibition of Accumulation and Function of Myeloid-Derived Suppressor Cells by Artemisinin via PI3K/AKT, mTOR, and MAPK Pathways Enhances Anti-PD-L1 Immunotherapy in Melanoma and Liver Tumors. J Immunol Res 2022; 2022:2253436. [PMID: 35785030 PMCID: PMC9247850 DOI: 10.1155/2022/2253436] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 01/20/2023] Open
Abstract
Despite the remarkable success and efficacy of immune checkpoint blockade (ICB) therapy such as anti-PD-L1 antibody in treating cancers, myeloid-derived suppressor cells (MDSCs) that lead to the formation of the protumor immunosuppressive microenvironment are one of the major contributors to ICB resistance. Therefore, inhibition of MDSC accumulation and function is critical for further enhancing the therapeutic efficacy of anti-PD-L1 antibody in a majority of cancer patients. Artemisinin (ART), the most effective antimalarial drug with tumoricidal and immunoregulatory activities, is a potential option for cancer treatment. Although ART is reported to reduce MDSC levels in 4T1 breast tumor model and improve the therapeutic efficacy of anti-PD-L1 antibody in T cell lymphoma-bearing mice, how ART influences MDSC accumulation, function, and molecular pathways as well as MDSC-mediated anti-PD-L1 resistance in melanoma or liver tumors remains unknown. Here, we reported that ART blocks the accumulation and function of MDSCs by polarizing M2-like tumor-promoting phenotype towards M1-like antitumor one. This switch is regulated via PI3K/AKT, mTOR, and MAPK signaling pathways. Targeting MDSCs by ART could significantly reduce tumor growth in various mouse models. More importantly, the ART therapy remarkably enhanced the efficacy of anti-PD-L1 immunotherapy in tumor-bearing mice through promoting antitumor T cell infiltration and proliferation. These findings indicate that ART controls the functional polarization of MDSCs and targeting MDSCs by ART provides a novel therapeutic strategy to enhance anti-PD-L1 cancer immunotherapy.
Collapse
Affiliation(s)
- Mengqi Zhang
- School of Basic Medical Science, Jinzhou Medical University, Jinzhou 121000, China
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lulu Wang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518036, China
| | - Wan Liu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tian Wang
- Department of Medicine, Immunology Section, University of Verona, Verona, Italy
| | | | - Lifang Zhu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guizhong Zhang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Jian Cheng
- School of Basic Medical Science, Jinzhou Medical University, Jinzhou 121000, China
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qin Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Aldo Tagliabue
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Vincenzo Bronte
- Department of Medicine, Immunology Section, University of Verona, Verona, Italy
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Xianchun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100864, China
- Shenzhen BinDeBioTech Co., Ltd., Shenzhen 518055, China
| | - Guang Yu
- School of Basic Medical Science, Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|
31
|
Agrawal PK, Agrawal C, Blunden G. Artemisia Extracts and Artemisinin-Based Antimalarials for COVID-19 Management: Could These Be Effective Antivirals for COVID-19 Treatment? Molecules 2022; 27:3828. [PMID: 35744958 PMCID: PMC9231170 DOI: 10.3390/molecules27123828] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 12/23/2022] Open
Abstract
As the world desperately searches for ways to treat the coronavirus disease 2019 (COVID-19) pandemic, a growing number of people are turning to herbal remedies. The Artemisia species, such as A. annua and A. afra, in particular, exhibit positive effects against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and COVID-19 related symptoms. A. annua is a source of artemisinin, which is active against malaria, and also exhibits potential for other diseases. This has increased interest in artemisinin's potential for drug repurposing. Artemisinin-based combination therapies, so-called ACTs, have already been recognized as first-line treatments against malaria. Artemisia extract, as well as ACTs, have demonstrated inhibition of SARS-CoV-2. Artemisinin and its derivatives have also shown anti-inflammatory effects, including inhibition of interleukin-6 (IL-6) that plays a key role in the development of severe COVID-19. There is now sufficient evidence in the literature to suggest the effectiveness of Artemisia, its constituents and/or artemisinin derivatives, to fight against the SARS-CoV-2 infection by inhibiting its invasion, and replication, as well as reducing oxidative stress and inflammation, and mitigating lung damage.
Collapse
Affiliation(s)
- Pawan K. Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA;
| | - Chandan Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA;
| | - Gerald Blunden
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth PO1 2DT, UK;
| |
Collapse
|
32
|
Qin YR, Ma CQ, Jiang JH, Wang DP, Zhang QQ, Liu MR, Zhao HR, Fang Q, Liu Y. Artesunate restores mitochondrial fusion-fission dynamics and alleviates neuronal injury in Alzheimer's disease models. J Neurochem 2022; 162:290-304. [PMID: 35598091 DOI: 10.1111/jnc.15620] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) remains a leading cause of dementia and no therapy that reverses underlying neurodegeneration is available. Recent studies suggest the protective role of artemisinin, an antimalarial drug, in neurological disorders. In this study, we investigated the therapeutic potential of artesunate, a water-soluble derivative of artemisinin, on amyloid-beta (Aβ)-treated challenged microglial BV-2, neuronal N2a cells, and the amyloid precursor protein/presenilin (APP/PS1) mice model. We found that Aβ significantly induced multiple AD-related phenotypes, including increased expression/production of pro-inflammatory cytokines from microglial cells, enhanced cellular and mitochondrial production of reactive oxygen species, promoted mitochondrial fission, inhibited mitochondrial fusion, suppressed mitophagy or biogenesis in both cell types, stimulated apoptosis of neuronal cells, and microglia-induced killing of neurons. All these in vitro phenotypes were attenuated by artesunate. In addition, the over-expression of the mitochondrial fission protein Drp-1, or down-regulation of the mitochondrial fusion protein OPA-1 both reduced the therapeutic benefits of artesunate. Artesunate also alleviated AD phenotypes in APP/PS1 mice, reducing Aβ deposition, and reversing deficits in memory and learning. Artesunate protects neuronal and microglial cells from AD pathology, both in vitro and in vivo. Maintaining mitochondrial dynamics and simultaneously targeting multiple AD pathogenic mechanisms are associated with the protective effects of artesunate. Consequently, artesunate may become a promising therapeutic for AD.
Collapse
Affiliation(s)
- Yi-Ren Qin
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chi-Qian Ma
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Hua Jiang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Da-Peng Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Quan-Quan Zhang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mei-Rong Liu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong-Ru Zhao
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Liu
- Department of Neurology, Saarland University, Homburg, Germany
| |
Collapse
|
33
|
Wang X, Liu P, Wu Q, Zheng Z, Xie M, Chen G, Yu J, Wang X, Li G, Kaplan D. Sustainable Antibacterial and Anti-Inflammatory Silk Suture with Surface Modification of Combined-Therapy Drugs for Surgical Site Infection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11177-11191. [PMID: 35192338 DOI: 10.1021/acsami.2c00106] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Silk sutures with antibacterial and anti-inflammatory functions were developed for sustained dual-drug delivery to prevent surgical site infections (SSIs). The silk sutures were prepared with core-shell structures braided from degummed silk filaments and then coated with a silk fibroin (SF) layer loaded with berberine (BB) and artemisinin (ART). Both the rapid release of drugs to prevent initial biofilm formation and the following sustained release to maintain effective concentrations for more than 42 days were demonstrated. In vitro assays using human fibroblasts (Hs 865.Sk) demonstrated cell proliferation on the materials, and hemolysis was 2.4 ± 0.8%, lower than that required by ISO 10993-4 standard. The sutures inhibited platelet adhesion and promoted collagen deposition and blood vessel formation. In vivo assessments using Sprague-Dawley (SD) rats indicated that the coating reduced the expression of pro-inflammatory cytokines interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α), shortening the inflammatory period and promoting angiogenesis. The results demonstrated that these new sutures exhibited stable structures, favorable biocompatibility, and sustainable antibacterial and anti-inflammatory functions with potential for surgical applications.
Collapse
Affiliation(s)
- Xuchen Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Peixin Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopedic Institute, Soochow University, Suzhou 215006, China
| | - Qinting Wu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Maobin Xie
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Guoqiang Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jia Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopedic Institute, Soochow University, Suzhou 215006, China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - David Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
34
|
Hubbard EL, Pisetsky DS, Lipsky PE. Anti-RNP antibodies are associated with the interferon gene signature but not decreased complement levels in SLE. Ann Rheum Dis 2022; 81:632-643. [PMID: 35115332 DOI: 10.1136/annrheumdis-2021-221662] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/19/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The goals of these studies were to elucidate the inter-relationships of specific anti-nuclear antibody (ANA), complement, and the interferon gene signature (IGS) in the pathogenesis of systemic lupus erythematosus (SLE). METHODS Data from the Illuminate trials were analysed for antibodies to dsDNA as well as RNA-binding proteins (RBP), levels of C3, C4 and various IGS. Statistical hypothesis testing, linear regression analyses and classification and regression trees analysis were employed to assess relationships between the laboratory features of SLE. RESULTS Inter-relationships of ANAs, complement and the IGS differed between patients of African Ancestry (AA) and European Ancestry (EA); anti-RNP and multiple autoantibodies were more common in AA patients and, although both related to the presence of the IGS, relationships between autoantibodies and complement differed. Whereas, anti-dsDNA had an inverse relationship to C3 and C4, levels of anti-RNP were not related to these markers. The IGS was only correlated with anti-dsDNA in EA SLE and complement was more correlated to the IGS in AA SLE. Finally, autoantibodies occurred in the presence and absence of the IGS, whereas the IGS was infrequent in anti-dsDNA/anti-RBP-negative SLE patients. CONCLUSION There is a complex relationship between autoantibodies and the IGS, with anti-RNP associated in AA and both anti-dsDNA and RNP associated in EA. Moreover, there was a difference in the relationship between anti-dsDNA, but not anti-RBP, with complement levels. The lack of a relationship of anti-RNP with C3 and C4 suggests that anti-RNP immune complexes (ICs) may drive the IGS without complement fixation, whereas anti-dsDNA ICs involve complement consumption.
Collapse
Affiliation(s)
- Erika L Hubbard
- AMPEL BioSolutions LLC, Charlottesville, Virginia, USA.,RILITE Foundation, Charlottesville, Virginia, USA
| | - David S Pisetsky
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.,Rheumatology, Durham VA Medical Center, Durham, North Carolina, USA
| | - Peter E Lipsky
- AMPEL BioSolutions LLC, Charlottesville, Virginia, USA .,RILITE Foundation, Charlottesville, Virginia, USA
| |
Collapse
|
35
|
Gurung AB, Ali MA, Lee J, Farah MA, Al-Anazi KM, Al-Hemaid F. Artesunate induces substantial topological alterations in the SARS-CoV-2 Nsp1 protein structure. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2022; 34:101810. [PMID: 35002180 PMCID: PMC8722475 DOI: 10.1016/j.jksus.2021.101810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/08/2021] [Accepted: 12/28/2021] [Indexed: 05/28/2023]
Abstract
The need for novel antiviral treatments for coronavirus disease 2019 (COVID-19) continues with the widespread infections and fatalities throughout the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the deadly disease, relies on the non-structural protein Nsp1 for multiplication within the host cells and disarms the host immune defences by various mechanisms. Herein, we investigated the potential of artemisinin and its derivatives as possible inhibitors of SARS-CoV-2 Nsp1 through various computational approaches. Molecular docking results show that artemisinin (CID68827) binds to Nsp1 with a binding energy of -6.53 kcal/mol and an inhibition constant of 16.43 µM. The top 3 derivatives Artesunate (CID6917864), Artemiside (CID53323323) and Artemisone (CID11531457) show binding energies of -7.92 kcal/mol, -7.46 kcal/mol and -7.36 kcal/mol respectively. Hydrophobic interactions and hydrogen bonding with Val10, Arg11, and Gln50 helped to stabilize the protein-ligand complexes. The pharmacokinetic properties of these molecules show acceptable properties. The geometric parameters derived from large-scale MD simulation studies provided insights into the changes in the structural topology of Nsp1 upon binding of Artesunate. Thus, the findings of our research highlight the importance of artemisinin and its derivatives in the development of drugs to inhibit SARS-CoV-2 Nsp1 protein.
Collapse
Affiliation(s)
- Arun Bahadur Gurung
- Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
36
|
Robinson G, Pineda-Torra I, Ciurtin C, Jury EC. Lipid metabolism in autoimmune rheumatic disease: implications for modern and conventional therapies. J Clin Invest 2022; 132:e148552. [PMID: 35040437 PMCID: PMC8759788 DOI: 10.1172/jci148552] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Suppressing inflammation has been the primary focus of therapies in autoimmune rheumatic diseases (AIRDs), including rheumatoid arthritis and systemic lupus erythematosus. However, conventional therapies with low target specificity can have effects on cell metabolism that are less predictable. A key example is lipid metabolism; current therapies can improve or exacerbate dyslipidemia. Many conventional drugs also require in vivo metabolism for their conversion into therapeutically beneficial products; however, drug metabolism often involves the additional formation of toxic by-products, and rates of drug metabolism can be heterogeneous between patients. New therapeutic technologies and research have highlighted alternative metabolic pathways that can be more specifically targeted to reduce inflammation but also to prevent undesirable off-target metabolic consequences of conventional antiinflammatory therapies. This Review highlights the role of lipid metabolism in inflammation and in the mechanisms of action of AIRD therapeutics. Opportunities for cotherapies targeting lipid metabolism that could reduce immunometabolic complications and potential increased cardiovascular disease risk in patients with AIRDs are discussed.
Collapse
Affiliation(s)
- George Robinson
- Centre for Rheumatology Research
- Centre for Adolescent Rheumatology Research, and
| | - Ines Pineda-Torra
- Centre for Cardiometabolic and Vascular Science, Division of Medicine, University College London, London, United Kingdom
| | - Coziana Ciurtin
- Centre for Rheumatology Research
- Centre for Adolescent Rheumatology Research, and
| | | |
Collapse
|
37
|
Crow MK, Kirou KA. Hydroxychloroquine and lupus flare: a good drug, but we need to do better. Ann Rheum Dis 2022; 81:303-305. [PMID: 35039325 DOI: 10.1136/annrheumdis-2021-221590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York, USA
| | - Kyriakos A Kirou
- Department of Medicine, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
38
|
Islabão AG, Trindade VC, da Mota LMH, Andrade DCO, Silva CA. Managing Antiphospholipid Syndrome in Children and Adolescents: Current and Future Prospects. Paediatr Drugs 2022; 24:13-27. [PMID: 34904182 PMCID: PMC8667978 DOI: 10.1007/s40272-021-00484-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 11/28/2022]
Abstract
Pediatric antiphospholipid syndrome (APS) is a rare acquired multisystem autoimmune thromboinflammatory condition characterized by thrombotic and non-thrombotic clinical manifestations. APS in children and adolescents typically presents with large-vessel thrombosis, thrombotic microangiopathy, and, rarely, obstetric morbidity. Non-thrombotic clinical manifestations are frequently seen in pediatric APS and may be present even before the vascular thrombotic events occur. We review insights into the pathogenesis of APS and discuss potential targets for therapy. The identification of multiple immunologic abnormalities in patients with APS reveals molecular targets for current or future treatment. Management strategies, especially for APS in adolescents, require screening for additional prothrombotic risk factors and consideration of counseling regarding contraceptive strategies, lifestyle recommendations, treatment adherence, and mental health issues associated with this autoimmune thrombophilia. The main goal of therapy in pediatric APS is the prevention of thrombosis. The management of acute thrombosis events in children and adolescents is the same as for primary APS, which involves isolated occurrences, and secondary APS, which is seen in association with another autoimmune disease, e.g., systemic lupus erythematosus. A pediatric hematologist should be consulted so other differential thrombophilic conditions can be eliminated. Therapy includes unfractionated heparin or low-molecular-weight heparin followed by vitamin K antagonists. Treatment of catastrophic APS involves triple therapy (anticoagulation, intravenous corticosteroid pulse therapy, and plasma exchange) and may include intravenous immunoglobulin for children and adolescents with this condition. New drugs such as eculizumab and sirolimus seem to be promising drugs for APS.
Collapse
Affiliation(s)
- Aline Garcia Islabão
- Pediatric Rheumatology Unit, Hospital da Criança de Brasília Jose Alencar, Brasília, DF Brazil ,Programa de Pós-graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, DF Brazil
| | - Vitor Cavalcanti Trindade
- Faculdade de Medicina, Children and Adolescent Institute, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 647-Cerqueira César, São Paulo, SP 05403-000 Brazil
| | - Licia Maria Henrique da Mota
- Programa de Pós-graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, DF Brazil ,Rheumatology Unit, Hospital Universitário de Brasília, Universidade de Brasília, Brasília, Brazil
| | | | - Clovis Artur Silva
- Faculdade de Medicina, Children and Adolescent Institute, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 647-Cerqueira César, São Paulo, SP, 05403-000, Brazil. .,Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
39
|
Jin Q, Yan S, Hu H, Jin L, Pan Y, Zhang J, Huang J, Xiao H, Cao P. Enhanced Chemodynamic Therapy and Chemotherapy via Delivery of a Dual Threat ArtePt and Iodo-Click Reaction Mediated Glutathione Consumption. SMALL METHODS 2021; 5:e2101047. [PMID: 34928038 DOI: 10.1002/smtd.202101047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Indexed: 06/14/2023]
Abstract
Cisplatin has been used as standard regimen for hepatocellular carcinoma (HCC), but its therapeutic efficacy is greatly limited by the drug resistance. Cisplatin alone cannot achieve an ideal therapeutic outcome. Herein, a dual threat hybrid artemisinin platinum (ArtePt) is synthesized to combine chemodynamic therapy (CDT) with chemotherapy. On the one hand, artesunate can react with intracellular ferrous ion to generate reactive oxygen species (ROS) via Fenton reaction for CDT. On the other hand, cisplatin can target DNA for chemotherapy. However, GSH in cancer cells can effectively consume free radicals and detoxify cisplatin simultaneously, which compromised the efficacy of CDT and chemotherapy. Hence, an amphiphilic polymer with an iodine atom in the side chain is designed and encapsulated ArtePt to form NP(ArtePt). This iodine containing polymer NP(ArtePt) can effectively deplete intracellular GSH via an Iodo-Click reaction, thereby enhancing the effect of CDT as well as chemotherapy. Thereafter, a patient-derived xenograft model of hepatic carcinoma (PDXHCC ) is established to evaluate the therapeutic effect of NP(ArtePt), and a significant antitumor effect is achieved with NP(ArtePt). Overall, this study provides an effective strategy to combine CDT with chemotherapy to enhance the efficacy of cisplatin via Iodo-Click reaction, opening a new avenue for the cancer treatment.
Collapse
Affiliation(s)
- Qiao Jin
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Siqi Yan
- Department of Oncological Radiotherapy, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, Hunan, 410006, China
| | - Hao Hu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Long Jin
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yuliang Pan
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jun Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jia Huang
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peiguo Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
40
|
Yadullahi Mir WA, Siddiqui AH, Valecha G, Patel S, Ayub F, Upadhyay R, Alhajri SA, Gaire S, Shrestha DB. A Narrative Review of Existing Options for COVID-19-Specific Treatments. Adv Virol 2021; 2021:8554192. [PMID: 34804163 PMCID: PMC8604608 DOI: 10.1155/2021/8554192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/16/2021] [Indexed: 12/15/2022] Open
Abstract
The new coronavirus disease 2019 (COVID-19) was declared a global pandemic in early 2020. The ongoing COVID-19 pandemic has affected morbidity and mortality tremendously. Even though multiple drugs are being used throughout the world since the advent of COVID-19, only limited treatment options are available for COVID-19. Therefore, drugs targeting various pathologic aspects of the disease are being explored. Multiple studies have been published to demonstrate their clinical efficacy until now. Based on the current evidence to date, we summarized the mechanism, roles, and side effects of all existing treatment options to target this potentially fatal virus.
Collapse
Affiliation(s)
| | | | - Gautam Valecha
- Department of Oncology, Presbyterian Healthcare Services, Albuquerque, NM, USA
| | - Shawn Patel
- Department of Internal Medicine, The Carle Illinois College of Medicine, Champaign, IL, USA
| | - Fatima Ayub
- Department of Internal Medicine, The Carle Illinois College of Medicine, Champaign, IL, USA
| | - Riddhi Upadhyay
- Department of Internal Medicine, The Carle Illinois College of Medicine, Champaign, IL, USA
| | - Sana Ahmed Alhajri
- Department of Pediatrics, University of Illinois Chicago, Chicago, IL, USA
| | - Suman Gaire
- Department of Emergency Medicine, Palpa Hospital, Palpa, Nepal
| | | |
Collapse
|
41
|
Lyu M, Fan G, Xiao G, Wang T, Xu D, Gao J, Ge S, Li Q, Ma Y, Zhang H, Wang J, Cui Y, Zhang J, Zhu Y, Zhang B. Traditional Chinese medicine in COVID-19. Acta Pharm Sin B 2021; 11:3337-3363. [PMID: 34567957 PMCID: PMC8450055 DOI: 10.1016/j.apsb.2021.09.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread across the globe, posing an enormous threat to public health and safety. Traditional Chinese medicine (TCM), in combination with Western medicine (WM), has made important and lasting contributions in the battle against COVID-19. In this review, updated clinical effects and potential mechanisms of TCM, presented in newly recognized three distinct phases of the disease, are summarized and discussed. By integrating the available clinical and preclinical evidence, the efficacies and underlying mechanisms of TCM on COVID-19, including the highly recommended three Chinese patent medicines and three Chinese medicine formulas, are described in a panorama. We hope that this comprehensive review not only provides a reference for health care professionals and the public to recognize the significant contributions of TCM for COVID-19, but also serves as an evidence-based in-depth summary and analysis to facilitate understanding the true scientific value of TCM.
Collapse
Affiliation(s)
- Ming Lyu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guanwei Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Taiyi Wang
- Oxford Chinese Medicine Research Centre, University of Oxford, Oxford OX1 3PT, UK
| | - Dong Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Gao
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China
| | - Shaoqin Ge
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China
| | - Qingling Li
- Institute of Basic Medicine and Cancer, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yuling Ma
- Oxford Chinese Medicine Research Centre, University of Oxford, Oxford OX1 3PT, UK
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jigang Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanlu Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Junhua Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Boli Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
42
|
Mancuso RI, Azambuja JH, Olalla Saad ST. Artesunate strongly modulates myeloid and regulatory T cells to prevent LPS-induced systemic inflammation. Biomed Pharmacother 2021; 143:112211. [PMID: 34649344 DOI: 10.1016/j.biopha.2021.112211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative bacteria and is usually administrated to establish models of inflammation. Artesunate (ART), a water-soluble artemisinin derivative, displays multiple pharmacological actions against tumors, viral infections, and inflammation, and has been used as a therapeutic weapon against malaria. In this study, our aim was to evaluate whether ART pretreatment is capable of preventing inflammation induced by LPS. BALB/c mice were treated with 100 mg/kg of ART i.p. for 7 days followed by a single dose of LPS. ART pretreatment led to an improvement in clinical score, prevented alterations in biochemical markers, and reestablished the platelet counts. Flow cytometry analysis showed that ART protected the inflammation mainly by reducing the percentage of M1 macrophages while increasing M2 macrophages and a reestablishment of classical monocytes in the BM. In the spleen, ART pretreatment increased N2 neutrophils, myeloid-derived suppressor cells (MDSC), and regulatory T cells, the latter was also increased in peripheral blood. In addition, a marked decrease in inflammatory cytokines and chemokines was observed in the ART treated group. Our data suggest that ART prevents inflammation, reducing tissue damage and restoring homeostasis.
Collapse
Affiliation(s)
- Rubia Isler Mancuso
- Hematology and Transfusion Medicine Center, University of Campinas, Campinas, SP, Brazil
| | | | | |
Collapse
|
43
|
Qiu F, Liu J, Mo X, Liu H, Chen Y, Dai Z. Immunoregulation by Artemisinin and Its Derivatives: A New Role for Old Antimalarial Drugs. Front Immunol 2021; 12:751772. [PMID: 34567013 PMCID: PMC8458561 DOI: 10.3389/fimmu.2021.751772] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 01/11/2023] Open
Abstract
Artemisinin and its derivatives (ARTs) are known as conventional antimalarial drugs with clinical safety and efficacy. Youyou Tu was awarded a Nobel Prize in Physiology and Medicine due to her discovery of artemisinin and its therapeutic effects on malaria. Apart from antimalarial effects, mounting evidence has demonstrated that ARTs exert therapeutic effects on inflammation and autoimmune disorders because of their anti-inflammatory and immunoregulatory properties. In this aspect, tremendous progress has been made during the past five to seven years. Therefore, the present review summarizes recent studies that have explored the anti-inflammatory and immunomodulatory effects of ARTs on autoimmune diseases and transplant rejection. In this review, we also discuss the cellular and molecular mechanisms underlying the immunomodulatory effects of ARTs. Recent preclinical studies will help lay the groundwork for clinical trials using ARTs to treat various immune-based disorders, especially autoimmune diseases.
Collapse
Affiliation(s)
- Feifei Qiu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junfeng Liu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiumei Mo
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huazhen Liu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuchao Chen
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenhua Dai
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Diseases, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
44
|
Rasouli M, Vakilian F, Ranjbari J. Therapeutic and protective potential of mesenchymal stem cells, pharmaceutical agents and current vaccines against covid-19. Curr Stem Cell Res Ther 2021; 17:166-185. [PMID: 33349221 DOI: 10.2174/1574888x16666201221151853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022]
Abstract
It has been almost 18 months since the first outbreak of COVID-19 disease was reported in Wuhan, China. This unexpected devastating phenomenon, raised a great deal of concerns and anxiety among people around the world and imposed a huge economic burden on the nations' health care systems. Accordingly, clinical scientists, pharmacologists and physicians worldwide felt an urgent demand for a safe, effective therapeutic agent, treatment strategy or vaccine in order to prevent or cure the recently-emerged disease. Initially, due to lack of specific pharmacological agents and approved vaccines to combat the COVID-19, the disease control in the confirmed cases was limited to supportive care. Accordingly, repositioning or repurposing current drugs and examining their possible therapeutic efficacy received a great deal of attention. Despite revealing promising results in some clinical trials, the overall results are conflicting. For this reason, there is an urgent to seek and investigate other potential therapeutics. Mesenchymal stem cells (MSC) representing immunomodulatory and regenerative capacity to treat both curable and intractable diseases, have been investigated in COVID-19 clinical trials carried out in different parts of the world. Nevertheless, up to now, none of MSC-based approaches has been approved in controlling COVID-19 infection. Thanks to the fact that the final solution for defeating the pandemic is developing a safe, effective vaccine, enormous efforts and clinical research have been carried out. In this review, we will concisely discuss the safety and efficacy of the most relevant pharmacological agents, MSC-based approaches and candidate vaccines for treating and preventing COVID-19 infection.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | | | - Javad Ranjbari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| |
Collapse
|
45
|
Marchitto MC, Chien AL. Mast Cell Stabilizers in the Treatment of Rosacea: A Review of Existing and Emerging Therapies. Dermatol Ther (Heidelb) 2021; 11:1541-1549. [PMID: 34476755 PMCID: PMC8484408 DOI: 10.1007/s13555-021-00597-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Rosacea is a chronic inflammatory skin disease characterized by centrofacial erythema, papules, pustules, and telangiectasias. The onset of rosacea typically occurs after 30 years of age. It is estimated that approximately 2–5% of adults worldwide are affected. While the exact etiology of rosacea remains unknown, its pathogenesis is thought to be multifactorial with both environmental and genetic factors implicated. Ultraviolet radiation, heat, steam, ingested agents, including spicy foods and alcohol, host vasculature, dermal matrix degeneration, genetic susceptibility, and microbial organisms, including Demodex mites and Heliobacter pylori, have been implicated in the development of rosacea. Recently, mast cells (MCs) have emerged as key players in the pathogenesis of rosacea through the release of pro-inflammatory cytokines, chemokines, proteases, and antimicrobial peptides leading to cutaneous vasodilation, angiogenesis, and tissue fibrosis. Several existing and emerging topical, oral, and injectable therapeutics have been associated with improvement of rosacea symptoms based on their ability to stabilize and downregulate activated MCs. Herein, we review the data implicating MCs in the pathogenesis of rosacea and discuss interventions that may stabilize this pathway.
Collapse
Affiliation(s)
- Mark C Marchitto
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Anna L Chien
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
46
|
Zhou J, Li J, Cheong I, Liu NN, Wang H. Evaluation of artemisinin derivative artemether as a fluconazole potentiator through inhibition of Pdr5. Bioorg Med Chem 2021; 44:116293. [PMID: 34243044 DOI: 10.1016/j.bmc.2021.116293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 01/08/2023]
Abstract
Antifungal development has gained increasing attention due to its limited armamentarium and drug resistance. Drug repurposing holds great potential in antifungal discovery. In this study, we explored the antifungal activity of artemisinin and its derivatives, dihydroartemisinin, artesunate and artemether. We identified that artemisinins can inhibit the growth of Candida albicans, and can enhance the activity of three commonly used antifungals, amphotericin B, micafungin and fluconazole (FLC), on Candida albicans growth and filamentation. Artemisinins possess stronger antifungal effect with FLC than with other antifungals. Among artemisinins, artemether exhibits the most potent antifungal activity with FLC and can recover the susceptibility of FLC-resistant clinical isolates to FLC treatment. The combinatorial antifungal activity of artemether and FLC is broad-spectrum, as it can inhibit the growth of Candida auris, Candida tropicalis, Candida parapsilosis, Saccharomyces cerevisiae and Cryptococcus neoformans. Mechanistic investigation revealed that artemether might enhance azole efficacy through disrupting the function of Pdr5, leading to intracellular accumulation of FLC. This study identified artemether as a novel FLC potentiator, providing potential therapeutic insights against fungal infection and antifungal resistance.
Collapse
Affiliation(s)
- Jia Zhou
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jinyang Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Iohong Cheong
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
47
|
Trindade VC, Carneiro-Sampaio M, Bonfa E, Silva CA. An Update on the Management of Childhood-Onset Systemic Lupus Erythematosus. Paediatr Drugs 2021; 23:331-347. [PMID: 34244988 PMCID: PMC8270778 DOI: 10.1007/s40272-021-00457-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Childhood-onset systemic lupus erythematosus (cSLE) is a prototype of a multisystemic, inflammatory, heterogeneous autoimmune condition. This disease is characterized by simultaneous or sequential organ and system involvement, with unpredictable flare and high levels of morbidity and mortality. Racial/ethnic background, socioeconomic status, cost of medications, difficulty accessing health care, and poor adherence seem to impact lupus outcomes and treatment response. In this article, the management of cSLE patients is updated. Regarding pathogenesis, a number of potential targets for drugs have been studied. However, most treatments in pediatric patients are off-label drugs with recommendations based on inadequately powered studies, therapeutic consensus guidelines, or case series. Management practices for cSLE patients include evaluations of disease activity and cumulative damage scores, routine non-live vaccinations, physical activity, and addressing mental health issues. Antimalarials and glucocorticoids are still the most common drugs used to treat cSLE, and hydroxychloroquine is recommended for nearly all cSLE patients. Disease-modifying antirheumatic drugs (DMARDs) should be standardized for each patient, based on disease flare and cSLE severity. Mycophenolate mofetil or intravenous cyclophosphamide is suggested as induction therapy for lupus nephritis classes III and IV. Calcineurin inhibitors (cyclosporine, tacrolimus, voclosporin) appear to be another good option for cSLE patients with lupus nephritis. Regarding B-cell-targeting biologic agents, rituximab may be used for refractory lupus nephritis patients in combination with another DMARD, and belimumab was recently approved by the US Food and Drug Administration for cSLE treatment in children aged > 5 years. New therapies targeting CD20, such as atacicept and telitacicept, seem to be promising drugs for SLE patients. Anti-interferon therapies (sifalimumab and anifrolumab) have shown beneficial results in phase II randomized control trials in adult SLE patients, as have some Janus kinase inhibitors, and these could be alternative treatments for pediatric patients with severe interferon-mediated inflammatory disease in the future. In addition, strict control of proteinuria and blood pressure is required in cSLE, especially with angiotensin-converting enzyme inhibitor and angiotensin receptor blocker use.
Collapse
Affiliation(s)
- Vitor Cavalcanti Trindade
- Children and Adolescent Institute, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Magda Carneiro-Sampaio
- Children and Adolescent Institute, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Eloisa Bonfa
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 647, Cerqueira César, São Paulo, SP, 05403-000, Brazil
| | - Clovis Artur Silva
- Children and Adolescent Institute, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil.
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 647, Cerqueira César, São Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
48
|
Meng Y, Ma N, Lyu H, Wong YK, Zhang X, Zhu Y, Gao P, Sun P, Song Y, Lin L, Wang J. Recent pharmacological advances in the repurposing of artemisinin drugs. Med Res Rev 2021; 41:3156-3181. [PMID: 34148245 DOI: 10.1002/med.21837] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/27/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022]
Abstract
Artemisinins are a family of sesquiterpene lactones originally derived from the sweet wormwood (Artemisia annua). Beyond their well-characterized role as frontline antimalarial drugs, artemisinins have also received increased attention for other potential pharmaceutical effects, which include antiviral, antiparsitic, antifungal, anti-inflammatory, and anticancer activities. With concerted efforts in further preclinical and clinical studies, artemisinin-based drugs have the potential to be viable treatments for a great variety of human diseases. Here, we provide a comprehensive update on recent reports of pharmacological actions and applications of artemisinins outside of their better-known antimalarial role and highlight their potential therapeutic viability for various diseases.
Collapse
Affiliation(s)
- Yuqing Meng
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nan Ma
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haining Lyu
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yin Kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xing Zhang
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongping Zhu
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Gao
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Sun
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yali Song
- Center for Reproductive Medicine, Dongguan Maternal And Child Health Care Hospital, Southern Medical University, Dongguan, China
| | - Lizhu Lin
- Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jigang Wang
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
49
|
Rongyi C, Zongfei J, Jiang L, Sifan W, Lingying M, Ying S, Wenshu Y, Xiaomeng C, Xiufang K, Xiaomin D, Lili M, Yanshan L, Lindi J. Effect of hydroxychloroquine on angiographic progression in routine treatment of Takayasu arteritis. Mod Rheumatol 2021; 31:1135-1141. [PMID: 33497271 DOI: 10.1080/14397595.2021.1879347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Hydroxychloroquine (HCQ), an anti-malarial drug, is widely used in the treatment of rheumatic diseases. However, the benefits of HCQ in the treatment of Takayasu arteritis (TA) remain unclear, especially in terms of alleviation of vascular progression. METHODS This longitudinal observational retrospective study was based on the East China TA cohort. Patients received routine treatment with prednisone and immunosuppressants. Fifty TA patients who underwent magnetic resonance angiography two times within a 1.5-year follow-up period of monitoring vascular changes were divided into HCQ and non-HCQ groups according to whether HCQ was prescribed. Changes in angiographic features were compared. Multivariate Cox regression analysis was employed to further validate the results. RESULTS Of 50 TA patients, 21 were prescribed HCQ. The two groups shared a similar disease course, vascular types, prednisone with immunosuppressants intervention strategy, globin level, and disease remission rate at 6 months. The HCQ group showed greater reduction in the inflammatory indices erythrocyte sedimentation rate and C-reactive protein (CRP) level (p < .05), and a significantly lower incidence of angiographic progression than the non-HCQ group (19.0% vs. 51.7%, p = .035). After adjustment for age and usage of tocilizumab, angiographic progression was found to be independently associated with CRP (hazard ratio [95% confidence interval], HR [95% CI]: 1.102 [1.000-1.024], p = .046), and the usage of HCQ (HR [95% CI]: 0.266 [0.075-0.940], p = .040). CONCLUSION HCQ enhanced the anti-inflammatory effect of routine treatment strategies with prednisone and immunosuppressants, and alleviated angiographic progression in TA.
Collapse
Affiliation(s)
- Chen Rongyi
- Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, China.,Evidence-based Medicine Center, Fudan University, Shanghai, China
| | - Ji Zongfei
- Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, China.,Evidence-based Medicine Center, Fudan University, Shanghai, China
| | - Lin Jiang
- Department of Radiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Wu Sifan
- Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, China.,Evidence-based Medicine Center, Fudan University, Shanghai, China
| | - Ma Lingying
- Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, China.,Evidence-based Medicine Center, Fudan University, Shanghai, China
| | - Sun Ying
- Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, China.,Evidence-based Medicine Center, Fudan University, Shanghai, China
| | - Yu Wenshu
- Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, China.,Evidence-based Medicine Center, Fudan University, Shanghai, China
| | - Cui Xiaomeng
- Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, China.,Evidence-based Medicine Center, Fudan University, Shanghai, China
| | - Kong Xiufang
- Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, China.,Evidence-based Medicine Center, Fudan University, Shanghai, China
| | - Dai Xiaomin
- Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, China.,Evidence-based Medicine Center, Fudan University, Shanghai, China
| | - Ma Lili
- Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, China.,Evidence-based Medicine Center, Fudan University, Shanghai, China
| | - Li Yanshan
- Department of Rheumatology and Immunology, Linyi People's Hospital, Shandong, China
| | - Jiang Lindi
- Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, China.,Evidence-based Medicine Center, Fudan University, Shanghai, China
| |
Collapse
|
50
|
Bai B, Wu F, Ying K, Xu Y, Shan L, Lv Y, Gao X, Xu D, Lu J, Xie B. Therapeutic effects of dihydroartemisinin in multiple stages of colitis-associated colorectal cancer. Am J Cancer Res 2021; 11:6225-6239. [PMID: 33995655 PMCID: PMC8120200 DOI: 10.7150/thno.55939] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Colitis-associated colorectal cancer (CAC) develops from chronic intestinal inflammation. Dihydroartemisinin (DHA) is an antimalarial drug exhibiting anti-inflammatory and anti-tumor effects. Nonetheless, the therapeutic effects of DHA on CAC remain unestablished. Methods: Mice were challenged with azoxymethane (AOM) and dextran sulfate sodium (DSS) to establish CAC models. DHA was administered via oral gavage in different stages of CAC models. Colon and tumor tissues were obtained from the AOM/DSS models to investigate inflammatory responses and tumor development. Inflammatory cytokines in the murine models were detected through qRT-PCR and ELISA. Toll-like receptor 4 (TLR4) signaling-related proteins were detected by western blot. Macrophage infiltration was measured using immunostaining analysis, and apoptosis in the colon cancer cells was detected by flow cytometry and western blot. Results: DHA inhibited inflammatory responses in the early stage of the AOM/DSS model and subsequent tumor formation. In the early stage, DHA reversed macrophage infiltration in colon mucosa and decreased the expression of pro-inflammatory cytokines. DHA inhibited the activation of macrophage by suppressing the TLR4 signal pathway. In the late stage of CAC, DHA inhibited tumor growth by enhancing cell cycle arrest and apoptosis in tumor cells. Administration of DHA during the whole period of the AOM/DSS model generated an addictive effect based on the inhibition of inflammation and tumor growth, thereby improving the therapeutic effect of DHA on CAC. Conclusion: Our study indicated that DHA could be a potent agent in managing the initiation and development of CAC without obvious side effects, warranting further clinical translation of DHA for CAC treatment.
Collapse
|