1
|
Ghamari S, Chiarelli G, Kołątaj K, Subramanian S, Acuna GP, Vollmer F. Label-free (fluorescence-free) sensing of a single DNA molecule on DNA origami using a plasmon-enhanced WGM sensor. NANOPHOTONICS (BERLIN, GERMANY) 2025; 14:253-262. [PMID: 39927203 PMCID: PMC11806501 DOI: 10.1515/nanoph-2024-0560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/20/2024] [Indexed: 02/11/2025]
Abstract
The integration of DNA origami structures with opto-plasmonic whispering gallery mode (WGM) sensors offers a significant advancement in label-free biosensing, overcoming the limitations of traditional fluorescence-based techniques, and providing enhanced sensitivity and specificity for detecting DNA hybridization events. In this study, DNA origami acts as a scaffold for the precise assembly of plasmonic dimers, composed of gold nanorods (AuNRs), which amplify detection sensitivity by generating strong near-field enhancements in the nanogap between the nanorods. By leveraging the strong electromagnetic fields generated within the nanogap of the plasmonic dimer, this platform enables the detection of transient hybridization events between DNA docking strands and freely diffusing complementary sequences. Our findings demonstrate that the salt concentration critically influences DNA hybridization kinetics. Higher ionic strengths reduce electrostatic repulsion between negatively charged DNA strands, thereby stabilizing duplex formation and prolonging interaction times. These effects are most pronounced at salt concentrations around 300-500 mM, where optimal conditions for duplex stability and reduced dissociation rates are achieved. By thoroughly investigating the hybridization kinetics under varying environmental conditions, this study contributes to a deeper understanding of DNA interactions and offers a robust tool for single-molecule detection with real-time capabilities.
Collapse
Affiliation(s)
- Shahin Ghamari
- Department of Physics and Astronomy, Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Germán Chiarelli
- Department of Physics, University of Fribourg, Chemin du Musée 3, FribourgCH-1700, Switzerland
| | - Karol Kołątaj
- Department of Physics, University of Fribourg, Chemin du Musée 3, FribourgCH-1700, Switzerland
- Swiss National Center for Competence in Research (NCCR) Bio-Inspired Materials, University of Fribourg, Chemin des Verdiers 4, CH-1700Fribourg, Switzerland
| | - Sivaraman Subramanian
- Department of Physics and Astronomy, Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Guillermo P. Acuna
- Department of Physics, University of Fribourg, Chemin du Musée 3, FribourgCH-1700, Switzerland
- Swiss National Center for Competence in Research (NCCR) Bio-Inspired Materials, University of Fribourg, Chemin des Verdiers 4, CH-1700Fribourg, Switzerland
| | - Frank Vollmer
- Department of Physics and Astronomy, Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
2
|
Hou Y, Yang X, Hu S, Lin Q, Zhou J, Peng J, Guo C, Huang S, Ren L, Sánchez-Iglesias A, Chikkaraddy R, Baumberg JJ. Extreme Optical Chirality from Plasmonic Nanocrystals on a Mirror. NANO LETTERS 2025; 25:1158-1164. [PMID: 39804126 PMCID: PMC11760171 DOI: 10.1021/acs.nanolett.4c05668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
Metal nanocrystals synthesized in achiral environments usually exhibit no chiroptical effects. However, by placing nominally achiral nanocrystals 1.3 nm above gold films, we find giant chiroptical effects, reaching anisotropy factors as high as g ≈ 0.9 for single nanodecahedra placed on a gold mirror (NDoM). We show that this is a general phenomenon depending on the geometry, demonstrating it for various nanocrystal shapes. Theoretical modeling reveals that tiny chiral imperfections are strongly enhanced by edge modes in the gap, which coherently superpose with in-plane dipoles to generate strong chiroptical signatures. This phenomenon results in photonic spin Hall effects and distinctive chiral scattering patterns.
Collapse
Affiliation(s)
- Yidong Hou
- College
of Physical Science and Technology, Sichuan
University, China, Chengdu 610065, China
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United
Kingdom
| | - Xiu Yang
- College
of Physical Science and Technology, Sichuan
University, China, Chengdu 610065, China
| | - Shu Hu
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United
Kingdom
| | - Qianqi Lin
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United
Kingdom
| | - Jie Zhou
- College
of Physical Science and Technology, Sichuan
University, China, Chengdu 610065, China
| | - Jialong Peng
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United
Kingdom
- College
of Advanced Interdisciplinary Studies and Hunan Provincial Key Laboratory
of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China
| | - Chenyang Guo
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United
Kingdom
| | - Shanshan Huang
- College
of Physical Science and Technology, Sichuan
University, China, Chengdu 610065, China
| | - Liangke Ren
- College
of Physical Science and Technology, Sichuan
University, China, Chengdu 610065, China
| | - Ana Sánchez-Iglesias
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Center
of Materials Physics, CSIC-UPV, Donostia-San Sebastián 20018, Spain
| | - Rohit Chikkaraddy
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United
Kingdom
- School
of Physics and Astronomy, University of
Birmingham, Birmingham B15 2TT, United
Kingdom
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United
Kingdom
| |
Collapse
|
3
|
Khalfaoui-Hassani N, Tabut M, Awe NH, Desmarets C, Toffoli D, Stener M, Goubet N, Calatayud M, Salzemann C. The intriguing role of L-cysteine in the modulation of chiroplasmonic properties of chiral gold nano-arrows. NANOSCALE 2025. [PMID: 39752146 DOI: 10.1039/d4nr04131c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Developing chiral plasmonic nanostructures represents a significant scientific challenge due to their multidisciplinary potential. Observations have revealed that the dichroic behavior of metal plasmons changes when chiral molecules are present in the system, offering promising applications in various fields such as nano-optics, asymmetric catalysis, polarization-sensitive photochemistry and molecular detection. In this study, we explored the synthesis of plasmonic gold nanoparticles and the role of cysteine in their chiroplasmonic properties. Specifically, we synthesized chiral gold nano-arrows using a seed-mediated-growth synthesis method, in which gold nanorods are used as seeds while incorporating L-cysteine into growth solution as a chiral ligand. Our results show clearly that the chiral molecule transfers chirality to gold nanocrystals and the morphology is controlled through kinetic growth. In addition, we demonstrate that the chiroplasmonic properties, such as the sign of circular dichroism, can be modulated using only one enantiomeric form in the growth solution. To understand the origin of such an effect, we conducted theoretical modelling using density functional theory. Our results point to the intermolecular cysteine interactions as a key factor in the dichroic properties of surface-molecule chiral systems.
Collapse
Affiliation(s)
| | - Mary Tabut
- Sorbonne Université, MONARIS, CNRS-UMR 8233, 4 Place Jussieu, F-75005 Paris, France.
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, 4 Place Jussieu, F-75005 Paris, France.
| | - Ndeye Haby Awe
- Sorbonne Université, MONARIS, CNRS-UMR 8233, 4 Place Jussieu, F-75005 Paris, France.
| | - Christophe Desmarets
- Sorbonne Université, IPCM, CNRS-UMR 8232, 4 Place Jussieu, F-75005 Paris, France
| | - Daniele Toffoli
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy
| | - Mauro Stener
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy
| | - Nicolas Goubet
- Sorbonne Université, MONARIS, CNRS-UMR 8233, 4 Place Jussieu, F-75005 Paris, France.
| | - Monica Calatayud
- Sorbonne Université, MONARIS, CNRS-UMR 8233, 4 Place Jussieu, F-75005 Paris, France.
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, 4 Place Jussieu, F-75005 Paris, France.
| | - Caroline Salzemann
- Sorbonne Université, MONARIS, CNRS-UMR 8233, 4 Place Jussieu, F-75005 Paris, France.
| |
Collapse
|
4
|
Clark MR, Shah SA, Piryatinski A, Sukharev M. Harnessing complexity: Nonlinear optical phenomena in L-shapes, nanocrescents, and split-ring resonators. J Chem Phys 2024; 161:104107. [PMID: 39254161 DOI: 10.1063/5.0220079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
We conduct systematic studies of the optical characteristics of plasmonic nanoparticles that exhibit C2v symmetry. In particular, we analyze three distinct geometric configurations: an L-type shape, a crescent, and a split-ring resonator shaped like the Greek letter π. Optical properties are examined using the finite-difference time-domain method. It is demonstrated that all three shapes exhibit two prominent plasmon modes associated with the two axes of symmetry. This is in addition to a wide range of resonances observed at high frequencies corresponding to quadrupole modes and peaks due to sharp corners. Next, to facilitate nonlinear analysis, we employ a semiclassical hydrodynamic model, where the electron pressure term is explicitly accounted for. This model goes beyond the standard Drude description and enables capturing nonlocal and nonlinear effects. Employing this model enables us to rigorously examine the second-order angular resolved nonlinear optical response of these nanoparticles in each of the three configurations. Two pumping regimes are considered, namely, continuous wave (CW) and pulsed excitations. For CW pumping, we explore the properties of the second harmonic generation (SHG). Polarization and angle-resolved SHG spectra are obtained, revealing strong dependence on the nanoparticle geometry and incident wave polarization. The C2v symmetry is shown to play a key role in determining the polarization states and selection rules of the SHG signal. For pulsed excitations, we discuss the phenomenon of broadband terahertz (THz) generation induced by the difference-frequency generation . It is shown that the THz emission spectra exhibit unique features attributed to the plasmonic resonances and symmetry of the nanoparticles. The polarization of the generated THz waves is also examined, revealing interesting patterns tied to the nanoparticle geometry. To gain deeper insight, we propose an analytical theory that agrees very well with the numerical experiments. The theory shows that the physical origin of the THz radiation is the mixing of various frequency components of the fundamental pulse by the second-order nonlinear susceptibility. An expression for the far-field THz intensity is derived in terms of the incident pulse parameters and the nonlinear response tensor of the nanoparticle. The results presented in this work offer new insights into the linear and nonlinear optical properties of nanoparticles with C2v symmetry. The demonstrated strong SHG response and efficient broadband THz generation hold great promise for applications in nonlinear spectroscopy, nanophotonics, and optoelectronics. The proposed theoretical framework also provides a valuable tool for understanding and predicting the nonlinear behavior of other related nanostructures.
Collapse
Affiliation(s)
- Michael R Clark
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
- Center for Nonlinear Studies (CNLS), Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Syed A Shah
- Center for Nonlinear Studies (CNLS), Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Andrei Piryatinski
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Maxim Sukharev
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
- College of Integrative Sciences and Arts, Arizona State University, Mesa, Arizona 85212, USA
| |
Collapse
|
5
|
Song X, Hao C, Li Y, Li Y, Dong H, Wei Q, Wei M, Li H, Zhao L. Chiral inorganic nanomaterials in the tumor microenvironment: A new chapter in cancer therapy. Pharmacol Res 2024; 208:107386. [PMID: 39216840 DOI: 10.1016/j.phrs.2024.107386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Chirality plays a crucial function in the regulation of normal physiological processes and is widespread in organisms. Chirality can be imparted to nanomaterials, whether they are natural or manmade, through the process of asymmetric assembly and/or grafting of molecular chiral groups or linkers. Chiral inorganic nanomaterials possess unique physical and chemical features that set them apart from regular nanomaterials. They also have the ability to interact with cells and tissues in a specific manner, making them useful in various biomedical applications, particularly in the treatment of tumors. Despite the growing amount of research on chiral inorganic nanomaterials in the tumor microenvironment (TME) and their promising potential applications, there is a lack of literature that comprehensively summarizes the intricate interactions between chiral inorganic nanomaterials and TME. In this review, we introduce the fundamental concept, classification, synthesis methods, and physicochemical features of chiral inorganic nanomaterials. Next, we briefly outline the components of TME, such as T cells, macrophages, dendritic cells, and weak acids, and then discuss the anti-tumor effects of several chiral inorganic nanoparticles targeting these components and their potential for possible application during cancer therapy. Finally, the present challenges faced by chiral inorganic nanomaterials in cancer treatment and their future areas of investigation are disclosed.
Collapse
Affiliation(s)
- Xueyi Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Chenjing Hao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Yao Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Yunong Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Hongzhi Dong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Heran Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China.
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
6
|
Nguyen TM, Kim SJ, Ryu DG, Chung JH, Lee SH, Hwang SH, Choi CW, Oh JW. Helical Hybrid Nanostructure Based on Chiral M13 Bacteriophage via Evaporation-Induced Three-Dimensional Process. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1208. [PMID: 39057884 PMCID: PMC11280118 DOI: 10.3390/nano14141208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
The use of naturally sourced organic materials with chirality, such as the M13 bacteriophage, holds intriguing implications, especially in the field of nanotechnology. The chirality properties of bacteriophages have been demonstrated through numerous studies, particularly in the analysis of liquid crystal phase transitions, developing specific applications. However, exploring the utilization of the M13 bacteriophage as a template for creating chiral nanostructures for optics and sensor applications comes with significant challenges. In this study, the chirality of the M13 bacteriophage was leveraged as a valuable tool for generating helical hybrid structures by combining it with nanoparticles through an evaporation-induced three-dimensional (3D) printing process. Utilizing on the self-assembly property of the M13 bacteriophage, metal nanoparticles were organized into a helical chain under the influence of the M13 bacteriophage at the meniscus interface. External parameters, including nanoparticle shape, the ratio between the bacteriophage and nanoparticles, and pulling speed, were demonstrated as crucial factors affecting the fabrication of helical nanostructures. This study aimed to explore the potential of chiral nanostructure fabrication by utilizing the chirality of the M13 bacteriophage and manipulating external parameters to control the properties of the resulting hybrid structures.
Collapse
Affiliation(s)
- Thanh Mien Nguyen
- BK21 FOUR Education and Research Division for Energy Convergence Technology, Pusan National University, Busan 46241, Republic of Korea;
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea;
| | - Sung-Jo Kim
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea;
| | - Dae Gon Ryu
- Department of Internal Medicine, Medical Research Institute, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
| | - Jae Hun Chung
- Department of Surgery, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.C.); (S.-H.L.); (S.-H.H.)
| | - Si-Hak Lee
- Department of Surgery, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.C.); (S.-H.L.); (S.-H.H.)
| | - Sun-Hwi Hwang
- Department of Surgery, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.C.); (S.-H.L.); (S.-H.H.)
| | - Cheol Woong Choi
- Department of Internal Medicine, Medical Research Institute, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
| | - Jin-Woo Oh
- BK21 FOUR Education and Research Division for Energy Convergence Technology, Pusan National University, Busan 46241, Republic of Korea;
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea;
- Department of Nanoenergy Engineering and Research Center for Energy Convergence Technology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
7
|
Li H, Wang L, Zhang Y, Zheng G. Theoretical Study of Strong Coupling between Molecular Shells and Chiral Plasmons of Gold Nanoparticles Helices. J Phys Chem Lett 2024; 15:2550-2556. [PMID: 38416028 DOI: 10.1021/acs.jpclett.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Chiral plasmonic nanostructures can produce strong chiral optical responses and have potential applications in photonics. Experimentally, metallic nanoparticle helices have been synthesized to achieve strong chiral responses. Strong coupling effects between the quantum emitters and the plasmon have attracted significant attention in the past decade and have been recently extended to the chiral plasmon of nanostructures. However, the strong coupling between molecules and metallic nanosphere helices has not been reported yet. In this article we study theoretically such an effect and examine the modulation of chiral and coupling effects by illumination light and molecular layer thickness. Our study may guide further experimental studies.
Collapse
Affiliation(s)
- Haoyu Li
- Department of Physics, University of Science and Technology Beijing, 100083 Beijing, China
| | - Luxia Wang
- Department of Physics, University of Science and Technology Beijing, 100083 Beijing, China
| | - Yuan Zhang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Guangchao Zheng
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| |
Collapse
|
8
|
Yang G, Sun L, Zhang Q. Multicomponent chiral plasmonic hybrid nanomaterials: recent advances in synthesis and applications. NANOSCALE ADVANCES 2024; 6:318-336. [PMID: 38235081 PMCID: PMC10790966 DOI: 10.1039/d3na00808h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Chiral hybrid nanomaterials with multiple components provide a highly promising approach for the integration of desired chirality with other functionalities into one single nanoscale entity. However, precise control over multicomponent chiral plasmonic hybrid nanomaterials to enable their application in diverse and complex scenarios remains a significant challenge. In this review, our focus lies on the recent advances in the preparation and application of multicomponent chiral plasmonic hybrid nanomaterials, with an emphasis on synthetic strategies and emerging applications. We first systematically elucidate preparation methods for multicomponent chiral plasmonic hybrid nanomaterials encompassing the following approaches: physical deposition approach, galvanic replacement reaction, chiral molecule-mediated, chiral heterostructure, circularly polarized light-mediated, magnetically induced, and chiral assembly. Furthermore, we highlight emerging applications of multicomponent chiral plasmonic hybrid nanomaterials in chirality sensing, enantioselective catalysis, and biomedicine. Finally, we provide an outlook on the challenges and opportunities in the field of multicomponent chiral plasmonic hybrid nanomaterials. In-depth investigations of these multicomponent chiral hybrid nanomaterials will pave the way for the rational design of chiral hybrid nanostructures with desirable functionalities for emerging technological applications.
Collapse
Affiliation(s)
- Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
9
|
Zhang L, Chen Y, Zheng J, Lewis GR, Xia X, Ringe E, Zhang W, Wang J. Chiral Gold Nanorods with Five-Fold Rotational Symmetry and Orientation-Dependent Chiroptical Properties of Their Monomers and Dimers. Angew Chem Int Ed Engl 2023; 62:e202312615. [PMID: 37945530 DOI: 10.1002/anie.202312615] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Chiral plasmonic nanoparticles have attracted much attention because of their strong chiroptical responses and broad scientific applications. However, the types of chiral plasmonic nanoparticles have remained limited. Herein we report on a new type of chiral nanoparticle, chiral Au nanorod (NR) with five-fold rotational symmetry, which is synthesized using chiral molecules. Three different types of Au seeds (Au elongated nanodecahedrons, nanodecahedrons, and nanobipyramids) are used to study the growth behaviors. Different synthesis parameters, including the chiral molecules, surfactant, reductant, seeds, and Au precursor, are systematically varied to optimize the chiroptical responses of the chiral Au NRs. The chiral scattering measurements on the individual chiral Au NRs and their dimers are performed. Intriguingly, the chiroptical signals of the individual chiral Au NRs and their end-to-end dimers are similar, while those of the side-by-side dimers are largely reduced. Theoretical calculations and numerical simulations reveal that the different chiroptical responses of the chiral NR dimers are originated from the coupling effect between the plasmon resonance modes. Our study enriches chiral plasmonic nanoparticles and provides valuable insight for the design of plasmonic nanostructures with desired chiroptical properties.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Yilin Chen
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - George R Lewis
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Emilie Ringe
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Wei Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing, 100088, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| |
Collapse
|
10
|
Mathur D, Díaz SA, Hildebrandt N, Pensack RD, Yurke B, Biaggne A, Li L, Melinger JS, Ancona MG, Knowlton WB, Medintz IL. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chem Soc Rev 2023; 52:7848-7948. [PMID: 37872857 PMCID: PMC10642627 DOI: 10.1039/d0cs00936a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 10/25/2023]
Abstract
DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Austin Biaggne
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Mario G Ancona
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| |
Collapse
|
11
|
Van Gordon K, Baúlde S, Mychinko M, Heyvaert W, Obelleiro-Liz M, Criado A, Bals S, Liz-Marzán LM, Mosquera J. Tuning the Growth of Chiral Gold Nanoparticles Through Rational Design of a Chiral Molecular Inducer. NANO LETTERS 2023; 23:9880-9886. [PMID: 37877612 PMCID: PMC10636791 DOI: 10.1021/acs.nanolett.3c02800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023]
Abstract
The bottom-up production of chiral gold nanomaterials holds great potential for the advancement of biosensing and nano-optics, among other applications. Reproducible preparations of colloidal nanomaterials with chiral morphology have been reported, using cosurfactants or chiral inducers such as thiolated amino acids. However, the underlying growth mechanisms for these nanomaterials remain insufficiently understood. We introduce herein a purposely devised chiral inducer, a cysteine modified with a hydrophobic chain, as a versatile chiral inducer. The amphiphilic and chiral features of this molecule provide control over the chiral morphology and the chiroptical signature of the obtained nanoparticles by simply varying the concentration of chiral inducer. These results are supported by circular dichroism and electromagnetic modeling as well as electron tomography to analyze structural evolution at the facet scale. Our observations suggest complex roles for the factors involved in chiral synthesis: the chemical nature of the chiral inducers and the influence of cosurfactants.
Collapse
Affiliation(s)
- Kyle Van Gordon
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
| | - Sandra Baúlde
- Universidade
da Coruña, CICA−Centro
Interdisciplinar de Química e Bioloxía, Rúa as Carballeiras, 15071 A Coruña, Spain
| | - Mikhail Mychinko
- EMAT
and NANOlab Center of Excellence, University
of Antwerp, B-2020 Antwerp, Belgium
| | - Wouter Heyvaert
- EMAT
and NANOlab Center of Excellence, University
of Antwerp, B-2020 Antwerp, Belgium
| | - Manuel Obelleiro-Liz
- EM3Works, Spin-off of the University of Vigo and the University
of Extremadura, PTL Valladares, 36315 Vigo, Spain
| | - Alejandro Criado
- Universidade
da Coruña, CICA−Centro
Interdisciplinar de Química e Bioloxía, Rúa as Carballeiras, 15071 A Coruña, Spain
| | - Sara Bals
- EMAT
and NANOlab Center of Excellence, University
of Antwerp, B-2020 Antwerp, Belgium
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical
Networking Research Center, Bioengineering,
Biomaterials and Nanomedicine (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, 48009 Bilbao, Spain
- Cinbio, Universidade
de Vigo, 36310 Vigo, Spain
| | - Jesús Mosquera
- Universidade
da Coruña, CICA−Centro
Interdisciplinar de Química e Bioloxía, Rúa as Carballeiras, 15071 A Coruña, Spain
| |
Collapse
|
12
|
Wu Y, Yu Q, Joung Y, Jeon CS, Lee S, Pyun SH, Joo SW, Chen L, Choo J. Highly Uniform Self-Assembly of Gold Nanoparticles by Butanol-Induced Dehydration and Its SERS Applications in SARS-CoV-2 Detection. Anal Chem 2023; 95:12710-12718. [PMID: 37594054 DOI: 10.1021/acs.analchem.3c01348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
We report the development of a reproducible and highly sensitive surface-enhanced Raman scattering (SERS) substrate using a butanol-induced self-assembly of gold nanoparticles (AuNPs) and its application as a rapid diagnostic platform for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The butanol-induced self-assembly process was used to generate a uniform assembly of AuNPs, with multiple hotspots, to achieve high reproducibility. When an aqueous droplet containing AuNPs and target DNAs was dropped onto a butanol droplet, butanol-induced dehydration occurred, enriching the target DNAs around the AuNPs and increasing the loading density of the DNAs on the AuNP surface. The SERS substrate was evaluated by using Raman spectroscopy, which showed strong electromagnetic enhancement of the Raman signals. The substrate was then tested for the detection of SARS-CoV-2 using SERS, and a very low limit of detection (LoD) of 3.1 × 10-15 M was obtained. This provides sufficient sensitivity for the SARS-CoV-2 screening assay, and the diagnostic time is significantly reduced as no thermocycling steps are required. This study demonstrates a method for the butanol-induced self-assembly of AuNPs and its application as a highly sensitive and reproducible SERS substrate for the rapid detection of SARS-CoV-2. The results suggest the potential of this approach for developing rapid diagnostic platforms for other biomolecules and infectious diseases.
Collapse
Affiliation(s)
- Yixuan Wu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Chang Su Jeon
- R&D Center, Speclipse Inc., Seongnam 13461, South Korea
| | - Seunghyun Lee
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan 15588, South Korea
| | | | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
13
|
Sun L, Tao Y, Yang G, Liu C, Sun X, Zhang Q. Geometric Control and Optical Properties of Intrinsically Chiral Plasmonic Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306297. [PMID: 37572380 DOI: 10.1002/adma.202306297] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Intrinsically chiral plasmonic nanomaterials exhibit intriguing geometry-dependent chiroptical properties, which is due to the combination of plasmonic features with geometric chirality. Thus, chiral plasmonic nanomaterials have become promising candidates for applications in biosensing, asymmetric catalysis, biomedicine, photonics, etc. Recent advances in geometric control and optical tuning of intrinsically chiral plasmonic nanomaterials have further opened up a unique opportunity for their widespread applications in many emerging technological areas. Here, the recent developments in the geometric control of chiral plasmonic nanomaterials are reviewed with special attention given to the quantitative understanding of the chiroptical structure-property relationship. Several important optical spectroscopic tools for characterizing the optical chirality of plasmonic nanomaterials at both ensemble and single-particle levels are also discussed. Three emerging applications of chiral plasmonic nanomaterials, including enantioselective sensing, enantioselective catalysis, and biomedicine, are further highlighted. It is envisioned that these advanced studies in chiral plasmonic nanomaterials will pave the way toward the rational design of chiral nanomaterials with desired optical properties for diverse emerging technological applications.
Collapse
Affiliation(s)
- Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
14
|
Lininger A, Palermo G, Guglielmelli A, Nicoletta G, Goel M, Hinczewski M, Strangi G. Chirality in Light-Matter Interaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107325. [PMID: 35532188 DOI: 10.1002/adma.202107325] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The scientific effort to control the interaction between light and matter has grown exponentially in the last 2 decades. This growth has been aided by the development of scientific and technological tools enabling the manipulation of light at deeply sub-wavelength scales, unlocking a large variety of novel phenomena spanning traditionally distant research areas. Here, the role of chirality in light-matter interactions is reviewed by providing a broad overview of its properties, materials, and applications. A perspective on future developments is highlighted, including the growing role of machine learning in designing advanced chiroptical materials to enhance and control light-matter interactions across several scales.
Collapse
Affiliation(s)
- Andrew Lininger
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Giovanna Palermo
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Alexa Guglielmelli
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Giuseppe Nicoletta
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Madhav Goel
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Giuseppe Strangi
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| |
Collapse
|
15
|
Goerlitzer ESA, Zapata-Herrera M, Ponomareva E, Feller D, Garcia-Etxarri A, Karg M, Aizpurua J, Vogel N. Molecular-Induced Chirality Transfer to Plasmonic Lattice Modes. ACS PHOTONICS 2023; 10:1821-1831. [PMID: 37363627 PMCID: PMC10288536 DOI: 10.1021/acsphotonics.3c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 06/28/2023]
Abstract
Molecular chirality plays fundamental roles in biology. The chiral response of a molecule occurs at a specific spectral position, determined by its molecular structure. This fingerprint can be transferred to other spectral regions via the interaction with localized surface plasmon resonances of gold nanoparticles. Here, we demonstrate that molecular chirality transfer occurs also for plasmonic lattice modes, providing a very effective and tunable means to control chirality. We use colloidal self-assembly to fabricate non-close packed, periodic arrays of achiral gold nanoparticles, which are embedded in a polymer film containing chiral molecules. In the presence of the chiral molecules, the surface lattice resonances (SLRs) become optically active, i.e., showing handedness-dependent excitation. Numerical simulations with varying lattice parameters show circular dichroism peaks shifting along with the spectral positions of the lattice modes, corroborating the chirality transfer to these collective modes. A semi-analytical model based on the coupling of single-molecular and plasmonic resonances rationalizes this chirality transfer.
Collapse
Affiliation(s)
- Eric Sidney Aaron Goerlitzer
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
| | - Mario Zapata-Herrera
- Materials
Physics Center CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Ekaterina Ponomareva
- Institut
für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225 Germany
| | - Déborah Feller
- Institut
für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225 Germany
| | - Aitzol Garcia-Etxarri
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque
Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Matthias Karg
- Institut
für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225 Germany
| | - Javier Aizpurua
- Materials
Physics Center CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
| |
Collapse
|
16
|
Abstract
The nanoscale properties of nanomaterials, especially nanoparticles, including size, shape, and surface charge, have been extensively studied for their impact on nanomedicine. Given the inherent chiral nature of biological systems and their high enantiomeric selectivity, there is rising interest to manipulate the chirality of nanomaterials to enhance their biomolecular interactions and improve nanotherapeutics. Chiral nanostructures are currently more prevalently used in biosensing and diagnostic applications owing to their distinctive physical and optical properties, but they hold great promise for use in nanomedicine. In this Review, we first discuss stereospecific interactions between chiral nanomaterials and biomolecules before comparing the synthesis and characterization methods of chiral nanoparticles and nanoassemblies. Finally, we examine the applications of chiral nanotherapeutics in cancer, immunomodulation, and neurodegenerative diseases and propose plausible mechanisms in which chiral nanomaterials interact with cells for biological manipulation. This Review on chirality is a timely reminder of the arsenal of nanoscale modifications to boost research in nanotherapeutics.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583
- Institute of Health Innovation and Technology, National University of Singapore, Singapore 117599
- Tissue Engineering Program, National University of Singapore, Singapore 117510
| |
Collapse
|
17
|
Googasian JS, Skrabalak SE. Practical Considerations for Simulating the Plasmonic Properties of Metal Nanoparticles. ACS PHYSICAL CHEMISTRY AU 2023; 3:252-262. [PMID: 37249938 PMCID: PMC10214510 DOI: 10.1021/acsphyschemau.2c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 05/31/2023]
Abstract
Simulating the plasmonic properties of colloidally derived metal nanoparticles with accuracy to their experimentally observed measurements is challenging due to the many structural and compositional parameters that influence their scattering and absorption properties. Correlation between single nanoparticle scattering measurements and simulated spectra emphasize these strong structural and compositional relationships, providing insight into the design of plasmonic nanoparticles. This Perspective builds from this history to highlight how the structural features of models used in simulation methods such as those based on the Finite-Difference Time-Domain (FDTD) method and Discrete Dipole Approximation (DDA) are of critical consideration for correlation with experiment and ultimately prediction of new nanoparticle properties. High-level characterizations such as electron tomography are discussed as ways to advance the accuracy of models used in such simulations, allowing the plasmonic properties of structurally complex nanoparticles to be better understood. However, we also note that the field is far from bringing experiment and simulation into agreement for plasmonic nanoparticles with complex compositions, reflecting analytical challenges that inhibit accurate model generation. Potential directions for addressing these challenges are also presented.
Collapse
Affiliation(s)
- Jack S. Googasian
- Department of Chemistry, Indiana
University—Bloomington, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Sara E. Skrabalak
- Department of Chemistry, Indiana
University—Bloomington, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
18
|
Yu Q, Trinh HD, Lee Y, Kang T, Chen L, Yoon S, Choo J. SERS-ELISA using silica-encapsulated Au core-satellite nanotags for sensitive detection of SARS-CoV-2. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 382:133521. [PMID: 36818494 PMCID: PMC9927800 DOI: 10.1016/j.snb.2023.133521] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 06/12/2023]
Abstract
The sensitive detection of viruses is key to preventing the spread of infectious diseases. In this study, we develop a silica-encapsulated Au core-satellite (CS@SiO2) nanotag, which produces a strong and reproducible surface-enhanced Raman scattering (SERS) signal. The combination of SERS from the CS@SiO2 nanotags with enzyme-linked immunosorbent assay (ELISA) achieves a highly sensitive detection of SARS-CoV-2. The CS@SiO2 nanotag is constructed by assembling 32 nm Au nanoparticles (AuNPs) on a 75 nm AuNP. Then the core-satellite particles are encapsulated with SiO2 for facile surface modification and stability. The SERS-ELISA technique using the CS@SiO2 nanotags provides a great sensitivity, yielding a detection limit of 8.81 PFU mL-1, which is 10 times better than conventional ELISA and 100 times better than lateral flow assay strip method. SERS-ELISA is applied to 30 SARS-CoV-2 clinical samples and achieved 100% and 55% sensitivities for 15 and 9 positive samples with cycle thresholds < 30 and > 30, respectively. This new CS@SiO2-SERS-ELISA method is an innovative technique that can significantly reduce the false-negative diagnostic rate for SARS-CoV-2 and thereby contribute to overcoming the current pandemic crisis.
Collapse
Affiliation(s)
- Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Hoa Duc Trinh
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Yeonji Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Sangwoon Yoon
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
19
|
Zhan P, Peil A, Jiang Q, Wang D, Mousavi S, Xiong Q, Shen Q, Shang Y, Ding B, Lin C, Ke Y, Liu N. Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chem Rev 2023; 123:3976-4050. [PMID: 36990451 PMCID: PMC10103138 DOI: 10.1021/acs.chemrev.3c00028] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 03/31/2023]
Abstract
DNA nanotechnology is a unique field, where physics, chemistry, biology, mathematics, engineering, and materials science can elegantly converge. Since the original proposal of Nadrian Seeman, significant advances have been achieved in the past four decades. During this glory time, the DNA origami technique developed by Paul Rothemund further pushed the field forward with a vigorous momentum, fostering a plethora of concepts, models, methodologies, and applications that were not thought of before. This review focuses on the recent progress in DNA origami-engineered nanomaterials in the past five years, outlining the exciting achievements as well as the unexplored research avenues. We believe that the spirit and assets that Seeman left for scientists will continue to bring interdisciplinary innovations and useful applications to this field in the next decade.
Collapse
Affiliation(s)
- Pengfei Zhan
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Andreas Peil
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Qiao Jiang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Dongfang Wang
- School
of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Shikufa Mousavi
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Qiancheng Xiong
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Qi Shen
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Molecular Biophysics and Biochemistry, Yale University, 266
Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Yingxu Shang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Baoquan Ding
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Chenxiang Lin
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Biomedical Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| | - Yonggang Ke
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Na Liu
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
20
|
Goerlitzer ESA, Zhan M, Choi S, Vogel N. How Colloidal Lithography Limits the Optical Quality of Plasmonic Nanohole Arrays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5222-5229. [PMID: 36989478 DOI: 10.1021/acs.langmuir.3c00328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Colloidal lithography utilizes self-assembled particle monolayers as lithographic masks to fabricate arrays of nanostructures by combination of directed evaporation and etching steps. This process provides complex nanostructures over macroscopic areas in a simple, convenient, and parallel fashion without requiring clean-room infrastructure and specialized equipment. The appeal of the method comes at the price of imperfections impairing the optical quality, especially for arrayed nanostructures relying on well-ordered lattices. Imperfections are often generically mentioned to rationalize the discrepancy between experimental and simulated resonances. Yet, little attention is given to detailed structure-property relationships connecting typical defects directly with the optical properties. Here, we use a correlative approach to connect nano- and microscopic defects occurring from the colloidal lithography process with the resulting local optical properties. We use nanohole arrays as a common plasmonic structure known to be sensitive to lattice imperfections. Correlative optical and electron microscopies reveal the individual role of packing order, organic impurities, and solid polymer bridges. Our findings show that simple cleaning processes with solvents and oxygen plasma already improve the optical quality but also highlight how well-controlled self-assembly processes are required for predictable optical properties of such nanostructures.
Collapse
Affiliation(s)
- Eric S A Goerlitzer
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
| | - Meichen Zhan
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
| | - Sukyung Choi
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
| |
Collapse
|
21
|
Peil A, Zhan P, Duan X, Krahne R, Garoli D, M Liz-Marzán L, Liu N. Transformable Plasmonic Helix with Swinging Gold Nanoparticles. Angew Chem Int Ed Engl 2023; 62:e202213992. [PMID: 36423337 DOI: 10.1002/anie.202213992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/25/2022]
Abstract
Control over multiple optical elements that can be dynamically rearranged to yield substantial three-dimensional structural transformations is of great importance to realize reconfigurable plasmonic nanoarchitectures with sensitive and distinct optical feedback. In this work, we demonstrate a transformable plasmonic helix system, in which multiple gold nanoparticles (AuNPs) can be directly transported by DNA swingarms to target positions without undergoing consecutive stepwise movements. The swingarms allow for programmable AuNP translocations in large leaps within plasmonic nanoarchitectures, giving rise to tailored circular dichroism spectra. Our work provides an instructive bottom-up solution to building complex dynamic plasmonic systems, which can exhibit prominent optical responses through cooperative rearrangements of the constituent optical elements with high fidelity and programmability.
Collapse
Affiliation(s)
- Andreas Peil
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany.,Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Pengfei Zhan
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany.,Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Xiaoyang Duan
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany.,Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Roman Krahne
- Instituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Denis Garoli
- Instituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Luis M Liz-Marzán
- CIC BiomaGUNE, Paseo Miramón 182, 20014, Donostia/San Sebastián, Spain.,Biomedical Networking Center, Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo Miramón 182, 20014, Donostia/San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, 43009, Bilbao, Spain
| | - Na Liu
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany.,Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| |
Collapse
|
22
|
Wang F, Yue X, Ding Q, Lin H, Xu C, Li S. Chiral inorganic nanomaterials for biological applications. NANOSCALE 2023; 15:2541-2552. [PMID: 36688473 DOI: 10.1039/d2nr05689e] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chiral nanomaterials in biology play indispensable roles in maintaining numerous physiological processes, such as signaling, site-specific catalysis, transport, protection, and synthesis. Like natural chiral nanomaterials, chiral inorganic nanomaterials can also be established with similar size, charge, surface properties, and morphology. However, chiral inorganic nanomaterials usually exhibit extraordinary properties that are different from those of organic materials, such as high g-factor values, broad distribution range, and symmetrical mirror configurations. Because of these unique characteristics, there is great potential for application in the fields of biosensing, drug delivery, early diagnosis, bio-imaging, and disease therapy. Related research is summarized and discussed in this review to showcase the bio-functions and bio-applications of chiral inorganic nanomaterials, including the construction methods, classification and properties, and biological applications of chiral inorganic nanomaterials. Moreover, the deficiencies in existing studies are noted, and future development is prospected. This review will provide helpful guidance for constructing chiral inorganic nanomaterials with specific bio-functions for problem solving in living systems.
Collapse
Affiliation(s)
- Fang Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Xiaoyong Yue
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Qi Ding
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
23
|
Dunn KE, Elfick A. Harnessing DNA Nanotechnology and Chemistry for Applications in Photonics and Electronics. Bioconjug Chem 2023; 34:97-104. [PMID: 36121896 PMCID: PMC9853499 DOI: 10.1021/acs.bioconjchem.2c00286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/30/2022] [Indexed: 01/24/2023]
Abstract
Many photonic and electronic devices rely on nanotechnology and nanofabrication, but DNA-based approaches have yet to make a significant commercial impact in these fields even though DNA molecules are now well-established as versatile building blocks for nanostructures. As we describe here, DNA molecules can be chemically modified with a wide variety of functional groups enabling nanocargoes to be attached at precisely determined locations. DNA nanostructures can also be used as templates for the growth of inorganic structures. Together, these factors enable the use of DNA nanotechnology for the construction of many novel devices and systems. In this topical review, we discuss four case studies of potential applications in photonics and electronics: carbon nanotube transistors, devices for quantum computing, artificial electromagnetic materials, and enzymatic fuel cells. We conclude by speculating about the barriers to the exploitation of these technologies in real-world settings.
Collapse
Affiliation(s)
- Katherine E. Dunn
- School of
Engineering, Institute for
Bioengineering, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3DW, Scotland, U.K.
| | - Alistair Elfick
- School of
Engineering, Institute for
Bioengineering, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3DW, Scotland, U.K.
| |
Collapse
|
24
|
Nepal D, Kang S, Adstedt KM, Kanhaiya K, Bockstaller MR, Brinson LC, Buehler MJ, Coveney PV, Dayal K, El-Awady JA, Henderson LC, Kaplan DL, Keten S, Kotov NA, Schatz GC, Vignolini S, Vollrath F, Wang Y, Yakobson BI, Tsukruk VV, Heinz H. Hierarchically structured bioinspired nanocomposites. NATURE MATERIALS 2023; 22:18-35. [PMID: 36446962 DOI: 10.1038/s41563-022-01384-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Next-generation structural materials are expected to be lightweight, high-strength and tough composites with embedded functionalities to sense, adapt, self-repair, morph and restore. This Review highlights recent developments and concepts in bioinspired nanocomposites, emphasizing tailoring of the architecture, interphases and confinement to achieve dynamic and synergetic responses. We highlight cornerstone examples from natural materials with unique mechanical property combinations based on relatively simple building blocks produced in aqueous environments under ambient conditions. A particular focus is on structural hierarchies across multiple length scales to achieve multifunctionality and robustness. We further discuss recent advances, trends and emerging opportunities for combining biological and synthetic components, state-of-the-art characterization and modelling approaches to assess the physical principles underlying nature-inspired design and mechanical responses at multiple length scales. These multidisciplinary approaches promote the synergetic enhancement of individual materials properties and an improved predictive and prescriptive design of the next era of structural materials at multilength scales for a wide range of applications.
Collapse
Affiliation(s)
- Dhriti Nepal
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, USA.
| | - Saewon Kang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Katarina M Adstedt
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Krishan Kanhaiya
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Michael R Bockstaller
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - L Catherine Brinson
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA
| | - Peter V Coveney
- Department of Chemistry, University College London, London, UK
| | - Kaushik Dayal
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jaafar A El-Awady
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Luke C Henderson
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, Australia
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Silvia Vignolini
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Yusu Wang
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
| | - Boris I Yakobson
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
25
|
Feng Y, Liao Z, Li M, Zhang H, Li T, Qin X, Li S, Wu C, You F, Liao X, Cai L, Yang H, Liu Y. Mesoporous Silica Nanoparticles-Based Nanoplatforms: Basic Construction, Current State, and Emerging Applications in Anticancer Therapeutics. Adv Healthc Mater 2022:e2201884. [PMID: 36529877 DOI: 10.1002/adhm.202201884] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/13/2022] [Indexed: 12/23/2022]
Abstract
In recent years, researchers are developing novel nanoparticles for diagnostic applications using imaging techniques and for therapeutic purposes through drug delivery techniques. The unique physical and chemical properties of mesoporous silica nanoparticles (MSNs) make it possible to integrate a variety of commonly used therapeutic and imaging agents to construct a multimodal synergistic anticancer drug delivery system. Herein, recent advances in MSNs synthesis for drug delivery and smart response applications are reviewed. First, synthetic strategies for the fabrication of ordered MSNs, hollow MSNs, core-shell structured MSNs, dendritic MSNs, and biodegradable MSNs are outlined. Then, the recent research progress in designing functional MSN materials with various controlled release mechanisms in anticancer therapy is discussed, and new properties are introduced to suggest the latest design requirements as drug delivery materials. The review also highlights significant achievements in bioimaging using MSNs and their multifunctional counterparts as delivery vehicles. Finally, personal views on key directions for future work in this area are presented.
Collapse
Affiliation(s)
- Yi Feng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Zhen Liao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Mengyue Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Hanxi Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Tingting Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Xiang Qin
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Shun Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Chunhui Wu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P. R. China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Lulu Cai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Hong Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yiyao Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P. R. China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| |
Collapse
|
26
|
Zhuo X, Mychinko M, Heyvaert W, Larios D, Obelleiro-Liz M, Taboada JM, Bals S, Liz-Marzán LM. Morphological and Optical Transitions during Micelle-Seeded Chiral Growth on Gold Nanorods. ACS NANO 2022; 16:19281-19292. [PMID: 36288463 DOI: 10.1021/acsnano.2c08668] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chiral plasmonics is a rapidly developing field where breakthroughs and unsolved problems coexist. We have recently reported binary surfactant-assisted seeded growth of chiral gold nanorods (Au NRs) with high chiroptical activity. Such a seeded-growth process involves the use of a chiral cosurfactant that induces micellar helicity, in turn driving the transition from achiral to chiral Au NRs, from both the morphological and the optical points of view. We report herein a detailed study on both transitions, which reveals intermediate states that were hidden so far. The correlation between structure and optical response is carefully analyzed, including the (linear and CD) spectral evolution over time, electron tomography, the impact of NR dimensions on their optical response, the variation of the absorption-to-scattering ratio during the evolution from achiral to chiral Au NRs, and the near-field enhancement related to chiral plasmon modes. Our findings provide further understanding of the growth process of chiral Au NRs and the associated optical changes, which will facilitate further study and applications of chiral nanomaterials.
Collapse
Affiliation(s)
- Xiaolu Zhuo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San, Sebastián, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia-San, Sebastián, Spain
| | - Mikhail Mychinko
- Electron Microscopy for Materials Research (EMAT) and NANOlab Centre of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Wouter Heyvaert
- Electron Microscopy for Materials Research (EMAT) and NANOlab Centre of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - David Larios
- Departamento de Tecnología de los Computadores y de las Comunicaciones, University of Extremadura, 10003 Cáceres, Spain
| | - Manuel Obelleiro-Liz
- EM3 Works, Spin-off of the University of Vigo and the University of Extremadura, PTL Valladares, 36315 Vigo, Spain
| | - José M Taboada
- Departamento de Tecnología de los Computadores y de las Comunicaciones, University of Extremadura, 10003 Cáceres, Spain
| | - Sara Bals
- Electron Microscopy for Materials Research (EMAT) and NANOlab Centre of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San, Sebastián, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia-San, Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
27
|
Sun X, Yang J, Sun L, Yang G, Liu C, Tao Y, Cheng Q, Wang C, Xu H, Zhang Q. Tunable Reversal of Circular Dichroism in the Seed-Mediated Growth of Bichiral Plasmonic Nanoparticles. ACS NANO 2022; 16:19174-19186. [PMID: 36251931 DOI: 10.1021/acsnano.2c08381] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plasmonic nanoparticles with an intrinsic chiral structure have emerged as a promising chiral platform for applications in biosensing, medicine, catalysis, separation, and photonics. Quantitative understanding of the correlation between nanoparticle structure and optical chirality becomes increasingly important but still represents a significantly challenging task. Here we demonstrate that tunable signal reversal of circular dichroism in the seed-mediated chiral growth of plasmonic nanoparticles can be achieved through the hybridization of bichiral centers without inverting the geometric chirality. Both experimental and theoretical results demonstrated the opposite sign of circular dichroism of two different bichiral geometries. Chiral molecules were found to not only contribute to the chirality transfer from molecules to nanoparticles but also manipulate the structural evolution of nanoparticles that synergistically drive the formation of two different chiral centers. By deliberately adjusting the concentration of chiral molecules and other synthetic parameters, such as the reducing agent concentration, the capping surfactant concentration, and the amount of Au precursor, we have been able to fine-tune the circular dichroism reversal of bichiral Au nanoparticles. We further demonstrate that the structure of chiral molecules and the crystal structure of Au seeds play crucial roles in the formation of Au nanoparticles with bichiral centers. The insights gained from this work not only shed light on the underlying mechanisms dictating the intriguing geometric and chirality evolution of bichiral plasmonic nanoparticles but also provide an important knowledge framework that guides the rational design of bichiral plasmonic nanostructures toward chiroptical applications.
Collapse
Affiliation(s)
- Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Yang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qingqing Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chen Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hongxing Xu
- The Institute of Advanced Studies, School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
28
|
Adhikari S, Orrit M. Optically Probing the Chirality of Single Plasmonic Nanostructures and of Single Molecules: Potential and Obstacles. ACS PHOTONICS 2022; 9:3486-3497. [PMID: 36411819 PMCID: PMC9673138 DOI: 10.1021/acsphotonics.2c01205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Circular dichroism (CD) is a standard method for the analysis of biomolecular conformation. It is very reliable when applied to molecules, but requires relatively large amounts of solution. Plasmonics offer the perspective of enhancement of CD signals, which would extend CD spectrometry to smaller amounts of molecules and to weaker chiral signals. However, plasmonic enhancement comes at the cost of additional complications: averaging over all orientations is no longer possible or reliable, linear dichroism leaks into CD signals because of experimental imperfections, scattering and its interference with the incident beam must be taken into account, and the interaction between chiral molecules and possibly chiral plasmonic structures considerably complicates the interpretation of measured signals. This Perspective aims to explore the motivations and problems of plasmonic chirality and to re-evaluate present and future solutions.
Collapse
Affiliation(s)
- Subhasis Adhikari
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CALeiden, Netherlands
| | - Michel Orrit
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CALeiden, Netherlands
| |
Collapse
|
29
|
Wang Y, Ai B, Wang Z, Guan Y, Chen X, Zhang G. Chiral nanohelmet array films with Three-Dimensional (3D) resonance cavities. J Colloid Interface Sci 2022; 626:334-344. [DOI: 10.1016/j.jcis.2022.06.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
|
30
|
Shi B, Zhao J, Xu Z, Chen C, Xu L, Xu C, Sun M, Kuang H. Chiral Nanoparticles Force Neural Stem Cell Differentiation to Alleviate Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202475. [PMID: 36008133 PMCID: PMC9561871 DOI: 10.1002/advs.202202475] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/08/2022] [Indexed: 06/04/2023]
Abstract
The differentiation of neural stem cells via nanomaterials has attracted attention and has become a potential tool. However, the chirality effect in neural stem cell differentiation has not been investigated. Here, this study shows that chiral nanoparticles (NPs) with strong chirality can efficiently accelerate the differentiation of mouse neural stem cells (NSCs) into neurons under near-infrared (NIR) light illumination. L-type NPs are 1.95 times greater than D-type NPs in promoting NSCs differentiation due to their 1.47-fold endocytosis efficiency. Whole gene expression map analysis reveals that circularly polarized light illumination and chiral NPs irradiation significantly upregulate Map2, Yap1, and Taz genes, resulting in mechanical force, cytoskeleton protein action, and accelerated NSCs differentiation. In vivo experiments show that successful differentiation can further alleviate symptoms in Alzheimer's disease mice. Moreover, the clearance of L-type NPs on amyloid and hyperphosphorylated p-tau protein reachs 68.24% and 66.43%, respectively, under the synergy of NIR irradiation. The findings suggest that strong chiral nanomaterials may have advantages in guiding cell development and can be used in biomedicine.
Collapse
Affiliation(s)
- Baimei Shi
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan UniversityWuxiJiangsu214122China
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Jing Zhao
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan UniversityWuxiJiangsu214122China
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Zhuojia Xu
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan UniversityWuxiJiangsu214122China
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Chen Chen
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan UniversityWuxiJiangsu214122China
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan UniversityWuxiJiangsu214122China
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan UniversityWuxiJiangsu214122China
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan UniversityWuxiJiangsu214122China
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan UniversityWuxiJiangsu214122China
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| |
Collapse
|
31
|
Yuan Y, Li H, Yang H, Han C, Hu H, Govorov AO, Yan H, Lan X. Unraveling the Complex Chirality Evolution in DNA‐Assembled High‐Order, Hybrid Chiroplasmonic Superstructures from Multi‐Scale Chirality Mechanisms. Angew Chem Int Ed Engl 2022; 61:e202210730. [DOI: 10.1002/anie.202210730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yongqing Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Huacheng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Hao Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Cong Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Huatian Hu
- Hubei Key Laboratory of Optical Information and Pattern Recognition Wuhan Institute of Technology Wuhan Hubei 430205 China
| | - Alexander O. Govorov
- Department of Physics and Astronomy and the Nanoscale & Quantum Phenomena Institute Ohio University Athens OH 45701 USA
| | - Hao Yan
- Center for Molecular Design and Biomimetics The Biodesign Institute, School of Molecular Sciences Arizona State University Tempe AZ 85287 USA
| | - Xiang Lan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| |
Collapse
|
32
|
Wang X, Zhao J, Wang W, Lu M, Qu A, Sun M, Gao X, Chen C, Kuang H, Xu C, Xu L. Electromagnetic field-enhanced chiral dimanganese trioxide nanoparticles mitigate Parkinson’s disease. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
33
|
Yuan Y, Li H, Yang H, Han C, Hu H, Govorov AO, Yan H, Lan X. Unraveling the Complex Chirality Evolution in DNA‐Assembled High‐Order, Hybrid Chiroplasmonic Superstructures from Multi‐Scale Chirality Mechanisms. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yongqing Yuan
- Donghua University - Songjiang Campus: Donghua University Center for Advanced Low-dimension Materials CHINA
| | - Huacheng Li
- Donghua University - Songjiang Campus: Donghua University Center for Advanced Low-dimension Materials CHINA
| | - Hao Yang
- Donghua University - Songjiang Campus: Donghua University Center for Advanced Low-dimension Materials CHINA
| | - Cong Han
- Donghua University - Songjiang Campus: Donghua University Center for Advanced Low-dimension Materials CHINA
| | - Huatian Hu
- Wuhan Institute of Technology Hubei Key Laboratory of Optical Information and Pattern Recognition CHINA
| | - Alexander O. Govorov
- Ohio University Department of Physics and Astronomy and the Nanoscale & Quantum Phenomena Institute UNITED STATES
| | - Hao Yan
- Arizona State University The Biodesign Institute UNITED STATES
| | - Xiang Lan
- Donghua University - Songjiang Campus: Donghua University Center for Advanced Low-Dimension Materials No.2999 North Renmin Str, Songjiang Dist 201620 Shanghai CHINA
| |
Collapse
|
34
|
Cen M, Wang J, Liu J, He H, Li K, Cai W, Cao T, Liu YJ. Ultrathin Suspended Chiral Metasurfaces for Enantiodiscrimination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203956. [PMID: 35905504 DOI: 10.1002/adma.202203956] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Chiral metasurfaces can exhibit a strong circular dichroism, but it is limited by the complicated fabrication procedure and alignment errors. Here, a new type of self-aligned suspended chiral bilayer metasurface with only one-step electron beam lithography exposure is demonstrated. A significant optical chirality of 221° µm-1 can be realized using suspended metasurfaces with a thickness of 100 nm. Furthermore, this study experimentally demonstrates that such a structure is capable of label-free discrimination of the chiral molecules at zeptomole level, exhibiting a much higher sensitivity (orders of magnitude) compared to the conventional circular dichroism spectroscopy. The fundamental principles for chiral sensing using molecules-metasurfaces interactions are explored. Benefiting from the giant chiroptical response, the proposed metadevice may offer promising applications for ultrathin circular polarizers, chiral molecular detectors, and asymmetry information processing.
Collapse
Affiliation(s)
- Mengjia Cen
- Department of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiawei Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianxun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huilin He
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ke Li
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenfeng Cai
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tun Cao
- Department of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Yan Jun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| |
Collapse
|
35
|
Zhang X, Xu Y, Valenzuela C, Zhang X, Wang L, Feng W, Li Q. Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence. LIGHT, SCIENCE & APPLICATIONS 2022; 11:223. [PMID: 35835737 PMCID: PMC9283403 DOI: 10.1038/s41377-022-00913-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 05/15/2023]
Abstract
Chiral nanomaterials with intrinsic chirality or spatial asymmetry at the nanoscale are currently in the limelight of both fundamental research and diverse important technological applications due to their unprecedented physicochemical characteristics such as intense light-matter interactions, enhanced circular dichroism, and strong circularly polarized luminescence. Herein, we provide a comprehensive overview of the state-of-the-art advances in liquid crystal-templated chiral nanomaterials. The chiroptical properties of chiral nanomaterials are touched, and their fundamental design principles and bottom-up synthesis strategies are discussed. Different chiral functional nanomaterials based on liquid-crystalline soft templates, including chiral plasmonic nanomaterials and chiral luminescent nanomaterials, are systematically introduced, and their underlying mechanisms, properties, and potential applications are emphasized. This review concludes with a perspective on the emerging applications, challenges, and future opportunities of such fascinating chiral nanomaterials. This review can not only deepen our understanding of the fundamentals of soft-matter chirality, but also shine light on the development of advanced chiral functional nanomaterials toward their versatile applications in optics, biology, catalysis, electronics, and beyond.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China
| | - Yiyi Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China
| | - Xinfang Zhang
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China.
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China.
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China.
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
36
|
Li Y, Bai Y, Ikram M, Ren Y, Xu Y, Wang Y, Huo Y, Zhang Z. Enhanced circular dichroism of cantilevered nanostructures by distorted plasmon. OPTICS EXPRESS 2022; 30:23217-23226. [PMID: 36225007 DOI: 10.1364/oe.462558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 06/16/2023]
Abstract
Chiral structures have a wide range of applications, such as biometric identification, chemical analysis, and chiral sensing. The simple fabrication process of chiral nanostructures that can produce a significant circular dichroism (CD) effect remains a challenge. Here, a three-dimensional (3D) cantilever-shaped nanostructure, which inherits the chiral advantages of 3D nanostructures and simplicity of 2D nanostructures, is proposed. The nanostructure can be prepared by the combination of one-time electron beam lithography and oblique-angle deposition and consists of a thin metal film with periodic holes such that two hanging arms were attached to the edges of holes. The length of the cantilever and the height difference between the two arms can be adjusted by controlling the tilt angle of beam current during the deposition processes. Numerical calculations showed that the enhancement of CD signal was achieved by plasmon distortion on the metal film by the lower hanging part of the cantilever structure. Furthermore, signals can be actively adjusted using a temperature-sensitive polydimethylsiloxane (PDMS) material. The angle between the lower cantilever and the top metal film was regulated by the change in PDMS volume with temperature. The results provide a new way to fabricating 3D nanostructures and a new mechanism to enhance the CD signal. The proposed nanostructure may have potential applications, such as in ultra-sensitive detection and remote temperature readout, and is expected to be an ultra-compact detection tool for nanoscale structural and functional information.
Collapse
|
37
|
Aiello CD, Abendroth JM, Abbas M, Afanasev A, Agarwal S, Banerjee AS, Beratan DN, Belling JN, Berche B, Botana A, Caram JR, Celardo GL, Cuniberti G, Garcia-Etxarri A, Dianat A, Diez-Perez I, Guo Y, Gutierrez R, Herrmann C, Hihath J, Kale S, Kurian P, Lai YC, Liu T, Lopez A, Medina E, Mujica V, Naaman R, Noormandipour M, Palma JL, Paltiel Y, Petuskey W, Ribeiro-Silva JC, Saenz JJ, Santos EJG, Solyanik-Gorgone M, Sorger VJ, Stemer DM, Ugalde JM, Valdes-Curiel A, Varela S, Waldeck DH, Wasielewski MR, Weiss PS, Zacharias H, Wang QH. A Chirality-Based Quantum Leap. ACS NANO 2022; 16:4989-5035. [PMID: 35318848 PMCID: PMC9278663 DOI: 10.1021/acsnano.1c01347] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light-matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral-optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light-matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies.
Collapse
Affiliation(s)
- Clarice D. Aiello
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - John M. Abendroth
- Laboratory
for Solid State Physics, ETH Zürich, Zürich 8093, Switzerland
| | - Muneer Abbas
- Department
of Microbiology, Howard University, Washington, D.C. 20059, United States
| | - Andrei Afanasev
- Department
of Physics, George Washington University, Washington, D.C. 20052, United States
| | - Shivang Agarwal
- Department
of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Amartya S. Banerjee
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - David N. Beratan
- Departments
of Chemistry, Biochemistry, and Physics, Duke University, Durham, North Carolina 27708, United States
| | - Jason N. Belling
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Bertrand Berche
- Laboratoire
de Physique et Chimie Théoriques, UMR Université de Lorraine-CNRS, 7019 54506 Vandœuvre les
Nancy, France
| | - Antia Botana
- Department
of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Justin R. Caram
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Giuseppe Luca Celardo
- Institute
of Physics, Benemerita Universidad Autonoma
de Puebla, Apartado Postal J-48, 72570, Mexico
- Department
of Physics and Astronomy, University of
Florence, 50019 Sesto Fiorentino, Italy
| | - Gianaurelio Cuniberti
- Institute
for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| | - Aitzol Garcia-Etxarri
- Donostia
International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia, San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Arezoo Dianat
- Institute
for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| | - Ismael Diez-Perez
- Department
of Chemistry, Faculty of Natural and Mathematical Sciences, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Yuqi Guo
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Rafael Gutierrez
- Institute
for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| | - Carmen Herrmann
- Department
of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Joshua Hihath
- Department
of Electrical and Computer Engineering, University of California, Davis, Davis, California 95616, United States
| | - Suneet Kale
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Philip Kurian
- Quantum
Biology Laboratory, Graduate School, Howard
University, Washington, D.C. 20059, United States
| | - Ying-Cheng Lai
- School
of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Tianhan Liu
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alexander Lopez
- Escuela
Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, PO Box 09-01-5863, Guayaquil 090902, Ecuador
| | - Ernesto Medina
- Departamento
de Física, Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito, Av. Diego de Robles
y Vía Interoceánica, Quito 170901, Ecuador
| | - Vladimiro Mujica
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Kimika
Fakultatea, Euskal Herriko Unibertsitatea, 20080 Donostia, Euskadi, Spain
| | - Ron Naaman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Mohammadreza Noormandipour
- Department
of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- TCM Group,
Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Julio L. Palma
- Department
of Chemistry, Pennsylvania State University, Lemont Furnace, Pennsylvania 15456, United States
| | - Yossi Paltiel
- Applied
Physics Department and the Center for Nano-Science and Nano-Technology, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - William Petuskey
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - João Carlos Ribeiro-Silva
- Laboratory
of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, 05508-900 São
Paulo, Brazil
| | - Juan José Saenz
- Donostia
International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia, San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Elton J. G. Santos
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- Higgs Centre
for Theoretical Physics, The University
of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
| | - Maria Solyanik-Gorgone
- Department
of Electrical and Computer Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Volker J. Sorger
- Department
of Electrical and Computer Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Dominik M. Stemer
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jesus M. Ugalde
- Kimika
Fakultatea, Euskal Herriko Unibertsitatea, 20080 Donostia, Euskadi, Spain
| | - Ana Valdes-Curiel
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Solmar Varela
- School
of Chemical Sciences and Engineering, Yachay
Tech University, 100119 Urcuquí, Ecuador
| | - David H. Waldeck
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael R. Wasielewski
- Department
of Chemistry, Center for Molecular Quantum Transduction, and Institute
for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Paul S. Weiss
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California, 90095, United States
| | - Helmut Zacharias
- Center
for Soft Nanoscience, University of Münster, 48149 Münster, Germany
| | - Qing Hua Wang
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
38
|
Ma Y, Lin C, Cai L, Qu G, Bai X, Yang L, Huang Z. Chiral Nanoparticles with Enhanced Thermal Stability of Chiral Structures through Alloying. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107657. [PMID: 35174949 DOI: 10.1002/smll.202107657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Metallic chiral nanoparticles (CNPs) promisingly function as asymmetric catalysts but lack an important study in thermal stability of optical activity that stems from metastable chiral lattices. In this work, annealing is applied to silver (Ag) CNPs, fabricated by glancing angle deposition (GLAD), and causes elimination of optical activity at 200 °C, mainly ascribed to chiral-to-achiral lattice transformation. The Ag CNPs are remarkedly enhanced in thermal stability through an alloying with aluminum (Al) via layer-by-layer GLAD to generate binary Ag0.5 Al0.5 CNPs composed of solid-state liquids, whose optical activity vanishes at 700 °C. Ease in the diffusion of Al atoms in the host Ag CNPs and thermal insulation from the Al2 O3 layers partially covering the binary CNPs effectively prohibit structural relaxation of the metastable chiral lattices, accounting for the significant enhancement in thermal stability of chiral lattices. This is a pioneering work to investigate the fundamental principles determining the thermal stability of metallic CNPs in terms of chiral structures and optical activity. It paves the way toward applying metallic CNPs to asymmetric catalysis at high temperature to accelerate an asymmetric synthesis of enantiomers with designable chirality, which is one of the most important topics in modern chemistry.
Collapse
Affiliation(s)
- Yicong Ma
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong SAR, China
| | - Chao Lin
- Department of Physics, The Chinese University of Hong Kong (CUHK), Sha Tin, Hong Kong SAR, China
| | - Linfeng Cai
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong SAR, China
| | - Geping Qu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong (CUHK), Sha Tin, Hong Kong SAR, China
| | - Lin Yang
- HKBU Institute of Research and Continuing Education, Shenzhen, Guangdong, 518057, China
| | - Zhifeng Huang
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong SAR, China
- HKBU Institute of Research and Continuing Education, Shenzhen, Guangdong, 518057, China
- Institute of Advanced Materials, State Key Laboratory of Environmental and Biological Analysis, Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
39
|
Carone A, Mariani P, Désert A, Romanelli M, Marcheselli J, Garavelli M, Corni S, Rivalta I, Parola S. Insight on Chirality Encoding from Small Thiolated Molecule to Plasmonic Au@Ag and Au@Au Nanoparticles. ACS NANO 2022; 16:1089-1101. [PMID: 34994190 DOI: 10.1021/acsnano.1c08824] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chiral plasmonic nanomaterials exhibiting intense optical activity are promising for numerous applications. In order to prepare those nanostructures, one strategy is to grow metallic nanoparticles in the presence of chiral molecules. However, in such approach the origin of the observed chirality remains uncertain. In this work, we expand the range of available chiral plasmonic nanostructures and we propose another vision of the origin of chirality in such colloidal systems. For that purpose, we investigated the synthesis of two core-shell Au@Ag and Au@Au systems built from gold nanobipyramid cores, in the presence of cysteine. The obtained nanoparticles possess uniform shape and size and show plasmonic circular dichroism in the visible range, and were characterized by electron microscopy, circular dichroism, and UV-vis-NIR spectroscopy. Opto-chiral responses were found to be highly dependent on the morphology and the plasmon resonance. It revealed (i) the importance of the anisotropy for Au@Au nanoparticles and (ii) the role of the multipolar modes for Au@Ag nanoparticles on the way to achieve intense plasmonic circular dichroism. The role of cysteine as shaping agent and as chiral encoder was particularly evaluated. Our experimental results, supported by theoretical simulations, contrast the hypothesis that chiral molecules entrapped in the nanoparticles determine the chiral properties, highlighting the key role of the outmost part of the nanoparticles shell on the plasmonic circular dichroism. Along with these results, the impact of enantiomeric ratio of cysteine on the final shape suggested that the presence of a chiral shape or chiral patterns should be considered.
Collapse
Affiliation(s)
- Antonio Carone
- Université de Lyon, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F-69364 Lyon, France
| | - Pablo Mariani
- Université de Lyon, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F-69364 Lyon, France
| | - Anthony Désert
- Université de Lyon, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F-69364 Lyon, France
| | - Marco Romanelli
- Dipartimento di Scienze Chimiche, Università di Padova, 35131 Padova, Italy
- Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125 Modena, Italy
| | - Jacopo Marcheselli
- Dipartimento di Chimica Industriale "Toso Montanari″, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
- SISSA─Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari″, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Stefano Corni
- Dipartimento di Scienze Chimiche, Università di Padova, 35131 Padova, Italy
- Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125 Modena, Italy
| | - Ivan Rivalta
- Université de Lyon, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F-69364 Lyon, France
- Dipartimento di Chimica Industriale "Toso Montanari″, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Stephane Parola
- Université de Lyon, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F-69364 Lyon, France
| |
Collapse
|
40
|
Abstract
Controlled assembly of inorganic nanoparticles with different compositions, sizes and shapes into higher-order structures of collective functionalities is a central pursued objective in chemistry, physics, materials science and nanotechnology. The emerging chiral superstructures, which break spatial symmetries at the nanoscale, have attracted particular attention, owing to their unique chiroptical properties and potential applications in optics, catalysis, biology and so on. Various bottom-up strategies have been developed to build inorganic chiral superstructures based on the intrinsic configurational preference of the building blocks, external fields or chiral templates. Self-assembled inorganic chiral superstructures have demonstrated significant superior optical activity from the strong electric/magnetic coupling between the building blocks, as compared with the organic counterparts. In this Review, we discuss recent progress in preparing self-assembled inorganic chiral superstructures, with an emphasis on the driving forces that enable symmetry breaking during the assembly process. The chiroptical properties and applications are highlighted and a forward-looking trajectory of where research efforts should be focused is discussed.
Collapse
|
41
|
Liu J, Yang L, Qin P, Zhang S, Yung KKL, Huang Z. Recent Advances in Inorganic Chiral Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005506. [PMID: 33594700 DOI: 10.1002/adma.202005506] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/22/2020] [Indexed: 05/27/2023]
Abstract
Inorganic nanoparticles offer a multifunctional platform for biomedical applications in drug delivery, biosensing, bioimaging, disease diagnosis, screening, and therapies. Homochirality prevalently exists in biological systems composed of asymmetric biochemical activities and processes, so biomedical applications essentially favor the usage of inorganic chiral nanomaterials, which have been widely studied in the past two decades. Here, the latest investigations are summarized including the characterization of 3D stereochirality, the bionic fabrication of hierarchical chirality, extension of the compositional space to poly-elements, studying optical activities with the (sub-)single-particle resolution, and the experimental demonstration in biomedical applications. These advanced studies pave the way toward fully understanding the two important chiral effects (i.e., the chiroptical and enantioselective effects), and prospectively promote the flexible design and fabrication of inorganic chiral nanoparticles with engineerable functionalities to solve diverse practical problems closely associated with environment and public health.
Collapse
Affiliation(s)
- Junjun Liu
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
- HKBU Institute of Research and Continuing Education, Shenzhen, Guangdong, 518057, China
| | - Lin Yang
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
- HKBU Institute of Research and Continuing Education, Shenzhen, Guangdong, 518057, China
| | - Ping Qin
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
- Golden Meditech Centre for NeuroRegeneration Sciences, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Shiqing Zhang
- Golden Meditech Centre for NeuroRegeneration Sciences, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
- Department of Biology, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Ken Kin Lam Yung
- Golden Meditech Centre for NeuroRegeneration Sciences, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
- Department of Biology, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Zhifeng Huang
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
- HKBU Institute of Research and Continuing Education, Shenzhen, Guangdong, 518057, China
- Golden Meditech Centre for NeuroRegeneration Sciences, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
- Institute of Advanced Materials, State Key Laboratory of Environmental and Biological Analysis, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
42
|
Warning LA, Miandashti AR, McCarthy LA, Zhang Q, Landes CF, Link S. Nanophotonic Approaches for Chirality Sensing. ACS NANO 2021; 15:15538-15566. [PMID: 34609836 DOI: 10.1021/acsnano.1c04992] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chiral nanophotonic materials are promising candidates for biosensing applications because they focus light into nanometer dimensions, increasing their sensitivity to the molecular signatures of their surroundings. Recent advances in nanomaterial-enhanced chirality sensing provide detection limits as low as attomolar concentrations (10-18 M) for biomolecules and are relevant to the pharmaceutical industry, forensic drug testing, and medical applications that require high sensitivity. Here, we review the development of chiral nanomaterials and their application for detecting biomolecules, supramolecular structures, and other environmental stimuli. We discuss superchiral near-field generation in both dielectric and plasmonic metamaterials that are composed of chiral or achiral nanostructure arrays. These materials are also applicable for enhancing chiroptical signals from biomolecules. We review the plasmon-coupled circular dichroism mechanism observed for plasmonic nanoparticles and discuss how hotspot-enhanced plasmon-coupled circular dichroism applies to biosensing. We then review single-particle spectroscopic methods for achieving the ultimate goal of single-molecule chirality sensing. Finally, we discuss future outlooks of nanophotonic chiral systems.
Collapse
Affiliation(s)
| | | | | | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
43
|
Visheratina A, Kumar P, Kotov N. Engineering of inorganic nanostructures with hierarchy of chiral geometries at multiple scales. AIChE J 2021. [DOI: 10.1002/aic.17438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Prashant Kumar
- Biointerfaces Institute University of Michigan Ann Arbor Michigan USA
| | - Nicholas Kotov
- Biointerfaces Institute University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
44
|
Wu W, Battie Y, Lemaire V, Decher G, Pauly M. Structure-Dependent Chiroptical Properties of Twisted Multilayered Silver Nanowire Assemblies. NANO LETTERS 2021; 21:8298-8303. [PMID: 34546067 DOI: 10.1021/acs.nanolett.1c02812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The optical properties of chiral plasmonic metasurfaces depend strongly on their architecture, in particular the orientation and spacing between the individual building blocks assembled into large arrays. However, methods to obtain chiral metamaterials with fully tunable chiroptical properties in the UV, visible, and near-infrared range are scarce. Here, we show that the chiroptical properties of silver nanowires assembled in helical nanostructures by grazing incidence spraying and Layer-by-Layer assembly can be finely tuned over a broad wavelength range using simple design principles. The angle between the oriented nanowire layers controls the intensity of the circular dichroism, reaching ellipticity values higher than 13° and g-factor values up to 1.6, while the shape of the circular dichroism spectra depends strongly on the spacing between the layers which can be tuned at the nanometer scale. The structure-dependent optical properties of the assembly are successfully modeled using a transfer matrix approach.
Collapse
Affiliation(s)
- Wenbing Wu
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 67000 Strasbourg, France
| | - Yann Battie
- Université de Lorraine, LCP-A2MC, 57000 Metz, France
| | - Vincent Lemaire
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 67000 Strasbourg, France
| | - Gero Decher
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 67000 Strasbourg, France
- International Center for Frontier Research in Chemistry, 67083 Strasbourg, France
- International Center for Materials Nanoarchitectonics, Tsukuba, Ibaraki 305-0044, Japan
| | - Matthias Pauly
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 67000 Strasbourg, France
| |
Collapse
|
45
|
Chen J, Gao X, Zheng Q, Liu J, Meng D, Li H, Cai R, Fan H, Ji Y, Wu X. Bottom-Up Synthesis of Helical Plasmonic Nanorods and Their Application in Generating Circularly Polarized Luminescence. ACS NANO 2021; 15:15114-15122. [PMID: 34427090 DOI: 10.1021/acsnano.1c05489] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chiral growth and chirality transfer associated with plasmonic nanostructures have rejuvenated the field of chirality. As the precise regioselective growth of inorganic crystals into chiral shapes at the nanoscale is extremely challenging, "bottom-up" synthesis of intrinsically chiral nanoparticles with structural stability is obviously attractive and important. With the thiolated bimolecular cosurfactants, we demonstrated a chemical strategy for the synthesis of intrinsically helical plasmonic nanorods (HPNRs) with strong and tailorable plasmonic circular dichroism (PCD) responses, deriving from the zwitterionic interactions between the -NH3+ and -COO- groups of the cysteine molecules (Cys). The influence of structural parameters of HPNRs on PCD responses was analyzed systematically by theoretical simulations. Among the different structural parameters, the pitch depth was found to have the greatest impact on the PCD signals, in agreement with the experimental results. Moreover, the obtained HPNRs with the strong, tunable, and stable chiroptical properties were found to be able to induce circularly polarized luminescence of achiral luminophores. Due to the generality of this effect, this chiral plasmonic nanostructure may have great potential for use in the fields of chiral sensors, chiral catalysis, and displays.
Collapse
Affiliation(s)
- Jiaqi Chen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Xinshuang Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbo Liu
- College of Optoelectronic Engineering, Zaozhuang University, Zaozhuang 277160, China
| | - Dejing Meng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Haiyun Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Rui Cai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Huizhen Fan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yinglu Ji
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiaochun Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Dong J, Zhou Y, Pan J, Zhou C, Wang Q. Assembling gold nanobipyramids into chiral plasmonic nanostructures with DNA origami. Chem Commun (Camb) 2021; 57:6201-6204. [PMID: 34059870 DOI: 10.1039/d1cc01925b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the assembly of gold nanobipyramids (AuNBPs) into static and dynamic chiral plasmonic nanostructures via DNA origami. Compared with conventional chiral dimers of gold nanorods (AuNRs), AuNBP dimers exhibit more intriguing chiroptical responses, suggesting that they could be a superior alternative for constructing chiral plasmonic nanostructures for biosensing.
Collapse
Affiliation(s)
- Jinyi Dong
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China. and School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China and Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People's Republic of China and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yihao Zhou
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China. and School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jiahao Pan
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China. and School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Chao Zhou
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China. and School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China. and School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China and School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
47
|
Ma Y, Xu H, Shen X, Pang Y. Facile photoreductive synthesis of silver nanoparticles for antimicrobial studies. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Xin L, Duan X, Liu N. Dimerization and oligomerization of DNA-assembled building blocks for controlled multi-motion in high-order architectures. Nat Commun 2021; 12:3207. [PMID: 34050157 PMCID: PMC8163789 DOI: 10.1038/s41467-021-23532-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/19/2021] [Indexed: 01/01/2023] Open
Abstract
In living organisms, proteins are organized prevalently through a self-association mechanism to form dimers and oligomers, which often confer new functions at the intermolecular interfaces. Despite the progress on DNA-assembled artificial systems, endeavors have been largely paid to achieve monomeric nanostructures that mimic motor proteins for a single type of motion. Here, we demonstrate a DNA-assembled building block with rotary and walking modules, which can introduce new motion through dimerization and oligomerization. The building block is a chiral system, comprising two interacting gold nanorods to perform rotation and walking, respectively. Through dimerization, two building blocks can form a dimer to yield coordinated sliding. Further oligomerization leads to higher-order structures, containing alternating rotation and sliding dimer interfaces to impose structural twisting. Our hierarchical assembly scheme offers a design blueprint to construct DNA-assembled advanced architectures with high degrees of freedom to tailor the optical responses and regulate multi-motion on the nanoscale. Creation of high-order architectures using DNA devices is of interest for increasing the complexity of synthetic systems. Here, the authors, inspired by biological oligomers, create DNA dimers and oligomers that combining rotation and walking to make high-order systems with more complex conformational changes.
Collapse
Affiliation(s)
- Ling Xin
- 2. Physics Institute, University of Stuttgart, Stuttgart, Germany.,Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Xiaoyang Duan
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Na Liu
- 2. Physics Institute, University of Stuttgart, Stuttgart, Germany. .,Max Planck Institute for Solid State Research, Stuttgart, Germany.
| |
Collapse
|
49
|
Yang Y, Wang L, Yang H, Li Q. 3D Chiral Photonic Nanostructures Based on Blue‐Phase Liquid Crystals. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yanzhao Yang
- School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Ling Wang
- School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Huai Yang
- Department of Materials Science and Engineering College of Engineering Peking University Beijing 100871 China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| |
Collapse
|
50
|
Golze SD, Porcu S, Zhu C, Sutter E, Ricci PC, Kinzel EC, Hughes RA, Neretina S. Sequential Symmetry-Breaking Events as a Synthetic Pathway for Chiral Gold Nanostructures with Spiral Geometries. NANO LETTERS 2021; 21:2919-2925. [PMID: 33764074 DOI: 10.1021/acs.nanolett.0c05105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Symmetry-breaking synthetic controls allow for nanostructure geometries that are counter to the underlying crystal symmetry of a material. If suitably applied, such controls provide the means to drive an isotropic metal along a growth pathway yielding a three-dimensional chiral geometry. Herein, we present a light-driven solution-based synthesis yielding helical gold spirals from substrate-bound seeds. The devised growth mode relies on three separate symmetry-breaking events ushered in by seeds lined with planar defects, a capping agent that severely frustrates early stage growth, and the Coulombic repulsion that occurs when identically charged growth fronts collide. Together they combine to advance a growth pathway in which planar growth emanates from one side of the seed, advances to encircle the seed from both clockwise and counterclockwise directions, and then, upon collision of the two growth fronts, sees one front rise above the other to realize a self-perpetuating three-dimensional spiral structure.
Collapse
Affiliation(s)
- Spencer D Golze
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Stefania Porcu
- Department of Physics, University of Cagliari, S.p. no. 8 Km0700, 09042 Monserrato (Ca), Italy
| | - Chen Zhu
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Eli Sutter
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Pier Carlo Ricci
- Department of Physics, University of Cagliari, S.p. no. 8 Km0700, 09042 Monserrato (Ca), Italy
| | - Edward C Kinzel
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Svetlana Neretina
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|