1
|
Ribeiro DG, Carvalho JDO, Sartori R, Monteiro PLJ, Fontes W, Castro MDS, de Sousa MV, Dode MAN, Mehta A. The presence of sexed sperm in bovine oviduct epithelial cells alters the protein profile related to stress and immune response. Res Vet Sci 2024; 184:105522. [PMID: 39740501 DOI: 10.1016/j.rvsc.2024.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
Although sperm sexing technology has progressed considerably in the last decade, there are still challenges to fully understand the reason for the low fertility of sexed sperm. Thus, we aimed to evaluate the effect of sexed and non-sexed sperm on the proteome of bovine oviduct epithelial cells (BOECs). Semen from six Nellore bulls was used and one ejaculate from each bull was collected and separated into three fractions: non-sexed, sexed for X-sperm and sexed for Y-sperm. Previously synchronized females were artificially inseminated with either a pool of non-sexed sperm from 6 sires (NS), or a pool of sexed X and Y sperm from 6 sires (XY) or saline solution (Control). After insemination, animals were slaughtered and oviducts were collected to obtain BOECs samples, which were used for proteomic analysis. The results revealed that the oviductal response on isthmus region to the presence of sperm is different when sexed and non-sexed sperm are used. Sexed sperm seemed to induced a more intense and imbalanced response to several processes, such as oxidative and heat stress, immune response and movement of the oviduct muscle.
Collapse
Affiliation(s)
- Daiane Gonzaga Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Brasilia, DF, Brazil; Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasilia, DF, Brazil
| | - José de Oliveira Carvalho
- Postgraduate Program in Veterinary Sciences, Federal University of Espirito Santo, Alegre, ES, Brazil
| | - Roberto Sartori
- Department of Animal Science, University of São Paulo, Piracicaba, Brazil
| | - Pedro Leopoldo Jerônimo Monteiro
- Department of Animal Science, University of São Paulo, Piracicaba, Brazil; Department of Large Animal Clinical Sciences, University of Florida, Gainesville, USA
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasilia, DF, Brazil
| | - Mariana de Souza Castro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasilia, DF, Brazil
| | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasilia, DF, Brazil
| | - Margot Alves Nunes Dode
- Embrapa Recursos Genéticos e Biotecnologia, Brasilia, DF, Brazil; Programa de Pós-Graduação em Biologia Animal, Universidade de Brasília- UnB, Brazil.
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasilia, DF, Brazil.
| |
Collapse
|
2
|
Li Q, Yang Y, Bai X, Xie L, Niu S, Xiong B. Systematic analysis and functional characterization of the chitinase gene family in Fagopyrum tataricum under salt stress. BMC PLANT BIOLOGY 2024; 24:1222. [PMID: 39707214 DOI: 10.1186/s12870-024-05971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Chitinases (CHIs) are glycosidases that degrade chitin, playing critical roles in plant responses to both abiotic and biotic stress. Despite their importance, the CHI family's systematic analysis and evolutionary pattern in F. tataricum (Tartary buckwheat) yet to be explored. RESULTS This study analyzed their phylogenetic relationships, conserved motifs, gene structures, syntenic relationships, physiological functions, and biochemical properties. This research identified 26 FtCHIs and examined their expression patterns under different salt stress conditions and across various tissues. Differential expression analysis revealed a significant upregulation of multiple FtCHIs in response to salt stress, which RT-qPCR further validated. Additionally, subcellular localization experiments demonstrated that Ft_chitinaseIV-2 is localized in vacuoles. The results of transient·transformation showed that·overexpression of Ft_chitinaseIV-2 could·enhance the salt tolerance of plants. CONCLUSIONS The findings provide new insights into the role of CHIs in stress tolerance and lay the groundwork for future research on the functional characterization of FtCHIs. Understanding the molecular mechanisms of CHI-mediated stress responses could contribute to developing stress-resistant crops.
Collapse
Affiliation(s)
- Qingqing Li
- College of Tea/Agrobioengineering Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Yongyi Yang
- College of Tea/Agrobioengineering Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Xue Bai
- College of Tea/Agrobioengineering Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Lun Xie
- College of Tea/Agrobioengineering Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Suzhen Niu
- College of Tea/Agrobioengineering Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Biao Xiong
- College of Tea/Agrobioengineering Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
- College of Forestry, Guizhou University, Guiyang, 550025, China.
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada.
| |
Collapse
|
3
|
Gulova S, Slovinska L, Fecskeova LK, Bzdilova J, Matejova J, Moravek M, Lacko M, Harvanova D. Extracellular vesicles from platelet-poor plasma possess anti-inflammatory and anti-catabolic effects in chondrocytes stimulated with IL-1β or synovial membrane-conditioned media. J Orthop Surg Res 2024; 19:847. [PMID: 39702385 DOI: 10.1186/s13018-024-05355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Although osteoarthritis (OA) is the most prevalent form of arthritis, there is still no effective treatment capable of combining immunomodulatory effects with cartilage repair. Extracellular vesicles (EVs) represent a promising new generation of cell-free therapies for OA. Blood-derived products, including plasma, are an easily available and abundant source of EVs with anti-inflammatory and regenerative properties. In this study, our objective was to analyze the effect of platelet poor plasma-derived extracellular vesicles (PPP-EVs) on stimulated OA chondrocytes in vitro. We hypothesize that PPP from healthy donors could be a suitable source of EVs that can modulate the inflammatory environment of OA chondrocytes. METHODS Cartilage and synovial membrane (SM) were obtained from patients with OA and whole blood from healthy donors. Synovial membrane-conditioned media (CM / SM) was analyzed using multiplex immunoassays. EVs were isolated from PPP using size exclusion chromatography (SEC) and characterized by nanoparticle tracking analysis (NTA), Western blot, and flow cytometry (FC). The phenotype of the chondrocytes was analyzed using fluorescence microscopy and RT-qPCR. Chondrocytes were stimulated with IL-1β or CM/SM for 24 h. The impact of PPP-EVs on stimulated chondrocyte gene expression was evaluated using RT-qPCR. RESULTS The PPP-EVs isolated by SEC were positive for the tetraspanins CD9, CD63, and CD81. The chondrocyte phenotype was confirmed by positive expression of Collagen II and Aggrecane. CM/SM and IL-1β caused inflammatory changes in chondrocytes, which was observed by increased expression of the genes MMP-1, MMP-3 and MMP-13, RANTES, TSG-6, and YKL-40 compared to the control. PPP-EVs added to stimulated chondrocytes for 24 h significantly decreased the expression of the chondrocyte gene YKL-40, TSG-6 and MMP-1. CONCLUSIONS In this study, we confirmed that PPP is a suitable source of EVs, which can be efficiently isolated by SEC. We found that PPP-EVs were capable of decreasing the expression of inflammatory genes in OA chondrocytes stimulated with IL-1β or CM/SM. This study provides preliminary results on PPP-EVs as an affordable and promising option to modulate the catabolic microenvironment of OA chondrocytes in vitro.
Collapse
Affiliation(s)
- Slavomira Gulova
- Associated Tissue Bank, Faculty of Medicine, P.J. Safarik University and L. Pasteur University Hospital in Kosice, Tr. SNP 1, Kosice, 04011, Slovakia
| | - Lucia Slovinska
- Associated Tissue Bank, Faculty of Medicine, P.J. Safarik University and L. Pasteur University Hospital in Kosice, Tr. SNP 1, Kosice, 04011, Slovakia
| | - Livia K Fecskeova
- Associated Tissue Bank, Faculty of Medicine, P.J. Safarik University and L. Pasteur University Hospital in Kosice, Tr. SNP 1, Kosice, 04011, Slovakia
| | - Jana Bzdilova
- Associated Tissue Bank, Faculty of Medicine, P.J. Safarik University and L. Pasteur University Hospital in Kosice, Tr. SNP 1, Kosice, 04011, Slovakia
| | - Jana Matejova
- Associated Tissue Bank, Faculty of Medicine, P.J. Safarik University and L. Pasteur University Hospital in Kosice, Tr. SNP 1, Kosice, 04011, Slovakia
| | - Marko Moravek
- Associated Tissue Bank, Faculty of Medicine, P.J. Safarik University and L. Pasteur University Hospital in Kosice, Tr. SNP 1, Kosice, 04011, Slovakia
| | - Marek Lacko
- Department of Orthopedics and Traumatology of Locomotor Apparatus, P. J. Safarik University and L. Pasteur University Hospital in Kosice, Tr. SNP 1, Kosice, 04011, Slovakia
| | - Denisa Harvanova
- Associated Tissue Bank, Faculty of Medicine, P.J. Safarik University and L. Pasteur University Hospital in Kosice, Tr. SNP 1, Kosice, 04011, Slovakia.
| |
Collapse
|
4
|
Okawa K, Kijima M, Ishii M, Nanako M, Yasumura Y, Sakaguchi M, Kimura M, Uehara M, Tabata E, Bauer PO, Oyama F. Hyperactivation of human acidic chitinase (Chia) for potential medical use. J Biol Chem 2024:108100. [PMID: 39706263 DOI: 10.1016/j.jbc.2024.108100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
Accumulation of environmental chitin in the lungs can lead to pulmonary fibrosis, characterized by inflammatory infiltration and fibrosis in acidic chitinase (Chia)-deficient mice. Transgenic expression of Chia in these mice ameliorated the symptoms, indicating the potential of enzyme supplementation as a promising therapeutic strategy for related lung diseases. This study focuses on utilizing hyperactivated human Chia, which exhibits low activity. We achieved significant activation of human Chia by incorporating nine amino acids derived from the crab-eating monkey (Macaca fascicularis) Chia, known for its robust chitin-degrading activity. The modified human Chia retained high activity across a broad pH spectrum and exhibited enhanced thermal stability. The amino acid substitutions associated with hyperactivation of human Chia activity occurred species-specifically in monkey Chia. This discovery highlights the potential of hyperactivated Chia in treating pulmonary diseases resulting from chitin accumulation in human lungs.
Collapse
Affiliation(s)
- Kazuaki Okawa
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Masashi Kijima
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Mana Ishii
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Maeda Nanako
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Yudai Yasumura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Masahiro Kimura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan; School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, 192-0982, Japan
| | - Maiko Uehara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan; Japan Society for the Promotion of Science (PD), Tokyo, 102-0083, Japan
| | - Peter O Bauer
- Bioinova a.s., Videnska 1083, Prague, 142 00, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan.
| |
Collapse
|
5
|
Wang X, Ye T, Huang J, Hu F, Huang C, Gu B, Xu X, Yang J. Aberrant Chitinase 3-Like 1 Expression in Basal Cells Contributes to Systemic Sclerosis Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2310169. [PMID: 39686726 DOI: 10.1002/advs.202310169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 10/06/2024] [Indexed: 12/18/2024]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by extensive skin and internal organ fibrosis. However, the mechanism underlying fibrosis remains unclear, and effective treatments for halting or reversing fibrosis are lacking. In this study, single-cell RNA sequencing is used to obtain a comprehensive overview of skin cells from patients with SSc and healthy controls. A subset of basal cells with high chitinase 3-like 1 (Chi3L1) expression, which potentially plays an important role in fibroblast activation, is identified in SSc. Subsequently, patients with SSc are present with increased expression of Chi3L1 in the skin and serum, and elevated serum levels are associated with skin induration and pulmonary function. Furthermore, Chi3L1 promoted the differentiation of SSc dermal fibroblasts into myofibroblasts, and Chi3L1-deficient (Chi3L1-/-) mice showed amelioration of fibrosis in a bleomycin-induced SSc (BLM-SSc) model. Mechanistically, Chi3L1 mediates fibroblast activation primarily by interacting with interleukin-17 receptor A (IL-17RA), thereby initiating downstream nuclear factor kappa B and mitogen-activated protein kinases signaling pathways. Moreover, the anti-fibrotic effect of IL-17RA antagonists in BLM-SSc mice is demonstrated. In conclusion, Chi3L1 is a potential biomarker for the degree of fibrosis in SSc. Chi3L1 and its receptor, IL-17RA, are promising therapeutic targets for patients with SSc.
Collapse
Affiliation(s)
- Xiuyuan Wang
- Department of Dermatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Tianbao Ye
- Sixth People's Hospital affiliated to Shanghai Jiao Tong University, Shanghai, 200233, China
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361008, China
| | - Junxia Huang
- Department of Dermatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Feifei Hu
- Department of Dermatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Chengjie Huang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Bei Gu
- Shanghai Normal University, Shanghai, 200233, China
| | - Xinzhi Xu
- Department of Dermatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Ji Yang
- Department of Dermatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| |
Collapse
|
6
|
Wang JL, Jiang SW, Hu AR, Shi XJ, Zhou AW, Lin K, Fan Y, Jin MH, Zhang HJ. A model based on chitinase 3-like protein for expecting liver severity of hepatitis B virus infections in the immune tolerance phase. Clin Chim Acta 2024; 567:120085. [PMID: 39667422 DOI: 10.1016/j.cca.2024.120085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND The question of whether to treat patients with chronic hepatitis B (CHB) during the immune tolerance (IT) period is a matter of ongoing debate, as it is difficult to discern different levels of liver disease severity. We created and assessed a novel diagnostic model for identifying significant liver tissue damage in individuals with CHB in IT phase. METHODS From November 2018 to December 2022, a cross-sectional study of 311 patients with chronic hepatitis B virus infection (HBV DNA > 30 IU/mL) at Ningbo No. 2 Hospital, Ningbo, China, who underwent liver biopsy, including 44 patients in IT phase. Utilizing univariate regression analyses and logistics analysis, and model was developed and validated to predict the severity of hepatic inflammatory and fibrosis in CHB patients and in IT phase. RESULTS Chitinase 3-like Protein (CHI3L1), albumin (ALB), alanine transaminase (ALT) / aspartate aminotransferase (AST) were identified as independent predictors of liver lesion severity in CHB patients with IT. The three were combined to build the model (named as CAA index), which demonstrated good performance. The CAA index achieved an area under the receiver operating characteristic curve (AUC) of 0.916 (95 % CI, 0.820-1.000) and AUC of validation group was 0.875 (95 % CI, 0.683-1.000). CONCLUSIONS CHI3L1 serves as an independent measure of liver fibrosis and inflammation in CHB. This diagnostic model has some value in assessing the severity of the patient's liver lesion severity and may be a reliable non-invasive diagnostic model helping determine whether treatment is necessary among CHB patients in IT phase.
Collapse
Affiliation(s)
- Jia-Lan Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China; Liver Diseases Center, Ningbo No. 2 Hospital, Ningbo 315020, Zhejiang Province, China
| | - Su-Wen Jiang
- Liver Diseases Center, Ningbo No. 2 Hospital, Ningbo 315020, Zhejiang Province, China
| | - Ai-Rong Hu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China; Liver Diseases Center, Ningbo No. 2 Hospital, Ningbo 315020, Zhejiang Province, China.
| | - Xiao-Jun Shi
- Liver Diseases Center, Ningbo No. 2 Hospital, Ningbo 315020, Zhejiang Province, China
| | - Ai-Wu Zhou
- Liver Diseases Center, Ningbo No. 2 Hospital, Ningbo 315020, Zhejiang Province, China
| | - Ken Lin
- Ningbo University Health Science Center, Ningbo 315211, Zhejiang Province, China
| | - Ying Fan
- School of Medicine, Shaoxing University, Shaoxing 31200, Zhejiang Province, China
| | - Meng-Han Jin
- Ningbo University Health Science Center, Ningbo 315211, Zhejiang Province, China
| | - Hao-Jin Zhang
- School of Medicine, Shaoxing University, Shaoxing 31200, Zhejiang Province, China
| |
Collapse
|
7
|
Blažević N, Trkulja V, Rogić D, Pelajić S, Miler M, Glavčić G, Misir Z, Živković M, Nikolić M, Lerotić I, Baršić N, Hrabar D, Pavić T. YKL-40 as a risk stratification marker in acute pancreatitis: A prospective study. Pancreatology 2024:S1424-3903(24)00809-3. [PMID: 39638701 DOI: 10.1016/j.pan.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/13/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND/OBJECTIVES Increased systemic concentrations of YKL-40 are seen in various inflammatory conditions. We explored the relationship between the serum YKL-40 concentrations and subsequent disease severity in patients with acute pancreatitis (AP). METHODS Consecutive adults with AP were prospectively enrolled, and classified as having mild, moderate or severe disease. On admission and 48 h later, C-reactive protein (CRP), YKL-40, interleukin-6 and 8 (IL-6, IL-8), and tumor necrosis factor alpha (TNF-α) concentrations were measured. Patients were also classified as those with low (<50 ng/mL, in the range seen in 30 age and sex-matched non-AP subjects), high (≥190 ng/mL, seen in most of the other inflammatory conditions), and intermediate YKL-40 (50-189 ng/mL). RESULTS Incidence of mild, moderate and severe AP among the 150 enrolled patients was 80 (53.3 %), 59 (39.3 %), and 11 (7.4 %), respectively. Both on admission and 48 h later, high YKL-40 (vs. intermediate or low) was strongly associated with higher odds of a more severe AP, independently of the concurrent IL-8 and TNF-α concentrations (OR around 3.5-4.0, or higher). On admission, the association was independent also of the concurrent CRP, whereas the association between the later concentrations and the outcome was conditional on CRP - uncertain at low, strong at high CRP. The high YKL-40 - outcome association at both time-points was conditional on concurrent IL-6: uncertain if IL-6 was low, strong if IL-6 was high. CONCLUSIONS Serum YKL-40 is a plausible candidate for further evaluation as an early biochemical indicator of subsequent AP severity, particularly if considered jointly with CRP and/or IL-6.
Collapse
Affiliation(s)
- Nina Blažević
- Department of Gastroenterology and Hepatology, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia.
| | - Vladimir Trkulja
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dunja Rogić
- Department of Laboratory Diagnostics, University Hospital Center Zagreb, Croatia
| | - Stipe Pelajić
- Department of Gastroenterology and Hepatology, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Marijana Miler
- Department of Clinical Chemistry, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Goran Glavčić
- Department of Surgery, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Zvonimir Misir
- Department of Surgery, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Mario Živković
- Department of Gastroenterology and Hepatology, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Marko Nikolić
- Department of Gastroenterology and Hepatology, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Ivan Lerotić
- Department of Gastroenterology and Hepatology, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Neven Baršić
- Department of Gastroenterology and Hepatology, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Davor Hrabar
- Department of Gastroenterology and Hepatology, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Tajana Pavić
- Department of Gastroenterology and Hepatology, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| |
Collapse
|
8
|
Sorkhdini P, Klubock-Shukla K, Sheth S, Yang D, Yang AX, Norbrun C, Introne WJ, Gochuico BR, Zhou Y. Type 2 innate immunity promotes the development of pulmonary fibrosis in Hermansky-Pudlak syndrome. JCI Insight 2024; 9:e178381. [PMID: 39405112 PMCID: PMC11601950 DOI: 10.1172/jci.insight.178381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
Hermansky-Pudlak syndrome (HPS), particularly types 1 and 4, is characterized by progressive pulmonary fibrosis, a major cause of morbidity and mortality. However, the precise mechanisms driving pulmonary fibrosis in HPS are not fully elucidated. Our previous studies suggested that CHI3L1-driven fibroproliferation may be a notable factor in HPS-associated fibrosis. This study aimed to explore the role of CHI3L1-CRTH2 interaction on type 2 innate lymphoid cells (ILC2s) and explored the potential contribution of ILC2-fibroblast crosstalk in the development of pulmonary fibrosis in HPS. We identified ILC2s in lung tissues from patients with idiopathic pulmonary fibrosis and HPS. Using bleomycin-challenged WT and Hps1-/- mice, we observed that ILC2s were recruited and appeared to contribute to fibrosis development in the Hps1-/- mice, with CRTH2 playing a notable role in ILC2 accumulation. We sorted ILC2s, profiled fibrosis-related genes and mediators, and conducted coculture experiments with primary lung ILC2s and fibroblasts. Our findings suggest that ILC2s may directly stimulate the proliferation and differentiation of primary lung fibroblasts partially through amphiregulin-EGFR-dependent mechanisms. Additionally, specific overexpression of CHI3L1 in the ILC2 population using the IL-7Rcre driver, which was associated with increased fibroproliferation, indicates that ILC2-mediated, CRTH2-dependent mechanisms might contribute to optimal CHI3L1-induced fibroproliferative repair in HPS-associated pulmonary fibrosis.
Collapse
Affiliation(s)
- Parand Sorkhdini
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Kiran Klubock-Shukla
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Selena Sheth
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Dongqin Yang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Alina Xiaoyu Yang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Carmelissa Norbrun
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Wendy J. Introne
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), NIH, Bethesda, Maryland, USA
| | - Bernadette R. Gochuico
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), NIH, Bethesda, Maryland, USA
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
9
|
Antunes D, Domingues R, Cruz-Almeida M, Rodrigues L, Borges O, Carvalho A, Casadevall A, Fernandes C, Gonçalves T. Cell wall nanoparticles from hyphae of Alternaria infectoria grown with caspofungin, nikkomycin, or pyroquilon trigger different activation profiles in macrophages. Microbiol Spectr 2024; 12:e0064524. [PMID: 39329485 PMCID: PMC11537108 DOI: 10.1128/spectrum.00645-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/02/2024] [Indexed: 09/28/2024] Open
Abstract
Alternaria infectoria causes opportunistic human infections and is a source of allergens leading to respiratory allergies. In this work, we prepared cell wall nanoparticles (CWNPs) as a novel approach to study macrophage immunomodulation by fungal hyphal cell walls. A. infectoria was grown in the presence of caspofungin, an inhibitor of β(1,3)-glucan synthesis; nikkomycin Z, an inhibitor of chitin synthases; and pyroquilon, an inhibitor of dihydroxynaphthalene (DHN)-melanin synthesis. Distinct CWNPs were obtained from these cultures, referred to as casCWNPs, nkCWNPs, and pyrCWNPs, respectively. CWNPs are round-shaped particles with a diameter of 70-200 nm diameter particles that when added to macrophages are taken up by membrane ruffling. CWNPs with no DHN-melanin and more glucan (pyrCWNPs) caused early macrophage activation and lowest viability, with the cells exhibiting ultrastructural modifications such as higher vacuolization and formation of autophagy-like structures. CasCWNPs promoted the highest tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) increase, also resulting in the release of partially degraded chitin, an aspect never observed in macrophage-like cells and fungi. After 6 h of interaction with CWNPs, only half were viable, except with control CWNPs. Overall, this work indicates that compounds that modify the fungal cell wall led to CWNPs with new properties that may have implications for the effects of drugs during antifungal therapy. CWNPs provide a new tool to study the interaction of hyphal fungal cell wall components with phagocytic cells and enable to show how the modification of cell wall components in A. infectoria can modulate the response by macrophages.IMPORTANCEAlternaria species are ubiquitous environmental fungi to which the human host can continuously be exposed, through the inhalation of fungal spores but also of fragments of hyphae, from desegregated mycelia. These fungi are involved in hypersensitization and severe respiratory allergies, such as asthma, and can cause opportunistic infections in immunodepressed human host leading to severe disease. The first fungal structures to interact with the host cells are the cell wall components, and their modulation leads to differential immune responses. Here, we show that fungal cells grown with cell wall inhibitors led to cell wall nanoparticles with new properties in their interaction with macrophages. With this strategy, we overcame the limitation of in vitro assays interacting with filamentous fungi and showed that the absence of DNH-melanin leads to higher virulence, while caspofungin leads to cells walls that trigger higher hydrolysis of chitin and higher production of cytokines.
Collapse
Affiliation(s)
- Daniela Antunes
- Univ Coimbra, CNC-UC—Center for Neuroscience and Cell Biology of the University of Coimbra, Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Rita Domingues
- Univ Coimbra, CNC-UC—Center for Neuroscience and Cell Biology of the University of Coimbra, Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Mariana Cruz-Almeida
- Univ Coimbra, CNC-UC—Center for Neuroscience and Cell Biology of the University of Coimbra, Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Lisa Rodrigues
- Univ Coimbra, CNC-UC—Center for Neuroscience and Cell Biology of the University of Coimbra, Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Olga Borges
- Univ Coimbra, CNC-UC—Center for Neuroscience and Cell Biology of the University of Coimbra, Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Univ Coimbra, FFUC—Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Chantal Fernandes
- Univ Coimbra, CNC-UC—Center for Neuroscience and Cell Biology of the University of Coimbra, Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Teresa Gonçalves
- Univ Coimbra, CNC-UC—Center for Neuroscience and Cell Biology of the University of Coimbra, Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Univ Coimbra, FMUC—Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
Ma B, Kamle S, Sadanaga T, Lee CM, Lee JH, Yee DC, Zhu Z, Silverman EK, DeMeo DL, Choi AMK, Lee CG, Elias JA. Chitinase 3-like-1 Inhibits Innate Antitumor and Tissue Remodeling Immune Responses by Regulating CD47-SIRPα- and CD24-Siglec10-Mediated Phagocytosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1279-1291. [PMID: 39291933 DOI: 10.4049/jimmunol.2400035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
Innate immune responses such as phagocytosis are critically linked to the generation of adaptive immune responses against the neoantigens in cancer and the efferocytosis that is essential for homeostasis in diseases characterized by lung injury, inflammation, and remodeling as in chronic obstructive pulmonary disease (COPD). Chitinase 3-like-1 (CHI3L1) is induced in many cancers where it inhibits adaptive immune responses by stimulating immune checkpoint molecules (ICPs) and portends a poor prognosis. CHI3L1 is also induced in COPD where it regulates epithelial cell death. In this study, we demonstrate that pulmonary melanoma metastasis inhibits macrophage phagocytosis by stimulating the CD47-SIRPα and CD24-Siglec10 phagocytosis checkpoint pathways while inhibiting macrophage "eat me" signals from calreticulin and HMGB1. We also demonstrate that these effects on macrophage phagocytosis are associated with CHI3L1 stimulation of the SHP-1 and SHP-2 phosphatases and inhibition of the accumulation and phosphorylation of cytoskeleton-regulating nonmuscle myosin IIa. This inhibition of innate immune responses such as phagocytosis provides a mechanistic explanation for the ability of CHI3L1 to stimulate ICPs and inhibit adaptive immune responses in cancer and diseases such as COPD. The ability of CHI3L1 to simultaneously inhibit innate immune responses, stimulate ICPs, inhibit T cell costimulation, and regulate a number of other oncogenic and inflammation pathways suggests that CHI3L1-targeted therapeutics are promising interventions in cancer, COPD, and other disorders.
Collapse
Affiliation(s)
- Bing Ma
- Molecular Microbiology and Immunology, Brown University, Providence, RI
| | - Suchitra Kamle
- Molecular Microbiology and Immunology, Brown University, Providence, RI
| | - Takayuki Sadanaga
- Molecular Microbiology and Immunology, Brown University, Providence, RI
| | - Chang-Min Lee
- Molecular Microbiology and Immunology, Brown University, Providence, RI
| | - Joyce H Lee
- Johns Hopkins School of Medicine, Baltimore, MD
| | - Daniel C Yee
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Medical Center, New York, NY
| | - Zhou Zhu
- Department of Pediatrics, Brown University, Providence, RI
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Woman's Hospital, Harvard Medical School, Boston, MA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Woman's Hospital, Harvard Medical School, Boston, MA
| | | | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown University, Providence, RI
| | - Jack A Elias
- Molecular Microbiology and Immunology, Brown University, Providence, RI
- Department of Medicine, Brown University, Providence, RI
| |
Collapse
|
11
|
Liu J, Wang G, Shi M, Guo RY, Yuan C, Wang Y, Mehmood A, Zhang L, Li B. BTK and YKL-40 Levels and Their Association with Acute AQP4-IgG-Positive Neuromyelitis Optica Spectrum Disorder. Mol Neurobiol 2024:10.1007/s12035-024-04588-5. [PMID: 39485631 DOI: 10.1007/s12035-024-04588-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
This study investigated the potential correlation between BTK/YKL-40 levels and the severity of AQP4-IgG + NMOSD, aiming to identify biomarkers for disease monitoring and treatment assessment. Plasma YKL-40 expression was measured in 135 AQP4-IgG + NMOSD patients using ELISA. Patients were categorized into pre- and post-IVMP treatment acute phases, as well as during remission, with a healthy control group included. BTK and NF-κB mRNA levels in PBMCs were detected via q-PCR, and BTK/P-BTK protein expression was assessed using Western blotting. Disability was evaluated using the EDSS score, and clinical characteristics were evaluated alongside laboratory tests. Acute-phase NMOSD patients receiving pre-IVMP therapy presented significantly elevated plasma YKL-40 concentrations compared with those of post-treatment patients, patients in remission, and healthy controls. Additionally, these patients presented significantly higher levels of PBMC BTK mRNA, NF-κB mRNA, BTK, and P-BTK protein expression than remission patients and healthy controls. Plasma YKL-40 levels and PBMC BTK/P-BTK protein levels were positively correlated with EDSS scores. The plasma YKL-40 concentration significantly contributes to disease severity and serves as an independent risk factor for acute NMOSD. Elevated BTK, P-BTK, NF-κB, and YKL-40 levels were observed in acute-phase AQP4-IgG + NMOSD patients. These biomarkers are related to disease activity and may predict treatment efficacy. There is a connection among YKL-40, BTK, and P-BTK levels and disease severity, suggesting their potential involvement in the pathogenic mechanism of AQP4-IgG + NMOSD.
Collapse
Affiliation(s)
- Jing Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Gaoning Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Mengya Shi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Congcong Yuan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
| | - Yulin Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
| | - Lu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China.
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China.
| |
Collapse
|
12
|
Mu L, Wu L, Wu S, Ye Q, Zhong Z. Progress in chitin/chitosan and their derivatives for biomedical applications: Where we stand. Carbohydr Polym 2024; 343:122233. [PMID: 39174074 DOI: 10.1016/j.carbpol.2024.122233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 08/24/2024]
Abstract
Chitin and its deacetylated form, chitosan, have demonstrated remarkable versatility in the realm of biomaterials. Their exceptional biocompatibility, antibacterial properties, pro- and anticoagulant characteristics, robust antioxidant capacity, and anti-inflammatory potential make them highly sought-after in various applications. This review delves into the mechanisms underlying chitin/chitosan's biological activity and provides a comprehensive overview of their derivatives in fields such as tissue engineering, hemostasis, wound healing, drug delivery, and hemoperfusion. However, despite the wealth of studies on chitin/chitosan, there exists a notable trend of homogeneity in research, which could hinder the comprehensive development of these biomaterials. This review, taking a clinician's perspective, identifies current research gaps and medical challenges yet to be addressed, aiming to pave the way for a more sustainable future in chitin/chitosan research and application.
Collapse
Affiliation(s)
- Lanxin Mu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China; Southwest Hospital of Third Military Medical University (Army Medical University), Department of Plastic Surgery, Chongqing 400038, China
| | - Liqin Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China.
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China.
| |
Collapse
|
13
|
Kamle S, Ma B, Schor G, Bailey M, Pham B, Cho I, Khan H, Azzoli C, Hofstetter M, Sadanaga T, Herbst R, Politi K, Lee CG, Elias JA. Chitinase 3-like-1 (CHI3L1) in the pathogenesis of epidermal growth factor receptor mutant non-small cell lung cancer. Transl Oncol 2024; 49:102108. [PMID: 39178575 PMCID: PMC11388375 DOI: 10.1016/j.tranon.2024.102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/26/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for 85 % of all lung cancers. In NSCLC, 10-20 % of Caucasian patients and 30-50 % of Asian patients have tumors with activating mutations in the Epidermal Growth Factor Receptor (EGFR). A high percentage of these patients exhibit favorable responses to treatment with tyrosine kinase inhibitors (TKI). Unfortunately, a majority of these patients develop therapeutic resistance with progression free survival lasting 9-18 months. The mechanisms that underlie the tumorigenic effects of EGFR and the ability of NSCLC to develop resistance to TKI therapies, however, are poorly understood. Here we demonstrate that CHI3L1 is produced by EGFR activation of normal epithelial cells, transformed epithelial cells with wild type EGFR and cells with cancer-associated, activating EGFR mutations. We also demonstrate that CHI3L1 auto-induces itself and feeds back to stimulate EGFR and its ligands via a STAT3-dependent mechanism(s). Highly specific antibodies against CHI3L1 (anti-CHI3L1/FRG) and TKI, individually and in combination, abrogated the effects of EGFR activation on CHI3L1 and the ability of CHI3L1 to stimulate the EGFR axis. Anti-CHI3L1 also interacted with osimertinib to reverse TKI therapeutic resistance and induce tumor cell death and inhibit pulmonary metastasis while stimulating tumor suppressor genes including KEAP1. CHI3L1 is a downstream target of EGFR that feeds back to stimulate and activate the EGFR axis. Anti-CHI3L1 is an exciting potential therapeutic for EGFR mutant NSCLC, alone and in combination with osimertinib or other TKIs.
Collapse
Affiliation(s)
- Suchitra Kamle
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA; Legorreta Cancer Center, Brown University, Providence, RI, USA
| | - Bing Ma
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Gail Schor
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Madison Bailey
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Brianna Pham
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Inyoung Cho
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Hina Khan
- Medical Oncology, Department of Medicine, Warren Alpert Medical School Brown University, USA
| | - Christopher Azzoli
- Medical Oncology, Department of Medicine, Warren Alpert Medical School Brown University, USA
| | - Mara Hofstetter
- Department of Chemistry, Yale University, USA; University of Zurich, Switzerland
| | - Takayuki Sadanaga
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Roy Herbst
- Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Katerina Politi
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA; Legorreta Cancer Center, Brown University, Providence, RI, USA
| | - Jack A Elias
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA; Legorreta Cancer Center, Brown University, Providence, RI, USA; Departments of Medicine, Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
14
|
Kusnierova P, Revendova KZ, Karasova K, Zeman D, Bunganic R, Hradilek P, Volny O, Ganesh A, Kovacova I, Stejskal D. Neurofilament heavy chain and chitinase 3-like 1 as markers for monitoring therapeutic response in multiple sclerosis. Mult Scler Relat Disord 2024; 91:105915. [PMID: 39383686 DOI: 10.1016/j.msard.2024.105915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
AIMS The aim of this study was to evaluate the association of serum neurofilament heavy chain (sNfH) and chitinase 3-like 1 (sCHI3L1) with treatment response and disease activity in multiple sclerosis (MS). METHODS This single-center, prospective, observational cohort study was conducted at the MS Centre, University Hospital Ostrava, Czech Republic, from May 2020 to August 2023. sNfH and sCHI3L1 were determined using ELISA. A mixed-effects linear model with a log-transformed outcome variable was applied. RESULTS We analyzed 459 samples from 57 people with MS. Patients were sampled an average of 8.05 times during 21.9 months of follow-up. Those experiencing a relapse at sampling had a sNfH concentration 50 % higher than those in remission (exp(β) 1.5, 95 % CI 1.15-1.96). A longer duration of treatment was associated with lower sNfH (exp(β) 0.95, 95 % CI 0.94-0.96). Patients switched from low- to high-efficacy disease-modifying therapies (DMTs) had higher sNfH than patients treated with low-efficacy DMTs only (exp(β) 1.95, 95 % CI 1.35-2.81). Higher sCHI3L1 was associated with older age (exp(β) 1.01, 95 % CI 1.00-1.02) and longer DMT use (exp(β) 1.01, 95 % CI 1.00-1.02). sCHI3L1 values were not associated with relapse at the time of sampling, renal function, sex, or type of DMT. CONCLUSION In contrast to sCHI3L1, sNfH may be a potential biomarker for monitoring treatment response and confirming clinical relapse in MS. Further research is needed to determine the long-term dynamics of sNfH and develop related treatment strategies.
Collapse
Affiliation(s)
- P Kusnierova
- University Hospital Ostrava, Institute of Laboratory Medicine, Department of Clinical Biochemistry, Ostrava, Czech Republic; University of Ostrava, Institute of Laboratory Medicine, Ostrava, Czech Republic
| | - K Zondra Revendova
- University Hospital Ostrava, Department of Neurology, Ostrava, Czech Republic; University of Ostrava, Department of Clinical Neurosciences, Ostrava, Czech Republic.
| | - K Karasova
- University of Ostrava, Department of Clinical Neurosciences, Ostrava, Czech Republic
| | - D Zeman
- University Hospital Ostrava, Institute of Laboratory Medicine, Department of Clinical Biochemistry, Ostrava, Czech Republic; University of Ostrava, Institute of Laboratory Medicine, Ostrava, Czech Republic
| | - R Bunganic
- University Hospital Ostrava, Department of Neurology, Ostrava, Czech Republic; University of Ostrava, Department of Clinical Neurosciences, Ostrava, Czech Republic
| | - P Hradilek
- University Hospital Ostrava, Department of Neurology, Ostrava, Czech Republic; University of Ostrava, Department of Clinical Neurosciences, Ostrava, Czech Republic
| | - O Volny
- University Hospital Ostrava, Department of Neurology, Ostrava, Czech Republic; University of Ostrava, Department of Clinical Neurosciences, Ostrava, Czech Republic
| | - A Ganesh
- University of Calgary Cumming School of Medicine, the Hotchkiss Brain Institute and the O'Brien Institute for Public Health, Departments of Clinical Neurosciences and Community Health Sciences, Calgary, Canada
| | - I Kovacova
- University Hospital Ostrava, Department of Hematooncology, Ostrava, Czech Republic
| | - D Stejskal
- University Hospital Ostrava, Institute of Laboratory Medicine, Department of Clinical Biochemistry, Ostrava, Czech Republic; University of Ostrava, Institute of Laboratory Medicine, Ostrava, Czech Republic
| |
Collapse
|
15
|
Milos T, Vuic B, Balic N, Farkas V, Nedic Erjavec G, Svob Strac D, Nikolac Perkovic M, Pivac N. Cerebrospinal fluid in the differential diagnosis of Alzheimer's disease: an update of the literature. Expert Rev Neurother 2024; 24:1063-1079. [PMID: 39233323 DOI: 10.1080/14737175.2024.2400683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION The importance of cerebrospinal fluid (CSF) biomarkers in Alzheimer's disease (AD) diagnosis is rapidly increasing, and there is a growing interest in the use of CSF biomarkers in monitoring the response to therapy, especially in the light of newly available approaches to the therapy of neurodegenerative diseases. AREAS COVERED In this review we discuss the most relevant measures of neurodegeneration that are being used to distinguish patients with AD from healthy controls and individuals with mild cognitive impairment, in order to provide an overview of the latest information available in the scientific literature. We focus on markers related to amyloid processing, markers associated with neurofibrillary tangles, neuroinflammation, neuroaxonal injury and degeneration, synaptic loss and dysfunction, and markers of α-synuclein pathology. EXPERT OPINION In addition to neuropsychological evaluation, core CSF biomarkers (Aβ42, t-tau, and p-tau181) have been recommended for improvement of timely, accurate and differential diagnosis of AD, as well as to assess the risk and rate of disease progression. In addition to the core CSF biomarkers, various other markers related to synaptic dysfunction, neuroinflammation, and glial activation (neurogranin, SNAP-25, Nfl, YKL-40, TREM2) are now investigated and have yet to be validated for future potential clinical use in AD diagnosis.
Collapse
Affiliation(s)
- Tina Milos
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Barbara Vuic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Nikola Balic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Vladimir Farkas
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | | | | | | | - Nela Pivac
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
- University of Applied Sciences Hrvatsko Zagorje Krapina, Krapina, Croatia
| |
Collapse
|
16
|
Chen Y, Yang R, Qi B, Shan Z. Peptidoglycan-Chi3l1 interaction shapes gut microbiota in intestinal mucus layer. eLife 2024; 13:RP92994. [PMID: 39373714 PMCID: PMC11458176 DOI: 10.7554/elife.92994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
The balanced gut microbiota in intestinal mucus layer plays an instrumental role in the health of the host. However, the mechanisms by which the host regulates microbial communities in the mucus layer remain largely unknown. Here, we discovered that the host regulates bacterial colonization in the gut mucus layer by producing a protein called Chitinase 3-like protein 1 (Chi3l1). Intestinal epithelial cells are stimulated by the gut microbiota to express Chi3l1. Once expressed, Chi3l1 is secreted into the mucus layer where it interacts with the gut microbiota, specifically through a component of bacterial cell walls called peptidoglycan. This interaction between Chi3l1 and bacteria is beneficial for the colonization of bacteria in the mucus, particularly for Gram-positive bacteria like Lactobacillus. Moreover, a deficiency of Chi3l1 leads to an imbalance in the gut microbiota, which exacerbates colitis induced by dextran sodium sulfate. By performing fecal microbiota transplantation from Villin-cre mice or replenishing Lactobacillus in IEC∆Chil1 mice, we were able to restore their colitis to the same level as that of Villin-cre mice. In summary, this study shows a 'scaffold model' for microbiota homeostasis by interaction between intestinal Chi3l1 and bacteria cell wall interaction, and it also highlights that an unbalanced gut microbiota in the intestinal mucus contributes to the development of colitis.
Collapse
Affiliation(s)
- Yan Chen
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Ruizhi Yang
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Bin Qi
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Zhao Shan
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| |
Collapse
|
17
|
Qu Z, Lu Y, Ran Y, Xu D, Guo Z, Cheng M. Chitinase‑3 like‑protein‑1: A potential predictor of cardiovascular disease (Review). Mol Med Rep 2024; 30:176. [PMID: 39129301 PMCID: PMC11332322 DOI: 10.3892/mmr.2024.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
Chitinase‑3 like‑protein‑1 (CHI3L1), a glycoprotein belonging to the glycoside hydrolase family 18, binds to chitin; however, this protein lacks chitinase activity. Although CHI3L1 is not an enzyme capable of degrading chitin, it plays significant roles in abnormal glucose and lipid metabolism, indicating its involvement in metabolic disorders. In addition, CHI3L1 is considered a key player in inflammatory diseases, with clinical data suggesting its potential as a predictor of cardiovascular disease. CHI3L1 regulates the inflammatory response of various cell types, including macrophages, vascular smooth muscle cells and fibroblasts. In addition, CHI3L1 participates in vascular remodeling and fibrosis, contributing to the pathogenesis of cardiovascular disease. At present, research is focused on elucidating the role of CHI3L1 in cardiovascular disease. The present systematic review was conducted to comprehensively evaluate the effects of CHI3L1 on cardiovascular cells, and determine the potential implications in the occurrence and progression of cardiovascular disease. The present study may further the understanding of the involvement of CHI3L1 in cardiovascular pathology, demonstrating its potential as a therapeutic target or biomarker in the management of cardiovascular disease.
Collapse
Affiliation(s)
- Zhuojian Qu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Yirui Lu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Yutong Ran
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Donghua Xu
- Central Laboratory of The First Affiliated Hospital, Shandong Second Medical University, Weifang, Shandong 261000, P.R. China
| | - Zhiliang Guo
- Department of Spine Surgery, The 80th Group Army Hospital of Chinese PLA, Weifang, Shandong 261021, P.R. China
| | - Min Cheng
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
18
|
Martin CL, Hill JH, Aller SG. Host Tropism and Structural Biology of ABC Toxin Complexes. Toxins (Basel) 2024; 16:406. [PMID: 39330864 PMCID: PMC11435725 DOI: 10.3390/toxins16090406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
ABC toxin complexes are a class of protein toxin translocases comprised of a multimeric assembly of protein subunits. Each subunit displays a unique composition, contributing to the formation of a syringe-like nano-machine with natural cargo carrying, targeting, and translocation capabilities. Many of these toxins are insecticidal, drawing increasing interest in agriculture for use as biological pesticides. The A subunit (TcA) is the largest subunit of the complex and contains domains associated with membrane permeation and targeting. The B and C subunits, TcB and TcC, respectively, package into a cocoon-like structure that contains a toxic peptide and are coupled to TcA to form a continuous channel upon final assembly. In this review, we outline the current understanding and gaps in the knowledge pertaining to ABC toxins, highlighting seven published structures of TcAs and how these structures have led to a better understanding of the mechanism of host tropism and toxin translocation. We also highlight similarities and differences between homologues that contribute to variations in host specificity and conformational change. Lastly, we review the biotechnological potential of ABC toxins as both pesticides and cargo-carrying shuttles that enable the transport of peptides into cells.
Collapse
Affiliation(s)
- Cole L Martin
- Graduate Biomedical Sciences Pathobiology, Physiology and Pharmacology Theme, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John H Hill
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stephen G Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
19
|
Ellis DA, Jones M, Willems HME, Cheung S, Makullah M, Aimanianda V, Steele C. Fungal chitin is not an independent mediator of allergic fungal asthma severity. Am J Physiol Lung Cell Mol Physiol 2024; 327:L293-L303. [PMID: 38915287 PMCID: PMC11442099 DOI: 10.1152/ajplung.00041.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024] Open
Abstract
Chitin, a polysaccharide found in the fungal cell wall and the exoskeletons of house dust mites and cockroaches, has garnered attention as a potential immunoreactive allergen. Mammals have evolved to express chitin-degrading chitinases (acidic mammalian chitinase/AMCase and chitotriosidase) that may modulate immune responses to chitin. We have previously reported that mice deficient in AMCase (Chia-/-) demonstrated better lung function during allergic fungal asthma. As expected, we show that mice overexpressing AMCase (SPAM mice) had worse airway hyperreactivity (AHR) during allergic fungal asthma. We further demonstrate that chitin-positive Aspergillus fumigatus conidia are detectable in the allergic lung during chronic exposure. Lung function in Chia-/- and SPAM mice is directly correlated with the level of chitinase activity during chronic fungal exposure (Chia-/- mice, negligible chitinase activity, lower AHR; SPAM mice, heightened chitinase activity, higher AHR), suggesting that the breakdown of chitin promoted AHR. However, chronic exposure of normal mice to purified A. fumigatus chitin resulted in only moderate inflammatory changes in the lung that were not sufficient to induce AHR. Moreover, despite having dramatic differences in chitinase activity, chronic exposure of Chia-/- and SPAM mice to purified A. fumigatus chitin likewise did not modulate AHR. Collectively, these results indicate that chronic exposure to fungal chitin alone is incapable of driving AHR. Furthermore, our data suggest that the chitinase-mediated degradation of chitin associated with A. fumigatus conidia may facilitate unmasking and/or liberation of other fungal cell wall components that drive inflammatory responses that contribute to AHR.NEW & NOTEWORTHY Humans with asthma sensitized to fungi often have more severe asthma than those who are not fungal-sensitized. Chitin makes up a significant portion of the cell wall of fungi and has been implicated as a pathogenic factor in allergic asthma. Ellis et al. demonstrate that chronic exposure to fungal chitin alone is unable to modulate lung function, even in the presence of differential lung chitinase activity.
Collapse
Affiliation(s)
- Diandra A Ellis
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - MaryJane Jones
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Hubertine M E Willems
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Suki Cheung
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Mgayya Makullah
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Vishukumar Aimanianda
- Unité de Mycologie Moléculaire, Institut Pasteur, Université de Paris, CNRS, UMR2000, Paris, France
| | - Chad Steele
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
20
|
Gómez-Gaviria M, Mora-Montes HM. Exploring the potential of chitin and chitosan in nanobiocomposites for fungal immunological detection and antifungal action. Carbohydr Res 2024; 543:109220. [PMID: 39038396 DOI: 10.1016/j.carres.2024.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Chitin is a polymer of N-acetylglucosamine and an essential component of the fungal cell wall. Chitosan is the deacetylated form of chitin and is also important for maintaining the integrity of this structure. Both polysaccharides are widely distributed in nature and have been shown to have a variety of applications in biomedicine, including their potential in immune sensing and as potential antifungal agents. In addition, chitin has been reported to play an important role in the pathogen-host interaction, involving innate and adaptive immune responses. This paper will explore the role of chitin and chitosan when incorporated into nanobiocomposites to improve their efficacy in detecting fungi of medical interest and inhibiting their growth. Potential applications in diagnostic and therapeutic medicine will be discussed, highlighting their promise in the development of more sensitive and effective tools for the early diagnosis of fungal infections. This review aims to highlight the importance of the convergence of nanotechnology and biology in addressing public health challenges.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, Mexico.
| |
Collapse
|
21
|
Yu JE, Jeon SH, Kim MJ, Kim DH, Koo JK, Kim TH, Kim B, Yoon JY, Lim YS, Park SR, Yeo IJ, Yun J, Son DJ, Han SB, Lee YS, Hong JT. Anti-chitinase-3-like 1 antibody attenuated atopic dermatitis-like skin inflammation through inhibition of STAT3-dependent CXCL8 expression. Br J Pharmacol 2024; 181:3232-3245. [PMID: 38745399 DOI: 10.1111/bph.16365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND AND PURPOSE Chitinase-3-like 1 (CHI3L1) causes skin inflammation in the progression of atopic dermatitis. We investigated if anti-CHI3L1 antibody could prevent the development of atopic dermatitis and its mechanisms of action. EXPERIMENTAL APPROACH The effect of CHI3L1 antibody on phthalic anhydride-induced atopic dermatitis animal model and in vitro reconstructed human skin (RHS) model were investigated. Expression and release of atopic dermatitis-related cytokines were determined using an enzyme-linked immunosorbent assay, and RT-qPCR, STAT3 and CXCL8 signalling were measured by western blotting. KEY RESULTS Anti-CHI3L1 antibody suppressed phthalic anhydride-induced epidermal thickening, clinical score, IgE level and infiltration of inflammatory cells, and reduced phthalic anhydride-induced inflammatory cytokines concentration. In addition, CHI3L1 antibody treatment inhibited the expression of STAT3 activity in phthalic anhydride-treated skin. It was also confirmed that CHI3L1 antibody treatment alleviated atopic dermatitis-related inflammation in the RHS model. The inhibitory effects of CHI3L1 antibody was similar or more effective compared with that of the IL-4 antibody. We further found that CHI3L1 is associated with CXCL8 by protein-association network analysis. siRNA of CHI3L1 blocked the mRNA levels of CHI3L1, IL-1β, IL-4, CXCL8, TSLP, and the expression of CHI3L1 and p-STAT, and the level of CXCL8, whereas recombinant level of CXCL8 was elevated. Moreover, siRNA of STAT3 reduced the mRNA level of these cytokines. CHI3L1 and p-STAT3 expression correlated with the reduced CXCL8 level in the RHS in vitro model. CONCLUSION AND IMPLICATIONS Our data demonstrated that CHI3L1 antibody could be a promising effective therapeutic drug for atopic dermatitis.
Collapse
Affiliation(s)
- Ji Eun Yu
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
- College of Pharmacy, Mokpo National University, Muan-gun, Jeonnam, Republic of Korea
| | - Seong Hee Jeon
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Min Ji Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Dae Hwan Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Ja Keun Koo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Tae Hun Kim
- Autotelic Bio Inc., Cheongju-si, Chungbuk, Republic of Korea
| | - Bongcheol Kim
- Senelix Co. Ltd., Songpa-gu, Seoul, Republic of Korea
| | - Ji Yong Yoon
- PRESTI GEBIOLOGICS Co. Ltd., Cheongju-si, Chungbuk, Republic of Korea
| | - Young-Soo Lim
- PRESTI GEBIOLOGICS Co. Ltd., Cheongju-si, Chungbuk, Republic of Korea
| | - So Ra Park
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si, Chungcheongbuk-do, Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
- College of Pharmacy, Kyungpook National University, Buk-gu, Daegu, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Yong Sun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| |
Collapse
|
22
|
Olson MA, Cullimore C, Hutchison WD, Grimsrud A, Nobrega D, De Buck J, Barkema HW, Wilson E, Pickett BE, Erickson DL. Genes associated with fitness and disease severity in the pan-genome of mastitis-associated Escherichia coli. Front Microbiol 2024; 15:1452007. [PMID: 39268542 PMCID: PMC11390585 DOI: 10.3389/fmicb.2024.1452007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Bovine mastitis caused by Escherichia coli compromises animal health and inflicts substantial product losses in dairy farming. It may manifest as subclinical through severe acute disease and can be transient or persistent in nature. Little is known about bacterial factors that impact clinical outcomes or allow some strains to outcompete others in the mammary gland (MG) environment. Mastitis-associated E. coli (MAEC) may have distinctive characteristics which may contribute to the varied nature of the disease. Given their high levels of intraspecies genetic variability, virulence factors of commonly used MAEC model strains may not be relevant to all members of this group. Methods In this study, we sequenced the genomes of 96 MAEC strains isolated from cattle with clinical mastitis (CM). We utilized clinical severity data to perform genome-wide association studies to identify accessory genes associated with strains isolated from mild or severe CM, or with high or low competitive fitness during in vivo competition assays. Genes associated with mastitis pathogens or commensal strains isolated from bovine sources were also identified. Results A type-2 secretion system (T2SS) and a chitinase (ChiA) exported by this system were strongly associated with pathogenic isolates compared with commensal strains. Deletion of chiA from MAEC isolates decreased their adherence to cultured bovine mammary epithelial cells. Discussion The increased fitness associated with strains possessing this gene may be due to better attachment in the MG. Overall, these results provide a much richer understanding of MAEC and suggest bacterial processes that may underlie the clinical diversity associated with mastitis and their adaptation to this unique environment.
Collapse
Affiliation(s)
- Michael A Olson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Caz Cullimore
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Weston D Hutchison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Aleksander Grimsrud
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Diego Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeroen De Buck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Eric Wilson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Brett E Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - David L Erickson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
23
|
He C, Hu Z, Lin Z, Chen H, Cao C, Chen J, Yang X, Li H, Shen W, Wei X, Zhuang L, Zheng S, Xu X, Lu D. Chitinase-3 like-protein-1, a prognostic biomarker in patients with hepatocellular carcinoma and concomitant myosteatosis. BMC Cancer 2024; 24:1042. [PMID: 39179959 PMCID: PMC11342564 DOI: 10.1186/s12885-024-12808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Chitinase-3 like-protein-1 (CHI3L1) is a member of the mammalian chitinase-like proteins and elevated serum CHI3L1 level has been proved to be associated with poor prognosis in hepatocellular carcinoma (HCC). This study aimed to investigate the relationship between serum CHI3L1 levels and body composition parameters in patients with HCC after liver transplantation (LT). METHODS This retrospective study enrolled 200 patients after LT for HCC. Blood samples were collected and serum concentrations of CHI3L1 were measured by enzyme-linked immunosorbent assay. Computer tomography (CT) were used to estimate skeletal muscle and adipose tissue mass. Spearman's rank correlation test was performed to assess associations between serum CHI3L1 levels and these body composition parameters. A Cox proportional-hazards regression model was performed to identify independent prognostic factors. Overall survival (OS) and recurrence-free survival (RFS) curves were constructed using the Kaplan-Meier method and compared by the log-rank test. RESULTS Total 71 patients (35.5%) were diagnosed with myosteatosis according to skeletal muscle radiation attenuation (SMRA). The 5-year OS rates were 66.9% in non-myosteatosis group, significantly higher than 49.5% in myosteatosis group (p = 0.025), while the RFS of myosteatosis group (5-year RFS: 52.6%) or non-myosteatosis group (5-year RFS: 42.0%) shown no significant difference (p = 0.068). The serum CHI3L1 level were significantly negative correlated with SMRA (r = -0.3, p < 0.001). Interestingly, in patients with myosteatosis, Kaplan-Meier analysis revealed that elevated serum CHI3L1 levels were associated with worse OS (p < 0.001) and RFS (p = 0.047). However, in patients without myosteatosis, Kaplan-Meier analysis found elevated serum CHI3L1 levels were not associated with OS (p = 0.070) or RFS (p = 0.104). CONCLUSIONS Elevated CHI3L1 was negatively correlated with SMRA, and predicted poorer prognosis in Chinese population after LT for HCC, especially in those patients with concomitant myosteatosis. Monitoring serum CHI3L1 can predict prognosis and effectively guide individual nutrition intervention.
Collapse
Affiliation(s)
- Chiyu He
- Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Zhihang Hu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zuyuan Lin
- Zhejiang University School of Medicine, Hangzhou, China
- Hangzhou First People's Hospital, Hangzhou, China
| | - Hao Chen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Chenghao Cao
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jinyan Chen
- Zhejiang University School of Medicine, Hangzhou, China
| | | | - Huigang Li
- Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Shen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xuyong Wei
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Li Zhuang
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.
| | - Xiao Xu
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| | - Di Lu
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
24
|
Hu T, Tang W, Hong W, Huang Q, Sun X, Wu W, Zhang J. Spermine oxidase regulates liver inflammation and fibrosis through β-catenin pathway. Clin Res Hepatol Gastroenterol 2024; 48:102421. [PMID: 39002816 DOI: 10.1016/j.clinre.2024.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Spermine oxidase (SMOX), an inducible enzyme involved in the catabolic pathway of polyamine, was found to be upregulated in hepatocellular carcinoma and might be an important oncogene of it in our previous studies. This study attempted to further investigate its relationship with liver inflammation and fibrosis both in vitro and in vivo. METHODS The effect of SMOX inhibition on LPS-induced inflammatory response in mouse liver cell line AML12 was validated by using small interfering RNA or SMOX inhibitor MDL72527. Western blotting and immunofluorescence were utilized to verify whether LPS could induce β-catenin to transfer into the nucleus and whether it could be reversed by interfering with the expression of SMOX or using SMOX inhibitor. Then, the SMOX inhibitor MDL72527 and SMOX knockout mice were used to verify the hypothesis above in vivo. RESULTS The expression of SMOX could be induced by LPS in AML12 cells. The inhibition of SMOX could inhibit LPS-induced inflammatory response in AML12 cells. LPS could induce β-catenin transfer from cytoplasm to nucleus, while SMOX downregulation or inhibition could partially reverse this process. In vivo intervention with SMOX inhibitor MDL72527 or SMOX knockout mice could significantly improve the damage of liver function, reduce intrahepatic inflammation, inhibit the nuclear transfer of β-catenin in liver tissue, and alleviate carbon tetrachloride-induced liver fibrosis in mice. CONCLUSION SMOX can promote the inflammatory response and fibrosis of hepatocytes. It provides a new therapeutic strategy for hepatitis and liver fibrosis, inhibiting early liver cancer.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wenqing Tang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qingke Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xuecheng Sun
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wenzhi Wu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jie Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
25
|
Jiang Y, Chen Y, Fu J, Zhao R, Xu J, Liu Y. Bone morphogenetic protein 4 alleviates pulmonary fibrosis by regulating macrophages. Int Immunopharmacol 2024; 139:112530. [PMID: 39053231 DOI: 10.1016/j.intimp.2024.112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Fibrosis is a pathological change mainly characterized by an increase of fibrous connective tissue and decrease of parenchymal cells. Its continuous progress may lead to the destruction of organ structure and function decline. An excess of alternatively activated M2 macrophages have been considered crucial candidates in the progression of fibrosis. Bone morphogenetic proteins (BMPs), a group of multifunctional growth factors, are essential for organ development and pathophysiological process, however, the roles that BMPs play in innate immune homeostasis in the development of fibrosis and the downstream signals have not been fully explored. In the current study, we firstly found that the expression of BMP4 was significantly down-regulated in human and mouse fibrosis samples. Then we investigated the effects of BMP4 on macrophage polarization in IL-4 environment and related molecular mechanisms, and found that BMP4 caused a decrease in polarized response towards M2, reflected in the expression of the markers Fizz1, Ym1 and Arg1, together with an inhibition in Stat6 phosphorylation. This relied on the Smad1/5/8 signaling, which had a crosstalk with Stat6. Moreover, the in vivo study showed that BMP4 treatment can reduce collagen deposition and delay the development of experimental pulmonary fibrosis in mice by inhibiting M2 macrophages through adoptive transfer experiment. These findings revealed a novel role of BMP4 in regulating macrophages, offering potential strategies for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Rui Zhao
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| |
Collapse
|
26
|
Qin Y, Zhao W, Li Q, Cai Z, Wang G, Wang N, Ma L. Inhibition of Chitinase-3-like Protein 1 Reduced Epithelial-Mesenchymal Transition and Vascular Epithelial Cadherin Expression in Oesophageal Squamous Cell Carcinoma. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3693. [PMID: 39737205 PMCID: PMC11682521 DOI: 10.30498/ijb.2024.394737.3693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/16/2024] [Indexed: 01/01/2025]
Abstract
Background Oesophageal cancer (EC) is one of the common malignant tumors, and the prognosis of patients is poor. Further exploration of EC pathogenesis remains warranted. Objective The relationship between vascular epithelial cadherin (VE-cadherin) and chitinase-3-like protein 1 (CHI3L1) in EC is currently unknown. To further explore the relationship, immunohistochemical staining was performed to detect the expression level of CHI3L1 and VE-cadherin in oesophageal squamous cell carcinoma ( ESCC). Materials and Methods Small interfering RNAs (siRNAs) inhibited CHI3L1 expression in KYSE-150 and TE1 cells. Western blot and quantitative fluorescence polymerase chain reaction were used to detect the levels of CHI3L1, VE-cadherin and epithelial-mesenchymal transition (EMT)-related proteins in vitro and in vivo, and KYSE-150 cells were used to establish an in-vivo model and observe tumour growth. Results High levels of CHI3L1 and VE-cadherin expression were closely associated with the progression of ESCC; the pathologic tumour-node-metastasis stage was also closely related with the progression of ESCC (p < 0.05). High levels of CHI3L1 and VE-cadherin expression led to poor prognosis in patients with EC. In KYSE-150 and TE1 EC cell lines, the invasion, migration and proliferation of cells decreased, and the apoptotic rate increased after CHI3L1 expression was decreased using siRNA. The CHI3L1, VE-cadherin, Snail, Twist1 protein and mRNA expression levels decreased, whereas the E-cadherin levels increased. Conclusions Chitinase-3-like protein 1 could promote the EMT of ESCC, and the inhibition of CHI3L1 decreases the expression of VE-cadherin, which inhibits tumour angiogenesis and tumour progression in ESCC.
Collapse
Affiliation(s)
- Yanzi Qin
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - Wenjun Zhao
- Department of Emergency Internal Medicine, The Third the People′s Hospital of Bengbu, Bengbu 233000, China
| | - Qicai Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Bengbu Medical University,Bengbu 233000, China
| | - Zhaogeng Cai
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - Guowen Wang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Bengbu Medical University,Bengbu 233000, China
| | - Nan Wang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Li Ma
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| |
Collapse
|
27
|
Zhou J, Zhao D, Tan H, Lan J, Bao Y. CHI3L1 as a Prognostic Biomarker and Therapeutic Target in Glioma. Int J Mol Sci 2024; 25:7094. [PMID: 39000203 PMCID: PMC11240893 DOI: 10.3390/ijms25137094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The role of Chitinase-3-like protein 1 (CHI3L1) in tumor progression has been gradually clarified in different kinds of solid tumors. Hence, we aim to elucidate its prognostic value for glioma. In this study, we analyzed RNA sequencing data combined with corresponding clinical information obtained from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases. Differentially expressed genes (DEGs) were acquired based on CHI3L1 expression profiles and were used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Cox regression, least absolute shrinkage and selection operator (LASSO) regression methods, along with a nomogram, were employed to establish a predictive model. Compared with the corresponding non-tumor tissues, CHI3L1 expression was significantly upregulated in various types of solid tumors, correlating with poor clinical outcomes including glioma. GO analysis identified oxidative stress-related genes (ORGs) that were differentially expressed and modulated by CHI3L1, with 11 genes subsequently identified as potential predictors, using Univariate-Cox regression and LASSO regression. In addition, an index of oxidative stress-related genes (ORGI) was established, demonstrating its prognostic value in conjunction with CHI3L1 expression. The aberrant expression of CHI3L1 was proved in glioma patients through immunohistochemistry (IHC). Meanwhile, the knockdown of CHI3L1 inhibited glioma growth in vitro, and real-time Quantitative PCR (qPCR) confirmed decreased ORG expression upon CHI3L1 knockdown, suggesting the potential prognostic value of CHI3L1 as a therapeutic target for glioma.
Collapse
Affiliation(s)
| | | | | | | | - Yinghui Bao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
28
|
Song B, Ning X, Guo L, Liu W, Jin H. Comparative Proteomics Analysis Reveals Distinct Molecular Phenotype and Biomarkers in Patients with Erythrodermic Atopic Dermatitis and Erythrodermic Psoriasis. Inflammation 2024:10.1007/s10753-024-02078-3. [PMID: 38877357 DOI: 10.1007/s10753-024-02078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Erythrodermic atopic dermatitis (EAD) and erythrodermic psoriasis (EP) are rare yet debilitating inflammatory skin disorders that propose challenges in diagnosis and discovering effective therapeutic targets. Despite their clinical and histological similarities, the underlying molecular mechanisms and systemic biomarkers of these diseases are substantially unclear. In this study, we sought to investigate the differential serum proteome of EP and EAD patients and identify biomarkers for these two subtypes of erythroderma. We recruited 14 EAD patients, 14 EP patients and 14 healthy controls. Serum samples were collected and analyzed using the Olink high-throughput platform to assess the levels of 269 inflammation-/immune response-/cardiovascular-related biomarkers. Both EAD and EP patients exhibited enhanced immune activation and dysregulated cardiovascular profiles compared to healthy controls. EAD demonstrated a more pronounced inflammation tone, characterized by Th1/Th2/Th22/IL-1-dominant patterns, as well as increased TNF superfamily, Th17, and apoptosis markers. Conversely, EP displayed inflammation with Th1/Th17/TNF-skewing and mild Th2 upregulation, along with notable increases in epidermal-development markers. Disease severity in EAD was strongly correlated with apoptosis/Th2 markers, while correlated with Th17 markers in EP. Furthermore, a panel of eight markers (IL-17A/IL-17C/PI3/CCL20/SH2D1A/SIRT2/DFFA/IL-13) was identified that effectively discriminated between EP and EAD, with an Area Under the Curve greater than 0.8. Our study comprehensively characterizes the circulating molecular profiles in EAD and EP patients, providing insights into the similarities and complexities of their inflammation phenotypes. The identified serum biomarkers have the potential to differentiate between EP and EAD, which could aid in the diagnosis and guiding tailored therapeutics.
Collapse
Affiliation(s)
- Biao Song
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Xin Ning
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Lan Guo
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Weida Liu
- State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hongzhong Jin
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
- State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China.
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China.
| |
Collapse
|
29
|
Sahoo S, Badhe MR, Paul A, Sahoo PK, Suryawanshi AR, Panda D, Pillai BR, Baliarsingh S, Patnaik BB, Mohanty J. Isolation and characterization of a lectin-like chitinase from the hepatopancreas of freshwater prawn, Macrobrachium rosenbergii. Biochimie 2024; 221:125-136. [PMID: 37769935 DOI: 10.1016/j.biochi.2023.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
A lectin was isolated from the hepatopancreas of freshwater prawn, Macrobrachium rosenbergii by affinity chromatography using mucin-sepharose matrix. The purity of the isolated lectin was confirmed in native gradient PAGE that showed a single protein band of ∼37.9 kDa. In SDS-PAGE also one band of ∼43.3 kDa molecular weight was observed that indicated the protein to be a monomer. The band from the SDS-PAGE gel was identified through mass spectrometry as chitinase 1. The purified chitinase (50 μg/ml) hemagglutinated rabbit RBCs and, mucin and glucose inhibited hemagglutination with minimum concentrations of 0.1 mg/ml and 100 mM, respectively. Bacterial agglutination with Gram -ve Vibrio harveyi, Aeromonas sobria and Escherichia coli was also observed by this protein. Thus, chitinase 1 showed lectin-like properties besides its chitin hydrolytic activity. In western blot with hepatopancreas sample, rabbit antiserum against chitinase 1 cross-reacted to two additional proteins namely, chitinase 1C and obstructor E (a chitin-binding protein, CBP), besides its specific reactivity. An indirect ELISA was developed with the antiserum to quantify chitinases/CBP in hepatopancreas and serum samples of M. rosenbergii. The assay was used in samples from juvenile prawns following V. harveyi challenge. At 72 h post-challenge, significantly higher levels of chitinases/CBP were quantified in the hepatopancreas of the challenged group (1.8 ± 0.2 mg/g tissue) compared to the control (1.2 ± 0.1 mg/g tissue). This study suggests that the chitinase 1 protein with lectin-like properties is possibly induced at the protein level and can be putatively involved in the innate immune response of M. rosenbergii.
Collapse
Affiliation(s)
- Sonalina Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Mohan R Badhe
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Anirban Paul
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Pramoda Kumar Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | | | - Debabrata Panda
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Bindu R Pillai
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Snigdha Baliarsingh
- P.G. Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore, 756089, India
| | - Bharat Bhusan Patnaik
- P.G. Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore, 756089, India; Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, 31538, South Korea; Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
| | - Jyotirmaya Mohanty
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India.
| |
Collapse
|
30
|
Suzuki K, Okawa K, Ohkura M, Kanaizumi T, Kobayashi T, Takahashi K, Takei H, Otsuka M, Tabata E, Bauer PO, Oyama F. Evolutionary insights into sequence modifications governing chitin recognition and chitinase inactivity in YKL-40 (HC-gp39, CHI3L1). J Biol Chem 2024; 300:107365. [PMID: 38750795 PMCID: PMC11190707 DOI: 10.1016/j.jbc.2024.107365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 06/07/2024] Open
Abstract
YKL-40, also known as human cartilage glycoprotein-39 (HC-gp39) or CHI3L1, shares structural similarities with chitotriosidase (CHIT1), an active chitinase, but lacks chitinase activity. Despite being a biomarker for inflammatory disorders and cancer, the reasons for YKL-40's inert chitinase function have remained elusive. This study reveals that the loss of chitinase activity in YKL-40 has risen from multiple sequence modifications influencing its chitin affinity. Contrary to the common belief associating the lack of chitinase activity with amino acid substitutions in the catalytic motif, attempts to activate YKL-40 by creating two amino acid mutations in the catalytic motif (MT-YKL-40) proved ineffective. Subsequent exploration that included creating chimeras of MT-YKL-40 and CHIT1 catalytic domains (CatDs) identified key exons responsible for YKL-40 inactivation. Introducing YKL-40 exons 3, 6, or 8 into CHIT1 CatD resulted in chitinase inactivation. Conversely, incorporating CHIT1 exons 3, 6, and 8 into MT-YKL-40 led to its activation. Our recombinant proteins exhibited properly formed disulfide bonds, affirming a defined structure in active molecules. Biochemical and evolutionary analysis indicated that the reduced chitinase activity of MT-YKL-40 correlates with specific amino acids in exon 3. M61I and T69W substitutions in CHIT1 CatD diminished chitinase activity and increased chitin binding. Conversely, substituting I61 with M and W69 with T in MT-YKL-40 triggered chitinase activity while reducing the chitin-binding activity. Thus, W69 plays a crucial role in a unique subsite within YKL-40. These findings emphasize that YKL-40, though retaining the structural framework of a mammalian chitinase, has evolved to recognize chitin while surrendering chitinase activity.
Collapse
Affiliation(s)
- Keita Suzuki
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Kazuaki Okawa
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Masashi Ohkura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Tomoki Kanaizumi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Takaki Kobayashi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Koro Takahashi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Hiromu Takei
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Momo Otsuka
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan; Research Fellow of Japan Society for the Promotion of Science (PD), Chiyoda-ku, Tokyo, Japan
| | | | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan.
| |
Collapse
|
31
|
Ali AA, Yousef RN, Elsheikh MS, Salamah AR, Wu LL, Alnaggar AR, Khalil NM, Behiry ME. YKL-40 in serum: a promising biomarker of juvenile SLE and strongly correlated with disease duration. Ir J Med Sci 2024; 193:1403-1409. [PMID: 37874503 PMCID: PMC11128401 DOI: 10.1007/s11845-023-03545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND The biological function of YKL-40 is not well determined in different inflammatory and autoimmune diseases; however, some data highlighted its possible connection with disease activity. AIM We investigated the diagnostic utility of serum YKL-40 in patients with SLE and examined its correlation with disease activity. Additionally, we examined any differences in serum YKL-40 levels between juvenile and adult SLE patients. METHODS We included 78 female patients with SLE and 42 controls. The level of YKL-40 in serum was measured by ELISA. RESULTS The serum YKL-40 level in SLE patients was significantly higher compared to the control group (9 (3) ng/mL vs. 5.5 (0.1) ng/mL; p < 0.001). YKL-40 showed excellent diagnostic utility with an AUC of 1 (p < 0.001) and a cutoff point of 5.6, providing sensitivity and specificity of 100%. YKL-40 was higher in adolescents and those with a positive family history of SLE (p = 0.01 for both) and positively correlated with disease duration (r = 0.45, p < 0.001). YKL-40 level was significantly higher in patients with photosensitivity, fever, vasculitis, blood disorders, positive anti-dsDNA, and APL ab (p < 0.05 for all). Conversely, patients with skin manifestations had a significantly lower YKL-40 (p = 0.004). In juvenile SLE, the AUC was 0.65 and a p-value of 0.01, and at a cutoff value of (8.7) ng/mL, the sensitivity and specificity were 72% and 60%, respectively. CONCLUSION YKL-40 in serum could be a promising biomarker in patients with SLE, especially in adolescent-onset cases. It is independently influenced by disease duration, anemia, thrombocytopenia, positive anti-dsDNA, and APL ab features.
Collapse
Affiliation(s)
- Asmaa A Ali
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R., Zhenjiang, China
| | - Rasha N Yousef
- Department of Clinical and Chemical Pathology, Medical Research and Clinical Studies Institute, National Research Center, Giza, Egypt.
| | - Mai S Elsheikh
- Department of Complementary Medicine, Medical Research and Clinical Studies Institute, National Research Center, Giza, Egypt
| | - Abeer R Salamah
- Department of Molecular Genetics and Enzymology, Human Genetics and Genomic Research Institute, National Research Center, Giza, Egypt
| | - Liang L Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R., Zhenjiang, China
| | - Alshaimaa R Alnaggar
- Internal Medicine Department, Rheumatology and Clinical Immunology Unit, KasrAlainy School of Medicine, Cairo University, Cairo, Egypt
| | - Noha M Khalil
- Internal Medicine Department, Rheumatology and Clinical Immunology Unit, KasrAlainy School of Medicine, Cairo University, Cairo, Egypt
| | - Mervat E Behiry
- Internal Medicine Department, Rheumatology and Clinical Immunology Unit, KasrAlainy School of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
32
|
Ham HJ, Lee YS, Koo JK, Yun J, Son DJ, Han SB, Hong JT. Inhibition of Amyloid-β (Aβ)-Induced Cognitive Impairment and Neuroinflammation in CHI3L1 Knockout Mice through Downregulation of ERK-PTX3 Pathway. Int J Mol Sci 2024; 25:5550. [PMID: 38791588 PMCID: PMC11122210 DOI: 10.3390/ijms25105550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Several clinical studies reported that the elevated expression of Chitinase-3-like 1 (CHI3L1) was observed in patients suffering from a wide range of diseases: cancer, metabolic, and neurological diseases. However, the role of CHI3L1 in AD is still unclear. Our previous study demonstrated that 2-({3-[2-(1-Cyclohexen-1-yl)ethyl]-6,7-dimethoxy-4-oxo-3,4-dihydro-2-quinazolinyl}culfanyl)-N-(4-ethylphenyl)butanamide, a CHI3L1 inhibiting compound, alleviates memory and cognitive impairment and inhibits neuroinflammation in AD mouse models. In this study, we studied the detailed correlation of CHI3L1 and AD using serum from AD patients and using CHI3L1 knockout (KO) mice with Aβ infusion (300 pmol/day, 14 days). Serum levels of CHI3L1 were significantly elevated in patients with AD compared to normal subjects, and receiver operating characteristic (ROC) analysis data based on serum analysis suggested that CHI3L1 could be a significant diagnostic reference for AD. To reveal the role of CHI3L1 in AD, we investigated the CHI3L1 deficiency effect on memory impairment in Aβ-infused mice and microglial BV-2 cells. In CHI3L1 KO mice, Aβ infusion resulted in lower levels of memory dysfunction and neuroinflammation compared to that of WT mice. CHI3L1 deficiency selectively inhibited phosphorylation of ERK and IκB as well as inhibition of neuroinflammation-related factors in vivo and in vitro. On the other hand, treatment with recombinant CHI3L1 increased neuroinflammation-related factors and promoted phosphorylation of IκB except for ERK in vitro. Web-based gene network analysis and our results showed that CHI3L1 is closely correlated with PTX3. Moreover, in AD patients, we found that serum levels of PTX3 were correlated with serum levels of CHI3L1 by Spearman correlation analysis. These results suggest that CHI3L1 deficiency could inhibit AD development by blocking the ERK-dependent PTX3 pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
| |
Collapse
|
33
|
Jia WL, Jiang YY, Jiang Y, Meng X, Li H, Zhao XQ, Wang YL, Wang YJ, Gu HQ, Li ZX. Associations between admission levels of multiple biomarkers and subsequent worse outcomes in acute ischemic stroke patients. J Cereb Blood Flow Metab 2024; 44:742-756. [PMID: 37975323 PMCID: PMC11197142 DOI: 10.1177/0271678x231214831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/18/2023] [Accepted: 10/11/2023] [Indexed: 11/19/2023]
Abstract
The modified Rankin Scale change score (ΔmRS) is useful for evaluating acute poststroke functional improvement or deterioration. We investigated the relationship between multiple biomarkers and ΔmRS by analyzing data on 6931 patients with acute ischemic stroke (average age 62.3 ± 11.3 years, 2174 (31.4%) female) enrolled from the Third China National Stroke Registry (CNSR-III) and 15 available biomarkers. Worse outcomes at 3 months were defined as ΔmRS3m-discharge ≥1 (ΔmRS3m-discharge = mRS3m-mRSdischarge). Adjusted odds ratios (aORs) and their 95% confidence intervals (CIs) were calculated from logistic regression models. At 3-months poststroke, 1026 (14.8%) patients experienced worse outcomes. The highest quartiles of white blood cells (WBCs) (aOR [95%CI],1.37 [1.12-1.66]), high-sensitivity C-reactive protein (hs-CRP) (1.37 [1.12-1.67]), interleukin-6 (IL-6) (1.43 [1.16-1.76]), interleukin-1 receptor antagonist (IL-1Ra) (1.46 [1.20-1.78]) and YKL-40 (1.31 [1.06-1.63]) were associated with an increased risk of worse outcomes at 3 months. Results remained stable except for YKL-40 when simultaneously adding multiple biomarkers to the basic traditional-risk-factor model. Similar results were observed at 6 and 12 months after stroke. This study indicated that WBCs, hs-CRP, IL-6, IL-1Ra, and YKL-40 were significantly associated with worse outcomes in acute ischemic stroke patients, and all inflammatory biomarkers except YKL-40 were independent predictors of worse outcomes at 3 months.
Collapse
Affiliation(s)
- Wei-Li Jia
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ying-Yu Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xing-Quan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi-Long Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Yong-Jun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong-Qiu Gu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zi-Xiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
34
|
Muchowicz A, Bartoszewicz A, Zaslona Z. The Exploitation of the Glycosylation Pattern in Asthma: How We Alter Ancestral Pathways to Develop New Treatments. Biomolecules 2024; 14:513. [PMID: 38785919 PMCID: PMC11117584 DOI: 10.3390/biom14050513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
Asthma has reached epidemic levels, yet progress in developing specific therapies is slow. One of the main reasons for this is the fact that asthma is an umbrella term for various distinct subsets. Due to its high heterogeneity, it is difficult to establish biomarkers for each subset of asthma and to propose endotype-specific treatments. This review focuses on protein glycosylation as a process activated in asthma and ways to utilize it to develop novel biomarkers and treatments. We discuss known and relevant glycoproteins whose functions control disease development. The key role of glycoproteins in processes integral to asthma, such as inflammation, tissue remodeling, and repair, justifies our interest and research in the field of glycobiology. Altering the glycosylation states of proteins contributing to asthma can change the pathological processes that we previously failed to inhibit. Special emphasis is placed on chitotriosidase 1 (CHIT1), an enzyme capable of modifying LacNAc- and LacdiNAc-containing glycans. The expression and activity of CHIT1 are induced in human diseased lungs, and its pathological role has been demonstrated by both genetic and pharmacological approaches. We propose that studying the glycosylation pattern and enzymes involved in glycosylation in asthma can help in patient stratification and in developing personalized treatment.
Collapse
Affiliation(s)
| | | | - Zbigniew Zaslona
- Molecure S.A., Zwirki i Wigury 101, 02-089 Warszawa, Poland; (A.M.); (A.B.)
| |
Collapse
|
35
|
Mizoguchi E, Sadanaga T, Nanni L, Wang S, Mizoguchi A. Recently Updated Role of Chitinase 3-like 1 on Various Cell Types as a Major Influencer of Chronic Inflammation. Cells 2024; 13:678. [PMID: 38667293 PMCID: PMC11049018 DOI: 10.3390/cells13080678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Chitinase 3-like 1 (also known as CHI3L1 or YKL-40) is a mammalian chitinase that has no enzymatic activity, but has the ability to bind to chitin, the polymer of N-acetylglucosamine (GlcNAc). Chitin is a component of fungi, crustaceans, arthropods including insects and mites, and parasites, but it is completely absent from mammals, including humans and mice. In general, chitin-containing organisms produce mammalian chitinases, such as CHI3L1, to protect the body from exogenous pathogens as well as hostile environments, and it was thought that it had a similar effect in mammals. However, recent studies have revealed that CHI3L1 plays a pathophysiological role by inducing anti-apoptotic activity in epithelial cells and macrophages. Under chronic inflammatory conditions such as inflammatory bowel disease and chronic obstructive pulmonary disease, many groups already confirmed that the expression of CHI3L1 is significantly induced on the apical side of epithelial cells, and activates many downstream pathways involved in inflammation and carcinogenesis. In this review article, we summarize the expression of CHI3L1 under chronic inflammatory conditions in various disorders and discuss the potential roles of CHI3L1 in those disorders on various cell types.
Collapse
Affiliation(s)
- Emiko Mizoguchi
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
- Department of Molecular Microbiology and Immunology, Brown University Alpert Medical School, Providence, RI 02912, USA
| | - Takayuki Sadanaga
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
- Department of Molecular Microbiology and Immunology, Brown University Alpert Medical School, Providence, RI 02912, USA
| | - Linda Nanni
- Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Siyuan Wang
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
| | - Atsushi Mizoguchi
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
| |
Collapse
|
36
|
Salembier R, De Haes C, Bellemans J, Demeyere K, Van Den Broeck W, Sanders NN, Van Laere S, Lyons TR, Meyer E, Steenbrugge J. Chitin-mediated blockade of chitinase-like proteins reduces tumor immunosuppression, inhibits lymphatic metastasis and enhances anti-PD-1 efficacy in complementary TNBC models. Breast Cancer Res 2024; 26:63. [PMID: 38605414 PMCID: PMC11007917 DOI: 10.1186/s13058-024-01815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/23/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Chitinase-like proteins (CLPs) play a key role in immunosuppression under inflammatory conditions such as cancer. CLPs are enzymatically inactive and become neutralized upon binding of their natural ligand chitin, potentially reducing CLP-driven immunosuppression. We investigated the efficacy of chitin treatment in the context of triple-negative breast cancer (TNBC) using complementary mouse models. We also evaluated the immunomodulatory influence of chitin on immune checkpoint blockade (ICB) and compared its efficacy as general CLP blocker with blockade of a single CLP, i.e. chitinase 3-like 1 (CHI3L1). METHODS Female BALB/c mice were intraductally injected with luciferase-expressing 4T1 or 66cl4 cells and systemically treated with chitin in combination with or without anti-programmed death (PD)-1 ICB. For single CLP blockade, tumor-bearing mice were treated with anti-CHI3L1 antibodies. Metastatic progression was monitored through bioluminescence imaging. Immune cell changes in primary tumors and lymphoid organs (i.e. axillary lymph nodes and spleen) were investigated through flow cytometry, immunohistochemistry, cytokine profiling and RNA-sequencing. CHI3L1-stimulated RAW264.7 macrophages were subjected to 2D lymphatic endothelial cell adhesion and 3D lymphatic integration in vitro assays for studying macrophage-mediated lymphatic remodeling. RESULTS Chitin significantly reduced primary tumor progression in the 4T1-based model by decreasing the high production of CLPs that originate from tumor-associated neutrophils (TANs) and Stat3 signaling, prominently affecting the CHI3L1 and CHI3L3 primary tumor levels. It reduced immunosuppressive cell types and increased anti-tumorigenic T-cells in primary tumors as well as axillary lymph nodes. Chitin also significantly reduced CHI3L3 primary tumor levels and immunosuppression in the 66cl4-based model. Compared to anti-CHI3L1, chitin enhanced primary tumor growth reduction and anti-tumorigenicity. Both treatments equally inhibited lymphatic adhesion and integration of macrophages, thereby hampering lymphatic tumor cell spreading. Upon ICB combination therapy, chitin alleviated anti-PD-1 resistance in both TNBC models, providing a significant add-on reduction in primary tumor and lung metastatic growth compared to chitin monotherapy. These add-on effects occurred through additional increase in CD8α+ T-cell infiltration and activation in primary tumor and lymphoid organs. CONCLUSIONS Chitin, as a general CLP blocker, reduces CLP production, enhances anti-tumor immunity as well as ICB responses, supporting its potential clinical relevance in immunosuppressed TNBC patients.
Collapse
Affiliation(s)
- Robbe Salembier
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Caro De Haes
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Julie Bellemans
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kristel Demeyere
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Wim Van Den Broeck
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Niek N Sanders
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Steven Van Laere
- Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Traci R Lyons
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center Young Women's Breast Cancer Translational Program, Aurora, CO, USA
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jonas Steenbrugge
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
- Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
37
|
Györfi AH, Filla T, Dickel N, Möller F, Li YN, Bergmann C, Matei AE, Harrer T, Kunz M, Schett G, Distler JHW. Performance of serum biomarkers reflective of different pathogenic processes in systemic sclerosis-associated interstitial lung disease. Rheumatology (Oxford) 2024; 63:962-969. [PMID: 37421394 DOI: 10.1093/rheumatology/kead332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/12/2023] [Accepted: 06/06/2023] [Indexed: 07/10/2023] Open
Abstract
OBJECTIVE Interstitial lung disease (ILD) is the leading cause of mortality in SSc. Novel biomarkers are crucial to improve outcomes in SSc-ILD. We aimed to compare the performance of potential serum biomarkers of SSc-ILD that reflect different pathogenic processes: KL-6 and SP-D (epithelial injury), CCL18 (type 2 immune response), YKL-40 (endothelial injury and matrix remodelling) and MMP-7 (ECM remodelling). METHODS Baseline and follow-up serum samples from 225 SSc patients were analysed by ELISA. Progressive ILD was defined according to the 2022-ATS/ERS/JRS/ALAT guidelines. Linear mixed models and random forest models were used for statistical analyses. RESULTS Serum levels of KL-6 [MD 35.67 (95% CI 22.44-48.89, P < 0.01)], SP-D [81.13 (28.46-133.79, P < 0.01)], CCL18 [17.07 (6.36-27.77, P < 0.01)], YKL-40 [22.81 (7.19-38.44, P < 0.01)] and MMP-7 [2.84 (0.88-4.80, P < 0.01)] were independently associated with the presence of SSc-ILD. A machine-learning model including all candidates classified patients with or without ILD with an accuracy of 85%. The combination of KL-6 and SP-D was associated with the presence [0.77 (0.53-1.00, P' <0.01)] and previous progression of SSc-ILD [OR 1.28 (1.01-1.61, P' =0.047)]. Higher baseline levels of KL-6 [OR 3.70 (1.52-9.03, P < 0.01)] or SP-D [OR 2.00 (1.06-3.78, P = 0.03)] increased the odds of future SSc-ILD progression, independent of other conventional risk factors, and the combination of KL-6 and SP-D [1.109 (0.665-1.554, P < 0.01)] showed improved performance compared with KL-6 and SP-D alone. CONCLUSION All candidates performed well as diagnostic biomarkers for SSc-ILD. The combination of KL-6 and SP-D might serve as biomarker for the identification of SSc patients at risk of ILD progression.
Collapse
Affiliation(s)
- Andrea-Hermina Györfi
- Clinic for Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
- Hiller Research Unit, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
| | - Tim Filla
- Clinic for Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
- Hiller Research Unit, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
| | - Nicholas Dickel
- Chair of Medical Informatics, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Möller
- Department of Internal Medicine 3, Rheumatology and Clinical Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yi-Nan Li
- Clinic for Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
- Hiller Research Unit, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3, Rheumatology and Clinical Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexandru-Emil Matei
- Clinic for Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
- Hiller Research Unit, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
| | - Thomas Harrer
- Department of Internal Medicine 3, Rheumatology and Clinical Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Clinical Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Clinic for Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
- Hiller Research Unit, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
38
|
Bauer A, Hegen H, Reindl M. Body fluid markers for multiple sclerosis and differential diagnosis from atypical demyelinating disorders. Expert Rev Mol Diagn 2024; 24:283-297. [PMID: 38533708 DOI: 10.1080/14737159.2024.2334849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
INTRODUCTION Body fluid markers could be helpful to predict the conversion into clinically definite multiple sclerosis (MS) in people with a first demyelinating event of the central nervous system (CNS). Consequently, biomarkers such as oligoclonal bands, which are integrated in the current MS diagnostic criteria, could assist early MS diagnosis. AREAS COVERED This review examines existing knowledge on a broad spectrum of body fluid markers in people with a first CNS demyelinating event, explores their potential to predict conversion to MS, to assess MS disease activity, as well as their utility to differentiate MS from atypical demyelinating disorders such as neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein associated disease. EXPERT OPINION This field of research has shown a dramatic increase of evidence, especially in the last decade. Some biomarkers are already established in clinical routine (e.g. oligoclonal bands) while others are currently implemented (e.g. kappa free light chains) or considered as breakthroughs (e.g. neurofilament light). Determination of biomarkers poses challenges for continuous monitoring, especially if exclusively detectable in cerebrospinal fluid. A handful of biomarkers are measurable in blood which holds a significant potential.
Collapse
Affiliation(s)
- Angelika Bauer
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Harald Hegen
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
39
|
Wisnewski AV, Liu J. Lung Gene Expression Suggests Roles for Interferon-Stimulated Genes and Adenosine Deaminase Acting against RNA-1 in Pathologic Responses to Diisocyanate. Chem Res Toxicol 2024; 37:476-485. [PMID: 38494904 DOI: 10.1021/acs.chemrestox.3c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Mechanisms underlying methylene diphenyl diisocyanate (MDI) and other low molecular weight chemical-induced asthma are unclear and appear distinct from those of high molecular weight (HMW) allergen-induced asthma. We sought to elucidate molecular pathways that differentiate asthma-like pathogenic vs nonpathogenic responses to respiratory tract MDI exposure in a murine model. Lung gene expression differences in MDI exposed immune-sensitized and nonsensitized mice vs unexposed controls were measured by microarrays, and associated molecular pathways were identified through bioinformatic analyses and further compared with published studies of a prototypic HMW asthmagen (ovalbumin). Respiratory tract MDI exposure significantly altered lung gene expression in both nonsensitized and immune-sensitized mice, vs controls. Fifty-three gene transcripts were altered in all MDI exposed lung tissue vs controls, with levels up to 10-fold higher in immune-sensitized vs nonsensitized mice. Gene transcripts selectively increased in MDI exposed immune-sensitized animals were dominated by chitinases and chemokines and showed substantial overlap with those increased in ovalbumin-induced asthma. In contrast, MDI exposure of nonsensitized mice increased type I interferon stimulated genes (ISGs) in a pattern reflecting deficiency in adenosine deaminase acting against RNA (ADAR-1), an important regulator of innate, as well as "sterile" or autoimmunity triggered by tissue damage. Thus, MDI-induced changes in lung gene expression were identified that differentiate nonpathogenic innate responses in nonsensitized hosts from pathologic adaptive responses in immune-sensitized hosts. The data suggest that MDI alters unique biological pathways involving ISGs and ADAR-1, potentially explaining its unique immunogenicity/allergenicity.
Collapse
Affiliation(s)
- Adam V Wisnewski
- Department of Internal Medicine, Yale University School of Medicine, New Haven, 06520, Connecticut United States
| | - Jian Liu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, 06520, Connecticut United States
| |
Collapse
|
40
|
Jin M, Ma Z, Dang R, Zhang H, Kim R, Xue H, Pascual J, Finkbeiner S, Head E, Liu Y, Jiang P. A Trisomy 21-linked Hematopoietic Gene Variant in Microglia Confers Resilience in Human iPSC Models of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584646. [PMID: 38559257 PMCID: PMC10979994 DOI: 10.1101/2024.03.12.584646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
While challenging, identifying individuals displaying resilience to Alzheimer's disease (AD) and understanding the underlying mechanism holds great promise for the development of new therapeutic interventions to effectively treat AD. Down syndrome (DS), or trisomy 21, is the most common genetic cause of AD. Interestingly, some people with DS, despite developing AD neuropathology, show resilience to cognitive decline. Furthermore, DS individuals are at an increased risk of myeloid leukemia due to somatic mutations in hematopoietic cells. Recent studies indicate that somatic mutations in hematopoietic cells may lead to resilience to neurodegeneration. Microglia, derived from hematopoietic lineages, play a central role in AD etiology. We therefore hypothesize that microglia carrying the somatic mutations associated with DS myeloid leukemia may impart resilience to AD. Using CRISPR-Cas9 gene editing, we introduce a trisomy 21-linked hotspot CSF2RB A455D mutation into human pluripotent stem cell (hPSC) lines derived from both DS and healthy individuals. Employing hPSC-based in vitro microglia culture and in vivo human microglia chimeric mouse brain models, we show that in response to pathological tau, the CSF2RB A455D mutation suppresses microglial type-1 interferon signaling, independent of trisomy 21 genetic background. This mutation reduces neuroinflammation and enhances phagocytic and autophagic functions, thereby ameliorating senescent and dystrophic phenotypes in human microglia. Moreover, the CSF2RB A455D mutation promotes the development of a unique microglia subcluster with tissue repair properties. Importantly, human microglia carrying CSF2RB A455D provide protection to neuronal function, such as neurogenesis and synaptic plasticity in chimeric mouse brains where human microglia largely repopulate the hippocampus. When co-transplanted into the same mouse brains, human microglia with CSF2RB A455D mutation phagocytize and replace human microglia carrying the wildtype CSF2RB gene following pathological tau treatment. Our findings suggest that hPSC-derived CSF2RB A455D microglia could be employed to develop effective microglial replacement therapy for AD and other age-related neurodegenerative diseases, even without the need to deplete endogenous diseased microglia prior to cell transplantation.
Collapse
Affiliation(s)
- Mengmeng Jin
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Ziyuan Ma
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Rui Dang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Haiwei Zhang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Rachael Kim
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Haipeng Xue
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jesse Pascual
- Department of Pathology and Laboratory Medicine, Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Steven Finkbeiner
- Ceter for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes; University of California, San Francisco, CA 94158, USA
- Departments of Neurology and Physiology, University of California, San Francisco, CA 94158, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Ying Liu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| |
Collapse
|
41
|
Czestkowski W, Krzemiński Ł, Piotrowicz MC, Mazur M, Pluta E, Andryianau G, Koralewski R, Matyszewski K, Olejniczak S, Kowalski M, Lisiecka K, Kozieł R, Piwowar K, Papiernik D, Nowotny M, Napiórkowska-Gromadzka A, Nowak E, Niedziałek D, Wieczorek G, Siwińska A, Rejczak T, Jędrzejczak K, Mulewski K, Olczak J, Zasłona Z, Gołębiowski A, Drzewicka K, Bartoszewicz A. Structure-Based Discovery of High-Affinity Small Molecule Ligands and Development of Tool Probes to Study the Role of Chitinase-3-Like Protein 1. J Med Chem 2024; 67:3959-3985. [PMID: 38427954 DOI: 10.1021/acs.jmedchem.3c02255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Chitinase-3-like-1 (CHI3L1), also known as YKL-40, is a glycoprotein linked to inflammation, fibrosis, and cancer. This study explored CHI3L1's interactions with various oligosaccharides using microscale thermophoresis (MST) and AlphaScreen (AS). These investigations guided the development of high-throughput screening assays to assess interference of small molecules in binding between CHI3L1 and biotinylated small molecules or heparan sulfate-based probes. Small molecule binders of YKL-40 were identified in our chitotriosidase inhibitors library with MST and confirmed through X-ray crystallography. Based on cocrystal structures of potent hit compounds with CHI3L1, small molecule probes 19 and 20 were designed for an AS assay. Structure-based optimization led to compounds 30 and 31 with nanomolar activities and drug-like properties. Additionally, an orthogonal AS assay using biotinylated heparan sulfate as a probe was developed. The compounds' affinity showed a significant correlation in both assays. These screening tools and compounds offer novel avenues for investigating the role of CHI3L1.
Collapse
Affiliation(s)
| | | | | | - Marzena Mazur
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | - Elżbieta Pluta
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | | | | | | | | | | | | | - Rafał Kozieł
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | | | | | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, Warsaw 02-109, Poland
| | - Agnieszka Napiórkowska-Gromadzka
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, Warsaw 02-109, Poland
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, Warsaw 02-109, Poland
| | | | | | - Anna Siwińska
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | - Tomasz Rejczak
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | | | | | - Jacek Olczak
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | | | | | | | | |
Collapse
|
42
|
Kortner TM, Afanasyev S, Koppang EO, Bjørgen H, Krogdahl Å, Krasnov A. A comprehensive transcriptional body map of Atlantic salmon unveils the vital role of the intestine in the immune system and highlights functional specialization within its compartments. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109422. [PMID: 38307300 DOI: 10.1016/j.fsi.2024.109422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/04/2024]
Abstract
The intestine is a barrier organ that plays an important role in the immune system of Atlantic salmon. The immune functions are distributed among the diffuse gut lymphoid tissue containing diverse immune cells, and other cell types. Comparison of intestinal transcriptomes with those of other organs and tissues offers an opportunity to elucidate the specific roles of the intestine and its relationship with other parts of the body. In this work, a meta-analysis was performed on a large volume of data obtained using a genome-wide DNA oligonucleotide microarray. The intestine ranks third by the expression level of immune genes after the spleen and head kidney. The activity of antigen presentation and innate antiviral immunity is higher in the intestine than in any other tissue. By comparing transcriptome profiles, intestine shows the greatest similarity with the gill, head kidney, spleen, epidermis, and olfactory rosette (descending order), which emphasizes the integrity of the peripheral mucosal system and its strong connections with the major lymphoid organs. T cells-specific genes dominate among the genes co-expressed in these tissues. The transcription signature of CD8+ (86 genes, r > 0.9) includes a master gene of immune tolerance foxp3 and other negative regulators. Different segments of the intestine were compared in a separate experiment, in which expression gradients along the intestine were found across several functional groups of genes. The expression of luminal and intracellular (lysosome) proteases is markedly higher in pyloric caeca and distal intestine respectively. Steroid metabolism and cytochromes P450 are highly expressed in pyloric caeca and mid intestine while the distal intestine harbors genes related to vitamin and iron metabolism. The expression of genes for antigen presenting proteins and immunoglobulins shows a gradual increase towards the distal intestine.
Collapse
Affiliation(s)
- Trond M Kortner
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Ås, Norway.
| | - Sergey Afanasyev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Erling Olaf Koppang
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Ås, Norway
| | - Håvard Bjørgen
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Ås, Norway
| | - Åshild Krogdahl
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Ås, Norway
| | | |
Collapse
|
43
|
Blazevic N, Rogic D, Pelajic S, Miler M, Glavcic G, Ratkajec V, Vrkljan N, Bakula D, Hrabar D, Pavic T. YKL-40 as a biomarker in various inflammatory diseases: A review. Biochem Med (Zagreb) 2024; 34:010502. [PMID: 38125621 PMCID: PMC10731731 DOI: 10.11613/bm.2024.010502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/04/2023] [Indexed: 12/23/2023] Open
Abstract
YKL-40 or Chitinase-3-Like Protein 1 (CHI3L1) is a highly conserved glycoprotein that binds heparin and chitin in a non-enzymatic manner. It is a member of the chitinase protein family 18, subfamily A, and unlike true chitinases, YKL-40 is a chitinase-like protein without enzymatic activity for chitin. Although its accurate function is yet unknown, the pattern of its expression in the normal and disease states suggests its possible engagement in apoptosis, inflammation and remodeling or degradation of the extracellular matrix. During an inflammatory response, YKL-40 is involved in a complicated interaction between host and bacteria, both promoting and attenuating immune response and potentially being served as an autoantigen in a vicious circle of autoimmunity. Based on its pathophysiology and mechanism of action, the aim of this review was to summarize research on the growing role of YKL-40 as a persuasive biomarker for inflammatory diseases' early diagnosis, prediction and follow-up (e.g., cardiovascular, gastrointestinal, endocrinological, immunological, musculoskeletal, neurological, respiratory, urinary, infectious) with detailed structural and functional background of YKL-40.
Collapse
Affiliation(s)
- Nina Blazevic
- Department of Gastroenterology and Hepatology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Dunja Rogic
- Department of Laboratory Diagnostics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Stipe Pelajic
- Department of Gastroenterology and Hepatology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Marijana Miler
- Department of Clinical Chemistry, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Goran Glavcic
- Department of Surgery, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Valentina Ratkajec
- Department of Gastroenterology, General Hospital Virovitica, Virovitica, Croatia
| | - Nikolina Vrkljan
- Department of Internal Medicine, Intensive Care Unit, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Dejan Bakula
- Department of Gastroenterology and Hepatology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Davor Hrabar
- Department of Gastroenterology and Hepatology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Tajana Pavic
- Department of Gastroenterology and Hepatology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| |
Collapse
|
44
|
Wang H, Li E, Huang Q, Liu J, Miao Y, Wang X, Qin C, Qin J, Chen L. Growth and Hepatopancreas Health of Juvenile Chinese Mitten Crab ( Eriocheir sinensis) Fed Different Levels of Black Soldier Fly ( Hermetia illucens) Larvae Meal for Fish Meal Replacement. AQUACULTURE NUTRITION 2024; 2024:6625061. [PMID: 38292025 PMCID: PMC10827365 DOI: 10.1155/2024/6625061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/09/2023] [Accepted: 10/25/2023] [Indexed: 02/01/2024]
Abstract
A 56-day feeding trial assessed the effects of black soldier fly larvae meal (BSFLM) on the growth performance and hepatopancreas health of juvenile Eriocheir sinensis. Six isoproteic and isolipidic diets with 0% (FM), 10% (BSFLM10), 20% (BSFLM20), 30% (BSFLM30), 40% (BSFLM40), or 50% (BSFLM50) replacement of fish meal by BSFLM were formulated. Compared to FM, replacing 10%-40% of fish meal with BSFLM did not significantly affect the weight gain rate (WGR) or specific growth rate (SGR), while BSFLM50 significantly decreased the WGR and SGR. Crabs fed BSFLM50 had significantly lower T-AOC activity than those fed other diets, and crabs fed BSFLM30, BSFLM40, or BSFLM50 had significantly lower activities of antioxidant enzymes (SOD and GSH-Px) in the hepatopancreas than those fed FM or BSFLM10. Compared to FM, BSFLM10, BSFLM20, and BSFLM30 did not affect the relative expression of genes related to the nonspecific immunity, while BSFLM40 and BSFLM50 upregulated the relative expression of these genes. Furthermore, histological analysis showed that the hepatopancreas was deformed in the BSFLM50 group, with widened lumens and loss of basal membrane integrity. In summary, BSFLM replacing 50% of fish meal reduced growth and structural damage to the hepatopancreas. An immune response was activated when the replacement level was over 30%. Therefore, the replacement level of dietary fish meal by BSFLM is recommended to be not more than 30% of the juvenile E. sinensis feed.
Collapse
Affiliation(s)
- Han Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | | | - Jiadai Liu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yixin Miao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, Sichuan 641100, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, South Australia 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
45
|
Essouma M. Autoimmune inflammatory myopathy biomarkers. Clin Chim Acta 2024; 553:117742. [PMID: 38176522 DOI: 10.1016/j.cca.2023.117742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The autoimmune inflammatory myopathy disease spectrum, commonly known as myositis, is a group of systemic diseases that mainly affect the muscles, skin and lungs. Biomarker assessment helps in understanding disease mechanisms, allowing for the implementation of precise strategies in the classification, diagnosis, and management of these diseases. This review examines the pathogenic mechanisms and highlights current data on blood and tissue biomarkers of autoimmune inflammatory myopathies.
Collapse
Affiliation(s)
- Mickael Essouma
- Network of Immunity in Infections, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Cameroon
| |
Collapse
|
46
|
Fargeas M, Faure F, Douadi C, Chevarin C, Birer A, Sivignon A, Rodrigues M, Denizot J, Billard E, Barnich N, Buisson A. ChiA: a major player in the virulence of Crohn's disease-associated adherent and invasive Escherichia coli (AIEC). Gut Microbes 2024; 16:2412667. [PMID: 39397494 PMCID: PMC11486038 DOI: 10.1080/19490976.2024.2412667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
We investigated the role of ChiA and its associated polymorphisms in the interaction between Crohn's disease (CD)-associated adherent-invasive Escherichia coli (AIEC) and intestinal mucosa. We observed a higher abundance of chiA among the metagenome of CD patients compared to healthy subjects. In dextran sulfate sodium-induced colitis mice model, AIEC-LF82∆chiA colonization was reduced in ileal, colonic and fecal samples compared to wild-type LF82. The binding of ChiA to recombinant human CHI3L1 or mucus was higher with the pathogenic polymorphism. The strength of ChiA-mucin interaction was 300-fold stronger than ChiA-rhCHI3L1. ChiA was able to degrade mucin to promote its growth and enabled LF82 to get closer to epithelial cells. The pathogenic polymorphism of ChiA had a stronger impact on mucus degradation than on the binding capability of AIEC to adhere to the intestinal epithelium. We observed that ChiA could favor an efficient bacterial invasion of intestinal crypts, and that ChiA, especially its pathogenic polymorphism, gives LF82 an advantage to uptake within Peyer's patches, macrophages and mesenteric lymph nodes. All together, these data support the role of ChiA in the virulence of AIEC and show that it could be a promising target to reduce AIEC colonization in patients with CD.
Collapse
Affiliation(s)
- Margot Fargeas
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne/Inserm, Clermont-Ferrand, France
| | - Frederic Faure
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne/Inserm, Clermont-Ferrand, France
- 3iHP, CHU Clermont-Ferrand, Service d’Hépato-Gastro Entérologie, Université Clermont Auvergne, Inserm, Clermont-Ferrand, France
| | - Clara Douadi
- Centre de Recherche Saint-Antoine, Sorbonne Université, Inserm, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, France
| | - Caroline Chevarin
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne/Inserm, Clermont-Ferrand, France
| | - Aurélien Birer
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne/Inserm, Clermont-Ferrand, France
| | - Adeline Sivignon
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne/Inserm, Clermont-Ferrand, France
| | - Michael Rodrigues
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne/Inserm, Clermont-Ferrand, France
| | - Jérémy Denizot
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne/Inserm, Clermont-Ferrand, France
| | - Elisabeth Billard
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne/Inserm, Clermont-Ferrand, France
| | - Nicolas Barnich
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne/Inserm, Clermont-Ferrand, France
| | - Anthony Buisson
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne/Inserm, Clermont-Ferrand, France
- 3iHP, CHU Clermont-Ferrand, Service d’Hépato-Gastro Entérologie, Université Clermont Auvergne, Inserm, Clermont-Ferrand, France
| |
Collapse
|
47
|
Xu F, Xu J, Wang Q, Gao F, Fu J, Yan T, Dong Q, Su Y, Cheng X. Serum YKL-40 as a Predictive Biomarker of Cerebral Amyloid Angiopathy-Related Intracerebral Hemorrhage Recurrence. J Alzheimers Dis 2024; 99:503-511. [PMID: 38669531 DOI: 10.3233/jad-231125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background Neuroinflammation is a major cause of secondary brain injury in intracerebral hemorrhage (ICH). To date, the prognostic value of YKL-40 (chitinase-3-like-1 protein), a biomarker of neuroinflammation, in cerebral amyloid angiopathy-related intracerebral hemorrhage (CAA-ICH) remains undiscovered. Objective To evaluate the relationships between serum YKL-40 and CAA-ICH recurrence. Methods Clinical and imaging information of 68 first-onset probable CAA-ICH cases and 95 controls were collected at baseline. Serum YKL-40 was measured by Luminex assay. Cox proportional hazards model was used to analyze the associations between YKL-40 level and CAA-ICH recurrence. Results Serum YKL-40 level was significantly higher in CAA-ICH cases than healthy controls (median [interquartile range, IQR], 46.1 [19.8, 93.4] versus 24.4 [13.9, 59.0] ng/mL, p = 0.004). Higher level of YKL-40 predicted increased risk of CAA-ICH recurrence adjusted for age, ICH volume and enlarged perivascular space score (ePVS) (above versus below 115.5 ng/ml, adjusted hazard ratios 4.721, 95% confidence intervals 1.829-12.189, p = 0.001) within a median follow-up period of 2.4 years. Adding YKL-40 to a model of only MRI imaging markers including ICH volume and ePVS score improved the discriminatory power (concordance index from 0.707 to 0.772, p = 0.001) and the reclassification power (net reclassification improvement 28.4%; integrated discrimination index 11.0%). Conclusions Serum YKL-40 level might be a candidate prognostic biomarker for CAA-ICH recurrence.
Collapse
Affiliation(s)
- Feifan Xu
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiajie Xu
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiong Wang
- Department of Neurology, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- Neurodegenerative Disorder Research Centre and Institute on Aging and Brain Disorders, University of Science and Technology of China, Hefei, China
| | - Feng Gao
- Neurodegenerative Disorder Research Centre and Institute on Aging and Brain Disorders, University of Science and Technology of China, Hefei, China
| | - Jiayu Fu
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Tingmeng Yan
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya Su
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Cheng
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Barcutean L, Hutanu A, Andone S, Maier S, Balasa R. The Peripheral Profile of the Chitinase 3-like-1 in Benign Multiple Sclerosis - A Single Centre's Experience. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:791-799. [PMID: 37303176 DOI: 10.2174/1871527322666230609164534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND A limited subgroup of multiple sclerosis (MS) patients present with a longterm disease evolution characterized by a limited disease progression, known as benign MS (BMS). Chitinase 3-like-1 (CHI3L1) levels are sensitive to inflammatory processes and may play a role in the pathogenesis of MS. In this observational, cross-sectional study, we aimed to evaluate the implications of serum CHI3L1 and inflammatory cytokines in BMS patients treated with interferon β-1b for over a decade. METHODS We collected serum samples from 17 BMS patients and 17 healthy controls (HC) to measure serum CHI3L1 levels and a Th17 panel of inflammatory cytokines. Serum levels of CHI3L1 were analysed using the sandwich ELISA method and the Th17 panel was assessed using the multiplex XMap technology on a Flexmap 3D Analyzer. RESULTS Serum CHI3L1 levels did not differ significantly from HC. We identified a positive correlation between CHI3L1 levels and relapses during treatment. CONCLUSION Our findings suggest that there are no differences in serum CHI3L1 levels between BMS patients and HC. However, serum CHI3L1 levels are sensitive to clinical inflammatory activity and may be associated with relapses in BMS patients.
Collapse
Affiliation(s)
- Laura Barcutean
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology Târgu Mures, 540136 Târgu Mures, Romania
| | - Adina Hutanu
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Laboratory Medicine, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Sebastian Andone
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology Târgu Mures, 540136 Târgu Mures, Romania
| | - Smaranda Maier
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology Târgu Mures, 540136 Târgu Mures, Romania
| | - Rodica Balasa
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology Târgu Mures, 540136 Târgu Mures, Romania
| |
Collapse
|
49
|
Han H, Choi YJ, Hong H, Kim CY, Byun MK, Cho JH, Lee JH, Park JW, Doherty TA, Park HJ. Effects of chitinase-1 inhibitor in obesity-induced and -aggravated asthma in a murine model. Life Sci 2023; 334:122163. [PMID: 37890698 DOI: 10.1016/j.lfs.2023.122163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
AIMS Despite recent investigations on the role of chitinase in asthma, its role in obesity-induced asthma has not been evaluated. Therefore, we investigated the roles of chitin, chitinase-1, and a chitinase-1 inhibitor (compound X, CPX) in a murine model. MAIN METHODS We assigned C57BL/6 mice to the ovalbumin (OVA) model or obesity model group. In the OVA model, mice received intraperitoneal OVA twice within a 2-week interval and intranasal OVA for 3 consecutive days. Additionally, chitin was intranasally administered for 3 consecutive days, and CPX was intraperitoneally injected three times over 5 days. In the obesity model, a high-fat diet (HFD) was maintained for 13 weeks, and CPX was intraperitoneally injected eight times over 4 weeks. KEY FINDINGS In the OVA model, chitin aggravated OVA-induced airway hyper-responsiveness (AHR), increased bronchoalveolar lavage fluid (BALF) cell proliferation, increased fibrosis, and increased the levels of various inflammatory cytokines (including chitinase-1, TGF-β, TNF-α, IL-1 β, IL-6, IL-4, and IL-13). CPX treatment significantly ameliorated these effects. In the obesity model, HFD significantly increased AHR, BALF cell proliferation, fibrosis, and the levels of various inflammatory cytokines. Particularly, compared to the control group, the mRNA expression of chitinase, chitinase-like molecules, and other molecules associated with inflammation and the immune system was significantly upregulated in the HFD and HFD/OVA groups. Immunofluorescence analysis also showed increased chitinase-1 expression in these groups. CPX significantly ameliorated all these effects in this model. SIGNIFICANCE This study showed that CPX can be an effective therapeutic agent in asthma, especially, obesity-induced and -aggravated asthma to protect against the progression to airway remodeling and fibrosis.
Collapse
Affiliation(s)
- Heejae Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Yong Jun Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Hyerim Hong
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Chi Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Min Kwang Byun
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jae Hwa Cho
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jae-Hyun Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung-Won Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Taylor A Doherty
- Section of Allergy and Immunology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hye Jung Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Section of Allergy and Immunology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
50
|
Konrad ER, Soo J, Conroy AL, Namasopo S, Opoka RO, Hawkes MT. Circulating markers of neutrophil activation and lung injury in pediatric pneumonia in low-resource settings. Pathog Glob Health 2023; 117:708-716. [PMID: 36562081 PMCID: PMC10614712 DOI: 10.1080/20477724.2022.2160885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diagnostic biomarkers for childhood pneumonia could guide management and improve antibiotic stewardship in low-resource settings where chest x-ray (CXR) is not always available. In this cross-sectional study, we measured chitinase 3-like protein 1 (CHI3L1), surfactant protein D (SP-D), lipocalin-2 (LCN2), and tissue inhibitor of metalloproteinases-1 (TIMP-1) in Ugandan children under the age of five hospitalized with acute lower respiratory tract infection. We determined the association between biomarker levels and primary end-point pneumonia, indicated by CXR consolidation. We included 89 children (median age 11 months, 39% female). Primary endpoint pneumonia was present in 22 (25%). Clinical signs were similar in children with and without CXR consolidation. Broad-spectrum antibiotics (ceftriaxone) were administered in 83 (93%). Levels of CHI3L1, SP-D, LCN2 and TIMP-1 were higher in patients with primary end-point pneumonia compared to patients with normal CXR or other infiltrates. All markers were moderately accurate predictors of primary end-point pneumonia, with area under receiver operator characteristic curves of 0.66-0.70 (p<0.05 for all markers). The probability of CXR consolidation increased monotonically with the number of markers above cut-off. Among 28 patients (31%) in whom all four markers were below the cut-off, the likelihood ratio of CXR consolidation was 0.11 (95%CI 0.015 to 0.73). CHI3L1, SP-D, LCN2 and TIMP-1 were associated with CXR consolidation in children with clinical pneumonia in a low-resource setting. Combinations of quantitative biomarkers may be useful to safely withhold antibiotics in children with a low probability of bacterial infection.
Collapse
Affiliation(s)
- Emily R. Konrad
- Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Jeremy Soo
- Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Andrea L. Conroy
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, USA
| | - Sophie Namasopo
- Department of Pediatrics, Kabale District Hospital, Kabale, Uganda
| | - Robert O. Opoka
- Department of Paediatrics and Child Health, Mulago Hospital and Makerere University, Kampala, Uganda
| | - Michael T. Hawkes
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- School of Public Health, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
- Distinguished Researcher, Stollery Science Lab, Edmonton, Canada
- Member, Women and Children’s Health Research Institute, Edmonton, Canada
| |
Collapse
|