1
|
Brazier F, Cornière N, Picard N, Chambrey R, Eladari D. Pendrin: linking acid base to blood pressure. Pflugers Arch 2024; 476:533-543. [PMID: 38110744 DOI: 10.1007/s00424-023-02897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Pendrin (SLC26A4) is an anion exchanger from the SLC26 transporter family which is mutated in human patients affected by Pendred syndrome, an autosomal recessive disease characterized by sensoneurinal deafness and hypothyroidism. Pendrin is also expressed in the kidney where it mediates the exchange of internal HCO3- for external Cl- at the apical surface of renal type B and non-A non-B-intercalated cells. Studies using pendrin knockout mice have first revealed that pendrin is essential for renal base excretion. However, subsequent studies have demonstrated that pendrin also controls chloride absorption by the distal nephron and that this mechanism is critical for renal NaCl balance. Furthermore, pendrin has been shown to control vascular volume and ultimately blood pressure. This review summarizes the current knowledge about how pendrin is linking renal acid-base regulation to blood pressure control.
Collapse
Affiliation(s)
- François Brazier
- Centre de dépistage et de Médecine de précision des Maladies Rénales, Service de Néphrologie, Centre Hospitalier Universitaire Amiens-Picardie, Université de Picardie Jules Verne, F-80000, Amiens, France
| | - Nicolas Cornière
- Centre de dépistage et de Médecine de précision des Maladies Rénales, Service de Néphrologie, Centre Hospitalier Universitaire Amiens-Picardie, Université de Picardie Jules Verne, F-80000, Amiens, France
| | - Nicolas Picard
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Lyon 1, Lyon, France
| | - Régine Chambrey
- Paris Cardiovascular Research Center (PARCC), INSERM U970, F-75015, Paris, France
| | - Dominique Eladari
- Centre de dépistage et de Médecine de précision des Maladies Rénales, Service de Néphrologie, Centre Hospitalier Universitaire Amiens-Picardie, Université de Picardie Jules Verne, F-80000, Amiens, France.
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Lyon 1, Lyon, France.
- French Clinical Research Infrastructure Network (F-CRIN): INI-CRCT, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
2
|
Kang MJ, Ioannou S, Lougheide Q, Dittmar M, Hsu Y, Pastor-Soler NM. The study of intercalated cells using ex vivo techniques: primary cell culture, cell lines, kidney slices, and organoids. Am J Physiol Cell Physiol 2024; 326:C229-C251. [PMID: 37899748 DOI: 10.1152/ajpcell.00479.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
This review summarizes methods to study kidney intercalated cell (IC) function ex vivo. While important for acid-base homeostasis, IC dysfunction is often not recognized clinically until it becomes severe. The advantage of using ex vivo techniques is that they allow for the differential evaluation of IC function in controlled environments. Although in vitro kidney tubular perfusion is a classical ex vivo technique to study IC, here we concentrate on primary cell cultures, immortalized cell lines, and ex vivo kidney slices. Ex vivo techniques are useful in evaluating IC signaling pathways that allow rapid responses to extracellular changes in pH, CO2, and bicarbonate (HCO3-). However, these methods for IC work can also be challenging, as cell lines that recapitulate IC do not proliferate easily in culture. Moreover, a "pure" IC population in culture does not necessarily replicate its collecting duct (CD) environment, where ICs are surrounded by the more abundant principal cells (PCs). It is reassuring that many findings obtained in ex vivo IC systems signaling have been largely confirmed in vivo. Some of these newly identified signaling pathways reveal that ICs are important for regulating NaCl reabsorption, thus suggesting new frontiers to target antihypertensive treatments. Moreover, recent single-cell characterization studies of kidney epithelial cells revealed a dual developmental origin of IC, as well as the presence of novel CD cell types with certain IC characteristics. These exciting findings present new opportunities for the study of IC ex vivo and will likely rediscover the importance of available tools in this field.NEW & NOTEWORTHY The study of kidney intercalated cells has been limited by current cell culture and kidney tissue isolation techniques. This review is to be used as a reference to select ex vivo techniques to study intercalated cells. We focused on the use of cell lines and kidney slices as potential useful models to study membrane transport proteins. We also review how novel collecting duct organoids may help better elucidate the role of these intriguing cells.
Collapse
Affiliation(s)
- Min Ju Kang
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Silvia Ioannou
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Quinn Lougheide
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Michael Dittmar
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Young Hsu
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Nuria M Pastor-Soler
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| |
Collapse
|
3
|
Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, Villanueva-Tobaldo CV, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Epithelial Transport in Disease: An Overview of Pathophysiology and Treatment. Cells 2023; 12:2455. [PMID: 37887299 PMCID: PMC10605148 DOI: 10.3390/cells12202455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Epithelial transport is a multifaceted process crucial for maintaining normal physiological functions in the human body. This comprehensive review delves into the pathophysiological mechanisms underlying epithelial transport and its significance in disease pathogenesis. Beginning with an introduction to epithelial transport, it covers various forms, including ion, water, and nutrient transfer, followed by an exploration of the processes governing ion transport and hormonal regulation. The review then addresses genetic disorders, like cystic fibrosis and Bartter syndrome, that affect epithelial transport. Furthermore, it investigates the involvement of epithelial transport in the pathophysiology of conditions such as diarrhea, hypertension, and edema. Finally, the review analyzes the impact of renal disease on epithelial transport and highlights the potential for future research to uncover novel therapeutic interventions for conditions like cystic fibrosis, hypertension, and renal failure.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain;
- Group de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain; (L.R.-F.); (C.V.V.-T.)
| | - Carlota Valeria Villanueva-Tobaldo
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain; (L.R.-F.); (C.V.V.-T.)
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | | |
Collapse
|
4
|
Chelangarimiyandoab F, Mungara P, Batta M, Cordat E. Urinary Tract Infections: Renal Intercalated Cells Protect against Pathogens. J Am Soc Nephrol 2023; 34:1605-1614. [PMID: 37401780 PMCID: PMC10561816 DOI: 10.1681/asn.0000000000000187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023] Open
Abstract
Urinary tract infections affect more than 1 in 2 women during their lifetime. Among these, more than 10% of patients carry antibiotic-resistant bacterial strains, highlighting the urgent need to identify alternative treatments. While innate defense mechanisms are well-characterized in the lower urinary tract, it is becoming evident that the collecting duct (CD), the first renal segment encountered by invading uropathogenic bacteria, also contributes to bacterial clearance. However, the role of this segment is beginning to be understood. This review summarizes the current knowledge on CD intercalated cells in urinary tract bacterial clearance. Understanding the innate protective role of the uroepithelium and of the CD offers new opportunities for alternative therapeutic strategies.
Collapse
Affiliation(s)
- Forough Chelangarimiyandoab
- Department of Physiology and Membrane Protein Disease Research Group, Faculty of Medicine & Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
5
|
Sampani E, Theodorakopoulou M, Iatridi F, Sarafidis P. Hyperkalemia in chronic kidney disease: a focus on potassium lowering pharmacotherapy. Expert Opin Pharmacother 2023; 24:1775-1789. [PMID: 37545002 DOI: 10.1080/14656566.2023.2245756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION Hyperkalemia is one of the most common electrolyte disorders in chronic kidney disease (CKD) and is associated with serious adverse outcomes. Hyperkalemia risk is even greater when CKD patients also have additional predisposing conditions such as diabetes or heart failure. Renin-angiotensin-aldosterone-system blockers are first-line treatments for cardio- and nephroprotection, but their use is often limited due to K+ elevation, resulting in high rates of discontinuation. AREAS COVERED This article provides an overview of factors interfering with K+ homeostasis and discusses recent data on newer therapeutic agents used for the treatment of hyperkalemia. A detailed literature search was performed in two major databases (PubMed/MEDLINE and Scopus) up to April 2023. EXPERT OPINION Major clinical trials have tested new and promising kidney protective therapies such as sodium/glucose-cotransporter-2 inhibitors and mineralocorticoid-receptor-antagonists, with promising results. Until recently, the only treatment option for hyperkalemia was the cation-exchanging resin sodium-polystyrene-sulfonate. However, despite its common use, the efficacy and safety data of this drug in the long-term management of hyperkalemia are scarce. During the last decade, two novel orally administered K+-exchanging compounds (patiromer and sodium-zirconium-cyclosilicate) have been approved for the treatment of adults with hyperkalemia, as they both effectively reduce elevated serum K+ and maintain chronically K+ balance within the normal range with an excellent tolerability and no serious adverse events.
Collapse
Affiliation(s)
- Erasmia Sampani
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marieta Theodorakopoulou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fotini Iatridi
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
6
|
Kumar P, Zadjali F, Yao Y, Johnson D, Siroky B, Astrinidis A, Vogel P, Gross KW, Bissler JJ. Tsc2 mutation induces renal tubular cell nonautonomous disease. Genes Dis 2022; 9:187-200. [PMID: 35005118 PMCID: PMC8720703 DOI: 10.1016/j.gendis.2021.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 01/22/2023] Open
Abstract
TSC renal cystic disease is poorly understood and has no approved treatment. In a new principal cell-targeted murine model of Tsc cystic disease, the renal cystic epithelium is mostly composed of type A intercalated cells with an intact Tsc2 gene confirmed by sequencing, although these cells exhibit a Tsc-mutant disease phenotype. We used a newly derived targeted murine model in lineage tracing and extracellular vesicle (EV) characterization experiments and a cell culture model in EV characterization and cellular induction experiments to understand TSC cystogenesis. Using lineage tracing experiments, we found principal cells undergo clonal expansion but contribute very few cells to the cyst. We determined that cystic kidneys contain more interstitial EVs than noncystic kidneys, excrete fewer EVs in urine, and contain EVs in cyst fluid. Moreover, the loss of Tsc2 gene in EV-producing cells greatly changes the effect of EVs on renal tubular epithelium, such that the epithelium develops increased secretory and proliferative pathway activity. We demonstate that the mTORC1 pathway activity is independent form the EV production, and that the EV effects for a single cell line can vary significantly. TSC cystogenesis involves significant contribution from genetically intact cells conscripted to the mutant phenotype by mutant cell derived EVs.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38103, USA.,Children's Foundation Research Institute (CFRI), Le Bonheur Children's Hospital, Memphis, TN 38105, USA
| | - Fahad Zadjali
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38103, USA.,Children's Foundation Research Institute (CFRI), Le Bonheur Children's Hospital, Memphis, TN 38105, USA.,Department of Clinical Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Ying Yao
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38103, USA.,Children's Foundation Research Institute (CFRI), Le Bonheur Children's Hospital, Memphis, TN 38105, USA
| | - Daniel Johnson
- Molecular Bioinformatics Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Brian Siroky
- Children's Foundation Research Institute (CFRI), Le Bonheur Children's Hospital, Memphis, TN 38105, USA
| | - Aristotelis Astrinidis
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38103, USA
| | - Peter Vogel
- Department of Veterinary Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kenneth W Gross
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - John J Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38103, USA.,Children's Foundation Research Institute (CFRI), Le Bonheur Children's Hospital, Memphis, TN 38105, USA.,Pediatric Medicine Department, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
7
|
Chang X, Hao J, Wang X, Liu J, Ni J, Hao L. The Role of AIF-1 in the Aldosterone-Induced Vascular Calcification Related to Chronic Kidney Disease: Evidence From Mice Model and Cell Co-Culture Model. Front Endocrinol (Lausanne) 2022; 13:917356. [PMID: 35937793 PMCID: PMC9347268 DOI: 10.3389/fendo.2022.917356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence suggests that aldosterone (Aldo) plays an essential role in vascular calcification which is a serious threat to cardiovascular disease (CVD) developed from chronic kidney disease (CKD). However, the exact pathogenesis of vascular calcification is still unclear. First, we established CKD-associated vascular calcification mice model and knockout mice model to investigate the causal relationship between allograft inflammatory factor 1 (AIF-1) and vascular calcification. Then, endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) co-culture experiments were performed to further explore the mechanisms of calcification. The results of the Aldo intervention mice model and transgenic mice model showed that Aldo could cause calcification by increasing the AIF-1 level. The results of in vitro co-culture model of ECs and VSMCs showed that AIF-1 silence in ECs may alleviate Aldo-induced calcification of VSMCs. In conclusion, our study indicated that Aldo may induce vascular calcification related to chronic renal failure via the AIF-1 pathway which may provide a potential therapeutic target.
Collapse
Affiliation(s)
- Xueying Chang
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianbing Hao
- Department of Nephropathy, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Xingzhi Wang
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingwei Liu
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jie Ni
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lirong Hao, ; Jie Ni,
| | - Lirong Hao
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lirong Hao, ; Jie Ni,
| |
Collapse
|
8
|
Kumar P, Zadjali F, Yao Y, Bissler JJ. Renal cystic disease in tuberous sclerosis complex. Exp Biol Med (Maywood) 2021; 246:2111-2117. [PMID: 34488473 DOI: 10.1177/15353702211038378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is associated with TSC1 or TSC2 gene mutations resulting in hyperactivation of the mTORC1 pathway. This mTORC1 activation is associated with abnormal tissue development and proliferation such that in the kidney there are both solid tumors and cystic lesions. This review summarizes recent advances in tuberous sclerosis complex nephrology and focuses on the genetics and cell biology of tuberous sclerosis complex renal disease, highlighting a role of extracellular vesicles and the innate immune system in disease pathogenesis.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38105, USA.,Children's Foundation Research Institute (CFRI), Le Bonheur Children's Hospital, Memphis, TN 38105, USA
| | - Fahad Zadjali
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38105, USA.,Children's Foundation Research Institute (CFRI), Le Bonheur Children's Hospital, Memphis, TN 38105, USA.,Department of Clinical Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, PC 123, Oman
| | - Ying Yao
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38105, USA.,Children's Foundation Research Institute (CFRI), Le Bonheur Children's Hospital, Memphis, TN 38105, USA
| | - John J Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38105, USA.,Children's Foundation Research Institute (CFRI), Le Bonheur Children's Hospital, Memphis, TN 38105, USA.,Pediatric Medicine Department, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
9
|
Barbry P, Marcet B, Caballero I. Where Is the Cystic Fibrosis Transmembrane Conductance Regulator? Am J Respir Crit Care Med 2021; 203:1214-1216. [PMID: 33428551 PMCID: PMC8456474 DOI: 10.1164/rccm.202012-4434ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Pascal Barbry
- Institut de Pharmacologie Moléculaire et Cellulaire Université Côte d'Azur-CNRS Sophia Antipolis, France
| | - Brice Marcet
- Institut de Pharmacologie Moléculaire et Cellulaire Université Côte d'Azur-CNRS Sophia Antipolis, France
| | | |
Collapse
|
10
|
Prieto MC, Gonzalez AA, Visniauskas B, Navar LG. The evolving complexity of the collecting duct renin-angiotensin system in hypertension. Nat Rev Nephrol 2021; 17:481-492. [PMID: 33824491 PMCID: PMC8443079 DOI: 10.1038/s41581-021-00414-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The intrarenal renin-angiotensin system is critical for the regulation of tubule sodium reabsorption, renal haemodynamics and blood pressure. The excretion of renin in urine can result from its increased filtration, the inhibition of renin reabsorption by megalin in the proximal tubule, or its secretion by the principal cells of the collecting duct. Modest increases in circulating or intrarenal angiotensin II (ANGII) stimulate the synthesis and secretion of angiotensinogen in the proximal tubule, which provides sufficient substrate for collecting duct-derived renin to form angiotensin I (ANGI). In models of ANGII-dependent hypertension, ANGII suppresses plasma renin, suggesting that urinary renin is not likely to be the result of increased filtered load. In the collecting duct, ANGII stimulates the synthesis and secretion of prorenin and renin through the activation of ANGII type 1 receptor (AT1R) expressed primarily by principal cells. The stimulation of collecting duct-derived renin is enhanced by paracrine factors including vasopressin, prostaglandin E2 and bradykinin. Furthermore, binding of prorenin and renin to the prorenin receptor in the collecting duct evokes a number of responses, including the non-proteolytic enzymatic activation of prorenin to produce ANGI from proximal tubule-derived angiotensinogen, which is then converted into ANGII by luminal angiotensin-converting enzyme; stimulation of the epithelial sodium channel (ENaC) in principal cells; and activation of intracellular pathways linked to the upregulation of cyclooxygenase 2 and profibrotic genes. These findings suggest that dysregulation of the renin-angiotensin system in the collecting duct contributes to the development of hypertension by enhancing sodium reabsorption and the progression of kidney injury.
Collapse
Affiliation(s)
- Minolfa C. Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA.,Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA.,
| | - Alexis A. Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Bruna Visniauskas
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA
| | - L. Gabriel Navar
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA.,Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
11
|
Carrisoza-Gaytan R, Ray EC, Flores D, Marciszyn AL, Wu P, Liu L, Subramanya AR, Wang W, Sheng S, Nkashama LJ, Chen J, Jackson EK, Mutchler SM, Heja S, Kohan DE, Satlin LM, Kleyman TR. Intercalated cell BKα subunit is required for flow-induced K+ secretion. JCI Insight 2020; 5:130553. [PMID: 32255763 DOI: 10.1172/jci.insight.130553] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
BK channels are expressed in intercalated cells (ICs) and principal cells (PCs) in the cortical collecting duct (CCD) of the mammalian kidney and have been proposed to be responsible for flow-induced K+ secretion (FIKS) and K+ adaptation. To examine the IC-specific role of BK channels, we generated a mouse with targeted disruption of the pore-forming BK α subunit (BKα) in ICs (IC-BKα-KO). Whole cell charybdotoxin-sensitive (ChTX-sensitive) K+ currents were readily detected in control ICs but largely absent in ICs of IC-BKα-KO mice. When placed on a high K+ (HK) diet for 13 days, blood [K+] was significantly greater in IC-BKα-KO mice versus controls in males only, although urinary K+ excretion rates following isotonic volume expansion were similar in males and females. FIKS was present in microperfused CCDs isolated from controls but was absent in IC-BKα-KO CCDs of both sexes. Also, flow-stimulated epithelial Na+ channel-mediated (ENaC-mediated) Na+ absorption was greater in CCDs from female IC-BKα-KO mice than in CCDs from males. Our results confirm a critical role of IC BK channels in FIKS. Sex contributes to the capacity for adaptation to a HK diet in IC-BKα-KO mice.
Collapse
Affiliation(s)
| | - Evan C Ray
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Flores
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Allison L Marciszyn
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Leah Liu
- McGill University, Montreal, Quebec, Canada
| | - Arohan R Subramanya
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Cell Biology and
| | - WenHui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Shaohu Sheng
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lubika J Nkashama
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jingxin Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephanie M Mutchler
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Szilvia Heja
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Donald E Kohan
- Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Cell Biology and.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Recent insights into sodium and potassium handling by the aldosterone-sensitive distal nephron: a review of the relevant physiology. J Nephrol 2020; 33:431-445. [DOI: 10.1007/s40620-019-00684-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
|
13
|
Nair AV, Yanhong W, Paunescu TG, Bouley R, Brown D. Sex-dependent differences in water homeostasis in wild-type and V-ATPase B1-subunit deficient mice. PLoS One 2019; 14:e0219940. [PMID: 31386675 PMCID: PMC6684071 DOI: 10.1371/journal.pone.0219940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022] Open
Abstract
Men tend to dehydrate more than women after prolonged exercise, possibly due to lower water intake and higher perspiration rate. Women are prone to exercise-associated hyponatremia, primarily attributed to the higher water consumption causing hypervolemia. Since aquaporin-2 (AQP2) water channels in the kidney collecting duct (CD) principal cells (PCs) are involved in maintaining water balance, we investigated their role in sex-dependent water homeostasis in wild-type (WT) C57BL/6 mice. Because CD intercalated cells (ICs) may also be involved in water balance, we also assessed the urine concentrating ability of V-ATPase B1 subunit-deficient (Atp6v1b1-/-) mice. Upon 12-hour water deprivation, urine osmolality increased by 59% in WT female mice and by only 28% in males. This difference was abolished in Atp6v1b1-/- mice, in which dehydration induced a ~30% increase in urine osmolarity in both sexes. AQP2 levels were highest in WT females; female Atp6v1b1-/- mice had substantially lower AQP2 expression than WT females, comparable to the low AQP2 levels seen in both Atp6v1b1-/- and WT males. After dehydration, AQP2 relocates towards the PC apical pole, especially in the inner stripe and inner medulla, and to a greater extent in WT females than in WT males. This apparent sex-dependent concentrating advantage was absent in Atp6v1b1-/- females, whose reduced AQP2 apical relocation was similar to WT males. Accordingly, female mice concentrate urine better than males upon dehydration due to increased AQP2 expression and mobilization. Moreover, our data support the involvement of ICs in water homeostasis, at least partly mediated by V-ATPase, in a sex-dependent manner.
Collapse
Affiliation(s)
- Anil V. Nair
- Program in Membrane Biology, Center for Systems Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| | - Wei Yanhong
- Program in Membrane Biology, Center for Systems Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Teodor G. Paunescu
- Program in Membrane Biology, Center for Systems Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Richard Bouley
- Program in Membrane Biology, Center for Systems Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Dennis Brown
- Program in Membrane Biology, Center for Systems Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
14
|
Abstract
The epithelium of the kidney collecting duct (CD) is composed mainly of two different types of cells with distinct and complementary functions. CD principal cells traditionally have been considered to have a major role in Na+ and water regulation, while intercalated cells (ICs) were thought to largely modulate acid-base homeostasis. In recent years, our understanding of IC function has improved significantly owing to new research findings. Thus, we now have a new model for CD transport that integrates mechanisms of salt and water reabsorption, K+ homeostasis, and acid-base status between principal cells and ICs. There are three main types of ICs (type A, type B, and non-A, non-B), which first appear in the late distal convoluted tubule or in the connecting segment in a species-dependent manner. ICs can be detected in CD from cortex to the initial part of the inner medulla, although some transport proteins that are key components of ICs also are present in medullary CD, cells considered inner medullary. Of the three types of ICs, each has a distinct morphology and expresses different complements of membrane transport proteins that translate into very different functions in homeostasis and contributions to CD luminal pro-urine composition. This review includes recent discoveries in IC intracellular and paracrine signaling that contributes to acid-base regulation as well as Na+, Cl-, K+, and Ca2+ homeostasis. Thus, these new findings highlight the potential role of ICs as targets for potential hypertension treatments.
Collapse
Affiliation(s)
- Renee Rao
- University of Southern California/University Kidney Research Organization, Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Núria M Pastor-Soler
- University of Southern California/University Kidney Research Organization, Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA.
| |
Collapse
|
15
|
Kamel KS, Schreiber M, Halperin ML. Renal potassium physiology: integration of the renal response to dietary potassium depletion. Kidney Int 2018; 93:41-53. [PMID: 29102372 DOI: 10.1016/j.kint.2017.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 01/30/2023]
Abstract
We summarize the current understanding of the physiology of the renal handling of potassium (K+), and present an integrative view of the renal response to K+ depletion caused by dietary K+ restriction. This renal response involves contributions from different nephron segments, and aims to diminish the rate of excretion of K+ as a result of: decreasing the rate of electrogenic (and increasing the rate of electroneutral) reabsorption of sodium in the aldosterone-sensitive distal nephron (ASDN), decreasing the abundance of renal outer medullary K+ channels in the luminal membrane of principal cells in the ASDN, decreasing the flow rate in the ASDN, and increasing the reabsorption of K+ in the cortical and medullary collecting ducts. The implications of this physiology for the association between K+ depletion and hypertension, and K+ depletion and formation of calcium kidney stones are discussed.
Collapse
Affiliation(s)
- Kamel S Kamel
- Renal Division, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada; Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.
| | - Martin Schreiber
- Renal Division, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mitchell L Halperin
- Renal Division, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada; Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Marticorena Garcia SR, Grossmann M, Lang ST, Nguyen Trong M, Schultz M, Guo J, Hamm B, Braun J, Sack I, Tzschätzsch H. Full-Field-of-View Time-Harmonic Elastography of the Native Kidney. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:949-954. [PMID: 29478787 DOI: 10.1016/j.ultrasmedbio.2018.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/07/2018] [Accepted: 01/12/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this study was to analyze full-field-of-view maps of renal shear wave speed (SWS) measured by time-harmonic elastography (THE) in healthy volunteers in terms of reproducibility, regional variation and physiologic effects. The kidneys of 37 healthy volunteers were investigated by multifrequency THE. The complete renal parenchyma, as well as cortex and medulla, was analyzed. A subgroup was investigated to test reproducibility (n = 3). Significant differences between SWS in cortex, medulla and full parenchyma were observed (2.10 ± 0.17, 1.35 ± 0.11 and 1.71 ± 0.16 m/s, all p values < 0.001) with mean intra-volunteer standard deviations of repeated measurements of 0.04 m/s (1.6%), 0.06 m/s (4.0%) and 0.08 m/s (4.5%), respectively. No effects of kidney anatomy, age, body mass index, blood pressure and heart rate on SWS were observed. THE allows generation of full-field-of-view SWS maps of native kidneys with high reproducibility.
Collapse
Affiliation(s)
- Stephan Rodrigo Marticorena Garcia
- Department of Radiology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus Grossmann
- Department of Radiology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sophia Theresa Lang
- Department of Radiology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | - Jing Guo
- Department of Radiology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heiko Tzschätzsch
- Department of Radiology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
17
|
Abstract
Kidney cell death plays a key role in the progression of life-threatening renal diseases, such as acute kidney injury and chronic kidney disease. Injured and dying epithelial and endothelial cells take part in complex communication with the innate immune system, which drives the progression of cell death and the decrease in renal function. To improve our understanding of kidney cell death dynamics and its impact on renal disease, a study approach is needed that facilitates the visualization of renal function and morphology in real time. Intravital multiphoton microscopy of the kidney has been used for more than a decade and made substantial contributions to our understanding of kidney physiology and pathophysiology. It is a unique tool that relates renal structure and function in a time- and spatial-dependent manner. Basic renal function, such as microvascular blood flow regulation and glomerular filtration, can be determined in real time and homeostatic alterations, which are linked inevitably to cell death and can be depicted down to the subcellular level. This review provides an overview of the available techniques to study kidney dysfunction and inflammation in terms of cell death in vivo, and addresses how this novel approach can be used to improve our understanding of cell death dynamics in renal disease.
Collapse
|
18
|
Stegbauer J, Chen D, Herrera M, Sparks MA, Yang T, Königshausen E, Gurley SB, Coffman TM. Resistance to hypertension mediated by intercalated cells of the collecting duct. JCI Insight 2017; 2:e92720. [PMID: 28405625 PMCID: PMC5374064 DOI: 10.1172/jci.insight.92720] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/14/2017] [Indexed: 01/09/2023] Open
Abstract
The renal collecting duct (CD), as the terminal segment of the nephron, is responsible for the final adjustments to the amount of sodium excreted in urine. While angiotensin II modulates reabsorptive functions of the CD, the contribution of these actions to physiological homeostasis is not clear. To examine this question, we generated mice with cell-specific deletion of AT1A receptors from the CD. Elimination of AT1A receptors from both principal and intercalated cells (CDKO mice) had no effect on blood pressures at baseline or during successive feeding of low- or high-salt diets. In contrast, the severity of hypertension caused by chronic infusion of angiotensin II was paradoxically exaggerated in CDKO mice compared with controls. In wild-type mice, angiotensin II induced robust expression of cyclooxygenase-2 (COX-2) in renal medulla, primarily localized to intercalated cells. Upregulation of COX-2 was diminished in CDKO mice, resulting in reduced generation of vasodilator prostanoids. This impaired expression of COX-2 has physiological consequences, since administration of a specific COX-2 inhibitor to CDKO and control mice during angiotensin II infusion equalized their blood pressures. Stimulation of COX-2 was also triggered by exposure of isolated preparations of medullary CDs to angiotensin II. Deletion of AT1A receptors from principal cells alone did not affect angiotensin II-dependent COX2 stimulation, implicating intercalated cells as the main source of COX2 in this setting. These findings suggest a novel paracrine role for the intercalated cell to attenuate the severity of hypertension. Strategies for preserving or augmenting this pathway may have value for improving the management of hypertension.
Collapse
Affiliation(s)
- Johannes Stegbauer
- Division of Nephrology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Daian Chen
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Marcela Herrera
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Matthew A. Sparks
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Ting Yang
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Eva Königshausen
- Division of Nephrology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Susan B. Gurley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Thomas M. Coffman
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
19
|
McDonough AA, Youn JH. Potassium Homeostasis: The Knowns, the Unknowns, and the Health Benefits. Physiology (Bethesda) 2017; 32:100-111. [PMID: 28202621 PMCID: PMC5337831 DOI: 10.1152/physiol.00022.2016] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Potassium homeostasis has a very high priority because of its importance for membrane potential. Although extracellular K+ is only 2% of total body K+, our physiology was evolutionarily tuned for a high-K+, low-Na+ diet. We review how multiple systems interface to accomplish fine K+ balance and the consequences for health and disease.
Collapse
Affiliation(s)
- Alicia A McDonough
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Jang H Youn
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
20
|
Ong GSY, Young MJ. Mineralocorticoid regulation of cell function: the role of rapid signalling and gene transcription pathways. J Mol Endocrinol 2017; 58:R33-R57. [PMID: 27821439 DOI: 10.1530/jme-15-0318] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/06/2016] [Indexed: 12/22/2022]
Abstract
The mineralocorticoid receptor (MR) and mineralocorticoids regulate epithelial handling of electrolytes, and induces diverse effects on other tissues. Traditionally, the effects of MR were ascribed to ligand-receptor binding and activation of gene transcription. However, the MR also utilises a number of intracellular signalling cascades, often by transactivating unrelated receptors, to change cell function more rapidly. Although aldosterone is the physiological mineralocorticoid, it is not the sole ligand for MR. Tissue-selective and mineralocorticoid-specific effects are conferred through the enzyme 11β-hydroxysteroid dehydrogenase 2, cellular redox status and properties of the MR itself. Furthermore, not all aldosterone effects are mediated via MR, with implication of the involvement of other membrane-bound receptors such as GPER. This review will describe the ligands, receptors and intracellular mechanisms available for mineralocorticoid hormone and receptor signalling and illustrate their complex interactions in physiology and disease.
Collapse
Affiliation(s)
- Gregory S Y Ong
- Cardiovascular Endocrinology LaboratoryCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of MedicineSchool of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Morag J Young
- Cardiovascular Endocrinology LaboratoryCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of PhysiologySchool of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
21
|
Chen D, Stegbauer J, Sparks MA, Kohan D, Griffiths R, Herrera M, Gurley SB, Coffman TM. Impact of Angiotensin Type 1A Receptors in Principal Cells of the Collecting Duct on Blood Pressure and Hypertension. Hypertension 2016; 67:1291-7. [PMID: 27141055 DOI: 10.1161/hypertensionaha.115.06987] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/16/2016] [Indexed: 01/09/2023]
Abstract
The main actions of the renin-angiotensin system to control blood pressure (BP) are mediated by the angiotensin type 1 receptors (AT1Rs). The major murine AT1R isoform, AT1AR, is expressed throughout the nephron, including the collecting duct in both principal and intercalated cells. Principal cells play the major role in sodium and water reabsorption. Although aldosterone is considered to be the dominant regulator of sodium reabsorption by principal cells, recent studies suggest a role for direct actions of AT1R. To specifically examine the contributions of AT1AR in principal cells to BP regulation and the development of hypertension in vivo, we generated inbred 129/SvEv mice with deletion of AT1AR from principal cells (PCKO). At baseline, we found that BPs measured by radiotelemetry were similar between PCKOs and controls. During 1-week of low-salt diet (<0.02% NaCl), BPs fell significantly (P<0.05) and to a similar extent in both groups. On a high-salt (6% NaCl) diet, BP increased but was not different between groups. During the initial phase of angiotensin II-dependent hypertension, there was a modest but significant attenuation of hypertension in PCKOs (163±6 mm Hg) compared with controls (178±2 mm Hg; P<0.05) that was associated with enhanced natriuresis and decreased alpha epithelial sodium channel activation in the medulla of PCKOs. However, from day 9 onward, BPs were indistinguishable between groups. Although effects of AT1AR on baseline BP and adaptation to changes in dietary salt are negligible, our studies suggest that direct actions of AT1AR contribute to the initiation of hypertension and epithelial sodium channel activation.
Collapse
Affiliation(s)
- Daian Chen
- From the Division of Nephrology, Department of Medicine, Duke University, and Durham VA Medical Centers, NC (D.C., M.A.S., R.G., M.H., S.B.G., T.M.C.); Department of Nephrology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany (J.S.); School of Medicine, University of Utah Health Sciences Center, Salt Lake City (D.K.); and Cardiovascular and Metabolic Disorders Research Program, Duke-NUS Graduate Medical School, Singapore, Singapore (T.M.C.)
| | - Johannes Stegbauer
- From the Division of Nephrology, Department of Medicine, Duke University, and Durham VA Medical Centers, NC (D.C., M.A.S., R.G., M.H., S.B.G., T.M.C.); Department of Nephrology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany (J.S.); School of Medicine, University of Utah Health Sciences Center, Salt Lake City (D.K.); and Cardiovascular and Metabolic Disorders Research Program, Duke-NUS Graduate Medical School, Singapore, Singapore (T.M.C.)
| | - Matthew A Sparks
- From the Division of Nephrology, Department of Medicine, Duke University, and Durham VA Medical Centers, NC (D.C., M.A.S., R.G., M.H., S.B.G., T.M.C.); Department of Nephrology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany (J.S.); School of Medicine, University of Utah Health Sciences Center, Salt Lake City (D.K.); and Cardiovascular and Metabolic Disorders Research Program, Duke-NUS Graduate Medical School, Singapore, Singapore (T.M.C.)
| | - Donald Kohan
- From the Division of Nephrology, Department of Medicine, Duke University, and Durham VA Medical Centers, NC (D.C., M.A.S., R.G., M.H., S.B.G., T.M.C.); Department of Nephrology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany (J.S.); School of Medicine, University of Utah Health Sciences Center, Salt Lake City (D.K.); and Cardiovascular and Metabolic Disorders Research Program, Duke-NUS Graduate Medical School, Singapore, Singapore (T.M.C.)
| | - Robert Griffiths
- From the Division of Nephrology, Department of Medicine, Duke University, and Durham VA Medical Centers, NC (D.C., M.A.S., R.G., M.H., S.B.G., T.M.C.); Department of Nephrology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany (J.S.); School of Medicine, University of Utah Health Sciences Center, Salt Lake City (D.K.); and Cardiovascular and Metabolic Disorders Research Program, Duke-NUS Graduate Medical School, Singapore, Singapore (T.M.C.)
| | - Marcela Herrera
- From the Division of Nephrology, Department of Medicine, Duke University, and Durham VA Medical Centers, NC (D.C., M.A.S., R.G., M.H., S.B.G., T.M.C.); Department of Nephrology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany (J.S.); School of Medicine, University of Utah Health Sciences Center, Salt Lake City (D.K.); and Cardiovascular and Metabolic Disorders Research Program, Duke-NUS Graduate Medical School, Singapore, Singapore (T.M.C.)
| | - Susan B Gurley
- From the Division of Nephrology, Department of Medicine, Duke University, and Durham VA Medical Centers, NC (D.C., M.A.S., R.G., M.H., S.B.G., T.M.C.); Department of Nephrology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany (J.S.); School of Medicine, University of Utah Health Sciences Center, Salt Lake City (D.K.); and Cardiovascular and Metabolic Disorders Research Program, Duke-NUS Graduate Medical School, Singapore, Singapore (T.M.C.)
| | - Thomas M Coffman
- From the Division of Nephrology, Department of Medicine, Duke University, and Durham VA Medical Centers, NC (D.C., M.A.S., R.G., M.H., S.B.G., T.M.C.); Department of Nephrology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany (J.S.); School of Medicine, University of Utah Health Sciences Center, Salt Lake City (D.K.); and Cardiovascular and Metabolic Disorders Research Program, Duke-NUS Graduate Medical School, Singapore, Singapore (T.M.C.).
| |
Collapse
|
22
|
The Role of Epithelial Sodium Channel ENaC and the Apical Cl-/HCO3- Exchanger Pendrin in Compensatory Salt Reabsorption in the Setting of Na-Cl Cotransporter (NCC) Inactivation. PLoS One 2016; 11:e0150918. [PMID: 26963391 PMCID: PMC4786216 DOI: 10.1371/journal.pone.0150918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/18/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The absence of NCC does not cause significant salt wasting in NCC deficient mice under basal conditions. We hypothesized that ENaC and pendrin play important roles in compensatory salt absorption in the setting of NCC inactivation, and their inhibition and/or downregulation can cause significant salt wasting in NCC KO mice. METHODS WT and NCC KO mice were treated with a daily injection of either amiloride, an inhibitor of ENaC, or acetazolamide (ACTZ), a blocker of salt and bicarbonate reabsorption in the proximal tubule and an inhibitor of carbonic anhydrases in proximal tubule and intercalated cells, or a combination of acetazolamide plus amiloride for defined durations. Animals were subjected to daily balance studies. At the end of treatment, kidneys were harvested and examined. Blood samples were collected for electrolytes and acid base analysis. RESULTS Amiloride injection significantly increased the urine output (UO) in NCC KO mice (from 1.3 ml/day before to 2.5 ml/day after amiloride, p<0.03, n = 4) but caused only a slight change in UO in WT mice (p>0.05). The increase in UO in NCC KO mice was associated with a significant increase in sodium excretion (from 0.25 mmol/24 hrs at baseline to 0.35 mmol/24 hrs after amiloride injection, p<0.05, n = 4). Daily treatment with ACTZ for 6 days resulted in >80% reduction of kidney pendrin expression in both WT and NCC KO mice. However, ACTZ treatment noticeably increased urine output and salt excretion only in NCC KO mice (with urine output increasing from a baseline of 1.1 ml/day to 2.3 ml/day and sodium excretion increasing from 0.22 mmole/day before to 0.31 mmole/day after ACTZ) in NCC KO mice; both parameters were significantly higher than in WT mice. Western blot analysis demonstrated significant enhancement in ENaC expression in medulla and cortex of NCC KO and WT mice in response to ACTZ injection for 6 days, and treatment with amiloride in ACTZ-pretreated mice caused a robust increase in salt excretion in both NCC KO and WT mice. Pendrin KO mice did not display a significant increase in urine output or salt excretion after treatment with amiloride or ACTZ. CONCLUSION 1. ENaC plays an important role in salt reabsorption in NCC KO mice. 2. NCC contributes to compensatory salt reabsorption in the setting of carbonic anhydrase inhibition, which is associated with increased delivery of salt from the proximal tubule and the down regulation of pendrin. 3. ENaC is upregulated by ACTZ treatment and its inhibition by amiloride causes significant diuresis in NCC KO and WT mice. Despite being considered mild agents individually, we propose that the combination of acetazolamide and amiloride in the setting of NCC inhibition (i.e., hydrochlorothiazide) will be a powerful diuretic regimen.
Collapse
|
23
|
Abstract
The impaired capacity of the kidney to excrete sodium plays an essential role in the development of hypertension. Adrenal corticosteroids control renal handling of sodium by regulating tubular sodium reabsorption in the distal nephron where both mineralocorticoid receptors (MR) and glucocorticoid receptors are expressed. In addition, cell type- and segment-specific expression of 11β-HSD2 and sodium transporters such as Na-Cl cotransporter (NCC), epithelial sodium channel (ENaC), and pendrin/Na(+)-driven Cl(-)/HCO3 (-) exchanger (NDCBE) builds a distinctive model of sodium transport in the aldosterone-sensitive distal nephron. Aberrant MR activation in the distal nephron triggers salt-sensitive hypertension and hypokalemia through inappropriate sodium reabsorption and potassium secretion. However, MR activity is not necessarily modulated by the ligand alone. Recently, several lines of evidence revealed alternative mechanisms that regulate the activity of MR in a ligand-independent manner or through ligand binding modulation. This review summarizes the disorders related to MR activation in individual tubular cells and highlights the renal mechanism of salt-sensitive hypertension and new approaches for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Nobuhiro Ayuzawa
- Department of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | | |
Collapse
|
24
|
Cornelius RJ, Wang B, Wang-France J, Sansom SC. Maintaining K + balance on the low-Na +, high-K + diet. Am J Physiol Renal Physiol 2016; 310:F581-F595. [PMID: 26739887 DOI: 10.1152/ajprenal.00330.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/29/2015] [Indexed: 02/07/2023] Open
Abstract
A low-Na+, high-K+ diet (LNaHK) is considered a healthier alternative to the "Western" high-Na+ diet. Because the mechanism for K+ secretion involves Na+ reabsorptive exchange for secreted K+ in the distal nephron, it is not understood how K+ is eliminated with such low Na+ intake. Animals on a LNaHK diet produce an alkaline load, high urinary flows, and markedly elevated plasma ANG II and aldosterone levels to maintain their K+ balance. Recent studies have revealed a potential mechanism involving the actions of alkalosis, urinary flow, elevated ANG II, and aldosterone on two types of K+ channels, renal outer medullary K+ and large-conductance K+ channels, located in principal and intercalated cells. Here, we review these recent advances.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Bangchen Wang
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jun Wang-France
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Steven C Sansom
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
25
|
Herrmann JR, Turner JR. Beyond Ussing's chambers: contemporary thoughts on integration of transepithelial transport. Am J Physiol Cell Physiol 2015; 310:C423-31. [PMID: 26702131 DOI: 10.1152/ajpcell.00348.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the mid-20th century, Hans Ussing developed a chamber that allowed for the simultaneous measurement of current and labeled probe flux across epithelia. Using frog skin as a model, Ussing used his results to propose mechanisms of transcellular Na(+) and K(+) transport across apical (exterior/luminal) and basolateral (interior) membranes that is essentially unchanged today. Others took advantage of Ussing's chambers to study mucosal tissues, including bladder and intestines. It quickly became clear that, in some tissues, passive paracellular flux, i.e., across the tight junction, was an important component of overall transepithelial transport. Subsequent work demonstrated that activation of the apical Na(+)-glucose cotransporter SGLT1 regulated paracellular permeability such that intestinal paracellular transport could coordinate with and amplify transcellular transport. Intermediates in this process include activation of p38 MAPK, the apical Na(+)/H(+) exchanger NHE3, and myosin light chain kinase (MLCK). Investigators then focused on these processes in disease. They found that TNF induces barrier dysfunction via MLCK activation and downstream caveolin-1-dependent endocytosis of the tight junction protein occludin. TNF also inhibited NHE3, and both barrier loss and PKCα-dependent NHE3 inhibition were required for TNF-induced acute diarrhea, emphasizing the interplay between transcellular and paracellular transport. Finally, studies using immune-mediated inflammatory bowel disease models showed that mice lacking epithelial MLCK were initially protected, but became ill as epithelial damage progressed and provided a tight junction-independent means of barrier loss. None of these advances would have been possible without the insights provided by Ussing and others using Ussing's ingenious, and still useful, chambers.
Collapse
Affiliation(s)
- Jeremy R Herrmann
- Department of Pathology, The University of Chicago, Chicago, Illinois; Department of Medicine, Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jerrold R Turner
- Department of Pathology, The University of Chicago, Chicago, Illinois; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts; and Department of Medicine, Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
26
|
Gattineni J, Baum M. Developmental changes in renal tubular transport-an overview. Pediatr Nephrol 2015; 30:2085-98. [PMID: 24253590 PMCID: PMC4028442 DOI: 10.1007/s00467-013-2666-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/01/2013] [Accepted: 10/11/2013] [Indexed: 10/26/2022]
Abstract
The adult kidney maintains a constant volume and composition of extracellular fluid despite changes in water and salt intake. The neonate is born with a kidney that has a small fraction of the glomerular filtration rate of the adult and immature tubules that function at a lower capacity than that of the mature animal. Nonetheless, the neonate is also able to maintain a constant extracellular fluid volume and composition. Postnatal renal tubular development was once thought to be due to an increase in the transporter abundance to meet the developmental increase in glomerular filtration rate. However, postnatal renal development of each nephron segment is quite complex. There are isoform changes of several transporters as well as developmental changes in signal transduction that affect the capacity of renal tubules to reabsorb solutes and water. This review will discuss neonatal tubular function with an emphasis on the differences that have been found between the neonate and adult. We will also discuss some of the factors that are responsible for the maturational changes in tubular transport that occur during postnatal renal development.
Collapse
Affiliation(s)
- Jyothsna Gattineni
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9061, USA
| | - Michel Baum
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9061, USA.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
27
|
de Groot T, Sinke AP, Kortenoeven MLA, Alsady M, Baumgarten R, Devuyst O, Loffing J, Wetzels JF, Deen PMT. Acetazolamide Attenuates Lithium-Induced Nephrogenic Diabetes Insipidus. J Am Soc Nephrol 2015; 27:2082-91. [PMID: 26574046 DOI: 10.1681/asn.2015070796] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/30/2015] [Indexed: 12/27/2022] Open
Abstract
To reduce lithium-induced nephrogenic diabetes insipidus (lithium-NDI), patients with bipolar disorder are treated with thiazide and amiloride, which are thought to induce antidiuresis by a compensatory increase in prourine uptake in proximal tubules. However, thiazides induced antidiuresis and alkalinized the urine in lithium-NDI mice lacking the sodium-chloride cotransporter, suggesting that inhibition of carbonic anhydrases (CAs) confers the beneficial thiazide effect. Therefore, we tested the effect of the CA-specific blocker acetazolamide in lithium-NDI. In collecting duct (mpkCCD) cells, acetazolamide reduced the cellular lithium content and attenuated lithium-induced downregulation of aquaporin-2 through a mechanism different from that of amiloride. Treatment of lithium-NDI mice with acetazolamide or thiazide/amiloride induced similar antidiuresis and increased urine osmolality and aquaporin-2 abundance. Thiazide/amiloride-treated mice showed hyponatremia, hyperkalemia, hypercalcemia, metabolic acidosis, and increased serum lithium concentrations, adverse effects previously observed in patients but not in acetazolamide-treated mice in this study. Furthermore, acetazolamide treatment reduced inulin clearance and cortical expression of sodium/hydrogen exchanger 3 and attenuated the increased expression of urinary PGE2 observed in lithium-NDI mice. These results show that the antidiuresis with acetazolamide was partially caused by a tubular-glomerular feedback response and reduced GFR. The tubular-glomerular feedback response and/or direct effect on collecting duct principal or intercalated cells may underlie the reduced urinary PGE2 levels with acetazolamide, thereby contributing to the attenuation of lithium-NDI. In conclusion, CA activity contributes to lithium-NDI development, and acetazolamide attenuates lithium-NDI development in mice similar to thiazide/amiloride but with fewer adverse effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Olivier Devuyst
- Institute of Physiology, Zurich Centre for Integrative Human Physiology, Zurich, Switzerland; and
| | | | - Jack F Wetzels
- Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
28
|
Roy A, Al-bataineh MM, Pastor-Soler NM. Collecting duct intercalated cell function and regulation. Clin J Am Soc Nephrol 2015; 10:305-24. [PMID: 25632105 DOI: 10.2215/cjn.08880914] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intercalated cells are kidney tubule epithelial cells with important roles in the regulation of acid-base homeostasis. However, in recent years the understanding of the function of the intercalated cell has become greatly enhanced and has shaped a new model for how the distal segments of the kidney tubule integrate salt and water reabsorption, potassium homeostasis, and acid-base status. These cells appear in the late distal convoluted tubule or in the connecting segment, depending on the species. They are most abundant in the collecting duct, where they can be detected all the way from the cortex to the initial part of the inner medulla. Intercalated cells are interspersed among the more numerous segment-specific principal cells. There are three types of intercalated cells, each having distinct structures and expressing different ensembles of transport proteins that translate into very different functions in the processing of the urine. This review includes recent findings on how intercalated cells regulate their intracellular milieu and contribute to acid-base regulation and sodium, chloride, and potassium homeostasis, thus highlighting their potential role as targets for the treatment of hypertension. Their novel regulation by paracrine signals in the collecting duct is also discussed. Finally, this article addresses their role as part of the innate immune system of the kidney tubule.
Collapse
Affiliation(s)
- Ankita Roy
- Renal-Electrolyte Division, Department of Medicine; and
| | | | - Núria M Pastor-Soler
- Renal-Electrolyte Division, Department of Medicine; and Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania A.R. and M.M.A. contributed equally to this work.
| |
Collapse
|
29
|
Pearce D, Soundararajan R, Trimpert C, Kashlan OB, Deen PM, Kohan DE. Collecting duct principal cell transport processes and their regulation. Clin J Am Soc Nephrol 2015; 10:135-46. [PMID: 24875192 PMCID: PMC4284417 DOI: 10.2215/cjn.05760513] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The principal cell of the kidney collecting duct is one of the most highly regulated epithelial cell types in vertebrates. The effects of hormonal, autocrine, and paracrine factors to regulate principal cell transport processes are central to the maintenance of fluid and electrolyte balance in the face of wide variations in food and water intake. In marked contrast with the epithelial cells lining the proximal tubule, the collecting duct is electrically tight, and ion and osmotic gradients can be very high. The central role of principal cells in salt and water transport is reflected by their defining transporters-the epithelial Na(+) channel (ENaC), the renal outer medullary K(+) channel, and the aquaporin 2 (AQP2) water channel. The coordinated regulation of ENaC by aldosterone, and AQP2 by arginine vasopressin (AVP) in principal cells is essential for the control of plasma Na(+) and K(+) concentrations, extracellular fluid volume, and BP. In addition to these essential hormones, additional neuronal, physical, and chemical factors influence Na(+), K(+), and water homeostasis. Notably, a variety of secreted paracrine and autocrine agents such as bradykinin, ATP, endothelin, nitric oxide, and prostaglandin E2 counterbalance and limit the natriferic effects of aldosterone and the water-retaining effects of AVP. Considerable recent progress has improved our understanding of the transporters, receptors, second messengers, and signaling events that mediate principal cell responses to changing environments in health and disease. This review primarily addresses the structure and function of the key transporters and the complex interplay of regulatory factors that modulate principal cell ion and water transport.
Collapse
Affiliation(s)
- David Pearce
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Texas
| | - Christiane Trimpert
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ossama B. Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Peter M.T. Deen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Donald E. Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|
30
|
Habuka M, Fagerberg L, Hallström BM, Kampf C, Edlund K, Sivertsson Å, Yamamoto T, Pontén F, Uhlén M, Odeberg J. The kidney transcriptome and proteome defined by transcriptomics and antibody-based profiling. PLoS One 2014; 9:e116125. [PMID: 25551756 PMCID: PMC4281243 DOI: 10.1371/journal.pone.0116125] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/02/2014] [Indexed: 12/22/2022] Open
Abstract
To understand renal functions and disease, it is important to define the molecular constituents of the various compartments of the kidney. Here, we used comparative transcriptomic analysis of all major organs and tissues in the human body, in combination with kidney tissue micro array based immunohistochemistry, to generate a comprehensive description of the kidney-specific transcriptome and proteome. A special emphasis was placed on the identification of genes and proteins that were elevated in specific kidney subcompartments. Our analysis identified close to 400 genes that had elevated expression in the kidney, as compared to the other analysed tissues, and these were further subdivided, depending on expression levels, into tissue enriched, group enriched or tissue enhanced. Immunohistochemistry allowed us to identify proteins with distinct localisation to the glomeruli (n = 11), proximal tubules (n = 120), distal tubules (n = 9) or collecting ducts (n = 8). Among the identified kidney elevated transcripts, we found several proteins not previously characterised or identified as elevated in kidney. This description of the kidney specific transcriptome and proteome provides a resource for basic and clinical research to facilitate studies to understand kidney biology and disease.
Collapse
Affiliation(s)
- Masato Habuka
- School of Biotechnology, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Department of Structural Pathology, Institute of Nephrology, Medical and Dental School, Niigata University, Asahimachi-dori Niigata, Japan
| | - Linn Fagerberg
- School of Biotechnology, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Björn M. Hallström
- School of Biotechnology, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Caroline Kampf
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karolina Edlund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Åsa Sivertsson
- School of Biotechnology, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Tadashi Yamamoto
- Department of Structural Pathology, Institute of Nephrology, Medical and Dental School, Niigata University, Asahimachi-dori Niigata, Japan
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mathias Uhlén
- School of Biotechnology, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jacob Odeberg
- School of Biotechnology, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Department of Medicine, Karolinska Institutet and Centre for Hematology, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
31
|
Renal acid-base regulation: new insights from animal models. Pflugers Arch 2014; 467:1623-41. [PMID: 25515081 DOI: 10.1007/s00424-014-1669-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/16/2022]
Abstract
Because majority of biological processes are dependent on pH, maintaining systemic acid-base balance is critical. The kidney contributes to systemic acid-base regulation, by reabsorbing HCO3 (-) (both filtered by glomeruli and generated within a nephron) and acidifying urine. Abnormalities in those processes will eventually lead to a disruption in systemic acid-base balance and provoke metabolic acid-base disorders. Research over the past 30 years advanced our understanding on cellular and molecular mechanisms responsible for those processes. In particular, a variety of transgenic animal models, where target genes are deleted either globally or conditionally, provided significant insights into how specific transporters are contributing to the renal acid-base regulation. Here, we broadly overview the mechanisms of renal ion transport participating to acid-base regulation, with emphasis on data obtained from transgenic mice models.
Collapse
|
32
|
Kamel KS, Schreiber M, Halperin ML. Integration of the response to a dietary potassium load: a paleolithic perspective. Nephrol Dial Transplant 2014; 29:982-9. [PMID: 24789504 DOI: 10.1093/ndt/gft499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our purpose is to integrate new insights in potassium (K(+)) physiology to understand K(+) homeostasis and illustrate some of their clinical implications. Since control mechanisms that are essential for survival were likely developed in Paleolithic times, we think the physiology of K(+) homeostasis can be better revealed when viewed from what was required to avoid threats and achieve balance in Paleolithic times. Three issues will be highlighted. First, we shall consider the integrative physiology of the gastrointestinal tract and the role of lactic acid released from enterocytes following absorption of sugars (fruit and berries) to cause a shift of this K(+) load into the liver. Second, we shall discuss the integrative physiology of WNK kinases and modulation of delivery of bicarbonate to the distal nephron to switch the aldosterone response from sodium chloride retention to K(+) secretion when faced with a K(+) load. Third, we shall emphasize the role of intra-renal recycling of urea in achieving K(+) homeostasis when the diet contains protein and K(+).
Collapse
Affiliation(s)
- Kamel S Kamel
- Renal Division, St Michael's Hospital and University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
33
|
Eladari D, Chambrey R, Picard N, Hadchouel J. Electroneutral absorption of NaCl by the aldosterone-sensitive distal nephron: implication for normal electrolytes homeostasis and blood pressure regulation. Cell Mol Life Sci 2014; 71:2879-95. [PMID: 24556999 PMCID: PMC11113337 DOI: 10.1007/s00018-014-1585-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/28/2014] [Accepted: 02/05/2014] [Indexed: 01/10/2023]
Abstract
Sodium absorption by the distal part of the nephron, i.e., the distal convoluted tubule, the connecting tubule, and the collecting duct, plays a major role in the control of homeostasis by the kidney. In this part of the nephron, sodium transport can either be electroneutral or electrogenic. The study of electrogenic Na(+) absorption, which is mediated by the epithelial sodium channel (ENaC), has been the focus of considerable interest because of its implication in sodium, potassium, and acid-base homeostasis. However, recent studies have highlighted the crucial role played by electroneutral NaCl absorption in the regulation of the body content of sodium chloride, which in turn controls extracellular fluid volume and blood pressure. Here, we review the identification and characterization of the NaCl cotransporter (NCC), the molecule accounting for the main part of electroneutral NaCl absorption in the distal nephron, and its regulators. We also discuss recent work describing the identification of a novel "NCC-like" transport system mediated by pendrin and the sodium-driven chloride/bicarbonate exchanger (NDCBE) in the β-intercalated cells of the collecting system.
Collapse
Affiliation(s)
- Dominique Eladari
- Department of Physiology, Hopital Européen Georges Pompidou, AP-HP, 56 rue Leblanc, 75015, Paris, France,
| | | | | | | |
Collapse
|
34
|
Purkerson JM, Heintz EV, Nakamori A, Schwartz GJ. Insights into acidosis-induced regulation of SLC26A4 (pendrin) and SLC4A9 (AE4) transporters using three-dimensional morphometric analysis of β-intercalated cells. Am J Physiol Renal Physiol 2014; 307:F601-11. [PMID: 24990900 DOI: 10.1152/ajprenal.00404.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The purpose of this study was to examine the three-dimensional (3-D) expression and distribution of anion transporters pendrin (SLC26A4) and anion exchanger (AE)4 (SLC4A9) in β-intercalated cells (β-ICs) of the rabbit cortical collecting duct (CCD) to better characterize the adaptation to acid-base disturbances. Confocal analysis and 3-D reconstruction of β-ICs, using identifiers of the nucleus and zona occludens, permitted the specific orientation of cells from normal, acidotic, and recovering rabbits, so that adaptive changes could be quantified and compared. The pendrin cap likely mediates apical Cl(-)/HCO3 (-) exchange, but it was also found beneath the zona occludens and in early endosomes, some of which may recycle back to the apical membrane via Rab11a(+) vesicles. Acidosis reduced the size of the pendrin cap, observed as a large decrease in cap volume above and below the zona occludens, and the volume of the Rab11a(+) apical recycling compartment. Correction of the acidosis over 12-18 h reversed these changes. Consistent with its proposed function in the basolateral exit of Na(+) via Na(+)-HCO3 (-) cotransport, AE4 was expressed as a barrel-like structure in the lateral membrane of β-ICs. Acidosis reduced AE4 expression in β-ICs, but this was rapidly reversed during the recovery from acidosis. The coordinate regulation of pendrin and AE4 during acidosis and recovery is likely to affect the magnitude of acid-base and possibly Na(+) transport across the CCD. In conclusion, acidosis induces a downregulation of AE expression in β-ICs and a diminished presence of pendrin in apical recycling endosomes.
Collapse
Affiliation(s)
- Jeffrey M Purkerson
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Eric V Heintz
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Aya Nakamori
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - George J Schwartz
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
35
|
|
36
|
Burnstock G, Evans LC, Bailey MA. Purinergic signalling in the kidney in health and disease. Purinergic Signal 2014; 10:71-101. [PMID: 24265071 PMCID: PMC3944043 DOI: 10.1007/s11302-013-9400-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022] Open
Abstract
The involvement of purinergic signalling in kidney physiology and pathophysiology is rapidly gaining recognition and this is a comprehensive review of early and recent publications in the field. Purinergic signalling involvement is described in several important intrarenal regulatory mechanisms, including tuboglomerular feedback, the autoregulatory response of the glomerular and extraglomerular microcirculation and the control of renin release. Furthermore, purinergic signalling influences water and electrolyte transport in all segments of the renal tubule. Reports about purine- and pyrimidine-mediated actions in diseases of the kidney, including polycystic kidney disease, nephritis, diabetes, hypertension and nephrotoxicant injury are covered and possible purinergic therapeutic strategies discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
37
|
Relation between BK-α/β4-mediated potassium secretion and ENaC-mediated sodium reabsorption. Kidney Int 2014; 86:139-45. [PMID: 24573316 PMCID: PMC4077913 DOI: 10.1038/ki.2014.14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/18/2013] [Accepted: 12/19/2013] [Indexed: 02/07/2023]
Abstract
The large conductance, calcium-activated BK-α/β4 potassium channel, localized to the intercalated cells of the distal nephron, mediates potassium secretion during high potassium, alkaline diets. Here we determine whether BK-α/β4-mediated potassium transport is dependent on epithelial sodium channel (ENaC)-mediated sodium reabsorption. We maximized sodium-potassium exchange in the distal nephron by feeding mice a low sodium, high potassium diet. Wild type and BK-β4 knockout mice were maintained on low sodium, high potassium, alkaline diet or a low sodium, high potassium, acidic diet for 7–10 days. Wild type mice maintained potassium homeostasis on the alkaline but not acid diet. BK-β4 knockout mice could not maintain potassium homeostasis on either diet. During the last 12 hours of diet, wild type mice on either a regular, alkaline or an acid diet, or knockout mice on an alkaline diet were administered amiloride (an ENaC inhibitor). Amiloride enhanced sodium excretion in all wild type and knockout groups to similar values; however, amiloride diminished potassium excretion by 59% in wild type but only by 33% in knockout mice on an alkaline diet. Similarly, amiloride decreased the transtubular potassium gradient by 68% in wild type but only by 42% in knockout mice on an alkaline diet. Amiloride treatment equally enhanced sodium excretion and diminished potassium secretion in knockout mice on an alkaline diet and wild type mice on an acid diet. Thus, the enhanced effect of amiloride on potassium secretion in wild type compared to knockout mice on the alkaline diet, clarify a BK- α/β4-mediated potassium secretory pathway in intercalated cells driven by ENaC-mediated sodium reabsorption linked to bicarbonate secretion.
Collapse
|
38
|
Büsst CJ. Blood pressure regulation via the epithelial sodium channel: from gene to kidney and beyond. Clin Exp Pharmacol Physiol 2014; 40:495-503. [PMID: 23710770 DOI: 10.1111/1440-1681.12124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 01/11/2023]
Abstract
The epithelial sodium channel (ENaC) has long been recognized as playing a vital role in blood pressure (BP) regulation due to its involvement in fluid balance. The genes encoding the three ENaC subunits are likewise important contributors to hypertension, both in rare monogenic diseases and in the general population. The unusually high numbers of genetic variants associated with complex traits, including BP, that are located in non-coding areas suggest an involvement of these variants in regulatory functions. This may involve differential regulation of expression in different tissues. Emerging evidence indicates that the ENaC plays an important role in BP determination not only via its actions in the kidney, but also in other tissues commonly involved in BP regulation. The ENaC in the central nervous system is proposed to regulate BP via sympathetic nervous system activity. Recent evidence suggests that the ENaC contributes to vascular function and the myogenic response. Additional roles potentially include initiation of the baroreceptor reflex via ENaC in the baroreceptors and driving high salt intake with a 'taste for salt' via ENaC in the tongue. The present review describes the involvement of the ENaC in the determination of BP at a genetic and physiological level, detailing recent evidence for its role in the kidney and in other pertinent tissues.
Collapse
Affiliation(s)
- Cara J Büsst
- Departments of Physiology, The University of Melbourne and Monash University, Melbourne, Vic., Australia.
| |
Collapse
|
39
|
Xu J, Barone S, Brooks MB, Soleimani M. Double knockout of carbonic anhydrase II (CAII) and Na(+)-Cl(-) cotransporter (NCC) causes salt wasting and volume depletion. Cell Physiol Biochem 2013; 32:173-83. [PMID: 24429824 PMCID: PMC10947769 DOI: 10.1159/000356637] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND AIMS The thiazide-sensitive Na(+)-Cl(-) cotransporter NCC and the Cl(-)/HCO3(-)exchanger pendrin are expressed on apical membranes of distal cortical nephron segments and mediate salt absorption, with pendrin working in tandem with the epithelial Na(+) channel (ENaC) and the Na(+)-dependent chloride/bicarbonate exchanger (NDCBE), whereas NCC is working by itself. A recent study showed that NCC and pendrin compensate for loss of each other under basal conditions, therefore masking the role that each plays in salt reabsorption. Carbonic anhydrase II (CAII, CA2 or CAR2) plays an important role in acid-base transport and salt reabsorption in the proximal convoluted tubule and acid-base transport in the collecting duct. Animals with CAII deletion show remodeling of intercalated cells along with the downregulation of pendrin. NCC KO mice on the other hand show significant upregulation of pendrin and ENaC. Neither model shows any significant salt wasting under baseline conditions. We hypothesized that the up-regulation of pendrin is essential for the prevention of salt wasting in NCC KO mice. METHODS AND RESULTS To test this hypothesis, we generated NCC/CAII double KO (dKO) mice by crossing mice with single deletion of NCC and CAII. The NCC/CAII dKO mice displayed significant downregulation of pendrin, along with polyuria and salt wasting. As a result, the dKO mice developed volume depletion, which was associated with the inability to concentrate urine. CONCLUSIONS We conclude that the upregulation of pendrin is essential for the prevention of salt and water wasting in NCC deficient animals and its downregulation or inactivation will result in salt wasting, impaired water conservation and volume depletion in the setting of NCC inactivation or inhibition.
Collapse
Affiliation(s)
- Jie Xu
- Research Services, Veterans Affairs Medical Center, University of Cincinnati
- Departments of Medicine, University of Cincinnati
| | - Sharon Barone
- Research Services, Veterans Affairs Medical Center, University of Cincinnati
- Departments of Medicine, University of Cincinnati
| | | | - Manoocher Soleimani
- Research Services, Veterans Affairs Medical Center, University of Cincinnati
- Departments of Medicine, University of Cincinnati
- Center on Genetics of Transport and Epithelial Biology, University of Cincinnati Cincinnati, OH, USA
| |
Collapse
|
40
|
Petrenko AG, Zozulya SA, Deyev IE, Eladari D. Insulin receptor-related receptor as an extracellular pH sensor involved in the regulation of acid–base balance. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2170-5. [DOI: 10.1016/j.bbapap.2012.11.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/16/2012] [Accepted: 11/19/2012] [Indexed: 12/25/2022]
|
41
|
Kleyman TR, Satlin LM, Hallows KR. Opening lines of communication in the distal nephron. J Clin Invest 2013; 123:4139-41. [PMID: 24051382 DOI: 10.1172/jci71944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The distal nephron is composed of two main cell types: principal cells and intercalated cells. These cells have distinct morphologic features that allow them to be readily distinguished by light microscopy, as well as distinct suites of proteins that facilitate cell-specific transport properties. In this issue of the JCI, Gueutin and colleagues describe a new mechanism by which β-intercalated cells, via release of ATP and prostaglandin E2 (PGE2), influence the activity of transporters in principal cells.
Collapse
|
42
|
Gueutin V, Vallet M, Jayat M, Peti-Peterdi J, Cornière N, Leviel F, Sohet F, Wagner CA, Eladari D, Chambrey R. Renal β-intercalated cells maintain body fluid and electrolyte balance. J Clin Invest 2013; 123:4219-31. [PMID: 24051376 DOI: 10.1172/jci63492] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/28/2013] [Indexed: 12/11/2022] Open
Abstract
Inactivation of the B1 proton pump subunit (ATP6V1B1) in intercalated cells (ICs) leads to type I distal renal tubular acidosis (dRTA), a disease associated with salt- and potassium-losing nephropathy. Here we show that mice deficient in ATP6V1B1 (Atp6v1b1-/- mice) displayed renal loss of NaCl, K+, and water, causing hypovolemia, hypokalemia, and polyuria. We demonstrated that NaCl loss originated from the cortical collecting duct, where activity of both the epithelial sodium channel (ENaC) and the pendrin/Na(+)-driven chloride/bicarbonate exchanger (pendrin/NDCBE) transport system was impaired. ENaC was appropriately increased in the medullary collecting duct, suggesting a localized inhibition in the cortex. We detected high urinary prostaglandin E2 (PGE2) and ATP levels in Atp6v1b1-/- mice. Inhibition of PGE2 synthesis in vivo restored ENaC protein levels specifically in the cortex. It also normalized protein levels of the large conductance calcium-activated potassium channel and the water channel aquaporin 2, and improved polyuria and hypokalemia in mutant mice. Furthermore, pharmacological inactivation of the proton pump in β-ICs induced release of PGE2 through activation of calcium-coupled purinergic receptors. In the present study, we identified ATP-triggered PGE2 paracrine signaling originating from β-ICs as a mechanism in the development of the hydroelectrolytic imbalance associated with dRTA. Our data indicate that in addition to principal cells, ICs are also critical in maintaining sodium balance and, hence, normal vascular volume and blood pressure.
Collapse
|
43
|
Kishore BK, Zhang Y, Gevorgyan H, Kohan DE, Schiedel AC, Müller CE, Peti-Peterdi J. Cellular localization of adenine receptors in the rat kidney and their functional significance in the inner medullary collecting duct. Am J Physiol Renal Physiol 2013; 305:F1298-305. [PMID: 23986514 DOI: 10.1152/ajprenal.00254.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Gi-coupled adenine receptor (AdeR) binds adenine with high affinity and potentially reduces cellular cAMP levels. Since cAMP is an important second messenger in the renal transport of water and solutes, we localized AdeR in the rat kidney. Real-time RT-PCR showed higher relative expression of AdeR mRNA in the cortex and outer medulla compared with the inner medulla. Immunoblots using a peptide-derived and affinity-purified rabbit polyclonal antibody specific for an 18-amino acid COOH-terminal sequence of rat AdeR, which we generated, detected two bands between ∼30 and 40 kDa (molecular mass of native protein: 37 kDa) in the cortex, outer medulla, and inner medulla. These bands were ablated by preadsorption of the antibody with the immunizing peptide. Immunofluorescence labeling showed expression of AdeR protein in all regions of the kidney. Immunoperoxidase revealed strong labeling of AdeR protein in the cortical vasculature, including the glomerular arterioles, and less intense labeling in the cells of the collecting duct system. Confocal immunofluorescence imaging colocalized AdeR with aquaporin-2 protein to the apical plasma membrane in the collecting duct. Functionally, adenine (10 μM) significantly decreased (P < 0.01) 1-deamino-8-d-arginine vasopressin (10 nM)-induced cAMP production in ex vivo preparations of inner medullary collecting ducts, which was reversed by PSB-08162 (20 μM, P < 0.01), a selective antagonist of AdeR. Thus, we demonstrated the expression of AdeR in the renal vasculature and collecting ducts and its functional relevance. This study may open a new avenue for the exploration of autocrine/paracrine regulation of renal vascular and tubular functions by the nucleobase adenine in health and disease.
Collapse
Affiliation(s)
- Bellamkonda K Kishore
- Nephrology Research (151M Veterans Affairs Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City, UT 84148.
| | | | | | | | | | | | | |
Collapse
|
44
|
Peti-Peterdi J. Mitochondrial TCA cycle intermediates regulate body fluid and acid-base balance. J Clin Invest 2013; 123:2788-90. [PMID: 23926603 DOI: 10.1172/jci68095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Intrarenal control mechanisms play an important role in the maintenance of body fluid and electrolyte balance and pH homeostasis. Recent discoveries of new ion transport and regulatory pathways in the distal nephron and collecting duct system have helped to better our understanding of these critical kidney functions and identified new potential therapeutic targets and approaches. In this issue of the JCI, Tokonami et al. report on the function of an exciting new paracrine mediator, the mitochondrial the citric acid(TCA) cycle intermediate α-ketoglutarate (αKG), which via its OXGR1 receptor plays an unexpected, nontraditional role in the adaptive regulation of renal HCO(3⁻) secretion and salt reabsorption.
Collapse
Affiliation(s)
- János Peti-Peterdi
- Department of Physiology and Biophysics and Department of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, 90033 USA.
| |
Collapse
|
45
|
Tokonami N, Morla L, Centeno G, Mordasini D, Ramakrishnan SK, Nikolaeva S, Wagner CA, Bonny O, Houillier P, Doucet A, Firsov D. α-Ketoglutarate regulates acid-base balance through an intrarenal paracrine mechanism. J Clin Invest 2013; 123:3166-71. [PMID: 23934124 DOI: 10.1172/jci67562] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/11/2013] [Indexed: 12/11/2022] Open
Abstract
Paracrine communication between different parts of the renal tubule is increasingly recognized as an important determinant of renal function. Previous studies have shown that changes in dietary acid-base load can reverse the direction of apical α-ketoglutarate (αKG) transport in the proximal tubule and Henle's loop from reabsorption (acid load) to secretion (base load). Here we show that the resulting changes in the luminal concentrations of αKG are sensed by the αKG receptor OXGR1 expressed in the type B and non-A-non-B intercalated cells of the connecting tubule (CNT) and the cortical collecting duct (CCD). The addition of 1 mM αKG to the tubular lumen strongly stimulated Cl(-)-dependent HCO(3)(-) secretion and electroneutral transepithelial NaCl reabsorption in microperfused CCDs of wild-type mice but not Oxgr1(-/-) mice. Analysis of alkali-loaded mice revealed a significantly reduced ability of Oxgr1(-/-) mice to maintain acid-base balance. Collectively, these results demonstrate that OXGR1 is involved in the adaptive regulation of HCO(3)(-) secretion and NaCl reabsorption in the CNT/CCD under acid-base stress and establish αKG as a paracrine mediator involved in the functional coordination of the proximal and the distal parts of the renal tubule.
Collapse
Affiliation(s)
- Natsuko Tokonami
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lynch IJ, Welch AK, Kohan DE, Cain BD, Wingo CS. Endothelin-1 inhibits sodium reabsorption by ET(A) and ET(B) receptors in the mouse cortical collecting duct. Am J Physiol Renal Physiol 2013; 305:F568-73. [PMID: 23698114 DOI: 10.1152/ajprenal.00613.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The collecting duct (CD) is a major renal site for the hormonal regulation of Na homeostasis and is critical for systemic arterial blood pressure control. Our previous studies demonstrated that the endothelin-1 gene (edn1) is an early response gene to the action of aldosterone. Because aldosterone and endothelin-1 (ET-1) have opposing actions on Na reabsorption (JNa) in the kidney, we postulated that stimulation of ET-1 by aldosterone acts as a negative feedback mechanism, acting locally within the CD. Aldosterone is known to increase JNa in the CD, in part, by stimulating the epithelial Na channel (ENaC). In contrast, ET-1 increases Na and water excretion through its binding to receptors in the CD. To date, direct measurement of the quantitative effect of ET-1 on transepithelial JNa in the isolated in vitro microperfused mouse CD has not been determined. We observed that the CD exhibits substantial JNa in male and female mice that is regulated, in part, by a benzamil-sensitive pathway, presumably ENaC. ENaC-mediated JNa is greater in the cortical CD (CCD) than in the outer medullary CD (OMCD); however, benzamil-insensitive JNa is present in the CCD and not in the OMCD. In the presence of ET-1, ENaC-mediated JNa is significantly inhibited. Blockade of either ETA or ETB receptor restored JNa to control rates; however, only ETA receptor blockade restored a benzamil-sensitive component of JNa. We conclude 1) Na reabsorption is mediated by ENaC in the CCD and OMCD and also by an ENaC-independent mechanism in the CCD; and 2) ET-1 inhibits JNa in the CCD through both ETA and ETB receptor-mediated pathways.
Collapse
Affiliation(s)
- I Jeanette Lynch
- Research Service, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Gainesville, FL 32608.
| | | | | | | | | |
Collapse
|
47
|
Wall SM, Weinstein AM. Cortical distal nephron Cl(-) transport in volume homeostasis and blood pressure regulation. Am J Physiol Renal Physiol 2013; 305:F427-38. [PMID: 23637202 DOI: 10.1152/ajprenal.00022.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Renal intercalated cells mediate the secretion or absorption of Cl(-) and OH(-)/H(+) equivalents in the connecting segment (CNT) and cortical collecting duct (CCD). In so doing, they regulate acid-base balance, vascular volume, and blood pressure. Cl(-) absorption is either electrogenic and amiloride-sensitive or electroneutral and thiazide-sensitive. However, which Cl(-) transporter(s) are targeted by these diuretics is debated. While epithelial Na(+) channel (ENaC) does not transport Cl(-), it modulates Cl(-) transport probably by generating a lumen-negative voltage, which drives Cl(-) flux across tight junctions. In addition, recent evidence indicates that ENaC inhibition increases electrogenic Cl(-) secretion via a type A intercalated cells. During ENaC blockade, Cl(-) is taken up across the basolateral membrane through the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) and then secreted across the apical membrane through a conductive pathway (a Cl(-) channel or an electrogenic exchanger). The mechanism of this apical Cl(-) secretion is unresolved. In contrast, thiazide diuretics inhibit electroneutral Cl(-) absorption mediated by a Na(+)-dependent Cl(-)/HCO3(-) exchanger. The relative contribution of the thiazide and the amiloride-sensitive components of Cl(-) absorption varies between studies and probably depends on the treatment model employed. Cl(-) absorption increases markedly with angiotensin and aldosterone administration, largely by upregulating the Na(+)-independent Cl(-)/HCO3(-) exchanger pendrin. In the absence of pendrin [Slc26a4((-/-)) or pendrin null mice], aldosterone-stimulated Cl(-) absorption is significantly reduced, which attenuates the pressor response to this steroid hormone. Pendrin also modulates aldosterone-induced changes in ENaC abundance and function through a kidney-specific mechanism that does not involve changes in the concentration of a circulating hormone. Instead, pendrin changes ENaC abundance and function, at least in part, by altering luminal HCO3(-). This review summarizes mechanisms of Cl(-) transport in CNT and CCD and how these transporters contribute to the regulation of extracellular volume and blood pressure.
Collapse
Affiliation(s)
- Susan M Wall
- Renal Division, WMB Rm. 338, 1639 Pierce Dr., NE, Atlanta, GA 30322.
| | | |
Collapse
|
48
|
Ardiles L, Cardenas A, Burgos ME, Droguett A, Ehrenfeld P, Carpio D, Mezzano S, Figueroa CD. Antihypertensive and renoprotective effect of the kinin pathway activated by potassium in a model of salt sensitivity following overload proteinuria. Am J Physiol Renal Physiol 2013; 304:F1399-410. [PMID: 23552867 DOI: 10.1152/ajprenal.00604.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The albumin overload model induces proteinuria and tubulointersitial damage, followed by hypertension when rats are exposed to a hypersodic diet. To understand the effect of kinin system stimulation on salt-sensitive hypertension and to explore its potential renoprotective effects, the model was induced in Sprague-Dawley rats that had previously received a high-potassium diet to enhance activity of the kinin pathway, followed with/without administration of icatibant to block the kinin B₂ receptor (B₂R). A disease control group received albumin but not potassium or icatibant, and all groups were exposed to a hypersodic diet to induce salt-sensitive hypertension. Potassium treatment increased the synthesis and excretion of tissue kallikrein (Klk1/rKLK1) accompanied by a significant reduction in blood pressure and renal fibrosis and with downregulation of renal transforming growth factor-β (TGF-β) mRNA and protein compared with rats that did not receive potassium. Participation of the B₂R was evidenced by the fact that all beneficial effects were lost in the presence of the B₂R antagonist. In vitro experiments using the HK-2 proximal tubule cell line showed that treatment of tubular cells with 10 nM bradykinin reduced the epithelial-mesenchymal transdifferentiation and albumin-induced production of TGF-β, and the effects produced by bradykinin were prevented by pretreatment with the B₂R antagonist. These experiments support not only the pathogenic role of the kinin pathway in salt sensitivity but also sustain its role as a renoprotective, antifibrotic paracrine system that modulates renal levels of TGF-β.
Collapse
Affiliation(s)
- Leopoldo Ardiles
- Department of Nephrology, Universidad Austral de Chile, Valdivia, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Li L, Garikepati RM, Tsukerman S, Kohan D, Wade JB, Tiwari S, Ecelbarger CM. Reduced ENaC activity and blood pressure in mice with genetic knockout of the insulin receptor in the renal collecting duct. Am J Physiol Renal Physiol 2012. [PMID: 23195676 DOI: 10.1152/ajprenal.00161.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
To elucidate the role of the insulin receptor (IR) in collecting duct (CD), we bred mice with IR selectively deleted from CD principal cells using an aquaporin-2 promoter to drive Cre-recombinase expression. Young, adult male knockout (KO) mice had altered plasma and electrolyte homeostasis under high- (HS) and low-sodium (LS) diets, relative to wild-type (WT) littermates. One week of LS feeding led to a significant reduction in urine potassium (K(+)) and sodium (Na(+)) excretion in KO, and a reduction in the ratio of Na(+) to chloride (Cl(-)) in plasma, relative to WT. HS diet (1 wk) increased plasma K(+) and reduced urine Na(+) to Cl(-) ratio in the KO. Furthermore, KO mice had a significantly (P = 0.025) blunted natriuretic response to benzamil, an epithelial sodium channel (ENaC) antagonist. Western blotting of cortex homogenates revealed modestly, but significantly (∼15%), lower band density for the β-subunit of ENaC in the KO vs. WT mice, with no differences for the α- or γ-subunits. Moreover, blood pressure (BP), measured by radiotelemetry, was significantly lower in KO vs. WT mice under basal conditions (mmHg): 112 ± 5 (WT), 104 ± 2 (KO), P = 0.023. Chronic insulin infusion reduced heart rate in the WT, but not in the KO, and modestly reduced BP in the WT only. Overall, these results support a fundamental role for insulin through its classic receptor in the modulation of electrolyte homeostasis and BP.
Collapse
Affiliation(s)
- Lijun Li
- Department of Medicine, Georgetown University, Washington, DC 20007, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Cornelius RJ, Wen D, Hatcher LI, Sansom SC. Bicarbonate promotes BK-α/β4-mediated K excretion in the renal distal nephron. Am J Physiol Renal Physiol 2012; 303:F1563-71. [PMID: 22993067 DOI: 10.1152/ajprenal.00490.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ca-activated K channels (BK), which are stimulated by high distal nephron flow, are utilized during high-K conditions to remove excess K. Because BK predominantly reside with BK-β4 in acid/base-transporting intercalated cells (IC), we determined whether BK-β4 knockout mice (β4KO) exhibit deficient K excretion when consuming a high-K alkaline diet (HK-alk) vs. high-K chloride diet (HK-Cl). When wild type (WT) were placed on HK-alk, but not HK-Cl, renal BK-β4 expression increased (Western blot). When WT and β4KO were placed on HK-Cl, plasma K concentration ([K]) was elevated compared with control K diets; however, K excretion was not different between WT and β4KO. When HK-alk was consumed, the plasma [K] was lower and K clearance was greater in WT compared with β4KO. The urine was alkaline in mice on HK-alk; however, urinary pH was not different between WT and β4KO. Immunohistochemical analysis of pendrin and V-ATPase revealed the same increases in β-IC, comparing WT and β4KO on HK-alk. We found an amiloride-sensitive reduction in Na excretion in β4KO, compared with WT, on HK-alk, indicating enhanced Na reabsorption as a compensatory mechanism to secrete K. Treating mice with an alkaline, Na-deficient, high-K diet (LNaHK) to minimize Na reabsorption exaggerated the defective K handling of β4KO. When WT on LNaHK were given NH(4)Cl in the drinking water, K excretion was reduced to the magnitude of β4KO on LNaHK. These results show that WT, but not β4KO, efficiently excretes K on HK-alk but not on HK-Cl and suggest that BK-α/β4-mediated K secretion is promoted by bicarbonaturia.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Dept. of Cellular and Integrative Physiology, Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | | | |
Collapse
|