1
|
Sasaki H, Mizuta K. Diurnal variation in asthma symptoms: Exploring the role of melatonin. J Oral Biosci 2024; 66:519-524. [PMID: 38925352 DOI: 10.1016/j.job.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Asthma is a common chronic inflammatory disease affecting more than 260 million people worldwide. Nocturnal exacerbations of asthma symptoms significantly affect sleep quality and contribute to the most serious asthma exacerbations, which can lead to respiratory failure or death. Although β2-adrenoceptor agonists are the standard of care for asthma, their bronchodilatory effect for nocturnal asthma is limited, and medications that specifically target symptoms of nocturnal asthma are lacking. HIGHLIGHT Melatonin, which is secreted by the pineal gland, plays a crucial role in regulating circadian rhythms. Peak serum melatonin concentrations, which are inversely correlated with diurnal changes in pulmonary function, are higher in patients with nocturnal asthma than in healthy individuals. Melatonin potentiates bronchoconstriction through the melatonin MT2 receptor expressed in the smooth muscles of the airway and attenuates the bronchodilatory effects of β2-adrenoceptor agonists, thereby exacerbating asthma symptoms. Melatonin inhibits mucus secretion and airway inflammation, potentially ameliorating asthma symptoms. CONCLUSION Melatonin may exacerbate or ameliorate various pathophysiological conditions associated with asthma. As a potential therapeutic agent for asthma, the balance between its detrimental effects on airway smooth muscles and its beneficial effects on mucus production and inflammation remains unclear. Further studies are needed to elucidate whether melatonin worsens or improves asthma symptoms.
Collapse
Affiliation(s)
- Haruka Sasaki
- Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi, 9808575, Japan.
| | - Kentaro Mizuta
- Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi, 9808575, Japan.
| |
Collapse
|
2
|
Zhu H, Chen S, Qin W, Aynur J, Chen Y, Wang X, Chen K, Xie Z, Li L, Liu Y, Chen G, Ou J, Zheng K. Study on the impact of meteorological factors on influenza in different periods and prediction based on artificial intelligence RF-Bi-LSTM algorithm: to compare the COVID-19 period with the non-COVID-19 period. BMC Infect Dis 2024; 24:878. [PMID: 39198754 PMCID: PMC11360838 DOI: 10.1186/s12879-024-09750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
OBJECTIVE At different times, public health faces various challenges and the degree of intervention measures varies. The research on the impact and prediction of meteorology factors on influenza is increasing gradually, however, there is currently no evidence on whether its research results are affected by different periods. This study aims to provide limited evidence to reveal this issue. METHODS Daily data on influencing factors and influenza in Xiamen were divided into three parts: overall period (phase AB), non-COVID-19 epidemic period (phase A), and COVID-19 epidemic period (phase B). The association between influencing factors and influenza was analysed using generalized additive models (GAMs). The excess risk (ER) was used to represent the percentage change in influenza as the interquartile interval (IQR) of meteorology factors increases. The 7-day average daily influenza cases were predicted using the combination of bi-directional long short memory (Bi-LSTM) and random forest (RF) through multi-step rolling input of the daily multifactor values of the previous 7-day. RESULTS In periods A and AB, air temperature below 22 °C was a risk factor for influenza. However, in phase B, temperature showed a U-shaped effect on it. Relative humidity had a more significant cumulative effect on influenza in phase AB than in phase A (peak: accumulate 14d, AB: ER = 281.54, 95% CI = 245.47 ~ 321.37; A: ER = 120.48, 95% CI = 100.37 ~ 142.60). Compared to other age groups, children aged 4-12 were more affected by pressure, precipitation, sunshine, and day light, while those aged ≥ 13 were more affected by the accumulation of humidity over multiple days. The accuracy of predicting influenza was highest in phase A and lowest in phase B. CONCLUSIONS The varying degrees of intervention measures adopted during different phases led to significant differences in the impact of meteorology factors on influenza and in the influenza prediction. In association studies of respiratory infectious diseases, especially influenza, and environmental factors, it is advisable to exclude periods with more external interventions to reduce interference with environmental factors and influenza related research, or to refine the model to accommodate the alterations brought about by intervention measures. In addition, the RF-Bi-LSTM model has good predictive performance for influenza.
Collapse
Affiliation(s)
- Hansong Zhu
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, 350012, China.
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350011, China.
| | - Si Chen
- Fujian Institute of Meteorological Sciences, Fuzhou, Fujian, 350007, China
- Fujian Key Laboratory of Severe Weather, Fuzhou, Fujian, 350007, China
- Key Laboratory of Straits Severe Weather, China Meteorological Administration, Fuzhou, Fujian, 350007, China
| | - Weixia Qin
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Joldosh Aynur
- School of Public Health, Xiamen University, Xiamen, Fujian, 361100, China
| | - Yuyan Chen
- Fujian Provincial Judicial Drug Rehabilitation Hospital, Fuzhou, Fujian, 350007, China
| | - Xiaoying Wang
- School of Public Health, Xiamen University, Xiamen, Fujian, 361100, China
| | - Kaizhi Chen
- Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhonghang Xie
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, 350012, China
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350011, China
| | - Lingfang Li
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, 350012, China
| | - Yu Liu
- Xiangnan University, Chenzhou, Hunan, 423001, China.
| | - Guangmin Chen
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, 350012, China.
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350011, China.
| | - Jianming Ou
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, 350012, China.
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350011, China.
| | - Kuicheng Zheng
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, 350012, China.
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350011, China.
| |
Collapse
|
3
|
Henríquez-Beltrán M, Vaca R, Benítez ID, González J, Santisteve S, Aguilà M, Minguez O, Moncusí-Moix A, Gort-Paniello C, Torres G, Labarca G, Caballero J, Barberà C, Torres A, de Gonzalo-Calvo D, Barbé F, Targa ADS. Sleep and Circadian Health of Critical Survivors: A 12-Month Follow-Up Study. Crit Care Med 2024; 52:1206-1217. [PMID: 38597721 PMCID: PMC11239094 DOI: 10.1097/ccm.0000000000006298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
OBJECTIVES To investigate the sleep and circadian health of critical survivors 12 months after hospital discharge and to evaluate a possible effect of the severity of the disease within this context. DESIGN Observational, prospective study. SETTING Single-center study. PATIENTS Two hundred sixty patients admitted to the ICU due to severe acute respiratory syndrome coronavirus 2 infection. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The cohort was composed of 260 patients (69.2% males), with a median (quartile 1-quartile 3) age of 61.5 years (52.0-67.0 yr). The median length of ICU stay was 11.0 days (6.00-21.8 d), where 56.2% of the patients required invasive mechanical ventilation (IMV). The Pittsburgh Sleep Quality Index (PSQI) revealed that 43.1% of the cohort presented poor sleep quality 12 months after hospital discharge. Actigraphy data indicated an influence of the disease severity on the fragmentation of the circadian rest-activity rhythm at the 3- and 6-month follow-ups, which was no longer significant in the long term. Still, the length of the ICU stay and the duration of IMV predicted a higher fragmentation of the rhythm at the 12-month follow-up with effect sizes (95% CI) of 0.248 (0.078-0.418) and 0.182 (0.005-0.359), respectively. Relevant associations between the PSQI and the Hospital Anxiety and Depression Scale (rho = 0.55, anxiety; rho = 0.5, depression) as well as between the fragmentation of the rhythm and the diffusing lung capacity for carbon monoxide (rho = -0.35) were observed at this time point. CONCLUSIONS Our findings reveal a great prevalence of critical survivors presenting poor sleep quality 12 months after hospital discharge. Actigraphy data indicated the persistence of circadian alterations and a possible impact of the disease severity on the fragmentation of the circadian rest-activity rhythm, which was attenuated at the 12-month follow-up. This altogether highlights the relevance of considering the sleep and circadian health of critical survivors in the long term.
Collapse
Affiliation(s)
- Mario Henríquez-Beltrán
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- Núcleo de Investigación en Ciencias de la Salud, Universidad Adventista de Chile, Chillán, Chile
| | - Rafaela Vaca
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Iván D Benítez
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Sally Santisteve
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
| | - Maria Aguilà
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
| | - Olga Minguez
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anna Moncusí-Moix
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Clara Gort-Paniello
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Gerard Torres
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Gonzalo Labarca
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Jesús Caballero
- Intensive Care Department, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Carme Barberà
- Intensive Care Department, Hospital Universitari Santa Maria, Lleida, Spain
| | - Antoni Torres
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Adriano D S Targa
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Bartman CM, Nesbitt L, Lee KK, Khalfaoui L, Fang Y, Pabelick CM, Prakash YS. BMAL1 sex-specific effects in the neonatal mouse airway exposed to moderate hyperoxia. Physiol Rep 2024; 12:e16122. [PMID: 38942729 PMCID: PMC11213646 DOI: 10.14814/phy2.16122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024] Open
Abstract
Supplemental O2 (hyperoxia) is a critical intervention for premature infants (<34 weeks) but consequently is associated with development of bronchial airway hyperreactivity (AHR) and asthma. Clinical practice shifted toward the use of moderate hyperoxia (<60% O2), but risk for subsequent airway disease remains. In mouse models of moderate hyperoxia, neonatal mice have increased AHR with effects on airway smooth muscle (ASM), a cell type involved in airway tone, bronchodilation, and remodeling. Understanding mechanisms by which moderate O2 during the perinatal period initiates sustained airway changes is critical to drive therapeutic advancements toward treating airway diseases. We propose that cellular clock factor BMAL1 is functionally important in developing mouse airways. In adult mice, cellular clocks target pathways highly relevant to asthma pathophysiology and Bmal1 deletion increases inflammatory response, worsens lung function, and impacts survival outcomes. Our understanding of BMAL1 in the developing lung is limited, but our previous findings show functional relevance of clocks in human fetal ASM exposed to O2. Here, we characterize Bmal1 in our established mouse neonatal hyperoxia model. Our data show that Bmal1 KO deleteriously impacts the developing lung in the context of O2 and these data highlight the importance of neonatal sex in understanding airway disease.
Collapse
Affiliation(s)
- Colleen M. Bartman
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Lisa Nesbitt
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Kenge K. Lee
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Yun‐Hua Fang
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
5
|
Tian L, Zhao C, Yan Y, Jia Q, Cui S, Chen H, Li X, Jiang H, Yao Y, He K, Zhao X. Ceramide-1-phosphate alleviates high-altitude pulmonary edema by stabilizing circadian ARNTL-mediated mitochondrial dynamics. J Adv Res 2024; 60:75-92. [PMID: 37479181 PMCID: PMC11156611 DOI: 10.1016/j.jare.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023] Open
Abstract
INTRODUCTION High-altitude pulmonary edema (HAPE) is a severe and potentially fatal condition with limited treatment options. Although ceramide kinase (CERK)-derived ceramide-1-phosphate (C1P) has been demonstrated to offer protection against various pulmonary diseases, its effects on HAPE remain unclear. OBJECTIVES Our study aimed to investigate the potential role of CERK-derived C1P in the development of HAPE and to reveal the molecular mechanisms underlying its protective effects. We hypothesized that CERK-derived C1P could protect against HAPE by stabilizing circadian rhythms and maintaining mitochondrial dynamics. METHODS To test our hypothesis, we used CERK-knockout mice and established HAPE mouse models using a FLYDWC50-1C hypobaric hypoxic cabin. We utilized a range of methods, including lipidomics, transcriptomics, immunofluorescence, Western blotting, and transmission electron microscopy, to identify the mechanisms of regulation. RESULTS Our findings demonstrated that CERK-derived C1P played a protective role against HAPE. Inhibition of CERK exacerbated HAPE induced by the hypobaric hypoxic environment. Specifically, we identified a novel mechanism in which CERK inhibition induced aryl hydrocarbon receptor nuclear translocator-like (ARNTL) autophagic degradation, inducing the circadian rhythm and triggering mitochondrial damage by controlling the expression of proteins required for mitochondrial fission and fusion. The decreased ARNTL caused by CERK inhibition impaired mitochondrial dynamics, induced oxidative stress damage, and resulted in defects in mitophagy, particularly under hypoxia. Exogenous C1P prevented ARNTL degradation, alleviated mitochondrial damage, neutralized oxidative stress induced by CERK inhibition, and ultimately relieved HAPE. CONCLUSIONS This study provides evidence for the protective effect of C1P against HAPE, specifically, through stabilizing circadian rhythms and maintaining mitochondrial dynamics. Exogenous C1P therapy may be a promising strategy for treating HAPE. Our findings also highlight the importance of the circadian rhythm and mitochondrial dynamics in the pathogenesis of HAPE, suggesting that targeting these pathways may be a potential therapeutic approach for this condition.
Collapse
Affiliation(s)
- Liuyang Tian
- School of Medicine, Nankai University, Tianjin 300071, China; Medical Big Data Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China; National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China
| | - Chenghui Zhao
- National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China; Research Center for Biomedical Engineering, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Yan
- Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qian Jia
- National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China; Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Saijia Cui
- Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Huining Chen
- Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaolu Li
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University Beijing Anzhen Hospital, Beijing 100029, China
| | - Hongfeng Jiang
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University Beijing Anzhen Hospital, Beijing 100029, China
| | - Yongming Yao
- Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China.
| | - Kunlun He
- Medical Big Data Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China; National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China.
| | - Xiaojing Zhao
- National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China; Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
6
|
Borrmann H, Rijo-Ferreira F. Crosstalk between circadian clocks and pathogen niche. PLoS Pathog 2024; 20:e1012157. [PMID: 38723104 PMCID: PMC11081299 DOI: 10.1371/journal.ppat.1012157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024] Open
Abstract
Circadian rhythms are intrinsic 24-hour oscillations found in nearly all life forms. They orchestrate key physiological and behavioral processes, allowing anticipation and response to daily environmental changes. These rhythms manifest across entire organisms, in various organs, and through intricate molecular feedback loops that govern cellular oscillations. Recent studies describe circadian regulation of pathogens, including parasites, bacteria, viruses, and fungi, some of which have their own circadian rhythms while others are influenced by the rhythmic environment of hosts. Pathogens target specific tissues and organs within the host to optimize their replication. Diverse cellular compositions and the interplay among various cell types create unique microenvironments in different tissues, and distinctive organs have unique circadian biology. Hence, residing pathogens are exposed to cyclic conditions, which can profoundly impact host-pathogen interactions. This review explores the influence of circadian rhythms and mammalian tissue-specific interactions on the dynamics of pathogen-host relationships. Overall, this demonstrates the intricate interplay between the body's internal timekeeping system and its susceptibility to pathogens, which has implications for the future of infectious disease research and treatment.
Collapse
Affiliation(s)
- Helene Borrmann
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, California, United States of America
| | - Filipa Rijo-Ferreira
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, California, United States of America
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
7
|
Patlin BH, Mok H, Arra M, Haspel JA. Circadian rhythms in solid organ transplantation. J Heart Lung Transplant 2024; 43:849-857. [PMID: 38310995 PMCID: PMC11070314 DOI: 10.1016/j.healun.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024] Open
Abstract
Circadian rhythms are daily cycles in physiology that can affect medical interventions. This review considers how these rhythms may relate to solid organ transplantation. It begins by summarizing the mechanism for circadian rhythm generation known as the molecular clock, and basic research connecting the clock to biological activities germane to organ acceptance. Next follows a review of clinical evidence relating time of day to adverse transplantation outcomes. The concluding section discusses knowledge gaps and practical areas where applying circadian biology might improve transplantation success.
Collapse
Affiliation(s)
- Brielle H Patlin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Huram Mok
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Monaj Arra
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jeffrey A Haspel
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
8
|
Mok H, Ostendorf E, Ganninger A, Adler AJ, Hazan G, Haspel JA. Circadian immunity from bench to bedside: a practical guide. J Clin Invest 2024; 134:e175706. [PMID: 38299593 PMCID: PMC10836804 DOI: 10.1172/jci175706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
The immune system is built to counteract unpredictable threats, yet it relies on predictable cycles of activity to function properly. Daily rhythms in immune function are an expanding area of study, and many originate from a genetically based timekeeping mechanism known as the circadian clock. The challenge is how to harness these biological rhythms to improve medical interventions. Here, we review recent literature documenting how circadian clocks organize fundamental innate and adaptive immune activities, the immunologic consequences of circadian rhythm and sleep disruption, and persisting knowledge gaps in the field. We then consider the evidence linking circadian rhythms to vaccination, an important clinical realization of immune function. Finally, we discuss practical steps to translate circadian immunity to the patient's bedside.
Collapse
Affiliation(s)
- Huram Mok
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elaine Ostendorf
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alex Ganninger
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Avi J. Adler
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Guy Hazan
- Department of Pediatrics, Soroka University Medical Center, Beer-Sheva, Israel
- Research and Innovation Center, Saban Children’s Hospital, Beer-Sheva, Israel
| | - Jeffrey A. Haspel
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Hong H, Zhang J, Cao X, Wu Y, Chan TF, Tian XY. Myeloid Bmal1 deletion suppresses the house dust mite-induced chronic lung allergy. J Leukoc Biol 2024; 115:164-176. [PMID: 37170891 DOI: 10.1093/jleuko/qiad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
Asthma is the chronic pulmonary inflammatory response that could lead to respiratory failure when allergic reactions exacerbate. It is featured by type 2 immunity with eosinophilic inflammation, mucus, and IgE production, and Th2 cytokine secretion upon repeated challenge of allergens. The symptom severity of asthma displays an apparent circadian rhythm with aggravated airway resistance in the early morning in patients. Bmal1 is the core regulator of the circadian clock, while the regulatory role of Bmal1 in asthma remains unclear. Here, we investigate whether the myeloid Bmal1 is involved in the pathogenesis of house dust mite (HDM)-induced lung allergy. We found that knockdown of Bmal1 in macrophages suppressed the time-of-day variance of the eosinophil infiltration in the alveolar spaces in chronic asthmatic mice. This was accompanied by decreased bronchial mucus production, collagen deposition, and HDM-specific IgE production. However, the suppression effects of myeloid Bmal1 deletion did not alter the allergic responses in short-term exposure to HDM. The transcriptome profile of alveolar macrophages (AMs) showed that Bmal1-deficient AMs have enhanced phagocytosis and reduced production of allergy-mediating prostanoids thromboxane A2 and prostaglandin F2α synthesis. The attenuated thromboxane A2 and prostaglandin F2α may lead to less induction of the eosinophil chemokine Ccl11 expression in bronchial epithelial cells. In summary, our study demonstrates that Bmal1 ablation in macrophages attenuates eosinophilic inflammation in HDM-induced chronic lung allergy, which involves enhanced phagocytosis and reduced prostanoid secretion.
Collapse
Affiliation(s)
- Huiling Hong
- Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, N.T. Hong Kong SAR, China
| | - Jizhou Zhang
- Science Center, Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR, China
| | - Xiaoyun Cao
- Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, N.T. Hong Kong SAR, China
| | - Yalan Wu
- Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, N.T. Hong Kong SAR, China
| | - Ting Fung Chan
- Science Center, Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR, China
| | - Xiao Yu Tian
- Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, N.T. Hong Kong SAR, China
| |
Collapse
|
10
|
Santos EW, Khatoon S, Di Mise A, Zheng YM, Wang YX. Mitochondrial Dynamics in Pulmonary Hypertension. Biomedicines 2023; 12:53. [PMID: 38255160 PMCID: PMC10813473 DOI: 10.3390/biomedicines12010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Mitochondria are essential organelles for energy production, calcium homeostasis, redox signaling, and other cellular responses involved in pulmonary vascular biology and disease processes. Mitochondrial homeostasis depends on a balance in mitochondrial fusion and fission (dynamics). Mitochondrial dynamics are regulated by a viable circadian clock. Hypoxia and nicotine exposure can cause dysfunctions in mitochondrial dynamics, increases in mitochondrial reactive oxygen species generation and calcium concentration, and decreases in ATP production. These mitochondrial changes contribute significantly to pulmonary vascular oxidative stress, inflammatory responses, contractile dysfunction, pathologic remodeling, and eventually pulmonary hypertension. In this review article, therefore, we primarily summarize recent advances in basic, translational, and clinical studies of circadian roles in mitochondrial metabolism in the pulmonary vasculature. This knowledge may not only be crucial to fully understanding the development of pulmonary hypertension, but also greatly help to create new therapeutic strategies for treating this devastating disease and other related pulmonary disorders.
Collapse
Affiliation(s)
- Ed Wilson Santos
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (E.W.S.); (S.K.); (A.D.M.)
| | - Subika Khatoon
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (E.W.S.); (S.K.); (A.D.M.)
| | - Annarita Di Mise
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (E.W.S.); (S.K.); (A.D.M.)
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (E.W.S.); (S.K.); (A.D.M.)
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (E.W.S.); (S.K.); (A.D.M.)
| |
Collapse
|
11
|
Castillejos-López M, Romero Y, Varela-Ordoñez A, Flores-Soto E, Romero-Martinez BS, Velázquez-Cruz R, Vázquez-Pérez JA, Ruiz V, Gomez-Verjan JC, Rivero-Segura NA, Camarena Á, Torres-Soria AK, Gonzalez-Avila G, Sommer B, Solís-Chagoyán H, Jaimez R, Torres-Espíndola LM, Aquino-Gálvez A. Hypoxia Induces Alterations in the Circadian Rhythm in Patients with Chronic Respiratory Diseases. Cells 2023; 12:2724. [PMID: 38067152 PMCID: PMC10706372 DOI: 10.3390/cells12232724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The function of the circadian cycle is to determine the natural 24 h biological rhythm, which includes physiological, metabolic, and hormonal changes that occur daily in the body. This cycle is controlled by an internal biological clock that is present in the body's tissues and helps regulate various processes such as sleeping, eating, and others. Interestingly, animal models have provided enough evidence to assume that the alteration in the circadian system leads to the appearance of numerous diseases. Alterations in breathing patterns in lung diseases can modify oxygenation and the circadian cycles; however, the response mechanisms to hypoxia and their relationship with the clock genes are not fully understood. Hypoxia is a condition in which the lack of adequate oxygenation promotes adaptation mechanisms and is related to several genes that regulate the circadian cycles, the latter because hypoxia alters the production of melatonin and brain physiology. Additionally, the lack of oxygen alters the expression of clock genes, leading to an alteration in the regularity and precision of the circadian cycle. In this sense, hypoxia is a hallmark of a wide variety of lung diseases. In the present work, we intended to review the functional repercussions of hypoxia in the presence of asthma, chronic obstructive sleep apnea, lung cancer, idiopathic pulmonary fibrosis, obstructive sleep apnea, influenza, and COVID-19 and its repercussions on the circadian cycles.
Collapse
Affiliation(s)
- Manuel Castillejos-López
- Departamento de Epidemiología e Infectología Hospitalaria, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Yair Romero
- Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
| | - Angelica Varela-Ordoñez
- Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores de Iztacala Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.V.-O.); (A.K.T.-S.)
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.F.-S.); (B.S.R.-M.); (R.J.)
| | - Bianca S. Romero-Martinez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.F.-S.); (B.S.R.-M.); (R.J.)
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Joel Armando Vázquez-Pérez
- Laboratorio de Biología Molecular de Enfermedades Emergentes y EPOC, Instituto Nacional de Enferdades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Víctor Ruiz
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional (INP), Mexico City 11340, Mexico
| | - Juan C. Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Mexico City 10200, Mexico; (J.C.G.-V.); (N.A.R.-S.)
| | - Nadia A. Rivero-Segura
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Mexico City 10200, Mexico; (J.C.G.-V.); (N.A.R.-S.)
| | - Ángel Camarena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Ana Karen Torres-Soria
- Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores de Iztacala Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.V.-O.); (A.K.T.-S.)
| | - Georgina Gonzalez-Avila
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurobiología Cognitiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Ruth Jaimez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.F.-S.); (B.S.R.-M.); (R.J.)
| | | | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico;
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
12
|
Stincardini C, Pariano M, D’Onofrio F, Renga G, Orecchini E, Orabona C, Nunzi E, Gargaro M, Fallarino F, Chun SK, Fortin BM, Masri S, Brancorsini S, Romani L, Costantini C, Bellet MM. The circadian control of tryptophan metabolism regulates the host response to pulmonary fungal infections. PNAS NEXUS 2023; 2:pgad036. [PMID: 36896128 PMCID: PMC9991457 DOI: 10.1093/pnasnexus/pgad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/04/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
The environmental light/dark cycle has left its mark on the body's physiological functions to condition not only our inner biology, but also the interaction with external cues. In this scenario, the circadian regulation of the immune response has emerged as a critical factor in defining the host-pathogen interaction and the identification of the underlying circuitry represents a prerequisite for the development of circadian-based therapeutic strategies. The possibility to track down the circadian regulation of the immune response to a metabolic pathway would represent a unique opportunity in this direction. Herein, we show that the metabolism of the essential amino acid tryptophan, involved in the regulation of fundamental processes in mammals, is regulated in a circadian manner in both murine and human cells and in mouse tissues. By resorting to a murine model of pulmonary infection with the opportunistic fungus Aspergillus fumigatus, we showed that the circadian oscillation in the lung of the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO)1, generating the immunoregulatory kynurenine, resulted in diurnal changes in the immune response and the outcome of fungal infection. In addition, the circadian regulation of IDO1 drives such diurnal changes in a pre-clinical model of cystic fibrosis (CF), an autosomal recessive disease characterized by progressive lung function decline and recurrent infections, thus acquiring considerable clinical relevance. Our results demonstrate that the circadian rhythm at the intersection between metabolism and immune response underlies the diurnal changes in host-fungal interaction, thus paving the way for a circadian-based antimicrobial therapy.
Collapse
Affiliation(s)
- Claudia Stincardini
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Fiorella D’Onofrio
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Giorgia Renga
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Elena Orecchini
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Ciriana Orabona
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Sung Kook Chun
- Department of Biological Chemistry, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Bridget M Fortin
- Department of Biological Chemistry, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Stefano Brancorsini
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Marina Maria Bellet
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| |
Collapse
|
13
|
Wucher V, Sodaei R, Amador R, Irimia M, Guigó R. Day-night and seasonal variation of human gene expression across tissues. PLoS Biol 2023; 21:e3001986. [PMID: 36745672 PMCID: PMC9934459 DOI: 10.1371/journal.pbio.3001986] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 02/16/2023] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
Circadian and circannual cycles trigger physiological changes whose reflection on human transcriptomes remains largely uncharted. We used the time and season of death of 932 individuals from GTEx to jointly investigate transcriptomic changes associated with those cycles across multiple tissues. Overall, most variation across tissues during day-night and among seasons was unique to each cycle. Although all tissues remodeled their transcriptomes, brain and gonadal tissues exhibited the highest seasonality, whereas those in the thoracic cavity showed stronger day-night regulation. Core clock genes displayed marked day-night differences across multiple tissues, which were largely conserved in baboon and mouse, but adapted to their nocturnal or diurnal habits. Seasonal variation of expression affected multiple pathways, and it was enriched among genes associated with the immune response, consistent with the seasonality of viral infections. Furthermore, they unveiled cytoarchitectural changes in brain regions. Altogether, our results provide the first combined atlas of how transcriptomes from human tissues adapt to major cycling environmental conditions. This atlas may have multiple applications; for example, drug targets with day-night or seasonal variation in gene expression may benefit from temporally adjusted doses.
Collapse
Affiliation(s)
- Valentin Wucher
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- MeLiS, SynatAc Team, UCBL1—CNRS UMR5284—Inserm U1314, Lyon, France
- French Reference Center on Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Lyon, France
- University of Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Reza Sodaei
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Raziel Amador
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- ICREA, Barcelona, Spain
- * E-mail: (MI); (RG)
| | - Roderic Guigó
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (MI); (RG)
| |
Collapse
|
14
|
Hitrec T, Petit C, Cryer E, Muir C, Tal N, Fustin JM, Hughes AT, Piggins HD. Timed exercise stabilizes behavioral rhythms but not molecular programs in the brain's suprachiasmatic clock. iScience 2023; 26:106002. [PMID: 36866044 PMCID: PMC9971895 DOI: 10.1016/j.isci.2023.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/25/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Timed daily access to a running-wheel (scheduled voluntary exercise; SVE) synchronizes rodent circadian rhythms and promotes stable, 24h rhythms in animals with genetically targeted impairment of neuropeptide signaling (Vipr2 -/- mice). Here we used RNA-seq and/or qRT-PCR to assess how this neuropeptide signaling impairment as well as SVE shapes molecular programs in the brain clock (suprachiasmatic nuclei; SCN) and peripheral tissues (liver and lung). Compared to Vipr2 +/+ animals, the SCN transcriptome of Vipr2 -/- mice showed extensive dysregulation which included core clock components, transcription factors, and neurochemicals. Furthermore, although SVE stabilized behavioral rhythms in these animals, the SCN transcriptome remained dysregulated. The molecular programs in the lung and liver of Vipr2 -/- mice were partially intact, although their response to SVE differed to that of these peripheral tissues in the Vipr2 +/+ mice. These findings highlight that SVE can correct behavioral abnormalities in circadian rhythms without causing large scale alterations to the SCN transcriptome.
Collapse
Affiliation(s)
- Timna Hitrec
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Cheryl Petit
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Emily Cryer
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Charlotte Muir
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Natalie Tal
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jean-Michel Fustin
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Alun T.L. Hughes
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK,School of Biological and Environmental Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, UK,Corresponding author
| | - Hugh D. Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK,School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK,Corresponding author
| |
Collapse
|
15
|
Smithard DG, Yoshimatsu Y. Pneumonia, Aspiration Pneumonia, or Frailty-Associated Pneumonia? Geriatrics (Basel) 2022; 7:115. [PMID: 36286218 PMCID: PMC9602119 DOI: 10.3390/geriatrics7050115] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Pneumonia is a common reason for admission afflicting frail older adults. Those who are the frailest are more likely to be provided with a diagnosis of aspiration pneumonia. This diagnosis has no clear definition and no clinical consensus. It is therefore time to stop attempting to differentiate between pneumonia type and use the term frailty-associated pneumonia.
Collapse
Affiliation(s)
- David G. Smithard
- Queen Elizabeth Hospital, Lewisham and Greenwich NHS Trust, London SE19 4QH, UK
- Centre for Exercise, Activity and Rehabilitation, University of Greenwich Southwood Site, London SE9 2UG, UK
| | - Yuki Yoshimatsu
- Queen Elizabeth Hospital, Lewisham and Greenwich NHS Trust, London SE19 4QH, UK
- Centre for Exercise, Activity and Rehabilitation, University of Greenwich Southwood Site, London SE9 2UG, UK
| |
Collapse
|
16
|
Powell WT, Rich LM, Vanderwall ER, White MP, Debley JS. Temperature synchronisation of circadian rhythms in primary human airway epithelial cells from children. BMJ Open Respir Res 2022; 9:9/1/e001319. [PMID: 36198442 PMCID: PMC9535174 DOI: 10.1136/bmjresp-2022-001319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/24/2022] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Cellular circadian rhythms regulate immune pathways and inflammatory responses that mediate human disease such as asthma. Circadian rhythms in the lung may also contribute to exacerbations of chronic diseases such as asthma by regulating observed rhythms in mucus production, bronchial reactivity, airway inflammation and airway resistance. Primary human airway epithelial cells (AECs) are commonly used to model human lung diseases, such as asthma, with circadian symptoms, but a method for synchronising circadian rhythms in AECs has not been developed, and the presence of circadian rhythms in human AECs remains uninvestigated. METHODS We used temperature cycling to synchronise circadian rhythms in undifferentiated and differentiated primary human AECs. Reverse transcriptase-quantitative PCR was used to measure expression of the core circadian clock genes ARNTL, CLOCK, CRY1, CRY2, NR1D1, NR1D2, PER1 and PER2. RESULTS Following temperature synchronisation, the core circadian genes ARNTL, CRY1, CRY2, NR1D1, NR1D2, PER1 and PER2 maintained endogenous 24-hour rhythms under constant conditions. Following serum shock, the core circadian genes ARNTL, NR1D1 and NR1D2 demonstrated rhythmic expression. Following temperature synchronisation, CXCL8 demonstrated rhythmic circadian expression. CONCLUSIONS Temperature synchronised circadian rhythms in AECs differentiated at an air-liquid interface can serve as a model to investigate circadian rhythms in pulmonary diseases.
Collapse
Affiliation(s)
- Weston T Powell
- Seattle Children's Research Institute, Seattle, Washington, USA,Department of Pediatrics, University of Washington, Seattle, Washington, USA,Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Lucille M Rich
- Seattle Children's Research Institute, Seattle, Washington, USA,Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Elizabeth R Vanderwall
- Seattle Children's Research Institute, Seattle, Washington, USA,Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Maria P White
- Seattle Children's Research Institute, Seattle, Washington, USA,Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Jason S Debley
- Seattle Children's Research Institute, Seattle, Washington, USA,Department of Pediatrics, University of Washington, Seattle, Washington, USA,Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
17
|
Poole J, Ray D. The Role of Circadian Clock Genes in Critical Illness: The Potential Role of Translational Clock Gene Therapies for Targeting Inflammation, Mitochondrial Function, and Muscle Mass in Intensive Care. J Biol Rhythms 2022; 37:385-402. [PMID: 35880253 PMCID: PMC9326790 DOI: 10.1177/07487304221092727] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Earth's 24-h planetary rotation, with predictable light and heat cycles, has driven profound evolutionary adaptation, with prominent impacts on physiological mechanisms important for surviving critical illness. Pathways of interest include inflammation, mitochondrial function, energy metabolism, hypoxic signaling, apoptosis, and defenses against reactive oxygen species. Regulation of these by the cellular circadian clock (BMAL-1 and its network) has an important influence on pulmonary inflammation; ventilator-associated lung injury; septic shock; brain injury, including vasospasm; and overall mortality in both animals and humans. Whether it is cytokines, the inflammasome, or mitochondrial biogenesis, circadian medicine represents exciting opportunities for translational therapy in intensive care, which is currently lacking. Circadian medicine also represents a link to metabolic determinants of outcome, such as diabetes and cardiovascular disease. More than ever, we are appreciating the problem of circadian desynchrony in intensive care. This review explores the rationale and evidence for the importance of the circadian clock in surviving critical illness.
Collapse
Affiliation(s)
- Joanna Poole
- Anaesthetics and Critical Care, Gloucestershire Royal Hospital, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK
| | - David Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Hoogeveen MJ, Kroes ACM, Hoogeveen EK. Environmental factors and mobility predict COVID-19 seasonality in the Netherlands. ENVIRONMENTAL RESEARCH 2022; 211:113030. [PMID: 35257688 PMCID: PMC8895708 DOI: 10.1016/j.envres.2022.113030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND We recently showed that seasonal patterns of COVID-19 incidence and Influenza-Like Illnesses incidence are highly similar, in a country in the temperate climate zone, such as the Netherlands. We hypothesize that in The Netherlands the same environmental factors and mobility trends that are associated with the seasonality of flu-like illnesses are predictors of COVID-19 seasonality as well. METHODS We used meteorological, pollen/hay fever and mobility data from the Netherlands. For the reproduction number of COVID-19 (Rt), we used daily estimates from the Dutch State Institute for Public Health. For all datasets, we selected the overlapping period of COVID-19 and the first allergy season: from February 17, 2020 till September 21, 2020 (n = 218). Backward stepwise multiple linear regression was used to develop an environmental prediction model of the Rt of COVID-19. Next, we studied whether adding mobility trends to an environmental model improved the predictive power. RESULTS Through stepwise backward multiple linear regression four highly significant (p < 0.01) predictive factors are selected in our combined model: temperature, solar radiation, hay fever incidence, and mobility to indoor recreation locations. Our combined model explains 87.5% of the variance of Rt of COVID-19 and has a good and highly significant fit: F(4, 213) = 374.2, p < 0.00001. This model had a better overall predictive performance than a solely environmental model, which explains 77.3% of the variance of Rt (F(4, 213) = 181.3, p < 0.00001). CONCLUSIONS We conclude that the combined mobility and environmental model can adequately predict the seasonality of COVID-19 in a country with a temperate climate like the Netherlands. In this model higher solar radiation, higher temperature and hay fever are related to lower COVID-19 reproduction, and higher mobility to indoor recreation locations is related to an increased COVID-19 spread.
Collapse
Affiliation(s)
- Martijn J Hoogeveen
- Department Technical Sciences & Environment, Open University, the Netherlands.
| | - Aloys C M Kroes
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ellen K Hoogeveen
- Department of Internal Medicine, Jeroen Bosch Hospital, Den Bosch, the Netherlands
| |
Collapse
|
19
|
Effect of 17β-estradiol on the daily pattern of ACE2, ADAM17, TMPRSS2 and estradiol receptor transcription in the lungs and colon of male rats. PLoS One 2022; 17:e0270609. [PMID: 35763527 PMCID: PMC9239479 DOI: 10.1371/journal.pone.0270609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
Covid-19 progression shows sex-dependent features. It is hypothesized that a better Covid-19 survival rate in females can be attributed to the presence of higher 17β-estradiol (E2) levels in women than in men. Virus SARS-CoV-2 is enabled to enter the cell with the use of angiotensin converting enzyme 2 (ACE2). The expression of several renin-angiotensin system components has been shown to exert a rhythmic pattern, and a role of the circadian system in their regulation has been implicated. Therefore, the aim of the study is to elucidate possible interference between E2 signalling and the circadian system in the regulation of the expression of ACE2 mRNA and functionally related molecules. E2 was administered at a dosage of 40 μg/kg/day for 7 days to male Wistar rats, and sampling of the lungs and colon was performed during a 24-h cycle. The daily pattern of expression of molecules facilitating SARS-CoV-2 entry into the cell, clock genes and E2 receptors was analysed. As a consequence of E2 administration, a rhythm in ACE2 and TMPRSS2 mRNA expression was observed in the lungs but not in the colon. ADAM17 mRNA expression showed a pronounced rhythmic pattern in both tissues that was not influenced by E2 treatment. ESR1 mRNA expression exerted a rhythmic pattern, which was diminished by E2 treatment. The influence of E2 administration on ESR2 and GPER1 mRNA expression was greater in the lungs than in the colon as a significant rhythm in ESR2 and GPER1 mRNA expression appeared only in the lungs after E2 treatment. E2 administration also increased the amplitude of bmal1 expression in the lungs, which implicates altered functioning of peripheral oscillators in response to E2 treatment. The daily pattern of components of the SARS-CoV-2 entrance pathway and their responsiveness to E2 should be considered in the timing of pharmacological therapy for Covid-19.
Collapse
|
20
|
Blanco JR, Verdugo-Sivianes EM, Amiama A, Muñoz-Galván S. The circadian rhythm of viruses and its implications on susceptibility to infection. Expert Rev Anti Infect Ther 2022; 20:1109-1117. [PMID: 35546444 DOI: 10.1080/14787210.2022.2072296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Circadian genes have an impact on multiple hormonal, metabolic, and immunological pathways and have recently been implicated in some infectious diseases. AREAS COVERED We review aspects related to the current knowledge about circadian rhythm and viral infections, their consequences, and the potential therapeutic options. EXPERT OPINION Expert opinion: In order to address a problem, it is necessary to know the topic in depth. Although in recent years there has been a growing interest in the role of circadian rhythms, many relevant questions remain to be resolved. Thus, the mechanisms linking the circadian machinery against viral infections are poorly understood. In a clear approach to personalized precision medicine, in order to treat a disease in the most appropriate phase of the circadian rhythm, and in order to achieve the optimal efficacy, it is highly recommended to carry out studies that improve the knowledge about the circadian rhythm.
Collapse
Affiliation(s)
- José-Ramon Blanco
- Servicio de Enfermedades Infecciosas, Hospital Universitario San Pedro, Logroño, Spain.,Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Eva M Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Amiama
- Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Sandra Muñoz-Galván
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Giri A, Wang Q, Rahman I, Sundar IK. Circadian molecular clock disruption in chronic pulmonary diseases. Trends Mol Med 2022; 28:513-527. [DOI: 10.1016/j.molmed.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/31/2022]
|
22
|
Hazan G, Fox C, Eiden E, Anderson N, Friger M, Haspel J. Effect of the COVID-19 Lockdown on Asthma Biological Rhythms. J Biol Rhythms 2022; 37:152-163. [PMID: 35319293 DOI: 10.1177/07487304221081730] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Asthma has a striking temporal character, in which time-of-day, patient age, and season each influence disease activity. The extent to which rhythms in asthma activity reflect exposure to specific disease triggers remains unclear. In this study, we examined how virus mitigation strategies enacted during the COVID-19 pandemic ("lockdown measures") affected rhythms in asthma clinical activity in children. To this end, we retrospectively analyzed asthma clinical presentations in children aged <18 years to our regional academic medical center, comparing 4 years of medical records prior to COVID-19 lockdown measures with the 12 months immediately after the institution of such measures. We correlated these data to positive viral test results, febrile seizures, and allergic clinical surrogates (allergic reaction visits and Emergency Department [ED] antihistamine prescriptions, respectively) over the same time frame. In the 12 months following the institution of the COVID-19 lockdown, positivity rates for common respiratory viruses dropped by 70.2% and ED visits for asthma among children dropped by 62% compared to pre-COVID years. Lockdown suppressed seasonal variation in positive viral tests and asthma ED visits, while diurnal rhythms in asthma visits were unchanged. Asthma seasonality correlated most strongly with rhinovirus positivity both before and after the institution of COVID lockdown measures. Altogether, our data support a causal role for viruses in driving seasonal variability in asthma exacerbations in children.
Collapse
Affiliation(s)
- Guy Hazan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Division of Pediatric Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carolyn Fox
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elise Eiden
- Institute for Informatics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Neil Anderson
- Division of Laboratory and Genomic Medicine, Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael Friger
- Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jeffrey Haspel
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
23
|
Abstract
To evaluate the sleep and circadian rest-activity pattern of critical COVID-19 survivors 3 months after hospital discharge.
Collapse
|
24
|
Lin CR, Bahmed K, Kosmider B. Dysregulated Cell Signaling in Pulmonary Emphysema. Front Med (Lausanne) 2022; 8:762878. [PMID: 35047522 PMCID: PMC8762198 DOI: 10.3389/fmed.2021.762878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/06/2021] [Indexed: 01/19/2023] Open
Abstract
Pulmonary emphysema is characterized by the destruction of alveolar septa and irreversible airflow limitation. Cigarette smoking is the primary cause of this disease development. It induces oxidative stress and disturbs lung physiology and tissue homeostasis. Alveolar type II (ATII) cells have stem cell potential and can repair the denuded epithelium after injury; however, their dysfunction is evident in emphysema. There is no effective treatment available for this disease. Challenges in this field involve the large complexity of lung pathophysiological processes and gaps in our knowledge on the mechanisms of emphysema progression. It implicates dysregulation of various signaling pathways, including aberrant inflammatory and oxidative responses, defective antioxidant defense system, surfactant dysfunction, altered proteostasis, disrupted circadian rhythms, mitochondrial damage, increased cell senescence, apoptosis, and abnormal proliferation and differentiation. Also, genetic predispositions are involved in this disease development. Here, we comprehensively review studies regarding dysregulated cell signaling, especially in ATII cells, and their contribution to alveolar wall destruction in emphysema. Relevant preclinical and clinical interventions are also described.
Collapse
Affiliation(s)
- Chih-Ru Lin
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA, United States.,Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States
| | - Karim Bahmed
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States.,Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, United States
| | - Beata Kosmider
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA, United States.,Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States
| |
Collapse
|
25
|
Wucher V, Sodaei R, Amador R, Irimia M, Guigó R. Day-night and seasonal variation of human gene expression across tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.02.28.433266. [PMID: 33688644 PMCID: PMC7941615 DOI: 10.1101/2021.02.28.433266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Circadian and circannual cycles trigger physiological changes whose reflection on human transcriptomes remains largely uncharted. We used the time and season of death of 932 individuals from GTEx to jointly investigate transcriptomic changes associated with those cycles across multiple tissues. Overall, most variation across tissues during day-night and among seasons was unique to each cycle. Although all tissues remodeled their transcriptomes, brain and gonadal tissues exhibited the highest seasonality, whereas those in the thoracic cavity showed stronger day-night regulation. Core clock genes displayed marked day-night differences across multiple tissues, which were largely conserved in baboon and mouse, but adapted to their nocturnal or diurnal habits. Seasonal variation of expression affected multiple pathways and it was enriched among genes associated with the immune response, consistent with the seasonality of viral infections. Furthermore, they unveiled cytoarchitectural changes in brain regions. Altogether, our results provide the first combined atlas of how transcriptomes from human tissues adapt to major cycling environmental conditions.
Collapse
Affiliation(s)
- Valentin Wucher
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- NeuroMyogene Institute, SynatAc Team, INSERM U1217/UMR CNRS 5310, Lyon, France
- French Reference Center on Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Lyon, France
- University of Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Reza Sodaei
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Raziel Amador
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
26
|
Bryant AJ, Ebrahimi E, Nguyen A, Wolff CA, Gumz ML, Liu AC, Esser KA. A wrinkle in time: circadian biology in pulmonary vascular health and disease. Am J Physiol Lung Cell Mol Physiol 2022; 322:L84-L101. [PMID: 34850650 PMCID: PMC8759967 DOI: 10.1152/ajplung.00037.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An often overlooked element of pulmonary vascular disease is time. Cellular responses to time, which are regulated directly by the core circadian clock, have only recently been elucidated. Despite an extensive collection of data regarding the role of rhythmic contribution to disease pathogenesis (such as systemic hypertension, coronary artery, and renal disease), the roles of key circadian transcription factors in pulmonary hypertension remain understudied. This is despite a large degree of overlap in the pulmonary hypertension and circadian rhythm fields, not only including shared signaling pathways, but also cell-specific effects of the core clock that are known to result in both protective and adverse lung vessel changes. Therefore, the goal of this review is to summarize the current dialogue regarding common pathways in circadian biology, with a specific emphasis on its implications in the progression of pulmonary hypertension. In this work, we emphasize specific proteins involved in the regulation of the core molecular clock while noting the circadian cell-specific changes relevant to vascular remodeling. Finally, we apply this knowledge to the optimization of medical therapy, with a focus on sleep hygiene and the role of chronopharmacology in patients with this disease. In dissecting the unique relationship between time and cellular biology, we aim to provide valuable insight into the practical implications of considering time as a therapeutic variable. Armed with this information, physicians will be positioned to more efficiently use the full four dimensions of patient care, resulting in improved morbidity and mortality of pulmonary hypertension patients.
Collapse
Affiliation(s)
- Andrew J. Bryant
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Elnaz Ebrahimi
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Amy Nguyen
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Christopher A. Wolff
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Michelle L. Gumz
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Andrew C. Liu
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Karyn A. Esser
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
27
|
Crislip GR, Johnston JG, Douma LG, Costello HM, Juffre A, Boyd K, Li W, Maugans CC, Gutierrez-Monreal M, Esser KA, Bryant AJ, Liu AC, Gumz ML. Circadian Rhythm Effects on the Molecular Regulation of Physiological Systems. Compr Physiol 2021; 12:2769-2798. [PMID: 34964116 PMCID: PMC11514412 DOI: 10.1002/cphy.c210011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nearly every system within the body contains an intrinsic cellular circadian clock. The circadian clock contributes to the regulation of a variety of homeostatic processes in mammals through the regulation of gene expression. Circadian disruption of physiological systems is associated with pathophysiological disorders. Here, we review the current understanding of the molecular mechanisms contributing to the known circadian rhythms in physiological function. This article focuses on what is known in humans, along with discoveries made with cell and rodent models. In particular, the impact of circadian clock components in metabolic, cardiovascular, endocrine, musculoskeletal, immune, and central nervous systems are discussed. © 2021 American Physiological Society. Compr Physiol 11:1-30, 2021.
Collapse
Affiliation(s)
- G. Ryan Crislip
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | - Jermaine G. Johnston
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Hannah M. Costello
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Kyla Boyd
- Department of Biochemistry and Molecular Biology
| | - Wendy Li
- Department of Biochemistry and Molecular Biology
| | | | | | - Karyn A. Esser
- Department of Physiology and Functional Genomics
- Myology Institute
| | | | - Andrew C. Liu
- Department of Physiology and Functional Genomics
- Myology Institute
| | - Michelle L. Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
- Department of Biochemistry and Molecular Biology
- Department of Physiology and Functional Genomics
- Center for Integrative Cardiovascular and Metabolic Disease
| |
Collapse
|
28
|
Recent Advances in Chronotherapy Targeting Respiratory Diseases. Pharmaceutics 2021; 13:pharmaceutics13122008. [PMID: 34959290 PMCID: PMC8704788 DOI: 10.3390/pharmaceutics13122008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
Respiratory diseases contribute to a significant percentage of mortality and morbidity worldwide. The circadian rhythm is a natural biological process where our bodily functions align with the 24 h oscillation (sleep-wake cycle) process and are controlled by the circadian clock protein/gene. Disruption of the circadian rhythm could alter normal lung function. Chronotherapy is a type of therapy provided at specific time intervals based on an individual's circadian rhythm. This would allow the drug to show optimum action, and thereby modulate its pharmacokinetics to lessen unwanted or unintended effects. In this review, we deliberated on the recent advances employed in chrono-targeted therapeutics for chronic respiratory diseases.
Collapse
|
29
|
Zhang J, Cheng H, Wang D, Zhu Y, Yang C, Shen Y, Yu J, Li Y, Xu S, Song X, Zhou Y, Chen J, Fan L, Jiang J, Wang C, Hao K. Revealing consensus gene pathways associated with respiratory functions and disrupted by PM2.5 nitrate exposure at bulk tissue and single cell resolution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116951. [PMID: 33780843 DOI: 10.1016/j.envpol.2021.116951] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/28/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Nitrate is a major pollutant component in ambient PM2.5. It is known that chronic exposure to PM2.5 NO3- damages respiratory functions. We aim to explore the underlying toxicological mechanism at single cell resolution. METHODS We systematically conducted exposure experiments on forty C57BL/6 mice, assessed respiratory functions, and profiled lung transcriptome. . Afterward, we estimated the cell type compositions from RNA-seq data using deconvolution analysis. The genes and pathways associated with respiratory function and dysregulated by to PM2.5 NO3- exposure were characterized at bulk-tissue and single-cell resolution. RESULTS PM2.5 NO3- exposure did not significantly modify the cell type composition in lung, but profoundly altered the gene expression within each cell type. At ambient concentration (22 μg/m3), exposure significantly (FDR<10%) altered 95 genes' expression. Among the genes associated with respiratory functions, a large fraction (74.6-91.7%) were significantly perturbed by PM2.5 NO3- exposure. For example, among the 764 genes associated with peak expiratory flow (PEF), 608 (79.6%) were affected by exposure (p = 1.92e-345). Pathways known to play role in lung disease pathogenesis, including circadian rhythms, sphingolipid metabolism, immune response and lysosome, were found significantly associated with respiratory functions and disrupted by PM2.5 NO3- exposure. CONCLUSIONS This study extended our knowledge of PM2.5 NO3- exposure's effect to the levels of lung gene expression, pathways, lung cell type composition and cell specific transcriptome. At single cell resolution, we provided insights in toxicological mechanism of PM2.5 NO3- exposure and subsequent pulmonary disease risks.
Collapse
Affiliation(s)
- Jushan Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dongbin Wang
- School of Environment, Tsinghua University, Beijing, China
| | - Yujie Zhu
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Chun Yang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yuan Shen
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaolian Song
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yang Zhou
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lihong Fan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jingkun Jiang
- School of Environment, Tsinghua University, Beijing, China
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ke Hao
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
30
|
Hoogeveen MJ, van Gorp ECM, Hoogeveen EK. Can pollen explain the seasonality of flu-like illnesses in the Netherlands? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:143182. [PMID: 33131881 PMCID: PMC7580695 DOI: 10.1016/j.scitotenv.2020.143182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 05/20/2023]
Abstract
Current models for flu-like epidemics insufficiently explain multi-cycle seasonality. Meteorological factors alone, including the associated behavior, do not predict seasonality, given substantial climate differences between countries that are subject to flu-like epidemics or COVID-19. Pollen is documented to be allergenic, it plays a role in immuno-activation and defense against respiratory viruses, and seems to create a bio-aerosol that lowers the reproduction number of flu-like viruses. Therefore, we hypothesize that pollen may explain the seasonality of flu-like epidemics, including COVID-19, in combination with meteorological variables. We have tested the Pollen-Flu Seasonality Theory for 2016-2020 flu-like seasons, including COVID-19, in the Netherlands, with its 17.4 million inhabitants. We combined changes in flu-like incidence per 100 K/Dutch residents (code: ILI) with pollen concentrations and meteorological data. Finally, a predictive model was tested using pollen and meteorological threshold values, inversely correlated to flu-like incidence. We found a highly significant inverse correlation of r(224) = -0.41 (p < 0.001) between pollen and changes in flu-like incidence, corrected for the incubation period. The correlation was stronger after taking into account the incubation time. We found that our predictive model has the highest inverse correlation with changes in flu-like incidence of r(222) = -0.48 (p < 0.001) when average thresholds of 610 total pollen grains/m3, 120 allergenic pollen grains/m3, and a solar radiation of 510 J/cm2 are passed. The passing of at least the pollen thresholds, preludes the beginning and end of flu-like seasons. Solar radiation is a co-inhibitor of flu-like incidence, while temperature makes no difference. However, higher relative humidity increases with flu-like incidence. We conclude that pollen is a predictor of the inverse seasonality of flu-like epidemics, including COVID-19, and that solar radiation is a co-inhibitor, in the Netherlands.
Collapse
Affiliation(s)
- Martijn J Hoogeveen
- Department Technical Sciences & Environment, Open University, the Netherlands.
| | - Eric C M van Gorp
- Department of Viroscience and Department of Infectious Diseases, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Ellen K Hoogeveen
- Department of Internal Medicine, Jeroen Bosch Hospital, Den Bosch, the Netherlands
| |
Collapse
|
31
|
Hachem M, Loizeau M, Saleh N, Momas I, Bensefa-Colas L. Short-term association of in-vehicle ultrafine particles and black carbon concentrations with respiratory health in Parisian taxi drivers. ENVIRONMENT INTERNATIONAL 2021; 147:106346. [PMID: 33388565 DOI: 10.1016/j.envint.2020.106346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Professional drivers are exposed inside their vehicles to high levels of air pollutants due to the considerable time they spend close to motor vehicle emissions. Little is known about ultrafine particles (UFP) or black carbon (BC) adverse respiratory health effects compared to the regulated pollutants. OBJECTIVES We aimed to study the short-term associations between UFP and BC concentrations inside vehicles and (1) the onset of mucosal irritation and (2) the acute changes in lung function of Parisian taxi drivers during a working day. METHODS An epidemiological study was carried out on 50 taxi drivers in Paris. UFP and BC were measured inside their vehicles with DiSCmini® and microAeth®, respectively. On the same day, the frequency and the severity of nose, eye, and throat irritations were self-reported by each participant and a spirometry test was performed before and after the work shift. Multivariate analysis was used to evaluate the associations between in-taxis UFP and BC concentrations and mucosal irritation and lung function, after adjustment for potential confounders. RESULTS In-taxis UFP concentrations ranged from 17.9 to 37.9 × 103 particles/cm3 and BC concentrations from 2.2 to 3.9 μg/m3, during a mean of 9 ± 2 working hours. Significant dose-response relationships were observed between in-taxis UFP concentrations and both nasal irritation and lung function. The increase of in-taxis UFP (for an interquartile range of 20 × 103 particles/cm3) was associated to an increase in nasal irritation (adjusted OR = 6.27 [95% CI: 1.02 to 38.62]) and to a reduction in forced expiratory flow at 25-75% by -7.44% [95% CI: -12.63 to -2.24], forced expiratory volume in one second by -4.46% [95% CI: -6.99 to -1.93] and forced vital capacity by -3.31% [95% CI: -5.82 to -0.80]. Such associations were not found with BC. Incident throat and eye irritations were not related to in-vehicle particles exposure; however, they were associated with outdoor air quality (estimated by the Atmo index) and in-vehicle humidity, respectively. CONCLUSION To our knowledge, our study is the first to show a significant association, within a short-period of time, between in and vehicle UFP exposure and acute respiratory effects in professional drivers.
Collapse
Affiliation(s)
- Melissa Hachem
- Paris University, CRESS - INSERM UMR_1153, INRAE, HERA team, Paris, France; Lebanese University, Faculty of Public Health, Pharmacoepidemiology Surveillance Unit, CERIPH, Fanar, Lebanon
| | - Maxime Loizeau
- Paris University, CRESS - INSERM UMR_1153, INRAE, HERA team, Paris, France; Hôtel-Dieu Hospital, APHP. Centre - Paris University, Department of Occupational and Environmental Diseases, Paris, France
| | - Nadine Saleh
- Lebanese University, Faculty of Public Health, Pharmacoepidemiology Surveillance Unit, CERIPH, Fanar, Lebanon; Lebanese University, Faculty of Public Health II, INSPECT-LB, Fanar, Lebanon
| | - Isabelle Momas
- Paris University, CRESS - INSERM UMR_1153, INRAE, HERA team, Paris, France.
| | - Lynda Bensefa-Colas
- Paris University, CRESS - INSERM UMR_1153, INRAE, HERA team, Paris, France; Hôtel-Dieu Hospital, APHP. Centre - Paris University, Department of Occupational and Environmental Diseases, Paris, France
| |
Collapse
|
32
|
Sengupta S, Ince L, Sartor F, Borrmann H, Zhuang X, Naik A, Curtis A, McKeating JA. Clocks, Viruses, and Immunity: Lessons for the COVID-19 Pandemic. J Biol Rhythms 2021; 36:23-34. [PMID: 33480287 PMCID: PMC7970201 DOI: 10.1177/0748730420987669] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Circadian rhythms are evolutionarily conserved anticipatory systems that
allow the host to prepare and respond to threats in its environment.
This article summarizes a European Biological Rhythms Society (EBRS)
workshop held in July 2020 to review current knowledge of the
interplay between the circadian clock and viral infections to inform
therapeutic strategies against SARS-CoV-2 and COVID-19. A large body
of work supports the role of the circadian clock in regulating various
aspects of viral replication, host responses, and associated
pathogenesis. We review the evidence describing the multifaceted role
of the circadian clock, spanning host susceptibility, antiviral
mechanisms, and host resilience. Finally, we define the most pressing
research questions and how our knowledge of chronobiology can inform
key translational research priorities.
Collapse
Affiliation(s)
- Shaon Sengupta
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Louise Ince
- Departement de Pathologie et Immunologie, Geneva, Switzerland
| | - Francesca Sartor
- Institute of Medical Psychology, Medical Faculty, Ludwig Maximilian University of Munich, Munich, Germany
| | - Helene Borrmann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Amruta Naik
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Annie Curtis
- School of Pharmacy and Biomolecular Sciences, Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Jacob H, Curtis AM, Kearney CJ. Therapeutics on the clock: Circadian medicine in the treatment of chronic inflammatory diseases. Biochem Pharmacol 2020; 182:114254. [PMID: 33010213 DOI: 10.1016/j.bcp.2020.114254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
The circadian clock is a collection of endogenous oscillators with a periodicity of ~ 24 h. Recently, our understanding of circadian rhythms and their regulation at genomic and physiologic scales has grown significantly. Knowledge of the circadian influence on biological processes has provided new possibilities for novel pharmacological strategies. Directly targeting the biological clock or its downstream targets, and/or using timing as a variable in drug therapy are now important pharmacological considerations. The circadian machinery mediates many aspects of the inflammatory response and, reciprocally, an inflammatory environment can disrupt circadian rhythms. Therefore, intense interest exists in leveraging circadian biology as a means to treat chronic inflammatory diseases such as sepsis, asthma, rheumatoid arthritis, osteoarthritis, and cardiovascular disease, which all display some type of circadian signature. The purpose of this review is to evaluate the crosstalk between circadian rhythms, inflammatory diseases, and their pharmacological treatment. Evidence suggests that carefully rationalized application of chronotherapy strategies - alone or in combination with small molecule modulators of circadian clock components - can improve efficacy and reduce toxicity, thus warranting further investigation and use.
Collapse
Affiliation(s)
- Haritha Jacob
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and Trinity College Dublin, Dublin, Ireland
| | - Annie M Curtis
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and Trinity College Dublin, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI, Dublin, Ireland.
| | - Cathal J Kearney
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and Trinity College Dublin, Dublin, Ireland; Department of Biomedical Engineering, University of Massachusetts Amherst, MA, USA.
| |
Collapse
|
34
|
Tamimi F, Abusamak M, Akkanti B, Chen Z, Yoo SH, Karmouty-Quintana H. The case for chronotherapy in Covid-19-induced acute respiratory distress syndrome. Br J Pharmacol 2020; 177:4845-4850. [PMID: 32442317 PMCID: PMC7280566 DOI: 10.1111/bph.15140] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/27/2022] Open
Abstract
Coronavirus disease 2019 (COVID‐19), the disease resulting from infection by a novel coronavirus, SARS‐Cov2, has rapidly spread since November 2019 leading to a global pandemic. SARS‐Cov2 has infected over four million people and caused over 290,000 deaths worldwide. Although most cases are mild, a subset of patients develop a severe and atypical presentation of acute respiratory distress syndrome (ARDS) that is characterised by a cytokine release storm (CRS). Paradoxically, treatment with anti‐inflammatory agents and immune regulators has been associated with worsening of ARDS. We hypothesize that the intrinsic circadian clock of the lung and the immune system may regulate individual components of CRS, and thus, chronotherapy may be used to effectively manage ARDS in COVID‐19 patients. LINKED ARTICLES This article is part of a themed issue on The Pharmacology of COVID‐19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc
Collapse
Affiliation(s)
- Faleh Tamimi
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.,College of Dental Medicine, Qatar University, Doha, Qatar
| | | | - Bindu Akkanti
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Harry Karmouty-Quintana
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
35
|
Nakao A. Circadian Regulation of the Biology of Allergic Disease: Clock Disruption Can Promote Allergy. Front Immunol 2020; 11:1237. [PMID: 32595651 PMCID: PMC7304491 DOI: 10.3389/fimmu.2020.01237] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022] Open
Abstract
Allergic diseases such as allergic rhinitis, asthma, atopic dermatitis, and food allergy are characterized by epithelial barrier dysfunction and deregulated immune responses. Components of the circadian clock interact with critical elements of epithelial barrier function and immune responses, and regulate the biological processes on a 24-h cycle at steady state. This may represent an anticipatory defense response to day-night fluctuation of attack by noxious stimuli such as pathogens in the environment. This review will summarize clock control of epithelial barrier function and immune responses associated with allergic disease and offer novel insights and opportunities into how clock dysfunction impacts allergic disease. Importantly, perturbation of normal clock activity by genetic and environmental disturbances, such as chronic light cycle perturbations or irregular eating habits, deregulates epithelial barrier function and immune responses. This implies that the circadian clock is strongly linked to the fundamental biology of allergic disease, and that clock disruption can precipitate allergic disease by altering the epithelial barrier and immune functions. Given that contemporary lifestyles often involve chronic circadian disruptions such as shift work, we propose that lifestyle or therapeutic interventions that align the endogenous circadian clock with environmental cycles should be a part of the efforts to prevent or treat allergic disease in modern society.
Collapse
Affiliation(s)
- Atsuhito Nakao
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Kofu, Japan.,Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|