1
|
Ghatbale P, Sah GP, Dunham S, Khong E, Blanc A, Monsibais A, Garcia A, Schooley RT, Cobián Güemes AG, Whiteson K, Pride DT. In vitro resensitization of multidrug-resistant clinical isolates of Enterococcus faecium and E. faecalis through phage-antibiotic synergy. Antimicrob Agents Chemother 2024:e0074024. [PMID: 39699213 DOI: 10.1128/aac.00740-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Bacteriophages are an increasingly attractive option for the treatment of antibiotic-resistant infections, but their efficacy is difficult to discern due to the confounding effects of antibiotics. Phages are generally delivered in conjunction with antibiotics, and thus, when patients improve, it is unclear whether the phages, antibiotics, or both are responsible. This question is particularly relevant for enterococcus infections, as limited data suggest phages might restore antibiotic efficacy against resistant strains. Enterococci can develop high-level resistance to vancomycin, a primary treatment. We assessed clinical and laboratory isolates of Enterococcus faecium and Enterococcus faecalis to determine whether we could observe synergistic interactions between phages and antibiotics. We identified synergy between multiple phages and antibiotics including linezolid, ampicillin, and vancomycin. Notably, antibiotic susceptibility did not predict synergistic interactions with phages. Vancomycin-resistant isolates (n = 6) were eradicated by the vancomycin-phage combination as effectively as vancomycin-susceptible isolates (n = 2). Transcriptome analysis revealed significant gene expression changes under antibiotic-phage conditions, especially for linezolid and vancomycin, with upregulated genes involved in nucleotide and protein biosynthesis and downregulated stress response and prophage-related genes. While our results do not conclusively determine the mechanism of the observed synergistic interactions between antibiotics and phages, they do confirm and build upon previous research that observed these synergistic interactions. Our work highlights how using phages can restore the effectiveness of vancomycin against resistant isolates. This finding provides a promising, although unexpected, strategy for moving forward with phage treatments for vancomycin-resistant Enterococcus infections.
Collapse
Affiliation(s)
- Pooja Ghatbale
- Department of Pathology, University of California, San Diego, California, USA
| | - Govind Prasad Sah
- Department of Pathology, University of California, San Diego, California, USA
| | - Sage Dunham
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Ethan Khong
- Department of Pathology, University of California, San Diego, California, USA
| | - Alisha Blanc
- Department of Pathology, University of California, San Diego, California, USA
| | - Alisha Monsibais
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Andrew Garcia
- Department of Pathology, University of California, San Diego, California, USA
| | - Robert T Schooley
- Department of Medicine, University of California, San Diego, California, USA
| | - Ana G Cobián Güemes
- Department of Pathology, University of California, San Diego, California, USA
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - David T Pride
- Department of Pathology, University of California, San Diego, California, USA
- Department of Medicine, University of California, San Diego, California, USA
| |
Collapse
|
2
|
Liu M, Zhang Y, Gu C, Luo J, Shen Y, Huang X, Xu X, Ahmed T, Alodaini HA, Hatamleh AA, Wang Y, Li B. Strain-Specific Infection of Phage AP1 to Rice Bacterial Brown Stripe Pathogen Acidovorax oryzae. PLANTS (BASEL, SWITZERLAND) 2024; 13:3182. [PMID: 39599390 PMCID: PMC11597636 DOI: 10.3390/plants13223182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Bacteriophage (phage) AP1 has been reported to effectively lyse Acidovorax oryzae, the causative agent of bacterial brown stripe in rice. However, phage AP1 exhibits strain-specific lysis patterns. In order to enhance the potential of phages for biological control of rice bacterial brown stripe, this study investigated the possible mechanism of strain-specific infection by characterizing phage AP1 and its susceptible (RS-2) and resistant (RS-1) strains. Based on the current classification standards and available database information, phage AP1 was classified into the class Caudoviricetes, and it is a kind of podophage. Comparative analysis of the susceptible and resistant strains showed no significant differences in growth kinetics, motility, biofilm formation, or effector Hcp production. Interestingly, the resistant strain demonstrated enhanced virulence compared to the susceptible strain. Prokaryotic expression studies indicated that six putative structural proteins of phage AP1 exhibited varying degrees of binding affinity (1.90-9.15%) to lipopolysaccharide (LPS). However, pull-down assays and bacterial two-hybrid analyses revealed that only gp66 can interact with four host proteins, which were identified as glycosyltransferase, RcnB, ClpB, and ImpB through immunoprecipitation and mass spectrometry analyses. The role of LPS in the specific infection mechanism of phage AP1 was further elucidated through the construction of knockout mutant strains and complementary strains targeting a unique gene cluster (wbzB, wbzC, wbzE, and wbzF) involved in LPS precursor biosynthesis. These findings provide novel insights into the mechanisms of phage-host specificity, which are crucial for the effective application of phage AP1 in controlling rice bacterial brown stripe.
Collapse
Affiliation(s)
- Mengju Liu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
| | - Yang Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050070, China
| | - Chunyan Gu
- Institute of Plant Protection and Agricultural Product Quality and Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China;
| | - Ying Shen
- Station for the Plant Protection & Quarantine and Control of Agrochemicals of Zhejiang Province, Hangzhou 310004, China;
| | - Xuefang Huang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
| | - Xinyan Xu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
- Department of Life Sciences, Western Caspian University, Baku 1001, Azerbaijan
| | - Hissah Abdulrahman Alodaini
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.A.A.); (A.A.H.)
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.A.A.); (A.A.H.)
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
| |
Collapse
|
3
|
Johnson K, Garrett S, Noble-Molnar C, Elgarhi H, Woodside W, Cooper C, Zhang X, Olson S, Catchpole R, Graveley B, Terns M. Selective degradation of phage RNAs by the Csm6 ribonuclease provides robust type III CRISPR immunity in Streptococcus thermophilus. Nucleic Acids Res 2024; 52:12549-12564. [PMID: 39360614 PMCID: PMC11551762 DOI: 10.1093/nar/gkae856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Type III CRISPR immune systems bind viral or plasmid RNA transcripts and activate Csm3/Cmr4 and Cas10 nucleases to uniquely cleave both invader RNA and DNA, respectively. Additionally, type III effector complexes generate cyclic oligoadenylate (cOA) signaling molecules to activate trans-acting, auxiliary Csm6/Csx1 ribonucleases, previously proposed to be non-specific in their in vivo RNA cleavage preference. Despite extensive in vitro studies, the nuclease requirements of type III systems in their native contexts remain poorly understood. Here we systematically investigated the in vivo roles for immunity of each of the three Streptococcus thermophilus (Sth) type III-A Cas nucleases and cOA signaling by challenging nuclease defective mutant strains with plasmid and phage infections. Our results reveal that RNA cleavage by Csm6 is both sufficient and essential for maintaining wild-type levels of immunity. Importantly, Csm6 RNase activity leads to immunity against even high levels of phage challenge without causing host cell dormancy or death. Transcriptomic analyses during phage infection indicated Csm6-mediated and crRNA-directed preferential cleavage of phage transcripts. Our findings highlight the critical role of Csm6 RNase activity in type III immunity and demonstrate specificity for invader RNA transcripts by Csm6 to ensure host cell survival upon phage infection.
Collapse
Affiliation(s)
- Katie A Johnson
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Sandra C Garrett
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | | | - Hanna A Elgarhi
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Walter T Woodside
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Clare Cooper
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Xinfu Zhang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Sara Olson
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Ryan J Catchpole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Department of Microbiology, University of Georgia, Athens, GA, USA
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
4
|
Yang S, Mukh AA, Abdelatif E, Schmidt A, Batailler C, Ferry T, Lustig S. Bacteriophage therapy as an innovative strategy for the treatment of Periprosthetic Joint Infection: a systematic review. INTERNATIONAL ORTHOPAEDICS 2024; 48:2809-2825. [PMID: 39254722 PMCID: PMC11490438 DOI: 10.1007/s00264-024-06295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Periprosthetic Joint Infection (PJI) following hip and knee arthroplasty is a catastrophic complication in orthopaedic surgery. It has long been a key focus for orthopaedic surgeons in terms of prevention and management. With the increasing incidence of antibiotic resistance in recent years, finding more targeted treatment methods has become an increasingly urgent issue. Bacteriophage Therapy (BT) has emerged as a promising adjunctive treatment for bone and joint infections in recent years. It not only effectively kills bacteria but also demonstrates significant anti-biofilm activity, garnering substantial clinical interest due to its demonstrated efficacy and relatively low incidence of adverse effects. PURPOSE This review aims to systematically evaluate the efficacy and safety of bacteriophage therapy in treating PJI following hip and knee arthroplasty, providing additional reference for its future clinical application. METHODS Following predefined inclusion and exclusion criteria, our team conducted a systematic literature search across seven databases (PubMed, Embase, Web of Science, Cochrane Library, ClinicalTrials.gov, CNKI, and WanFang Database). The search was conducted up to May 2024 and included multiple clinical studies on the use of bacteriophage therapy for treating PJI after hip and knee arthroplasty to assess its efficacy and safety. RESULTS This systematic review included 16 clinical studies after screening, consisting of 15 case reports and one prospective controlled clinical trial, involving a total of 42 patients with PJI treated with bacteriophage therapy. The average patient age was 62.86 years, and 43 joints were treated, with patients undergoing an average of 5.25 surgeries. The most common pathogen in these infections was Staphylococcus aureus, accounting for 18 cases. 33 patients received cocktail therapy, while nine were treated with a single bacteriophage preparation. Additionally, all patients underwent suppressive antibiotic therapy (SAT) postoperatively. All patients were followed up for an average of 13.55 months. There were two cases of recurrence, one of which resulted in amputation one year postoperatively. The remaining patients showed good recovery outcomes. Overall, the results from the included studies indicate that bacteriophage therapy effectively eradicates infectious strains in various cases of PJI, with minimal side effects, demonstrating promising clinical efficacy. CONCLUSION In the treatment of PJI following hip and knee arthroplasty, bacteriophages, whether used alone or in combination as cocktail therapy, have shown therapeutic potential. However, thorough preoperative evaluation is essential, and appropriate bacteriophage types and treatment regimens must be selected based on bacteriological evidence. Future large-scale, randomized controlled, and prospective trials are necessary to validate the efficacy and safety of this therapy.
Collapse
Affiliation(s)
- Shengdong Yang
- Department of Orthopedic Surgery and Sport Medicine, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital, Lyon, France
- IFSTTAR, LBMC UMR_T9406, University Claude Bernard Lyon 1, University of Lyon, Lyon, France
| | - Assala Abu Mukh
- Department of Orthopedic Surgery and Sport Medicine, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital, Lyon, France
- Orthopedics and Traumatology, Vita-Salute San Raffaele University, Milan, Italy
| | - Elsayed Abdelatif
- Department of Orthopedic Surgery and Sport Medicine, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital, Lyon, France
- Department of Orthopedic Surgery and Traumatology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Axel Schmidt
- Department of Orthopedic Surgery and Sport Medicine, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital, Lyon, France
- Centre interrégional de Référence pour la prise en charge des Infections Ostéo-Articulaires complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
| | - Cécile Batailler
- Department of Orthopedic Surgery and Sport Medicine, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital, Lyon, France
- Centre interrégional de Référence pour la prise en charge des Infections Ostéo-Articulaires complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
| | - Tristan Ferry
- Centre interrégional de Référence pour la prise en charge des Infections Ostéo-Articulaires complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
- Service de Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Sébastien Lustig
- Department of Orthopedic Surgery and Sport Medicine, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital, Lyon, France.
- IFSTTAR, LBMC UMR_T9406, University Claude Bernard Lyon 1, University of Lyon, Lyon, France.
- Centre interrégional de Référence pour la prise en charge des Infections Ostéo-Articulaires complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
5
|
Costa P, Pereira C, Romalde JL, Almeida A. A game of resistance: War between bacteria and phages and how phage cocktails can be the solution. Virology 2024; 599:110209. [PMID: 39186863 DOI: 10.1016/j.virol.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
While phages hold promise as an antibiotic alternative, they encounter significant challenges in combating bacterial infections, primarily due to the emergence of phage-resistant bacteria. Bacterial defence mechanisms like superinfection exclusion, CRISPR, and restriction-modification systems can hinder phage effectiveness. Innovative strategies, such as combining different phages into cocktails, have been explored to address these challenges. This review delves into these defence mechanisms and their impact at each stage of the infection cycle, their challenges, and the strategies phages have developed to counteract them. Additionally, we examine the role of phage cocktails in the evolving landscape of antibacterial treatments and discuss recent studies that highlight the effectiveness of diverse phage cocktails in targeting essential bacterial receptors and combating resistant strains.
Collapse
Affiliation(s)
- Pedro Costa
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carla Pereira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS - Faculty of Biology, University of Santiago de Compostela, CP 15782 Santiago de Compostela, Spain.
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Cheng H, Deng H, Ma D, Gao M, Zhou Z, Li H, Liu S, Teng T. Insight into the natural regulatory mechanisms and clinical applications of the CRISPR-Cas system. Heliyon 2024; 10:e39538. [PMID: 39502233 PMCID: PMC11535992 DOI: 10.1016/j.heliyon.2024.e39538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
CRISPR-Cas, the adaptive immune system exclusive to prokaryotes, confers resistance against foreign mobile genetic elements. The CRISPR-Cas system is now being exploited by scientists in a diverse range of genome editing applications. CRISPR-Cas systems can be categorized into six different types based on their composition and mechanism, and there are also natural regulatory biomolecules in bacteria and bacteriophages that can either enhance or inhibit the immune function of CRISPR-Cas. The CRISPR-Cas systems are currently being trialed as a new tool for gene therapy to treat various human diseases, including cancers and genetic diseases, offering significant therapeutic potential. This paper comprehensively summarizes various aspects of the CRISPR-Cas system, encompassing its diversity, regulatory mechanisms, its clinical applications and the obstacles encountered.
Collapse
Affiliation(s)
- Hui Cheng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Haoyue Deng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Dongdao Ma
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Mengyuan Gao
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Zhihan Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Heng Li
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Shejuan Liu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Tieshan Teng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
7
|
Ding G, Liu H, Lan J, Qian T, Zhou Y, Zhu T, Zhang T. Identification of receptor-binding protein and host receptor of non-lytic dsRNA phage phiNY. Microbiol Spectr 2024; 12:e0146724. [PMID: 39436121 PMCID: PMC11619300 DOI: 10.1128/spectrum.01467-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
To date, complete genome sequences of 14 double-stranded RNA (dsRNA) phages are available, and studies have shown that the host range of dsRNA phages is limited. The hosts of most dsRNA phages belong to the genus Pseudomonas. However, the dsRNA phage phiNY, which has a non-lytic life cycle, was isolated from Microvirgula aerodenitrificans. Currently, the interaction between dsRNA phage phiNY and its host bacteria is unclear, which is not beneficial to a comprehensive understanding of dsRNA phage biology and the exploitation of dsRNA phage with non-lytic life cycle for biomedical applications and others. Phage adsorption is a crucial step through the interactions between receptor-binding protein (RBP) of the phage and its receptors to initiate the infection process, which dictates host range specificity. Thus, we identified the RBP and host receptor of phiNY. Through homology alignment, amino acid sequence similarity analysis, and the phylogenetic tree analysis, orf11, located in the M-segment of dsRNA phage phiNY, encodes a putative RBP. We further performed the whole-cell enzyme-linked immunosorbent assay (ELISA), western blotting assay, and indirect immunofluorescence assay and demonstrated that this orf11 is an RBP. Finally, using affinity chromatography, ELISA, and dynamic light scattering, we identified lipopolysaccharides (LPSs) on the surface of the host M. aerodenitrificans strain LH9 as host receptors involved in the adsorption of the dsRNA bacteriophage phiNY and observed the state of phiNY RBP after combining with LPS by atomic force microscopy. These results will guide future studies on phage-host interaction in a dsRNA phage with a non-lytic life cycle.IMPORTANCEThe interactions between the lytic dsRNA phages and their host receptors have been clarified in previous studies. However, the interaction between the dsRNA phage phiNY (which has a non-lytic life cycle) and its host receptors during the dsRNA phage adsorption process was unknown. Here, we found that phiNY uses the orf11 protein as a receptor-binding protein (RBP). In addition, we found that this orf11 recognizes lipopolysaccharide from the host bacterium Microvirgula aerodenitrificans strain LH9 as a specific receptor. These results suggest that phiNY, like lytic dsRNA phages, uses an RBP to bind to a similar host receptor (i.e., lipopolysaccharide). Determining the interaction between the dsRNA phage phiNY and its host receptors will help to elucidate the mechanisms underlying the phiNY non-lytic life cycle and enhance our understanding of its infection mechanism.
Collapse
Affiliation(s)
- Guoqing Ding
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Engineering Research Center of Health Medicine biotechnology of Institution of higher education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
| | - Hongmei Liu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Engineering Research Center of Health Medicine biotechnology of Institution of higher education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
| | - Jing Lan
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Tianbao Qian
- Engineering Research Center of Health Medicine biotechnology of Institution of higher education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
| | - Yan Zhou
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Tongyu Zhu
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Tingting Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Engineering Research Center of Health Medicine biotechnology of Institution of higher education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Liao F, Yu G, Zhang C, Liu Z, Li X, He Q, Yin H, Liu X, Li Z, Zhang H. Structural basis for the concerted antiphage activity in the SIR2-HerA system. Nucleic Acids Res 2024; 52:11336-11348. [PMID: 39217465 PMCID: PMC11472057 DOI: 10.1093/nar/gkae750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Recently, a novel two-gene bacterial defense system against phages, encoding a SIR2 NADase and a HerA ATPase/helicase, has been identified. However, the molecular mechanism of the bacterial SIR2-HerA immune system remains unclear. Here, we determine the cryo-EM structures of SIR2, HerA and their complex from Paenibacillus sp. 453MF in different functional states. The SIR2 proteins oligomerize into a dodecameric ring-shaped structure consisting of two layers of interlocked hexamers, in which each subunit exhibits an auto-inhibited conformation. Distinct from the canonical AAA+ proteins, HerA hexamer alone in this antiphage system adopts a split spiral arrangement, which is stabilized by a unique C-terminal extension. SIR2 and HerA proteins assemble into a ∼1.1 MDa torch-shaped complex to fight against phage infection. Importantly, disruption of the interactions between SIR2 and HerA largely abolishes the antiphage activity. Interestingly, binding alters the oligomer state of SIR2, switching from a dodecamer to a tetradecamer state. The formation of the SIR2-HerA binary complex activates NADase and nuclease activities in SIR2 and ATPase and helicase activities in HerA. Together, our study not only provides a structural basis for the functional communications between SIR2 and HerA proteins, but also unravels a novel concerted antiviral mechanism through NAD+ degradation, ATP hydrolysis, and DNA cleavage.
Collapse
Affiliation(s)
- Fumeng Liao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Guimei Yu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Chendi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhikun Liu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xuzichao Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qiuqiu He
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hang Yin
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhuang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Heng Zhang
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
9
|
Shutt-McCabe J, Shaik KB, Hoyles L, McVicker G. The plasmid-borne hipBA operon of Klebsiella michiganensis encodes a potent plasmid stabilization system. J Appl Microbiol 2024; 135:lxae246. [PMID: 39304528 PMCID: PMC11487325 DOI: 10.1093/jambio/lxae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
AIMS Klebsiella michiganensis is a medically important bacterium that has been subject to relatively little attention in the literature. Interrogation of sequence data from K. michiganensis strains in our collection has revealed the presence of multiple large plasmids encoding type II toxin-antitoxin (TA) systems. Such TA systems are responsible for mediating a range of phenotypes, including plasmid stability ('addiction') and antibiotic persistence. In this work, we characterize the hipBA TA locus found within the Klebsiella oxytoca species complex (KoSC). METHODS AND RESULTS The HipBA TA system is encoded on a plasmid carried by K. michiganensis PS_Koxy4, isolated from an infection outbreak. Employing viability and plasmid stability assays, we demonstrate that PS_Koxy4 HipA is a potent antibacterial toxin and that HipBA is a functional TA module contributing substantially to plasmid maintenance. Further, we provide in silico data comparing HipBA modules across the entire KoSC. CONCLUSIONS We provide the first evidence of the role of a plasmid-encoded HipBA system in stability of mobile genetic elements and analyse the presence of HipBA across the KoSC. These results expand our knowledge of both a common enterobacterial TA system and a highly medically relevant group of bacteria.
Collapse
Affiliation(s)
- Jordan Shutt-McCabe
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Karimunnisa Begum Shaik
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Gareth McVicker
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
10
|
Vizzarro G, Lemopoulos A, Adams DW, Blokesch M. Vibrio cholerae pathogenicity island 2 encodes two distinct types of restriction systems. J Bacteriol 2024; 206:e0014524. [PMID: 39133004 PMCID: PMC11411939 DOI: 10.1128/jb.00145-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
In response to predation by bacteriophages and invasion by other mobile genetic elements such as plasmids, bacteria have evolved specialized defense systems that are often clustered together on genomic islands. The O1 El Tor strains of Vibrio cholerae responsible for the ongoing seventh cholera pandemic (7PET) contain a characteristic set of genomic islands involved in host colonization and disease, many of which contain defense systems. Notably, Vibrio pathogenicity island 2 contains several characterized defense systems as well as a putative type I restriction-modification (T1RM) system, which, interestingly, is interrupted by two genes of unknown function. Here, we demonstrate that the T1RM system is active, methylates the host genomes of a representative set of 7PET strains, and identify a specific recognition sequence that targets non-methylated plasmids for restriction. We go on to show that the two genes embedded within the T1RM system encode a novel two-protein modification-dependent restriction system related to the GmrSD family of type IV restriction enzymes. Indeed, we show that this system has potent anti-phage activity against diverse members of the Tevenvirinae, a subfamily of bacteriophages with hypermodified genomes. Taken together, these results expand our understanding of how this highly conserved genomic island contributes to the defense of pandemic V. cholerae against foreign DNA. IMPORTANCE Defense systems are immunity systems that allow bacteria to counter the threat posed by bacteriophages and other mobile genetic elements. Although these systems are numerous and highly diverse, the most common types are restriction enzymes that can specifically recognize and degrade non-self DNA. Here, we show that the Vibrio pathogenicity island 2, present in the pathogen Vibrio cholerae, encodes two types of restriction systems that use distinct mechanisms to sense non-self DNA. The first system is a classical Type I restriction-modification system, and the second is a novel modification-dependent type IV restriction system that recognizes hypermodified cytosines. Interestingly, these systems are embedded within each other, suggesting that they are complementary to each other by targeting both modified and non-modified phages.
Collapse
Affiliation(s)
- Grazia Vizzarro
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Lemopoulos
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David William Adams
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
11
|
Bonachela JA. Viral plasticity facilitates host diversity in challenging environments. Nat Commun 2024; 15:7473. [PMID: 39209841 PMCID: PMC11362530 DOI: 10.1038/s41467-024-51344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
The antagonistic coevolution of microbes and viruses influences fundamentally the diversity of microbial communities. Information on how environmental variables interact with emergent defense-counterdefense strategies and community composition is, however, still scarce. Following biological intuition, diversity should increase with improved growth conditions, which offset evolutionary costs; however, laboratory and regional data suggest that microbial diversity decreases in nutrient-rich conditions. Moreover, global oceanic data show that microbial and viral diversity decline for high latitudes, although the underlying mechanisms are unknown. This article addresses these gaps by introducing an eco-evolutionary model for bacteria-virus antagonistic coevolution. The theory presented here harmonizes the observations above and identifies negative density dependence and viral plasticity (dependence of virus performance on host physiological state) as key drivers: environmental conditions selecting for slow host growth also limit viral performance, facilitating the survival of a diverse host community; host diversity, in turn, enables viral portfolio effects and bet-hedging strategies that sustain viral diversity. From marine microbes to phage therapy against antibiotic-resistant bacteria or cancer cells, the ubiquity of antagonistic coevolution highlights the need to consider eco-evolutionary interactions across a gradient of growth conditions.
Collapse
Affiliation(s)
- Juan A Bonachela
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, 08901, USA.
| |
Collapse
|
12
|
Monsibais AN, Tea O, Ghatbale P, Phan J, Lam K, Paulson M, Tran N, Suder DS, Blanc AN, Samillano C, Suh J, Dunham S, Gonen S, Pride D, Whiteson K. Enhanced Suppression of Stenotrophomonas maltophilia by a Three-Phage Cocktail: Genomic Insights and Kinetic Profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607921. [PMID: 39185190 PMCID: PMC11343209 DOI: 10.1101/2024.08.14.607921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
In our era of rising antibiotic resistance, Stenotrophomonas maltophilia (STM) is an understudied, gram-negative, aerobic bacterium widespread in the environment and increasingly causing opportunistic infections. Treating STM infections remains difficult, leading to an increase in disease severity and higher hospitalization rates in people with Cystic Fibrosis (pwCF), cancer, and other immunocompromised health conditions. The lack of effective antibiotics has led to renewed interest in phage therapy; however, there is a need for well-characterized phages. In response to an oncology patient with a respiratory infection, we collected 18 phages from Southern California wastewater influent that exhibit different plaque morphology against STM host strain B28B, cultivated from a blood sample. Here, we characterize the genomes and life cycle kinetics of our STM phage collection. We hypothesize that genetically distinct phages give rise to unique lytic life cycles that can enhance bacterial killing when combined into a phage cocktail compared to the individual phages alone. We identified three genetically distinct clusters of phages, and a representative from each group was screened for potential therapeutic use and investigated for infection kinetics. The results demonstrated that the three-phage cocktail significantly suppressed bacterial growth compared to individual phages when observed for 48 hours. We also assessed the lytic impacts of our three-phage cocktail against a collection of 46 STM strains to determine if a multi-phage cocktail can expand the host range of individual phages. Our phages remained strain-specific and infect >50% of tested strains. The multi-phage cocktail maintains bacterial growth suppression and prevents the emergence of phage-resistant strains throughout our 40-hour assay. These findings suggest specialized phage cocktails may be an effective avenue of treatment for recalcitrant STM infections resistant to current antibiotics.
Collapse
Affiliation(s)
- Alisha N Monsibais
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Olivia Tea
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Pooja Ghatbale
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Jennifer Phan
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Karen Lam
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - McKenna Paulson
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Natalie Tran
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Diana S Suder
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Alisha N Blanc
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Cyril Samillano
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Joy Suh
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Sage Dunham
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Shane Gonen
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - David Pride
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| | - Katrine Whiteson
- Dept of Molecular Biology and Biochemistry, University of California, Irvine
- Department of Pathology, University of California, San Diego
- Department of Medicine, University of California, San Diego
| |
Collapse
|
13
|
Chapartegui-González I, Stockton JL, Bowser S, Badten AJ, Torres AG. Unraveling the role of toxin-antitoxin systems in Burkholderia pseudomallei: exploring bacterial pathogenesis and interactions within the HigBA families. Microbiol Spectr 2024; 12:e0074824. [PMID: 38916327 PMCID: PMC11302019 DOI: 10.1128/spectrum.00748-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Burkholderia pseudomallei (Bpm) is a Gram-negative intracellular pathogen that causes melioidosis in humans, a neglected, underreported, and lethal disease that can reach a fatal outcome in over 50% of the cases. It can produce both acute and chronic infections, the latter being particularly challenging to eliminate because of the intracellular life cycle of the bacteria and its ability to generate a "persister" dormant state. The molecular mechanism that allows the switch between growing and persister phenotypes is not well understood but it is hypothesized to be due at least in part to the participation of toxin-antitoxin (TA) systems. We have previously studied the link between one of those systems (defined as HigBA) with specific expression patterns associated with levofloxacin antibiotic exposure. Through in silico methods, we predicted the presence of another three pairs of genes encoding for additional putative HigBA systems. Therefore, our main goal was to establish which mechanisms are conserved as well as which pathways are specific among different Bpm TA systems from the same family. We hypothesize that the high prevalence, and sometimes even redundancy of these systems in the Bpm chromosomes indicates that they can interact with each other and not function as only individual systems, as it was traditionally thought, and might be playing an undefined role in Bpm lifecycle. Here, we show that both the toxin and the antitoxin of the different systems contribute to bacterial survival and that toxins from the same family can have a cumulative effect under environmental stressful conditions. IMPORTANCE Toxin-antitoxin (TA) systems play a significant role in bacterial persistence, a phenomenon where bacterial cells enter a dormant or slow-growing state to survive adverse conditions such as nutrient deprivation, antibiotic exposure, or host immune responses. By studying TA systems in Burkholderia pseudomallei, we can gain insights into how this pathogen survives and persists in the host environment, contributing to its virulence and ability to cause melioidosis chronic infections.
Collapse
Affiliation(s)
| | - Jacob L. Stockton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sarah Bowser
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander J. Badten
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
14
|
Zeng C, Wan SR, Guo M, Tan XZ, Zeng Y, Wu Q, Xie JJ, Yan P, Long Y, Zheng L, Jiang ZZ, Teng FY, Xu Y. Fecal virome transplantation: A promising strategy for the treatment of metabolic diseases. Biomed Pharmacother 2024; 177:117065. [PMID: 38971010 DOI: 10.1016/j.biopha.2024.117065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
Metabolic diseases are a group of disorders caused by metabolic abnormalities, including obesity, diabetes, non-alcoholic fatty liver disease, and more. Increasing research indicates that, beyond inherent metabolic irregularities, the onset and progression of metabolic diseases are closely linked to alterations in the gut microbiota, particularly gut bacteria. Additionally, fecal microbiota transplantation (FMT) has demonstrated effectiveness in clinically treating metabolic diseases, notably diabetes. Recent attention has also focused on the role of gut viruses in disease onset. This review first introduces the characteristics and influencing factors of gut viruses, then summarizes their potential mechanisms in disease development, highlighting their impact on gut bacteria and regulation of host immunity. We also compare FMT, fecal filtrate transplantation (FFT), washed microbiota transplantation (WMT), and fecal virome transplantation (FVT). Finally, we review the current understanding of gut viruses in metabolic diseases and the application of FVT in treating these conditions. In conclusion, FVT may provide a novel and promising treatment approach for metabolic diseases, warranting further validation through basic and clinical research.
Collapse
Affiliation(s)
- Chen Zeng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Sheng-Rong Wan
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Man Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiao-Zhen Tan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Zeng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Qi Wu
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China; Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jia-Jie Xie
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Pijun Yan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Institute of Cardiovascular Research, Peking University, Beijing 100871, China
| | - Yang Long
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lemin Zheng
- Institute of Cardiovascular Research, Peking University, Beijing 100871, China
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Fang-Yuan Teng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
15
|
Kadkhoda H, Gholizadeh P, Samadi Kafil H, Ghotaslou R, Pirzadeh T, Ahangarzadeh Rezaee M, Nabizadeh E, Feizi H, Aghazadeh M. Role of CRISPR-Cas systems and anti-CRISPR proteins in bacterial antibiotic resistance. Heliyon 2024; 10:e34692. [PMID: 39149034 PMCID: PMC11325803 DOI: 10.1016/j.heliyon.2024.e34692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
The emergence and development of antibiotic resistance in bacteria is a serious threat to global public health. Antibiotic resistance genes (ARGs) are often located on mobile genetic elements (MGEs). They can be transferred among bacteria by horizontal gene transfer (HGT), leading to the spread of drug-resistant strains and antibiotic treatment failure. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated genes) is one of the many strategies bacteria have developed under long-term selection pressure to restrict the HGT. CRISPR-Cas systems exist in about half of bacterial genomes and play a significant role in limiting the spread of antibiotic resistance. On the other hand, bacteriophages and other MGEs encode a wide range of anti-CRISPR proteins (Acrs) to counteract the immunity of the CRISPR-Cas system. The Acrs could decrease the CRISPR-Cas system's activity against phages and facilitate the acquisition of ARGs and virulence traits for bacteria. This review aimed to assess the relationship between the CRISPR-Cas systems and Acrs with bacterial antibiotic resistance. We also highlighted the CRISPR technology and Acrs to control and prevent antibacterial resistance. The CRISPR-Cas system can target nucleic acid sequences with high accuracy and reliability; therefore, it has become a novel gene editing and gene therapy tool to prevent the spread of antibiotic resistance. CRISPR-based approaches may pave the way for developing smart antibiotics, which could eliminate multidrug-resistant (MDR) bacteria and distinguish between pathogenic and beneficial microorganisms. Additionally, the engineered anti-CRISPR gene-containing phages in combination with antibiotics could be used as a cutting-edge treatment approach to reduce antibiotic resistance.
Collapse
Affiliation(s)
- Hiva Kadkhoda
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hossein Samadi Kafil
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Pirzadeh
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Edris Nabizadeh
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Feizi
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Microbiology, Aalinasab Hospital, Social Security Organization, Tabriz, Iran
| | - Mohammad Aghazadeh
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Zhang Y, Shao Y, You H, Shen Y, Miao F, Yuan C, Chen X, Zhai M, Shen Y, Zhang J. Characterization and therapeutic potential of MRABP9, a novel lytic bacteriophage infecting multidrug-resistant Acinetobacter baumannii clinical strains. Virology 2024; 595:110098. [PMID: 38705084 DOI: 10.1016/j.virol.2024.110098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Acinetobacter baumannii is one of the most important pathogens of healthcare-associated infections. The rising prevalence of multidrug-resistant A. baumannii (MRAB) strains and biofilm formation impact the outcome of conventional treatment. Phage-related therapy is a promising strategy to tame troublesome multidrug-resistant bacteria. Here, we isolated and evaluated a highly efficient lytic phage called MRABP9 from hospital sewage. The phage was a novel species within the genus Friunavirus and exhibited lytic activity against 2 other identified MRAB strains. Genomic analysis revealed it was a safe virulent phage and a pectate lyase domain was identified within its tail spike protein. MRABP9 showed potent bactericidal and anti-biofilm activity against MRAB, significantly delaying the time point of bacterial regrowth in vitro. Phage administration could rescue the mice from acute lethal MRAB infection. Considering its features, MRABP9 has the potential as an efficient candidate for prophylactic and therapeutic use against acute infections caused by MRAB strains.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China; Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing, 210009, China.
| | - Yong Shao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| | - Hongyang You
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| | - Yuqing Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China; Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing, 210009, China
| | - Fengqin Miao
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Chenyan Yuan
- Department of Clinical Laboratory, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Xin Chen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Mengyan Zhai
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Yi Shen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| | - Jianqiong Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China; Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing, 210009, China; Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| |
Collapse
|
17
|
Rabiey M, Grace ER, Pawlos P, Bihi M, Ahmed H, Hampson GE, Al Riyami A, Alharbi L, Sanchez‐Lucas R, Korotania N, Ciusa ML, Mosley O, Hulin MT, Baxter L, Dhaouadi S, Vinchira‐Villarraga D, Jackson RW. Coevolutionary analysis of Pseudomonas syringae-phage interactions to help with rational design of phage treatments. Microb Biotechnol 2024; 17:e14489. [PMID: 38864499 PMCID: PMC11167607 DOI: 10.1111/1751-7915.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
Treating plant bacterial diseases is notoriously difficult because of the lack of available antimicrobials. Pseudomonas syringae pathovar syringae (Pss) is a major pathogen of cherry (Prunus avium) causing bacterial canker of the stem, leaf and fruit, impacting productivity and leading to a loss of trees. In an attempt to find a treatment for this disease, naturally occurring bacteriophage (phage) that specifically target Pss is being investigated as a biocontrol strategy. However, before using them as a biocontrol treatment, it is important to both understand their efficacy in reducing the bacterial population and determine if the bacterial pathogens can evolve resistance to evade phage infection. To investigate this, killing curve assays of five MR phages targeting Pss showed that phage resistance rapidly emerges in vitro, even when using a cocktail of the five phages together. To gain insight to the changes occurring, Pss colonies were collected three times during a 66-h killing curve assay and separately, Pss and phage were also coevolved over 10 generations, enabling the measurement of genomic and fitness changes in bacterial populations. Pss evolved resistance to phages through modifications in lipopolysaccharide (LPS) synthesis pathways. Bacterial fitness (growth) and virulence were affected in only a few mutants. Deletion of LPS-associated genes suggested that LPS was the main target receptor for all five MR phages. Later generations of coevolved phages from the coevolution experiment were more potent at reducing the bacterial density and when used with wild-type phages could reduce the emergence of phage-resistant mutants. This study shows that understanding the genetic mechanisms of bacterial pathogen resistance to phages is important for helping to design a more effective approach to kill the bacteria while minimizing the opportunity for phage resistance to manifest.
Collapse
Affiliation(s)
- Mojgan Rabiey
- School of Life Sciences, Gibbet Hill CampusUniversity of WarwickCoventryUK
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Emily R. Grace
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Paulina Pawlos
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Muscab Bihi
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Haleem Ahmed
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Georgina E. Hampson
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Amna Al Riyami
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Leena Alharbi
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Rosa Sanchez‐Lucas
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Naina Korotania
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Maria Laura Ciusa
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Olivia Mosley
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Michelle T. Hulin
- Department of Plant Soil & Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Laura Baxter
- Bioinformatics Research Technology PlatformUniversity of WarwickCoventryUK
| | - Sabrine Dhaouadi
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Diana Vinchira‐Villarraga
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Robert W. Jackson
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| |
Collapse
|
18
|
Sandsdalen GD, Kumar A, Hjerde E. Exploring the Frozen Armory: Antiphage Defense Systems in Cold-Adapted Bacteria with a Focus on CRISPR-Cas Systems. Microorganisms 2024; 12:1028. [PMID: 38792857 PMCID: PMC11124354 DOI: 10.3390/microorganisms12051028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Our understanding of the antiphage defense system arsenal in bacteria is rapidly expanding, but little is known about its occurrence in cold-adapted bacteria. In this study, we aim to shed light on the prevalence and distribution of antiphage defense systems in cold-adapted bacteria, with a focus on CRISPR-Cas systems. Using bioinformatics tools, Prokaryotic Antiviral Defense LOCator (PADLOC) and CRISPRCasTyper, we mapped the presence and diversity of antiphage defense systems in 938 available genomes of cold-adapted bacteria from diverse habitats. We confirmed that CRISPR-Cas systems are less frequent in cold-adapted bacteria, compared to mesophilic and thermophilic species. In contrast, several antiphage defense systems, such as dXTPases and DRTs, appear to be more frequently compared to temperate bacteria. Additionally, our study provides Cas endonuclease candidates with a potential for further development into cold-active CRISPR-Cas genome editing tools. These candidates could have broad applications in research on cold-adapted organisms. Our study provides a first-time map of antiphage defense systems in cold-adapted bacteria and a detailed overview of CRISPR-Cas diversity.
Collapse
Affiliation(s)
| | | | - Erik Hjerde
- Department of Chemistry, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (G.D.S.); (A.K.)
| |
Collapse
|
19
|
Ren K, Zhou F, Zhang F, Yin M, Zhu Y, Wang S, Chen Y, Huang T, Wu Z, He J, Zhang A, Guo C, Huang Z. Discovery and structural mechanism of DNA endonucleases guided by RAGATH-18-derived RNAs. Cell Res 2024; 34:370-385. [PMID: 38575718 PMCID: PMC11061315 DOI: 10.1038/s41422-024-00952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/09/2024] [Indexed: 04/06/2024] Open
Abstract
CRISPR-Cas systems and IS200/IS605 transposon-associated TnpBs have been utilized for the development of genome editing technologies. Using bioinformatics analysis and biochemical experiments, here we present a new family of RNA-guided DNA endonucleases. Our bioinformatics analysis initially identifies the stable co-occurrence of conserved RAGATH-18-derived RNAs (reRNAs) and their upstream IS607 TnpBs with an average length of 390 amino acids. IS607 TnpBs form programmable DNases through interaction with reRNAs. We discover the robust dsDNA interference activity of IS607 TnpB systems in bacteria and human cells. Further characterization of the Firmicutes bacteria IS607 TnpB system (ISFba1 TnpB) reveals that its dsDNA cleavage activity is remarkably sensitive to single mismatches between the guide and target sequences in human cells. Our findings demonstrate that a length of 20 nt in the guide sequence of reRNA achieves the highest DNA cleavage activity for ISFba1 TnpB. A cryo-EM structure of the ISFba1 TnpB effector protein bound by its cognate RAGATH-18 motif-containing reRNA and a dsDNA target reveals the mechanisms underlying reRNA recognition by ISFba1 TnpB, reRNA-guided dsDNA targeting, and the sensitivity of the ISFba1 TnpB system to base mismatches between the guide and target DNA. Collectively, this study identifies the IS607 TnpB family of compact and specific RNA-guided DNases with great potential for application in gene editing.
Collapse
Affiliation(s)
- Kuan Ren
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Fengxia Zhou
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
- Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Fan Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China.
| | - Mingyu Yin
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yuwei Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Shouyu Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yan Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Tengjin Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zixuan Wu
- Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jiale He
- Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Anqi Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Changyou Guo
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China.
- Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- New Cornerstone Science Laboratory, Shenzhen, Guangdong, China.
| |
Collapse
|
20
|
Li J, Cheng R, Wang Z, Yuan W, Xiao J, Zhao X, Du X, Xia S, Wang L, Zhu B, Wang L. Structures and activation mechanism of the Gabija anti-phage system. Nature 2024; 629:467-473. [PMID: 38471529 DOI: 10.1038/s41586-024-07270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Prokaryotes have evolved intricate innate immune systems against phage infection1-7. Gabija is a highly widespread prokaryotic defence system that consists of two components, GajA and GajB8. GajA functions as a DNA endonuclease that is inactive in the presence of ATP9. Here, to explore how the Gabija system is activated for anti-phage defence, we report its cryo-electron microscopy structures in five states, including apo GajA, GajA in complex with DNA, GajA bound by ATP, apo GajA-GajB, and GajA-GajB in complex with ATP and Mg2+. GajA is a rhombus-shaped tetramer with its ATPase domain clustered at the centre and the topoisomerase-primase (Toprim) domain located peripherally. ATP binding at the ATPase domain stabilizes the insertion region within the ATPase domain, keeping the Toprim domain in a closed state. Upon ATP depletion by phages, the Toprim domain opens to bind and cleave the DNA substrate. GajB, which docks on GajA, is activated by the cleaved DNA, ultimately leading to prokaryotic cell death. Our study presents a mechanistic landscape of Gabija activation.
Collapse
Affiliation(s)
- Jing Li
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Rui Cheng
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiming Wang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Wuliu Yuan
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jun Xiao
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xinyuan Zhao
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xinran Du
- School of Electronic Information, Wuhan University, Wuhan, China
| | - Shiyu Xia
- Divison of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lianrong Wang
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Bin Zhu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Longfei Wang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
21
|
Han W, Wei D, Sun Z, Qu D. Investigating the mechanism of rough phenotype in a naturally attenuated Brucella strain: insights from whole genome sequencing. Front Med (Lausanne) 2024; 11:1363785. [PMID: 38711779 PMCID: PMC11073494 DOI: 10.3389/fmed.2024.1363785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/23/2024] [Indexed: 05/08/2024] Open
Abstract
Objective Brucellosis, a significant zoonotic disease, not only impacts animal health but also profoundly influences the host immune responses through gut microbiome. Our research focuses on whole genome sequencing and comparative genomic analysis of these Brucella strains to understand the mechanisms of their virulence changes that may deepen our comprehension of the host immune dysregulation. Methods The Brucella melitensis strain CMCC55210 and its naturally attenuated variant CMCC55210a were used as models. Biochemical identification tests and in vivo experiments in mice verified the characteristics of the strain. To understand the mechanism of attenuation, we then performed de novo sequencing of these two strains. Results We discovered notable genomic differences between the two strains, with a key single nucleotide polymorphism (SNP) mutation in the manB gene potentially altering lipopolysaccharide (LPS) structure and influencing host immunity to the pathogen. This mutation might contribute to the attenuated strain's altered impact on the host's macrophage immune response, overing insights into the mechanisms of immune dysregulation linked to intracellular survival. Furthermore, we explore that manipulating the Type I restriction-modification system in Brucella can significantly impact its genome stability with the DNA damage response, consequently affecting the host's immune system. Conclusion This study not only contributes to understanding the complex relationship between pathogens, and the immune system but also opens avenues for innovative therapeutic interventions in inflammatory diseases driven by microbial and immune dysregulation.
Collapse
Affiliation(s)
- Wendong Han
- BSL-3 Laboratory of Fudan University, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dong Wei
- Division of Tuberculosis Vaccines and Allergen, National Institute for Food and Drug Control, Beijing, China
| | - Zhiping Sun
- BSL-3 Laboratory of Fudan University, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Di Qu
- BSL-3 Laboratory of Fudan University, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Rodríguez-Román E, Manuel JA, Goldberg D, Levin BR. The contribution of abortive infection to preventing populations of Lactococcus lactis from succumbing to infections with bacteriophage. PLoS One 2024; 19:e0298680. [PMID: 38557757 PMCID: PMC10984412 DOI: 10.1371/journal.pone.0298680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/30/2024] [Indexed: 04/04/2024] Open
Abstract
In the dairy industry bacteriophage (phage) contamination significantly impairs the production and quality of products like yogurt and cheese. To combat this issue, the strains of bacteria used as starter cultures possess mechanisms that make them resistant to phage infection, such as envelope resistance, or processes that render them immune to phage infection, such as restriction-modification and CRISPR-Cas. Lactococcus lactis, used to manufacture cheese and other dairy products, can also block the reproduction of infecting phages by abortive infection (Abi), a process in which phage-infected cells die before the phage replicate. We employ mathematical-computer simulation models and experiments with two Lactococcus lactis strains and two lytic phages to investigate the conditions under which Abi can limit the proliferation of phages in L. lactis populations and prevent the extinction of their populations by these viruses. According to our model, if Abi is almost perfect and there are no other populations of bacteria capable of supporting the replication of the L. lactis phages, Abi can protect bacterial populations from succumbing to infections with these viruses. This prediction is supported by the results of our experiment, which indicate that Abi can help protect L. lactis populations from extinction by lytic phage infections. However, our results also predict abortive infection is only one element of L. lactis defenses against phage infection. Mutant phages that can circumvent the Abi systems of these bacteria emerge. The survival of L. lactis populations then depends on the evolution of envelope mutants that are resistant to the evolved host-range phage.
Collapse
Affiliation(s)
| | - Joshua A. Manuel
- Department of Biology, Emory University, Atlanta, GA, United States of America
| | - David Goldberg
- Department of Biology, Emory University, Atlanta, GA, United States of America
| | - Bruce R. Levin
- Department of Biology, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
23
|
Li Y, Shen Z, Zhang M, Yang XY, Cleary SP, Xie J, Marathe IA, Kostelic M, Greenwald J, Rish AD, Wysocki VH, Chen C, Chen Q, Fu TM, Yu Y. PtuA and PtuB assemble into an inflammasome-like oligomer for anti-phage defense. Nat Struct Mol Biol 2024; 31:413-423. [PMID: 38177683 DOI: 10.1038/s41594-023-01172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/03/2023] [Indexed: 01/06/2024]
Abstract
Escherichia coli Septu system, an anti-phage defense system, comprises two components: PtuA and PtuB. PtuA contains an ATPase domain, while PtuB is predicted to function as a nuclease. Here we show that PtuA and PtuB form a stable complex with a 6:2 stoichiometry. Cryo-electron microscopy structure of PtuAB reveals a distinctive horseshoe-like configuration. PtuA adopts a hexameric arrangement, organized as an asymmetric trimer of dimers, contrasting the ring-like structure by other ATPases. Notably, the three pairs of PtuA dimers assume distinct conformations and fulfill unique roles in recruiting PtuB. Our functional assays have further illuminated the importance of the oligomeric assembly of PtuAB in anti-phage defense. Moreover, we have uncovered that ATP molecules can directly bind to PtuA and inhibit the activities of PtuAB. Together, the assembly and function of the Septu system shed light on understanding other ATPase-containing systems in bacterial immunity.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Zhangfei Shen
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Mengyuan Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xiao-Yuan Yang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Sean P Cleary
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Jiale Xie
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Ila A Marathe
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Marius Kostelic
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Jacelyn Greenwald
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Anthony D Rish
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Chong Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Qiang Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China.
| | - Tian-Min Fu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA.
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.
| | - Yamei Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China.
| |
Collapse
|
24
|
Han P, Lin W, Fan H, Tong Y. Characterization of phage evolution and phage resistance in drug-resistant Stenotrophomonas maltophilia. J Virol 2024; 98:e0124923. [PMID: 38189285 PMCID: PMC10878236 DOI: 10.1128/jvi.01249-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Phage therapy has become a viable antimicrobial treatment as an alternative to antibiotic treatment, with an increase in antibiotic resistance. Phage resistance is a major limitation in the therapeutic application of phages, and the lack of understanding of the dynamic changes between bacteria and phages constrains our response strategies to phage resistance. In this study, we investigated the changing trends of mutual resistance between Stenotrophomonas maltophilia (S. maltophilia) and its lytic phage, BUCT603. Our results revealed that S. maltophilia resisted phage infection through mutations in the cell membrane proteins, while the evolved phage re-infected the resistant strain primarily through mutations in structure-related proteins. Compared with the wild-type strain (SMA118), the evolved phage-resistant strain (R118-2) showed reduced virulence, weakened biofilm formation ability, and reduced resistance to aminoglycosides. In addition, the evolved phage BUCT603B1 in combination with kanamycin could inhibit the development of phage-resistant S. maltophilia in vitro and significantly improve the survival rate of S. maltophilia-infected mice. Altogether, these results suggest that in vitro characterization of bacteria-phage co-evolutionary relationships is a useful research tool to optimize phages for the treatment of drug-resistant bacterial infections.IMPORTANCEPhage therapy is a promising approach to treat infections caused by drug-resistant Stenotrophomonas maltophilia (S. maltophilia). However, the rapid development of phage resistance has hindered the therapeutic application of phages. In vitro evolutionary studies of bacteria-phage co-cultures can elucidate the mechanism of resistance development between phage and its host. In this study, we investigated the resistance trends between S. maltophilia and its phage and found that inhibition of phage adsorption is the primary strategy by which bacteria resist phage infection in vitro, while phages can re-infect bacterial cells by identifying other adsorption receptors. Although the final bacterial mutants were no longer infected by phages, they incurred a fitness cost that resulted in a significant reduction in virulence. In addition, the combination treatment with phage and aminoglycoside antibiotics could prevent the development of phage resistance in S. maltophilia in vitro. These findings contribute to increasing the understanding of the co-evolutionary relationships between phages and S. maltophilia.
Collapse
Affiliation(s)
- Pengjun Han
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wei Lin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
25
|
Gerdes K. Diverse genetic contexts of HicA toxin domains propose a role in anti-phage defense. mBio 2024; 15:e0329323. [PMID: 38236063 PMCID: PMC10865869 DOI: 10.1128/mbio.03293-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Toxin-antitoxin (TA) modules are prevalent in prokaryotic genomes, often in substantial numbers. For instance, the Mycobacterium tuberculosis genome alone harbors close to 100 TA modules, half of which belong to a singular type. Traditionally ascribed multiple biological roles, recent insights challenge these notions and instead indicate a predominant function in phage defense. TAs are often located within Defense Islands, genomic regions that encode various defense systems. The analysis of genes within Defense Islands has unveiled a wide array of systems, including TAs that serve in anti-phage defense. Prokaryotic cells are equipped with anti-phage Viperins that, analogous to their mammalian counterparts, inhibit viral RNA transcription. Additionally, bacterial Structural Maintenance of Chromosome (SMC) proteins combat plasmid intrusion by recognizing foreign DNA signatures. This study undertakes a comprehensive bioinformatics analysis of genetic elements encoding the HicA double-stranded RNA-binding domain, complemented by protein structure modeling. The HicA toxin domains are found in at least 14 distinct contexts and thus exhibit a remarkable genetic diversity. Traditional bicistronic TA operons represent eight of these contexts, while four are characterized by monocistronic operons encoding fused HicA domains. Two contexts involve hicA adjacent to genes that encode bacterial Viperins. Notably, genes encoding RelE toxins are also adjacent to Viperin genes in some instances. This configuration hints at a synergistic enhancement of Viperin-mediated anti-phage action by HicA and RelE toxins. The discovery of a HicA domain merged with an SMC domain is compelling, prompting further investigation into its potential roles.IMPORTANCEProkaryotic organisms harbor a multitude of toxin-antitoxin (TA) systems, which have long puzzled scientists as "genes in search for a function." Recent scientific advancements have shed light on the primary role of TAs as anti-phage defense mechanisms. To gain an overview of TAs it is important to analyze their genetic contexts that can give hints on function and guide future experimental inquiries. This article describes a thorough bioinformatics examination of genes encoding the HicA toxin domain, revealing its presence in no fewer than 14 unique genetic arrangements. Some configurations notably align with anti-phage activities, underscoring potential roles in microbial immunity. These insights robustly reinforce the hypothesis that HicA toxins are integral components of the prokaryotic anti-phage defense repertoire. The elucidation of these genetic contexts not only advances our understanding of TAs but also contributes to a paradigm shift in how we perceive their functionality within the microbial world.
Collapse
Affiliation(s)
- Kenn Gerdes
- Kenn Gerdes is an independent researcher with the residence, Voldmestergade, Copenhagen, Denmark
| |
Collapse
|
26
|
Martins PMM, Granato LM, Morgan T, Nalin JL, Takita MA, Alfenas-Zerbini P, de Souza AA. Analysis of CRISPR-Cas loci distribution in Xanthomonas citri and its possible control by the quorum sensing system. FEMS Microbiol Lett 2024; 371:fnae005. [PMID: 38244227 DOI: 10.1093/femsle/fnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/04/2023] [Accepted: 01/18/2024] [Indexed: 01/22/2024] Open
Abstract
Xanthomonas is an important genus of plant-associated bacteria that causes significant yield losses of economically important crops worldwide. Different approaches have assessed genetic diversity and evolutionary interrelationships among the Xanthomonas species. However, information from clustered regularly interspaced short palindromic repeats (CRISPRs) has yet to be explored. In this work, we analyzed the architecture of CRISPR-Cas loci and presented a sequence similarity-based clustering of conserved Cas proteins in different species of Xanthomonas. Although absent in many investigated genomes, Xanthomonas harbors subtype I-C and I-F CRISPR-Cas systems. The most represented species, Xanthomonas citri, presents a great diversity of genome sequences with an uneven distribution of the CRISPR-Cas systems among the subspecies/pathovars. Only X. citri subsp. citri and X. citri pv. punicae have these systems, exclusively of subtype I-C system. Moreover, the most likely targets of the X. citri CRISPR spacers are viruses (phages). At the same time, few are plasmids, indicating that CRISPR/Cas system is possibly a mechanism to control the invasion of foreign DNA. We also showed in X. citri susbp. citri that the cas genes are regulated by the diffusible signal factor, the quorum sensing (QS) signal molecule, according to cell density increases, and under environmental stress like starvation. These results suggest that the regulation of CRISPR-Cas by QS occurs to activate the gene expression only during phage infection or due to environmental stresses, avoiding a possible reduction in fitness. Although more studies are needed, CRISPR-Cas systems may have been selected in the Xanthomonas genus throughout evolution, according to the cost-benefit of protecting against biological threats and fitness maintenance in challenging conditions.
Collapse
Affiliation(s)
| | - Laís Moreira Granato
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| | - Túlio Morgan
- Department of Microbiology, Institute of Biotechnology Applied to Agriculture (BIOAGRO), Federal University of Viçosa, Viçosa-MG 36570-900, Brazil
| | - Julia Lopes Nalin
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| | - Marco Aurélio Takita
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| | - Poliane Alfenas-Zerbini
- Department of Microbiology, Institute of Biotechnology Applied to Agriculture (BIOAGRO), Federal University of Viçosa, Viçosa-MG 36570-900, Brazil
| | - Alessandra Alves de Souza
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| |
Collapse
|
27
|
Yan Y, Zheng J, Zhang X, Yin Y. dbAPIS: a database of anti-prokaryotic immune system genes. Nucleic Acids Res 2024; 52:D419-D425. [PMID: 37889074 PMCID: PMC10767833 DOI: 10.1093/nar/gkad932] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Anti-prokaryotic immune system (APIS) proteins, typically encoded by phages, prophages, and plasmids, inhibit prokaryotic immune systems (e.g. restriction modification, toxin-antitoxin, CRISPR-Cas). A growing number of APIS genes have been characterized and dispersed in the literature. Here we developed dbAPIS (https://bcb.unl.edu/dbAPIS), as the first literature curated data repository for experimentally verified APIS genes and their associated protein families. The key features of dbAPIS include: (i) experimentally verified APIS genes with their protein sequences, functional annotation, PDB or AlphaFold predicted structures, genomic context, sequence and structural homologs from different microbiome/virome databases; (ii) classification of APIS proteins into sequence-based families and construction of hidden Markov models (HMMs); (iii) user-friendly web interface for data browsing by the inhibited immune system types or by the hosts, and functions for searching and batch downloading of pre-computed data; (iv) Inclusion of all types of APIS proteins (except for anti-CRISPRs) that inhibit a variety of prokaryotic defense systems (e.g. RM, TA, CBASS, Thoeris, Gabija). The current release of dbAPIS contains 41 verified APIS proteins and ∼4400 sequence homologs of 92 families and 38 clans. dbAPIS will facilitate the discovery of novel anti-defense genes and genomic islands in phages, by providing a user-friendly data repository and a web resource for an easy homology search against known APIS proteins.
Collapse
Affiliation(s)
- Yuchen Yan
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | | | - Xinpeng Zhang
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | - Yanbin Yin
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
28
|
Mahmud MR, Tamanna SK, Akter S, Mazumder L, Akter S, Hasan MR, Acharjee M, Esti IZ, Islam MS, Shihab MMR, Nahian M, Gulshan R, Naser S, Pirttilä AM. Role of bacteriophages in shaping gut microbial community. Gut Microbes 2024; 16:2390720. [PMID: 39167701 PMCID: PMC11340752 DOI: 10.1080/19490976.2024.2390720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Phages are the most diversified and dominant members of the gut virobiota. They play a crucial role in shaping the structure and function of the gut microbial community and consequently the health of humans and animals. Phages are found mainly in the mucus, from where they can translocate to the intestinal organs and act as a modulator of gut microbiota. Understanding the vital role of phages in regulating the composition of intestinal microbiota and influencing human and animal health is an emerging area of research. The relevance of phages in the gut ecosystem is supported by substantial evidence, but the importance of phages in shaping the gut microbiota remains unclear. Although information regarding general phage ecology and development has accumulated, detailed knowledge on phage-gut microbe and phage-human interactions is lacking, and the information on the effects of phage therapy in humans remains ambiguous. In this review, we systematically assess the existing data on the structure and ecology of phages in the human and animal gut environments, their development, possible interaction, and subsequent impact on the gut ecosystem dynamics. We discuss the potential mechanisms of prophage activation and the subsequent modulation of gut bacteria. We also review the link between phages and the immune system to collect evidence on the effect of phages on shaping the gut microbial composition. Our review will improve understanding on the influence of phages in regulating the gut microbiota and the immune system and facilitate the development of phage-based therapies for maintaining a healthy and balanced gut microbiota.
Collapse
Affiliation(s)
- Md. Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Sharmin Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Sumona Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Mrityunjoy Acharjee
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Israt Zahan Esti
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
- Department of Molecular Systems Biology, Faculty of Technology, University of Turku, Turku, Finland
| | - Md. Saidul Islam
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Md. Nahian
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Rubaiya Gulshan
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Sadia Naser
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | |
Collapse
|
29
|
Yirmiya E, Leavitt A, Lu A, Ragucci AE, Avraham C, Osterman I, Garb J, Antine SP, Mooney SE, Hobbs SJ, Kranzusch PJ, Amitai G, Sorek R. Phages overcome bacterial immunity via diverse anti-defence proteins. Nature 2024; 625:352-359. [PMID: 37992756 DOI: 10.1038/s41586-023-06869-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
It was recently shown that bacteria use, apart from CRISPR-Cas and restriction systems, a considerable diversity of phage resistance systems1-4, but it is largely unknown how phages cope with this multilayered bacterial immunity. Here we analysed groups of closely related Bacillus phages that showed differential sensitivity to bacterial defence systems, and discovered four distinct families of anti-defence proteins that inhibit the Gabija, Thoeris and Hachiman systems. We show that these proteins Gad1, Gad2, Tad2 and Had1 efficiently cancel the defensive activity when co-expressed with the respective defence system or introduced into phage genomes. Homologues of these anti-defence proteins are found in hundreds of phages that infect taxonomically diverse bacterial species. We show that the anti-Gabija protein Gad1 blocks the ability of the Gabija defence complex to cleave phage-derived DNA. Our data further reveal that the anti-Thoeris protein Tad2 is a 'sponge' that sequesters the immune signalling molecules produced by Thoeris TIR-domain proteins in response to phage infection. Our results demonstrate that phages encode an arsenal of anti-defence proteins that can disable a variety of bacterial defence mechanisms.
Collapse
Affiliation(s)
- Erez Yirmiya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Azita Leavitt
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Allen Lu
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adelyn E Ragucci
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Carmel Avraham
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ilya Osterman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jeremy Garb
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sadie P Antine
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sarah E Mooney
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Samuel J Hobbs
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
30
|
Loney RE, Delesalle VA, Chaudry BE, Czerpak M, Guffey AA, Goubet-McCall L, McCarty M, Strine MS, Tanke NT, Vill AC, Krukonis GP. A Novel Subcluster of Closely Related Bacillus Phages with Distinct Tail Fiber/Lysin Gene Combinations. Viruses 2023; 15:2267. [PMID: 38005943 PMCID: PMC10674732 DOI: 10.3390/v15112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Bacteriophages (phages) are the most numerous entities on Earth, but we have only scratched the surface of describing phage diversity. We isolated seven Bacillus subtilis phages from desert soil in the southwest United States and then sequenced and characterized their genomes. Comparative analyses revealed high nucleotide and amino acid similarity between these seven phages, which constitute a novel subcluster. Interestingly, the tail fiber and lysin genes of these phages seem to come from different origins and carry out slightly different functions. These genes were likely acquired by this subcluster of phages via horizontal gene transfer. In conjunction with host range assays, our data suggest that these phages are adapting to hosts with different cell walls.
Collapse
Affiliation(s)
- Rachel E. Loney
- University Program in Genetics and Genomics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Véronique A. Delesalle
- Department of Biology, Gettysburg College, 300 N Washington St., Gettysburg, PA 17325, USA; (M.C.); (M.M.)
| | | | - Megan Czerpak
- Department of Biology, Gettysburg College, 300 N Washington St., Gettysburg, PA 17325, USA; (M.C.); (M.M.)
| | - Alexandra A. Guffey
- Janssen Scientific Affairs, LLC. 200 Tournament Dr., Horsham, PA 19044, USA;
| | - Leo Goubet-McCall
- Department of Biology, The Pennsylvania State University, 201 Huck Life Sciences Building, University Park, PA 16802, USA;
| | - Michael McCarty
- Department of Biology, Gettysburg College, 300 N Washington St., Gettysburg, PA 17325, USA; (M.C.); (M.M.)
| | - Madison S. Strine
- Department of Immunobiology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA;
| | - Natalie T. Tanke
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Albert C. Vill
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA;
| | - Greg P. Krukonis
- Department of Biology, Angelo State University, Cavness Science Building 101, ASU Station #10890, San Angelo, TX 76909, USA;
| |
Collapse
|
31
|
Zhang SP, Ye YP, Hou J, Ye ZR, Wang ZS, Yu XQ, Guo DD, Wang Y, He YX. Antitoxin MqsA decreases antibiotic susceptibility through the global regulator AgtR in Pseudomonas fluorescens. Antimicrob Agents Chemother 2023; 67:e0081223. [PMID: 37877694 PMCID: PMC10649091 DOI: 10.1128/aac.00812-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/26/2023] Open
Abstract
Type II toxin-antitoxin systems are highly prevalent in bacterial genomes and play crucial roles in the general stress response. Previously, we demonstrated that the type II antitoxin PfMqsA regulates biofilm formation through the global regulator AgtR in Pseudomonas fluorescens. Here, we found that both the C-terminal DNA-binding domain of PfMqsA and AgtR are involved in bacterial antibiotic susceptibility. Electrophoretic mobility shift assay (EMSA) analyses revealed that AgtR, rather than PfMqsA, binds to the intergenic region of emhABC-emhR, in which emhABC encodes an resistance-nodulation-cell division efflux pump and emhR encodes a repressor. Through quantitative real-time reverse-transcription PCR and EMSA analysis, we showed that AgtR directly activates the expression of the emhR by binding to the DNA motif [5´-CTAAGAAATATACTTAC-3´], leading to repression of the emhABC. Furthermore, we demonstrated that PfMqsA modulates the expression of EmhABC and EmhR. These findings enhance our understanding of the mechanism by which antitoxin PfMqsA contributes to antibiotic susceptibility.
Collapse
Affiliation(s)
- Si-Ping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yi-Ping Ye
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Jun Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Zi-Rui Ye
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Zhi-Song Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Xiao-Quan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ding-Ding Guo
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Yong Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
32
|
Yang Z, Mao S, Wang L, Fu S, Dong Y, Jaffrezic-Renault N, Guo Z. CRISPR/Cas and Argonaute-Based Biosensors for Pathogen Detection. ACS Sens 2023; 8:3623-3642. [PMID: 37819690 DOI: 10.1021/acssensors.3c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Over the past few decades, pathogens have posed a threat to human security, and rapid identification of pathogens should be one of the ideal methods to prevent major public health security outbreaks. Therefore, there is an urgent need for highly sensitive and specific approaches to identify and quantify pathogens. Clustered Regularly Interspaced Short Palindromic Repeats CRISPR/Cas systems and Argonaute (Ago) belong to the Microbial Defense Systems (MDS). The guided, programmable, and targeted activation of nucleases by both of them is leading the way to a new generation of pathogens detection. We compare these two nucleases in terms of similarities and differences. In addition, we discuss future challenges and prospects for the development of the CRISPR/Cas systems and Argonaute (Ago) biosensors, especially electrochemical biosensors. This review is expected to afford researchers entering this multidisciplinary field useful guidance and to provide inspiration for the development of more innovative electrochemical biosensors for pathogens detection.
Collapse
Affiliation(s)
- Zhiruo Yang
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Siying Mao
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Lu Wang
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Sinan Fu
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Yanming Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5, La Doua Street, Villeurbanne 69100, France
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| |
Collapse
|
33
|
Ge H, Ye L, Cai Y, Guo H, Gu D, Xu Z, Hu M, Allison HE, Jiao X, Chen X. Efficient screening of adsorbed receptors for Salmonella phage LP31 and identification of receptor-binding protein. Microbiol Spectr 2023; 11:e0260423. [PMID: 37728369 PMCID: PMC10581130 DOI: 10.1128/spectrum.02604-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
The adsorption process is the first step in the lifecycle of phages and plays a decisive role in the entire infection process. Identifying the adsorption mechanism of phages not only makes phage therapy more precise and efficient but also enables the exploration of other potential applications and modifications of phages. Phage LP31 can lyse multiple Salmonella serotypes, efficiently clearing biofilms formed by Salmonella enterica serovar Enteritidis (S. Enteritidis) and significantly reducing the concentration of S. Enteritidis in chicken feces. Therefore, LP31 has great potential for many practical applications. In this study, we established an efficient screening method for phage infection-related genes and identified a total of 10 genes related to the adsorption process of phage LP31. After the construction of strain C50041ΔrfaL 58-358, it was found that the knockout strain had a rough phenotype as an O-antigen-deficient strain. Adsorption rate and transmission electron microscopy experiments showed that the receptor for phage LP31 was the O9 antigen of S. Enteritidis. Homology comparison and adsorption experiments confirmed that the tail fiber protein Lp35 of phage LP31 participated in the adsorption process as a receptor-binding protein. IMPORTANCE A full understanding of the interaction between phages and their receptors can help with the development of phage-related products. Phages like LP31 with the tail fiber protein Lp35, or a closely related protein, have been reported to effectively recognize and infect multiple Salmonella serotypes. However, the role of these proteins in phage infection has not been previously described. In this study, we established an efficient screening method to detect phage adsorption to host receptors. We found that phage LP31 can utilize its tail fiber protein Lp35 to adsorb to the O9 antigen of S. Enteritidis, initiating the infection process. This study provides a great model system for further studies of how a phage-encoded receptor-binding protein (RBP) interacts with its host's RBP binding target, and this new model offers opportunities for further theoretical and experimental studies to understand the infection mechanism of phages.
Collapse
Affiliation(s)
- Haojie Ge
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ling Ye
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Yueyi Cai
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Huimin Guo
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Dan Gu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Maozhi Hu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Heather E. Allison
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Xin'an Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| |
Collapse
|
34
|
Qureshi A, Connolly JB. Bioinformatic and literature assessment of toxicity and allergenicity of a CRISPR-Cas9 engineered gene drive to control Anopheles gambiae the mosquito vector of human malaria. Malar J 2023; 22:234. [PMID: 37580703 PMCID: PMC10426224 DOI: 10.1186/s12936-023-04665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/07/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Population suppression gene drive is currently being evaluated, including via environmental risk assessment (ERA), for malaria vector control. One such gene drive involves the dsxFCRISPRh transgene encoding (i) hCas9 endonuclease, (ii) T1 guide RNA (gRNA) targeting the doublesex locus, and (iii) DsRed fluorescent marker protein, in genetically-modified mosquitoes (GMMs). Problem formulation, the first stage of ERA, for environmental releases of dsxFCRISPRh previously identified nine potential harms to the environment or health that could occur, should expressed products of the transgene cause allergenicity or toxicity. METHODS Amino acid sequences of hCas9 and DsRed were interrogated against those of toxins or allergens from NCBI, UniProt, COMPARE and AllergenOnline bioinformatic databases and the gRNA was compared with microRNAs from the miRBase database for potential impacts on gene expression associated with toxicity or allergenicity. PubMed was also searched for any evidence of toxicity or allergenicity of Cas9 or DsRed, or of the donor organisms from which these products were originally derived. RESULTS While Cas9 nuclease activity can be toxic to some cell types in vitro and hCas9 was found to share homology with the prokaryotic toxin VapC, there was no evidence from previous studies of a risk of toxicity to humans and other animals from hCas9. Although hCas9 did contain an 8-mer epitope found in the latex allergen Hev b 9, the full amino acid sequence of hCas9 was not homologous to any known allergens. Combined with a lack of evidence in the literature of Cas9 allergenicity, this indicated negligible risk to humans of allergenicity from hCas9. No matches were found between the gRNA and microRNAs from either Anopheles or humans. Moreover, potential exposure to dsxFCRISPRh transgenic proteins from environmental releases was assessed as negligible. CONCLUSIONS Bioinformatic and literature assessments found no convincing evidence to suggest that transgenic products expressed from dsxFCRISPRh were allergens or toxins, indicating that environmental releases of this population suppression gene drive for malaria vector control should not result in any increased allergenicity or toxicity in humans or animals. These results should also inform evaluations of other GMMs being developed for vector control and in vivo clinical applications of CRISPR-Cas9.
Collapse
Affiliation(s)
- Alima Qureshi
- Department of Life Sciences, Imperial College London, Silwood Park, Sunninghill, Ascot, UK
| | - John B Connolly
- Department of Life Sciences, Imperial College London, Silwood Park, Sunninghill, Ascot, UK.
| |
Collapse
|
35
|
Cheng R, Huang F, Lu X, Yan Y, Yu B, Wang X, Zhu B. Prokaryotic Gabija complex senses and executes nucleotide depletion and DNA cleavage for antiviral defense. Cell Host Microbe 2023; 31:1331-1344.e5. [PMID: 37480847 DOI: 10.1016/j.chom.2023.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/03/2023] [Accepted: 06/27/2023] [Indexed: 07/24/2023]
Abstract
The Gabija complex is a prokaryotic antiviral system consisting of the GajA and GajB proteins. GajA was identified as a DNA nicking endonuclease but the functions of GajB and the complex remain unknown. Here, we show that synergy between GajA-mediated DNA cleavage and nucleotide hydrolysis by GajB initiates efficient abortive infection defense against virulent bacteriophages. The antiviral activity of GajA requires GajB, which senses DNA termini produced by GajA to hydrolyze (d)A/(d)GTP, depleting essential nucleotides. This ATPase activity of Gabija complex is only activated upon DNA binding. GajA binds to GajB to form stable complexes in vivo and in vitro. However, a functional Gabija complex requires a molecular ratio between GajB and GajA below 1:1, indicating stoichiometric regulation of the DNA/nucleotide processing complex. Thus, the Gabija system exhibits distinct and efficient antiviral defense through sequential sensing and activation of nucleotide depletion and DNA cleavage, causing a cascade suicide effect.
Collapse
Affiliation(s)
- Rui Cheng
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Fengtao Huang
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518063, China
| | - Xueling Lu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yan Yan
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Bingbing Yu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xionglue Wang
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Bin Zhu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518063, China.
| |
Collapse
|
36
|
Liu X, Li W, Sun Z, Zhong Z, Sun T. Phylogenomics of the Liquorilactobacillus Genus. Curr Microbiol 2023; 80:274. [PMID: 37420021 DOI: 10.1007/s00284-023-03336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/17/2023] [Indexed: 07/09/2023]
Abstract
The genus Liquorilactobacillus is a new genus commonly found in wine and plants. Despite its significance, previous studies on Liquorilactobacillus are primarily focused on phenotypic experiments, with limited genome-level studies. This study used comparative genomics to analyze 24 genomes from the genus Liquorilactobacillus, including two novel sequenced strains (IMAU80559 and IMAU80777). A phylogenetic tree of 24 strains was constructed based on 122 core genes and divided into two clades, A and B. Significant differences in GC content were observed between the two clades (P = 10e-4). Additionally, change revealed to suggests that clade B has more exposure to prophage infection having an upgraded immune system. Further analysis of functional annotation and selective pressure suggests that clade A was subjected to greater selection pressure than B clade (P = 3.9e-6) and had higher number of functional types annotated than clade B (P = 2.7e-3), while clade B had a lower number of pseudogenes than clade A (P = 1.9e-2). The findings suggest that differently prophages and environmental stress may have influenced the common ancestor of clades A and B during evolution, leading to the development of two distinct clades.
Collapse
Affiliation(s)
- Xu Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Weicheng Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Tiansong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
37
|
Deep A, Singh L, Kaur J, Velusamy M, Bhardwaj P, Singh R, Thakur KG. Structural insights into DarT toxin neutralization by cognate DarG antitoxin: ssDNA mimicry by DarG C-terminal domain keeps the DarT toxin inhibited. Structure 2023; 31:780-789.e4. [PMID: 37167974 DOI: 10.1016/j.str.2023.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 05/13/2023]
Abstract
In the DarTG toxin-antitoxin system, the DarT toxin ADP-ribosylates single-stranded DNA (ssDNA), which stalls DNA replication and plays a crucial role in controlling bacterial growth and bacteriophage infection. This toxic activity is reversed by the N-terminal macrodomain of the cognate antitoxin DarG. DarG also binds DarT, but the role of these interactions in DarT neutralization is unknown. Here, we report that the C-terminal domain of DarG (DarG toxin-binding domain [DarGTBD]) interacts with DarT to form a 1:1 stoichiometric heterodimeric complex. We determined the 2.2 Å resolution crystal structure of the Mycobacterium tuberculosis DarT-DarGTBD complex. The comparative structural analysis reveals that DarGTBD interacts with DarT at the DarT/ssDNA interaction interface, thus sterically occluding substrate ssDNA binding and consequently inactivating toxin by direct protein-protein interactions. Our data support a unique two-layered DarT toxin neutralization mechanism of DarG, which is important in keeping the toxin molecules in check under normal growth conditions.
Collapse
Affiliation(s)
- Amar Deep
- Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh 160036, India
| | - Latika Singh
- Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh 160036, India
| | - Japleen Kaur
- Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh 160036, India
| | - Maheshwaran Velusamy
- Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh 160036, India
| | - Pushpanjali Bhardwaj
- Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh 160036, India
| | - Ramandeep Singh
- Infection and Immunology Group, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurugram Expressway, Faridabad-121001, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh 160036, India.
| |
Collapse
|
38
|
Gao D, Ji H, Li X, Ke X, Li X, Chen P, Qian P. Host receptor identification of a polyvalent lytic phage GSP044, and preliminary assessment of its efficacy in the clearance of Salmonella. Microbiol Res 2023; 273:127412. [PMID: 37243984 DOI: 10.1016/j.micres.2023.127412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Salmonella and pathogenic Escherichia coli are important foodborne pathogens. Phages are being recognized as potential antibacterial agents to control foodborne pathogens. In the current study, a polyvalent broad-spectrum phage, GSP044, was isolated from pig farm sewage. It can simultaneously lyse many different serotypes of Salmonella and E. coli, exhibiting a broad host range. Using S. Enteritidis SE006 as the host bacterium, phage GSP044 was further characterized. GSP044 has a short latent period (10 min), high stability at different temperatures and pH, and good tolerance to chloroform. Genome sequencing analysis revealed that GSP044 has a double-stranded DNA (dsDNA) genome consisting of 110,563 bp with G + C content of 39%, and phylogenetic analysis of the terminase large subunit confirmed that GSP044 belonged to the Demerecviridae family, Epseptimavirus genus. In addition, the genomic sequence did not contain any lysogenicity-related, virulence-related, or antibiotic resistance-related genes. Analysis of phage-targeted host receptors revealed that the outer membrane protein (OMP) BtuB was identified as a required receptor for phage infection of host bacteria. The initial application capability of phage GSP044 was assessed using S. Enteritidis SE006. Phage GSP044 could effectively reduce biofilm formation and degrade the mature biofilm in vitro. Moreover, GSP044 significantly decreased the viable counts of artificially contaminated S. Enteritidis in chicken feed and drinking water. In vivo tests, a mouse model of intestinal infection demonstrated that phage GSP044 was able to reduce the number of colonized S. Enteritidis in the intestine. These results suggest that phage GSP044 may be a promising candidate biologic agent for controlling Salmonella infections.
Collapse
Affiliation(s)
- Dongyang Gao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Hongyue Ji
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Xin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Xiquan Ke
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Pin Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China.
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China.
| |
Collapse
|
39
|
Sokolova D, Smolarska A, Bartnik P, Rabalski L, Kosinski M, Narajczyk M, Krzyżanowska DM, Rajewska M, Mruk I, Czaplewska P, Jafra S, Czajkowski R. Spontaneous mutations in hlyD and tuf genes result in resistance of Dickeya solani IPO 2222 to phage ϕD5 but cause decreased bacterial fitness and virulence in planta. Sci Rep 2023; 13:7534. [PMID: 37160956 PMCID: PMC10169776 DOI: 10.1038/s41598-023-34803-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/07/2023] [Indexed: 05/11/2023] Open
Abstract
Lytic bacteriophages able to infect and kill Dickeya spp. can be readily isolated from virtually all Dickeya spp. containing environments, yet little is known about the selective pressure those viruses exert on their hosts. Two spontaneous D. solani IPO 2222 mutants (0.8% of all obtained mutants), DsR34 and DsR207, resistant to infection caused by lytic phage vB_Dsol_D5 (ΦD5) were identified in this study that expressed a reduced ability to macerate potato tuber tissues compared to the wild-type, phage-susceptible D. solani IPO 2222 strain. Genome sequencing revealed that genes encoding: secretion protein HlyD (in mutant DsR34) and elongation factor Tu (EF-Tu) (in mutant DsR207) were altered in these strains. These mutations impacted the DsR34 and DsR207 proteomes. Features essential for the ecological success of these mutants in a plant environment, including their ability to use various carbon and nitrogen sources, production of plant cell wall degrading enzymes, ability to form biofilms, siderophore production, swimming and swarming motility and virulence in planta were assessed. Compared to the wild-type strain, D. solani IPO 2222, mutants DsR34 and DsR207 had a reduced ability to macerate chicory leaves and to colonize and cause symptoms in growing potato plants.
Collapse
Affiliation(s)
- Daryna Sokolova
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Academika Zabolotnoho St., Kyiv, 03143, Ukraine
| | - Anna Smolarska
- Department of Cancer Biology, Institute of Biology, Warsaw, University of Life Sciences (SGGW), J. Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Przemysław Bartnik
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
| | - Lukasz Rabalski
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
| | - Maciej Kosinski
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Dorota M Krzyżanowska
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland
| | - Magdalena Rajewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama, 58, 80-307, Gdansk, Poland
| | - Inez Mruk
- Laboratory of Mass Spectrometry-Core Facility Laboratories, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307, Gdansk, Poland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry-Core Facility Laboratories, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307, Gdansk, Poland
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama, 58, 80-307, Gdansk, Poland
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, A. Abrahama 58, 80-307, Gdansk, Poland.
| |
Collapse
|
40
|
Smith WPJ, Wucher BR, Nadell CD, Foster KR. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol 2023:10.1038/s41579-023-00877-3. [PMID: 37095190 DOI: 10.1038/s41579-023-00877-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/26/2023]
Abstract
Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.
Collapse
Affiliation(s)
- William P J Smith
- Division of Genomics, Infection and Evolution, University of Manchester, Manchester, UK.
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Benjamin R Wucher
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Carey D Nadell
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
41
|
Kraus C, Sontheimer EJ. Applications of Anti-CRISPR Proteins in Genome Editing and Biotechnology. J Mol Biol 2023; 435:168120. [PMID: 37100169 DOI: 10.1016/j.jmb.2023.168120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
In the ten years since the discovery of the first anti-CRISPR (Acr) proteins, the number of validated Acrs has expanded rapidly, as has our understanding of the diverse mechanisms they employ to suppress natural CRISPR-Cas immunity. Many, though not all, function via direct, specific interaction with Cas protein effectors. The abilities of Acr proteins to modulate the activities and properties of CRISPR-Cas effectors have been exploited for an ever-increasing spectrum of biotechnological uses, most of which involve the establishment of control over genome editing systems. This control can be used to minimize off-target editing, restrict editing based on spatial, temporal, or conditional cues, limit the spread of gene drive systems, and select for genome-edited bacteriophages. Anti-CRISPRs have also been developed to overcome bacterial immunity, facilitate viral vector production, control synthetic gene circuits, and other purposes. The impressive and ever-growing diversity of Acr inhibitory mechanisms will continue to allow the tailored applications of Acrs.
Collapse
Affiliation(s)
| | - Erik J Sontheimer
- RNA Therapeutics Institute; Program in Molecular Medicine, and; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
42
|
Staphylococcus aureus Prophage-Encoded Protein Causes Abortive Infection and Provides Population Immunity against Kayviruses. mBio 2023; 14:e0249022. [PMID: 36779718 PMCID: PMC10127798 DOI: 10.1128/mbio.02490-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Both temperate and obligately lytic phages have crucial roles in the biology of staphylococci. While superinfection exclusion among closely related temperate phages is a well-characterized phenomenon, the interactions between temperate and lytic phages in staphylococci are not understood. Here, we present a resistance mechanism toward lytic phages of the genus Kayvirus, mediated by the membrane-anchored protein designated PdpSau encoded by Staphylococcus aureus prophages, mostly of the Sa2 integrase type. The prophage accessory gene pdpSau is strongly linked to the lytic genes for holin and ami2-type amidase and typically replaces genes for the toxin Panton-Valentine leukocidin (PVL). The predicted PdpSau protein structure shows the presence of a membrane-binding α-helix in its N-terminal part and a cytoplasmic positively charged C terminus. We demonstrated that the mechanism of action of PdpSau does not prevent the infecting kayvirus from adsorbing onto the host cell and delivering its genome into the cell, but phage DNA replication is halted. Changes in the cell membrane polarity and permeability were observed from 10 min after the infection, which led to prophage-activated cell death. Furthermore, we describe a mechanism of overcoming this resistance in a host-range Kayvirus mutant, which was selected on an S. aureus strain harboring prophage 53 encoding PdpSau, and in which a chimeric gene product emerged via adaptive laboratory evolution. This first case of staphylococcal interfamily phage-phage competition is analogous to some other abortive infection defense systems and to systems based on membrane-destructive proteins. IMPORTANCE Prophages play an important role in virulence, pathogenesis, and host preference, as well as in horizontal gene transfer in staphylococci. In contrast, broad-host-range lytic staphylococcal kayviruses lyse most S. aureus strains, and scientists worldwide have come to believe that the use of such phages will be successful for treating and preventing bacterial diseases. The effectiveness of phage therapy is complicated by bacterial resistance, whose mechanisms related to therapeutic staphylococcal phages are not understood in detail. In this work, we describe a resistance mechanism targeting kayviruses that is encoded by a prophage. We conclude that the defense mechanism belongs to a broader group of abortive infections, which is characterized by suicidal behavior of infected cells that are unable to produce phage progeny, thus ensuring the survival of the host population. Since the majority of staphylococcal strains are lysogenic, our findings are relevant for the advancement of phage therapy.
Collapse
|
43
|
Wang M, Zhu H, Wei J, Jiang L, Jiang L, Liu Z, Li R, Wang Z. Uncovering the determinants of model Escherichia coli strain C600 susceptibility and resistance to lytic T4-like and T7-like phage. Virus Res 2023; 325:199048. [PMID: 36681192 DOI: 10.1016/j.virusres.2023.199048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
As antimicrobial resistance (AMR) continues to increase, the therapeutic use of phages has re-emerged as an attractive alternative. However, knowledge of phage resistance development and bacterium-phage interaction complexity are still not fully interpreted. In this study, two lytic T4-like and T7-like phage infecting model Escherichia coli strain C600 are selected, and host genetic determinants involved in phage susceptibility and resistance are also identified using TraDIS strategy. Isolation and identification of the lytic T7-like show that though it belongs to the phage T7 family, genes encoding replication and transcription protein exhibit high differences. The TraDIS results identify a huge number of previously unidentified genes involved in phage infection, and a subset (six in susceptibility and nine in resistance) are shared under pressure of the two kinds of lytic phage. Susceptible gene wbbL has the highest value and implies the important role in phage susceptibility. Importantly, two susceptible genes QseE (QseE/QseF) and RstB (RstB/RstA), encoding the similar two-component system sensor histidine kinase (HKs), also identified. Conversely and strangely, outer membrane protein gene ompW, unlike the gene ompC encoding receptor protein of T4 phage, was shown to provide phage resistance. Overall, this study exploited a genome-wide fitness assay to uncover susceptibility and resistant genes, even the shared genes, important for the E. coli strain of both most popular high lytic T4-like and T7-like phages. This knowledge of the genetic determinants can be further used to analysis the behind function signatures to screen the potential agents to aid phage killing of MDR pathogens, which will greatly be valuable in improving the phage therapy outcome in fighting with microbial resistance.
Collapse
Affiliation(s)
- Mianzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China.
| | - Heng Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Jingyi Wei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Li Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Lei Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Ziyi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China; International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
44
|
Lampi M, Gregorova P, Qasim MS, Ahlblad NCV, Sarin LP. Bacteriophage Infection of the Marine Bacterium Shewanella glacialimarina Induces Dynamic Changes in tRNA Modifications. Microorganisms 2023; 11:microorganisms11020355. [PMID: 36838320 PMCID: PMC9963407 DOI: 10.3390/microorganisms11020355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Viruses are obligate intracellular parasites that, throughout evolution, have adapted numerous strategies to control the translation machinery, including the modulation of post-transcriptional modifications (PTMs) on transfer RNA (tRNA). PTMs are critical translation regulators used to further host immune responses as well as the expression of viral proteins. Yet, we lack critical insight into the temporal dynamics of infection-induced changes to the tRNA modification landscape (i.e., 'modificome'). In this study, we provide the first comprehensive quantitative characterization of the tRNA modificome in the marine bacterium Shewanella glacialimarina during Shewanella phage 1/4 infection. Specifically, we show that PTMs can be grouped into distinct categories based on modification level changes at various infection stages. Furthermore, we observe a preference for the UAC codon in viral transcripts expressed at the late stage of infection, which coincides with an increase in queuosine modification. Queuosine appears exclusively on tRNAs with GUN anticodons, suggesting a correlation between phage codon usage and PTM modification. Importantly, this work provides the basis for further studies into RNA-based regulatory mechanisms employed by bacteriophages to control the prokaryotic translation machinery.
Collapse
Affiliation(s)
- Mirka Lampi
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
- Correspondence: (M.L.); (L.P.S.); Tel.: +358-2941-59533 (L.P.S.)
| | - Pavlina Gregorova
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
- Doctoral Programme in Integrative Life Science, University of Helsinki, FI-00014 Helsinki, Finland
| | - M. Suleman Qasim
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
- Doctoral Programme in Microbiology and Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Niklas C. V. Ahlblad
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - L. Peter Sarin
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
- Correspondence: (M.L.); (L.P.S.); Tel.: +358-2941-59533 (L.P.S.)
| |
Collapse
|
45
|
Bajiya N, Dhall A, Aggarwal S, Raghava GPS. Advances in the field of phage-based therapy with special emphasis on computational resources. Brief Bioinform 2023; 24:6961791. [PMID: 36575815 DOI: 10.1093/bib/bbac574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/07/2022] [Accepted: 11/25/2022] [Indexed: 12/29/2022] Open
Abstract
In the current era, one of the major challenges is to manage the treatment of drug/antibiotic-resistant strains of bacteria. Phage therapy, a century-old technique, may serve as an alternative to antibiotics in treating bacterial infections caused by drug-resistant strains of bacteria. In this review, a systematic attempt has been made to summarize phage-based therapy in depth. This review has been divided into the following two sections: general information and computer-aided phage therapy (CAPT). In the case of general information, we cover the history of phage therapy, the mechanism of action, the status of phage-based products (approved and clinical trials) and the challenges. This review emphasizes CAPT, where we have covered primary phage-associated resources, phage prediction methods and pipelines. This review covers a wide range of databases and resources, including viral genomes and proteins, phage receptors, host genomes of phages, phage-host interactions and lytic proteins. In the post-genomic era, identifying the most suitable phage for lysing a drug-resistant strain of bacterium is crucial for developing alternate treatments for drug-resistant bacteria and this remains a challenging problem. Thus, we compile all phage-associated prediction methods that include the prediction of phages for a bacterial strain, the host for a phage and the identification of interacting phage-host pairs. Most of these methods have been developed using machine learning and deep learning techniques. This review also discussed recent advances in the field of CAPT, where we briefly describe computational tools available for predicting phage virions, the life cycle of phages and prophage identification. Finally, we describe phage-based therapy's advantages, challenges and opportunities.
Collapse
Affiliation(s)
- Nisha Bajiya
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Suchet Aggarwal
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| |
Collapse
|
46
|
Ebihara S, Yen H, Tobe T. A novel toxin-antitoxin system swpAB alters gene expression patterns and reduces virulence expression in enterohemorrhagic Escherichia coli. Microbiol Immunol 2023; 67:171-184. [PMID: 36636756 DOI: 10.1111/1348-0421.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023]
Abstract
Toxin-antitoxin (TA) systems are found widely among many bacteria, including enterohemorrhagic Escherichia coli (EHEC), but their functions are still poorly understood. In this study, we identified and characterized a novel TA system belonging to the relBE family, classified as a type II TA system, found in EHEC. The protein encoded by the toxin gene is homologous to RelE ribonuclease. Using various conditions for increasing the toxin activity, high-level induction of a toxin gene, and repression of an antitoxin gene in wild-type EHEC, we showed that the TA system, named swpAB (switching of gene expression profile), is involved in selective repression of a set of genes, including some virulence genes, and in the reduction of adherence capacity, rather than in suppression of bacterial growth. A detailed analysis of the profiles of RNA levels along sequences at 15 min after high expression of swpA revealed that two virulence genes, espA and tir, were direct targets of the SwpA toxin. These results suggested that the swpAB system can alter gene expression patterns and change bacterial physiological activity without affecting bacterial growth.
Collapse
Affiliation(s)
- Shinya Ebihara
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hilo Yen
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toru Tobe
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
47
|
Hardy A, Kever L, Frunzke J. Antiphage small molecules produced by bacteria - beyond protein-mediated defenses. Trends Microbiol 2023; 31:92-106. [PMID: 36038409 DOI: 10.1016/j.tim.2022.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022]
Abstract
Bacterial populations face the constant threat of viral predation exerted by bacteriophages ('phages'). In response, bacteria have evolved a wide range of defense mechanisms against phage challenges. Yet the vast majority of antiphage defense systems described until now are mediated by proteins or RNA complexes acting at the single-cell level. Here, we review small molecule-based defense strategies against phage infection, with a focus on the antiphage molecules described recently. Importantly, inhibition of phage infection by excreted small molecules has the potential to protect entire bacterial communities, highlighting the ecological significance of these antiphage strategies. Considering the immense repertoire of bacterial metabolites, we envision that the list of antiphage small molecules will be further expanded in the future.
Collapse
Affiliation(s)
- Aël Hardy
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Larissa Kever
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Julia Frunzke
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
48
|
The coordination of anti-phage immunity mechanisms in bacterial cells. Nat Commun 2022; 13:7412. [PMID: 36456580 PMCID: PMC9715693 DOI: 10.1038/s41467-022-35203-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
Bacterial cells are equipped with a variety of immune strategies to fight bacteriophage infections. Such strategies include unspecific mechanisms directed against any phage infecting the cell, ranging from the identification and cleavage of the viral DNA by restriction nucleases (restriction-modification systems) to the suicidal death of infected host cells (abortive infection, Abi). In addition, CRISPR-Cas systems generate an immune memory that targets specific phages in case of reinfection. However, the timing and coordination of different antiviral systems in bacterial cells are poorly understood. Here, we use simple mathematical models of immune responses in individual bacterial cells to propose that the intracellular dynamics of phage infections are key to addressing these questions. Our models suggest that the rates of viral DNA replication and cleavage inside host cells define functional categories of phages that differ in their susceptibility to bacterial anti-phage mechanisms, which could give raise to alternative phage strategies to escape bacterial immunity. From this viewpoint, the combined action of diverse bacterial defenses would be necessary to reduce the chances of phage immune evasion. The decision of individual infected cells to undergo suicidal cell death or to incorporate new phage sequences into their immune memory would be determined by dynamic interactions between the host's immune mechanisms and the phage DNA. Our work highlights the importance of within-cell dynamics to understand bacterial immunity, and formulates hypotheses that may inspire future research in this area.
Collapse
|
49
|
Type III CRISPR-Cas provides resistance against nucleus-forming jumbo phages via abortive infection. Mol Cell 2022; 82:4471-4486.e9. [PMID: 36395770 DOI: 10.1016/j.molcel.2022.10.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/13/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022]
Abstract
Bacteria have diverse defenses against phages. In response, jumbo phages evade multiple DNA-targeting defenses by protecting their DNA inside a nucleus-like structure. We previously demonstrated that RNA-targeting type III CRISPR-Cas systems provide jumbo phage immunity by recognizing viral mRNA exported from the nucleus for translation. Here, we demonstrate that recognition of phage mRNA by the type III system activates a cyclic triadenylate-dependent accessory nuclease, NucC. Although unable to access phage DNA in the nucleus, NucC degrades the bacterial chromosome, triggers cell death, and disrupts phage replication and maturation. Hence, type-III-mediated jumbo phage immunity occurs via abortive infection, with suppression of the viral epidemic protecting the population. We further show that type III systems targeting jumbo phages have diverse accessory nucleases, including RNases that provide immunity. Our study demonstrates how type III CRISPR-Cas systems overcome the inaccessibility of jumbo phage DNA to provide robust immunity.
Collapse
|
50
|
Wang Y, Deng J, Ren J, Liang L, Li J, Niu S, Wu X, Zhao Y, Gao S, Yan F, Liu Y, Ma H, Tian WX, Yan Y. RAP44 phage integrase-guided 50K genomic island integration in Riemerella anatipestifer. Front Vet Sci 2022; 9:961354. [PMID: 36524231 PMCID: PMC9745183 DOI: 10.3389/fvets.2022.961354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/08/2022] [Indexed: 07/27/2023] Open
Abstract
Bacteriophages are viruses that infect bacteria. Bacteria and bacteriophages have been fighting for survival. Over time, the evolution of both populations has been affected. Pathogenic Flavobacteriaceae species including Riemerella anatipestifer mainly infects ducklings, geese, and turkeys. However, it does not infect humans, rats, or other mammals, and is a suitable and safe research object in the laboratory. Our previous study showed that there is a 10K genomic island in R. anatipestiferIn this study, we found another integrated 50K genomic islands and focused on the relationship between R. anatipestifer genomic islands and the RAP44 phage genome. The phage RAP44 genome was integrated into R. anatipestifer chromosome, and an evolutionary relationship was evident between them in our comparative analysis. Furthermore, the integrated defective RAP44 phage sequence had the function of integration, excision, and cyclization automatically. Integrases are important integration elements. The integrative function of integrase was verified in R. anatipestifer. The integrase with the attP site can be integrated stably at the attB locus of the R. anatipestifer genome. A recombinant strain can stably inherit and express the exogenous gene. By studying the integration between host bacterium and phage, we have provided evidence for the evolution of the genomes in R. anatipestifer.
Collapse
Affiliation(s)
- Ying Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Jianfeng Deng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Jianle Ren
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Libin Liang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Junping Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Sheng Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xingchen Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Yujun Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Shimin Gao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Fang Yan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Yuqing Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Haili Ma
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Wen-xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Yi Yan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|