1
|
Simmonds P, Butković A, Grove J, Mayne R, Mifsud JCO, Beer M, Bukh J, Drexler JF, Kapoor A, Lohmann V, Smith DB, Stapleton JT, Vasilakis N, Kuhn JH. Integrated analysis of protein sequence and structure redefines viral diversity and the taxonomy of the Flaviviridae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.632993. [PMID: 39868175 PMCID: PMC11760431 DOI: 10.1101/2025.01.17.632993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The Flaviviridae are a family of non-segmented positive-sense enveloped RNA viruses containing significant pathogens including hepatitis C virus and yellow fever virus. Recent large-scale metagenomic surveys have identified many diverse RNA viruses related to classical orthoflaviviruses and pestiviruses but quite different genome lengths and configurations, and with a hugely expanded host range that spans multiple animal phyla, including molluscs, cnidarians and stramenopiles,, and plants. Grouping of RNA-directed RNA polymerase (RdRP) hallmark gene sequences of flavivirus and 'flavi-like' viruses into four divergent clades and multiple lineages within them was congruent with helicase gene phylogeny, PPHMM profile comparisons, and comparison of RdRP protein structure predicted by AlphFold2. These results support their classification into the established order, Amarillovirales , in three families ( Flaviviridae, Pestiviridae , and Hepaciviridae ), and 14 genera. This taxonomic framework informed by RdRP hallmark gene evolutionary relationships provides a stable reference from which major genome re-organisational events can be understood.
Collapse
|
2
|
Birlem GE, Sita A, Gularte JS, de Souza da Silva D, Demoliner M, de Almeida PR, Fleck JD, Spilki FR, Dos Santos Higino SS, de Azevedo SS, Weber MN. Detection of a novel hepacivirus in wild cavies (Cavia aperea aperea). Arch Virol 2024; 170:19. [PMID: 39681797 DOI: 10.1007/s00705-024-06199-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/06/2024] [Indexed: 12/18/2024]
Abstract
Hepacivirus is a genus of RNA viruses within the family Flaviviridae of which hepatitis C virus (HCV) is the prototype. Several hepaciviruses have been identified in mammals, including rodents of multiple families. Each rodent hepacivirus described so far has been found only in members of a single rodent species. Here, we report the discovery and characterization of a putative new genotype of an unclassified rodent hepacivirus in a wild cavy (Cavia aperea aperea) that was reported previously in Proechimys semispinosus. This virus was detected in one out of 14 (7.14%) wild cavy sera tested by RT-PCR. The complete genome sequence was obtained by high-throughput sequencing using an Illumina MiSeq platform. This is the first report of a hepacivirus in a member of the family Caviidae. Our findings show that members of different rodent species and even families can be infected by hepaciviruses of the same species. The identification and characterization of novel hepaciviruses might lead to the discovery of reservoirs of viruses that are genetically related to human pathogens, and this can help to elucidate the evolutionary origins of HCV and other hepaciviruses.
Collapse
Affiliation(s)
| | - Alexandre Sita
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Juliana Schons Gularte
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, Brazil
- Laboratório de Imunologia e Biologia Molecular, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Meriane Demoliner
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | | | - Juliane Deise Fleck
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | | | | | - Sergio Santos de Azevedo
- Unidade Acadêmica de Medicina Veterinária, Universidade Federal de Campina Grande (UFCG), Patos, PB, Brazil
| | - Matheus Nunes Weber
- Laboratório de Imunologia e Biologia Molecular, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Martineau CA, Rivard N, Bisaillon M. From viruses to cancer: exploring the role of the hepatitis C virus NS3 protein in carcinogenesis. Infect Agent Cancer 2024; 19:40. [PMID: 39192306 DOI: 10.1186/s13027-024-00606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Hepatitis C virus (HCV) chronically infects approximately 170 million people worldwide and is a known etiological agent of hepatocellular carcinoma (HCC). The molecular mechanisms of HCV-mediated carcinogenesis are not fully understood. This review article focuses on the oncogenic potential of NS3, a viral protein with transformative effects on cells, although the precise mechanisms remain elusive. Unlike the more extensively studied Core and NS5A proteins, NS3's roles in cancer development are less defined but critical. Research indicates that NS3 is implicated in several carcinogenic processes such as proliferative signaling, cell death resistance, genomic instability and mutations, invasion and metastasis, tumor-related inflammation, immune evasion, and replicative immortality. Understanding the direct impact of viral proteins such as NS3 on cellular transformation is crucial for elucidating HCV's role in HCC development. Overall, this review sheds light on the molecular mechanisms used by NS3 to contribute to hepatocarcinogenesis, and highlights its significance in the context of HCV-associated HCC, underscoring the need for further investigation into its specific molecular and cellular actions.
Collapse
Affiliation(s)
- Carole-Anne Martineau
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Nathalie Rivard
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Martin Bisaillon
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
4
|
Kennedy MJ, Fernbach S, Scheel TKH. Animal hepacivirus models for hepatitis C virus immune responses and pathology. J Hepatol 2024; 81:184-186. [PMID: 38664157 DOI: 10.1016/j.jhep.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 06/23/2024]
Affiliation(s)
- Matthew J Kennedy
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Sonja Fernbach
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Troels K H Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark.
| |
Collapse
|
5
|
Sallam M, Khalil R. Contemporary Insights into Hepatitis C Virus: A Comprehensive Review. Microorganisms 2024; 12:1035. [PMID: 38930417 PMCID: PMC11205832 DOI: 10.3390/microorganisms12061035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatitis C virus (HCV) remains a significant global health challenge. Approximately 50 million people were living with chronic hepatitis C based on the World Health Organization as of 2024, contributing extensively to global morbidity and mortality. The advent and approval of several direct-acting antiviral (DAA) regimens significantly improved HCV treatment, offering potentially high rates of cure for chronic hepatitis C. However, the promising aim of eventual HCV eradication remains challenging. Key challenges include the variability in DAA access across different regions, slightly variable response rates to DAAs across diverse patient populations and HCV genotypes/subtypes, and the emergence of resistance-associated substitutions (RASs), potentially conferring resistance to DAAs. Therefore, periodic reassessment of current HCV knowledge is needed. An up-to-date review on HCV is also necessitated based on the observed shifts in HCV epidemiological trends, continuous development and approval of therapeutic strategies, and changes in public health policies. Thus, the current comprehensive review aimed to integrate the latest knowledge on the epidemiology, pathophysiology, diagnostic approaches, treatment options and preventive strategies for HCV, with a particular focus on the current challenges associated with RASs and ongoing efforts in vaccine development. This review sought to provide healthcare professionals, researchers, and policymakers with the necessary insights to address the HCV burden more effectively. We aimed to highlight the progress made in managing and preventing HCV infection and to highlight the persistent barriers challenging the prevention of HCV infection. The overarching goal was to align with global health objectives towards reducing the burden of chronic hepatitis, aiming for its eventual elimination as a public health threat by 2030.
Collapse
Affiliation(s)
- Malik Sallam
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman 11942, Jordan
| | - Roaa Khalil
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
6
|
Chen JT, Chen KJ, Wu KW, Yi SH, Shao JW. Identification and epidemiology of a novel Hepacivirus in domestic ducks in Hunan province, China. Front Vet Sci 2024; 11:1389264. [PMID: 38756518 PMCID: PMC11096584 DOI: 10.3389/fvets.2024.1389264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
The genus Hepacivirus comprises a diverse range of genetically distinct viruses that infect both mammalian and non-mammalian hosts, with some posing significant risks to human and animal health. Members of the genus Hepacivirus are typically classified into fourteen species (Hepacivirus A-N), with ongoing discoveries of novel hepaciviruses like Hepacivirus P and Hepacivirus Q. In this study, a novel Hepacivirus was identified in duck liver samples collected from live poultry markets in Hunan province, China, using unbiased high-throughput sequencing and meta-transcriptomic analysis. Through sequence comparison and phylogenetic analysis, it was determined that this newly discovered Hepacivirus belongs to a new subspecies of Hepacivirus Q. Moreover, molecular screening revealed the widespread circulation of this novel virus among duck populations in various regions of Hunan province, with an overall prevalence of 13.3%. These findings significantly enhence our understanding of the genetic diversity and evolution of hepaciviruses, emphasizing the presence of genetically diverse hepaciviruses duck populations in China. Given the broad geographical distribution and relatively high positive rate, further investigations are essential to explore any potential associations between Hepacivirus Q and duck-related diseases.
Collapse
Affiliation(s)
- Jin-Tao Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Kang-Jing Chen
- School of Medical Technology, Shangqiu Medical College, Shangqiu, China
| | - Kang-Wei Wu
- Department of Microbial Testing, Hengyang Center for Disease Control & Prevention, Hengyang, China
| | - Shan-Hong Yi
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jian-Wei Shao
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
7
|
Workman AM, Harhay GP, Groves JT, Vander Ley BL. Two bovine hepacivirus genome sequences from U.S. cattle. J Vet Diagn Invest 2024; 36:274-277. [PMID: 38414254 DOI: 10.1177/10406387231225656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Bovine hepacivirus (BoHV) is closely related to the hepatitis C virus (HCV) in humans and can cause both acute and chronic liver infections in cattle. BoHV was first identified in Ghana and Germany in 2015 and since then it has been detected and characterized in other countries around the world, but no strains have been sequenced from U.S. cattle. To date, BoHV has been classified into 2 genotypes (1 and 2), with genotype 1 being further divided into 11 subtypes (A-K). However, the true genetic diversity of BoHV is likely underestimated given limited surveillance and a lack of published genome sequences. Here, we sequenced 2 nearly complete BoHV genomes from serum samples collected in 2019 from beef cattle in Missouri. Sequence comparisons and phylogenetic analysis showed that isolate MARC/2019/60 had high sequence homology with genotype 1, subtype E isolates from China. In contrast, isolate MARC/2019/50 represented a novel BoHV subtype within genotype 2. Thus, we report the first genomic characterization of BoHV isolates from U.S. cattle, and the second complete BoHV2 genome worldwide. This work increases our knowledge of the global genetic diversity of BoHV and demonstrates the co-circulation of divergent BoHV strains in U.S. cattle.
Collapse
Affiliation(s)
- Aspen M Workman
- U.S. Meat Animal Research Center, U.S. Department of Agriculture, Agricultural Research Service, Clay Center, NE, USA
| | - Gregory P Harhay
- U.S. Meat Animal Research Center, U.S. Department of Agriculture, Agricultural Research Service, Clay Center, NE, USA
| | | | - Brian L Vander Ley
- University of Nebraska-Lincoln, Great Plains Veterinary Educational Center, Clay Center, NE, USA
| |
Collapse
|
8
|
Guo L, Li B, Han P, Dong N, Zhu Y, Li F, Si H, Shi Z, Wang B, Yang X, Zhang Y. Identification of a Novel Hepacivirus in Southeast Asian Shrew ( Crocidura fuliginosa) from Yunnan Province, China. Pathogens 2023; 12:1400. [PMID: 38133285 PMCID: PMC10745850 DOI: 10.3390/pathogens12121400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
The genus Hepacivirus contains single-stranded positive-sense RNA viruses belonging to the family Flaviviridae, which comprises 14 species. These 14 hepaciviruses have been found in different mammals, such as primates, dogs, bats, and rodents. To date, Hepacivirus has not been reported in the shrew genus of Crocidura. To study the prevalence and genetic evolution of Hepacivirus in small mammals in Yunnan Province, China, molecular detection of Hepacivirus in small mammals from Yunnan Province during 2016 and 2017 was performed using reverse-transcription polymerase chain reaction (RT-PCR). Our results showed that the overall infection rate of Hepacivirus in small mammals was 0.12% (2/1602), and the host animal was the Southeast Asian shrew (Crocidura fuliginosa) (12.5%, 2/16). Quantitative real-time PCR showed that Hepacivirus had the highest viral RNA copy number in the liver. Phylogenetic analysis revealed that the hepaciviruses obtained in this study does not belong to any designated species of hepaciviruses and forms an independent clade. To conclude, a novel hepacivirus was identified for the first time in C. fuliginosa specimens from Yunnan Province, China. This study expands the host range and viral diversity of hepaciviruses.
Collapse
Affiliation(s)
- Ling Guo
- Yunnan Province Key Laboratory of Anti-Pathogenic Plant Resources Screening, Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (L.G.); (P.H.); (N.D.); (F.L.)
- Chongqing Jiangbei District Center for Disease Control and Prevention, Chongqing 400020, China
| | - Bei Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (B.L.); (Y.Z.); (H.S.); (Z.S.)
| | - Peiyu Han
- Yunnan Province Key Laboratory of Anti-Pathogenic Plant Resources Screening, Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (L.G.); (P.H.); (N.D.); (F.L.)
| | - Na Dong
- Yunnan Province Key Laboratory of Anti-Pathogenic Plant Resources Screening, Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (L.G.); (P.H.); (N.D.); (F.L.)
| | - Yan Zhu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (B.L.); (Y.Z.); (H.S.); (Z.S.)
| | - Fuli Li
- Yunnan Province Key Laboratory of Anti-Pathogenic Plant Resources Screening, Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (L.G.); (P.H.); (N.D.); (F.L.)
| | - Haorui Si
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (B.L.); (Y.Z.); (H.S.); (Z.S.)
| | - Zhengli Shi
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (B.L.); (Y.Z.); (H.S.); (Z.S.)
| | - Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Xinglou Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650023, China
| | - Yunzhi Zhang
- Yunnan Province Key Laboratory of Anti-Pathogenic Plant Resources Screening, Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (L.G.); (P.H.); (N.D.); (F.L.)
| |
Collapse
|
9
|
Toon K, Kalemera MD, Palor M, Rose NJ, Takeuchi Y, Grove J, Mattiuzzo G. GB Virus B and Hepatitis C Virus, Distantly Related Hepaciviruses, Share an Entry Factor, Claudin-1. J Virol 2023; 97:e0046923. [PMID: 37310242 PMCID: PMC10373534 DOI: 10.1128/jvi.00469-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/10/2023] [Indexed: 06/14/2023] Open
Abstract
Due to increased and broadened screening efforts, the last decade has seen a rapid expansion in the number of viral species classified into the Hepacivirus genus. Conserved genetic features of hepaciviruses suggest that they have undergone specific adaptation and have evolved to hijack similar host proteins for efficient propagation in the liver. Here, we developed pseudotyped viruses to elucidate the entry factors of GB virus B (GBV-B), the first hepacivirus described in an animal after hepatitis C virus (HCV). GBV-B-pseudotyped viral particles (GBVBpp) were shown to be uniquely sensitive to the sera of tamarins infected with GBV-B, validating their usefulness as a surrogate for GBV-B entry studies. We screened GBVBpp infection of human hepatoma cell lines that were CRISPR/Cas9 engineered to ablate the expression of individual HCV receptors/entry factors and found that claudin-1 is essential for GBV-B infection, indicating the GBV-B and HCV share an entry factor. Our data suggest that claudin-1 facilitates HCV and GBV-B entry through distinct mechanisms since the former requires the first extracellular loop and the latter is reliant on a C-terminal region containing the second extracellular loop. The observation that claudin-1 is an entry factor shared between these two hepaciviruses suggests that the tight junction protein is of fundamental mechanistic importance during cell entry. IMPORTANCE Hepatitis C virus (HCV) is a major public health burden; approximately 58 million individuals have chronic HCV infection and are at risk of developing cirrhosis and liver cancer. To achieve the World Health Organization's target of eliminating hepatitis by 2030, new therapeutics and vaccines are needed. Understanding how HCV enters cells can inform the design of new vaccines and treatments targeting the first stage of infection. However, the HCV cell entry mechanism is complex and has been sparsely described. Studying the entry of related hepaciviruses will increase the knowledge of the molecular mechanisms of the first stages of HCV infection, such as membrane fusion, and inform structure-guided HCV vaccine design; in this work, we have identified a protein, claudin-1, that facilitates the entry of an HCV-related hepacivirus but with a mechanism not described for HCV. Similar work on other hepaciviruses may unveil a commonality of entry factors and, possibly, new mechanisms.
Collapse
Affiliation(s)
- Kamilla Toon
- Science Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Mphatso D. Kalemera
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Machaela Palor
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Nicola J. Rose
- Science Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
| | - Yasuhiro Takeuchi
- Science Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Joe Grove
- Division of Infection and Immunity, University College London, London, United Kingdom
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Giada Mattiuzzo
- Science Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
| |
Collapse
|
10
|
Li YQ, Ghafari M, Holbrook AJ, Boonen I, Amor N, Catalano S, Webster JP, Li YY, Li HT, Vergote V, Maes P, Chong YL, Laudisoit A, Baelo P, Ngoy S, Mbalitini SG, Gembu GC, Musaba AP, Goüy de Bellocq J, Leirs H, Verheyen E, Pybus OG, Katzourakis A, Alagaili AN, Gryseels S, Li YC, Suchard MA, Bletsa M, Lemey P. The evolutionary history of hepaciviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547218. [PMID: 37425679 PMCID: PMC10327235 DOI: 10.1101/2023.06.30.547218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In the search for natural reservoirs of hepatitis C virus (HCV), a broad diversity of non-human viruses within the Hepacivirus genus has been uncovered. However, the evolutionary dynamics that shaped the diversity and timescale of hepaciviruses evolution remain elusive. To gain further insights into the origins and evolution of this genus, we screened a large dataset of wild mammal samples (n = 1,672) from Africa and Asia, and generated 34 full-length hepacivirus genomes. Phylogenetic analysis of these data together with publicly available genomes emphasizes the importance of rodents as hepacivirus hosts and we identify 13 rodent species and 3 rodent genera (in Cricetidae and Muridae families) as novel hosts of hepaciviruses. Through co-phylogenetic analyses, we demonstrate that hepacivirus diversity has been affected by cross-species transmission events against the backdrop of detectable signal of virus-host co-divergence in the deep evolutionary history. Using a Bayesian phylogenetic multidimensional scaling approach, we explore the extent to which host relatedness and geographic distances have structured present-day hepacivirus diversity. Our results provide evidence for a substantial structuring of mammalian hepacivirus diversity by host as well as geography, with a somewhat more irregular diffusion process in geographic space. Finally, using a mechanistic model that accounts for substitution saturation, we provide the first formal estimates of the timescale of hepacivirus evolution and estimate the origin of the genus to be about 22 million years ago. Our results offer a comprehensive overview of the micro- and macroevolutionary processes that have shaped hepacivirus diversity and enhance our understanding of the long-term evolution of the Hepacivirus genus.
Collapse
Affiliation(s)
- YQ Li
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| | - M Ghafari
- Department of Biology, University of Oxford, Oxford, OX1, UK
| | - AJ Holbrook
- Department of Biostatistics, University of California, Los Angeles, CA 90095, USA
| | - I Boonen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| | - N Amor
- Laboratory of Biodiversity, Parasitology, and Ecology of Aquatic Ecosystems, Department of Biology - Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - S Catalano
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Department of Pathobiology and Population Sciences, the Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - JP Webster
- Department of Pathobiology and Population Sciences, the Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - YY Li
- College of Life Sciences, Linyi University, Linyi, 276000, China
- Marine College, Shandong University (Weihai), Weihai, 264209, China
| | - HT Li
- College of Life Sciences, Liaocheng University, Liaocheng, 252000, China
- Marine College, Shandong University (Weihai), Weihai, 264209, China
| | - V Vergote
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| | - P Maes
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| | - YL Chong
- Animal Resource Science and Management Group, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak (UNIMAS), 94300, Malaysia
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, 999077, China
| | - A Laudisoit
- EcoHealth Alliance, New York, NY 10018, USA
- Evolutionary Ecology group (EVECO), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - P Baelo
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - S Ngoy
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - SG Mbalitini
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - GC Gembu
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Akawa P Musaba
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - J Goüy de Bellocq
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - H Leirs
- Evolutionary Ecology group (EVECO), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - E Verheyen
- Evolutionary Ecology group (EVECO), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - OG Pybus
- Department of Biology, University of Oxford, Oxford, OX1, UK
- Department of Pathobiology and Population Sciences, the Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - A Katzourakis
- Department of Biology, University of Oxford, Oxford, OX1, UK
| | - AN Alagaili
- Laboratory of Biodiversity, Parasitology, and Ecology of Aquatic Ecosystems, Department of Biology - Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - S Gryseels
- Evolutionary Ecology group (EVECO), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - YC Li
- Marine College, Shandong University (Weihai), Weihai, 264209, China
| | - MA Suchard
- Department of Biostatistics, University of California, Los Angeles, CA 90095, USA
| | - M Bletsa
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - P Lemey
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| |
Collapse
|
11
|
Wolfisberg R, Holmbeck K, Billerbeck E, Thorselius CE, Batista MN, Fahnøe U, Lundsgaard EA, Kennedy MJ, Nielsen L, Rice CM, Bukh J, Scheel TKH. Molecular Determinants of Mouse Adaptation of Rat Hepacivirus. J Virol 2023; 97:e0181222. [PMID: 36971565 PMCID: PMC10134885 DOI: 10.1128/jvi.01812-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
The lack of robust immunocompetent animal models for hepatitis C virus (HCV) impedes vaccine development and studies of immune responses. Norway rat hepacivirus (NrHV) infection in rats shares HCV-defining characteristics, including hepatotropism, chronicity, immune responses, and aspects of liver pathology. To exploit genetic variants and research tools, we previously adapted NrHV to prolonged infection in laboratory mice. Through intrahepatic RNA inoculation of molecular clones of the identified variants, we here characterized four mutations in the envelope proteins responsible for mouse adaptation, including one disrupting a glycosylation site. These mutations led to high-titer viremia, similar to that observed in rats. In 4-week-old mice, infection was cleared after around 5 weeks compared to 2 to 3 weeks for nonadapted virus. In contrast, the mutations led to persistent but attenuated infection in rats, and they partially reverted, accompanied by an increase in viremia. Attenuated infection in rat but not mouse hepatoma cells demonstrated that the characterized mutations were indeed mouse adaptive rather than generally adaptive across species and that species determinants and not immune interactions were responsible for attenuation in rats. Unlike persistent NrHV infection in rats, acute resolving infection in mice was not associated with the development of neutralizing antibodies. Finally, infection of scavenger receptor B-I (SR-BI) knockout mice suggested that adaptation to mouse SR-BI was not a primary function of the identified mutations. Rather, the virus may have adapted to lower dependency on SR-BI, thereby potentially surpassing species-specific differences. In conclusion, we identified specific determinants of NrHV mouse adaptation, suggesting species-specific interactions during entry. IMPORTANCE A prophylactic vaccine is required to achieve the World Health Organization's objective for hepatitis C virus elimination as a serious public health threat. However, the lack of robust immunocompetent animal models supporting hepatitis C virus infection impedes vaccine development as well as studies of immune responses and viral evasion. Hepatitis C virus-related hepaciviruses were discovered in a number of animal species and provide useful surrogate infection models. Norway rat hepacivirus is of particular interest, as it enables studies in rats, an immunocompetent and widely used small laboratory animal model. Its adaptation to robust infection also in laboratory mice provides access to a broader set of mouse genetic lines and comprehensive research tools. The presented mouse-adapted infectious clones will be of utility for reverse genetic studies, and the Norway rat hepacivirus mouse model will facilitate studies of hepacivirus infection for in-depth characterization of virus-host interactions, immune responses, and liver pathology.
Collapse
Affiliation(s)
- Raphael Wolfisberg
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Kenn Holmbeck
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Eva Billerbeck
- Department of Medicine, Division of Hepatology, Albert Einstein College of Medicine, New York, New York, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Caroline E. Thorselius
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Mariana N. Batista
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Emma A. Lundsgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Matthew J. Kennedy
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Louise Nielsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Troels K. H. Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| |
Collapse
|
12
|
Lopez-Scarim J, Nambiar SM, Billerbeck E. Studying T Cell Responses to Hepatotropic Viruses in the Liver Microenvironment. Vaccines (Basel) 2023; 11:681. [PMID: 36992265 PMCID: PMC10056334 DOI: 10.3390/vaccines11030681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
T cells play an important role in the clearance of hepatotropic viruses but may also cause liver injury and contribute to disease progression in chronic hepatitis B and C virus infections which affect millions of people worldwide. The liver provides a unique microenvironment of immunological tolerance and hepatic immune regulation can modulate the functional properties of T cell subsets and influence the outcome of a virus infection. Extensive research over the last years has advanced our understanding of hepatic conventional CD4+ and CD8+ T cells and unconventional T cell subsets and their functions in the liver environment during acute and chronic viral infections. The recent development of new small animal models and technological advances should further increase our knowledge of hepatic immunological mechanisms. Here we provide an overview of the existing models to study hepatic T cells and review the current knowledge about the distinct roles of heterogeneous T cell populations during acute and chronic viral hepatitis.
Collapse
Affiliation(s)
| | | | - Eva Billerbeck
- Division of Hepatology, Department of Medicine and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
13
|
Mechanisms and Consequences of Genetic Variation in Hepatitis C Virus (HCV). Curr Top Microbiol Immunol 2023; 439:237-264. [PMID: 36592248 DOI: 10.1007/978-3-031-15640-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chronic infection with hepatitis C virus (HCV) is an important contributor to the global incidence of liver diseases, including liver cirrhosis and hepatocellular carcinoma. Although common for single-stranded RNA viruses, HCV displays a remarkable high level of genetic diversity, produced primarily by the error-prone viral polymerase and host immune pressure. The high genetic heterogeneity of HCV has led to the evolution of several distinct genotypes and subtypes, with important consequences for pathogenesis, and clinical outcomes. Genetic variability constitutes an evasion mechanism against immune suppression, allowing the virus to evolve epitope escape mutants that avoid immune recognition. Thus, heterogeneity and variability of the HCV genome represent a great hindrance for the development of vaccines against HCV. In addition, the high genetic plasticity of HCV allows the virus to rapidly develop antiviral resistance mutations, leading to treatment failure and potentially representing a major hindrance for the cure of chronic HCV patients. In this chapter, we will present the central role that genetic diversity has in the viral life cycle and epidemiology of HCV. Incorporation errors and recombination, both the result of HCV polymerase activity, represent the main mechanisms of HCV evolution. The molecular details of both mechanisms have been only partially clarified and will be presented in the following sections. Finally, we will discuss the major consequences of HCV genetic diversity, namely its capacity to rapidly evolve antiviral and immunological escape variants that represent an important limitation for clearance of acute HCV, for treatment of chronic hepatitis C and for broadly protective vaccines.
Collapse
|
14
|
Mifsud JCO, Costa VA, Petrone ME, Marzinelli EM, Holmes EC, Harvey E. Transcriptome mining extends the host range of the Flaviviridae to non-bilaterians. Virus Evol 2022; 9:veac124. [PMID: 36694816 PMCID: PMC9854234 DOI: 10.1093/ve/veac124] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/27/2022] Open
Abstract
The flavivirids (family Flaviviridae) are a group of positive-sense RNA viruses that include well-documented agents of human disease. Despite their importance and ubiquity, the timescale of flavivirid evolution is uncertain. An ancient origin, spanning millions of years, is supported by their presence in both vertebrates and invertebrates and by the identification of a flavivirus-derived endogenous viral element in the peach blossom jellyfish genome (Craspedacusta sowerbii, phylum Cnidaria), implying that the flaviviruses arose early in the evolution of the Metazoa. To date, however, no exogenous flavivirid sequences have been identified in these hosts. To help resolve the antiquity of the Flaviviridae, we mined publicly available transcriptome data across the Metazoa. From this, we expanded the diversity within the family through the identification of 32 novel viral sequences and extended the host range of the pestiviruses to include amphibians, reptiles, and ray-finned fish. Through co-phylogenetic analysis we found cross-species transmission to be the predominate macroevolutionary event across the non-vectored flavivirid genera (median, 68 per cent), including a cross-species transmission event between bats and rodents, although long-term virus-host co-divergence was still a regular occurrence (median, 23 per cent). Notably, we discovered flavivirus-like sequences in basal metazoan species, including the first associated with Cnidaria. This sequence formed a basal lineage to the genus Flavivirus and was closer to arthropod and crustacean flaviviruses than those in the tamanavirus group, which includes a variety of invertebrate and vertebrate viruses. Combined, these data attest to an ancient origin of the flaviviruses, likely close to the emergence of the metazoans 750-800 million years ago.
Collapse
Affiliation(s)
- Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Vincenzo A Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Mary E Petrone
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Ezequiel M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney NSW 2006, Australia
- Sydney Institute of Marine Science, 19 Chowder Bay Rd, Mosman, NSW 2088, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551 Singapore
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Erin Harvey
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
15
|
Wolfisberg R, Thorselius CE, Salinas E, Elrod E, Trivedi S, Nielsen L, Fahnøe U, Kapoor A, Grakoui A, Rice CM, Bukh J, Holmbeck K, Scheel TKH. Neutralization and receptor use of infectious culture-derived rat hepacivirus as a model for HCV. Hepatology 2022; 76:1506-1519. [PMID: 35445423 PMCID: PMC9585093 DOI: 10.1002/hep.32535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Lack of tractable immunocompetent animal models amenable to robust experimental challenge impedes vaccine efforts for HCV. Infection with rodent hepacivirus from Rattus norvegicus (RHV-rn1) in rats shares HCV-defining characteristics, including liver tropism, chronicity, and pathology. RHV in vitro cultivation would facilitate genetic studies on particle production, host factor interactions, and evaluation of antibody neutralization guiding HCV vaccine approaches. APPROACH AND RESULTS We report an infectious reverse genetic cell culture system for RHV-rn1 using highly permissive rat hepatoma cells and adaptive mutations in the E2, NS4B, and NS5A viral proteins. Cell culture-derived RHV-rn1 particles (RHVcc) share hallmark biophysical characteristics of HCV and are infectious in mice and rats. Culture adaptive mutations attenuated RHVcc in immunocompetent rats, and the mutations reverted following prolonged infection, but not in severe combined immunodeficiency (SCID) mice, suggesting that adaptive immune pressure is a primary driver of reversion. Accordingly, sera from RHVcc-infected SCID mice or the early acute phase of immunocompetent mice and rats were infectious in culture. We further established an in vitro RHVcc neutralization assay, and observed neutralizing activity of rat sera specifically from the chronic phase of infection. Finally, we found that scavenger receptor class B type I promoted RHV-rn1 entry in vitro and in vivo. CONCLUSIONS The RHV-rn1 infectious cell culture system enables studies of humoral immune responses against hepacivirus infection. Moreover, recapitulation of the entire RHV-rn1 infectious cycle in cell culture will facilitate reverse genetic studies and the exploration of tropism and virus-host interactions.
Collapse
Affiliation(s)
- Raphael Wolfisberg
- Copenhagen Hepatitis C ProgramDepartment of Infectious DiseasesHvidovre HospitalCopenhagenDenmark,Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Caroline E. Thorselius
- Copenhagen Hepatitis C ProgramDepartment of Infectious DiseasesHvidovre HospitalCopenhagenDenmark,Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Eduardo Salinas
- Emory Vaccine CenterDivision of Microbiology and ImmunologyYerkes Research Primate CenterEmory University School of MedicineAtlantaGeorgiaUSA,Division of Infectious DiseasesDepartment of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Elizabeth Elrod
- Emory Vaccine CenterDivision of Microbiology and ImmunologyYerkes Research Primate CenterEmory University School of MedicineAtlantaGeorgiaUSA,Division of Infectious DiseasesDepartment of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Sheetal Trivedi
- Center for Vaccines and ImmunityResearch Institute at Nationwide Children’s HospitalColumbusOhioUSA
| | - Louise Nielsen
- Copenhagen Hepatitis C ProgramDepartment of Infectious DiseasesHvidovre HospitalCopenhagenDenmark,Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C ProgramDepartment of Infectious DiseasesHvidovre HospitalCopenhagenDenmark,Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Amit Kapoor
- Center for Vaccines and ImmunityResearch Institute at Nationwide Children’s HospitalColumbusOhioUSA
| | - Arash Grakoui
- Emory Vaccine CenterDivision of Microbiology and ImmunologyYerkes Research Primate CenterEmory University School of MedicineAtlantaGeorgiaUSA,Division of Infectious DiseasesDepartment of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Charles M. Rice
- Laboratory of Virology and Infectious DiseaseThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Jens Bukh
- Copenhagen Hepatitis C ProgramDepartment of Infectious DiseasesHvidovre HospitalCopenhagenDenmark,Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Kenn Holmbeck
- Copenhagen Hepatitis C ProgramDepartment of Infectious DiseasesHvidovre HospitalCopenhagenDenmark,Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Troels K. H. Scheel
- Copenhagen Hepatitis C ProgramDepartment of Infectious DiseasesHvidovre HospitalCopenhagenDenmark,Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark,Laboratory of Virology and Infectious DiseaseThe Rockefeller UniversityNew YorkNew YorkUSA
| |
Collapse
|
16
|
Gömer A, Delarocque J, Puff C, Nocke MK, Reinecke B, Baumgärtner W, Cavalleri JMV, Feige K, Steinmann E, Todt D. Dose-Dependent Hepacivirus Infection Reveals Linkage between Infectious Dose and Immune Response. Microbiol Spectr 2022; 10:e0168622. [PMID: 35993785 PMCID: PMC9602444 DOI: 10.1128/spectrum.01686-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/03/2022] [Indexed: 12/31/2022] Open
Abstract
More than 70 million people worldwide are still infected with the hepatitis C virus 30 years after its discovery, underscoring the need for a vaccine. To develop an effective prophylactic vaccine, detailed knowledge of the correlates of protection and an immunocompetent surrogate model are needed. In this study, we describe the minimum dose required for robust equine hepacivirus (EqHV) infection in equids and examined how this relates to duration of infection, seroconversion, and transcriptomic responses. To investigate mechanisms of hepaciviral persistence, immune response, and immune-mediated pathology, we inoculated eight EqHV naive horses with doses ranging from 1-2 copies to 1.3 × 106 RNA copies per inoculation. We characterized infection kinetics, pathology, and transcriptomic responses via next generation sequencing. The minimal infectious dose of EqHV in horses was estimated at 13 RNA copies, whereas 6 to 7 copies were insufficient to cause infection. Peak viremia did not correlate with infectious dose, while seroconversion and duration of infection appeared to be affected. Notably, seroconversion was undetectable in the low-dose infections within the surveillance period (40 to 50 days). In addition, transcriptomic analysis revealed a nearly dose-dependent effect, with greater immune activation and inflammatory response observed in high-dose infections than in low-dose infections. Interestingly, inoculation with 6-7 copies of RNA that did not result in productive infection, but was associated with a strong immune response, similar to that observed in the high-dose infections. IMPORTANCE We demonstrate that the EqHV dose of infection plays an important role for inducing immune responses, possibly linked to early clearance in high-dose and prolonged viremia in low-dose infections. In particular, pathways associated with innate and adaptive immune responses, as well as inflammatory responses, were more strongly upregulated in high-dose infections than in lower doses. Hence, inoculation with low doses may enable EqHV to evade strong immune responses in the early phase and therefore promote robust, long-lasting infection.
Collapse
Affiliation(s)
- André Gömer
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Julien Delarocque
- Clinic for Horses, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Maximilian K. Nocke
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Birthe Reinecke
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hanover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Jessika M. V. Cavalleri
- Clinical Section of Equine Internal Medicine, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| |
Collapse
|
17
|
Li Y, Bletsa M, Zisi Z, Boonen I, Gryseels S, Kafetzopoulou L, Webster JP, Catalano S, Pybus OG, Van de Perre F, Li H, Li Y, Li Y, Abramov A, Lymberakis P, Lemey P, Lequime S. Endogenous Viral Elements in Shrew Genomes Provide Insights into Pestivirus Ancient History. Mol Biol Evol 2022; 39:msac190. [PMID: 36063436 PMCID: PMC9550988 DOI: 10.1093/molbev/msac190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As viral genomic imprints in host genomes, endogenous viral elements (EVEs) shed light on the deep evolutionary history of viruses, ancestral host ranges, and ancient viral-host interactions. In addition, they may provide crucial information for calibrating viral evolutionary timescales. In this study, we conducted a comprehensive in silico screening of a large data set of available mammalian genomes for EVEs deriving from members of the viral family Flaviviridae, an important group of viruses including well-known human pathogens, such as Zika, dengue, or hepatitis C viruses. We identified two novel pestivirus-like EVEs in the reference genome of the Indochinese shrew (Crocidura indochinensis). Homologs of these novel EVEs were subsequently detected in vivo by molecular detection and sequencing in 27 shrew species, including 26 species representing a wide distribution within the Crocidurinae subfamily and one in the Soricinae subfamily on different continents. Based on this wide distribution, we estimate that the integration event occurred before the last common ancestor of the subfamily, about 10.8 million years ago, attesting to an ancient origin of pestiviruses and Flaviviridae in general. Moreover, we provide the first description of Flaviviridae-derived EVEs in mammals even though the family encompasses numerous mammal-infecting members. This also suggests that shrews were past and perhaps also current natural reservoirs of pestiviruses. Taken together, our results expand the current known Pestivirus host range and provide novel insight into the ancient evolutionary history of pestiviruses and the Flaviviridae family in general.
Collapse
Affiliation(s)
- Yiqiao Li
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Magda Bletsa
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Zafeiro Zisi
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Ine Boonen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Sophie Gryseels
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Belgium Evolutionary Ecology Group, University of Antwerp, 2610 Wilrijk, Belgium
| | - Liana Kafetzopoulou
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Virology Department, Belgium Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Joanne P Webster
- Department of Pathobiology and Population Science, Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - Stefano Catalano
- Department of Pathobiology and Population Science, Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - Oliver G Pybus
- Department of Pathobiology and Population Science, Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | | | - Haotian Li
- Marine College, Shandong University (Weihai), 264209 Weihai, China
| | - Yaoyao Li
- Marine College, Shandong University (Weihai), 264209 Weihai, China
| | - Yuchun Li
- Marine College, Shandong University (Weihai), 264209 Weihai, China
| | - Alexei Abramov
- Laboratory of Theriology, Zoological Institute of the Russian Academy of Sciences, 190121 Saint Petersburg, Russia
| | | | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Sébastian Lequime
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, the Netherlands
| |
Collapse
|
18
|
Pacchiarotti G, Nardini R, Scicluna MT. Equine Hepacivirus: A Systematic Review and a Meta-Analysis of Serological and Biomolecular Prevalence and a Phylogenetic Update. Animals (Basel) 2022; 12:2486. [PMID: 36230228 PMCID: PMC9558973 DOI: 10.3390/ani12192486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Viral hepatitis has recently assumed relevance for equine veterinary medicine since a variety of new viruses have been discovered. Equine Hepacivirus (EqHV) is an RNA virus belonging to the Flaviviridae family that can cause subclinical hepatitis in horses, occasionally evolving into a chronic disease. EqHV, to date, is considered the closest known relative of human HCV. EqHV has been reported worldwide therefore assessing its features is relevant, considering both the wide use of blood products and transfusions in veterinary therapies and its similitude to HCV. The present review resumes the actual knowledge on EqHV epidemiology, risk factors and immunology, together with potential diagnostics and good practices for prevention. Moreover, adhering to PRISMA guidelines for systematic reviews a meta-analysis of serological and biomolecular prevalence and an updated phylogenetic description is presented as a benchmark for further studies.
Collapse
|
19
|
Severe Acute Hepatitis Outbreaks Associated with a Novel Hepacivirus in Rhizomys pruinosus in Hainan, China. J Virol 2022; 96:e0078222. [PMID: 36005760 PMCID: PMC9472637 DOI: 10.1128/jvi.00782-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Hepacivirus have a broad range of hosts, with at least 14 species identified. To date, a highly pathogenic hepacivirus causing severe disease in animals has not been found. Here, by using high-throughput sequencing, a new hepacivirus was identified as the dominant and highly pathogenic virus in severe acute hepatitis outbreaks in bamboo rats (Rhizomys pruinosus), with ≈80% mortality; this virus emerged in February 2020 in two bamboo rat farms in China. Hepaciviral genome copies in bamboo rat liver were significantly higher than in other organs. Genomic sequences of hepacivirus strains from 12 sick bamboo rats were found to share 85.3 to 100% nucleotide (nt) identity and 94.9 to 100% amino acid (aa) identity and to share 79.7 to 87.8% nt and 90.4 to 97.8% aa identities with previously reported bamboo rat hepaciviruses of Vietnam and China. Sequence analysis further revealed the simultaneous circulation of genetically divergent hepacivirus variants within the two outbreaks. Phylogenetic analysis showed that hepacivirus strains from the present and previous studies formed an independent clade comprised of at least two genotypes, clearly different from all other known species, suggesting a novel species within the genus Hepacivirus. This is the first report of a non-human-infecting hepacivirus causing potentially fatal infection of bamboo rats, and the associated hepatitis in the animals potentially can be used to develop a surrogate model for the study of hepatitis C virus infection in humans and for the development of therapeutic strategies. IMPORTANCE Members of the genus Hepacivirus have a broad host range, with at least 14 species identified, but none is highly pathogenic to its host except for hepatitis C virus, which causes severe liver diseases in humans. In this study, a new liver-tropic hepacivirus species was identified by high-throughput sequencing as the pathogen associated with two outbreaks of severely acute hepatitis in hoary bamboo rats (Rhizomys pruinosus) on two farms in Hainan Province, China; this is the first reported highly pathogenic animal hepacivirus to our knowledge. Further phylogenetic analysis suggested that the hepaciviruses derived from hoary bamboo rats in either the current or previous studies represent a novel species within the genus Hepacivirus. This finding is a breakthrough that has significantly updated our understanding about the pathogenicity of animal hepaciviruses, and the hepacivirus-associated hepatitis in bamboo rats may have a use as an animal infection model to understand HCV infection and develop therapeutic strategies.
Collapse
|
20
|
Bamford CGG, Aranday-Cortes E, Sanchez-Velazquez R, Mullan C, Kohl A, Patel AH, Wilson SJ, McLauchlan J. A Human and Rhesus Macaque Interferon-Stimulated Gene Screen Shows That Over-Expression of ARHGEF3/XPLN Inhibits Replication of Hepatitis C Virus and Other Flavivirids. Viruses 2022; 14:v14081655. [PMID: 36016278 PMCID: PMC9414520 DOI: 10.3390/v14081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022] Open
Abstract
Natural hepatitis C virus (HCV) infection is restricted to humans, whereas other primates such as rhesus macaques are non-permissive for infection. To identify human and rhesus macaque genes that differ or share the ability to inhibit HCV replication, we conducted a medium-throughput screen of lentivirus-expressed host genes that disrupt replication of HCV subgenomic replicon RNA expressing secreted Gaussia luciferase. A combined total of >800 interferon-stimulated genes (ISGs) were screened. Our findings confirmed established anti-HCV ISGs, such as IRF1, PKR and DDX60. Novel species−specific inhibitors were also identified and independently validated. Using a cell-based system that recapitulates productive HCV infection, we identified that over-expression of the ‘Rho Guanine Nucleotide Exchange Factor 3’ gene (ARHGEF3) from both species inhibits full-length virus replication. Additionally, replication of two mosquito-borne flaviviruses, yellow fever virus (YFV) and Zika virus (ZIKV), were also reduced in cell lines over-expressing ARHGEF3 compared to controls. In conclusion, we ascribe novel antiviral activity to the cellular gene ARHGEF3 that inhibits replication of HCV and other important human viral pathogens belonging to the Flaviviridae, and which is conserved between humans and rhesus macaques.
Collapse
Affiliation(s)
- Connor G. G. Bamford
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK
| | - Elihu Aranday-Cortes
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
| | - Ricardo Sanchez-Velazquez
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
- BioNTech SE, 55131 Mainz, Germany
| | - Catrina Mullan
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
| | - Sam J. Wilson
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
| | - John McLauchlan
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
- Correspondence:
| |
Collapse
|
21
|
de Martinis C, Cardillo L, Esposito C, Viscardi M, Barca L, Cavallo S, D'Alessio N, Martella V, Fusco G. First identification of bovine hepacivirus in wild boars. Sci Rep 2022; 12:11678. [PMID: 35804025 PMCID: PMC9270363 DOI: 10.1038/s41598-022-15928-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/01/2022] [Indexed: 11/11/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic hepatitis, cirrhosis and hepatocellular carcinoma in humans. Humans were long considered the only hosts of Hepacivirus. Recently HCV-like sequences have been found in several animal species. Hepaciviruses are considered species-specific but a wider host range and a zoonotic role has been hypothesized. We report the first detection of bovine hepacivirus (BovHepV) sequences in wild boars. A total of 310 wild boars hunted in Campania region were investigated with a pan-hepacivirus nested-PCR protocol for the NS3 gene. Hepacivirus RNA was detected in 5.8% of the animals. Sequence and phylogenetic analysis showed high homology with BovHepV subtype F, with nucleotide identity of 99%. The positive wild boars were georeferenced, revealing high density of livestock farms, with no clear distinction between animal husbandry and hunting areas. These findings might suggest the ability of BovHepV to cross the host-species barrier and infect wild boars.
Collapse
Affiliation(s)
- Claudio de Martinis
- Unit of Exotic and Vector-Borne Diseases, Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055, Portici, Naples, Italy
| | - Lorena Cardillo
- Unit of Exotic and Vector-Borne Diseases, Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055, Portici, Naples, Italy.
| | - Claudia Esposito
- Unit of Exotic and Vector-Borne Diseases, Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055, Portici, Naples, Italy
| | - Maurizio Viscardi
- Unit of Exotic and Vector-Borne Diseases, Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055, Portici, Naples, Italy
| | - Lorella Barca
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Calabria Section, Cosenza, Italy
| | - Stefania Cavallo
- Department of Epidemiologic and Biostatistic Regional Observatory (OREB), Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, Italy
| | - Nicola D'Alessio
- Unit of Exotic and Vector-Borne Diseases, Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055, Portici, Naples, Italy
| | - Vito Martella
- Department of Veterinary Medicine, Aldo Moro" University, Bari, Italy
| | - Giovanna Fusco
- Unit of Exotic and Vector-Borne Diseases, Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055, Portici, Naples, Italy
| |
Collapse
|
22
|
Expanded Diversity and Host Range of Bovine Hepacivirus—Genomic and Serological Evidence in Domestic and Wild Ruminant Species. Viruses 2022; 14:v14071457. [PMID: 35891438 PMCID: PMC9319978 DOI: 10.3390/v14071457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
The hepatitis C virus (HCV)-related bovine hepacivirus (BovHepV) can cause acute as well as persistent infections in cattle. The true clinical relevance of the virus is not yet known. As reliable antibody detection methods are lacking and prevalence studies have only been conducted in cattle and few countries to date, the true distribution, genetic diversity, and host range is probably greatly underestimated. In this study, we applied several RT-PCR methods and a nano-luciferase-based immunoprecipitation system (LIPS) assay to analyze bovine serum samples from Bulgaria as well as wild ruminant sera from Germany and the Czech Republic. Using these methods, BovHepV infections were confirmed in Bulgarian cattle, with viral genomes detected in 6.9% and serological reactions against the BovHepV NS3 helicase domain in 10% of bovine serum samples. Genetic analysis demonstrated co-circulation of highly diverse BovHepV strains in Bulgarian cattle, and three novel BovHepV subtypes within the genotype 1 could be defined. Furthermore, application of a nested RT-PCR led to the first description of a BovHepV variant (genotype 2) in a wild ruminant species. The results of this study significantly enhance our knowledge of BovHepV distribution, genetic diversity, and host range.
Collapse
|
23
|
An Equine Model for Vaccination against a Hepacivirus: Insights into Host Responses to E2 Recombinant Protein Vaccination and Subsequent Equine Hepacivirus Inoculation. Viruses 2022; 14:v14071401. [PMID: 35891381 PMCID: PMC9318657 DOI: 10.3390/v14071401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 12/10/2022] Open
Abstract
Equine hepacivirus (EqHV) is the closest known genetic homologue of hepatitis C virus. An effective prophylactic vaccine is currently not available for either of these hepaciviruses. The equine as potential surrogate model for hepacivirus vaccine studies was investigated, while equine host responses following vaccination with EqHV E2 recombinant protein and subsequent EqHV inoculation were elucidated. Four ponies received prime and booster vaccinations (recombinant protein, adjuvant) four weeks apart (day −55 and −27). Two control ponies received adjuvant only. Ponies were inoculated with EqHV RNA-positive plasma on day 0. Blood samples and liver biopsies were collected over 26 weeks (day −70 to +112). Serum analyses included detection of EqHV RNA, isotypes of E2-specific immunoglobulin G (IgG), nonstructural protein 3-specific IgG, haematology, serum biochemistry, and metabolomics. Liver tissue analyses included EqHV RNA detection, RNA sequencing, histopathology, immunohistochemistry, and fluorescent in situ hybridization. Al-though vaccination did not result in complete protective immunity against experimental EqHV inoculation, the majority of vaccinated ponies cleared the serum EqHV RNA earlier than the control ponies. The majority of vaccinated ponies appeared to recover from the EqHV-associated liver insult earlier than the control ponies. The equine model shows promise as a surrogate model for future hepacivirus vaccine research.
Collapse
|
24
|
Isken O, Walther T, Wong-Dilworth L, Rehders D, Redecke L, Tautz N. Identification of NS2 determinants stimulating intrinsic HCV NS2 protease activity. PLoS Pathog 2022; 18:e1010644. [PMID: 35727826 PMCID: PMC9249167 DOI: 10.1371/journal.ppat.1010644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/01/2022] [Accepted: 06/02/2022] [Indexed: 11/19/2022] Open
Abstract
Hepatitis C Virus NS2-NS3 cleavage is mediated by NS2 autoprotease (NS2pro) and this cleavage is important for genome replication and virus assembly. Efficient NS2-NS3 cleavage relies on the stimulation of an intrinsic NS2pro activity by the NS3 protease domain. NS2pro activation depends on conserved hydrophobic NS3 surface residues and yet unknown NS2-NS3 surface interactions. Guided by an in silico NS2-NS3 precursor model, we experimentally identified two NS2 surface residues, F103 and L144, that are important for NS2pro activation by NS3. When analyzed in the absence of NS3, a combination of defined amino acid exchanges, namely F103A and L144I, acts together to increase intrinsic NS2pro activity. This effect is conserved between different HCV genotypes. For mutation L144I its stimulatory effect on NS2pro could be also demonstrated for two other mammalian hepaciviruses, highlighting the functional significance of this finding. We hypothesize that the two exchanges stimulating the intrinsic NS2pro activity mimic structural changes occurring during NS3-mediated NS2pro activation. Introducing these activating NS2pro mutations into a NS2-NS5B replicon reduced NS2-NS3 cleavage and RNA replication, indicating their interference with NS2-NS3 surface interactions pivotal for NS2pro activation by NS3. Data from chimeric hepaciviral NS2-NS3 precursor constructs, suggest that NS2 F103 is involved in the reception or transfer of the NS3 stimulus by NS3 P115. Accordingly, fine-tuned NS2-NS3 surface interactions are a salient feature of HCV NS2-NS3 cleavage. Together, these novel insights provide an exciting basis to dissect molecular mechanisms of NS2pro activation by NS3.
Collapse
Affiliation(s)
- Olaf Isken
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | - Thomas Walther
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | - Luis Wong-Dilworth
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | - Dirk Rehders
- Institute of Biochemistry, University of Luebeck, Luebeck, Germany
| | - Lars Redecke
- Institute of Biochemistry, University of Luebeck, Luebeck, Germany
- Deutsches Elektronen Synchrotron (DESY), Photon Science, Hamburg, Germany
| | - Norbert Tautz
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
- * E-mail:
| |
Collapse
|
25
|
Stapleton JT. Human Pegivirus Type 1: A Common Human Virus That Is Beneficial in Immune-Mediated Disease? Front Immunol 2022; 13:887760. [PMID: 35707535 PMCID: PMC9190258 DOI: 10.3389/fimmu.2022.887760] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022] Open
Abstract
Two groups identified a novel human flavivirus in the mid-1990s. One group named the virus hepatitis G virus (HGV) and the other named it GB Virus type C (GBV-C). Sequence analyses found these two isolates to be the same virus, and subsequent studies found that the virus does not cause hepatitis despite sharing genome organization with hepatitis C virus. Although HGV/GBV-C infection is common and may cause persistent infection in humans, the virus does not appear to directly cause any other known disease state. Thus, the virus was renamed “human pegivirus 1” (HPgV-1) for “persistent G” virus. HPgV-1 is found primarily in lymphocytes and not hepatocytes, and several studies found HPgV-1 infection associated with prolonged survival in people living with HIV. Co-infection of human lymphocytes with HPgV-1 and HIV inhibits HIV replication. Although three viral proteins directly inhibit HIV replication in vitro, the major effects of HPgV-1 leading to reduced HIV-related mortality appear to result from a global reduction in immune activation. HPgV-1 specifically interferes with T cell receptor signaling (TCR) by reducing proximal activation of the lymphocyte specific Src kinase LCK. Although TCR signaling is reduced, T cell activation is not abolished and with sufficient stimulus, T cell functions are enabled. Consequently, HPgV-1 is not associated with immune suppression. The HPgV-1 immunomodulatory effects are associated with beneficial outcomes in other diseases including Ebola virus infection and possibly graft-versus-host-disease following stem cell transplantation. Better understanding of HPgV-1 immune escape and mechanisms of inflammation may identify novel therapies for immune-based diseases.
Collapse
Affiliation(s)
- Jack T. Stapleton
- Medicine Service, Iowa City Veterans Administration Healthcare, Iowa City, IA, United States
- Departments of Internal Medicine, Microbiology & Immunology, University of Iowa, Iowa City, IA, United States
- *Correspondence: Jack T. Stapleton,
| |
Collapse
|
26
|
Gömer A, Puff C, Reinecke B, Bracht S, Conze M, Baumgärtner W, Steinmann J, Feige K, Cavalleri JMV, Steinmann E, Todt D. Experimental cross-species infection of donkeys with equine hepacivirus and analysis of host immune signatures. ONE HEALTH OUTLOOK 2022; 4:9. [PMID: 35527255 PMCID: PMC9082851 DOI: 10.1186/s42522-022-00065-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The Equine Hepacivirus (EqHV) is an equine-specific and liver-tropic virus belonging to the diverse genus of Hepaciviruses. It was recently found in a large donkey (Equus asinus) cohort with a similar seroprevalence (30%), but lower rate of RNA-positive animals (0.3%) compared to horses. These rare infection events indicate either a lack of adaptation to the new host or a predominantly acute course of infection. METHODS In order to analyze the susceptibility and the course of EqHV infection in donkeys, we inoculated two adult female donkeys and one control horse intravenously with purified EqHV from a naturally infected horse. Liver biopsies were taken before and after inoculation to study changes in the transcriptome. RESULTS Infection kinetics were similar between the equids. All animals were EqHV PCR-positive from day three. EqHV RNA-levels declined when the animals seroconverted and both donkeys cleared the virus from the blood by week 12. Infection did not have an impact on the clinical findings and no significant histopathological differences were seen. Blood biochemistry revealed a mild increase in GLDH at the time of seroconversion in horses, which was less pronounced in donkeys. Transcriptomic analysis revealed a distinct set of differentially expressed genes, including viral host factors and immune genes. CONCLUSION To summarize, our findings indicate that donkeys are a natural host of EqHV, due to the almost identical infection kinetics. The different immune responses do however suggest different mechanisms in reacting to hepaciviral infections.
Collapse
Affiliation(s)
- André Gömer
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Birthe Reinecke
- Institute of Experimental Virology, TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany
| | - Stephanie Bracht
- Institute of Experimental Virology, TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany
| | - Maria Conze
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jörg Steinmann
- Institute of Medical Microbiology, University of Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, General Hospital Nürnberg, Paracelsus Medical University, Nürnberg, Germany
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jessika M V Cavalleri
- Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna (Vetmeduni), Vienna, Austria
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany.
- European Virus Bioinformatics Center (EVBC), Jena, Germany.
| |
Collapse
|
27
|
Bezerra CDS, Limeira CH, Monteiro dos Anjos D, Nogueira DB, Morais DDA, Falcão BMR, Alves CJ, Santos CDSAB, Silva MLCR, de Azevedo SS. Global prevalence of RNA-positive horses for hepacivirus (EqHV): systematic review and meta-analysis. J Equine Vet Sci 2022; 114:104003. [DOI: 10.1016/j.jevs.2022.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
|
28
|
A Highly Divergent Hepacivirus Identified in Domestic Ducks Further Reveals the Genetic Diversity of Hepaciviruses. Viruses 2022; 14:v14020371. [PMID: 35215964 PMCID: PMC8879383 DOI: 10.3390/v14020371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
Hepaciviruses represent a group of viruses that pose a significant threat to the health of humans and animals. During the last decade, new members of the genus Hepacivirus have been identified in various host species worldwide, indicating the widespread distribution of genetically diversified hepaciviruses among animals. By applying unbiased high-throughput sequencing, a novel hepacivirus, provisionally designated Hepacivirus Q, was discovered in duck liver samples collected in Guangdong province of China. Genetic analysis revealed that the complete polyprotein of Hepacivirus Q shares 23.9–46.6% amino acid identity with other representatives of the genus Hepacivirus. Considering the species demarcation criteria for hepaciviruses, Hepacivirus Q should be regarded as a novel hepacivirus species of the genus Hepacivirus within the family Flaviviridae. Phylogenetic analyses also indicate the large genetic distance between Hepacivirus Q and other known hepaciviruses. Molecular detection of this novel hepacivirus showed an overall prevalence of 15.9% in duck populations in partial areas of Guangdong province. These results expand knowledge about the genetic diversity and evolution of hepaciviruses and indicate that genetically divergent hepaciviruses are circulating in duck populations in China.
Collapse
|
29
|
Gömer A, Brown RJP, Pfaender S, Deterding K, Reuter G, Orton R, Seitz S, Bock CT, Cavalleri JMV, Pietschmann T, Wedemeyer H, Steinmann E, Todt D. OUP accepted manuscript. Virus Evol 2022; 8:veac007. [PMID: 35242360 PMCID: PMC8887644 DOI: 10.1093/ve/veac007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Even 30 years after the discovery of the hepatitis C virus (HCV) in humans there is still no vaccine available. Reasons for this include the high mutation rate of HCV, which allows the virus to escape immune recognition and the absence of an immunocompetent animal model for vaccine development. Phylogenetically distinct hepaciviruses (genus Hepacivirus, family Flaviviridae) have been isolated from diverse species, each with a narrow host range: the equine hepacivirus (EqHV) is the closest known relative of HCV. In this study, we used amplicon-based deep-sequencing to investigate the viral intra-host population composition of the genomic regions encoding the surface glycoproteins E1 and E2. Patterns of E1E2 substitutional evolution were compared in longitudinally sampled EqHV-positive sera of naturally and experimentally infected horses and HCV-positive patients. Intra-host virus diversity was higher in chronically than in acutely infected horses, a pattern which was similar in the HCV-infected patients. However, overall glycoprotein variability was higher in HCV compared to EqHV. Additionally, selection pressure in HCV populations was higher, especially within the N-terminal region of E2, corresponding to the hypervariable region 1 (HVR1) in HCV. An alignment of glycoprotein sequences from diverse hepaciviruses identified the HVR1 as a unique characteristic of HCV: hepaciviruses from non-human species lack this region. Together, these data indicate that EqHV infection of horses could represent a powerful surrogate animal model to gain insights into hepaciviral evolution and HCVs HVR1-mediated immune evasion strategy.
Collapse
Affiliation(s)
| | | | - Stephanie Pfaender
- Department for Molecular and Medical Virology, Ruhr University Bochum, Universitätsstr. 150, Bochum 44801, Germany
| | - Katja Deterding
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
- German Center for Infectious Disease Research (DZIF), HepNet Study-House, Hannover 30625, Germany
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., Pécs 7624, Hungary
| | | | - Stefan Seitz
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg 69120, Germany
| | - C- Thomas Bock
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin 13353, Germany
| | - Jessika M V Cavalleri
- Clinical Unit of Equine Internal Medicine, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna 1210, Austria
| | - Thomas Pietschmann
- Twincore, Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, Hannover 30625, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig Site, Hannover 30625, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover 30625, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
- German Center for Infectious Disease Research (DZIF), HepNet Study-House, Hannover 30625, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Universitätsstr. 150, Bochum 44801, Germany
| | | |
Collapse
|
30
|
An CH, Li J, Wang YT, Nie SM, Chang WH, Zhou H, Xu L, Sun YX, Shi WF, Li CX. Identification of a Novel Hepacivirus in Mongolian Gerbil (Meriones unguiculatus) from Shaanxi, China. Virol Sin 2022; 37:307-310. [PMID: 35248515 PMCID: PMC9170912 DOI: 10.1016/j.virs.2022.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/10/2021] [Indexed: 01/01/2023] Open
Abstract
The first hepacivirus detected in Mongolian gerbils from a plague zones in China. A novel hepacivirus closely related to hepacivirus E and F. Mongolian gerbils could be a potential animal model for hepacivirus pathogenicity. Extending the genetic diversity and host range of hepaciviruses.
Collapse
|
31
|
Chang WS, Rose K, Holmes EC. Meta-transcriptomic analysis of the virome and microbiome of the invasive Indian myna ( Acridotheres tristis) in Australia. One Health 2021; 13:100360. [PMID: 34917744 PMCID: PMC8666354 DOI: 10.1016/j.onehlt.2021.100360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/03/2022] Open
Abstract
Invasive species exert a serious impact on native fauna and flora and have become the target of eradication and management efforts worldwide. Invasive avian species can also be important pathogen reservoirs, although their viromes and microbiomes have rarely been studied. As one of the top 100 invasive pest species globally, the expansion of Indian mynas (Acridotheres tristis) into peri-urban and rural environments, in conjunction with increasing free-ranging avian agricultural practices, may increase the risk of microbial pathogens jumping species boundaries. Herein, we used a meta-transcriptomic approach to explore the microbes present in brain, liver and large intestine of 16 invasive Indian myna birds in Sydney, Australia. From this, we discovered seven novel viruses from the families Adenoviridae, Caliciviridae, Flaviviridae, Parvoviridae and Picornaviridae. Interestingly, each of the novel viruses identified shared less than 80% genomic similarity with their closest relatives from other avian species, indicative of a lack of detectable virus transmission between invasive mynas to native or domestic species. Of note, we also identified two coccidian protozoa, Isospora superbusi and Isospora greineri, from the liver and gut tissues of mynas. Overall, these data demonstrate that invasive mynas can harbor a diversity of viruses and other microorganisms such that ongoing pathogen surveillance in this species is warranted.
Collapse
Affiliation(s)
- Wei-Shan Chang
- School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Karrie Rose
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia
| | - Edward C Holmes
- School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
32
|
Tomlinson JE, Wolfisberg R, Fahnøe U, Patel RS, Trivedi S, Kumar A, Sharma H, Nielsen L, McDonough SP, Bukh J, Tennant BC, Kapoor A, Rosenberg BR, Rice CM, Divers TJ, Van de Walle GR, Scheel TK. Pathogenesis, MicroRNA-122 Gene-Regulation, and Protective Immune Responses After Acute Equine Hepacivirus Infection. Hepatology 2021; 74:1148-1163. [PMID: 33713356 PMCID: PMC8435542 DOI: 10.1002/hep.31802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Equine hepacivirus (EqHV) is phylogenetically the closest relative of HCV and shares genome organization, hepatotropism, transient or persistent infection outcome, and the ability to cause hepatitis. Thus, EqHV studies are important to understand equine liver disease and further as an outbred surrogate animal model for HCV pathogenesis and protective immune responses. Here, we aimed to characterize the course of EqHV infection and associated protective immune responses. APPROACH AND RESULTS Seven horses were experimentally inoculated with EqHV, monitored for 6 months, and rechallenged with the same and, subsequently, a heterologous EqHV. Clearance was the primary outcome (6 of 7) and was associated with subclinical hepatitis characterized by lymphocytic infiltrate and individual hepatocyte necrosis. Seroconversion was delayed and antibody titers waned slowly. Clearance of primary infection conferred nonsterilizing immunity, resulting in shortened duration of viremia after rechallenge. Peripheral blood mononuclear cell responses in horses were minimal, although EqHV-specific T cells were identified. Additionally, an interferon-stimulated gene signature was detected in the liver during EqHV infection, similar to acute HCV in humans. EqHV, as HCV, is stimulated by direct binding of the liver-specific microRNA (miR), miR-122. Interestingly, we found that EqHV infection sequesters enough miR-122 to functionally affect gene regulation in the liver. This RNA-based mechanism thus could have consequences for pathology. CONCLUSIONS EqHV infection in horses typically has an acute resolving course, and the protective immune response lasts for at least a year and broadly attenuates subsequent infections. This could have important implications to achieve the primary goal of an HCV vaccine; to prevent chronicity while accepting acute resolving infection after virus exposure.
Collapse
Affiliation(s)
- Joy E. Tomlinson
- Baker Institute for Animal HealthCornell University College of Veterinary MedicineIthacaNY
| | - Raphael Wolfisberg
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Roosheel S. Patel
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Sheetal Trivedi
- Center for Vaccines and ImmunityResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Arvind Kumar
- Center for Vaccines and ImmunityResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Himanshu Sharma
- Center for Vaccines and ImmunityResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Louise Nielsen
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Sean P. McDonough
- Department of Biomedical SciencesCornell University College of Veterinary MedicineIthacaNY
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Bud C. Tennant
- Department of Clinical SciencesCornell University College of Veterinary MedicineIthacaNY
| | - Amit Kapoor
- Center for Vaccines and ImmunityResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Brad R. Rosenberg
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Charles M. Rice
- Laboratory of Virology and Infectious DiseaseThe Rockefeller UniversityNew YorkNY
| | - Thomas J. Divers
- Department of Clinical SciencesCornell University College of Veterinary MedicineIthacaNY
| | | | - Troels K.H. Scheel
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark,Laboratory of Virology and Infectious DiseaseThe Rockefeller UniversityNew YorkNY
| |
Collapse
|
33
|
Saied AA, Metwally AA, Mohamed HMA, Haridy MAM. The contribution of bovines to human health against viral infections. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46999-47023. [PMID: 34272669 PMCID: PMC8284698 DOI: 10.1007/s11356-021-14941-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/12/2021] [Indexed: 04/12/2023]
Abstract
In the last 40 years, novel viruses have evolved at a much faster pace than other pathogens. Viral diseases pose a significant threat to public health around the world. Bovines have a longstanding history of significant contributions to human nutrition, agricultural, industrial purposes, medical research, drug and vaccine development, and livelihood. The life cycle, genomic structures, viral proteins, and pathophysiology of bovine viruses studied in vitro paved the way for understanding the human counterparts. Calf model has been used for testing vaccines against RSV, papillomavirus vaccines and anti-HCV agents were principally developed after using the BPV and BVDV model, respectively. Some bovine viruses-based vaccines (BPIV-3 and bovine rotaviruses) were successfully developed, clinically tried, and commercially produced. Cows, immunized with HIV envelope glycoprotein, produced effective broadly neutralizing antibodies in their serum and colostrum against HIV. Here, we have summarized a few examples of human viral infections for which the use of bovines has contributed to the acquisition of new knowledge to improve human health against viral infections covering the convergence between some human and bovine viruses and using bovines as disease models. Additionally, the production of vaccines and drugs, bovine-based products were covered, and the precautions in dealing with bovines and bovine-based materials.
Collapse
Affiliation(s)
- AbdulRahman A Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt.
- Touristic Activities and Interior Offices Sector (Aswan Office), Ministry of Tourism and Antiquities, Aswan, 81511, Egypt.
| | - Asmaa A Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81511, Egypt
| | - Hams M A Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mohie A M Haridy
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
34
|
Tirera S, de Thoisy B, Donato D, Bouchier C, Lacoste V, Franc A, Lavergne A. The Influence of Habitat on Viral Diversity in Neotropical Rodent Hosts. Viruses 2021; 13:v13091690. [PMID: 34578272 PMCID: PMC8472065 DOI: 10.3390/v13091690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022] Open
Abstract
Rodents are important reservoirs of numerous viruses, some of which have significant impacts on public health. Ecosystem disturbances and decreased host species richness have been associated with the emergence of zoonotic diseases. In this study, we aimed at (a) characterizing the viral diversity in seven neotropical rodent species living in four types of habitats and (b) exploring how the extent of environmental disturbance influences this diversity. Through a metagenomic approach, we identified 77,767 viral sequences from spleen, kidney, and serum samples. These viral sequences were attributed to 27 viral families known to infect vertebrates, invertebrates, plants, and amoeba. Viral diversities were greater in pristine habitats compared with disturbed ones, and lowest in peri-urban areas. High viral richness was observed in savannah areas. Differences in these diversities were explained by rare viruses that were generally more frequent in pristine forest and savannah habitats. Moreover, changes in the ecology and behavior of rodent hosts, in a given habitat, such as modifications to the diet in disturbed vs. pristine forests, are major determinants of viral composition. Lastly, the phylogenetic relationships of four vertebrate-related viral families (Polyomaviridae, Flaviviridae, Togaviridae, and Phenuiviridae) highlighted the wide diversity of these viral families, and in some cases, a potential risk of transmission to humans. All these findings provide significant insights into the diversity of rodent viruses in Amazonia, and emphasize that habitats and the host’s dietary ecology may drive viral diversity. Linking viral richness and abundance to the ecology of their hosts and their responses to habitat disturbance could be the starting point for a better understanding of viral emergence and for future management of ecosystems.
Collapse
Affiliation(s)
- Sourakhata Tirera
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, BP 6010, 97306 Cayenne, France; (S.T.); (B.d.T.); (D.D.); (V.L.)
| | - Benoit de Thoisy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, BP 6010, 97306 Cayenne, France; (S.T.); (B.d.T.); (D.D.); (V.L.)
| | - Damien Donato
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, BP 6010, 97306 Cayenne, France; (S.T.); (B.d.T.); (D.D.); (V.L.)
| | | | - Vincent Lacoste
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, BP 6010, 97306 Cayenne, France; (S.T.); (B.d.T.); (D.D.); (V.L.)
- Département de Virologie, Institut Pasteur, 75015 Paris, France
- Arbovirus & Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 3560, Laos
| | - Alain Franc
- UMR BIOGECO, INRAE, University Bordeaux, 33612 Cestas, France;
- Pleiade, EPC INRIA-INRAE-CNRS, University Bordeaux, 33405 Talence, France
| | - Anne Lavergne
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, BP 6010, 97306 Cayenne, France; (S.T.); (B.d.T.); (D.D.); (V.L.)
- Correspondence:
| |
Collapse
|
35
|
Hartlage AS, Kapoor A. Hepatitis C Virus Vaccine Research: Time to Put Up or Shut Up. Viruses 2021; 13:1596. [PMID: 34452460 PMCID: PMC8402855 DOI: 10.3390/v13081596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 12/16/2022] Open
Abstract
Unless urgently needed to prevent a pandemic, the development of a viral vaccine should follow a rigorous scientific approach. Each vaccine candidate should be designed considering the in-depth knowledge of protective immunity, followed by preclinical studies to assess immunogenicity and safety, and lastly, the evaluation of selected vaccines in human clinical trials. The recently concluded first phase II clinical trial of a human hepatitis C virus (HCV) vaccine followed this approach. Still, despite promising preclinical results, it failed to protect against chronic infection, raising grave concerns about our understanding of protective immunity. This setback, combined with the lack of HCV animal models and availability of new highly effective antivirals, has fueled ongoing discussions of using a controlled human infection model (CHIM) to test new HCV vaccine candidates. Before taking on such an approach, however, we must carefully weigh all the ethical and health consequences of human infection in the absence of a complete understanding of HCV immunity and pathogenesis. We know that there are significant gaps in our knowledge of adaptive immunity necessary to prevent chronic HCV infection. This review discusses our current understanding of HCV immunity and the critical gaps that should be filled before embarking upon new HCV vaccine trials. We discuss the importance of T cells, neutralizing antibodies, and HCV genetic diversity. We address if and how the animal HCV-like viruses can be used for conceptualizing effective HCV vaccines and what we have learned so far from these HCV surrogates. Finally, we propose a logical but narrow path forward for HCV vaccine development.
Collapse
Affiliation(s)
- Alex S. Hartlage
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Medical Scientist Training Program, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43205, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
36
|
Abbadi I, Lkhider M, Kitab B, Jabboua K, Zaidane I, Haddaji A, Nacer S, Matsuu A, Pineau P, Tsukiyama-Kohara K, Benjelloun S, Ezzikouri S. Non-primate hepacivirus transmission and prevalence: Novel findings of virus circulation in horses and dogs in Morocco. INFECTION GENETICS AND EVOLUTION 2021; 93:104975. [PMID: 34175479 DOI: 10.1016/j.meegid.2021.104975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
Non-primate hepacivirus (NPHV) is a homolog of hepatitis C virus and has been isolated from dogs and horses. Data on NPHV prevalence and distribution are not complete, and there is a particular lack of reports from the African continent. The present study represents the first investigation of NPHV prevalence in horses and dogs in North Africa. Blood was collected from 172 horses and 36 dogs at different locations in Morocco, and screened for NPHV RNA using nested PCR targeting 5'UTR and NS3 regions and analyzed for anti-NPHV NS3 antibody using a Gaussia luciferase immunoprecipitation system-to determine seroprevalence. Eight sequences of the NS3 region isolated from positive serum samples were targeted for phylogenetic analysis. Horses and dogs showed respective NPHV RNA positivity rates of 10.5% and 5.5%, and seroprevalences of 65.7% and 8.33%. Juvenile horses appeared more susceptible to infection, with a 23.5% NHPV RNA positivity rate. Seropositivity was more extensive in mares than stallions (77.14% vs. 46.27%, p < 0.0001). Phylogenetically, that NPHV NS3 genes isolated from horses and dog are clustered together. The NPHV strains we detected showed no correlation with geographic location within Morocco. In conclusion, Moroccan horses showed much evidence of previous and/or current NPHV infection, with young age and female sex as noted potential risk factors. Interestingly, NPHV is circulating in dogs as well as horses, suggesting that it has crossed species barriers and that horses and dogs are potential vectors by which an ancestor to hepatitis C virus was transmitted into human populations.
Collapse
Affiliation(s)
- Islam Abbadi
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco; Laboratory of Biosciences, School of Sciences and Technology, Mohammedia, Hassan II University of Casablanca, Morocco
| | - Mustapha Lkhider
- Laboratory of Biosciences, School of Sciences and Technology, Mohammedia, Hassan II University of Casablanca, Morocco
| | - Bouchra Kitab
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | | | - Imane Zaidane
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Asmaa Haddaji
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Sabrine Nacer
- Laboratory of Biosciences, School of Sciences and Technology, Mohammedia, Hassan II University of Casablanca, Morocco
| | - Aya Matsuu
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Pascal Pineau
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, Paris, France
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.
| |
Collapse
|
37
|
Dilweg IW, Savina A, Köthe S, Gultyaev AP, Bredenbeek PJ, Olsthoorn RCL. All genera of Flaviviridae host a conserved Xrn1-resistant RNA motif. RNA Biol 2021; 18:2321-2329. [PMID: 33858294 PMCID: PMC8632102 DOI: 10.1080/15476286.2021.1907044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
After infection by flaviviruses like Zika and West Nile virus, eukaryotic hosts employ the well-conserved endoribonuclease Xrn1 to degrade the viral genomic RNA. Within the 3' untranslated regions, this enzyme encounters intricate Xrn1-resistant structures. This results in the accumulation of subgenomic flaviviral RNAs, an event that improves viral growth and aggravates viral pathogenicity. Xrn1-resistant RNAs have been established throughout the flaviviral genus, but not yet throughout the entire Flaviviridae family. In this work, we use previously determined characteristics of these structures to identify homologous sequences in many members of the genera pegivirus, hepacivirus and pestivirus. We used structural alignment and mutational analyses to establish that these sequences indeed represent Xrn1-resistant RNA and that they employ the general features of the flaviviral xrRNAs, consisting of a double pseudoknot formed by five base-paired regions stitched together by a crucial triple base interaction. Furthermore, we demonstrate that the pestivirus Bungowannah virus produces subgenomic RNA in vivo. Altogether, these results indicate that viruses make use of a universal Xrn1-resistant RNA throughout the Flaviviridae family.
Collapse
Affiliation(s)
- Ivar W Dilweg
- Leiden Institute of Chemistry, Leiden University, RA, Leiden, The Netherlands
| | - Anya Savina
- Leiden Institute of Chemistry, Leiden University, RA, Leiden, The Netherlands
| | - Susanne Köthe
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald, Germany
| | - Alexander P Gultyaev
- Leiden Institute of Advanced Computer Science, Leiden University, RA, Leiden, The Netherlands.,Department of Viroscience, Erasmus Medical Center, CA, Rotterdam, The Netherlands
| | - Peter J Bredenbeek
- Department of Medical Microbiology, Leiden University Medical Center, RC, Leiden, The Netherlands
| | - René C L Olsthoorn
- Leiden Institute of Chemistry, Leiden University, RA, Leiden, The Netherlands
| |
Collapse
|
38
|
Abstract
Laos is a landlocked country in South East Asia, ranking fifth for primary liver cancer incidence worldwide. Risk factors that might explain this worrying situation are poorly known. We conducted a review of the literature concerning the etiologies of terminal liver diseases in Laos. A double infectious burden with hepatitis B and C viruses and the liver fluke Opisthorchis viverrini seems to be the main cause of the high liver cancer incidence. Moreover, it was also suggested that mutagenic substances frequently found in tobacco, alcoholic beverages, fermented fish, and mold-contaminated cereals or nuts, which are all substances heavily consumed by Lao people, lead to the accumulation of DNA mutations in the liver cell genome causing tumor processes. However, the respective proportions of liver cancer cases attributable to each category of infections and substances consumed, as well as the histological nature of the neoplasia are still not precisely documented in Laos. The international medical and scientific communities as well as public health stakeholders should urgently consider the alarming situation of liver health in Laos to stimulate both research and subsequent implementation of prevention policies.
Collapse
|
39
|
Koonin EV, Dolja VV, Krupovic M. The healthy human virome: from virus-host symbiosis to disease. Curr Opin Virol 2021; 47:86-94. [PMID: 33652230 DOI: 10.1016/j.coviro.2021.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Viruses are ubiquitous, essential components of any ecosystem, and of multicellular organism holobionts. Numerous viruses cause acute infection, killing the host or being cleared by immune system. In many other cases, viruses coexist with the host as symbionts, either temporarily or for the duration of the host's life. Apparently, virus-host relationships span the entire range from aggressive parasitism to mutualism. Here we attempt to delineate the healthy human virome, that is, the entirety of viruses that are present in a healthy human body. The bulk of the healthy virome consists of bacteriophages infecting bacteria in the intestine and other locations. However, a variety of viruses, such as anelloviruses and herpesviruses, and the numerous endogenous retroviruses, persist by replicating in human cells, and these are our primary focus. Crucially, the boundary between symbiotic and pathogenic viruses is fluid such that members of the healthy virome can become pathogens under changing conditions.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France
| |
Collapse
|
40
|
Bletsa M, Vrancken B, Gryseels S, Boonen I, Fikatas A, Li Y, Laudisoit A, Lequime S, Bryja J, Makundi R, Meheretu Y, Akaibe BD, Mbalitini SG, Van de Perre F, Van Houtte N, Těšíková J, Wollants E, Van Ranst M, Pybus OG, Drexler JF, Verheyen E, Leirs H, Gouy de Bellocq J, Lemey P. Molecular detection and genomic characterization of diverse hepaciviruses in African rodents. Virus Evol 2021; 7:veab036. [PMID: 34221451 PMCID: PMC8242229 DOI: 10.1093/ve/veab036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV; genus Hepacivirus) represents a major public health problem, infecting about three per cent of the human population. Because no animal reservoir carrying closely related hepaciviruses has been identified, the zoonotic origins of HCV still remain unresolved. Motivated by recent findings of divergent hepaciviruses in rodents and a plausible African origin of HCV genotypes, we have screened a large collection of small mammals samples from seven sub-Saharan African countries. Out of 4,303 samples screened, eighty were found positive for the presence of hepaciviruses in twenty-nine different host species. We, here, report fifty-six novel genomes that considerably increase the diversity of three divergent rodent hepacivirus lineages. Furthermore, we provide strong evidence for hepacivirus co-infections in rodents, which were exclusively found in four sampled species of brush-furred mice. We also detect evidence of recombination within specific host lineages. Our study expands the available hepacivirus genomic data and contributes insights into the relatively deep evolutionary history of these pathogens in rodents. Overall, our results emphasize the importance of rodents as a potential hepacivirus reservoir and as models for investigating HCV infection dynamics.
Collapse
Affiliation(s)
- Magda Bletsa
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sophie Gryseels
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Ine Boonen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Antonios Fikatas
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Yiqiao Li
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | | | - Sebastian Lequime
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Josef Bryja
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Rhodes Makundi
- Pest Management Center -Sokoine University of Agriculture, Morogoro, Tanzania
| | - Yonas Meheretu
- Department of Biology and Institute of Mountain Research & Development, Mekelle University, Mekelle, Ethiopia
| | - Benjamin Dudu Akaibe
- Department of Ecology and Animal Resource Management, Faculty of Science, Biodiversity Monitoring Center, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Sylvestre Gambalemoke Mbalitini
- Department of Ecology and Animal Resource Management, Faculty of Science, Biodiversity Monitoring Center, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Frederik Van de Perre
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Natalie Van Houtte
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Jana Těšíková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Elke Wollants
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marc Van Ranst
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
| | - Jan Felix Drexler
- Charite-Universitatsmedizin Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Erik Verheyen
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
- OD Taxonomy and Phylogeny-Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Herwig Leirs
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | | | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Porter AF, Pettersson JHO, Chang WS, Harvey E, Rose K, Shi M, Eden JS, Buchmann J, Moritz C, Holmes EC. Novel hepaci- and pegi-like viruses in native Australian wildlife and non-human primates. Virus Evol 2020; 6:veaa064. [PMID: 33240526 PMCID: PMC7673076 DOI: 10.1093/ve/veaa064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Flaviviridae family of positive-sense RNA viruses contains important pathogens of humans and other animals, including Zika virus, dengue virus, and hepatitis C virus. The Flaviviridae are currently divided into four genera-Hepacivirus, Pegivirus, Pestivirus, and Flavivirus-each with a diverse host range. Members of the genus Hepacivirus are associated with an array of animal species, including humans, non-human primates, other mammalian species, as well as birds and fish, while the closely related pegiviruses have been identified in a variety of mammalian taxa, also including humans. Using a combination of total RNA and whole-genome sequencing we identified four novel hepaci-like viruses and one novel variant of a known hepacivirus in five species of Australian wildlife. The hosts infected comprised native Australian marsupials and birds, as well as a native gecko (Gehyra lauta). From these data we identified a distinct marsupial clade of hepaci-like viruses that also included an engorged Ixodes holocyclus tick collected while feeding on Australian long-nosed bandicoots (Perameles nasuta). Distinct lineages of hepaci-like viruses associated with geckos and birds were also identified. By mining the SRA database we similarly identified three new hepaci-like viruses from avian and primate hosts, as well as two novel pegi-like viruses associated with primates. The phylogenetic history of the hepaci- and pegi-like viruses as a whole, combined with co-phylogenetic analysis, provided support for virus-host co-divergence over the course of vertebrate evolution, although with frequent cross-species virus transmission. Overall, our work highlights the diversity of the Hepacivirus and Pegivirus genera as well as the uncertain phylogenetic distinction between.
Collapse
Affiliation(s)
- Ashleigh F Porter
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - John H-O Pettersson
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - Wei-Shan Chang
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - Erin Harvey
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman 2088, Australia
| | - Mang Shi
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - John-Sebastian Eden
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - Jan Buchmann
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - Craig Moritz
- Research School of Biology, Centre for Biodiversity Analysis, Australian National University, Acton, ACT, Australia
| | - Edward C Holmes
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
42
|
Tomlinson JE, Wolfisberg R, Fahnøe U, Sharma H, Renshaw RW, Nielsen L, Nishiuchi E, Holm C, Dubovi E, Rosenberg BR, Tennant BC, Bukh J, Kapoor A, Divers TJ, Rice CM, Van de Walle GR, Scheel TKH. Equine pegiviruses cause persistent infection of bone marrow and are not associated with hepatitis. PLoS Pathog 2020; 16:e1008677. [PMID: 32649726 PMCID: PMC7375656 DOI: 10.1371/journal.ppat.1008677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/22/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
Pegiviruses frequently cause persistent infection (as defined by >6 months), but unlike most other Flaviviridae members, no apparent clinical disease. Human pegivirus (HPgV, previously GBV-C) is detectable in 1–4% of healthy individuals and another 5–13% are seropositive. Some evidence for infection of bone marrow and spleen exists. Equine pegivirus 1 (EPgV-1) is not linked to disease, whereas another pegivirus, Theiler’s disease-associated virus (TDAV), was identified in an outbreak of acute serum hepatitis (Theiler’s disease) in horses. Although no subsequent reports link TDAV to disease, any association with hepatitis has not been formally examined. Here, we characterized EPgV-1 and TDAV tropism, sequence diversity, persistence and association with liver disease in horses. Among more than 20 tissue types, we consistently detected high viral loads only in serum, bone marrow and spleen, and viral RNA replication was consistently identified in bone marrow. PBMCs and lymph nodes, but not liver, were sporadically positive. To exclude potential effects of co-infecting agents in experimental infections, we constructed full-length consensus cDNA clones; this was enabled by determination of the complete viral genomes, including a novel TDAV 3’ terminus. Clone derived RNA transcripts were used for direct intrasplenic inoculation of healthy horses. This led to productive infection detectable from week 2–3 and persisting beyond the 28 weeks of study. We did not observe any clinical signs of illness or elevation of circulating liver enzymes. The polyprotein consensus sequences did not change, suggesting that both clones were fully functional. To our knowledge, this is the first successful extrahepatic viral RNA launch and the first robust reverse genetics system for a pegivirus. In conclusion, equine pegiviruses are bone marrow tropic, cause persistent infection in horses, and are not associated with hepatitis. Based on these findings, it may be appropriate to rename the group of TDAV and related viruses as EPgV-2. Transmissible hepatitis in horses (Theiler’s disease) has been known for 100 years without knowledge of causative infectious agents. Recently, two novel equine pegiviruses (EPgV) were discovered. Whereas EPgV-1 was not associated to disease, the other was identified in an outbreak of acute serum hepatitis and therefore named Theiler’s disease-associated virus (TDAV). This finding was surprising since human and monkey pegiviruses typically cause long-term infection without associated clinical disease. Whereas no subsequent reports link TDAV to disease, the original association to hepatitis has not been formally examined. Here, we studied EPgV-1 and TDAV and found that their natural history of infection in horses were remarkably similar. Examination of various tissues identified the bone marrow as the primary site of replication for both viruses with no evidence of replication in the liver. To exclude potential effects of other infectious agents, we developed molecular full-length clones for EPgV-1 and TDAV and were able to initiate infection in horses using derived synthetic viral genetic material. This demonstrated long-term infection, but no association with hepatitis. These findings call into question the connection between TDAV, liver infection, and hepatitis in horses.
Collapse
Affiliation(s)
- Joy E. Tomlinson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Raphael Wolfisberg
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Himanshu Sharma
- Center for Vaccines and Immunity, Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Randall W. Renshaw
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Louise Nielsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Eiko Nishiuchi
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Christina Holm
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Edward Dubovi
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Brad R. Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Bud C. Tennant
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Amit Kapoor
- Center for Vaccines and Immunity, Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Thomas J. Divers
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Troels K. H. Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
43
|
Novel HCV-Like Virus Detected in Avian Livers in Southern China and Its Implications for Natural Recombination Events. Virol Sin 2020; 36:149-151. [PMID: 32617899 DOI: 10.1007/s12250-020-00256-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/26/2020] [Indexed: 10/23/2022] Open
|
44
|
Elia G, Caringella F, Lanave G, Martella V, Losurdo M, Tittarelli M, Colitti B, Decaro N, Buonavoglia C. Genetic heterogeneity of bovine hepacivirus in Italy. Transbound Emerg Dis 2020; 67:2731-2740. [PMID: 32426936 DOI: 10.1111/tbed.13628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022]
Abstract
Viruses similar to human hepatitis C virus (HCV) in the Hepacivirus genus have been identified in several animal hosts, including cattle. Since its first discovery in Germany, bovine hepacivirus (BovHepV) has been described in several countries globally. However, limited data are available on BovHepV epidemiology and genetic variability. The aim of this study was to investigate the prevalence and genetic diversity of BovHepV in Italy. Viral RNA was identified in 37 (0.15%) of 24,820 bovine sera, with titres ranging from 1.09 × 103 to 8.27 × 106 RNA copies/ml. Upon sequencing and phylogenetic analysis of the 5'UTR and NS3 genomic portions, the Italian BovHepV strains segregated into at least four distinct subtypes (A, B, C and F) that are also co-circulating globally.
Collapse
Affiliation(s)
- Gabriella Elia
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy
| | | | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy
| | - Michele Losurdo
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Barbara Colitti
- Department of Veterinary Science, University of Torino, Grugliasco (Torino), Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy
| | - Canio Buonavoglia
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy
| |
Collapse
|
45
|
Animal Models Used in Hepatitis C Virus Research. Int J Mol Sci 2020; 21:ijms21113869. [PMID: 32485887 PMCID: PMC7312079 DOI: 10.3390/ijms21113869] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
The narrow range of species permissive to infection by hepatitis C virus (HCV) presents a unique challenge to the development of useful animal models for studying HCV, as well as host immune responses and development of chronic infection and disease. Following earlier studies in chimpanzees, several unique approaches have been pursued to develop useful animal models for research while avoiding the important ethical concerns and costs inherent in research with chimpanzees. Genetically related hepatotropic viruses that infect animals are being used as surrogates for HCV in research studies; chimeras of these surrogate viruses harboring specific regions of the HCV genome are being developed to improve their utility for vaccine testing. Concurrently, genetically humanized mice are being developed and continually advanced using human factors known to be involved in virus entry and replication. Further, xenotransplantation of human hepatocytes into mice allows for the direct study of HCV infection in human liver tissue in a small animal model. The current advances in each of these approaches are discussed in the present review.
Collapse
|
46
|
Priming of Antiviral CD8 T Cells without Effector Function by a Persistently Replicating Hepatitis C-Like Virus. J Virol 2020; 94:JVI.00035-20. [PMID: 32102885 DOI: 10.1128/jvi.00035-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
Immune-competent animal models for the hepatitis C virus (HCV) are nonexistent, impeding studies of host-virus interactions and vaccine development. Experimental infection of laboratory rats with a rodent hepacivirus isolated from Rattus norvegicus (RHV) is a promising surrogate model due to its recapitulation of HCV-like chronicity. However, several aspects of rat RHV infection remain unclear, for instance, how RHV evades host adaptive immunity to establish persistent infection. Here, we analyzed the induction, differentiation, and functionality of RHV-specific CD8 T cell responses that are essential for protection against viral persistence. Virus-specific CD8 T cells targeting dominant and subdominant major histocompatibility complex class I epitopes proliferated considerably in liver after RHV infection. These populations endured long term yet never acquired antiviral effector functions or selected for viral escape mutations. This was accompanied by the persistent upregulation of programmed cell death-1 and absent memory cell formation, consistent with a dysfunctional phenotype. Remarkably, transient suppression of RHV viremia with a direct-acting antiviral led to the priming of CD8 T cells with partial effector function, driving the selection of a viral escape variant. These data demonstrate an intrinsic abnormality within CD8 T cells primed by rat RHV infection, an effect that is governed at least partially by the magnitude of early virus replication. Thus, this model could be useful in investigating mechanisms of CD8 T cell subversion, leading to the persistence of hepatotropic pathogens such as HCV.IMPORTANCE Development of vaccines against hepatitis C virus (HCV), a major cause of cirrhosis and cancer, has been stymied by a lack of animal models. The recent discovery of an HCV-like rodent hepacivirus (RHV) enabled the development of such a model in rats. This platform recapitulates HCV hepatotropism and viral chronicity necessary for vaccine testing. Currently, there are few descriptions of RHV-specific responses and why they fail to prevent persistent infection in this model. Here, we show that RHV-specific CD8 T cells, while induced early at high magnitude, do not develop into functional effectors capable of controlling virus. This defect was partially alleviated by short-term treatment with an HCV antiviral. Thus, like HCV, RHV triggers dysfunction of virus-specific CD8 T cells that are vital for infection resolution. Additional study of this evasion strategy and how to mitigate it could enhance our understanding of hepatotropic viral infections and lead to improved vaccines and therapeutics.
Collapse
|
47
|
Ploss A, Kapoor A. Animal Models of Hepatitis C Virus Infection. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036970. [PMID: 31843875 DOI: 10.1101/cshperspect.a036970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is an important and underreported infectious disease, causing chronic infection in ∼71 million people worldwide. The limited host range of HCV, which robustly infects only humans and chimpanzees, has made studying this virus in vivo challenging and hampered the development of a desperately needed vaccine. The restrictions and ethical concerns surrounding biomedical research in chimpanzees has made the search for an animal model all the more important. In this review, we discuss different approaches that are being pursued toward creating small animal models for HCV infection. Although efforts to use a nonhuman primate species besides chimpanzees have proven challenging, important advances have been achieved in a variety of humanized mouse models. However, such models still fall short of the overarching goal to have an immunocompetent, inheritably susceptible in vivo platform in which the immunopathology of HCV could be studied and putative vaccines development. Alternatives to overcome this include virus adaptation, such as murine-tropic HCV strains, or the use of related hepaciviruses, of which many have been recently identified. Of the latter, the rodent/rat hepacivirus from Rattus norvegicus species-1 (RHV-rn1) holds promise as a surrogate virus in fully immunocompetent rats that can inform our understanding of the interaction between the immune response and viral outcomes (i.e., clearance vs. persistence). However, further characterization of these animal models is necessary before their use for gaining new insights into the immunopathogenesis of HCV and for conceptualizing HCV vaccines.
Collapse
Affiliation(s)
- Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Amit Kapoor
- Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| |
Collapse
|
48
|
A Mathematical Framework for Predicting Lifestyles of Viral Pathogens. Bull Math Biol 2020; 82:54. [PMID: 32350621 PMCID: PMC7189636 DOI: 10.1007/s11538-020-00730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/31/2020] [Indexed: 11/26/2022]
Abstract
Despite being similar in structure, functioning, and size, viral pathogens enjoy very different, usually well-defined ways of life. They occupy their hosts for a few days (influenza), for a few weeks (measles), or even lifelong (HCV), which manifests in acute or chronic infections. The various transmission routes (airborne, via direct physical contact, etc.), degrees of infectiousness (referring to the viral load required for transmission), antigenic variation/immune escape and virulence define further aspects of pathogenic lifestyles. To survive, pathogens must infect new hosts; the success determines their fitness. Infection happens with a certain likelihood during contact of hosts, where contact can also be mediated by vectors. Besides structural aspects of the host-contact network, three parameters appear to be key: the contact rate and the infectiousness during contact, which encode the mode of transmission, and third the immunity of susceptible hosts. On these grounds, what can be said about the reproductive success of viral pathogens? This is the biological question addressed in this paper. The answer extends earlier results of the author and makes explicit connection to another basic work on the evolution of pathogens. A mathematical framework is presented that models intra- and inter-host dynamics in a minimalistic but unified fashion covering a broad spectrum of viral pathogens, including those that cause flu-like infections, childhood diseases, and sexually transmitted infections. These pathogens turn out as local maxima of numerically simulated fitness landscapes. The models involve differential and integral equations, agent-based simulation, networks, and probability.
Collapse
|
49
|
Wassenaar TM, Jun S, Robeson M, Ussery DW. Comparative genomics of hepatitis A virus, hepatitis C virus, and hepatitis E virus provides insights into the evolutionary history of Hepatovirus species. Microbiologyopen 2020; 9:e973. [PMID: 31742930 PMCID: PMC7002107 DOI: 10.1002/mbo3.973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022] Open
Abstract
The intraspecies genomic diversity of the single-strand RNA (+) virus species hepatitis A virus (Hepatovirus), hepatitis C virus (Hepacivirus), and hepatitis E virus (Orthohepevirus) was compared. These viral species all can cause liver inflammation (hepatitis), but share no gene similarity. The codon usage of human hepatitis A virus (HAV) is suboptimal for replication in its host, a characteristic it shares with taxonomically related rodent, simian, and bat hepatitis A virus species. We found this codon usage to be strikingly similar to that of Triatoma virus that infects blood-sucking kissing bugs. The codon usage of that virus is well adapted to its insect host. The codon usage of HAV is also similar to other invertebrate viruses of various taxonomic families. An evolutionary ancestor of HAV and related virus species is hypothesized to be an insect virus that underwent a host jump to infect mammals. The similarity between HAV and invertebrate viruses goes beyond codon usage, as they also share amino acid composition characteristics, while not sharing direct sequence homology. In contrast, hepatitis C virus and hepatitis E virus are highly similar in codon usage preference, nucleotide composition, and amino acid composition, and share these characteristics with Human pegivirus A, West Nile virus, and Zika virus. We present evidence that these observations are only partly explained by differences in nucleotide composition of the complete viral codon regions. We consider the combination of nucleotide composition, amino acid composition, and codon usage preference suitable to provide information on possible evolutionary similarities between distant virus species that cannot be investigated by phylogeny.
Collapse
Affiliation(s)
| | - Se‐Ran Jun
- Department of Biomedical InformaticsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Michael Robeson
- Department of Biomedical InformaticsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - David W. Ussery
- Department of Biomedical InformaticsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| |
Collapse
|
50
|
Williams SH, Levy A, Yates RA, Somaweera N, Neville PJ, Nicholson J, Lindsay MDA, Mackenzie JS, Jain K, Imrie A, Smith DW, Lipkin WI. Discovery of Jogalong virus, a novel hepacivirus identified in a Culex annulirostris (Skuse) mosquito from the Kimberley region of Western Australia. PLoS One 2020; 15:e0227114. [PMID: 31899786 PMCID: PMC6941808 DOI: 10.1371/journal.pone.0227114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022] Open
Abstract
The discovery of hepaciviruses in non-human hosts has accelerated following the advancement of high-throughput sequencing technology. Hepaciviruses have now been described in reptiles, fish, birds, and an extensive array of mammals. Using metagenomic sequencing on pooled samples of field-collected Culex annulirostris mosquitoes, we discovered a divergent hepacivirus-like sequence, named Jogalong virus, from the Kimberley region in northern Western Australia. Using PCR, we screened the same 300 individual mosquitoes and found just a single positive sample (1/300, 0.33%). Phylogenetic analysis of the hepacivirus NS5B protein places Jogalong virus within the genus Hepacivirus but on a distinct and deeply rooted monophyletic branch shared with duck hepacivirus, suggesting a notably different evolutionary history. Vertebrate barcoding PCR targeting two mitochondrial genes, cytochrome c oxidase subunit I and cytochrome b, indicated that the Jogalong virus-positive mosquito had recently fed on the tawny frogmouth (Podargus strigoides), although it is currently unknown whether this bird species contributes to the natural ecology of this virus.
Collapse
Affiliation(s)
- Simon H. Williams
- Center for Infection and Immunity, Mailman School of Public Health of Columbia University, New York, New York, United States of America
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Avram Levy
- PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
| | - Rachel A. Yates
- Center for Infection and Immunity, Mailman School of Public Health of Columbia University, New York, New York, United States of America
| | - Nilusha Somaweera
- Environmental Health Directorate, Public and Aboriginal Health Division, Department of Health, Western Australia, Perth, Western Australia, Australia
| | - Peter J. Neville
- Environmental Health Directorate, Public and Aboriginal Health Division, Department of Health, Western Australia, Perth, Western Australia, Australia
| | - Jay Nicholson
- Environmental Health Directorate, Public and Aboriginal Health Division, Department of Health, Western Australia, Perth, Western Australia, Australia
| | - Michael D. A. Lindsay
- Environmental Health Directorate, Public and Aboriginal Health Division, Department of Health, Western Australia, Perth, Western Australia, Australia
| | - John S. Mackenzie
- PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
- Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Komal Jain
- Center for Infection and Immunity, Mailman School of Public Health of Columbia University, New York, New York, United States of America
| | - Allison Imrie
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - David W. Smith
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
- PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health of Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|