1
|
Baird AS, Taylor SH, Pasquet‐Kok J, Vuong C, Zhang Y, Watcharamongkol T, Cochard H, Scoffoni C, Edwards EJ, Osborne CP, Sack L. Resolving the contrasting leaf hydraulic adaptation of C 3 and C 4 grasses. THE NEW PHYTOLOGIST 2025; 245:1924-1939. [PMID: 39757432 PMCID: PMC11798900 DOI: 10.1111/nph.20341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025]
Abstract
Grasses are exceptionally productive, yet their hydraulic adaptation is paradoxical. Among C3 grasses, a high photosynthetic rate (Aarea) may depend on higher vein density (Dv) and hydraulic conductance (Kleaf). However, the higher Dv of C4 grasses suggests a hydraulic surplus, given their reduced need for high Kleaf resulting from lower stomatal conductance (gs). Combining hydraulic and photosynthetic physiological data for diverse common garden C3 and C4 species with data for 332 species from the published literature, and mechanistic modeling, we validated a framework for linkages of photosynthesis with hydraulic transport, anatomy, and adaptation to aridity. C3 and C4 grasses had similar Kleaf in our common garden, but C4 grasses had higher Kleaf than C3 species in our meta-analysis. Variation in Kleaf depended on outside-xylem pathways. C4 grasses have high Kleaf : gs, which modeling shows is essential to achieve their photosynthetic advantage. Across C3 grasses, higher Aarea was associated with higher Kleaf, and adaptation to aridity, whereas for C4 species, adaptation to aridity was associated with higher Kleaf : gs. These associations are consistent with adaptation for stress avoidance. Hydraulic traits are a critical element of evolutionary and ecological success in C3 and C4 grasses and are crucial avenues for crop design and ecological forecasting.
Collapse
Affiliation(s)
- Alec S. Baird
- Department of Ecology and Evolutionary BiologyUniversity of California Los Angeles621 Charles E. Young Dr. SouthLos AngelesCA90095USA
- Institute of Plant SciencesUniversity of BernAltenbergrain 213013BernSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernBern3012Switzerland
| | - Samuel H. Taylor
- Lancaster Environment CentreUniversity of LancasterLancasterLA1 4YWUK
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Jessica Pasquet‐Kok
- Department of Ecology and Evolutionary BiologyUniversity of California Los Angeles621 Charles E. Young Dr. SouthLos AngelesCA90095USA
| | - Christine Vuong
- Department of Ecology and Evolutionary BiologyUniversity of California Los Angeles621 Charles E. Young Dr. SouthLos AngelesCA90095USA
| | - Yu Zhang
- Department of Ecology and Evolutionary BiologyUniversity of California Los Angeles621 Charles E. Young Dr. SouthLos AngelesCA90095USA
| | - Teera Watcharamongkol
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldS10 2TNUK
- Faculty of Science and TechnologyKanchanaburi Rajabhat UniversityKanchanaburi71190Thailand
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF63000Clermont‐FerrandFrance
| | - Christine Scoffoni
- Department of Biological SciencesCalifornia State University Los Angeles5151 State University Dr.Los AngelesCA90032USA
| | - Erika J. Edwards
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCT06520USA
| | - Colin P. Osborne
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Lawren Sack
- Department of Ecology and Evolutionary BiologyUniversity of California Los Angeles621 Charles E. Young Dr. SouthLos AngelesCA90095USA
| |
Collapse
|
2
|
Mathan J, Dwivedi A, Ranjan A. Revisiting development and physiology of wild rice relatives for crop improvement and climate resilience. PLANT CELL REPORTS 2025; 44:55. [PMID: 39953293 DOI: 10.1007/s00299-025-03448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
KEY MESSAGE The review summarizes developmental and physiologic traits of wild rice relatives that can be targeted in mainstream rice-improvement programs for yield increases under changing climate. Increasing rice yield and productivity under changing climatic conditions is imperative for sustainable food security, given rice is a major staple crop around the world. Natural variation in crop plants, including wild relatives, offers remarkable genetic variability to explore the desirable developmental and physiologic traits for crop improvement. Wild relatives of rice, with distinct developmental and physiologic features compared to cultivated varieties, are the potential genetic and genomic resource for rice yield increases under changing climate. A thorough genetic basis of rice developmental and architectural changes during domestication is now established with the identification and characterization of domestication genes. Photosynthetically efficient wild rice accessions, with desirable developmental, physiologic, and metabolic traits, have been identified in recent years that could be instrumental for rice improvement. While several abiotic and biotic stress-tolerant wild relatives of rice along with the associated genetic loci have been identified over the years, a comprehensive insight into the desirable developmental and physiologic attributes of the wild rice is limited. Moreover, the usage of wild rice is not streamlined in rice-improvement programs due to genetic and genomic constraints. In this review, we summarize the desirable developmental and physiologic features of wild rice species that can be exploited for combining yield increases with climate resilience in rice-improvement programs.
Collapse
Affiliation(s)
- Jyotirmaya Mathan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Sashi Bhusan Rath Government Autonomous Women's College, Berhampur, 760001, India
| | - Aditi Dwivedi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Aashish Ranjan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
3
|
Zhou H, Akçay E, Edwards EJ, Ho CL, Abdullahi A, Zheng Y, Helliker BR. C 4 photosynthesis and hydraulics in grasses. THE NEW PHYTOLOGIST 2025; 245:1481-1495. [PMID: 39746467 DOI: 10.1111/nph.20284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/30/2024] [Indexed: 01/04/2025]
Abstract
The anatomical reorganization required for C4 photosynthesis should also impact plant hydraulics. Most C4 plants possess large bundle sheath cells and high vein density, which should also lead to higher leaf capacitance and hydraulic conductance (Kleaf). Paradoxically, the C4 pathway reduces water demand and increases water use efficiency, creating a potential mismatch between supply capacity and demand in C4 plant water relations. Here, we use phylogenetic analyses, physiological measurements, and models to examine the reorganization of hydraulics in closely related C4 and C3 grasses. The evolution of C4 disrupts the expected positive correlation between maximal assimilation rate (Amax) and Kleaf, decoupling a canonical relationship between hydraulics and photosynthesis generally observed in vascular plants. Evolutionarily young C4 lineages have higher Kleaf, capacitance, turgor loss point, and lower stomatal conductance than their C3 relatives. By contrast, species from older C4 lineages show decreased Kleaf and capacitance. The decline of Kleaf through the evolution of C4 lineages was likely controlled by the reduction in outside-xylem hydraulic conductance, for example the reorganization of leaf intercellular airspace. These results indicate that, over time, C4 plants have evolved to optimize hydraulic investments while maintaining the anatomical requirements for the C4 carbon-concentrating mechanism.
Collapse
Affiliation(s)
- Haoran Zhou
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Erol Akçay
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, PO Box 208106, New Haven, CT, 06520, USA
| | - Che-Ling Ho
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam Abdullahi
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yunpu Zheng
- School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, 056038, Hebei, China
| | - Brent R Helliker
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
4
|
Zailaa J, Trueba S, Browne M, Fletcher LR, Buckley TN, Brodersen CR, Scoffoni C, Sack L. Sensitive Hydraulic and Stomatal Decline in Extreme Drought Tolerant Species of California Ceanothus. PLANT, CELL & ENVIRONMENT 2025; 48:1555-1573. [PMID: 39462892 DOI: 10.1111/pce.15208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024]
Abstract
Identifying the physiological mechanisms by which plants are adapted to drought is critical to predict species responses to climate change. We measured the responses of leaf hydraulic and stomatal conductances (Kleaf and gs, respectively) to dehydration, and their association with anatomy, in seven species of California Ceanothus grown in a common garden, including some of the most drought-tolerant species in the semi-arid flora. We tested for matching of maximum hydraulic supply and demand and quantified the role of decline of Kleaf in driving stomatal closure. Across Ceanothus species, maximum Kleaf and gs were negatively correlated, and both Kleaf and gs showed steep declines with decreasing leaf water potential (i.e., a high sensitivity to dehydration). The leaf water potential at 50% decline in gs was linked with a low ratio of maximum hydraulic supply to demand (i.e., maximum Kleaf:gs). This sensitivity of gs, combined with low minimum epidermal conductance and water storage, could contribute to prolonged leaf survival under drought. The specialized anatomy of subg. Cerastes includes trichomous stomatal crypts and pronounced hypodermis, and was associated with higher water use efficiency and water storage. Combining our data with comparative literature of other California species, species of subg. Cerastes show traits associated with greater drought tolerance and reliance on leaf water storage relative to other California species. In addition to drought resistance mechanisms such as mechanical protection and resistance to embolism, drought avoidance mechanisms such as sensitive stomatal closure could contribute importantly to drought tolerance in dry-climate adapted species.
Collapse
Affiliation(s)
- Joseph Zailaa
- School of the Environment, Yale University, New Haven, Connecticut, USA
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, California, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Santiago Trueba
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Marvin Browne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Leila R Fletcher
- School of the Environment, Yale University, New Haven, Connecticut, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, Davis, California
| | - Craig R Brodersen
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Christine Scoffoni
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, California, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
5
|
Õunapuu-Pikas E, Tullus A, Kupper P, Tamm I, Reinthal T, Sellin A. Foliage development and resource allocation determine the growth responses of silver birch (Betula pendula) to elevated environmental humidity. TREE PHYSIOLOGY 2025; 45:tpae161. [PMID: 39661000 DOI: 10.1093/treephys/tpae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/31/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Scenarios for future climate predict an increase in precipitation amounts and frequency of rain events, resulting in higher air humidity and soil moisture at high latitudes, including in northern Europe. We analysed the effects of artificially elevated environmental humidity (air relative humidity and soil moisture) on leaf gas exchange, water relations, growth and phenology of silver birch (Betula pendula) trees growing at the free air humidity manipulation experimental site situated in the hemiboreal vegetation zone, in eastern Estonia, with no occurring water deficit to the trees. The environmental humidity manipulation did not significantly affect the water relations traits but did affect some leaf gas exchange parameters, growth and phenology of the trees. Elevated air humidity (H) did not influence photosynthetic capacity and stomatal conductance, while the trees exhibited higher stomatal sensitivity to leaf-to-air vapour pressure difference compared with the trees at ambient conditions (C) or at elevated soil moisture (I). H trees demonstrated reduced height growth and foliage biomass, increased allocation to stem radial growth and prolonged leaf retention in autumn compared with the C trees. Increased air humidity supports longer leaf retention and growth period, but this does not translate into increased growth parameters at the tree level. The changes in tree growth in response to increasing atmospheric humidity could plausibly be explained by (i) retardation of foliage development and (ii) changes in resource allocation, causing a shift in the ratio of photosynthetic to non-photosynthetic tissues in favour of the latter. Under high atmospheric evaporative demand, higher stomatal sensitivity in H trees induces faster stomatal closure, which may result in carbon starvation. A future rise in atmospheric humidity at high latitudes may lead to reduced tree growth and forest productivity, in contrast to the predicted future of forests.
Collapse
Affiliation(s)
- Eele Õunapuu-Pikas
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Arvo Tullus
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Priit Kupper
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Ilona Tamm
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Taavi Reinthal
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Arne Sellin
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| |
Collapse
|
6
|
Biruk LN, Tomasella M, Petruzzellis F, Nardini A. Better safe than sorry: the unexpected drought tolerance of a wetland plant (Cyperus alternifolius L.). PHYSIOLOGIA PLANTARUM 2025; 177:e70027. [PMID: 39723736 DOI: 10.1111/ppl.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/19/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024]
Abstract
A common assumption of plant hydraulic physiology is that high hydraulic efficiency must come at the cost of hydraulic safety, generating a trade-off that raises doubts about the possibility of selecting both productive and drought-tolerant herbaceous crops. Wetland plants typically display high productivity, which requires high hydraulic efficiency to sustain transpiration rates coupled to CO2 uptake. Previous studies have suggested high vulnerability to xylem embolism of different wetland plants, in line with expected trade-offs. However, some hygrophytes like Cyperus alternifolius L. can also experience prolonged periods of low water levels leading to substantial drought stress. We conducted an in-depth investigation of this species' hydraulic safety and efficiency by combining gas exchange measurements, hydraulic measurements of leaf hydraulic efficiency and safety, optical measurements of xylem vulnerability to embolism, and determination of cell turgor changes under drought. Our data confirm the high hydraulic efficiency of this wetland species, but at the same time, reveal its surprising drought tolerance in terms of turgor loss point and critical water potential values inducing xylem embolism and hydraulic failure, which were well below values inducing turgor loss and full stomatal closure. C. alternifolius emerges as a highly productive plant that is also well-equipped to tolerate drought via a combination of early stomatal closure and delayed onset of hydraulic damage. The species might represent a model plant to develop crops combining two of the most desirable traits in cultivated plants, i.e., high yield and significant drought tolerance.
Collapse
Affiliation(s)
- Lucia Nadia Biruk
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italia
| | - Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italia
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italia
- Dipartimento di Biologia, Università di Padova, Padova, Italia
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italia
| |
Collapse
|
7
|
Momayyezi M, Chu C, Stobbs JA, Soolanayakanahally RY, Guy RD, McElrone AJ, Knipfer T. Mapping of drought-induced changes in tissue characteristics across the leaf profile of Populus balsamifera. THE NEW PHYTOLOGIST 2025; 245:534-545. [PMID: 39506187 DOI: 10.1111/nph.20240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
Leaf architecture impacts gas diffusion, biochemical processes, and photosynthesis. For balsam poplar, a widespread North American species, the influence of water availability on leaf anatomy and subsequent photosynthetic performance remains unknown. To address this shortcoming, we characterized the anatomical changes across the leaf profile in three-dimensional space for saplings subjected to soil drying and rewatering using X-ray microcomputed tomography. Our hypothesis was that higher abundance of bundle sheath extensions (BSE) minimizes drought-induced changes in intercellular airspace volume relative to mesophyll volume (i.e. mesophyll porosity, θIAS) and aids recovery by supporting leaf structural integrity. Leaves of 'Carnduff-9' with less abundant BSEs exhibited greater θIAS, higher spongy mesophyll surface area, reduced palisade mesophyll surface area, and less veins compared with 'Gillam-5'. Under drought conditions, Carnduff-9 showed significant changes in θIAS across leaf profile while that was little for 'Gillam-5'. Under rewatered conditions, drought-induced changes in θIAS were fully reversible in 'Gillam-5' but not in 'Carnduff-9'. Our data suggest that a 'robust' leaf structure with higher abundance of BSEs, reduced θIAS, and relatively large mesophyll surface area provides for improved photosynthetic capacity under drought and supports recovery in leaf architecture after rewatering in balsam poplar.
Collapse
Affiliation(s)
- Mina Momayyezi
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - Cheyenne Chu
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | | | - Robert D Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Andrew J McElrone
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA, 95618, USA
| | - Thorsten Knipfer
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
8
|
Beikircher B, Held M, Losso A, Mayr S. New insights into a sensitive life stage: hydraulics of tree seedlings in their first growing season. THE NEW PHYTOLOGIST 2025; 245:577-590. [PMID: 39501601 DOI: 10.1111/nph.20243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/14/2024] [Indexed: 12/12/2024]
Abstract
The first year in a tree's life is characterized by distinct morphological changes, requiring constant adjustments of the hydraulic system. Despite their importance for the natural regeneration of forests and future vegetation composition, little has been known about the hydraulics of tree seedlings. At different times across the first growing season, we analysed xylem area-specific (Kshoot_Axyl) and leaf area-specific (Kshoot_L) shoot hydraulic conductance, as well as embolism resistance of three temperate conifer trees, two angiosperm trees and one angiosperm shrub, and related findings to cell osmotic parameters and xylem anatomical traits. Over the first 10 wk after germination, Kshoot_Axyl and Kshoot_L sharply decreased, then remained stable until the end of the growing season. Embolism resistance was remarkably low in the youngest stages but, coupled with an increase in cell wall reinforcement, significantly increased towards autumn. Contemporaneously, water potential at turgor loss and osmotic potential at saturation decreased. Independent of lineage, species and growth form, the transition from primary to secondary xylem resulted in a less efficient but increasingly more embolism-resistant hydraulic system, enabling stable water supply under increasing risk for low water potentials.
Collapse
Affiliation(s)
- Barbara Beikircher
- Department of Botany, Universität Innsbruck/University of Innsbruck, Sternwartestr. 15, Innsbruck, 6020, Austria
| | - Magdalena Held
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, PO Box 64, Helsinki, 00014, Finland
| | - Adriano Losso
- Department of Botany, Universität Innsbruck/University of Innsbruck, Sternwartestr. 15, Innsbruck, 6020, Austria
| | - Stefan Mayr
- Department of Botany, Universität Innsbruck/University of Innsbruck, Sternwartestr. 15, Innsbruck, 6020, Austria
| |
Collapse
|
9
|
Haverroth EJ, Da-Silva CJ, Taggart M, Oliveira LA, Cardoso AA. Shoot hydraulic impairments induced by root waterlogging: Parallels and contrasts with drought. PLANT PHYSIOLOGY 2024; 197:kiae336. [PMID: 38865443 PMCID: PMC11663564 DOI: 10.1093/plphys/kiae336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/14/2024]
Abstract
Soil waterlogging and drought correspond to contrasting water extremes resulting in plant dehydration. Dehydration in response to waterlogging occurs due to impairments to root water transport, but no previous study has addressed whether limitations to water transport occur beyond this organ or whether dehydration alone can explain shoot impairments. Using common bean (Phaseolus vulgaris) as a model species, we report that waterlogging also impairs water transport in leaves and stems. During the very first hours of waterlogging, leaves transiently dehydrated to water potentials close to the turgor loss point, possibly driving rapid stomatal closure and partially explaining the decline in leaf hydraulic conductance. The initial decline in leaf hydraulic conductance (occurring within 24 h), however, surpassed the levels predicted to occur based solely on dehydration. Constraints to leaf water transport resulted in a hydraulic disconnection between leaves and stems, furthering leaf dehydration during waterlogging and after soil drainage. As leaves dehydrated later during waterlogging, leaf embolism initiated and extensive embolism levels amplified leaf damage. The hydraulic disconnection between leaves and stems prevented stem water potentials from declining below the threshold for critical embolism levels in response to waterlogging. This allowed plants to survive waterlogging and soil drainage. In summary, leaf and stem dehydration are central in defining plant impairments in response to waterlogging, thus creating similarities between waterlogging and drought. Yet, our findings point to the existence of additional players (likely chemicals) partially controlling the early declines in leaf hydraulic conductance and contributing to leaf damage during waterlogging.
Collapse
Affiliation(s)
- Eduardo J Haverroth
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Cristiane J Da-Silva
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Matthew Taggart
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Leonardo A Oliveira
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Amanda A Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
10
|
Vega-Ramos F, Cifuentes L, Pineda-García F, Dawson T, Paz H. Different dry-wet pulses favor different functional strategies: A test using tropical dry forest tree species. PLoS One 2024; 19:e0309510. [PMID: 39625971 PMCID: PMC11614228 DOI: 10.1371/journal.pone.0309510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/14/2024] [Indexed: 12/06/2024] Open
Abstract
In many terrestrial habitats, plants experience temporal heterogeneity in water availability both at the intra and inter annual scales, creating dry-wet pulse scenarios. This variability imposes two concomitant challenges for plants: surviving droughts and efficiently utilizing water when it becomes available, whose responses are closely interconnected. To date, most studies have focused on the response to drought following static designs that do not consider consequences of repeated transitions from one state to the other. In principle, different dry-wet pulse scenarios among years may differentially affect species performance, plant strategies, and promote coexistence through temporal niche separation. We predicted that short frequent droughts would disfavor drought-avoidant species, as rapid leaf loss and production could disrupt their carbon balance, whereas tolerant species, which maintain carbon gain during droughts, should thrive in such conditions. Prolonged droughts might harm tolerant species by causing severe cavitation. We assessed the survival and growth responses of seedlings from 19 tropical dry forest tree species to simulated natural dry-wet pulse scenarios, examining their relationships with the continuum of species' functional strategies under field conditions, and used greenhouse experiments to accompany the field experiment. As expected, different dry-wet pulse scenarios favored different plant functional strategies. Contrary to predictions, the most tolerant outperformed the most avoiders under all drought scenarios, while rapid water-exploiters thrived under non-drought conditions. The superiority of tolerant over avoider species was reverted in the greenhouse, suggesting that in addition to physiology, the fate of species may depend on extrinsic factors as natural enemies. The interplay between the marked variability of dry-wet pulse scenarios across the years and the diversity of water use strategies may contribute to species coexistence in the tropical dry forests. This research is relevant in predicting changes in dominant tree species under future climate scenarios characterized by increased temporal variation in water availability.
Collapse
Affiliation(s)
- Flor Vega-Ramos
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Lucas Cifuentes
- Departamento de Ciencias Forestales, Sede Medellín, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Medellín, Colombia
| | - Fernando Pineda-García
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Todd Dawson
- Center for Stable Isotope Biogeochemistry and the Department of Integrative Biology, University of California, Berkeley, CA, United States of America
| | - Horacio Paz
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
- Center for Stable Isotope Biogeochemistry and the Department of Integrative Biology, University of California, Berkeley, CA, United States of America
| |
Collapse
|
11
|
Huo J, Li C, Zhao Y, Han G, Li X, Zhang Z. Hydraulic mechanism of limiting growth and maintaining survival of desert shrubs in arid habitats. PLANT PHYSIOLOGY 2024; 196:2450-2462. [PMID: 39268873 DOI: 10.1093/plphys/kiae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 09/15/2024]
Abstract
The growth and survival of woody plant species is mainly driven by evolutionary and environmental factors. However, little is known about the hydraulic mechanisms that respond to growth limitation and enable desert shrub survival in arid habitats. To shed light on these hydraulic mechanisms, 9-, 31-, and 56-yr-old Caragana korshinskii plants that had been grown under different soil water conditions at the southeast edge of the Tengger Desert, Ningxia, China, were used in this study. The growth of C. korshinskii was mainly limited by soil water rather than shrub age in nonwatered habitats, which indicated the importance of maintaining shrub survival prior to growth under drought. Meanwhile, higher vessel density, narrower vessels, and lower xylem hydraulic conductivity indicated that shrubs enhanced hydraulic safety and reduced their hydraulic efficiency in arid conditions. Importantly, xylem hydraulic conductivity is mediated by variation in xylem hydraulic architecture-regulated photosynthetic carbon assimilation and growth of C. korshinskii. Our study highlights that the synergistic variation in xylem hydraulic safety and hydraulic efficiency is the hydraulic mechanism of limiting growth and maintaining survival in C. korshinskii under drought, providing insights into the strategies for growth and survival of desert shrubs in arid habitats.
Collapse
Affiliation(s)
- Jianqiang Huo
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chengyi Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environmental of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Yang Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gaoling Han
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinrong Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhishan Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
12
|
Jin Y, Ye Q, Liu X, Liu H, Gleason SM, He P, Liang X, Wu G. Precipitation, solar radiation, and their interaction modify leaf hydraulic efficiency-safety trade-off across angiosperms at the global scale. THE NEW PHYTOLOGIST 2024; 244:2267-2277. [PMID: 39425251 DOI: 10.1111/nph.20213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/28/2024] [Indexed: 10/21/2024]
Abstract
In theory, there is a trade-off between hydraulic efficiency and safety. However, the strength and direction of this trade-off at the leaf level are not consistent across studies, and habitat climate may impact this trade-off. We compiled a leaf hydraulic efficiency and safety dataset for 362 species from 81 sites world-wide, with 280 paired observations of both traits, and tested whether climate was associated with departure from the proposed trade-off. The leaf hydraulic efficiency-safety trade-off was weak (R2 = 0.144) at the global scale. Mean annual precipitation and solar radiation (SR) modified the trade-off. Species from dry and high SR habitats (e.g. desert and tropical savanna) were generally located above the trade-off line, indicating that these species tended to have higher leaf hydraulic safety and efficiency than species from wet habitats with low SR (e.g. subtropical monsoon forest and montane rainforest), which were located below the trade-off line. Leaves with high vein density, dry leaf mass per area, and osmotic regulation enhanced safety without compromising hydraulic efficiency. Variation in the hydraulic efficiency-safety trade-off at the leaf level likely facilitates plant survival in specific habitats and allows for a more nuanced view of leaf hydraulic adaption strategies at the global scale.
Collapse
Affiliation(s)
- Yi Jin
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Jiangxi Provincial Key Laboratory of Carbon Neutrality and Ecosystem Carbon Sink, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332900, China
| | - Qing Ye
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiaorong Liu
- The Research Center for the Development of Sichuan Old Revolutionary Area, Sichuan University of Arts and Science, Dazhou, 635000, China
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Jiangxi Provincial Key Laboratory of Carbon Neutrality and Ecosystem Carbon Sink, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332900, China
| | - Sean M Gleason
- Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, 80526, USA
| | - Pengcheng He
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xingyun Liang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Guilin Wu
- Hainan Jianfengling Forest Ecosystem National Field Science Observation and Research Station, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| |
Collapse
|
13
|
Romero-Munar A, Muñoz-Carrasco M, Balestrini R, De Rose S, Giovannini L, Aroca R, Ruiz-Lozano JM. Differential root and cell regulation of maize aquaporins by the arbuscular mycorrhizal symbiosis highlights its role in plant water relations. PLANT, CELL & ENVIRONMENT 2024; 47:4337-4353. [PMID: 38965812 DOI: 10.1111/pce.15029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
This study aims to elucidate if the regulation of plant aquaporins by the arbuscular mycorrhizal (AM) symbiosis occurs only in roots or cells colonized by the fungus or at whole root system. Maize plants were cultivated in a split-root system, with half of the root system inoculated with the AM fungus and the other half uninoculated. Plant growth and hydraulic parameters were measured and aquaporin gene expression was determined in each root fraction and in microdissected cells. Under well-watered conditions, the non-colonized root fractions of AM plants grew more than the colonized root fraction. Total osmotic and hydrostatic root hydraulic conductivities (Lo and Lpr) were higher in AM plants than in non-mycorrhizal plants. The expression of most maize aquaporin genes analysed was different in the mycorrhizal root fraction than in the non-mycorrhizal root fraction of AM plants. At the cellular level, differential aquaporin expression in AM-colonized cells and in uncolonized cells was also observed. Results indicate the existence of both, local and systemic regulation of plant aquaporins by the AM symbiosis and suggest that such regulation is related to the availability of water taken up by fungal hyphae in each root fraction and to the plant need of water mobilization.
Collapse
Affiliation(s)
- Antonia Romero-Munar
- Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - María Muñoz-Carrasco
- Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Raffaella Balestrini
- Istituto per la Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche (CNR), Torino, Italy
| | - Silvia De Rose
- Istituto per la Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche (CNR), Torino, Italy
| | - Luca Giovannini
- Istituto per la Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche (CNR), Torino, Italy
| | - Ricardo Aroca
- Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada, Spain
| |
Collapse
|
14
|
Cernusak LA, Wong SC, Stuart-Williams H, Márquez DA, Pontarin N, Farquhar GD. Unsaturation in the air spaces of leaves and its implications. PLANT, CELL & ENVIRONMENT 2024; 47:3685-3698. [PMID: 38867619 DOI: 10.1111/pce.15001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
Modern plant physiological theory stipulates that the resistance to water movement from plants to the atmosphere is overwhelmingly dominated by stomata. This conception necessitates a corollary assumption-that the air spaces in leaves must be nearly saturated with water vapour; that is, with a relative humidity that does not decline materially below unity. As this idea became progressively engrained in scientific discourse and textbooks over the last century, observations inconsistent with this corollary assumption were occasionally reported. Yet, evidence of unsaturation gained little traction, with acceptance of the prevailing framework motivated by three considerations: (1) leaf water potentials measured by either thermocouple psychrometry or the Scholander pressure chamber are largely consistent with the framework; (2) being able to assume near saturation of intercellular air spaces was transformational to leaf gas exchange analysis; and (3) there has been no obvious mechanism to explain a variable, liquid-phase resistance in the leaf mesophyll. Here, we review the evidence that refutes the assumption of universal, near saturation of air spaces in leaves. Refining the prevailing paradigm with respect to this assumption provides opportunities for identifying and developing mechanisms for increased plant productivity in the face of increasing evaporative demand imposed by global climate change.
Collapse
Affiliation(s)
- Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Suan Chin Wong
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Hilary Stuart-Williams
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Diego A Márquez
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Nicole Pontarin
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Graham D Farquhar
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
15
|
Matos IS, Boakye M, Niewiadomski I, Antonio M, Carlos S, Johnson BC, Chu A, Echevarria A, Fontao A, Garcia L, Kalantar D, Madhavan S, Mann J, McDonough S, Rohde J, Scudder M, Sharma S, To J, Tomaka C, Vu B, Yokota N, Forbes H, Fricker M, Blonder BW. Leaf venation network architecture coordinates functional trade-offs across vein spatial scales: evidence for multiple alternative designs. THE NEW PHYTOLOGIST 2024; 244:407-425. [PMID: 39180209 DOI: 10.1111/nph.20037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/16/2024] [Indexed: 08/26/2024]
Abstract
Variation in leaf venation network architecture may reflect trade-offs among multiple functions including efficiency, resilience, support, cost, and resistance to drought and herbivory. However, our knowledge about architecture-function trade-offs is mostly based on studies examining a small number of functional axes, so we still lack a more integrative picture of multidimensional trade-offs. Here, we measured architecture and functional traits on 122 ferns and angiosperms species to describe how trade-offs vary across phylogenetic groups and vein spatial scales (small, medium, and large vein width) and determine whether architecture traits at each scale have independent or integrated effects on each function. We found that generalized architecture-function trade-offs are weak. Architecture strongly predicts leaf support and damage resistance axes but weakly predicts efficiency and resilience axes. Architecture traits at different spatial scales contribute to different functional axes, allowing plants to independently modulate different functions by varying network properties at each scale. This independence of vein architecture traits within and across spatial scales may enable evolution of multiple alternative leaf network designs with similar functioning.
Collapse
Affiliation(s)
- Ilaine Silveira Matos
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mickey Boakye
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Izzi Niewiadomski
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Monica Antonio
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Sonoma Carlos
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Breanna Carrillo Johnson
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Ashley Chu
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Andrea Echevarria
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Adrian Fontao
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Lisa Garcia
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Diana Kalantar
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Srinivasan Madhavan
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Joseph Mann
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Samantha McDonough
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - James Rohde
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Meg Scudder
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Satvik Sharma
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Jason To
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Connor Tomaka
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Bradley Vu
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Nicole Yokota
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Holly Forbes
- University of California Botanical Garden, Berkeley, CA, 94720, USA
| | - Mark Fricker
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Benjamin Wong Blonder
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
16
|
Wood JD, Detto M, Browne M, Kraft NJB, Konings AG, Fisher JB, Quetin GR, Trugman AT, Magney TS, Medeiros CD, Vinod N, Buckley TN, Sack L. The Ecosystem as Super-Organ/ism, Revisited: Scaling Hydraulics to Forests under Climate Change. Integr Comp Biol 2024; 64:424-440. [PMID: 38886119 DOI: 10.1093/icb/icae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Classic debates in community ecology focused on the complexities of considering an ecosystem as a super-organ or organism. New consideration of such perspectives could clarify mechanisms underlying the dynamics of forest carbon dioxide (CO2) uptake and water vapor loss, important for predicting and managing the future of Earth's ecosystems and climate system. Here, we provide a rubric for considering ecosystem traits as aggregated, systemic, or emergent, i.e., representing the ecosystem as an aggregate of its individuals or as a metaphorical or literal super-organ or organism. We review recent approaches to scaling-up plant water relations (hydraulics) concepts developed for organs and organisms to enable and interpret measurements at ecosystem-level. We focus on three community-scale versions of water relations traits that have potential to provide mechanistic insight into climate change responses of forest CO2 and H2O gas exchange and productivity: leaf water potential (Ψcanopy), pressure volume curves (eco-PV), and hydraulic conductance (Keco). These analyses can reveal additional ecosystem-scale parameters analogous to those typically quantified for leaves or plants (e.g., wilting point and hydraulic vulnerability) that may act as thresholds in forest responses to drought, including growth cessation, mortality, and flammability. We unite these concepts in a novel framework to predict Ψcanopy and its approaching of critical thresholds during drought, using measurements of Keco and eco-PV curves. We thus delineate how the extension of water relations concepts from organ- and organism-scales can reveal the hydraulic constraints on the interaction of vegetation and climate and provide new mechanistic understanding and prediction of forest water use and productivity.
Collapse
Affiliation(s)
- Jeffrey D Wood
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Matteo Detto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Marvin Browne
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, USA
| | - Nathan J B Kraft
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Alexandra G Konings
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, USA
| | - Joshua B Fisher
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA
| | - Gregory R Quetin
- Department of Geography, University of California, Santa Barbara, CA 93106, USA
| | - Anna T Trugman
- Department of Geography, University of California, Santa Barbara, CA 93106, USA
| | - Troy S Magney
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Camila D Medeiros
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Nidhi Vinod
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E Young Drive South, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Ding L, Fox AR, Chaumont F. Multifaceted role and regulation of aquaporins for efficient stomatal movements. PLANT, CELL & ENVIRONMENT 2024; 47:3330-3343. [PMID: 38742465 DOI: 10.1111/pce.14942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Stomata are micropores on the leaf epidermis that allow carbon dioxide (CO2) uptake for photosynthesis at the expense of water loss through transpiration. Stomata coordinate the plant gas exchange of carbon and water with the atmosphere through their opening and closing dynamics. In the context of global climate change, it is essential to better understand the mechanism of stomatal movements under different environmental stimuli. Aquaporins (AQPs) are considered important regulators of stomatal movements by contributing to membrane diffusion of water, CO2 and hydrogen peroxide. This review compiles the most recent findings and discusses future directions to update our knowledge of the role of AQPs in stomatal movements. After highlighting the role of subsidiary cells (SCs), which contribute to the high water use efficiency of grass stomata, we explore the expression of AQP genes in guard cells and SCs. We then focus on the cellular regulation of AQP activity at the protein level in stomata. After introducing their post-translational modifications, we detail their trafficking as well as their physical interaction with various partners that regulate AQP subcellular dynamics towards and within specific regions of the cell membranes, such as microdomains and membrane contact sites.
Collapse
Affiliation(s)
- Lei Ding
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Ana Romina Fox
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
18
|
Mills C, Bartlett MK, Buckley TN. The poorly-explored stomatal response to temperature at constant evaporative demand. PLANT, CELL & ENVIRONMENT 2024; 47:3428-3446. [PMID: 38602407 DOI: 10.1111/pce.14911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/13/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Changes in leaf temperature are known to drive stomatal responses, because the leaf-to-air water vapour gradient (Δw) increases with temperature if ambient vapour pressure is held constant, and stomata respond to changes in Δw. However, the direct response of stomata to temperature (DRST; the response when Δw is held constant by adjusting ambient humidity) has been examined far less extensively. Though the meagre available data suggest the response is usually positive, results differ widely and defy broad generalisation. As a result, little is known about the DRST. This review discusses the current state of knowledge about the DRST, including numerous hypothesised biophysical mechanisms, potential implications of the response for plant adaptation, and possible impacts of the DRST on plant-atmosphere carbon and water exchange in a changing climate.
Collapse
Affiliation(s)
- Colleen Mills
- Department of Plant Sciences, University of California, Davis, USA
| | - Megan K Bartlett
- Department of Viticulture and Enology, University of California, Davis, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, USA
| |
Collapse
|
19
|
Keiser L, Dollet B, Marmottant P. Embolism propagation in Adiantum leaves and in a biomimetic system with constrictions. J R Soc Interface 2024; 21:20240103. [PMID: 39140327 PMCID: PMC11323083 DOI: 10.1098/rsif.2024.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 04/12/2024] [Accepted: 06/04/2024] [Indexed: 08/15/2024] Open
Abstract
Drought poses a significant threat to forest survival worldwide by potentially generating air bubbles that obstruct sap transport within plants' hydraulic systems. However, the detailed mechanism of air entry and propagation at the scale of the veins remains elusive. Building upon a biomimetic model of leaf which we developed, we propose a direct comparison of the air embolism propagation in Adiantum (maidenhair fern) leaves, presented in Brodribb et al. (Brodribb TJ, Bienaimé D, Marmottant P. 2016 Revealing catastrophic failure of leaf networks under stress. Proc. Natl Acad. Sci. USA 113, 4865-4869 (doi:10.1073/pnas.1522569113)) and in our biomimetic leaves. In particular, we evidence that the jerky dynamics of the embolism propagation observed in Adiantum leaves can be recovered through the introduction of micrometric constrictions in the section of our biomimetic veins, mimicking the nanopores present in the bordered pit membranes in real leaves. We show that the intermittency in the propagation can be retrieved by a simple model coupling the variations of pressure induced by the constrictions and the variations of the volume of the compliant microchannels. Our study marks a step with the design of a biomimetic leaf that reproduces particular aspects of embolism propagation in real leaves, using a minimal set of controllable and readily tunable components. This biomimetic leaf constitutes a promising physical analogue and sets the stage for future enhancements to fully embody the unique physical features of embolizing real leaves.
Collapse
|
20
|
Leonard HE, Ciambrone M, Pittermann J. Species-specific responses drive browsing impacts on physiological and functional traits in Quercus agrifolia and Umbellularia californica. PLoS One 2024; 19:e0287160. [PMID: 39047008 PMCID: PMC11268663 DOI: 10.1371/journal.pone.0287160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Herbivory is a fundamental ecological force in the evolution of plant physiological, morphological, and chemical attributes. In this study, we explored how browsing pressure by local deer populations affected leaf form and function in two California native tree species, Quercus agrifolia (coast live oak) and Umbellularia californica (California bay laurel). Specifically, we investigated how leaf and stem vascular attributes differed between browsed and non-browsed zones of each species. Browsing significantly altered traits such as leaf to phloem ratios and leaf area, but we observed few meaningful differences in leaf and stem anatomy between browsed and non-browsed material. We discuss these results in the context of leaf and stem adaptations to herbivory and water use efficiency and explore future research considerations for investigating leaf and stem vascular trait development with herbivore presence.
Collapse
Affiliation(s)
- Hugh E. Leonard
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Mary Ciambrone
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jarmila Pittermann
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
21
|
Boulc'h PN, Clouet V, Niogret MF, Avice JC, Musse M, Leport L. Leaf drought adaptive response in winter oilseed rape is altered at the onset of senescence: a study combining NMR relaxometry, multi-omics and microscopy. PHYSIOLOGIA PLANTARUM 2024; 176:e14454. [PMID: 39164841 DOI: 10.1111/ppl.14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024]
Abstract
Climate change is bringing more frequent and intense droughts, reducing overall water availability and adversely affecting crops. There is a need to improve our understanding of the tissular and cellular adaptation mechanisms that are critical for plant water conservation strategies. Here, we have used NMR relaxometry in combination with microscopy and multi-omic analysis to study the effects of progressive soil drought on winter oilseed rape (WOSR, Brassica napus L., cv. Aviso) leaves. This study reveals the structural and metabolic adjustments these leaves operate to maintain cell homeostasis. Our results are original in showing that the adaptive responses are altered in leaves at the onset of senescence, associated with changes in metabolic plasticity and mesophyll structures. Thus, long-term responses in young leaves involving osmotic adjustment were combined with the maintenance of tissue hydration and cell growth, contributing to high survival and recovery capacity. For the first time, short-term responses observed in early senescent-old leaves were associated with early drought-induced dehydration of the spongy layer. However, this dehydration was not followed by osmotic adjustment and did not allow maintenance of leaf tissue turgor. These findings open further studies on the genetic variability of drought responses related to identified short- and long-term structural and metabolic plasticity traits in Brassica species.
Collapse
Affiliation(s)
- Pierre-Nicolas Boulc'h
- UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), INRAE, Institut Agro Rennes-Angers, Université Rennes, Le Rheu, France
- UR Optimisation des Procédés en Agro-alimentaire, Agriculture et Environnement (OPAALE), INRAE, Rennes, France
| | - Vanessa Clouet
- UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), INRAE, Institut Agro Rennes-Angers, Université Rennes, Le Rheu, France
| | - Marie-Françoise Niogret
- UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), INRAE, Institut Agro Rennes-Angers, Université Rennes, Le Rheu, France
| | - Jean-Christophe Avice
- Université de Caen Normandie, INRAe, UMR Ecophysiologie Végétale et Agronomie (EVA), Caen, France
| | - Maja Musse
- UR Optimisation des Procédés en Agro-alimentaire, Agriculture et Environnement (OPAALE), INRAE, Rennes, France
| | - Laurent Leport
- UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), INRAE, Institut Agro Rennes-Angers, Université Rennes, Le Rheu, France
| |
Collapse
|
22
|
Tan F, Cao W, Li X, Li Q. Characteristics, Relationships, and Anatomical Basis of Leaf Hydraulic Traits and Economic Traits in Temperate Desert Shrub Species. Life (Basel) 2024; 14:834. [PMID: 39063588 PMCID: PMC11278145 DOI: 10.3390/life14070834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Shrubs are a key component of desert ecosystems, playing a crucial role in controlling desertification and promoting revegetation, yet their growth is often impeded by drought. Leaf hydraulic traits and economic traits are both involved in the process of water exchange for carbon dioxide. Exploring the characteristics, relationships, and anatomical basis of these two suites of traits is crucial to understanding the mechanism of desert shrubs adapting to the desert arid environment. However, the relationship between these two sets of traits currently remains ambiguous. This study explored the leaf hydraulic, economic, and anatomical traits of 19 desert shrub species. The key findings include the following: Relatively larger LT values and smaller SLA values were observed in desert shrubs, aligning with the "slow strategy" in the leaf economics spectrum. The relatively high P50leaf, low HSMleaf, negative TLPleaf, and positive HSMtlp values indicated that severe embolism occurs in the leaves during the dry season, while most species were able to maintain normal leaf expansion. This implies a "tolerance" leaf hydraulic strategy in response to arid stress. No significant relationship was observed between P50leaf and Kmax, indicating the absence of a trade-off between hydraulic efficiency and embolism resistance. Certain coupling relationships were observed between leaf hydraulic traits and economic traits, both of which were closely tied to anatomical structures. Out of all of the leaf traits, LT was the central trait of the leaf traits network. The positive correlation between C content and WPleaf and HSMleaf, as well as the positive correlation between N content and HSMtlp, suggested that the cost of leaf construction was synergistic with hydraulic safety. The negative correlation between SLA, P content, GCL, and SAI suggested a functional synergistic relationship between water use efficiency and gas exchange rate. In summary, this research revealed that the coupling relationship between leaf hydraulic traits and economic traits was one of the important physiological and ecological mechanisms of desert shrubs for adapting to desert habitats.
Collapse
Affiliation(s)
| | | | | | - Qinghe Li
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (F.T.); (W.C.); (X.L.)
| |
Collapse
|
23
|
Anfodillo T, Olson ME. Stretched sapwood, ultra-widening permeability and ditching da Vinci: revising models of plant form and function. ANNALS OF BOTANY 2024; 134:19-42. [PMID: 38634673 PMCID: PMC11161570 DOI: 10.1093/aob/mcae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND The mechanisms leading to dieback and death of trees under drought remain unclear. To gain an understanding of these mechanisms, addressing major empirical gaps regarding tree structure-function relations remains essential. SCOPE We give reasons to think that a central factor shaping plant form and function is selection simultaneously favouring constant leaf-specific conductance with height growth and isometric (1:1) scaling between leaf area and the volume of metabolically active sink tissues ('sapwood'). Sapwood volume-leaf area isometry implies that per-leaf area sapwood volumes become transversely narrower with height growth; we call this 'stretching'. Stretching means that selection must favour increases in permeability above and beyond that afforded by tip-to-base conduit widening ("ultra-widening permeability"), via fewer and wider vessels or tracheids with larger pits or larger margo openings. Leaf area-metabolically active sink tissue isometry would mean that it is unlikely that larger trees die during drought because of carbon starvation due to greater sink-source relationships as compared to shorter plants. Instead, an increase in permeability is most plausibly associated with greater risk of embolism, and this seems a more probable explanation of the preferential vulnerability of larger trees to climate change-induced drought. Other implications of selection favouring constant per-leaf area sapwood construction and maintenance costs are departure from the da Vinci rule expectation of similar sapwood areas across branching orders, and that extensive conduit furcation in the stem seems unlikely. CONCLUSIONS Because all these considerations impact the likelihood of vulnerability to hydraulic failure versus carbon starvation, both implicated as key suspects in forest mortality, we suggest that these predictions represent essential priorities for empirical testing.
Collapse
Affiliation(s)
- Tommaso Anfodillo
- Department Territorio e Sistemi Agro-Forestali, University of Padova, Legnaro (PD) 35020, Italy
| | - Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito sn de Ciudad Universitaria, Ciudad de México 04510, Mexico
| |
Collapse
|
24
|
Mukherjee S, Roy S, Corpas FJ. Aquaporins: a vital nexus in H 2O 2-gasotransmitter signaling. TRENDS IN PLANT SCIENCE 2024; 29:681-693. [PMID: 38199830 DOI: 10.1016/j.tplants.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
Land plants have evolved with a complex mechanism of water uptake facilitated by the activity of aquaporins under normal and challenging environments. However, we lack a clear understanding of its interactions with reactive oxygen species, particularly hydrogen peroxide (H2O2) and the gasotransmitters nitric oxide (NO) and hydrogen sulfide (H2S), under oxidative stress. Here, we assess the crosstalk of aquaporin function, H2O2 homeostasis, and NO-H2S signaling in plants and provide a computational prediction of cysteine-based oxidative post-translational modifications (oxiPTMs) in plant aquaporins. We propose that aquaporin activity could be regulated by three major oxiPTMs, S-nitrosation, S-sulfenylation, and persulfidation, mediated by NO, H2O2, and H2S, respectively. Therefore, aquaporins might be key players in the gasotransmitter-mediated long-distance oxidative stress signals in plant cells.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, India
| | - Suchismita Roy
- Department of Cell and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signalling in Plants, Estación Experimental del Zaidín (Spanish National Research Council), Granada, Spain.
| |
Collapse
|
25
|
Drobnitch ST, Kray JA, Gleason SM, Ocheltree TW. Comparative venation costs of monocotyledon and dicotyledon species in the eastern Colorado steppe. PLANTA 2024; 260:2. [PMID: 38761315 DOI: 10.1007/s00425-024-04434-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
MAIN CONCLUSION Leaf vein network cost (total vein surface area per leaf volume) for major veins and vascular bundles did not differ between monocot and dicot species in 21 species from the eastern Colorado steppe. Dicots possessed significantly larger minor vein networks than monocots. Across the tree of life, there is evidence that dendritic vascular transport networks are optimized, balancing maximum speed and integrity of resource delivery with minimal resource investment in transport and infrastructure. Monocot venation, however, is not dendritic, and remains parallel down to the smallest vein orders with no space-filling capillary networks. Given this departure from the "optimized" dendritic network, one would assume that monocots are operating at a significant energetic disadvantage. In this study, we investigate whether monocot venation networks bear significantly greater carbon/construction costs per leaf volume than co-occurring dicots in the same ecosystem, and if so, what physiological or ecological advantage the monocot life form possesses to compensate for this deficit. Given that venation networks could also be optimized for leaf mechanical support or provide herbivory defense, we measured the vascular system of both monocot and dicots at three scales to distinguish between leaf investment in mechanical support (macroscopic vein), total transport and capacitance (vascular bundle), or exclusively water transport (xylem) for both parallel and dendritic venation networks. We observed that vein network cost (total vein surface area per leaf volume) for major veins and vascular bundles was not significantly different between monocot species and dicot species. Dicots, however, possess significantly larger minor vein networks than monocots. The 19 species subjected to gas-exchange measurement in the field displayed a broad range of Amax and but demonstrated no significant relationships with any metric of vascular network size in major or minor vein classes. Given that monocots do not seem to display any leaf hydraulic disadvantage relative to dicots, it remains an important research question why parallel venation (truly parallel, down to the smallest vessels) has not arisen more than once in the history of plant evolution.
Collapse
Affiliation(s)
- Sarah Tepler Drobnitch
- Department of Forest and Rangeland Stewardship, Colorado State University, 1472 Campus Delivery, Fort Collins, CO, 80523-1472, USA.
| | - J A Kray
- Rangeland Resources and Systems Research Unit, USDA-ARS, Fort Collins, CO, 80526, USA
| | - Sean M Gleason
- Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, USA
| | - Troy W Ocheltree
- Department of Forest and Rangeland Stewardship, Colorado State University, 1472 Campus Delivery, Fort Collins, CO, 80523-1472, USA
| |
Collapse
|
26
|
Murata H, Noshita K. Three-Dimensional Leaf Edge Reconstruction Combining Two- and Three-Dimensional Approaches. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0181. [PMID: 38726389 PMCID: PMC11079596 DOI: 10.34133/plantphenomics.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/29/2024] [Indexed: 05/12/2024]
Abstract
Leaves, crucial for plant physiology, exhibit various morphological traits that meet diverse functional needs. Traditional leaf morphology quantification, largely 2-dimensional (2D), has not fully captured the 3-dimensional (3D) aspects of leaf function. Despite improvements in 3D data acquisition, accurately depicting leaf morphologies, particularly at the edges, is difficult. This study proposes a method for 3D leaf edge reconstruction, combining 2D image segmentation with curve-based 3D reconstruction. Utilizing deep-learning-based instance segmentation for 2D edge detection, structure from motion for estimation of camera positions and orientations, leaf correspondence identification for matching leaves among images, and curve-based 3D reconstruction for estimating 3D curve fragments, the method assembles 3D curve fragments into a leaf edge model through B-spline curve fitting. The method's performances were evaluated on both virtual and actual leaves, and the results indicated that small leaves and high camera noise pose greater challenges to reconstruction. We developed guidelines for setting a reliability threshold for curve fragments, considering factors occlusion, leaf size, the number of images, and camera error; the number of images had a lesser impact on this threshold compared to others. The method was effective for lobed leaves and leaves with fewer than 4 holes. However, challenges still existed when dealing with morphologies exhibiting highly local variations, such as serrations. This nondestructive approach to 3D leaf edge reconstruction marks an advancement in the quantitative analysis of plant morphology. It is a promising way to capture whole-plant architecture by combining 2D and 3D phenotyping approaches adapted to the target anatomical structures.
Collapse
Affiliation(s)
- Hidekazu Murata
- Department of Biology,
Kyushu University, Fukuoka, Fukuoka 819–0395, Japan
| | - Koji Noshita
- Department of Biology,
Kyushu University, Fukuoka, Fukuoka 819–0395, Japan
- Plant Frontier Research Center,
Kyushu University, Fukuoka, Fukuoka 819–0395, Japan
| |
Collapse
|
27
|
Qie YD, Zhang QW, McAdam SA, Cao KF. Stomatal dynamics are regulated by leaf hydraulic traits and guard cell anatomy in nine true mangrove species. PLANT DIVERSITY 2024; 46:395-405. [PMID: 38798723 PMCID: PMC11119510 DOI: 10.1016/j.pld.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 05/29/2024]
Abstract
Stomatal regulation is critical for mangroves to survive in the hyper-saline intertidal zone where water stress is severe and water availability is highly fluctuant. However, very little is known about the stomatal sensitivity to vapour pressure deficit (VPD) in mangroves, and its co-ordination with stomatal morphology and leaf hydraulic traits. We measured the stomatal response to a step increase in VPD in situ, stomatal anatomy, leaf hydraulic vulnerability and pressure-volume traits in nine true mangrove species of five families and collected the data of genome size. We aimed to answer two questions: (1) Does stomatal morphology influence stomatal dynamics in response to a high VPD in mangroves? with a consideration of possible influence of genome size on stomatal morphology; and (2) do leaf hydraulic traits influence stomatal sensitivity to VPD in mangroves? We found that the stomata of mangrove plants were highly sensitive to a step rise in VPD and the stomatal responses were directly affected by stomatal anatomy and hydraulic traits. Smaller, denser stomata was correlated with faster stomatal closure at high VPD across the species of Rhizophoraceae, and stomata size negatively and vein density positively correlated with genome size. Less negative leaf osmotic pressure at the full turgor (πo) was related to higher operating steady-state stomatal conductance (gs); and a higher leaf capacitance (Cleaf) and more embolism resistant leaf xylem were associated with slower stomatal responses to an increase in VPD. In addition, stomatal responsiveness to VPD was indirectly affected by leaf morphological traits, which were affected by site salinity and consequently leaf water status. Our results demonstrate that mangroves display a unique relationship between genome size, stomatal size and vein packing, and that stomatal responsiveness to VPD is regulated by leaf hydraulic traits and stomatal morphology. Our work provides a quantitative framework to better understand of stomatal regulation in mangroves in an environment with high salinity and dynamic water availability.
Collapse
Affiliation(s)
- Ya-Dong Qie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Qi-Wei Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin 541001, China
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin 541001, China
| | - Scott A.M. McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
28
|
Jain P, Huber AE, Rockwell FE, Sen S, Holbrook NM, Stroock AD. New approaches to dissect leaf hydraulics reveal large gradients in living tissues of tomato leaves. THE NEW PHYTOLOGIST 2024; 242:453-465. [PMID: 38413216 DOI: 10.1111/nph.19585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
The water status of the living tissue in leaves is critical in determining plant function and global exchange of water and CO2. Despite significant advances in the past two decades, persistent questions remain about the tissue-specific origins of leaf hydraulic properties and their dependence on water status. We use a fluorescent nanoparticle reporter that provides water potential in the mesophyll apoplast adjacent to the epidermis of intact leaves to complement existing methods based on the Scholander Pressure Chamber (SPC). Working in tomato leaves, this approach provides access to the hydraulic conductance of the whole leaf, xylem, and outside-xylem tissues. These measurements show that, as stem water potential decreases, the water potential in the mesophyll apoplast can drop below that assessed with the SPC and can fall significantly below the turgor loss point of the leaf. We find that this drop in potential, dominated by the large loss (10-fold) of hydraulic conductance of the outside-xylem tissue, is not however strong enough to significantly limit transpiration. These observations highlight the need to reassess models of water transfer through the outside-xylem tissues, the potential importance of this tissue in regulating transpiration, and the power of new approaches for probing leaf hydraulics.
Collapse
Affiliation(s)
- Piyush Jain
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Annika E Huber
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Fulton E Rockwell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Sabyasachi Sen
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Abraham D Stroock
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
29
|
Bourbia I, Brodribb TJ. Stomatal response to VPD is not triggered by changes in soil-leaf hydraulic conductance in Arabidopsis or Callitris. THE NEW PHYTOLOGIST 2024; 242:444-452. [PMID: 38396304 DOI: 10.1111/nph.19607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
Stomatal closure under high VPDL (leaf to air vapour pressure deficit) is a primary means by which plants prevent large excursions in transpiration rate and leaf water potential (Ψleaf) that could lead to tissue damage. Yet, the drivers of this response remain controversial. Changes in Ψleaf appear to drive stomatal VPDL response, but many argue that dynamic changes in soil-to-leaf hydraulic conductance (Ks-l) make an important contribution to this response pathway, even in well-hydrated soils. Here, we examined whether the regulation of whole plant stomatal conductance (gc) in response to typical changes in daytime VPDL is influenced by dynamic changes in Ks-l. We use well-watered plants of two species with contrasting ecological and physiological features: the herbaceous Arabidopsis thaliana (ecotype Columbia-0) and the dry forest conifer Callitris rhomboidea. The dynamics of Ks-l and gc were continuously monitored by combining concurrent in situ measurements of Ψleaf using an open optical dendrometer and whole plant transpiration using a balance. Large changes in VPDL were imposed to induce stomatal closure and observe the impact on Ks-l. In both species, gc was observed to decline substantially as VPDL increased, while Ks-l remained stable. Our finding suggests that stomatal regulation of transpiration is not contingent on a decrease in Ks-l. Static Ks-l provides a much simpler explanation for transpiration control in hydrated plants and enables simplified modelling and new methods for monitoring plant water use in the field.
Collapse
Affiliation(s)
- Ibrahim Bourbia
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tas., 7001, Australia
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tas., 7001, Australia
| |
Collapse
|
30
|
Sáez PL, Vallejos V, Sancho-Knapik D, Cavieres LA, Ramírez CF, Bravo LA, Javier Peguero-Pina J, Gil-Pelegrín E, Galmés J. Leaf hydraulic properties of Antarctic plants: effects of growth temperature and its coordination with photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2013-2026. [PMID: 38173309 DOI: 10.1093/jxb/erad474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
One of the well-documented effects of regional warming in Antarctica is the impact on flora. Warmer conditions modify several leaf anatomical traits of Antarctic vascular plants, increasing photosynthesis and growth. Given that CO2 and water vapor partially share their diffusion pathways through the leaf, changes in leaf anatomy could also affect the hydraulic traits of Antarctic plants. We evaluated the effects of growth temperature on several anatomical and hydraulic parameters of Antarctic plants and assessed the trait co-variation between these parameters and photosynthetic performance. Warmer conditions promoted an increase in leaf and whole plant hydraulic conductivity, correlating with adjustments in carbon assimilation. These adjustments were consistent with changes in leaf vasculature, where Antarctic species displayed different strategies. At higher temperature, Colobanthus quitensis decreased the number of leaf xylem vessels, but increased their diameter. In contrast, in Deschampsia antarctica the diameter did not change, but the number of vessels increased. Despite this contrasting behavior, some traits such as a small leaf diameter of vessels and a high cell wall rigidity were maintained in both species, suggesting a water-conservation response associated with the ability of Antarctic plants to cope with harsh environments.
Collapse
Affiliation(s)
- Patricia L Sáez
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
- Instituto de Ecología y Biodiversidad-IEB, Concepción, Chile
| | - Valentina Vallejos
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, y Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - Domingo Sancho-Knapik
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, Zaragoza, España
| | - Lohengrin A Cavieres
- Instituto de Ecología y Biodiversidad-IEB, Concepción, Chile
- ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| | - Constanza F Ramírez
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, y Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - León A Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
| | - José Javier Peguero-Pina
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, Zaragoza, España
| | - Eustaquio Gil-Pelegrín
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, Zaragoza, España
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, INAGEA-Universitat de les Illes Balears, Palma de Mallorca, Balearic Islands, Spain
| |
Collapse
|
31
|
Grossman JJ, Coe HB, Fey O, Fraser N, Salaam M, Semper C, Williamson CG. Temperate woody species across the angiosperm phylogeny acquire tolerance to water deficit stress during the growing season. THE NEW PHYTOLOGIST 2024. [PMID: 38511237 DOI: 10.1111/nph.19692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/03/2024] [Indexed: 03/22/2024]
Abstract
Understanding the capacity of temperate trees to acclimate to limited soil water has become essential in the face of increasing drought risk due to climate change. We documented seasonal - or phenological - patterns in acclimation to water deficit stress in stems and leaves of tree species spanning the angiosperm phylogeny. Over 3 yr of field observations carried out in two US arboreta, we measured stem vulnerability to embolism (36 individuals of 7 Species) and turgor loss point (119 individuals of 27 species) over the growing season. We also conducted a growth chamber experiment on 20 individuals of one species to assess the mechanistic relationship between soil water restriction and acclimation. In three-quarters of species measured, plants became less vulnerable to embolism and/or loss of turgor over the growing season. We were able to stimulate this acclimatory effect by withholding water in the growth chamber experiment. Temperate angiosperms are capable of acclimation to soil water deficit stress, showing maximum vulnerability to soil water deficits following budbreak and becoming more resilient to damage over the course of the growing season or in response to simulated drought. The species-specific tempo and extent of this acclimatory potential constitutes preadaptive climate change resilience.
Collapse
Affiliation(s)
- Jake J Grossman
- Biology Department & Environmental Studies Department, St. Olaf College, 1520 St Olaf Ave, Northfield, MN, 55057, USA
| | - Henry B Coe
- Environmental Permitting and Planning Group, Hazen and Sawyer 498 Seventh Ave #11, New York, NY, 10018, USA
| | - Olivia Fey
- Biology Department, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081, USA
| | - Natalie Fraser
- Biology Department, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081, USA
| | - Musa Salaam
- Wilmer Eye Institute, Bayview Medical Center, Johns Hopkins University, 4940 Eastern Ave, Baltimore, MD, 21224, USA
| | - Chelsea Semper
- Department of Forest Resources, University of Minnesota, 115 Green Hall, 1530 Cleveland Ave N, St. Paul, MN, 55108, USA
| | - Ceci G Williamson
- Biology Department, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081, USA
| |
Collapse
|
32
|
Wang X, Chen S, Yang X, Zhu R, Liu M, Wang R, He N. Adaptation mechanisms of leaf vein traits to drought in grassland plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170224. [PMID: 38246381 DOI: 10.1016/j.scitotenv.2024.170224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Leaf veins play an important role in water transport, and are closely associated with photosynthesis and transpiration. Resource heterogeneity in the environment, particularly in water resources, causes changes in leaf vein structure and function, thereby affecting plant growth and community assemblages. Therefore, it is necessary to explore the spatial variation and evolutionary mechanisms of leaf veins in natural communities. Natural communities are composed of dominant and non-dominant species. However, few studies to date have explored the trait variation of dominant and non-dominant species on a large scale. In this study, we set up 10 sampling sites along the water gradient (from east to west) in the Loess Plateau of China, and measured and calculated the vein density (vein length per unit area, VLA), vein diameter (VD), and vein volume ratio (VVR) of 173 species, including dominant and non-dominant species. The mean values of VLA, VD, and VVR were 10.95 mm mm-2, 22.24 μm, and 3%, respectively. VD and VVR of the dominant species were significantly higher than those of the non-dominant species. Unexpectedly, there was no significant change in the VLA with the water gradient, although the VD increased with drought. Leaf vein traits did not change significantly with evolution. There was a significant trade-off between VLA and VD. Our findings demonstrate that the response of veins to environmental changes is dependent on the degree of drought and provide new insights for further large-scale studies.
Collapse
Affiliation(s)
- Xiaochun Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuang Chen
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xue Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rong Zhu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Miao Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruili Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China; Qinling National Forest Ecosystem Research Station, Yangling, Shaanxi 711600, China.
| | - Nianpeng He
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
33
|
Liu G, Fu P, Mao Q, Xia J, Zhao W. Effect of life cycle and venation pattern on the coordination between stomatal and vein densities of herbs. AOB PLANTS 2024; 16:plae007. [PMID: 38435969 PMCID: PMC10908534 DOI: 10.1093/aobpla/plae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Life cycle (annual vs perennial) and leaf venation pattern (parallel and reticular) are known to be related to water use strategies in herb species and critical adaptation to certain climatic conditions. However, the effect of these two traits and how they influence the coordination between vein density (vein length per area, VLA) and stomatal density (SD) remains unclear. In this study, we examined the leaves of 53 herb species from a subtropical botanical garden in Guangdong Province, China, including herbs with different life cycles and leaf venation patterns. We assessed 21 leaf water-related functional traits for all species, including leaf area (LA), major and minor VLA, major and minor vein diameter (VD), SD and stomatal length (SL). The results showed no significant differences in mean SD and SL between either functional group (parallel venation vs reticular venation and annual vs perennial). However, parallel vein herbs and perennial herbs displayed a significantly higher mean LA and minor VD, and lower minor VLA compared to reticular vein herbs and annual herbs, respectively. There was a linear correlation between total VLA and SD in perennial and reticular vein herbs, but this kind of correlation was not found in annual and parallel vein herbs. The major VLA and minor VD were significantly affected by the interaction between life cycle and leaf venation pattern. Our findings suggested that VLA, rather than SD, may serve as a more adaptable structure regulated by herbaceous plants to support the coordination between leaf water supply and demand in the context of different life cycles and leaf venation patterns. The results of the present study provide mechanistic understandings of functional advantages of different leaf types, which may involve in species fitness in community assembly and divergent responses to climate changes.
Collapse
Affiliation(s)
- Guolan Liu
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong, China
| | - Peili Fu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jinghong, Yunnan, China
- Ailaoshan Station of Subtropical Forest Ecosystem Studies, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jingdong, Yunnan, China
| | - Qinggong Mao
- Key Laboratory of Vegetatcion Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jiangbao Xia
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong, China
| | - Wanli Zhao
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong, China
| |
Collapse
|
34
|
Grunwald Y, Yaaran A, Moshelion M. Illuminating plant water dynamics: the role of light in leaf hydraulic regulation. THE NEW PHYTOLOGIST 2024; 241:1404-1414. [PMID: 38155452 DOI: 10.1111/nph.19497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/25/2023] [Indexed: 12/30/2023]
Abstract
Light intensity and quality influence photosynthesis directly but also have an indirect effect by increasing stomatal apertures and enhancing gas exchange. Consequently, in areas such as the upper canopy, a high water demand for transpiration and temperature regulation is created. This paper explores how light intensity and the natural high Blue-Light (BL) : Red-Light (RL) ratio in these areas, is important for controlling leaf hydraulic conductance (Kleaf ) by BL signal transduction, increasing water permeability in cells surrounding the vascular tissue, in supporting the enormous water demands. Conversely, shaded inner-canopy areas receive less radiation, have lower water and cooling demands, and exhibit reduced Kleaf due to diminished intensity and BL induction. Intriguingly, shaded leaves display higher water-use efficiency (compared with upper-canopy) due to decreased transpiration and cooling requirements while the presence of RL supports photosynthesis.
Collapse
Affiliation(s)
- Yael Grunwald
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
- The Plant & Environmental Sciences Department, Weizmann Institute of Science, Rehovot, 7632706, Israel
| | - Adi Yaaran
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Menachem Moshelion
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| |
Collapse
|
35
|
Jin N, Yu X, Dong J, Duan M, Mo Y, Feng L, Bai R, Zhao J, Song J, Dossa GGO, Lu H. Vertical variation in leaf functional traits of Parashorea chinensis with different canopy layers. FRONTIERS IN PLANT SCIENCE 2024; 15:1335524. [PMID: 38348271 PMCID: PMC10859428 DOI: 10.3389/fpls.2024.1335524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
Introduction Canopy species need to shift their ecological adaptation to improve light and water resources utilization, and the study of intraspecific variations in plant leaf functional traits based at individual scale is of great significance for evaluating plant adaptability to climate change. Methods In this study, we evaluate how leaf functional traits of giant trees relate to spatial niche specialization along a vertical gradient. We sampled the tropical flagship species of Parashorea chinensis around 60 meters tall and divided their crowns into three vertical layers. Fourteen key leaf functional traits including leaf morphology, photosynthetic, hydraulic and chemical physiology were measured at each canopy layer to investigate the intraspecific variation of leaf traits and the interrelationships between different functional traits. Additionally, due to the potential impact of different measurement methods (in-situ and ex-situ branch) on photosynthetic physiological parameters, we also compared the effects of these two gas exchange measurements. Results and discussion In-situ measurements revealed that most leaf functional traits of individual-to-individual P. chinensis varied significantly at different canopy heights. Leaf hydraulic traits such as midday leaf water potential (MWP) and leaf osmotic potential (OP) were insignificantly correlated with leaf photosynthetic physiological traits such as maximal net assimilation rate per mass (A mass). In addition, great discrepancies were found between in-situ and ex-situ measurements of photosynthetic parameters. The ex-situ measurements caused a decrease by 53.63%, 27.86%, and 38.05% in A mass, and a decrease of 50.00%, 19.21%, and 27.90% in light saturation point compared to the in-situ measurements. These findings provided insights into our understanding of the response mechanisms of P. chinensis to micro-habitat in Xishuangbanna tropical seasonal rainforests and the fine scale adaption of different resultant of decoupled traits, which have implications for understanding ecological adaption strategies of P. chinensis under environmental changes.
Collapse
Affiliation(s)
- Nan Jin
- School of Ecology and Environment Science, Yunnan University, Kunming, China
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- National Forest Ecosystem Research Station at Xishuangbanna, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Xishuangbanna Forest Ecosystem Yunnan Field Scientific Observation Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Xiaocheng Yu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- National Forest Ecosystem Research Station at Xishuangbanna, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Xishuangbanna Forest Ecosystem Yunnan Field Scientific Observation Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Jinlong Dong
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- National Forest Ecosystem Research Station at Xishuangbanna, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Xishuangbanna Forest Ecosystem Yunnan Field Scientific Observation Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Mengcheng Duan
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yuxuan Mo
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Leiyun Feng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- National Forest Ecosystem Research Station at Xishuangbanna, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Xishuangbanna Forest Ecosystem Yunnan Field Scientific Observation Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Rong Bai
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- National Forest Ecosystem Research Station at Xishuangbanna, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Xishuangbanna Forest Ecosystem Yunnan Field Scientific Observation Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Jianli Zhao
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - Jia Song
- School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, China
| | - Gbadamassi Gouvide Olawole Dossa
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Huazheng Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- National Forest Ecosystem Research Station at Xishuangbanna, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Xishuangbanna Forest Ecosystem Yunnan Field Scientific Observation Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| |
Collapse
|
36
|
Cisse EHM, Jiang BH, Yin LY, Miao LF, Li DD, Zhou JJ, Yang F. Physio-biochemical and metabolomic responses of the woody plant Dalbergia odorifera to salinity and waterlogging. BMC PLANT BIOLOGY 2024; 24:49. [PMID: 38216904 PMCID: PMC10787392 DOI: 10.1186/s12870-024-04721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/01/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND Trees have developed a broad spectrum of molecular mechanisms to counteract oxidative stress. Secondary metabolites via phenolic compounds emblematized the hidden bridge among plant kingdom, human health, and oxidative stress. Although studies have demonstrated that abiotic stresses can increase the production of medicinal compounds in plants, research comparing the efficiency of these stresses still needs to be explored. Thus, the present research paper provided an exhaustive comparative metabolomic study in Dalbergia odorifera under salinity (ST) and waterlogging (WL). RESULTS High ST reduced D. odorifera's fresh biomass compared to WL. While WL only slightly affected leaf and vein size, ST had a significant negative impact. ST also caused more significant damage to water status and leaflet anatomy than WL. As a result, WL-treated seedlings exhibited better photosynthesis and an up-regulation of nonenzymatic pathways involved in scavenging reactive oxygen species. The metabolomic and physiological responses of D. odorifera under WL and salinity ST stress revealed an accumulation of secondary metabolites by the less aggressive stress (WL) to counterbalance the oxidative stress. Under WL, more metabolites were more regulated compared to ST. ST significantly altered the metabolite profile in D. odorifera leaflets, indicating its sensitivity to salinity. WL synthesized more metabolites involved in phenylpropanoid, flavone, flavonol, flavonoid, and isoflavonoid pathways than ST. Moreover, the down-regulation of L-phenylalanine correlated with increased p-coumarate, caffeate, and ferulate associated with better cell homeostasis and leaf anatomical indexes under WL. CONCLUSIONS From a pharmacological and medicinal perspective, WL improved larger phenolics with therapeutic values compared to ST. Therefore, the data showed evidence of the crucial role of medical tree species' adaptability on ROS detoxification under environmental stresses that led to a significant accumulation of secondary metabolites with therapeutic value.
Collapse
Affiliation(s)
- El- Hadji Malick Cisse
- School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
- School of Life Sciences, Hainan University, Haikou, 570228, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou, 570228, China
| | | | - Li-Yan Yin
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Ling-Feng Miao
- School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
- School of Plant Protection, Hainan University, Haikou, 570228, China
| | - Da-Dong Li
- School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
- School of Life Sciences, Hainan University, Haikou, 570228, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou, 570228, China
| | - Jing-Jing Zhou
- School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
| | - Fan Yang
- School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China.
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou, 570228, China.
| |
Collapse
|
37
|
Huang R, Di N, Xi B, Yang J, Duan J, Li X, Feng J, Choat B, Tissue D. Herb hydraulics: Variation and correlation for traits governing drought tolerance and efficiency of water transport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168095. [PMID: 37879470 DOI: 10.1016/j.scitotenv.2023.168095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/20/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Hydraulic traits dictate plant response to drought, thus enabling better understanding of community dynamics under global climate change. Despite being intensively documented in woody species, herbaceous species (graminoids and forbs) are largely understudied, hence the distribution and correlation of hydraulic traits in herbaceous species remains unclear. Here, we collected key hydraulic traits for 436 herbaceous species from published literature, including leaf hydraulic conductivity (Kleaf), water potential inducing 50 % loss of hydraulic conductivity (P50), stomatal closure (Pclose) and turgor loss (Ptlp). Trait variation of herbs was analyzed and contrasted with angiosperm woody species within the existing global hydraulic traits database, as well as between different growth forms within herbs. Furthermore, hydraulic traits coordination was also assessed for herbaceous species. We found that herbs showed overall more negative Pclose but less negative Ptlp compared with angiosperm woody species, while P50 did not differ between functional types, regardless of the organ (leaf and stem). In addition, correlations were found between Kleaf and P50 of leaf (P50leaf), as well as between Pclose, P50leaf and Kleaf. Within herbs, graminoids generally exhibited more negative P50 and Ptlp, but lower Kleaf, relative to forbs. Within herbs, no clear pattern regarding hydraulic traits-climate relationship was found. Our analysis provided insights into herb hydraulic, and highlighted the knowledge gaps need to be filled regarding the response of herbs to drought.
Collapse
Affiliation(s)
- Ruike Huang
- College of Life and Environmental Science, Minzu University of China, Zhongguancun Campus, 27 Zhongguancun south Avenue, Beijing 100081, People's Republic of China; Collaborative Innovation Center for Grassland Ecological Security (Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region), Hohhot 010020, People's Republic of China
| | - Nan Di
- Collaborative Innovation Center for Grassland Ecological Security (Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region), Hohhot 010020, People's Republic of China; School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Benye Xi
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, 35 Qinghua East Rd, Beijing 100083, People's Republic of China
| | - Jinyan Yang
- CSIRO Land and Water, Black Mountain, Australian Capital Territory 2601, Australia
| | - Jie Duan
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, 35 Qinghua East Rd, Beijing 100083, People's Republic of China.
| | - Ximeng Li
- College of Life and Environmental Science, Minzu University of China, Zhongguancun Campus, 27 Zhongguancun south Avenue, Beijing 100081, People's Republic of China.
| | - Jinchao Feng
- College of Life and Environmental Science, Minzu University of China, Zhongguancun Campus, 27 Zhongguancun south Avenue, Beijing 100081, People's Republic of China
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - David Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia; Global Centre for Land-Based Innovation, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| |
Collapse
|
38
|
Cong X, Li S, Hu D. Stomatal aperture dynamics coupling mechanically passive and ionically active mechanisms. PLANT, CELL & ENVIRONMENT 2024; 47:106-121. [PMID: 37743707 DOI: 10.1111/pce.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 07/16/2023] [Accepted: 09/10/2023] [Indexed: 09/26/2023]
Abstract
Stomata are the key nodes linking photosynthesis and transpiration. By regulating the opening degree of stomata, plants successively achieve the balance between water loss and carbon dioxide acquisition. The dynamic behaviour of stomata is an important cornerstone of plant adaptability. Though there have been miscellaneous experimental results on stomata and their constituent cells, the guard cells and the subsidiary cells, current theory of stomata regulation is far from clear and unified. In this work, we develop an integrated model to describe the stomatal dynamics of seed plants based on existing experimental results. The model includes three parts: (1) a passive mechanical model of the stomatal aperture as a bivariate function of the guard-cell turgor and the subsidiary-cell turgor; (2) an active regulation model with a target ion-content in guard cells as a function of their water potential; and (3) a dynamical model for the movement of potassium ions and water content. Our model has been used to reproduce abundant experimental phenomena semi-quantitatively. With accurately measured parameters, our model can also be used to predict stomatal responses to changes of environmental conditions.
Collapse
Affiliation(s)
- Xue Cong
- School of Mathematical Sciences, Institute of Natural Sciences, and MOE-LSC, Shanghai Jiao Tong University, Shanghai, China
| | - Sien Li
- Center for Agricultural Water Research in China, Agricultural University, Beijing, China
- Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Wuwei, China
| | - Dan Hu
- School of Mathematical Sciences, Institute of Natural Sciences, and MOE-LSC, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
Pathare VS, Panahabadi R, Sonawane BV, Apalla AJ, Koteyeva N, Bartley LE, Cousins AB. Altered cell wall hydroxycinnamate composition impacts leaf- and canopy-level CO2 uptake and water use in rice. PLANT PHYSIOLOGY 2023; 194:190-208. [PMID: 37503807 DOI: 10.1093/plphys/kiad428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Cell wall properties play a major role in determining photosynthetic carbon uptake and water use through their impact on mesophyll conductance (CO2 diffusion from substomatal cavities into photosynthetic mesophyll cells) and leaf hydraulic conductance (water movement from xylem, through leaf tissue, to stomata). Consequently, modification of cell wall (CW) properties might help improve photosynthesis and crop water use efficiency (WUE). We tested this using 2 independent transgenic rice (Oryza sativa) lines overexpressing the rice OsAT10 gene (encoding a "BAHD" CoA acyltransferase), which alters CW hydroxycinnamic acid content (more para-coumaric acid and less ferulic acid). Plants were grown under high and low water levels, and traits related to leaf anatomy, CW composition, gas exchange, hydraulics, plant biomass, and canopy-level water use were measured. Alteration of hydroxycinnamic acid content led to statistically significant decreases in mesophyll CW thickness (-14%) and increased mesophyll conductance (+120%) and photosynthesis (+22%). However, concomitant increases in stomatal conductance negated the increased photosynthesis, resulting in no change in intrinsic WUE (ratio of photosynthesis to stomatal conductance). Leaf hydraulic conductance was also unchanged; however, transgenic plants showed small but statistically significant increases in aboveground biomass (AGB) (+12.5%) and canopy-level WUE (+8.8%; ratio of AGB to water used) and performed better under low water levels than wild-type plants. Our results demonstrate that changes in CW composition, specifically hydroxycinnamic acid content, can increase mesophyll conductance and photosynthesis in C3 cereal crops such as rice. However, attempts to improve photosynthetic WUE will need to enhance mesophyll conductance and photosynthesis while maintaining or decreasing stomatal conductance.
Collapse
Affiliation(s)
- Varsha S Pathare
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Rahele Panahabadi
- College of Agricultural. Human, and Natural Resource Sciences, Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Balasaheb V Sonawane
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Anthony Jude Apalla
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Nuria Koteyeva
- Laboratory of Anatomy and Morphology, V.L. Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Laura E Bartley
- College of Agricultural. Human, and Natural Resource Sciences, Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
40
|
Yan T, Wang L, Wang P, Zhong T. Stability in the leaf functional traits of understory herbaceous species after 12-yr of nitrogen addition in temperate larch plantations. FRONTIERS IN PLANT SCIENCE 2023; 14:1282884. [PMID: 38116147 PMCID: PMC10728480 DOI: 10.3389/fpls.2023.1282884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Leaf functional traits play critical roles in plant functioning. Although the functional traits of overstory trees have been extensively studied, minimal research has been conducted regarding understory species, despite the understory layer is an important component of temperate forests. Such insufficiency limit the broader understanding of processes and functions in forest ecosystems, particularly when under the increasing atmospheric nitrogen (N) deposition. Here, we investigated the responses of 18 leaf functional traits in six understory herbaceous species within young and mature stands (three species per stand) in larch (Larix principis-rupprechtii) plantations that subjected to 12 years of anthropogenic N addition. We found that N addition did not significantly impact the photosynthetic traits of understory herbaceous species in either stand; it only led to increased chlorophyll content in Geum aleppicum Jacq. Similarly, with the exception of decreases in the predawn leaf water potential of Sanguisorba officinalis L., N addition did not significantly affect leaf hydraulic traits. With the exception of changes to adaxial epidermis thickness in Potentilla chinensis Ser. (decreased) and G. aleppicum (increased), N addition had negligible effects on leaf anatomical traits and specific leaf area, however, interspecific variations in the plasticity of leaf anatomical traits were observed. Stable responses to N addition were also observed for nonstructural carbohydrates (NSC) and their components (soluble sugars and starch), with the exception of Polygonum divaricatum L., which exhibited increases in NSC. Overall, our results suggest that the functional traits of understory herbaceous species exhibit stability under conditions of long-term N enrichment in temperate plantations.
Collapse
Affiliation(s)
- Tao Yan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Qingyuan Forest CERN, National Observation and Research Station, Shenyang, China
| | - Liying Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Peilin Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tianyu Zhong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
41
|
Coleman D, Windt CW, Buckley TN, Merchant A. Leaf relative water content at 50% stomatal conductance measured by noninvasive NMR is linked to climate of origin in nine species of eucalypt. PLANT, CELL & ENVIRONMENT 2023; 46:3791-3805. [PMID: 37641435 DOI: 10.1111/pce.14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Stomata are the gatekeepers of plant water use and must quickly respond to changes in plant water status to ensure plant survival under fluctuating environmental conditions. The mechanism for their closure is highly sensitive to disturbances in leaf water status, which makes isolating their response to declining water content difficult to characterise and to compare responses among species. Using a small-scale non-destructive nuclear magnetic resonance spectrometer as a leaf water content sensor, we measure the stomatal response to rapid induction of water deficit in the leaves of nine species of eucalypt from contrasting climates. We found a strong linear correlation between relative water content at 50% stomatal conductance (RWCgs50 ) and mean annual temperature at the climate of origin of each species. We also show evidence for stomata to maintain control over water loss well below turgor loss point in species adapted to warmer climates and secondary increases in stomatal conductance despite declining water content. We propose that RWCgs50 is a promising trait to guide future investigations comparing stomatal responses to water deficit. It may provide a useful phenotyping trait to delineate tolerance and adaption to hot temperatures and high leaf-to-air vapour pressure deficits.
Collapse
Affiliation(s)
- David Coleman
- School of Life, Earth and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Andrew Merchant
- School of Life, Earth and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Institute for Bio-Geosciences, Juelich, Germany
| |
Collapse
|
42
|
Koteyeva NK, Voznesenskaya EV, Pathare VS, Borisenko TA, Zhurbenko PM, Morozov GA, Edwards GE. Biochemical and Structural Diversification of C 4 Photosynthesis in Tribe Zoysieae (Poaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:4049. [PMID: 38068683 PMCID: PMC10798372 DOI: 10.3390/plants12234049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024]
Abstract
C4 photosynthesis has evolved independently multiple times in grass lineages with nine anatomical and three biochemical subtypes. Chloridoideae represents one of the separate events and contains species of two biochemical subtypes, NAD-ME and PEP-CK. Assessment of C4 photosynthesis diversification is limited by species sampling. In this study, the biochemical subtypes together with anatomical leaf traits were analyzed in 19 species to reveal the evolutionary scenario for diversification of C4 photosynthesis in tribe Zoysieae (Chloridoideae). The effect of habitat on anatomical and biochemical diversification was also evaluated. The results for the 19 species studied indicate that 11 species have only NAD-ME as a decarboxylating enzyme, while eight species belong to the PEP-CK subtype. Leaf anatomy corresponds to the biochemical subtype. Analysis of Zoysieae phylogeny indicates multiple switches between PEP-CK and NAD-ME photosynthetic subtypes, with PEP-CK most likely as the ancestral subtype, and with multiple independent PEP-CK decarboxylase losses and its secondary acquisition. A strong correlation was detected between C4 biochemical subtypes studied and habitat annual precipitation wherein NAD-ME species are confined to drier habitats, while PEP-CK species prefer humid areas. Structural adaptations to arid climate include increases in leaf thickness and interveinal distance. Our analysis suggests that multiple loss of PEP-CK decarboxylase could have been driven by climate aridization followed by continued adaptive changes in leaf anatomy.
Collapse
Affiliation(s)
- Nuria K. Koteyeva
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, 197376 St. Petersburg, Russia;
| | - Elena V. Voznesenskaya
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, 197376 St. Petersburg, Russia;
| | - Varsha S. Pathare
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA;
| | - Tatyana A. Borisenko
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, 197376 St. Petersburg, Russia;
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Peter M. Zhurbenko
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of Russian Academy of Sciences, 197376 St. Petersburg, Russia;
| | - Grigory A. Morozov
- Chair of Medical Biology, North-Western State Medical University named after I.I. Mechnikov, 191015 St. Petersburg, Russia;
| | - Gerald E. Edwards
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA;
| |
Collapse
|
43
|
Luo D, Huang G, Zhang Q, Zhou G, Peng S, Li Y. Plasticity of mesophyll cell density and cell wall thickness and composition play a pivotal role in regulating plant growth and photosynthesis under shading in rapeseed. ANNALS OF BOTANY 2023; 132:963-978. [PMID: 37739395 PMCID: PMC10808032 DOI: 10.1093/aob/mcad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND AND AIMS Plasticity of leaf growth and photosynthesis is an important strategy of plants to adapt to shading stress; however, their strategy of leaf development to achieve a simultaneous increase in leaf area and photosynthesis under shading remains unknown. METHODS In the present study, a pot experiment was conducted using three rapeseed genotypes of Huayouza 50 (HYZ50), Zhongshuang 11 (ZS11) and Huayouza 62 (HYZ62), and the responses of plant growth, leaf morphoanatomical traits, cell wall composition and photosynthesis to shading were investigated. KEY RESULTS Shading significantly increased leaf area per plant (LAplant) in all genotypes, but the increase in HYZ62 was greater than that in HYZ50 and ZS11. The greater increment of LAplant in HYZ62 was related to the larger decrease in leaf mass per area (LMA) and leaf density (LD), which were in turn related to less densely packed mesophyll cells and thinner cell walls (Tcw). Moreover, shading significantly increased photosynthesis in HYZ62 but significantly decreased it in HYZ50. The enhanced photosynthesis in HYZ62 was related to increased mesophyll conductance (gm) due primarily to thinner cell walls. CONCLUSIONS The data presented indicate that the different plasticity of mesophyll cell density, cell wall thickness and cell wall composition in response to shading can dramatically affect leaf growth and photosynthesis.
Collapse
Affiliation(s)
- Dongxu Luo
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guanjun Huang
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qiangqiang Zhang
- Rice Ecophysiology and Precise Management Laboratory, College of Agronomy, Anhui Agricultural University, Anhui 230036, China
| | - Guangsheng Zhou
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shaobing Peng
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yong Li
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
44
|
Shen J, Guo C, Ma Y, Dong A. Capillary efficiency study in leaf vein morphology inspired channels. BIOINSPIRATION & BIOMIMETICS 2023; 19:016006. [PMID: 37976540 DOI: 10.1088/1748-3190/ad0dae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/17/2023] [Indexed: 11/19/2023]
Abstract
Inspired by the capillary transport function of plant leaf veins, this study proposes three typical leaf vein features by observing a large number of leaves, including wedge shape, branch asymmetry, as well as hierarchical arrangement, and investigates their capillary transport mechanism. Not only a preliminary theoretical analysis of capillary flow in the bio-inspired channels was carried out, but the COMSOL Multiphysics simulation software was also used to simulate gas-liquid two-phase flow in biomimetic channels. The results reveal the efficient transport mechanism of the leaf vein inspired structure and provide insight into the design of capillary transmission channels.
Collapse
Affiliation(s)
- Jingyu Shen
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
- Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Ce Guo
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
- Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Yaopeng Ma
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Ao Dong
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| |
Collapse
|
45
|
Leverett A, Ferguson K, Winter K, Borland AM. Leaf vein density correlates with crassulacean acid metabolism, but not hydraulic capacitance, in the genus Clusia. ANNALS OF BOTANY 2023; 132:801-810. [PMID: 36821473 PMCID: PMC10799986 DOI: 10.1093/aob/mcad035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/26/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND AIMS Many succulent species are characterized by the presence of Crassulacean acid metabolism (CAM) and/or elevated bulk hydraulic capacitance (CFT). Both CAM and elevated CFT substantially reduce the rate at which water moves through transpiring leaves. However, little is known about how these physiological adaptations are coordinated with leaf vascular architecture. METHODS The genus Clusia contains species spanning the entire C3-CAM continuum, and also is known to have >5-fold interspecific variation in CFT. We used this highly diverse genus to explore how interspecific variation in leaf vein density is coordinated with CAM and CFT. KEY RESULTS We found that constitutive CAM phenotypes were associated with lower vein length per leaf area (VLA) and vein termini density (VTD), compared to C3 or facultative CAM species. However, when vein densities were standardized by leaf thickness, this value was higher in CAM than C3 species, which is probably an adaptation to overcome apoplastic hydraulic resistance in deep chlorenchyma tissue. In contrast, CFT did not correlate with any xylem anatomical trait measured, suggesting CAM has a greater impact on leaf transpiration rates than CFT. CONCLUSIONS Our findings strongly suggest that CAM photosynthesis is coordinated with leaf vein densities. The link between CAM and vascular anatomy will be important to consider when attempting to bioengineer CAM into C3 crops.
Collapse
Affiliation(s)
- Alistair Leverett
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama
- School of Life Sciences, University of Essex, Colchester Campus, Colchester, CO4 3SQ, UK
| | - Kate Ferguson
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Klaus Winter
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| |
Collapse
|
46
|
Collazos-Burbano DA, Téllez-Guzmán EA, Ealo J, Villagrán-Muniz M, García-Segundo C. Insights into the dielectric function of plant leaves under water stress. APPLIED OPTICS 2023; 62:8951-8957. [PMID: 38038043 DOI: 10.1364/ao.505785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
In this work, we present a practical approach combining experimental and theoretical analyses to assess water evaporation in Arabica coffee leaves. We examine continuously the changing water content of leaves through optical reflectance spectroscopy and mass loss measurements, beginning from a fully saturated stage and extending beyond the turgor loss point. We establish a relationship between the current water content and the dielectric function, based on the changing of the molecular water dipoles inside the leaf due to evaporation.
Collapse
|
47
|
Jin MY, Johnson DJ, Jin GZ, Guo QX, Liu ZL. Soil water content and nitrogen differentially correlate with multidimensional leaf traits of two temperate broadleaf species. PLANT DIVERSITY 2023; 45:694-701. [PMID: 38197009 PMCID: PMC10772124 DOI: 10.1016/j.pld.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 01/11/2024]
Abstract
The variation and correlation of leaf economics and vein traits are crucial for predicting plant ecological strategies under different environmental changes. However, correlations between these two suites of traits and abiotic factors such as soil water and nitrogen content remain ambiguous. We measured leaf economics and vein traits as well as soil water and nitrogen content for two different shade-tolerant species (Betula platyphylla and Acer mono) in four mixed broadleaved-Korean pine (Pinus koraiensis) forests along a latitudinal gradient in Northeast China. We found that leaf economics traits and vein traits were decoupled in shade-intolerant species, Betula platphylla, but significantly coupled in a shade-tolerant species, A. mono. We found stronger correlations among leaf traits in the shade tolerant species than in the shade intolerant species. Furthermore, leaf economic traits were positively correlated with the soil water gradient for both species, whereas vein traits were positively correlated with soil water gradient for the shade intolerant species but negatively correlated in the shade tolerant species. Although economic traits were positively correlated with soil nitrogen gradient in shade intolerant species but not correlated in shade tolerant species, vein traits were negatively correlated with soil nitrogen gradient in shade tolerant species but not correlated in shade intolerant species. Our study provides evidence for distinct correlations between leaf economics and vein traits and local abiotic factors of species differing in light demands. We recommend that the ecological significance of shade tolerance be considered for species when evaluating ecosystem functions and predicting plant responses to environmental changes.
Collapse
Affiliation(s)
- Ming-Yue Jin
- Center for Ecological Research, Key Laboratory of Sustainable Forest, Ecosystem Management-Ministry of Education, Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Daniel J. Johnson
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - Guang-Ze Jin
- Center for Ecological Research, Key Laboratory of Sustainable Forest, Ecosystem Management-Ministry of Education, Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Qing-Xi Guo
- Center for Ecological Research, Key Laboratory of Sustainable Forest, Ecosystem Management-Ministry of Education, Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Zhi-Li Liu
- Center for Ecological Research, Key Laboratory of Sustainable Forest, Ecosystem Management-Ministry of Education, Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| |
Collapse
|
48
|
Petruzzellis F, Di Bonaventura A, Tordoni E, Tomasella M, Natale S, Trifilò P, Tromba G, Di Lillo F, D'Amico L, Bacaro G, Nardini A. The optical method based on gas injection overestimates leaf vulnerability to xylem embolism in three woody species. TREE PHYSIOLOGY 2023; 43:1784-1795. [PMID: 37427987 DOI: 10.1093/treephys/tpad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Plant hydraulic traits related to leaf drought tolerance, like the water potential at turgor loss point (TLP) and the water potential inducing 50% loss of hydraulic conductance (P50), are extremely useful to predict the potential impacts of drought on plants. While novel techniques have allowed the inclusion of TLP in studies targeting a large group of species, fast and reliable protocols to measure leaf P50 are still lacking. Recently, the optical method coupled with the gas injection (GI) technique has been proposed as a possibility to speed up the P50 estimation. Here, we present a comparison of leaf optical vulnerability curves (OVcs) measured in three woody species, namely Acer campestre (Ac), Ostrya carpinifolia (Oc) and Populus nigra (Pn), based on bench dehydration (BD) or GI of detached branches. For Pn, we also compared optical data with direct micro-computed tomography (micro-CT) imaging in both intact saplings and cut shoots subjected to BD. Based on the BD procedure, Ac, Oc and Pn had P50 values of -2.87, -2.47 and -2.11 MPa, respectively, while the GI procedure overestimated the leaf vulnerability (-2.68, -2.04 and -1.54 MPa for Ac, Oc and Pn, respectively). The overestimation was higher for Oc and Pn than for Ac, likely reflecting the species-specific vessel lengths. According to micro-CT observations performed on Pn, the leaf midrib showed none or very few embolized conduits at -1.2 MPa, consistent with the OVcs obtained with the BD procedure but at odds with that derived on the basis of GI. Overall, our data suggest that coupling the optical method with GI might not be a reliable technique to quantify leaf hydraulic vulnerability since it could be affected by the 'open-vessel' artifact. Accurate detection of xylem embolism in the leaf vein network should be based on BD, preferably of intact up-rooted plants.
Collapse
Affiliation(s)
- Francesco Petruzzellis
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Azzurra Di Bonaventura
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Viale delle Scienze 206, Udine 33100, Italy
| | - Enrico Tordoni
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu 50409, Estonia
| | - Martina Tomasella
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Sara Natale
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
- Department of Biology, University of Padova, Via U. Bassi 58/B, Padova 35121, Italy
| | - Patrizia Trifilò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, Messina 98166, Italy
| | - Giuliana Tromba
- Elettra Sincrotrone Trieste, Area Science Park, Basovizza, Trieste 34149, Italy
| | - Francesca Di Lillo
- Elettra Sincrotrone Trieste, Area Science Park, Basovizza, Trieste 34149, Italy
| | - Lorenzo D'Amico
- Elettra Sincrotrone Trieste, Area Science Park, Basovizza, Trieste 34149, Italy
- Department of Physics, University of Trieste, Via A. Valerio 2, Trieste 34127, Italy
| | - Giovanni Bacaro
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Andrea Nardini
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| |
Collapse
|
49
|
Yaaran A, Erez E, Procko C, Moshelion M. Leaf hydraulic maze: Abscisic acid effects on bundle sheath, palisade, and spongy mesophyll conductance. PLANT PHYSIOLOGY 2023; 193:1349-1364. [PMID: 37390615 PMCID: PMC10517257 DOI: 10.1093/plphys/kiad372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
Leaf hydraulic conductance (Kleaf) facilitates the supply of water, enabling continual CO2 uptake while maintaining plant water status. We hypothesized that bundle sheath and mesophyll cells play key roles in regulating the radial flow of water out of the xylem by responding to abscisic acid (ABA). Thus, we generated transgenic Arabidopsis thaliana plants that are insensitive to ABA in their bundle sheath (BSabi) and mesophyll (MCabi) cells. We also introduced tissue-specific fluorescent markers to distinguish between cells of the palisade mesophyll, spongy mesophyll, and bundle sheath. Both BSabi and MCabi plants showed greater Kleaf and transpiration under optimal conditions. MCabi plants had larger stomatal apertures, higher stomatal index, and greater vascular diameter and biomass relative to the wild-type (WT) and BSabi plants. In response to xylem-fed ABA, both transgenic and WT plants reduced their Kleaf and transpiration. The membrane osmotic water permeability (Pf) of the WT's spongy mesophyll was higher than that of the WT's palisade mesophyll. While the palisade mesophyll maintained a low Pf in response to high ABA, the spongy mesophyll Pf was reduced. Compared to the WT, BSabi bundle sheath cells had a higher Pf, but MCabi spongy mesophyll had an unexpected lower Pf. These results suggest that tissue-specific regulation of Pf by ABA may be confounded by whole-leaf hydraulics and transpiration. ABA increased the symplastic permeability, but its contribution to Kleaf was negligible. We suggest that the bundle sheath spongy mesophyll pathway dynamically responds to the fluctuations in water availability, while the palisade mesophyll serves as a hydraulic buffer.
Collapse
Affiliation(s)
- Adi Yaaran
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Eyal Erez
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Carl Procko
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Menachem Moshelion
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
50
|
Meng Y, Jin B, Rogers KM, Zhou H, Song X, Zhang Y, Lin G, Wu H. Hydrogen and Oxygen Isotope Fractionation Effects in Different Organ Tissues of Grapes under Drought Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13662-13671. [PMID: 37668543 DOI: 10.1021/acs.jafc.3c03161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
A study of different grapevine tissues and organs (root, stem, leaf, fruit) water isotope fractionation models from high-quality wine grapes produced in the Helan Mountains, a key wine-producing area in northwestern China, was undertaken. Results showed that δ2H values of local groundwater sources were more negative than rivers and precipitation. Soil water δ2H and δ18O values were significantly higher than those of other environmental water sources. Water from the soil surface layer (0-30 cm, δ2H and δ18O values) was more positive than the deeper layer (30-60 cm), indicating that soil water has undergone a positive fractionation effect. δ2H and δ18O values of tissues and organs from different grape varieties followed a similar pattern but were more negative than the local atmospheric precipitation line (slope between 4.1 to 5.2). The 2H and 18O fractionation relationship in grapevine organs was similar, and 18O has a higher fractionation effect than 2H. δ2H and δ18O values showed a strong fractionation effect during the transportation of water to different grape organs (trend of stem > fruit > leaf). This study showed that 18/16O fractionation in grapes is more likely to occur under drought conditions and provides a theoretical basis to improve traceability accuracy and origin protection of wine production areas.
Collapse
Affiliation(s)
- Yuchen Meng
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
- College of Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Baohui Jin
- Food Inspection and Quarantine Center, Shenzhen Customs, Shenzhen 518016, China
| | - Karyne M Rogers
- National Isotope Centre,GNS Science, Lower Hutt 5040, New Zealand
| | - Haichao Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518061, China
| | - Xin Song
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518061, China
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen ,Fujian 361102, China
| | - Guanghui Lin
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
| | - Hao Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen ,Fujian 361102, China
| |
Collapse
|