1
|
Ermolenko E, Sikorskaya T, Grigorchuk V, Gevorgyan T, Rodkina S, Bizikashvili E, Maslennikov S. Patterns of variations in lipid molecular profile during larval development of red king crab, Paralithodes camtschaticus, and Japanese mitten crab, Eriocheir Japonica. Sci Rep 2025; 15:1737. [PMID: 39799183 PMCID: PMC11724842 DOI: 10.1038/s41598-025-85901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
The red king crab, Paralithodes camtschaticus, and the Japanese mitten crab, Eriocheir japonica, are the major commercially valuable species. In addition to their high nutritional value, these crabs are used as objects of ecological research. To extend our knowledge of crustacean biochemistry and provide a more comprehensive model of lipidomic patterns during embryonic and larval development of these crab species, we studied the dynamics of molecular species profiles of reserve lipids such as triacylglycerols (TG) and membrane lipids such as glycerophospholipids (PL). A complete disappearance of TG was observed in zoea IV larvae of E. japonica and zoea III larvae of P. camtschaticus. The appearance of TG at older stages of larval development was accompanied by considerable changes in TG composition. The dynamics of PL with major polyunsaturated fatty acids (PUFA) (20:5n-3, 22:6n-3, and 20:4n-3) during the larval development was species-specific. The obtained results indicate different demands for PUFA in P. camtschaticus and E. japonica, which can be taken into account when selecting optimum diets. The lipidomic approach allows identifying new patterns of lipid changes during crab embryonic development, which may be useful for improvement of aquaculture techniques.
Collapse
Affiliation(s)
- Ekaterina Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia.
| | - Tatyana Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| | - Valeria Grigorchuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| | - Tigran Gevorgyan
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| | - Svetlana Rodkina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| | - Elena Bizikashvili
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| | - Sergey Maslennikov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| |
Collapse
|
2
|
Sawasato K, Dowhan W, Bogdanov M. Its own architect: Flipping cardiolipin synthase. SCIENCE ADVANCES 2025; 11:eads0244. [PMID: 39752486 PMCID: PMC11698083 DOI: 10.1126/sciadv.ads0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
Current dogma assumes that lipid asymmetry in biological membranes is actively maintained and dispensable for cell viability. The inner (cytoplasmic) membrane (IM) of Escherichia coli is asymmetric. However, the molecular mechanism that maintains this uneven distribution is unknown. We engineered a conditionally lethal phosphatidylethanolamine (PE)-deficient mutant in which the presence of cardiolipin (CL) on the periplasmic leaflet of the IM is essential for viability, revealing a mechanism that provides CL on the desired leaflet of the IM. CL synthase (ClsA) flips its catalytic cytoplasmic domain upon depletion of PE to supply nonbilayer-prone CL in the periplasmic leaflet of the IM for cell viability. In the presence of a physiological amount of PE, osmotic down-shock induces a topological inversion of ClsA, establishing the biological relevance of membrane protein reorientations in wild-type cells. These findings support a flippase-less mechanism for maintaining membrane lipid asymmetry in biogenic membranes by self-organization of a lipid-synthesizing enzyme.
Collapse
Affiliation(s)
- Katsuhiro Sawasato
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - William Dowhan
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
3
|
Zhao M, Lopes LJS, Sahni H, Yadav A, Do HN, Reddy T, López CA, Neale C, Gnanakaran S. Insertion and Anchoring of the HIV-1 Fusion Peptide into a Complex Membrane Mimicking the Human T-Cell. J Phys Chem B 2024; 128:12710-12727. [PMID: 39670799 DOI: 10.1021/acs.jpcb.4c05018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
A fundamental understanding of how the HIV-1 envelope (Env) protein facilitates fusion is still lacking. The HIV-1 fusion peptide, consisting of 15 to 22 residues, is the N-terminus of the gp41 subunit of the Env protein. Further, this peptide, a promising vaccine candidate, initiates viral entry into target cells by inserting and anchoring into human immune cells. The influence of membrane lipid reorganization and the conformational changes of the fusion peptide during the membrane insertion and anchoring processes, which can significantly affect HIV-1 cell entry, remains largely unexplored due to the limitations of experimental measurements. In this work, we investigate the insertion of the fusion peptide into an immune cell membrane mimic through multiscale molecular dynamics simulations. We mimic the native T-cell by constructing a nine-lipid asymmetric membrane, along with geometrical restraints accounting for insertion in the context of gp41. To account for the slow time scale of lipid mixing while enabling conformational changes, we implement a protocol to go back and forth between atomistic and coarse-grained simulations. Our study provides a molecular understanding of the interactions between the HIV-1 fusion peptide and the T-cell membrane, highlighting the importance of the conformational flexibility of fusion peptides and local lipid reorganization in stabilizing the anchoring of gp41 into the targeted host membrane during the early events of HIV-1 cell entry. Importantly, we identify a motif within the fusion peptide critical for fusion that can be further manipulated in future immunological studies.
Collapse
Affiliation(s)
- Mingfei Zhao
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Laura J S Lopes
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Harshita Sahni
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Computer Science, University of New Mexico, Albuquerque, New Mexico 87106,United States
| | - Anju Yadav
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968,United States
| | - Hung N Do
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tyler Reddy
- CCS-7 Applied Computer Science Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Cesar A López
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Chris Neale
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - S Gnanakaran
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
4
|
Kamemura K, Kozono R, Tando M, Okumura M, Koga D, Kusumi S, Tamai K, Okumura A, Sekine S, Kamiyama D, Chihara T. Secretion of endoplasmic reticulum protein VAPB/ALS8 requires topological inversion. Nat Commun 2024; 15:8777. [PMID: 39389966 PMCID: PMC11467184 DOI: 10.1038/s41467-024-53097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
VAMP-associated protein (VAP) is a type IV integral transmembrane protein at the endoplasmic reticulum (ER). Mutations in human VAPB/ALS8 are associated with amyotrophic lateral sclerosis (ALS). The N-terminal major sperm protein (MSP) domain of VAPB (Drosophila Vap33) is cleaved, secreted, and acts as a signaling ligand for several cell-surface receptors. Although extracellular functions of VAPB are beginning to be understood, it is unknown how the VAPB/Vap33 MSP domain facing the cytosol is secreted to the extracellular space. Here we show that Vap33 is transported to the plasma membrane, where the MSP domain is exposed extracellularly by topological inversion. The externalized MSP domain is cleaved by Matrix metalloproteinase 1/2 (Mmp1/2). Overexpression of Mmp1 restores decreased levels of extracellular MSP domain derived from ALS8-associated Vap33 mutants. We propose an unprecedented secretion mechanism for an ER-resident membrane protein, which may contribute to ALS8 pathogenesis.
Collapse
Affiliation(s)
- Kosuke Kamemura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Rio Kozono
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Mizuki Tando
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Satoshi Kusumi
- Department of Morphological Sciences, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Kanako Tamai
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Aoi Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Sayaka Sekine
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Daichi Kamiyama
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
| |
Collapse
|
5
|
Bobbili MR, Görgens A, Yan Y, Vogt S, Gupta D, Corso G, Barbaria S, Patrioli C, Weilner S, Pultar M, Jacak J, Hackl M, Schosserer M, Grillari R, Kjems J, Andaloussi SEL, Grillari J. Snorkel-tag based affinity chromatography for recombinant extracellular vesicle purification. J Extracell Vesicles 2024; 13:e12523. [PMID: 39400515 PMCID: PMC11472238 DOI: 10.1002/jev2.12523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid nanoparticles and play an important role in cell-cell communications, making them potential therapeutic agents and allowing to engineer for targeted drug delivery. The expanding applications of EVs in next generation medicine is still limited by existing tools for scaling standardized EV production, single EV tracing and analytics, and thus provide only a snapshot of tissue-specific EV cargo information. Here, we present the Snorkel-tag, for which we have genetically fused the EV surface marker protein CD81, to a series of tags with an additional transmembrane domain to be displayed on the EV surface, resembling a snorkel. This system enables the affinity purification of EVs from complex matrices in a non-destructive form while maintaining EV characteristics in terms of surface protein profiles, associated miRNA patterns and uptake into a model cell line. Therefore, we consider the Snorkel-tag to be a widely applicable tool in EV research, allowing for efficient preparation of EV standards and reference materials, or dissecting EVs with different surface markers when fusing to other tetraspanins in vitro or in vivo.
Collapse
Affiliation(s)
- Madhusudhan Reddy Bobbili
- Institute of Molecular Biotechnology, Department of BiotechnologyBOKU UniversityViennaAustria
- Ludwig Boltzmann Institute for TraumatologyThe Research Center in Cooperation with AUVAViennaAustria
- Austrian Cluster for Tissue Regeneration
| | - André Görgens
- Department of Laboratory Medicine, Division of Biomolecular and Cellular MedicineKarolinska InstitutetStockholmSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
- Institute for Transfusion Medicine, University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Yan Yan
- Department of Molecular Biology and Genetics, Centre for Cellular Signal Patterns (CellPat), Interdisciplinary Nanoscience Centre (iNANO)Aarhus UniversityAarhus CDenmark
- Omiics ApSAarhus NDenmark
| | - Stefan Vogt
- Institute of Molecular Biotechnology, Department of BiotechnologyBOKU UniversityViennaAustria
| | - Dhanu Gupta
- Department of Laboratory Medicine, Division of Biomolecular and Cellular MedicineKarolinska InstitutetStockholmSweden
- Institute of Developmental and Regenerative MedicineUniversity of Oxford, IMS‐Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, HeadingtonOxfordUnited Kingdom
- Department of PaediatricsUniversity of Oxford, South Parks RoadOxfordUnited Kingdom
| | - Giulia Corso
- Department of Laboratory Medicine, Division of Biomolecular and Cellular MedicineKarolinska InstitutetStockholmSweden
- Evercyte GmbHViennaAustria
| | - Samir Barbaria
- Institute of Molecular Biotechnology, Department of BiotechnologyBOKU UniversityViennaAustria
| | - Carolina Patrioli
- Institute of Molecular Biotechnology, Department of BiotechnologyBOKU UniversityViennaAustria
| | - Sylvia Weilner
- Institute of Molecular Biotechnology, Department of BiotechnologyBOKU UniversityViennaAustria
| | | | - Jaroslaw Jacak
- Ludwig Boltzmann Institute for TraumatologyThe Research Center in Cooperation with AUVAViennaAustria
- School of Medical Engineering and Applied Social ScienceUniversity of Applied Sciences Upper AustriaLinzAustria
| | - Matthias Hackl
- Austrian Cluster for Tissue Regeneration
- TAmiRNATAmiRNA GmbHViennaAustria
| | - Markus Schosserer
- Institute of Molecular Biotechnology, Department of BiotechnologyBOKU UniversityViennaAustria
- Austrian Cluster for Tissue Regeneration
- Institute of Medical GeneticsCenter for Pathobiochemistry and GeneticsMedical University of ViennaViennaAustria
| | - Regina Grillari
- Austrian Cluster for Tissue Regeneration
- Evercyte GmbHViennaAustria
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, Centre for Cellular Signal Patterns (CellPat), Interdisciplinary Nanoscience Centre (iNANO)Aarhus UniversityAarhus CDenmark
| | - Samir EL Andaloussi
- Department of Laboratory Medicine, Division of Biomolecular and Cellular MedicineKarolinska InstitutetStockholmSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
| | - Johannes Grillari
- Institute of Molecular Biotechnology, Department of BiotechnologyBOKU UniversityViennaAustria
- Ludwig Boltzmann Institute for TraumatologyThe Research Center in Cooperation with AUVAViennaAustria
- Austrian Cluster for Tissue Regeneration
| |
Collapse
|
6
|
Zhao M, Lopes LJS, Sahni H, Yadav A, Do HN, Reddy T, López CA, Neale C, Gnanakaran S. Insertion and Anchoring of HIV-1 Fusion Peptide into Complex Membrane Mimicking Human T-cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606381. [PMID: 39131401 PMCID: PMC11312619 DOI: 10.1101/2024.08.02.606381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A fundamental understanding of how HIV-1 envelope (Env) protein facilitates fusion is still lacking. The HIV-1 fusion peptide, consisting of 15 to 22 residues, is the N-terminus of the gp41 subunit of the Env protein. Further, this peptide, a promising vaccine candidate, initiates viral entry into target cells by inserting and anchoring into human immune cells. The influence of membrane lipid reorganization and the conformational changes of the fusion peptide during the membrane insertion and anchoring processes, which can significantly affect HIV-1 cell entry, remains largely unexplored due to the limitations of experimental measurements. In this work, we investigate the insertion of the fusion peptide into an immune cell membrane mimic through multiscale molecular dynamics simulations. We mimic the native T-cell by constructing a 9-lipid asymmetric membrane, along with geometrical restraints accounting for insertion in the context of gp41. To account for the slow timescale of lipid mixing while enabling conformational changes, we implement a protocol to go back and forth between atomistic and coarse-grained simulations. Our study provides a molecular understanding of the interactions between the HIV-1 fusion peptide and the T-cell membrane, highlighting the importance of conformational flexibility of fusion peptides and local lipid reorganization in stabilizing the anchoring of gp41 into the targeted host membrane during the early events of HIV-1 cell entry. Importantly, we identify a motif within the fusion peptide critical for fusion that can be further manipulated in future immunological studies.
Collapse
Affiliation(s)
- Mingfei Zhao
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
| | | | - Harshita Sahni
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
- Department of Computer Science, University of New Mexico, Albuquerque NM, USA
| | - Anju Yadav
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso TX, USA
| | - Hung N Do
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
| | - Tyler Reddy
- CCS-7 Applied Computer Science Group, Los Alamos National Laboratory, Los Alamos NM USA
| | - Cesar A López
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
| | - Chris Neale
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
| | - S Gnanakaran
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
| |
Collapse
|
7
|
Rai AK, Sawasato K, Bennett HC, Kozlova A, Sparagna GC, Bogdanov M, Mitchell AM. Genetic evidence for functional diversification of gram-negative intermembrane phospholipid transporters. PLoS Genet 2024; 20:e1011335. [PMID: 38913742 PMCID: PMC11226057 DOI: 10.1371/journal.pgen.1011335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/05/2024] [Accepted: 06/07/2024] [Indexed: 06/26/2024] Open
Abstract
The outer membrane of gram-negative bacteria is a barrier to chemical and physical stress. Phospholipid transport between the inner and outer membranes has been an area of intense investigation and, in E. coli K-12, it has recently been shown to be mediated by YhdP, TamB, and YdbH, which are suggested to provide hydrophobic channels for phospholipid diffusion, with YhdP and TamB playing the major roles. However, YhdP and TamB have different phenotypes suggesting distinct functions. It remains unclear whether these functions are related to phospholipid metabolism. We investigated a synthetic cold sensitivity caused by deletion of fadR, a transcriptional regulator controlling fatty acid degradation and unsaturated fatty acid production, and yhdP, but not by ΔtamB ΔfadR or ΔydbH ΔfadR. Deletion of tamB recuses the ΔyhdP ΔfadR cold sensitivity further demonstrating the phenotype is related to functional diversification between these genes. The ΔyhdP ΔfadR strain shows a greater increase in cardiolipin upon transfer to the non-permissive temperature and genetically lowering cardiolipin levels can suppress cold sensitivity. These data also reveal a qualitative difference between cardiolipin synthases in E. coli, as deletion of clsA and clsC suppresses cold sensitivity but deletion of clsB does not. Moreover, increased fatty acid saturation is necessary for cold sensitivity and lowering this level genetically or through supplementation of oleic acid suppresses the cold sensitivity of the ΔyhdP ΔfadR strain. Together, our data clearly demonstrate that the diversification of function between YhdP and TamB is related to phospholipid metabolism. Although indirect regulatory effects are possible, we favor the parsimonious hypothesis that YhdP and TamB have differential phospholipid-substrate transport preferences. Thus, our data provide a potential mechanism for independent control of the phospholipid composition of the inner and outer membranes in response to changing conditions based on regulation of abundance or activity of YhdP and TamB.
Collapse
Affiliation(s)
- Ashutosh K. Rai
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Katsuhiro Sawasato
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Haley C. Bennett
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Anastasiia Kozlova
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Genevieve C. Sparagna
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Angela M. Mitchell
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
8
|
DeKryger W, Chroneos ZC. Emerging concepts of myosin 18A isoform mechanobiology in organismal and immune system physiology, development, and function. FASEB J 2024; 38:e23649. [PMID: 38776246 DOI: 10.1096/fj.202400350r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024]
Abstract
Alternative and combinatorial splicing of myosin 18A (MYO18A) gene transcripts results in expression of MYO18A protein isoforms and isoform variants with different membrane and subcellular localizations, and functional properties. MYO18A proteins are members of the myosin superfamily consisting of a myosin-like motor domain, an IQ motif, and a coiled-coil domain. MYO18A isoforms, however, lack the ability to hydrolyze ATP and do not perform ATP-dependent motor activity. MYO18A isoforms are distinguished by different amino- and carboxy-terminal extensions and domains. The domain organization and functions of MYO18Aα, MYO18Aβ, and MYO18Aγ have been studied experimentally. MYO18Aα and MYO18Aβ have a common carboxy-terminal extension but differ by the presence or absence of an amino-terminal KE repeat and PDZ domain, respectively. The amino- and carboxy-terminal extensions of MYO18Aγ contain unique proline and serine-rich domains. Computationally predicted MYO18Aε and MYO18Aδ isoforms contain the carboxy-terminal serine-rich extension but differ by the presence or absence of the amino-terminal KE/PDZ extension. Additional isoform variants within each category arise by alternative utilization or inclusion/exclusion of small exons. MYO18Aα variants are expressed in somatic cells and mature immune cells, whereas MYO18Aβ variants occur mainly in myeloid and natural killer cells. MYO18Aγ expression is selective to cardiac and skeletal muscle. In the present review perspective, we discuss current and emerging concepts of the functional specialization of MYO18A proteins in membrane and cytoskeletal dynamics, cellular communication and signaling, endocytic and exocytic organelle movement, viral infection, and as the SP-R210 receptor for surfactant protein A.
Collapse
Affiliation(s)
- William DeKryger
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Zissis C Chroneos
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
9
|
Christen M, Oevermann A, Rupp S, Vaz FM, Wever EJM, Braus BK, Jagannathan V, Kehl A, Hytönen MK, Lohi H, Leeb T. PCYT2 deficiency in Saarlooswolfdogs with progressive retinal, central, and peripheral neurodegeneration. Mol Genet Metab 2024; 141:108149. [PMID: 38277988 DOI: 10.1016/j.ymgme.2024.108149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
We investigated a syndromic disease comprising blindness and neurodegeneration in 11 Saarlooswolfdogs. Clinical signs involved early adult onset retinal degeneration and adult-onset neurological deficits including gait abnormalities, hind limb weakness, tremors, ataxia, cognitive decline and behavioral changes such as aggression towards the owner. Histopathology in one affected dog demonstrated cataract, retinal degeneration, central and peripheral axonal degeneration, and severe astroglial hypertrophy and hyperplasia in the central nervous system. Pedigrees indicated autosomal recessive inheritance. We mapped the suspected genetic defect to a 15 Mb critical interval by combined linkage and autozygosity analysis. Whole genome sequencing revealed a private homozygous missense variant, PCYT2:c.4A>G, predicted to change the second amino acid of the encoded ethanolamine-phosphate cytidylyltransferase 2, XP_038402224.1:(p.Ile2Val). Genotyping of additional Saarlooswolfdogs confirmed the homozygous genotype in all eleven affected dogs and demonstrated an allele frequency of 9.9% in the population. This experiment also identified three additional homozygous mutant young dogs without overt clinical signs. Subsequent examination of one of these dogs revealed early-stage progressive retinal atrophy (PRA) and expansion of subarachnoid CSF spaces in MRI. Dogs homozygous for the pathogenic variant showed ether lipid accumulation, confirming a functional PCYT2 deficiency. The clinical and metabolic phenotype in affected dogs shows some parallels with human patients, in whom PCYT2 variants lead to a rare form of spastic paraplegia or axonal motor and sensory polyneuropathy. Our results demonstrate that PCYT2:c.4A>G in dogs cause PCYT2 deficiency. This canine model with histopathologically documented retinal, central, and peripheral neurodegeneration further deepens the knowledge of PCYT2 deficiency.
Collapse
Affiliation(s)
- Matthias Christen
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern 3001, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern 3001, Switzerland
| | - Stefan Rupp
- Neurology Department, Tierklinik Hofheim, IVC Evidensia, Hofheim am Taunus 65719, Germany
| | - Frédéric M Vaz
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Eric J M Wever
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Bioinformatics Laboratory, Department of Epidemiology & Data Science, Amsterdam Public Health Research Institute, University of Amsterdam, 1100 DE Amsterdam UMC, the Netherlands
| | - Barbara K Braus
- Ophthalmology Department, Tierklinik Hofheim, IVC Evidensia, Hofheim am Taunus 65719, Germany
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern 3001, Switzerland
| | - Alexandra Kehl
- Laboklin GmbH & Co. KG, Steubenstraße 4, Bad Kissingen 97688, Germany; Comparative Experimental Pathology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki 00014, Finland; Department of Veterinary Biosciences, University of Helsinki, Helsinki 00014, Finland; Folkhälsan Research Center, Helsinki 00290, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki 00014, Finland; Department of Veterinary Biosciences, University of Helsinki, Helsinki 00014, Finland; Folkhälsan Research Center, Helsinki 00290, Finland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern 3001, Switzerland.
| |
Collapse
|
10
|
Bogdanov M. Preparation of Uniformly Oriented Inverted Inner (Cytoplasmic) Membrane Vesicles from Gram-Negative Bacterial Cells. Methods Mol Biol 2024; 2715:159-180. [PMID: 37930527 PMCID: PMC10724710 DOI: 10.1007/978-1-0716-3445-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The complex double-membrane organization of the envelope in Gram-negative bacteria places unique biosynthetic and topological constraints that can affect translocation of lipids and proteins synthesized on cytoplasm facing leaflet of cytoplasmic (inner) membrane (IM), across IM and between IM and outer membrane (OM). Uniformly oriented inside-out (ISO) vesicles became functional requisite for many biochemical reconstitution functional assays, vectorial proteomics, and vectorial lipidomics. Due to these demands, it is necessary to develop simple and reliable approaches for preparation of uniformly oriented IM membrane vesicles and validation of their sidedness. The uniformly ISO oriented membrane vesicles which have the cytoplasmic face of the membrane on the outside and the periplasmic side facing the sealed lumen can be obtained following intact cell disruption by a single passage through a French pressure cell (French press) at desired total pressure. Although high-pressure lysis leads to the formation of mostly inverted membrane vesicles (designated and abbreviated usually as ISO vesicles, everted or inverted membrane vesicles (IMVs)), inconclusive results are quite common. This uncertainty is due mainly by applying a different pressures, using either intact cells or spheroplasts and presence or absence of sucrose during rupture procedure. Many E. coli envelope fractionation techniques result in heterogeneity among isolated IM membrane vesicles. In part, this is due to difficulties in simple validation of sidedness of oriented membrane preparations of unknown sidedness. The sidedness of various preparations of membrane vesicles can be inferred from the orientation of residing uniformly oriented transmembrane protein. We outline the method in which the orientation of membrane vesicles can be verified by mapping of uniform or mixed topologies of essential protein E. coli protein leader peptidase (LepB) by advanced SCAM™. Although the protocol discussed in this chapter has been developed using Escherichia coli and Yersinia pseudotuberculosis, it can be directly adapted to other Gram-negative bacteria including pathogens.
Collapse
Affiliation(s)
- Mikhail Bogdanov
- Department of Biochemistry & Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
11
|
Bogdanov M. Exploring Uniform, Dual, and Dynamic Topologies of Membrane Proteins by Substituted Cysteine Accessibility Method (SCAM™). Methods Mol Biol 2024; 2715:121-157. [PMID: 37930526 PMCID: PMC10755806 DOI: 10.1007/978-1-0716-3445-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
A described simple and advanced protocol for Substituted Cysteine Accessibility Method as applied to transmembrane (TM) orientation (SCAM™) permits a topology analysis of proteins in their native state and can be universally adapted to any membrane system to either systematically map an uniform or identify and quantify the degree of mixed topology or establish transmembrane assembly dynamics from relatively static experimental data such as endpoint topologies of membrane proteins. In this approach, noncritical individual amino acids that are thought to reside in the putative extracellular or intracellular loops of a membrane protein are replaced one at the time by cysteine residue, and the orientation with respect to the membrane is evaluated by using a pair of membrane-impermeable non-detectable and detectable thiol-reactive labeling reagents. For the most water-exposed cysteine residues in proteins, the thiol pKa lies in the range of 8-9, and formation of cysteinyl thiolate ions is optimum in aqueous rather in a nonpolar environment. These features and the ease of specific chemical modification with thiol reagents are central to SCAM™. Membrane side-specific sulfhydryl labeling allows to discriminate "exposed, protected or dynamic" cysteines strategically "implanted" at desired positions throughout cysteine less target protein template. The strategy described is widely used to map the topology of membrane protein and establish its transmembrane dynamics in intact cells of both diderm (two-membraned) Gram-negative and monoderm (one-membraned) Gram-positive bacteria, cell-derived oriented membrane vesicles, and proteoliposomes.
Collapse
Affiliation(s)
- Mikhail Bogdanov
- Department of Biochemistry & Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
12
|
Blaimschein N, Parameswaran H, Nagler G, Manioglu S, Helenius J, Ardelean C, Kuhn A, Guan L, Müller DJ. The insertase YidC chaperones the polytopic membrane protein MelB inserting and folding simultaneously from both termini. Structure 2023; 31:1419-1430.e5. [PMID: 37708891 PMCID: PMC10840855 DOI: 10.1016/j.str.2023.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/22/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
The insertion and folding of proteins into membranes is crucial for cell viability. Yet, the detailed contributions of insertases remain elusive. Here, we monitor how the insertase YidC guides the folding of the polytopic melibiose permease MelB into membranes. In vivo experiments using conditionally depleted E. coli strains show that MelB can insert in the absence of SecYEG if YidC resides in the cytoplasmic membrane. In vitro single-molecule force spectroscopy reveals that the MelB substrate itself forms two folding cores from which structural segments insert stepwise into the membrane. However, misfolding dominates, particularly in structural regions that interface the pseudo-symmetric α-helical domains of MelB. Here, YidC takes an important role in accelerating and chaperoning the stepwise insertion and folding process of both MelB folding cores. Our findings reveal a great flexibility of the chaperoning and insertase activity of YidC in the multifaceted folding processes of complex polytopic membrane proteins.
Collapse
Affiliation(s)
- Nina Blaimschein
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland
| | - Hariharan Parameswaran
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Gisela Nagler
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Baden-Württemberg, Germany
| | - Selen Manioglu
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland
| | - Jonne Helenius
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland
| | | | - Andreas Kuhn
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Baden-Württemberg, Germany
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland.
| |
Collapse
|
13
|
Makowski M, Almendro-Vedia VG, Domingues MM, Franco OL, López-Montero I, Melo MN, Santos NC. Activity modulation of the Escherichia coli F 1F O ATP synthase by a designed antimicrobial peptide via cardiolipin sequestering. iScience 2023; 26:107004. [PMID: 37416464 PMCID: PMC10320169 DOI: 10.1016/j.isci.2023.107004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/13/2023] [Accepted: 05/26/2023] [Indexed: 07/08/2023] Open
Abstract
Most antimicrobial peptides (AMPs) exert their microbicidal activity through membrane permeabilization. The designed AMP EcDBS1R4 has a cryptic mechanism of action involving the membrane hyperpolarization of Escherichia coli, suggesting that EcDBS1R4 may hinder processes involved in membrane potential dissipation. We show that EcDBS1R4 can sequester cardiolipin, a phospholipid that interacts with several respiratory complexes of E. coli. Among these, F1FO ATP synthase uses membrane potential to fuel ATP synthesis. We found that EcDBS1R4 can modulate the activity of ATP synthase upon partition to membranes containing cardiolipin. Molecular dynamics simulations suggest that EcDBS1R4 alters the membrane environment of the transmembrane FO motor, impairing cardiolipin interactions with the cytoplasmic face of the peripheral stalk that binds the catalytic F1 domain to the FO domain. The proposed mechanism of action, targeting membrane protein function through lipid reorganization may open new venues of research on the mode of action and design of other AMPs.
Collapse
Affiliation(s)
- Marcin Makowski
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Víctor G. Almendro-Vedia
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Ps Juan XXIII 1, 28040 Madrid, Spain
- Universidad Complutense de Madrid, Departamento de Química Física, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Marco M. Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Octavio L. Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, 71966-700 Federal District, Brazil
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, 79117-900 Mato Grosso do Sul, Brazil
| | - Iván López-Montero
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Ps Juan XXIII 1, 28040 Madrid, Spain
- Universidad Complutense de Madrid, Departamento de Química Física, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| |
Collapse
|
14
|
St Germain M, Iraji R, Bakovic M. Phosphatidylethanolamine homeostasis under conditions of impaired CDP-ethanolamine pathway or phosphatidylserine decarboxylation. Front Nutr 2023; 9:1094273. [PMID: 36687696 PMCID: PMC9849821 DOI: 10.3389/fnut.2022.1094273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Phosphatidylethanolamine is the major inner-membrane lipid in the plasma and mitochondrial membranes. It is synthesized in the endoplasmic reticulum from ethanolamine and diacylglycerol (DAG) by the CDP-ethanolamine pathway and from phosphatidylserine by decarboxylation in the mitochondria. Recently, multiple genetic disorders that impact these pathways have been identified, including hereditary spastic paraplegia 81 and 82, Liberfarb syndrome, and a new type of childhood-onset neurodegeneration-CONATOC. Individuals with these diseases suffer from multisystem disorders mainly affecting neuronal function. This indicates the importance of maintaining proper phospholipid homeostasis when major biosynthetic pathways are impaired. This study summarizes the current knowledge of phosphatidylethanolamine metabolism in order to identify areas of future research that might lead to the development of treatment options.
Collapse
|
15
|
Gold A, Chen L, Zhu J. More than Meets the Eye: Untargeted Metabolomics and Lipidomics Reveal Complex Pathways Spurred by Activation of Acid Resistance Mechanisms in Escherichia coli. J Proteome Res 2022; 21:2958-2968. [PMID: 36322795 PMCID: PMC10317704 DOI: 10.1021/acs.jproteome.2c00459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Escherichia coli is a ubiquitous group of bacteria that can be either commensal gut microbes or enterohemorrhagic food-borne pathogens. Regardless, both forms must survive acidic environments in the stomach and intestines to reach and colonize the gut, a process that partially relies on amino acid-dependent acid resistance (AR) mechanisms and modifications to membrane phospholipids. However, only the basic tenets of these mechanisms have been elucidated. In this paper, we aim to conduct a full-scale metabolic and lipidomic characterization of E. coli's adaptations to acid stress. We hypothesized that the use of untargeted metabolomics and lipidomics would reveal mechanisms downstream of AR processes that provide novel contributions to acid stress survival. We detected significant differences in the extracellular metabolome and the lipidome induced by amino acid supplementation (glutamine, arginine, or lysine) and contextualized these results using real-time quantitative polymerase chain reaction (RT-qPCR). We additionally identified several metabolic pathways as well as a significant alteration in phospholipid synthetic pathways induced by differential amino acid supplementation. These results demonstrate that AR may extend beyond canonical mechanisms to a coordinated metabolic phenotype. Future studies may benefit from our analysis to further elucidate distinct targets for prebiotic supplements to cultivate commensal strains or therapies to combat pathogenic ones.
Collapse
Affiliation(s)
- Andrew Gold
- Human Nutrition Program & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Li Chen
- Human Nutrition Program & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jiangjiang Zhu
- Human Nutrition Program & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Anticarcinogenic Trimethoxybenzoate of Catechin Stabilizes the Liquid Crystalline Bilayer Phase in Phosphatidylethanolamine Membranes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Nunes LGA, Pitts MW, Hoffmann PR. Selenoprotein I (selenoi) as a critical enzyme in the central nervous system. Arch Biochem Biophys 2022; 729:109376. [PMID: 36007576 PMCID: PMC11166481 DOI: 10.1016/j.abb.2022.109376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Selenoprotein I (selenoi) is a unique selenocysteine (Sec)-containing protein widely expressed throughout the body. Selenoi belongs to two different protein families: the selenoproteins that are characterized by a redox reactive Sec residue and the lipid phosphotransferases that contain the highly conserved cytidine diphosphate (CDP)-alcohol phosphotransferase motif. Selenoi catalyzes the third reaction of the CDP-ethanolamine branch of the Kennedy pathway within the endoplasmic reticulum membrane. This is not a redox reaction and does not directly involve the Sec residue, making selenoi quite distinct among selenoproteins. Selenoi is also unique among lipid phosphotransferases as the only family member containing a Sec residue near its C-terminus that serves an unknown function. The reaction catalyzed by selenoi involves the transfer of the ethanolamine phosphate group from CDP-ethanolamine to one of two lipid donors, 1,2-diacylglycerol (DAG) or 1-alkyl-2-acylglycerol (AAG), to produce PE or plasmanyl PE, respectively. Plasmanyl PE is subsequently converted to plasmenyl PE by plasmanylethanolamine desaturase. Both PE and plasmenyl PE are critical phospholipids in the central nervous system (CNS), as demonstrated through clinical studies involving SELENOI mutations as well as studies in cell lines and mice. Deletion of SELENOI in mice is embryonic lethal, while loss-of-function mutations in the human SELENOI gene have been found in rare cases leading to a form of hereditary spastic paraplegia (HSP). HSP is an upper motor disease characterized by spasticity of the lower limbs, which is often manifested with other symptoms such as impaired vision/hearing, ataxia, cognitive/intellectual impairment, and seizures. This article will summarize the current understanding of selenoi as a metabolic enzyme and discuss its role in the CNS physiology and pathophysiology.
Collapse
Affiliation(s)
- Lance G A Nunes
- Department of Anatomy, Physiology and Biochemistry, Honolulu, HI, 96813, USA
| | - Matthew W Pitts
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA.
| |
Collapse
|
18
|
Metabolomic Evidence for Peroxisomal Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Int J Mol Sci 2022; 23:ijms23147906. [PMID: 35887252 PMCID: PMC9320121 DOI: 10.3390/ijms23147906] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/04/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic and debilitating disease characterized by unexplained physical fatigue, cognitive and sensory dysfunction, sleeping disturbances, orthostatic intolerance, and gastrointestinal problems. People with ME/CFS often report a prodrome consistent with infections. Using regression, Bayesian and enrichment analyses, we conducted targeted and untargeted metabolomic analysis of plasma from 106 ME/CFS cases and 91 frequency-matched healthy controls. Subjects in the ME/CFS group had significantly decreased levels of plasmalogens and phospholipid ethers (p < 0.001), phosphatidylcholines (p < 0.001) and sphingomyelins (p < 0.001), and elevated levels of dicarboxylic acids (p = 0.013). Using machine learning algorithms, we were able to differentiate ME/CFS or subgroups of ME/CFS from controls with area under the receiver operating characteristic curve (AUC) values up to 0.873. Our findings provide the first metabolomic evidence of peroxisomal dysfunction, and are consistent with dysregulation of lipid remodeling and the tricarboxylic acid cycle. These findings, if validated in other cohorts, could provide new insights into the pathogenesis of ME/CFS and highlight the potential use of the plasma metabolome as a source of biomarkers for the disease.
Collapse
|
19
|
Bulatova L, Savenkova D, Nurgalieva A, Reshetnikova D, Timonina A, Skripova V, Bogdanov M, Kiyamova R. Toward a Topology-Based Therapeutic Design of Membrane Proteins: Validation of NaPi2b Topology in Live Ovarian Cancer Cells. Front Mol Biosci 2022; 9:895911. [PMID: 35911971 PMCID: PMC9335355 DOI: 10.3389/fmolb.2022.895911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
NaPi2b is a sodium-dependent phosphate transporter that belongs to the SLC34 family of transporters which is mainly responsible for phosphate homeostasis in humans. Although NaPi2b is widely expressed in normal tissues, its overexpression has been demonstrated in ovarian, lung, and other cancers. A valuable set of antibodies, including L2 (20/3) and MX35, and its humanized versions react strongly with an antigen on the surface of ovarian and other carcinoma cells. Although the topology of NaPi2b was predicted in silico, no direct experimental data are available for the orientation of NaPi2b extracellular domains in cancer cells. The presented results of antibody mapping of untagged NaPi2b in live ovarian carcinoma cells OVCAR-4 provide a platform for current and future epitope-based cancer therapies and serological diagnostics.
Collapse
Affiliation(s)
- Leisan Bulatova
- Research Laboratory “Biomarker”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Daria Savenkova
- Research Laboratory “Biomarker”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Alsina Nurgalieva
- Research Laboratory “Biomarker”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Daria Reshetnikova
- Research Laboratory “Biomarker”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Arina Timonina
- Research Laboratory “Biomarker”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Vera Skripova
- Research Laboratory “Biomarker”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Mikhail Bogdanov
- Research Laboratory “Biomarker”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
- Department of Biochemistry and Molecular Biology, McGovern Medical School, the University of Texas Health Science Center, Houston, TX, United States
| | - Ramziya Kiyamova
- Research Laboratory “Biomarker”, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
20
|
Lee E, You X, Baiz CR. Interfacial dynamics in inverted-headgroup lipid membranes. J Chem Phys 2022; 156:075102. [PMID: 35183070 PMCID: PMC8858029 DOI: 10.1063/5.0080153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Inverted-headgroup (choline-phosphate) lipids are synthetic lipids that are not found in nature and are used as model systems to understand the role of headgroup dipole orientation. Recently, studies revealed that the net orientation of interfacial water strongly depends on the headgroup electrostatics, i.e., the charges and dipole generated by the phosphate and the choline groups. In order to characterize interfacial H-bond dynamics, we measured two-dimensional infrared spectra of the ester carbonyl band and performed molecular dynamics simulations in fully hydrated 1,2-dioleoyl-sn-glycero-3-phosphocholine and 2-((2,3-bis(oleoyloxy)propyl)-dimethyl-ammonio)ethyl ethyl phosphate (DOCPe) lipid bilayers. The experiments and simulations suggest that the reverse dipole generated by the inverted-headgroup in DOCPe does not affect the carbonyl H-bond populations or the interfacial water H-bond dynamics. However, while phosphate-associated waters in both lipids appear to show a similar H-bond structure, carbonyl-associated waters are characterized by a slightly disrupted H-bond structure in the DOCPe bilayer, especially within the second hydration shell. Our findings show that changes in net water orientation perturb the water H-bonds at the linker region between the headgroup and the lipid tail, although this perturbation is weak.
Collapse
|
21
|
Che X, Brydges CR, Yu Y, Price A, Joshi S, Roy A, Lee B, Barupal DK, Cheng A, Palmer DM, Levine S, Peterson DL, Vernon SD, Bateman L, Hornig M, Montoya JG, Komaroff AL, Fiehn O, Lipkin WI. Evidence for Peroxisomal Dysfunction and Dysregulation of the CDP-Choline Pathway in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022. [PMID: 35043127 PMCID: PMC8764736 DOI: 10.1101/2021.06.14.21258895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic and debilitating disease that is characterized by unexplained physical fatigue unrelieved by rest. Symptoms also include cognitive and sensory dysfunction, sleeping disturbances, orthostatic intolerance, and gastrointestinal problems. A syndrome clinically similar to ME/CFS has been reported following well-documented infections with the coronaviruses SARS-CoV and MERS-CoV. At least 10% of COVID-19 survivors develop post acute sequelae of SARS-CoV-2 infection (PASC). Although many individuals with PASC have evidence of structural organ damage, a subset have symptoms consistent with ME/CFS including fatigue, post exertional malaise, cognitive dysfunction, gastrointestinal disturbances, and postural orthostatic intolerance. These common features in ME/CFS and PASC suggest that insights into the pathogenesis of either may enrich our understanding of both syndromes, and could expedite the development of strategies for identifying those at risk and interventions that prevent or mitigate disease. Methods Using regression, Bayesian and enrichment analyses, we conducted targeted and untargeted metabolomic analysis of 888 metabolic analytes in plasma samples of 106 ME/CFS cases and 91 frequency-matched healthy controls. Results In ME/CFS cases, regression, Bayesian and enrichment analyses revealed evidence of peroxisomal dysfunction with decreased levels of plasmalogens. Other findings included decreased levels of several membrane lipids, including phosphatidylcholines and sphingomyelins, that may indicate dysregulation of the cytidine-5’-diphosphocholine pathway. Enrichment analyses revealed decreased levels of choline, ceramides and carnitines, and increased levels of long chain triglycerides (TG) and hydroxy-eicosapentaenoic acid. Elevated levels of dicarboxylic acids were consistent with abnormalities in the tricarboxylic acid cycle. Using machine learning algorithms with selected metabolites as predictors, we were able to differentiate female ME/CFS cases from female controls (highest AUC=0.794) and ME/CFS cases without self-reported irritable bowel syndrome (sr-IBS) from controls without sr-IBS (highest AUC=0.873). Conclusion Our findings are consistent with earlier ME/CFS work indicating compromised energy metabolism and redox imbalance, and highlight new abnormalities that may provide insights into the pathogenesis of ME/CFS. Plasma levels of plasmalogens are decreased in patients with myalgic encephalomyelitis/chronic fatigue syndrome suggesting peroxisome dysfunction.
Collapse
|
22
|
Tai P, Golding M, Singh H, Everett D. The bovine milk fat globule membrane – Liquid ordered domain formation and anticholesteremic effects during digestion. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2015773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Patrick Tai
- Riddet Institute, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Matt Golding
- Riddet Institute, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | | | - David Everett
- Riddet Institute, Palmerston North, New Zealand
- Grasslands Research Centre, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
23
|
Tirincsi A, Sicking M, Hadzibeganovic D, Haßdenteufel S, Lang S. The Molecular Biodiversity of Protein Targeting and Protein Transport Related to the Endoplasmic Reticulum. Int J Mol Sci 2021; 23:143. [PMID: 35008565 PMCID: PMC8745461 DOI: 10.3390/ijms23010143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Looking at the variety of the thousands of different polypeptides that have been focused on in the research on the endoplasmic reticulum from the last five decades taught us one humble lesson: no one size fits all. Cells use an impressive array of components to enable the safe transport of protein cargo from the cytosolic ribosomes to the endoplasmic reticulum. Safety during the transit is warranted by the interplay of cytosolic chaperones, membrane receptors, and protein translocases that together form functional networks and serve as protein targeting and translocation routes. While two targeting routes to the endoplasmic reticulum, SRP (signal recognition particle) and GET (guided entry of tail-anchored proteins), prefer targeting determinants at the N- and C-terminus of the cargo polypeptide, respectively, the recently discovered SND (SRP-independent) route seems to preferentially cater for cargos with non-generic targeting signals that are less hydrophobic or more distant from the termini. With an emphasis on targeting routes and protein translocases, we will discuss those functional networks that drive efficient protein topogenesis and shed light on their redundant and dynamic nature in health and disease.
Collapse
Affiliation(s)
- Andrea Tirincsi
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Mark Sicking
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Drazena Hadzibeganovic
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Sarah Haßdenteufel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| |
Collapse
|
24
|
Guido ME, Monjes NM, Wagner PM, Salvador GA. Circadian Regulation and Clock-Controlled Mechanisms of Glycerophospholipid Metabolism from Neuronal Cells and Tissues to Fibroblasts. Mol Neurobiol 2021; 59:326-353. [PMID: 34697790 DOI: 10.1007/s12035-021-02595-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/07/2021] [Indexed: 12/26/2022]
Abstract
Along evolution, living organisms developed a precise timekeeping system, circadian clocks, to adapt life to the 24-h light/dark cycle and temporally regulate physiology and behavior. The transcriptional molecular circadian clock and metabolic/redox oscillator conforming these clocks are present in organs, tissues, and even in individual cells, where they exert circadian control over cellular metabolism. Disruption of the molecular clock may cause metabolic disorders and higher cancer risk. The synthesis and degradation of glycerophospholipids (GPLs) is one of the most highly regulated metabolisms across the 24-h cycle in terms of total lipid content and enzyme expression and activity in the nervous system and individual cells. Lipids play a plethora of roles (membrane biogenesis, energy sourcing, signaling, and the regulation of protein-chromatin interaction, among others), making control of their metabolism a vital checkpoint in the cellular organization of physiology. An increasing body of evidence clearly demonstrates an orchestrated and sequential series of events occurring in GPL metabolism across the 24-h day in diverse retinal cell layers, immortalized fibroblasts, and glioma cells. Moreover, the clock gene Per1 and other circadian-related genes are tightly involved in the regulation of GPL synthesis in quiescent cells. However, under proliferation, the metabolic oscillator continues to control GPL metabolism of brain cancer cells even after molecular circadian clock disruption, reflecting the crucial role of the temporal metabolism organization in cell preservation. The aim of this review is to examine the control exerted by circadian clocks over GPL metabolism, their synthesizing enzyme expression and activities in normal and tumorous cells of the nervous system and in immortalized fibroblasts.
Collapse
Affiliation(s)
- Mario E Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
| | - Natalia M Monjes
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Paula M Wagner
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Gabriela A Salvador
- INIBIBB-UNS-CONICET, Departamento de Biología, Bioquímica y Farmacia, UNS, Bahía Blanca, Argentina
| |
Collapse
|
25
|
Lipopolysaccharide of the Yersinia pseudotuberculosis Complex. Biomolecules 2021; 11:biom11101410. [PMID: 34680043 PMCID: PMC8533242 DOI: 10.3390/biom11101410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/27/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Lipopolysaccharide (LPS), localized in the outer leaflet of the outer membrane, serves as the major surface component of the Gram-negative bacterial cell envelope responsible for the activation of the host's innate immune system. Variations of the LPS structure utilized by Gram-negative bacteria promote survival by providing resistance to components of the innate immune system and preventing recognition by TLR4. This review summarizes studies of the biosynthesis of Yersinia pseudotuberculosis complex LPSs, and the roles of their structural components in molecular mechanisms of yersiniae pathogenesis and immunogenesis.
Collapse
|
26
|
Cholesterol-phospholipid interactions resist the detergent effect of bovine bile. Colloids Surf B Biointerfaces 2021; 205:111842. [PMID: 34022699 DOI: 10.1016/j.colsurfb.2021.111842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/02/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022]
Abstract
Sphingomyelin (SM) and cholesterol complexation gives rise to detergent-resistant liquid-ordered domains. The persistence of these domains and subsequent mixed micelle formation was examined in the presence of bile under physiological digestive in vitro conditions for vesicles comprising either SM/cholesterol, porcine brain phosphatidylcholine (BPC)/cholesterol, or soy phosphatidylcholine (SPC)/cholesterol bilayers, the latter two systems having no liquid-ordered domains. Micellization of these digested phospholipid multilamellar vesicle systems was confirmed by transmission electron microscopy. Bovine bile was found to consist of large multilamellar sheets which subsumed phospholipid vesicles to form aggregated superstructures. Budding off from these superstructures were vesicle-to-micelle transition intermediates: unilamellar vesicles and cylindrical micelles. The presence of cholesterol (60/40 phospholipid/cholesterol mol/mol) delayed the initial rapid onset of digestion, but not for BPC and SPC vesicle systems. Acyl chain order/disorder before and after vesicle-to-micelle transition of all three phospholipid/cholesterol systems was examined using Raman spectroscopy. The addition of bovine bile to both PC/cholesterol vesicle systems reduced the overall ratio of acyl chain disorder to order. In SM/cholesterol vesicles with ≤ 20% mol cholesterol, only the lateral inter-acyl chain packing was reduced, whereas for SM/cholesterol vesicles with ≥ 30% mol cholesterol, a higher proportion of gauche-to-trans isomerization was apparent, demonstrating that SM/cholesterol complexes modify the acyl chain structure of micelles.
Collapse
|
27
|
Dowhan W, Bogdanov M. Eugene P. Kennedy's Legacy: Defining Bacterial Phospholipid Pathways and Function. Front Mol Biosci 2021; 8:666203. [PMID: 33842554 PMCID: PMC8027125 DOI: 10.3389/fmolb.2021.666203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
In the 1950's and 1960's Eugene P. Kennedy laid out the blueprint for phospholipid biosynthesis in somatic cells and Escherichia coli, which have been coined the Kennedy Pathways for phospholipid biosynthesis. His research group continued to make seminal contributions in the area of phospholipids until his retirement in the early 1990's. During these years he mentored many young scientists that continued to build on his early discoveries and who also mentored additional scientists that continue to make important contributions in areas related to phospholipids and membrane biogenesis. This review will focus on the initial E. coli Kennedy Pathways and how his early contributions have laid the foundation for our current understanding of bacterial phospholipid genetics, biochemistry and function as carried on by his scientific progeny and others who have been inspired to study microbial phospholipids.
Collapse
Affiliation(s)
- William Dowhan
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
28
|
Kim SY, Bondar AN, Wimley WC, Hristova K. pH-triggered pore-forming peptides with strong composition-dependent membrane selectivity. Biophys J 2021; 120:618-630. [PMID: 33460594 PMCID: PMC7896028 DOI: 10.1016/j.bpj.2021.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/06/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Peptides that self-assemble into nanometer-sized pores in lipid bilayers could have utility in a variety of biotechnological and clinical applications if we can understand their physical chemical properties and learn to control their membrane selectivity. To empower such control, we have used synthetic molecular evolution to identify the pH-dependent delivery peptides, a family of peptides that assemble into macromolecule-sized pores in membranes at low peptide concentration but only at pH < ∼6. Further advancements will also require better selectivity for specific membranes. Here, we determine the effect of anionic headgroups and bilayer thickness on the mechanism of action of the pH-dependent delivery peptides by measuring binding, secondary structure, and macromolecular poration. The peptide pHD15 partitions and folds equally well into zwitterionic and anionic membranes but is less potent at pore formation in phosphatidylserine-containing membranes. The peptide also binds and folds similarly in membranes of various thicknesses, but its ability to release macromolecules changes dramatically. It causes potent macromolecular poration in vesicles made from phosphatidylcholine with 14 carbon acyl chains, but macromolecular poration decreases sharply with increasing bilayer thickness and does not occur at any peptide concentration in fluid bilayers made from phosphatidylcholine lipids with 20-carbon acyl chains. The effects of headgroup and bilayer thickness on macromolecular poration cannot be accounted for by the amount of peptide bound but instead reflect an inherent selectivity of the peptide for inserting into the membrane-spanning pore state. Molecular dynamics simulations suggest that the effect of thickness is due to hydrophobic match/mismatch between the membrane-spanning peptide and the bilayer hydrocarbon. This remarkable degree of selectivity based on headgroup and especially bilayer thickness is unusual and suggests ways that pore-forming peptides with exquisite selectivity for specific membranes can be designed or evolved.
Collapse
Affiliation(s)
- Sarah Y Kim
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany.
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana.
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
29
|
Fake It 'Till You Make It-The Pursuit of Suitable Membrane Mimetics for Membrane Protein Biophysics. Int J Mol Sci 2020; 22:ijms22010050. [PMID: 33374526 PMCID: PMC7793082 DOI: 10.3390/ijms22010050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane proteins evolved to reside in the hydrophobic lipid bilayers of cellular membranes. Therefore, membrane proteins bridge the different aqueous compartments separated by the membrane, and furthermore, dynamically interact with their surrounding lipid environment. The latter not only stabilizes membrane proteins, but directly impacts their folding, structure and function. In order to be characterized with biophysical and structural biological methods, membrane proteins are typically extracted and subsequently purified from their native lipid environment. This approach requires that lipid membranes are replaced by suitable surrogates, which ideally closely mimic the native bilayer, in order to maintain the membrane proteins structural and functional integrity. In this review, we survey the currently available membrane mimetic environments ranging from detergent micelles to bicelles, nanodiscs, lipidic-cubic phase (LCP), liposomes, and polymersomes. We discuss their respective advantages and disadvantages as well as their suitability for downstream biophysical and structural characterization. Finally, we take a look at ongoing methodological developments, which aim for direct in-situ characterization of membrane proteins within native membranes instead of relying on membrane mimetics.
Collapse
|
30
|
Bernard PE, Duarte A, Bogdanov M, Musser JM, Olsen RJ. Single Amino Acid Replacements in RocA Disrupt Protein-Protein Interactions To Alter the Molecular Pathogenesis of Group A Streptococcus. Infect Immun 2020; 88:e00386-20. [PMID: 32817331 PMCID: PMC7573446 DOI: 10.1128/iai.00386-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/12/2020] [Indexed: 12/31/2022] Open
Abstract
Group A Streptococcus (GAS) is a human-specific pathogen and major cause of disease worldwide. The molecular pathogenesis of GAS, like many pathogens, is dependent on the coordinated expression of genes encoding different virulence factors. The control of virulence regulator/sensor (CovRS) two-component system is a major virulence regulator of GAS that has been extensively studied. More recent investigations have also involved regulator of Cov (RocA), a regulatory accessory protein to CovRS. RocA interacts, in some manner, with CovRS; however, the precise molecular mechanism is unknown. Here, we demonstrate that RocA is a membrane protein containing seven transmembrane helices with an extracytoplasmically located N terminus and cytoplasmically located C terminus. For the first time, we demonstrate that RocA directly interacts with itself (RocA) and CovS, but not CovR, in intact cells. Single amino acid replacements along the entire length of RocA disrupt RocA-RocA and RocA-CovS interactions to significantly alter the GAS virulence phenotype as defined by secreted virulence factor activity in vitro and tissue destruction and mortality in vivo In summary, we show that single amino acid replacements in a regulatory accessory protein can affect protein-protein interactions to significantly alter the virulence of a major human pathogen.
Collapse
Affiliation(s)
- Paul E Bernard
- Center for Molecular and Translational Human Infectious Disease Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
- Texas A&M Health Science Center College of Medicine, Bryan, Texas, USA
| | - Amey Duarte
- Center for Molecular and Translational Human Infectious Disease Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Disease Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Disease Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
- Texas A&M Health Science Center College of Medicine, Bryan, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
31
|
Wang F, Liu J, Zeng H. Interactions of particulate matter and pulmonary surfactant: Implications for human health. Adv Colloid Interface Sci 2020; 284:102244. [PMID: 32871405 PMCID: PMC7435289 DOI: 10.1016/j.cis.2020.102244] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022]
Abstract
Particulate matter (PM), which is the primary contributor to air pollution, has become a pervasive global health threat. When PM enters into a respiratory tract, the first body tissues to be directly exposed are the cells of respiratory tissues and pulmonary surfactant. Pulmonary surfactant is a pivotal component to modulate surface tension of alveoli during respiration. Many studies have proved that PM would interact with pulmonary surfactant to affect the alveolar activity, and meanwhile, pulmonary surfactant would be adsorbed to the surface of PM to change the toxic effect of PM. This review focuses on recent studies of the interactions between micro/nanoparticles (synthesized and environmental particles) and pulmonary surfactant (natural surfactant and its models), as well as the health effects caused by PM through a few significant aspects, such as surface properties of PM, including size, surface charge, hydrophobicity, shape, chemical nature, etc. Moreover, in vitro and in vivo studies have shown that PM leads to oxidative stress, inflammatory response, fibrosis, and cancerization in living bodies. By providing a comprehensive picture of PM-surfactant interaction, this review will benefit both researchers for further studies and policy-makers for setting up more appropriate regulations to reduce the adverse effects of PM on public health.
Collapse
Affiliation(s)
- Feifei Wang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Jifang Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
32
|
Dadhich R, Kapoor S. Various Facets of Pathogenic Lipids in Infectious Diseases: Exploring Virulent Lipid-Host Interactome and Their Druggability. J Membr Biol 2020; 253:399-423. [PMID: 32833058 PMCID: PMC7443855 DOI: 10.1007/s00232-020-00135-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Lipids form an integral, structural, and functional part of all life forms. They play a significant role in various cellular processes such as membrane fusion, fission, endocytosis, protein trafficking, and protein functions. Interestingly, recent studies have revealed their more impactful and critical involvement in infectious diseases, starting with the manipulation of the host membrane to facilitate pathogenic entry. Thereafter, pathogens recruit specific host lipids for the maintenance of favorable intracellular niche to augment their survival and proliferation. In this review, we showcase the lipid-mediated host pathogen interplay in context of life-threatening viral and bacterial diseases including the recent SARS-CoV-2 infection. We evaluate the emergent lipid-centric approaches adopted by these pathogens, while delineating the alterations in the composition and organization of the cell membrane within the host, as well as the pathogen. Lastly, crucial nexus points in their interaction landscape for therapeutic interventions are identified. Lipids act as critical determinants of bacterial and viral pathogenesis by altering the host cell membrane structure and functions.
Collapse
Affiliation(s)
- Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
33
|
Han J, Yu S. Screening for a suitable cell membrane anchoring tag for Pseudomonas aeruginosa and applying it in cell membrane real-time tracking to investigate membrane aging. J Microbiol Methods 2020; 175:105984. [PMID: 32561163 DOI: 10.1016/j.mimet.2020.105984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 11/26/2022]
Abstract
Membrane proteins that have been widely used in drug delivery and cell labeling can localize onto the cell membrane by interacting with lipid bilayers. A membrane-binding tag fused with a fluorescent protein can enable tracking of the cell outline. However, numerous known membrane proteins have species preferences, and thus, a suitable membrane-binding tag for Pseudomonas aeruginosa has not been reported. In this study, we examined the membrane-binding effects of a series of endogenous and exogenous proteins (peptides) in P. aeruginosa; the proteins included LacY, WspA, tsr and its truncated mutant (tsrMut), exotoxin A signal peptide (ESP), and TAT. Among them, tsrMut exhibited a faster and steadier membrane positioning ability than others, and it also did not interfere with bacteria growth. In addition, tsrMut could be further applied for identifying and tracking cell membrane aging areas in real-time. By linking it with a tandem fluorescent timer (EGFP-Tdimer2), the aging areas of the cell membrane could easily be displayed and observed under the microscope. These findings suggest that tsrMut is a highly favorable binding tag for P. aeruginosa and integrating the tag with an aging timer may be a promising approach for studying bacterial membrane senescence at the single-cell level.
Collapse
Affiliation(s)
- Jundong Han
- Department of Polymer Science and Engineering, University of Science and Technology of China, No. 96, JinZhai Road Baohe District, Hefei, Anhui 230026, PR China.
| | - Shu Yu
- School of Life Sciences, University of Science and Technology of China, No. 443, Huangshan Road Shushan District, Hefei, Anhui 230026, PR China
| |
Collapse
|
34
|
Niesen MJM, Zimmer MH, Miller TF. Dynamics of Co-translational Membrane Protein Integration and Translocation via the Sec Translocon. J Am Chem Soc 2020; 142:5449-5460. [PMID: 32130863 PMCID: PMC7338273 DOI: 10.1021/jacs.9b07820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An important aspect of cellular function is the correct targeting and delivery of newly synthesized proteins. Central to this task is the machinery of the Sec translocon, a transmembrane channel that is involved in both the translocation of nascent proteins across cell membranes and the integration of proteins into the membrane. Considerable experimental and computational effort has focused on the Sec translocon and its role in nascent protein biosynthesis, including the correct folding and expression of integral membrane proteins. However, the use of molecular simulation methods to explore Sec-facilitated protein biosynthesis is hindered by the large system sizes and long (i.e., minute) time scales involved. In this work, we describe the development and application of a coarse-grained simulation approach that addresses these challenges and allows for direct comparison with both in vivo and in vitro experiments. The method reproduces a wide range of experimental observations, providing new insights into the underlying molecular mechanisms, predictions for new experiments, and a strategy for the rational enhancement of membrane protein expression levels.
Collapse
Affiliation(s)
- Michiel J M Niesen
- Department of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Matthew H Zimmer
- Department of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Thomas F Miller
- Department of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
35
|
Evaluation of ultraviolet photodissociation tandem mass spectrometry for the structural assignment of unsaturated fatty acid double bond positional isomers. Anal Bioanal Chem 2020; 412:2339-2351. [PMID: 32006064 DOI: 10.1007/s00216-020-02446-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/18/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Fatty acids are a major source of structural diversity within the lipidome due to variations in their acyl chain lengths, branching, and cyclization, as well as the number, position, and stereochemistry of double bonds within their mono- and poly-unsaturated species. Here, the utility of 193 nm UltraViolet PhotoDissociation tandem mass spectrometry (UVPD-MS/MS) has been evaluated for the detailed structural characterization of a series of unsaturated fatty acid lipid species. UVPD-MS/MS of unsaturated fatty acids is shown to yield pairs of unique diagnostic product ions resulting from cleavages adjacent to their C=C double bonds, enabling unambiguous localization of the site(s) of unsaturation within these lipids. The effect of several experimental variables on the observed fragmentation behaviour and UVPD-MS/MS efficiency, including the position and number of double bonds, the effect of conjugated versus non-conjugated double bonds, the number of laser pulses, and the influence of alkali metal cations (Li, Na, K) as the ionizing adducts, has been evaluated. Importantly, the abundance of the diagnostic ions is shown to enable relative quantitation of mixtures of fatty acid isomers across a range of molar ratios. Finally, the practical application of 193 nm UVPD-MS/MS is demonstrated via characterization of changes in the ratios of fatty acid double bond positional isomers in isogenic colorectal cancer cell lines. This study therefore demonstrates the practicality of UVPD-MS/MS for the structural characterization of fatty acid isomers in lipidome analysis workflows.
Collapse
|
36
|
Abstract
Due to the heterogenous lipid environment in which integral membrane proteins are embedded, they should follow a set of assembly rules, which govern transmembrane protein folding and topogenesis accordingly to a given lipid profile. Recombinant strains of bacteria have been engineered to have different membrane phospholipid compositions by molecular genetic manipulation of endogenous and foreign genes encoding lipid biosynthetic enzymes. Such strains provide a means to investigate the in vivo role of lipids in many different aspects of membrane function, folding and biogenesis. In vitro and in vivo studies established a function of lipids as molecular chaperones and topological determinants specifically assisting folding and topogenesis of membrane proteins. These results led to the extension of the Positive Inside Rule to Charge Balance Rule, which incorporates a role for lipid-protein interactions in determining membrane protein topological organization at the time of initial membrane insertion and dynamically after initial assembly. Membrane protein topogenesis appears to be a thermodynamically driven process in which lipid-protein interactions affect the potency of charged amino acid residues as topological signals. Dual topology for a membrane protein can be established during initial assembly where folding intermediates in multiple topological conformations are in rapid equilibrium (thus separated by a low activation energy), which is determined by the lipid environment. Post-assembly changes in lipid composition or post-translational modifications can trigger a reorganization of protein topology by inducing destabilization and refolding of a membrane protein. The lipid-dependent dynamic nature of membrane protein organization provides a novel means of regulating protein function.
Collapse
|
37
|
Vitrac H, Mallampalli VKPS, Dowhan W. Importance of phosphorylation/dephosphorylation cycles on lipid-dependent modulation of membrane protein topology by posttranslational phosphorylation. J Biol Chem 2019; 294:18853-18862. [PMID: 31645436 DOI: 10.1074/jbc.ra119.010785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/10/2019] [Indexed: 12/29/2022] Open
Abstract
Posttranslational modifications of proteins, such as phosphorylation and dephosphorylation, play critical roles in cellular functions through diverse cell signaling pathways. Protein kinases and phosphatases have been described early on as key regulatory elements of the phosphorylated state of proteins. Tight spatial and temporal regulation of protein kinase and phosphatase activities has to be achieved in the cell to ensure accurate signal transduction. We demonstrated previously that phosphorylation of a membrane protein can lead to its topological rearrangement. Additionally, we found that both the rate and extent of topological rearrangement upon phosphorylation are lipid charge- and lipid environment-dependent. Here, using a model membrane protein (the bacterial lactose permease LacY reconstituted in proteoliposomes) and a combination of real-time measurements and steady-state assessments of protein topology, we established a set of experimental conditions to dissect the effects of phosphorylation and dephosphorylation of a membrane protein on its topological orientation. We also demonstrate that the phosphorylation-induced topological switch of a membrane protein can be reversed upon protein dephosphorylation, revealing a new regulatory role for phosphorylation/dephosphorylation cycles. Furthermore, we determined that the rate of topological rearrangement reversal is correlated with phosphatase activity and is influenced by the membrane's lipid composition, presenting new insights into the spatiotemporal control of the protein phosphorylation state. Together, our results highlight the importance of the compartmentalization of phosphorylation/dephosphorylation cycles in controlling membrane protein topology and, therefore, function, which are influenced by the local lipid environment of the membrane protein.
Collapse
Affiliation(s)
- Heidi Vitrac
- Department of Biochemistry and Molecular Biology and the Center for Membrane Biology, McGovern Medical School, University of Texas Houston, Texas 77030.
| | - Venkata K P S Mallampalli
- Department of Biochemistry and Molecular Biology and the Center for Membrane Biology, McGovern Medical School, University of Texas Houston, Texas 77030
| | - William Dowhan
- Department of Biochemistry and Molecular Biology and the Center for Membrane Biology, McGovern Medical School, University of Texas Houston, Texas 77030.
| |
Collapse
|
38
|
Kater L, Frieg B, Berninghausen O, Gohlke H, Beckmann R, Kedrov A. Partially inserted nascent chain unzips the lateral gate of the Sec translocon. EMBO Rep 2019; 20:e48191. [PMID: 31379073 PMCID: PMC6776908 DOI: 10.15252/embr.201948191] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 12/25/2022] Open
Abstract
The Sec translocon provides the lipid bilayer entry for ribosome-bound nascent chains and thus facilitates membrane protein biogenesis. Despite the appreciated role of the native environment in the translocon:ribosome assembly, structural information on the complex in the lipid membrane is scarce. Here, we present a cryo-electron microscopy-based structure of bacterial translocon SecYEG in lipid nanodiscs and elucidate an early intermediate state upon insertion of the FtsQ anchor domain. Insertion of the short nascent chain causes initial displacements within the lateral gate of the translocon, where α-helices 2b, 7, and 8 tilt within the membrane core to "unzip" the gate at the cytoplasmic side. Molecular dynamics simulations demonstrate that the conformational change is reversed in the absence of the ribosome, and suggest that the accessory α-helices of SecE subunit modulate the lateral gate conformation. Site-specific cross-linking validates that the FtsQ nascent chain passes the lateral gate upon insertion. The structure and the biochemical data suggest that the partially inserted nascent chain remains highly flexible until it acquires the transmembrane topology.
Collapse
Affiliation(s)
- Lukas Kater
- Gene Center MunichLudwig‐Maximilian‐UniversityMunichGermany
| | - Benedikt Frieg
- John von Neumann Institute for ComputingJülich Supercomputing CentreInstitute for Complex Systems ‐ Structural Biochemistry (ICS‐6)Forschungszentrum Jülich GmbHJülichGermany
| | | | - Holger Gohlke
- John von Neumann Institute for ComputingJülich Supercomputing CentreInstitute for Complex Systems ‐ Structural Biochemistry (ICS‐6)Forschungszentrum Jülich GmbHJülichGermany
- Institute for Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfDüsseldorfGermany
| | | | - Alexej Kedrov
- Gene Center MunichLudwig‐Maximilian‐UniversityMunichGermany
- Synthetic Membrane SystemsInstitute for BiochemistryHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
39
|
de Mendoza D, Pilon M. Control of membrane lipid homeostasis by lipid-bilayer associated sensors: A mechanism conserved from bacteria to humans. Prog Lipid Res 2019; 76:100996. [DOI: 10.1016/j.plipres.2019.100996] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022]
|
40
|
Krainer G, Keller S, Schlierf M. Structural dynamics of membrane-protein folding from single-molecule FRET. Curr Opin Struct Biol 2019; 58:124-137. [DOI: 10.1016/j.sbi.2019.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022]
|
41
|
De Vecchis D, Reithmeier RAF, Kalli AC. Molecular Simulations of Intact Anion Exchanger 1 Reveal Specific Domain and Lipid Interactions. Biophys J 2019; 117:1364-1379. [PMID: 31540709 PMCID: PMC6818359 DOI: 10.1016/j.bpj.2019.08.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/30/2019] [Accepted: 08/22/2019] [Indexed: 12/23/2022] Open
Abstract
Anion exchanger 1 (AE1) is responsible for the exchange of bicarbonate and chloride across the erythrocyte plasma membrane. Human AE1 consists of a cytoplasmic and a membrane domain joined by a 33-residue flexible linker. Crystal structures of the individual domains have been determined, but the intact AE1 structure remains elusive. In this study, we use molecular dynamics simulations and modeling to build intact AE1 structures in a complex lipid bilayer that resembles the native erythrocyte plasma membrane. AE1 models were evaluated using available experimental data to provide an atomistic view of the interaction and dynamics of the cytoplasmic domain, the membrane domain, and the connecting linker in a complete model of AE1 in a lipid bilayer. Anionic lipids were found to interact strongly with AE1 at specific amino acid residues that are linked to diseases and blood group antigens. Cholesterol was found in the dimeric interface of AE1, suggesting that it may regulate subunit interactions and anion transport.
Collapse
Affiliation(s)
- Dario De Vecchis
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | | | - Antreas C Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
42
|
Sperandeo P, Polissi A, De Fabiani E. Fat Matters for Bugs: How Lipids and Lipid Modifications Make the Difference in Bacterial Life. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Paola Sperandeo
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoVia Balzaretti 920133MilanoItaly
| | - Alessandra Polissi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoVia Balzaretti 920133MilanoItaly
| | - Emma De Fabiani
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoVia Balzaretti 920133MilanoItaly
| |
Collapse
|
43
|
Vitrac H, Mallampalli VKPS, Bogdanov M, Dowhan W. The lipid-dependent structure and function of LacY can be recapitulated and analyzed in phospholipid-containing detergent micelles. Sci Rep 2019; 9:11338. [PMID: 31383935 PMCID: PMC6683142 DOI: 10.1038/s41598-019-47824-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022] Open
Abstract
Membrane proteins play key roles in cellular functions, their activity mainly depending on their topological arrangement in membranes. Structural studies of membrane proteins have long adopted a protein-centric view regarding the determinants of membrane protein topology and function. Several studies have shown that the orientation of transmembrane domains of polytopic membrane proteins with respect to the plane of the lipid bilayer can be largely determined by membrane lipid composition. However, the mechanism by which membrane proteins exhibit structural and functional duality in the same membrane or different membranes is still unknown. Here we show that lipid-dependent structural and functional assessment of a membrane protein can be conducted in detergent micelles, opening the possibility for the determination of lipid-dependent high-resolution crystal structures. We found that the lactose permease purified from Escherichia coli cells exhibiting varied phospholipid compositions exhibits the same topology and similar function as in its membrane of origin. Furthermore, we found several conditions, including protein mutations and micelle lipid composition, that lead to increased protein stability, correlating with a higher yield of two-dimensional crystal formation. Altogether, our results demonstrate how the membrane lipid environment influences membrane protein topology and arrangement, both in native membranes and in mixed detergent micelles.
Collapse
Affiliation(s)
- Heidi Vitrac
- Department of Biochemistry and Molecular Biology and the Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA.
| | - Venkata K P S Mallampalli
- Department of Biochemistry and Molecular Biology and the Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology and the Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA
| | - William Dowhan
- Department of Biochemistry and Molecular Biology and the Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
44
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
45
|
Seki T, Furumi T, Hashimoto M, Hara H, Matsuoka S. Activation of extracytoplasmic function sigma factors upon removal of glucolipids and reduction of phosphatidylglycerol content in Bacillus subtilis cells lacking lipoteichoic acid. Genes Genet Syst 2019; 94:71-80. [PMID: 30971625 DOI: 10.1266/ggs.18-00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In Bacillus subtilis, extracytoplasmic function (ECF) sigma factors are activated by reduction of phosphatidylglycerol (PG) content, absence of glucolipids, or absence of lipoteichoic acid (LTA). LTA is synthesized by polymerization of the glycerophosphate moiety of PG onto diglucosyldiacylglycerol (DGlcDG), a major glucolipid in B. subtilis, in the plasma membrane. Thus, reduction of PG content or absence of glucolipids might cause some changes in LTA, and hence we investigated whether reduction of PG content or absence of glucolipids induces the activation of ECF sigma factors independently from an ensuing change in LTA. Disruption of ugtP, responsible for glucolipid synthesis, in cells lacking LTA caused an additive increase of activation levels of σM, σX, σV and σY (3.1-, 2.2-, 2.1- and 1.4-fold, respectively), relative to their activation levels in cells lacking LTA alone. Reduction of PG content (by repressing Pspac-pgsA) in the cells lacking LTA caused an additive increase of activation levels of σM, σW and σV (2.3-, 1.9- and 2.2-fold, respectively). These results suggested that absence of glucolipids or reduction of PG alone, not the possible secondary alteration in LTA, leads to changes that affect the regulation systems of some ECF sigma factors in the plasma membrane.
Collapse
Affiliation(s)
- Takahiro Seki
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Takuya Furumi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Michihiro Hashimoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Satoshi Matsuoka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| |
Collapse
|
46
|
Covino R, Hummer G, Ernst R. Integrated Functions of Membrane Property Sensors and a Hidden Side of the Unfolded Protein Response. Mol Cell 2019; 71:458-467. [PMID: 30075144 DOI: 10.1016/j.molcel.2018.07.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 12/26/2022]
Abstract
Eukaryotic cells face the challenge of maintaining the complex composition of several coexisting organelles. The molecular mechanisms underlying the homeostasis of subcellular membranes and their adaptation during stress are only now starting to emerge. Here, we discuss three membrane property sensors of the endoplasmic reticulum (ER), namely OPI1, MGA2, and IRE1, each controlling a large cellular program impacting the lipid metabolic network. OPI1 coordinates the production of membrane and storage lipids, MGA2 regulates the production of unsaturated fatty acids required for membrane biogenesis, and IRE1 controls the unfolded protein response (UPR) to adjust ER size, protein folding, and the secretory capacity of the cell. Although these proteins use remarkably distinct sensing mechanisms, they are functionally connected via the ER membrane and cooperate to maintain membrane homeostasis. As a rationalization of the recently described mechanism of UPR activation by lipid bilayer stress, we propose that IRE1 can sense the protein-to-lipid ratio in the ER membrane to ensure a balanced production of membrane proteins and lipids.
Collapse
Affiliation(s)
- Roberto Covino
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany; Institute of Biophysics, Goethe University, 60438 Frankfurt am Main, Germany
| | - Robert Ernst
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Kirrberger Str. 100, Gebäude 61.4, 66421 Homburg, Germany.
| |
Collapse
|
47
|
Abstract
My scientific career has taken me from chemistry, via theoretical physics and bioinformatics, to molecular biology and even structural biology. Along the way, serendipity led me to work on problems such as the identification of signal peptides that direct protein trafficking, membrane protein biogenesis, and cotranslational protein folding. I've had some great collaborations that came about because of a stray conversation or from following up on an interesting paper. And I've had the good fortune to be asked to sit on the Nobel Committee for Chemistry, where I am constantly reminded of the amazing pace and often intricate history of scientific discovery. Could I have planned this? No way! I just went with the flow ….
Collapse
Affiliation(s)
- Gunnar von Heijne
- From the Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm and .,the Science for Life Laboratory, Stockholm University, Box 1031, SE-171 21 Solna, Sweden
| |
Collapse
|
48
|
Cholesterol-Dependent Gating Effects on Ion Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:167-190. [PMID: 30649760 DOI: 10.1007/978-3-030-04278-3_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biomembranes separate a live cell from its environment and keep it in an off-equilibrium, steady state. They contain both phospholipids and nonphospholipids, depending on whether there are phosphate groups in the headgroup regions. Cholesterol (CHOL) is one type of nonphospholipids, and one of the most abundant lipid molecules in humans. Its content in plasma membranes and intracellular membranes varies and is tightly regulated. Voltage-gated ion channels are universally present in every cell and are fairly diversified in the eukaryotic domain of life. Our lipid-dependent gating hypothesis postulates that the controlled switch of the voltage-sensor domains (VSDs) in a voltage-gated potassium (Kv) channel between the "down" and the "up" state (gating) is sensitive to the ratio of phospholipids:nonphospholipids in the annular layer around the channel. High CHOL content is found to exert strong inhibitory effects on Kv channels. Such effects have been observed in in vitro membranes, cultured cells, and animal models for cholesterol metabolic defects. Thermodynamic analysis of the CHOL-dependent gating suggests that the inhibitory effects of CHOL result from collective interactions between annular CHOL molecules and the channel, which appear to be a more generic principle behind the CHOL effects on other ion channels and transporters. We will review the recent progress in the CHOL-dependent gating of voltage-gated ion channels, discuss the current technical limitations, and then expand briefly the learned principles to other ion channels that are known to be sensitive to the CHOL-channel interactions.
Collapse
|
49
|
A minimal helical-hairpin motif provides molecular-level insights into misfolding and pharmacological rescue of CFTR. Commun Biol 2018; 1:154. [PMID: 30302398 PMCID: PMC6162264 DOI: 10.1038/s42003-018-0153-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
Our meagre understanding of CFTR misfolding and its reversal by small-molecule correctors hampers the development of mechanism-based therapies of cystic fibrosis. Here we exploit a helical-hairpin construct—the simplest proxy of membrane-protein tertiary contacts—containing CFTR’s transmembrane helices 3 and 4 and its corresponding disease phenotypic mutant V232D to gain molecular-level insights into CFTR misfolding and drug rescue by the corrector Lumacaftor. Using a single-molecule FRET approach to study hairpin conformations in lipid bilayers, we find that the wild-type hairpin is well folded, whereas the V232D mutant assumes an open conformation in bilayer thicknesses mimicking the endoplasmic reticulum. Addition of Lumacaftor reverses the aberrant opening of the mutant hairpin to restore a compact state as in the wild type. The observed membrane escape of the V232D hairpin and its reversal by Lumacaftor complement cell-based analyses of the full-length protein, thereby providing in vivo and in vitro correlates of CFTR misfolding and drug-action mechanisms. Georg Krainer and Antoine Treff et al. use a helical-hairpin construct derived from the cystic fibrosis transmembrane conductance regulator (CFTR) to investigate misfolding caused by the disease-linked V232D mutation. Using single-molecule FRET, they show that the V232D hairpin assumes an open conformation in lipid bilayers, which is reversed by the pharmacological corrector Lumacaftor.
Collapse
|
50
|
Pichler H, Emmerstorfer-Augustin A. Modification of membrane lipid compositions in single-celled organisms – From basics to applications. Methods 2018; 147:50-65. [DOI: 10.1016/j.ymeth.2018.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/18/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022] Open
|