1
|
Shen C, Lu W, Merugu SB, Bharti A, Afify SM, Schnitkey L, Wynn DT, Yang F, Rohwetter TM, Nayak A, Bunnag N, Cywiak C, Tang HY, Harris BT, Albanese C, Ihemelandu C, Cobb MH, Kettenbach A, Lee E, Ahmed Y, Robbins DJ. Wnt signaling inhibits casein kinase 1α activity by modulating its interaction with protein phosphatase 2A. Cell Rep 2025; 44:115274. [PMID: 39908140 DOI: 10.1016/j.celrep.2025.115274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/30/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025] Open
Abstract
The mechanism by which Wnt signaling, an essential pathway controlling development and disease, stabilizes β-catenin has been a subject of debate over the last four decades. Casein kinase 1α (CK1α) functions as a pivotal negative regulator of this signaling pathway, initiating the events that destabilize β-catenin. However, whether and how CK1α activity is regulated in Wnt-off and Wnt-on states remains poorly understood. We now show that CK1α activity requires its association with the α catalytic subunit of protein phosphatase 2A (PPP2CA) on AXIN, the scaffold protein of the β-catenin destruction complex. Wnt stimulation induces the dissociation of PPP2CA from CK1α, resulting in CK1α autophosphorylation and its consequent inactivation. Moreover, autophosphorylated CK1α is enriched in a subset of colorectal cancers (CRCs) harboring constitutive Wnt activation. Our findings identify a mechanism by which Wnt stimulation inactivates CK1α, filling a critical gap in our understanding of Wnt signaling, with relevance for CRC.
Collapse
Affiliation(s)
- Chen Shen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Wenhui Lu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Siva B Merugu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Aradhana Bharti
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Said M Afify
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Lauren Schnitkey
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Daniel T Wynn
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Fan Yang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Thomas M Rohwetter
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Anmada Nayak
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Nawat Bunnag
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Carolina Cywiak
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Hsin-Yao Tang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Brent T Harris
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Christopher Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; Department of Radiology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Chukwuemeka Ihemelandu
- Department of Surgical Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Arminja Kettenbach
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - David J Robbins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
2
|
Ogneva IV, Zhdankina YS, Gogichaeva KK, Malkov AA, Biryukov NS. The Motility of Mouse Spermatozoa Changes Differentially After 30-Minute Exposure Under Simulating Weightlessness and Hypergravity. Int J Mol Sci 2024; 25:13561. [PMID: 39769324 PMCID: PMC11678010 DOI: 10.3390/ijms252413561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
Research into the mechanisms by which gravity influences spermatozoa has implications for maintaining the species in deep space exploration and may provide new approaches to reproductive technologies on Earth. Changes in the speed of mouse spermatozoa after 30 min exposure to simulated weightlessness (by 3D-clinostat) and 2 g hypergravity (by centrifugation) were studied using inhibitory analysis. Simulated microgravity after 30 min led to an increase in the speed of spermatozoa and against the background of an increase in the relative calcium content in the cytoplasm. This effect was prevented by the introduction of 6-(dimethylamino) purine, wortmannin, and calyculin A. Hypergravity led to a decrease in the speed of spermatozoa movement, which was prevented by sodium orthovanadate and calyculin A. At the same time, under microgravity conditions, there was a redistribution of proteins forming microfilament bundles between the membrane and cytoplasmic compartments and under hypergravity conditions-proteins forming networks. The obtained results indicate that even a short exposure of spermatozoa to altered gravity leads to the launch of mechanotransduction pathways in them and a change in motility.
Collapse
Affiliation(s)
- Irina V. Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia; (Y.S.Z.); (K.K.G.); (A.A.M.); (N.S.B.)
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia
- Yu.A. Gagarin Research and Test Cosmonaut Training Center, 141160 Star City, Moscow Region, Russia
| | - Yulia S. Zhdankina
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia; (Y.S.Z.); (K.K.G.); (A.A.M.); (N.S.B.)
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Ksenia K. Gogichaeva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia; (Y.S.Z.); (K.K.G.); (A.A.M.); (N.S.B.)
| | - Artyom A. Malkov
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia; (Y.S.Z.); (K.K.G.); (A.A.M.); (N.S.B.)
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Nikolay S. Biryukov
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia; (Y.S.Z.); (K.K.G.); (A.A.M.); (N.S.B.)
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia
| |
Collapse
|
3
|
Münchhalfen M, Görg R, Haberl M, Löber J, Willenbrink J, Schwarzt L, Höltermann C, Ickes C, Hammermann L, Kus J, Chapuy B, Ballabio A, Reichardt SD, Flügel A, Engels N, Wienands J. TFEB activation hallmarks antigenic experience of B lymphocytes and directs germinal center fate decisions. Nat Commun 2024; 15:6971. [PMID: 39138218 PMCID: PMC11322606 DOI: 10.1038/s41467-024-51166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Ligation of the B cell antigen receptor (BCR) initiates humoral immunity. However, BCR signaling without appropriate co-stimulation commits B cells to death rather than to differentiation into immune effector cells. How BCR activation depletes potentially autoreactive B cells while simultaneously primes for receiving rescue and differentiation signals from cognate T lymphocytes remains unknown. Here, we use a mass spectrometry-based proteomic approach to identify cytosolic/nuclear shuttling elements and uncover transcription factor EB (TFEB) as a central BCR-controlled rheostat that drives activation-induced apoptosis, and concurrently promotes the reception of co-stimulatory rescue signals by supporting B cell migration and antigen presentation. CD40 co-stimulation prevents TFEB-driven cell death, while enhancing and prolonging TFEB's nuclear residency, which hallmarks antigenic experience also of memory B cells. In mice, TFEB shapes the transcriptional landscape of germinal center B cells. Within the germinal center, TFEB facilitates the dark zone entry of light-zone-residing centrocytes through regulation of chemokine receptors and, by balancing the expression of Bcl-2/BH3-only family members, integrates antigen-induced apoptosis with T cell-provided CD40 survival signals. Thus, TFEB reprograms antigen-primed germinal center B cells for cell fate decisions.
Collapse
Affiliation(s)
- Matthias Münchhalfen
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Richard Görg
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Haberl
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Löber
- Department of Medical Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
- Department of Hematology, Oncology, and Tumor Immunology, Charité, Campus Benjamin Franklin, University Medical Center Berlin, Berlin, Germany
| | - Jakob Willenbrink
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Laura Schwarzt
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Charlotte Höltermann
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Ickes
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Leonard Hammermann
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Jan Kus
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Björn Chapuy
- Department of Medical Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
- Department of Hematology, Oncology, and Tumor Immunology, Charité, Campus Benjamin Franklin, University Medical Center Berlin, Berlin, Germany
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, USA
| | - Sybille D Reichardt
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Niklas Engels
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Wienands
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
4
|
Ning J, Sala M, Reina J, Kalagiri R, Hunter T, McCullough BS. Histidine Phosphorylation: Protein Kinases and Phosphatases. Int J Mol Sci 2024; 25:7975. [PMID: 39063217 PMCID: PMC11277029 DOI: 10.3390/ijms25147975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Phosphohistidine (pHis) is a reversible protein post-translational modification (PTM) that is currently poorly understood. The P-N bond in pHis is heat and acid-sensitive, making it more challenging to study than the canonical phosphoamino acids pSer, pThr, and pTyr. As advancements in the development of tools to study pHis have been made, the roles of pHis in cells are slowly being revealed. To date, a handful of enzymes responsible for controlling this modification have been identified, including the histidine kinases NME1 and NME2, as well as the phosphohistidine phosphatases PHPT1, LHPP, and PGAM5. These tools have also identified the substrates of these enzymes, granting new insights into previously unknown regulatory mechanisms. Here, we discuss the cellular function of pHis and how it is regulated on known pHis-containing proteins, as well as cellular mechanisms that regulate the activity of the pHis kinases and phosphatases themselves. We further discuss the role of the pHis kinases and phosphatases as potential tumor promoters or suppressors. Finally, we give an overview of various tools and methods currently used to study pHis biology. Given their breadth of functions, unraveling the role of pHis in mammalian systems promises radical new insights into existing and unexplored areas of cell biology.
Collapse
Affiliation(s)
- Jia Ning
- Correspondence: (J.N.); (B.S.M.)
| | | | | | | | | | - Brandon S. McCullough
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (M.S.); (J.R.); (R.K.); (T.H.)
| |
Collapse
|
5
|
Du J, Wang Z. Regulation of RIPK1 Phosphorylation: Implications for Inflammation, Cell Death, and Therapeutic Interventions. Biomedicines 2024; 12:1525. [PMID: 39062098 PMCID: PMC11275223 DOI: 10.3390/biomedicines12071525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Receptor-interacting protein kinase 1 (RIPK1) plays a crucial role in controlling inflammation and cell death. Its function is tightly controlled through post-translational modifications, enabling its dynamic switch between promoting cell survival and triggering cell death. Phosphorylation of RIPK1 at various sites serves as a critical mechanism for regulating its activity, exerting either activating or inhibitory effects. Perturbations in RIPK1 phosphorylation status have profound implications for the development of severe inflammatory diseases in humans. This review explores the intricate regulation of RIPK1 phosphorylation and dephosphorylation and highlights the potential of targeting RIPK1 phosphorylation as a promising therapeutic strategy for mitigating human diseases.
Collapse
Affiliation(s)
- Jingchun Du
- Department of Clinical Immunology, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510182, China
| | - Zhigao Wang
- Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA
| |
Collapse
|
6
|
Gao S, Carrasquillo Rodríguez JW, Bahmanyar S, Airola MV. Structure and mechanism of the human CTDNEP1-NEP1R1 membrane protein phosphatase complex necessary to maintain ER membrane morphology. Proc Natl Acad Sci U S A 2024; 121:e2321167121. [PMID: 38776370 PMCID: PMC11145253 DOI: 10.1073/pnas.2321167121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
C-terminal Domain Nuclear Envelope Phosphatase 1 (CTDNEP1) is a noncanonical protein serine/threonine phosphatase that has a conserved role in regulating ER membrane biogenesis. Inactivating mutations in CTDNEP1 correlate with the development of medulloblastoma, an aggressive childhood cancer. The transmembrane protein Nuclear Envelope Phosphatase 1 Regulatory Subunit 1 (NEP1R1) binds CTDNEP1, but the molecular details by which NEP1R1 regulates CTDNEP1 function are unclear. Here, we find that knockdown of NEP1R1 generates identical phenotypes to reported loss of CTDNEP1 in mammalian cells, establishing CTDNEP1-NEP1R1 as an evolutionarily conserved membrane protein phosphatase complex that restricts ER expansion. Mechanistically, NEP1R1 acts as an activating regulatory subunit that directly binds and increases the phosphatase activity of CTDNEP1. By defining a minimal NEP1R1 domain sufficient to activate CTDNEP1, we determine high-resolution crystal structures of the CTDNEP1-NEP1R1 complex bound to a peptide sequence acting as a pseudosubstrate. Structurally, NEP1R1 engages CTDNEP1 at a site distant from the active site to stabilize and allosterically activate CTDNEP1. Substrate recognition is facilitated by a conserved Arg residue in CTDNEP1 that binds and orients the substrate peptide in the active site. Together, this reveals mechanisms for how NEP1R1 regulates CTDNEP1 and explains how cancer-associated mutations inactivate CTDNEP1.
Collapse
Affiliation(s)
- Shujuan Gao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY11794
| | | | - Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT06511
| | - Michael V. Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY11794
| |
Collapse
|
7
|
Wiltshire E, de Moura MC, Piñeyro D, Joshi RS. Cellular and clinical impact of protein phosphatase enzyme epigenetic silencing in multiple cancer tissues. Hum Genomics 2024; 18:24. [PMID: 38475971 PMCID: PMC10935810 DOI: 10.1186/s40246-024-00592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Protein Phosphatase Enzymes (PPE) and protein kinases simultaneously control phosphorylation mechanisms that tightly regulate intracellular signalling pathways and stimulate cellular responses. In human malignancies, PPE and protein kinases are frequently mutated resulting in uncontrolled kinase activity and PPE suppression, leading to cell proliferation, migration and resistance to anti-cancer therapies. Cancer associated DNA hypermethylation at PPE promoters gives rise to transcriptional silencing (epimutations) and is a hallmark of cancer. Despite recent advances in sequencing technologies, data availability and computational capabilities, only a fraction of PPE have been reported as transcriptionally inactive as a consequence of epimutations. METHODS In this study, we examined promoter-associated DNA methylation profiles in Protein Phosphatase Enzymes and their Interacting Proteins (PPEIP) in a cohort of 705 cancer patients in five tissues (Large intestine, Oesophagus, Lung, Pancreas and Stomach) in three cell models (primary tumours, cancer cell lines and 3D embedded cancer cell cultures). As a subset of PPEIP are known tumour suppressor genes, we analysed the impact of PPEIP promoter hypermethylation marks on gene expression, cellular networks and in a clinical setting. RESULTS Here, we report epimutations in PPEIP are a frequent occurrence in the cancer genome and manifest independent of transcriptional activity. We observed that different tumours have varying susceptibility to epimutations and identify specific cellular signalling networks that are primarily affected by epimutations. Additionally, RNA-seq analysis showed the negative impact of epimutations on most (not all) Protein Tyrosine Phosphatase transcription. Finally, we detected novel clinical biomarkers that inform on patient mortality and anti-cancer treatment sensitivity. CONCLUSIONS We propose that DNA hypermethylation marks at PPEIP frequently contribute to the pathogenesis of malignancies and within the precision medicine space, hold promise as biomarkers to inform on clinical features such as patient survival and therapeutic response.
Collapse
Affiliation(s)
- Edward Wiltshire
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | | | - David Piñeyro
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Ricky S Joshi
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK.
| |
Collapse
|
8
|
Suskiewicz MJ. The logic of protein post-translational modifications (PTMs): Chemistry, mechanisms and evolution of protein regulation through covalent attachments. Bioessays 2024; 46:e2300178. [PMID: 38247183 DOI: 10.1002/bies.202300178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Protein post-translational modifications (PTMs) play a crucial role in all cellular functions by regulating protein activity, interactions and half-life. Despite the enormous diversity of modifications, various PTM systems show parallels in their chemical and catalytic underpinnings. Here, focussing on modifications that involve the addition of new elements to amino-acid sidechains, I describe historical milestones and fundamental concepts that support the current understanding of PTMs. The historical survey covers selected key research programmes, including the study of protein phosphorylation as a regulatory switch, protein ubiquitylation as a degradation signal and histone modifications as a functional code. The contribution of crucial techniques for studying PTMs is also discussed. The central part of the essay explores shared chemical principles and catalytic strategies observed across diverse PTM systems, together with mechanisms of substrate selection, the reversibility of PTMs by erasers and the recognition of PTMs by reader domains. Similarities in the basic chemical mechanism are highlighted and their implications are discussed. The final part is dedicated to the evolutionary trajectories of PTM systems, beginning with their possible emergence in the context of rivalry in the prokaryotic world. Together, the essay provides a unified perspective on the diverse world of major protein modifications.
Collapse
Affiliation(s)
- Marcin J Suskiewicz
- Centre de Biophysique Moléculaire, CNRS - Orléans, UPR 4301, affiliated with Université d'Orléans, Orléans, France
| |
Collapse
|
9
|
Guo M, Li Z, Gu M, Gu J, You Q, Wang L. Targeting phosphatases: From molecule design to clinical trials. Eur J Med Chem 2024; 264:116031. [PMID: 38101039 DOI: 10.1016/j.ejmech.2023.116031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Phosphatase is a kind of enzyme that can dephosphorylate target proteins, which can be divided into serine/threonine phosphatase and tyrosine phosphatase according to its mode of action. Current evidence showed multiple phosphatases were highly correlated with diseases including various cancers, demonstrating them as potential targets. However, currently, targeting phosphatases with small molecules faces many challenges, resulting in no drug approved. In this case, phosphatases are even regarded as "undruggable" targets for a long time. Recently, a variety of strategies have been adopted in the design of small molecule inhibitors targeting phosphatases, leading many of them to enter into the clinical trials. In this review, we classified these inhibitors into 4 types, including (1) molecular glues, (2) small molecules targeting catalytic sites, (3) allosteric inhibition, and (4) bifunctional molecules (proteolysis targeting chimeras, PROTACs). These molecules with diverse strategies prove the feasibility of phosphatases as drug targets. In addition, the combination therapy of phosphatase inhibitors with other drugs has also entered clinical trials, which suggests a broad prospect. Thus, targeting phosphatases with small molecules by different strategies is emerging as a promising way in the modulation of pathogenetic phosphorylation.
Collapse
Affiliation(s)
- Mochen Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zekun Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mingxiao Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Junrui Gu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
10
|
Kumar GS. Preparation of Oxidized and Reduced PTP4A1 for Structural and Functional Studies. Methods Mol Biol 2024; 2743:211-222. [PMID: 38147218 DOI: 10.1007/978-1-0716-3569-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The formation of a reversible disulfide bond between the catalytic cysteine and a spatially neighboring cysteine (backdoor) in protein tyrosine phosphatases (PTPs) serves as a critical regulatory mechanism for maintaining the activity of protein tyrosine phosphatases. The failure of such protection results in the formation of irreversibly oxidized cysteines into sulfonic acid in a highly oxidative cellular environment in the presence of free radicals. Hence, it is important to develop methods to interconvert PTPs into reduced and oxidized forms to understand their catalytic function in vitro. Protein tyrosine phosphatase 4A type 1 (PTP4A1), a dual-specificity phosphatase, is catalytically active in the reduced form. Unexpectedly, also its oxidized form performs a key biological function in systemic sclerosis (SSc) by forming a kinase-phosphatase complex with Src kinases. Thus, we developed simple and efficient protocols for producing oxidized and reduced PTP4A1 to elucidate their biological function, which can be extended to study other protein tyrosine phosphatases and other recombinantly produced proteins.
Collapse
Affiliation(s)
- Ganesan Senthil Kumar
- Integrative Structural Biology Laboratory, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
11
|
Aboonabi A, McCauley MD. Myofilament dysfunction in diastolic heart failure. Heart Fail Rev 2024; 29:79-93. [PMID: 37837495 PMCID: PMC10904515 DOI: 10.1007/s10741-023-10352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/16/2023]
Abstract
Diastolic heart failure (DHF), in which impaired ventricular filling leads to typical heart failure symptoms, represents over 50% of all heart failure cases and is linked with risk factors, including metabolic syndrome, hypertension, diabetes, and aging. A substantial proportion of patients with this disorder maintain normal left ventricular systolic function, as assessed by ejection fraction. Despite the high prevalence of DHF, no effective therapeutic agents are available to treat this condition, partially because the molecular mechanisms of diastolic dysfunction remain poorly understood. As such, by focusing on the underlying molecular and cellular processes contributing to DHF can yield new insights that can represent an exciting new avenue and propose a novel therapeutic approach for DHF treatment. This review discusses new developments from basic and clinical/translational research to highlight current knowledge gaps, help define molecular determinants of diastolic dysfunction, and clarify new targets for treatment.
Collapse
Affiliation(s)
- Anahita Aboonabi
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago, 840 S. Wood St., 920S (MC 715), Chicago, IL, 60612, USA.
- Jesse Brown VA Medical Center, Chicago, IL, USA.
| | - Mark D McCauley
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago, 840 S. Wood St., 920S (MC 715), Chicago, IL, 60612, USA.
- Jesse Brown VA Medical Center, Chicago, IL, USA.
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Yang D, Zhang X, Cao M, Yin L, Gao A, An K, Gao S, Guo S, Yin H. Genome-Wide Identification, Expression and Interaction Analyses of PP2C Family Genes in Chenopodium quinoa. Genes (Basel) 2023; 15:41. [PMID: 38254931 PMCID: PMC10815568 DOI: 10.3390/genes15010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Plant protein phosphatase 2Cs (PP2Cs) function as inhibitors in protein kinase cascades involved in various processes and are crucial participants in both plant development and signaling pathways activated by abiotic stress. In this study, a genome-wide study was conducted on the CqPP2C gene family. A total of putative 117 CqPP2C genes were identified. Comprehensive analyses of physicochemical properties, chromosome localization and subcellular localization were conducted. According to phylogenetic analysis, CqPP2Cs were divided into 13 subfamilies. CqPP2Cs in the same subfamily had similar gene structures, and conserved motifs and all the CqPP2C proteins had the type 2C phosphatase domains. The expansion of CqPP2Cs through gene duplication was primarily driven by segmental duplication, and all duplicated CqPP2Cs underwent evolutionary changes guided by purifying selection. The expression of CqPP2Cs in various tissues under different abiotic stresses was analyzed using RNA-seq data. The findings indicated that CqPP2C genes played a role in regulating both the developmental processes and stress responses of quinoa. Real-time quantitative reverse transcription PCR (qRT-PCR) analysis of six CqPP2C genes in subfamily A revealed that they were up-regulated or down-regulated under salt and drought treatments. Furthermore, the results of yeast two-hybrid assays revealed that subfamily A CqPP2Cs interacted not only with subclass III CqSnRK2s but also with subclass II CqSnRK2s. Subfamily A CqPP2Cs could interact with CqSnRK2s in different combinations and intensities in a variety of biological processes and biological threats. Overall, our results will be useful for understanding the functions of CqPP2C in regulating ABA signals and responding to abiotic stress.
Collapse
Affiliation(s)
- Dongdong Yang
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| | - Xia Zhang
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| | - Meng Cao
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| | - Lu Yin
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| | - Aihong Gao
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| | - Kexin An
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| | - Songmei Gao
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| | - Shanli Guo
- College of Grassland Sciences, Qingdao Agricultural University, Qingdao 266109, China
- High-Efficiency Agricultural Technology Industry Research Institute of Saline and Alkaline Land of Dongying, Qingdao Agricultural University, Dongying 257300, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
| | - Haibo Yin
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| |
Collapse
|
13
|
EswarKumar N, Yang CH, Tewary S, Peng WH, Chen GC, Yeh YQ, Yang HC, Ho MC. An integrative approach unveils a distal encounter site for rPTPε and phospho-Src complex formation. Structure 2023; 31:1567-1577.e5. [PMID: 37794594 DOI: 10.1016/j.str.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/10/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023]
Abstract
The structure determination of protein tyrosine phosphatase (PTP): phospho-protein complexes, which is essential to understand how specificity is achieved at the amino acid level, remains a significant challenge for protein crystallography and cryoEM due to the transient nature of binding interactions. Using rPTPεD1 and phospho-SrcKD as a model system, we have established an integrative workflow to address this problem, by means of which we generate a protein:phospho-protein complex model using predetermined protein structures, SAXS and pTyr-tailored MD simulations. Our model reveals transient protein-protein interactions between rPTPεD1 and phospho-SrcKD and is supported by three independent experimental validations. Measurements of the association rate between rPTPεD1 and phospho-SrcKD showed that mutations on the rPTPεD1: SrcKD complex interface disrupts these transient interactions, resulting in a reduction in protein-protein association rate and, eventually, phosphatase activity. This integrative approach is applicable to other PTP: phospho-protein complexes and the characterization of transient protein-protein interface interactions.
Collapse
Affiliation(s)
- Nadendla EswarKumar
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan; Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan; Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Sunilkumar Tewary
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Wen-Hsin Peng
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Yi-Qi Yeh
- National Synchrotron Radiation Research Center, Hsin-Chu 300, Taiwan
| | - Hsiao-Ching Yang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
14
|
Alba-Posse EJ, Bruque CD, Gándola Y, Gasulla J, Nadra AD. From in-silico screening to in-vitro evaluation: Enhancing the detection of Microcystins with engineered PP1 mutant variants. J Struct Biol 2023; 215:108043. [PMID: 37935286 DOI: 10.1016/j.jsb.2023.108043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/20/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023]
Abstract
Cyanotoxins produced during harmful algal blooms (CyanoHABs) have become a worldwide issue of concern. Microcystins (MC) are the most ubiquitous group of cyanotoxins and have known carcinogenic and hepatotoxic effects. The protein phosphatase inhibition assays (PPIAs), based on the inhibition of Protein Phosphatase 1/2A (PP1/PP2A) by MC, are one of the most cost-effective options for detecting MC. In this work, we aimed to design in-silico and evaluate in-vitro mutant variants of the PP1 protein, in order to enhance their capabilities as a MC biosensor. To this end, we performed an in-silico active site-saturated mutagenesis screening, followed by stability and docking affinity calculation with the MCLR cyanotoxin. Candidates with improved both affinity and stability were further tested in a fully flexible active-site docking. The best-scored mutations (19) were individually analysed regarding their locations and interactions. Four of them (p.D197F; p.Q249Y; p.S129W; p.D220Q) were selected for in-vitro expression and evaluation. Mutant p.D197F, exhibited a significant increment in inhibition by MCLR with respect to the WT, while showing a non-significant difference in stability nor activity. This successful PP1 inhibition enhancement suggests the potential of the p.D197F variant for practical MC detection applications.
Collapse
Affiliation(s)
- Ezequiel J Alba-Posse
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina
| | - Carlos David Bruque
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina; Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad El Calafate - S.A.M.I.C., Jorge Newbery 453, CP9405 El Calafate, Santa Cruz, Argentina
| | - Yamila Gándola
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina
| | - Javier Gasulla
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina.
| | - Alejandro D Nadra
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina.
| |
Collapse
|
15
|
Gao S, Carrasquillo Rodríguez JW, Bahmanyar S, Airola MV. Structure and mechanism of the human CTDNEP1-NEP1R1 membrane protein phosphatase complex necessary to maintain ER membrane morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567952. [PMID: 38045299 PMCID: PMC10690229 DOI: 10.1101/2023.11.20.567952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
C-terminal Domain Nuclear Envelope Phosphatase 1 (CTDNEP1) is a non-canonical protein serine/threonine phosphatase that regulates ER membrane biogenesis. Inactivating mutations in CTDNEP1 correlate with development of medulloblastoma, an aggressive childhood cancer. The transmembrane protein Nuclear Envelope Phosphatase 1 Regulatory Subunit 1 (NEP1R1) binds CTDNEP1, but the molecular details by which NEP1R1 regulates CTDNEP1 function are unclear. Here, we find that knockdown of CTDNEP1 or NEP1R1 in human cells generate identical phenotypes, establishing CTDNEP1-NEP1R1 as an evolutionarily conserved membrane protein phosphatase complex that restricts ER expansion. Mechanistically, NEP1R1 acts as an activating regulatory subunit that directly binds and increases the phosphatase activity of CTDNEP1. By defining a minimal NEP1R1 domain sufficient to activate CTDNEP1, we determine high resolution crystal structures of the CTDNEP1-NEP1R1 complex bound to a pseudo-substrate. Structurally, NEP1R1 engages CTDNEP1 at a site distant from the active site to stabilize and allosterically activate CTDNEP1. Substrate recognition is facilitated by a conserved Arg residue that binds and orients the substrate peptide in the active site. Together, this reveals mechanisms for how NEP1R1 regulates CTDNEP1 and explains how cancer-associated mutations inactivate CTDNEP1.
Collapse
Affiliation(s)
- Shujuan Gao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook NY 11794, USA
| | | | - Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Michael V. Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook NY 11794, USA
| |
Collapse
|
16
|
Belotserkovskaya E, Golotin V, Uyanik B, Demidov ON. Clonal haematopoiesis - a novel entity that modifies pathological processes in elderly. Cell Death Discov 2023; 9:345. [PMID: 37726289 PMCID: PMC10509183 DOI: 10.1038/s41420-023-01590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/02/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Progress in the development of new sequencing techniques with wider accessibility and higher sensitivity of the protocol of deciphering genome particularities led to the discovery of a new phenomenon - clonal haematopoiesis. It is characterized by the presence in the bloodstream of elderly people a minor clonal population of cells with mutations in certain genes, but without any sign of disease related to the hematopoietic system. Here we will review this recent advancement in the field of clonal haematopoiesis and how it may affect the disease's development in old age.
Collapse
Affiliation(s)
| | - Vasily Golotin
- Institute of Cytology RAS, 4 Tikhoretskii prospect, St. Petersburg, 194064, Russia
- Saint Petersburg bra-nch of "VNIRO" ("Gos-NOIRH" named after L.S. Berg), Saint Petersburg, Russia
| | - Burhan Uyanik
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, 7 Boulevard Jeanne d'Arc, Dijon, 21000, France
| | - Oleg N Demidov
- Institute of Cytology RAS, 4 Tikhoretskii prospect, St. Petersburg, 194064, Russia.
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, 7 Boulevard Jeanne d'Arc, Dijon, 21000, France.
- Sirius University of Science and Technology, 1 Olimpiiskii pr-t, Sochi, 354340, Russian Federation.
| |
Collapse
|
17
|
Huang Y, Yang R, Luo H, Yuan Y, Diao Z, Li J, Gong S, Yu G, Yao H, Zhang H, Cai Y. Arabidopsis Protein Phosphatase PIA1 Impairs Plant Drought Tolerance by Serving as a Common Negative Regulator in ABA Signaling Pathway. PLANTS (BASEL, SWITZERLAND) 2023; 12:2716. [PMID: 37514328 PMCID: PMC10384177 DOI: 10.3390/plants12142716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Reversible phosphorylation of proteins is a ubiquitous regulatory mechanism in vivo that can respond to external changes, and plays an extremely important role in cell signal transduction. Protein phosphatase 2C is the largest protein phosphatase family in higher plants. Recently, it has been found that some clade A members can negatively regulate ABA signaling pathways. However, the functions of several subgroups of Arabidopsis PP2C other than clade A have not been reported, and whether other members of the PP2C family also participate in the regulation of ABA signaling pathways remains to be studied. In this study, based on the previous screening and identification work of PP2C involved in the ABA pathway, the clade F member PIA1 encoding a gene of the PP2C family, which was down-regulated after ABA treatment during the screening, was selected as the target. Overexpression of PIA1 significantly down-regulated the expression of ABA marker gene RD29A in Arabidopsis protoplasts, and ABA-responsive elements have been found in the cis-regulatory elements of PIA1 by promoter analysis. When compared to Col-0, transgenic plants overexpressing PIA1 were less sensitive to ABA, whereas pia1 showed the opposite trait in seed germination, root growth, and stomatal opening experiments. Under drought stress, SOD, POD, CAT, and APX activities of PIA1 overexpression lines were lower than Col-0 and pia1, while the content of H2O2 was higher, leading to its lowest survival rate in test plants, which were consistent with the significant inhibition of the expression of ABA-dependent stress-responsive genes RD29B, ABI5, ABF3, and ABF4 in the PIA1 transgenic background after ABA treatment. Using yeast two-hybrid and luciferase complementation assays, PIA1 was found to interact with multiple ABA key signaling elements, including 2 RCARs and 6 SnRK2s. Our results indicate that PIA1 may reduce plant drought tolerance by functioning as a common negative regulator involved in ABA signaling pathway.
Collapse
Affiliation(s)
- Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Rongqian Yang
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Huiling Luo
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Yuan Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Zhihong Diao
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Junhao Li
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Shihe Gong
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Guozhi Yu
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Huaiyu Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625000, China
| |
Collapse
|
18
|
Wang L, Yang T, Pan Y, Shi L, Jin Y, Huang X. The Metabolism of Reactive Oxygen Species and Their Effects on Lipid Biosynthesis of Microalgae. Int J Mol Sci 2023; 24:11041. [PMID: 37446218 DOI: 10.3390/ijms241311041] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Microalgae have outstanding abilities to transform carbon dioxide (CO2) into useful lipids, which makes them extremely promising as renewable sources for manufacturing beneficial compounds. However, during this process, reactive oxygen species (ROS) can be inevitably formed via electron transfers in basal metabolisms. While the excessive accumulation of ROS can have negative effects, it has been supported that proper accumulation of ROS is essential to these organisms. Recent studies have shown that ROS increases are closely related to total lipid in microalgae under stress conditions. However, the exact mechanism behind this phenomenon remains largely unknown. Therefore, this paper aims to introduce the production and elimination of ROS in microalgae. The roles of ROS in three different signaling pathways for lipid biosynthesis are then reviewed: receptor proteins and phosphatases, as well as redox-sensitive transcription factors. Moreover, the strategies and applications of ROS-induced lipid biosynthesis in microalgae are summarized. Finally, future perspectives in this emerging field are also mentioned, appealing to more researchers to further explore the relative mechanisms. This may contribute to improving lipid accumulation in microalgae.
Collapse
Affiliation(s)
- Liufu Wang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Tian Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingying Pan
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Liqiu Shi
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Yaqi Jin
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Xuxiong Huang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Building of China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology and Joint Research on Mariculture Technology, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
19
|
Liu T, Qin J, Shang W, Chen J, Subbarao KV, Hu X. The Phosphatase VdPtc3 Regulates Virulence in Verticillium dahliae by Interacting with VdAtg1. PHYTOPATHOLOGY 2023; 113:1048-1057. [PMID: 36449525 DOI: 10.1094/phyto-09-22-0320-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Type 2C protein phosphatases regulate various biological processes in eukaryotes. However, their functions in Verticillium dahliae have not been characterized. In this study, homologs VdPtc1, VdPtc3, VdPtc5, VdPtc6, and VdPtc7 were identified in V. dahliae on the basis of homologous comparison with those in Saccharomyces cerevisiae. VdPtc2 and VdPtc4 are missing in the genome of the V. dahliae XJ592 strain. VdPtc3 is the homolog of Ptc2, Ptc3, and Ptc4 proteins in S. cerevisiae, implying that VdPtc3 may play versatile functions in V. dahliae. VdPtc3 promoted conidium development, melanin, and microsclerotium formation in V. dahliae. The ΔVdPtc3 strains showed increased sensitivity to NaCl and sorbitol and augmented the phosphorylation of p38 mitogen-activated protein kinase homolog Hog1 induced by osmotic stress. Besides, the ΔVdPtc3 strains also showed milder Verticillium wilt symptom on cotton. Furthermore, VdPtc3 interacts with VdAtg1, which modulates melanin and microsclerotium formation, as well as pathogenicity.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, P.R. China
| | - Jun Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, P.R. China
| | - Wenjing Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, P.R. China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, P.R. China
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, Agricultural Research Station, Salinas, CA, U.S.A
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, P.R. China
| |
Collapse
|
20
|
Burroughs A, Aravind L. New biochemistry in the Rhodanese-phosphatase superfamily: emerging roles in diverse metabolic processes, nucleic acid modifications, and biological conflicts. NAR Genom Bioinform 2023; 5:lqad029. [PMID: 36968430 PMCID: PMC10034599 DOI: 10.1093/nargab/lqad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
The protein-tyrosine/dual-specificity phosphatases and rhodanese domains constitute a sprawling superfamily of Rossmannoid domains that use a conserved active site with a cysteine to catalyze a range of phosphate-transfer, thiotransfer, selenotransfer and redox activities. While these enzymes have been extensively studied in the context of protein/lipid head group dephosphorylation and various thiotransfer reactions, their overall diversity and catalytic potential remain poorly understood. Using comparative genomics and sequence/structure analysis, we comprehensively investigate and develop a natural classification for this superfamily. As a result, we identified several novel clades, both those which retain the catalytic cysteine and those where a distinct active site has emerged in the same location (e.g. diphthine synthase-like methylases and RNA 2' OH ribosyl phosphate transferases). We also present evidence that the superfamily has a wider range of catalytic capabilities than previously known, including a set of parallel activities operating on various sugar/sugar alcohol groups in the context of NAD+-derivatives and RNA termini, and potential phosphate transfer activities involving sugars and nucleotides. We show that such activities are particularly expanded in the RapZ-C-DUF488-DUF4326 clade, defined here for the first time. Some enzymes from this clade are predicted to catalyze novel DNA-end processing activities as part of nucleic-acid-modifying systems that are likely to function in biological conflicts between viruses and their hosts.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
21
|
Gu SH, Chen CH, Chang CH, Lin PL. Expression of tyrosine phosphatases in relation to PTTH-stimulated ecdysteroidogenesis in prothoracic glands of the silkworm, Bombyx mori. Gen Comp Endocrinol 2023; 331:114165. [PMID: 36368438 DOI: 10.1016/j.ygcen.2022.114165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Protein tyrosine phosphorylation is a reversible, dynamic process regulated by the activities of tyrosine kinases and tyrosine phosphatases. Although the involvement of tyrosine kinases in the prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis in insect prothoracic glands (PGs) has been documented, few studies have been conducted on the involvement of protein tyrosine phosphatases (PTPs) in PTTH-stimulated ecdysteroidogenesis. In the present study, we investigated the correlation between PTPs and PTTH-stimulated ecdysteroidogenesis in Bombyx mori PGs. Our results showed that the basal PTP enzymatic activities exhibited development-specific changes during the last larval instar and pupation stage, with high activities being detected during the later stages of the last larval instar. PTP enzymatic activity was stimulated by PTTH treatment both in vitro and in vivo. Pretreatment with phenylarsine oxide (PAO) and benzylphosphonic acid (BPA), two chemical inhibitors of tyrosine phosphatase, reduced PTTH-stimulated enzymatic activity. Determination of ecdysteroid secretion showed that treatment with PAO and BPA did not affect basal ecdysteroid secretion, but greatly inhibited PTTH-stimulated ecdysteroid secretion, indicating that PTTH-stimulated PTP activity is indeed involved in ecdysteroid secretion. PTTH-stimulated phosphorylation of the extracellular signal-regulated kinase (ERK) and 4E-binding protein (4E-BP) was partially inhibited by pretreatment with either PAO or BPA, indicating the potential link between PTPs and phosphorylation of ERK and 4E-BP. In addition, we also found that in vitro treatment with 20-hydroxyecdysone did not affect PTP enzymatic activity. We further investigated the expressions of two important PTPs (PTP 1B (PTP1B) and the phosphatase and tension homologue (PTEN)) in Bombyx PGs. Our immunoblotting analysis showed that B. mori PGs contained the proteins of PTP1B and PTEN, with PTP1B protein undergoing development-specific changes. Protein levels of PTP1B and PTEN were not affected by PTTH treatment. The gene expression levels of PTP1B and PTEN showed development-specific changes. From these results, we suggest that PTTH-regulated PTP signaling may crosstalk with ERK and target of rapamycin (TOR) signaling pathways and is a necessary component for stimulation of ecdysteroid secretion.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | - Chien-Hung Chen
- Chung Hwa University of Medical Technology, 89 Wen-Hwa 1st Road, Jen-Te Township, Tainan County 717, Taiwan, ROC
| | - Chia-Hao Chang
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| |
Collapse
|
22
|
Ferreira AF, Santiago J, Silva JV, Oliveira PF, Fardilha M. PP1, PP2A and PP2B Interplay in the Regulation of Sperm Motility: Lessons from Protein Phosphatase Inhibitors. Int J Mol Sci 2022; 23:ijms232315235. [PMID: 36499559 PMCID: PMC9737803 DOI: 10.3390/ijms232315235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Male fertility relies on the ability of spermatozoa to fertilize the egg in the female reproductive tract (FRT). Spermatozoa acquire activated motility during epididymal maturation; however, to be capable of fertilization, they must achieve hyperactivated motility in the FRT. Extensive research found that three protein phosphatases (PPs) are crucial to sperm motility regulation, the sperm-specific protein phosphatase type 1 (PP1) isoform gamma 2 (PP1γ2), protein phosphatase type 2A (PP2A) and protein phosphatase type 2B (PP2B). Studies have reported that PP activity decreases during epididymal maturation, whereas protein kinase activity increases, which appears to be a requirement for motility acquisition. An interplay between these PPs has been extensively investigated; however, many specific interactions and some inconsistencies remain to be elucidated. The study of PPs significantly advanced following the identification of naturally occurring toxins, including calyculin A, okadaic acid, cyclosporin, endothall and deltamethrin, which are powerful and specific PP inhibitors. This review aims to overview the protein phosphorylation-dependent biochemical pathways underlying sperm motility acquisition and hyperactivation, followed by a discussion of the PP inhibitors that allowed advances in the current knowledge of these pathways. Since male infertility cases still attain alarming numbers, additional research on the topic is required, particularly using other PP inhibitors.
Collapse
Affiliation(s)
- Ana F. Ferreira
- Laboratory of Signal Transduction, Institute for Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Santiago
- Laboratory of Signal Transduction, Institute for Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana V. Silva
- Laboratory of Signal Transduction, Institute for Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro F. Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Institute for Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +351-918-143-947
| |
Collapse
|
23
|
Paulson JR, Vander Mause ER, Dillinger E, Luedeman ME, Usman B. Ellman's reagent prevents dephosphorylation of histones during isolation of mitotic chromosomes. Chromosome Res 2022; 30:351-359. [PMID: 36399199 DOI: 10.1007/s10577-022-09709-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022]
Abstract
Histones H1 and H3 are highly phosphorylated in mitotic HeLa cells but are rapidly dephosphorylated by endogenous protein phosphatases during the isolation of metaphase chromosomes. We show that this dephosphorylation can be prevented by including the sulfhydryl reagent 5,5'-dithiobis-(2-nitrobenzoate) (Ellman's reagent, or DTNB) in the isolation buffer. The minimal amount of DTNB required is approximately stoichiometric with the number of sulfhydryl groups in the lysate. Inhibition of the protein phosphatases can subsequently be reversed by treatment with dithiothreitol or 2-mercaptoethanol. DTNB is compatible with the isolation of either metaphase chromosome clusters or individual metaphase chromosomes. It should be useful in investigations of the structure and biochemistry of chromatin and chromosomes and in the study of possible functions for mitotic histone phosphorylation.
Collapse
Affiliation(s)
- James R Paulson
- Department of Chemistry, University of Wisconsin Oshkosh, Oshkosh, WI, 54901, USA.
| | - Erica R Vander Mause
- Department of Chemistry, University of Wisconsin Oshkosh, Oshkosh, WI, 54901, USA
- , A2 Biotherapeutics, Agoura Hills, CA, 91301, USA
| | - Elizabeth Dillinger
- Department of Chemistry, University of Wisconsin Oshkosh, Oshkosh, WI, 54901, USA
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA
| | - Megan E Luedeman
- Department of Chemistry, University of Wisconsin Oshkosh, Oshkosh, WI, 54901, USA
- 32-038 Lineberger Comprehensive Cancer Center, 450 West Drive, Chapel Hill, NC, 27599, USA
| | - Bakhtawar Usman
- Department of Chemistry, University of Wisconsin Oshkosh, Oshkosh, WI, 54901, USA
- Clarity Clinic-Lakeview, 3665 N. Broadway, Chicago, IL, 60613, USA
| |
Collapse
|
24
|
Lacroix B, Lorca T, Castro A. Structural, enzymatic and spatiotemporal regulation of PP2A-B55 phosphatase in the control of mitosis. Front Cell Dev Biol 2022; 10:967909. [PMID: 36105360 PMCID: PMC9465306 DOI: 10.3389/fcell.2022.967909] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Cells require major physical changes to induce a proper repartition of the DNA. Nuclear envelope breakdown, DNA condensation and spindle formation are promoted at mitotic entry by massive protein phosphorylation and reversed at mitotic exit by the timely and ordered dephosphorylation of mitotic substrates. This phosphorylation results from the balance between the activity of kinases and phosphatases. The role of kinases in the control of mitosis has been largely studied, however, the impact of phosphatases has long been underestimated. Recent data have now established that the regulation of phosphatases is crucial to confer timely and ordered cellular events required for cell division. One major phosphatase involved in this process is the phosphatase holoenzyme PP2A-B55. This review will be focused in the latest structural, biochemical and enzymatic insights provided for PP2A-B55 phosphatase as well as its regulators and mechanisms of action.
Collapse
Affiliation(s)
- Benjamin Lacroix
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS UMR5237, Université de Montpellier, CNRS UMR5237Montpellier, France
- Équipe Labellisée “Ligue Nationale Contre le Cancer”, Paris, France
| | - Thierry Lorca
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS UMR5237, Université de Montpellier, CNRS UMR5237Montpellier, France
- Équipe Labellisée “Ligue Nationale Contre le Cancer”, Paris, France
| | - Anna Castro
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS UMR5237, Université de Montpellier, CNRS UMR5237Montpellier, France
- Équipe Labellisée “Ligue Nationale Contre le Cancer”, Paris, France
- *Correspondence: Anna Castro,
| |
Collapse
|
25
|
Development of Antibody-like Proteins Targeting the Oncogenic Ser/Thr Protein Phosphatase PPM1D. Processes (Basel) 2022. [DOI: 10.3390/pr10081501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PPM1D, a protein Ser/Thr phosphatase, is overexpressed in various cancers and functions as an oncogenic protein by inactivating the p53 pathway. Therefore, molecules that bind PPM1D are expected to be useful anti-cancer agents. In this study, we constructed a phage display library based on the antibody-like small molecule protein adnectin and screened for PPM1D-specific binding molecules. We identified two adnectins, PMDB-1 and PMD-24, that bind PPM1D specific B-loop and PPM1D430 as targets, respectively. Specificity analyses of these recombinant proteins using other Ser/Thr protein phosphatases showed that these molecules bind to only PPM1D. Expression of PMDB-1 in breast cancer-derived MCF-7 cells overexpressing endogenous PPM1D stabilized p53, indicating that PMDB-1 functions as an inhibitor of PPM1D. Furthermore, MTT assay exhibited that MCF-7 cells expressing PMDB-1 showed inhibition of cell proliferation. These data suggest that the adnectin PMDB-1 identified in this study can be used as a lead compound for anti-cancer drugs targeting intracellular PPM1D.
Collapse
|
26
|
Shannon N, Gravelle R, Cunniff B. Mitochondrial trafficking and redox/phosphorylation signaling supporting cell migration phenotypes. Front Mol Biosci 2022; 9:925755. [PMID: 35936783 PMCID: PMC9355248 DOI: 10.3389/fmolb.2022.925755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of cell signaling cascades is critical in making sure the response is activated spatially and for a desired duration. Cell signaling cascades are spatially and temporally controlled through local protein phosphorylation events which are determined by the activation of specific kinases and/or inactivation of phosphatases to elicit a complete and thorough response. For example, A-kinase-anchoring proteins (AKAPs) contribute to the local regulated activity protein kinase A (PKA). The activity of kinases and phosphatases can also be regulated through redox-dependent cysteine modifications that mediate the activity of these proteins. A primary example of this is the activation of the epidermal growth factor receptor (EGFR) and the inactivation of the phosphatase and tensin homologue (PTEN) phosphatase by reactive oxygen species (ROS). Therefore, the local redox environment must play a critical role in the timing and magnitude of these events. Mitochondria are a primary source of ROS and energy (ATP) that contributes to redox-dependent signaling and ATP-dependent phosphorylation events, respectively. The strategic positioning of mitochondria within cells contributes to intracellular gradients of ROS and ATP, which have been shown to correlate with changes to protein redox and phosphorylation status driving downstream cellular processes. In this review, we will discuss the relationship between subcellular mitochondrial positioning and intracellular ROS and ATP gradients that support dynamic oxidation and phosphorylation signaling and resulting cellular effects, specifically associated with cell migration signaling.
Collapse
Affiliation(s)
- Nathaniel Shannon
- Department of Pathology and Laboratory Medicine, Redox Biology Program, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Randi Gravelle
- Department of Pathology and Laboratory Medicine, Redox Biology Program, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, Redox Biology Program, University of Vermont Larner College of Medicine, Burlington, VT, United States
- University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, United States
| |
Collapse
|
27
|
Mo X, Pang P, Wang Y, Jiang D, Zhang M, Li Y, Wang P, Geng Q, Xie C, Du HN, Zhong B, Li D, Yao J. Tyrosine phosphorylation tunes chemical and thermal sensitivity of TRPV2 ion channel. eLife 2022; 11:78301. [PMID: 35686730 PMCID: PMC9282855 DOI: 10.7554/elife.78301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Transient receptor potential vanilloid 2 (TRPV2) is a multimodal ion channel implicated in diverse physiopathological processes. Its important involvement in immune responses has been suggested such as in the macrophages’ phagocytosis process. However, the endogenous signaling cascades controlling the gating of TRPV2 remain to be understood. Here, we report that enhancing tyrosine phosphorylation remarkably alters the chemical and thermal sensitivities of TRPV2 endogenously expressed in rat bone marrow-derived macrophages and dorsal root ganglia (DRG) neurons. We identify that the protein tyrosine kinase JAK1 mediates TRPV2 phosphorylation at the molecular sites Tyr(335), Tyr(471), and Tyr(525). JAK1 phosphorylation is required for maintaining TRPV2 activity and the phagocytic ability of macrophages. We further show that TRPV2 phosphorylation is dynamically balanced by protein tyrosine phosphatase non-receptor type 1 (PTPN1). PTPN1 inhibition increases TRPV2 phosphorylation, further reducing the activation temperature threshold. Our data thus unveil an intrinsic mechanism where the phosphorylation/dephosphorylation dynamic balance sets the basal chemical and thermal sensitivity of TRPV2. Targeting this pathway will aid therapeutic interventions in physiopathological contexts. All the cells in our body have a membrane that separates their interior from the outside environment. However, studded across this barrier are numerous ion channels which allow the cell to sense and react to changes in its surroundings. This includes the ion channel TRPV2, which opens in response to mechanical pressure, certain chemical signals, or rising temperature levels. Many types of cell express TRPV2, including cells in the nervous system, muscle, and the immune system. However, despite being extensively studied, it is still not clear how TRPV2 opens and closes upon encountering high temperatures. In particular, previous work suggested that TRPV2 only responds when a cell’s surroundings reach around 52°C, which is a much higher temperature than cells inside our body normally encounter, even during a fever. To help resolve this mystery, Mo, Pang et al. studied TRPV2 in neurons responsible for sending sensory information and in immune cells called macrophages which had been extracted from rodents and grown in the laboratory. They found that when the cells were bathed in solutions containing magnesium ions, their TRPV2 channels were more sensitive to a number of different cues, including temperature. Further biochemical experiments showed that magnesium ions do not directly affect TRPV2, but increase the activity of another protein called JAK1. The magnesium ions caused JAK1 to attach specialized structures called phosphorylation tags to TRPV2. This modification (known as phosphorylation) made the channel more sensitive, allowing it to open in response to temperatures as low as 40°C. Mo, Pang et al. found that inhibiting JAK1 reduced the activity of TRPV2. Conversely, inhibiting the enzyme that removes the phosphorylation tags, called PTPN1, increased the channel’s activity. They also discovered that when JAK1 was blocked, macrophages were less able to ‘eat up’ bacteria, which is one of their main roles in the immune system. Taken together these experiments advance our understanding of how TRPV2 becomes active. The balance between the phosphorylation by JAK1 and the dephosphorylation by PTPN1 controls the temperature at which TRPV2 opens. Since TRPV2 contributes to several biological functions, including the development of the nervous system, the maintenance of heart muscles, and inflammation, these findings will be important to scientists in a broad range of fields.
Collapse
Affiliation(s)
- Xiaoyi Mo
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Peiyuan Pang
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Yulin Wang
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Dexiang Jiang
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Mengyu Zhang
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Yang Li
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Peiyu Wang
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Qizhi Geng
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Chang Xie
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Hai-Ning Du
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Bo Zhong
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Dongdong Li
- Neuroscience Paris Seine, CNRS, INSERM, Sorbonne Université, Paris, France
| | - Jing Yao
- Department of Anesthesiology, Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Lu F, Li W, Peng Y, Cao Y, Qu J, Sun F, Yang Q, Lu Y, Zhang X, Zheng L, Fu F, Yu H. ZmPP2C26 Alternative Splicing Variants Negatively Regulate Drought Tolerance in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:851531. [PMID: 35463404 PMCID: PMC9024303 DOI: 10.3389/fpls.2022.851531] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/08/2022] [Indexed: 06/09/2023]
Abstract
Serine/threonine protein phosphatase 2C (PP2C) dephosphorylates proteins and plays crucial roles in plant growth, development, and stress response. In this study, we characterized a clade B member of maize PP2C family, i.e., ZmPP2C26, that negatively regulated drought tolerance by dephosphorylating ZmMAPK3 and ZmMAPK7 in maize. The ZmPP2C26 gene generated ZmPP2C26L and ZmPP2C26S isoforms through untypical alternative splicing. ZmPP2C26S lost 71 amino acids including an MAPK interaction motif and showed higher phosphatase activity than ZmPP2C26L. ZmPP2C26L directly interacted with, dephosphorylated ZmMAPK3 and ZmMAPK7, and localized in chloroplast and nucleus, but ZmPP2C26S only dephosphorylated ZmMAPK3 and localized in cytosol and nucleus. The expression of ZmPP2C26L and ZmPP2C26 was significantly inhibited by drought stress. Meanwhile, the maize zmpp2c26 mutant exhibited enhancement of drought tolerance with higher root length, root weight, chlorophyll content, and photosynthetic rate compared with wild type. However, overexpression of ZmPP2C26L and ZmPP2C26S significantly decreased drought tolerance in Arabidopsis and rice with lower root length, chlorophyll content, and photosynthetic rate. Phosphoproteomic analysis revealed that the ZmPP2C26 protein also altered phosphorylation level of proteins involved in photosynthesis. This study provides insights into understanding the mechanism of PP2C in response to abiotic stress.
Collapse
Affiliation(s)
- Fengzhong Lu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wanchen Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yalin Peng
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Cao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jingtao Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fuai Sun
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qingqing Yang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanli Lu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Lanjie Zheng
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Fengling Fu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Haoqiang Yu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
29
|
Kim D, Jo YS, Jo HS, Bae S, Kwon YW, Oh YS, Yoon JH. Comparative Phosphoproteomics of Neuro-2a Cells under Insulin Resistance Reveals New Molecular Signatures of Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23021006. [PMID: 35055191 PMCID: PMC8781554 DOI: 10.3390/ijms23021006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/29/2022] Open
Abstract
Insulin in the brain is a well-known critical factor in neuro-development and regulation of adult neurogenesis in the hippocampus. The abnormality of brain insulin signaling is associated with the aging process and altered brain plasticity, and could promote neurodegeneration in the late stage of Alzheimer’s disease (AD). The precise molecular mechanism of the relationship between insulin resistance and AD remains unclear. The development of phosphoproteomics has advanced our knowledge of phosphorylation-mediated signaling networks and could elucidate the molecular mechanisms of certain pathological conditions. Here, we applied a reliable phosphoproteomic approach to Neuro2a (N2a) cells to identify their molecular features under two different insulin-resistant conditions with clinical relevance: inflammation and dyslipidemia. Despite significant difference in overall phosphoproteome profiles, we found molecular signatures and biological pathways in common between two insulin-resistant conditions. These include the integrin and adenosine monophosphate-activated protein kinase pathways, and we further verified these molecular targets by subsequent biochemical analysis. Among them, the phosphorylation levels of acetyl-CoA carboxylase and Src were reduced in the brain from rodent AD model 5xFAD mice. This study provides new molecular signatures for insulin resistance in N2a cells and possible links between the molecular features of insulin resistance and AD.
Collapse
Affiliation(s)
- Dayea Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Korea;
| | - Yeon Suk Jo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Korea; (Y.S.J.); (H.-S.J.); (S.B.); (Y.W.K.)
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Han-Seul Jo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Korea; (Y.S.J.); (H.-S.J.); (S.B.); (Y.W.K.)
| | - Sungwon Bae
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Korea; (Y.S.J.); (H.-S.J.); (S.B.); (Y.W.K.)
| | - Yang Woo Kwon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Korea; (Y.S.J.); (H.-S.J.); (S.B.); (Y.W.K.)
| | - Yong-Seok Oh
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Correspondence: (Y.-S.O.); (J.H.Y.); Tel.: +82-53-785-6114 (Y.-S.O.); +82-53-980-8341 (J.H.Y.)
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Korea; (Y.S.J.); (H.-S.J.); (S.B.); (Y.W.K.)
- Correspondence: (Y.-S.O.); (J.H.Y.); Tel.: +82-53-785-6114 (Y.-S.O.); +82-53-980-8341 (J.H.Y.)
| |
Collapse
|
30
|
Shao L, Ma Y, Fang Q, Huang Z, Wan S, Wang J, Yang L. Role of protein phosphatase 2A in kidney disease (Review). Exp Ther Med 2021; 22:1236. [PMID: 34539832 PMCID: PMC8438693 DOI: 10.3892/etm.2021.10671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Kidney disease affects millions of people worldwide and is a financial burden on the healthcare system. Protein phosphatase 2A (PP2A), which is involved in renal development and the function of ion-transport proteins, aquaporin-2 and podocytes, is likely to serve an important role in renal processes. PP2A is associated with the pathogenesis of a variety of different kidney diseases including podocyte injury, inflammation, tumors and chronic kidney disease. The current review aimed to discuss the structure and function of PP2A subunits in the context of kidney diseases. How dysregulation of PP2A in the kidneys causes podocyte death and the inactivation of PP2A in renal carcinoma tissues is discussed. Inhibition of PP2A activity prevents epithelial-mesenchymal transition and attenuates renal fibrosis, creating a favorable inflammatory microenvironment and promoting the initiation and progression of tumor pathogenesis. The current review also indicates that PP2A serves an important role in protection against renal inflammation. Understanding the detailed mechanisms of PP2A provides information that can be utilized in the design and application of novel therapeutics for the treatment and prevention of renal diseases.
Collapse
Affiliation(s)
- Lishi Shao
- Department of Radiology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China
| | - Yiqun Ma
- Department of Radiology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China
| | - Qixiang Fang
- Department of Urology, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Ziye Huang
- Department of Urology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China
| | - Shanshan Wan
- Department of Radiology, Yunnan Kun-Gang Hospital, Anning, Yunnan 650300, P.R. China
| | - Jiaping Wang
- Department of Radiology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China
| | - Li Yang
- Department of Anatomy, Histology and Embryology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
31
|
Parasite protein phosphatases: biological function, virulence, and host immune evasion. Parasitol Res 2021; 120:2703-2715. [PMID: 34309709 DOI: 10.1007/s00436-021-07259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
Protein phosphatases are enzymes that dephosphorylate tyrosine and serine/threonine amino acid residues. Although their role in cellular processes has been best characterized in higher eukaryotes, they have also been identified and studied in different pathogenic microorganisms (e.g., parasites) in the last two decades. Whereas some parasite protein phosphatases carry out functions similar to those of their homologs in yeast and mammalian cells, others have unique structural and/or functional characteristics. Thus, the latter unique phosphatases may be instrumental as targets for drug therapy or as markers for diagnosis. It is important to better understand the involvement of protein phosphatases in parasites in relation to their cell cycle, metabolism, virulence, and evasion of the host immune response. The up-to-date information about parasite phosphatases of medical and veterinarian relevance is herein reviewed.
Collapse
|
32
|
Wang S, Guo J, Zhang Y, Guo Y, Ji W. Genome-wide characterization and expression analysis of TOPP-type protein phosphatases in soybean (Glycine max L.) reveal the role of GmTOPP13 in drought tolerance. Genes Genomics 2021; 43:783-796. [PMID: 33864615 DOI: 10.1007/s13258-021-01075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND In response to various abiotic stressors such as drought, many plants engage different protein phosphatases linked to several physiological and developmental processes. However, comprehensive analysis of this gene family is lacking for soybean. OBJECTIVE This study was performed to identify the TOPP-type protein phosphatase family in soybean and investigate the gene's role under drought stress. METHODS Soybean genome sequences and transcriptome data were downloaded from the Phytozome v.12, and the microarray data were downloaded from NCBI GEO datasets GSE49537. Expression profiles of GmTOPP13 were obtained based on qRT-PCR results. GmTOPP13 gene was transformed into tobacco plants via Agrobacterium mediated method, and the drought tolerance was analyzed by water deficit assay. RESULTS 15 GmTOPP genes were identified in the soybean genome database (GmTOPP1-15). GmTOPP genes were distributed on 9 of 20 chromosomes, with similar exon-intron structure and motifs arrangement. All GmTOPPs contained Metallophos and STPPase_N domains as well as the core catalytic sites. Cis-regulatory element analysis predicted that GmTOPPs were widely involved in plant development, stress and hormone response in soybean. Expression profiles showed that GmTOPPs expressed in different tissues and exhibited divergent expression patterns in leaf and root in response to drought stimulus. Moreover, GmTOPP13 gene was isolated and expression pattern analysis indicated that this gene was highly expressed in seed, root, leaf and other tissues detected, and intensively induced upon PEG6000 treatment. In addition, overexpression of GmTOPP13 gene enhanced the drought tolerance in tobacco plants. The transgenic tobacco plants showed regulation of stress-responsive genes including CAT, SOD, ERD10B and TIP during drought stress. CONCLUSIONS This study provides valuable information for the study of GmTOPP gene family in soybean, and lays a foundation for further functional studies of GmTOPP13 gene under drought and other abiotic stresses.
Collapse
Affiliation(s)
- Sibo Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jingsong Guo
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yushuang Guo
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Institute of Tobacco Science, Guiyang, 550083, China
| | - Wei Ji
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
33
|
Saeed M, Shoaib A, Tasleem M, Alabdallah NM, Alam MJ, Asmar ZE, Jamal QMS, Bardakci F, Alqahtani SS, Ansari IA, Badraoui R. Assessment of Antidiabetic Activity of the Shikonin by Allosteric Inhibition of Protein-Tyrosine Phosphatase 1B (PTP1B) Using State of Art: An In Silico and In Vitro Tactics. Molecules 2021; 26:3996. [PMID: 34208908 PMCID: PMC8271486 DOI: 10.3390/molecules26133996] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a multifactorial disease that affects both developing and developed countries and is a major public health concern. Many synthetic drugs are available in the market, which counteracts the associated pathologies. However, due to the propensity of side effects, there is an unmet need for the investigation of safe and effective drugs. This research aims to find a novel phytoconstituent having diminished action on blood glucose levels with the least side effects. Shikonin is a naturally occurring naphthoquinone dying pigment obtained by the roots of the Boraginaceae family. Besides its use as pigments, it can be used as an antimicrobial, anti-inflammatory, and anti-tumor agent. This research aimed to hypothesize the physicochemical and phytochemical properties of Shikonin's in silico interaction with protein tyrosine phosphate 1B, as well as it's in vitro studies, in order to determine its potential anti-diabetic impact. To do so, molecular docking experiments with target proteins were conducted to assess their anti-diabetic ability. Analyzing associations with corresponding amino acids revealed the significant molecular interactions between Shikonin and diabetes-related target proteins. In silico pharmacokinetics and toxicity profile of Shikonin using ADMET Descriptor, Toxicity Prediction, and Calculate Molecular Properties tools from Biovia Discovery Studio v4.5. Filter by Lipinski and Veber Rule's module from Biovia Discovery Studio v4.5 was applied to assess the drug-likeness of Shikonin. The in vitro studies exposed that Shikonin shows an inhibitory potential against the PTP1B with an IC50 value of 15.51 µM. The kinetics studies revealed that it has a competitive inhibitory effect (Ki = 7.5 M) on the enzyme system, which could be useful in the production of preventive and therapeutic agents. The findings of this research suggested that the Shikonin could be used as an anti-diabetic agent and can be used as a novel source for drug delivery.
Collapse
Affiliation(s)
- Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia; (M.J.A.); (Z.E.A.); (F.B.); (R.B.)
| | - Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box No. 114, Jazan 45142, Saudi Arabia;
| | - Munazzah Tasleem
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, 383, Dammam 31113, Saudi Arabia;
| | - Md Jahoor Alam
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia; (M.J.A.); (Z.E.A.); (F.B.); (R.B.)
| | - Zeina El Asmar
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia; (M.J.A.); (Z.E.A.); (F.B.); (R.B.)
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52571, Saudi Arabia;
| | - Fevzi Bardakci
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia; (M.J.A.); (Z.E.A.); (F.B.); (R.B.)
| | - Saad S. Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box No. 114, Jazan 45142, Saudi Arabia;
| | | | - Riadh Badraoui
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia; (M.J.A.); (Z.E.A.); (F.B.); (R.B.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta-Tunis 1007, Tunisia
| |
Collapse
|
34
|
Metal dependent protein phosphatase PPM family in cardiac health and diseases. Cell Signal 2021; 85:110061. [PMID: 34091011 PMCID: PMC9107372 DOI: 10.1016/j.cellsig.2021.110061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022]
Abstract
Protein phosphorylation and dephosphorylation is central to signal transduction in nearly every aspect of cellular function, including cardiovascular regulation and diseases. While protein kinases are often regarded as the molecular drivers in cellular signaling with high specificity and tight regulation, dephosphorylation mediated by protein phosphatases is also gaining increasing appreciation as an important part of the signal transduction network essential for the robustness, specificity and homeostasis of cell signaling. Metal dependent protein phosphatases (PPM, also known as protein phosphatases type 2C, PP2C) belong to a highly conserved family of protein phosphatases with unique biochemical and molecular features. Accumulating evidence also indicates important and specific functions of individual PPM isoform in signaling and cellular processes, including proliferation, senescence, apoptosis and metabolism. At the physiological level, abnormal PPM expression and activity have been implicated in major human diseases, including cancer, neurological and cardiovascular disorders. Finally, inhibitors for some of the PPM members have been developed as a potential therapeutic strategy for human diseases. In this review, we will focus on the background information about the biochemical and molecular features of major PPM family members, with emphasis on their demonstrated or potential roles in cardiac pathophysiology. The current challenge and potential directions for future investigations will also be highlighted.
Collapse
|
35
|
Hernansaiz-Ballesteros RD, Földi C, Cardelli L, Nagy LG, Csikász-Nagy A. Evolution of opposing regulatory interactions underlies the emergence of eukaryotic cell cycle checkpoints. Sci Rep 2021; 11:11122. [PMID: 34045495 PMCID: PMC8159995 DOI: 10.1038/s41598-021-90384-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/11/2021] [Indexed: 02/04/2023] Open
Abstract
In eukaryotes the entry into mitosis is initiated by activation of cyclin-dependent kinases (CDKs), which in turn activate a large number of protein kinases to induce all mitotic processes. The general view is that kinases are active in mitosis and phosphatases turn them off in interphase. Kinases activate each other by cross- and self-phosphorylation, while phosphatases remove these phosphate groups to inactivate kinases. Crucial exceptions to this general rule are the interphase kinase Wee1 and the mitotic phosphatase Cdc25. Together they directly control CDK in an opposite way of the general rule of mitotic phosphorylation and interphase dephosphorylation. Here we investigate why this opposite system emerged and got fixed in almost all eukaryotes. Our results show that this reversed action of a kinase-phosphatase pair, Wee1 and Cdc25, on CDK is particularly suited to establish a stable G2 phase and to add checkpoints to the cell cycle. We show that all these regulators appeared together in LECA (Last Eukaryote Common Ancestor) and co-evolved in eukaryotes, suggesting that this twist in kinase-phosphatase regulation was a crucial step happening at the emergence of eukaryotes.
Collapse
Affiliation(s)
- Rosa D Hernansaiz-Ballesteros
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
- Faculty of Medicine, Institute for Computational Biomedicine, Bioquant, Heidelberg University, 69120, Heidelberg, Germany
| | - Csenge Földi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, 6726, Hungary
| | - Luca Cardelli
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, 6726, Hungary
| | - Attila Csikász-Nagy
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, Budapest, 1083, Hungary.
| |
Collapse
|
36
|
Cao X, Lemaire S, Bollen M. Protein phosphatase 1: life-course regulation by SDS22 and Inhibitor-3. FEBS J 2021; 289:3072-3085. [PMID: 34028981 DOI: 10.1111/febs.16029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Protein phosphatase 1 (PP1) is expressed in all eukaryotic cells and catalyzes a sizable fraction of protein Ser/Thr dephosphorylation events. It is tightly regulated in space and time through association with a wide array of regulatory interactors of protein phosphatase one (RIPPOs). Suppressor-of-Dis2-number 2 (SDS22) and Inhibitor-3 (I3), which form a ternary complex with PP1, are the first two evolved and most widely expressed RIPPOs. Their deletion causes mitotic-arrest phenotypes and is lethal in some organisms. The role of SDS22 and I3 in PP1 regulation has been a mystery for decades as they were independently identified as both activators and inhibitors of PP1. This conundrum has largely been solved by recent reports showing that SDS22 and I3 control multiple steps of the life course of PP1. Indeed, they contribute to (a) the stabilization and activation of newly translated PP1, (b) the translocation of PP1 to the nucleus, and (c) the storage of PP1 as a reserve for holoenzyme assembly. Preliminary evidence suggests that SDS22 and I3 may also function as scavengers of released or aged PP1 for re-use in holoenzyme assembly or proteolytical degradation, respectively. Hence, SDS22 and I3 are emerging as master regulators of the life course of PP1.
Collapse
Affiliation(s)
- Xinyu Cao
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| | - Sarah Lemaire
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| |
Collapse
|
37
|
The Phosphoarginine Phosphatase PtpB from Staphylococcus aureus Is Involved in Bacterial Stress Adaptation during Infection. Cells 2021; 10:cells10030645. [PMID: 33799337 PMCID: PMC8001253 DOI: 10.3390/cells10030645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus continues to be a public health threat, especially in hospital settings. Studies aimed at deciphering the molecular and cellular mechanisms that underlie pathogenesis, host adaptation, and virulence are required to develop effective treatment strategies. Numerous host-pathogen interactions were found to be dependent on phosphatases-mediated regulation. This study focused on the analysis of the role of the low-molecular weight phosphatase PtpB, in particular, during infection. Deletion of ptpB in S. aureus strain SA564 significantly reduced the capacity of the mutant to withstand intracellular killing by THP-1 macrophages. When injected into normoglycemic C57BL/6 mice, the SA564 ΔptpB mutant displayed markedly reduced bacterial loads in liver and kidney tissues in a murine S. aureus abscess model when compared to the wild type. We also observed that PtpB phosphatase-activity was sensitive to oxidative stress. Our quantitative transcript analyses revealed that PtpB affects the transcription of various genes involved in oxidative stress adaptation and infectivity. Thus, this study disclosed first insights into the physiological role of PtpB during host interaction allowing us to link phosphatase-dependent regulation to oxidative bacterial stress adaptation during infection.
Collapse
|
38
|
Nourbakhsh K, Yadav S. Kinase Signaling in Dendritic Development and Disease. Front Cell Neurosci 2021; 15:624648. [PMID: 33642997 PMCID: PMC7902504 DOI: 10.3389/fncel.2021.624648] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/06/2021] [Indexed: 01/19/2023] Open
Abstract
Dendrites undergo extensive growth and remodeling during their lifetime. Specification of neurites into dendrites is followed by their arborization, maturation, and functional integration into synaptic networks. Each of these distinct developmental processes is spatially and temporally controlled in an exquisite fashion. Protein kinases through their highly specific substrate phosphorylation regulate dendritic growth and plasticity. Perturbation of kinase function results in aberrant dendritic growth and synaptic function. Not surprisingly, kinase dysfunction is strongly associated with neurodevelopmental and psychiatric disorders. Herein, we review, (a) key kinase pathways that regulate dendrite structure, function and plasticity, (b) how aberrant kinase signaling contributes to dendritic dysfunction in neurological disorders and (c) emergent technologies that can be applied to dissect the role of protein kinases in dendritic structure and function.
Collapse
Affiliation(s)
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
39
|
Shah AB, Yoon S, Kim JH, Zhumanova K, Ban YJ, Lee KW, Park KH. Effectiveness of cyclohexyl functionality in ugonins from Helminthostachys zeylanica to PTP1B and α-glucosidase inhibitions. Int J Biol Macromol 2020; 165:1822-1831. [PMID: 33075336 DOI: 10.1016/j.ijbiomac.2020.10.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022]
Abstract
Ugonins are unique flavonoids with cyclohexyl motif from Helminthostachys zeylanica. Ugonins (1-6) from the target plant displayed significant inhibitions against both PTP1B (IC50s = 0.6-7.3 μM) and α-glucosidase (IC50s = 3.9-32.9 μM), which are crucial enzymes associated with diabetes. A cyclohexyl motif was proved to be the key functionality for PTP1B and α-glucosidase. For example, 1 was 26-fold effective to PTP1B and 15-fold to α-glucosidase than its mother compound, luteolin. This tendency was well elucidated with distinctive differences of binding affinities (KSV) between ugonins and mother compounds to PTP1B enzyme. Inhibitory mechanisms to PTP1B and α-glucosidase were fully characterized to be competitive, non-competitive and mixed type I according to the position of cyclohexyl functionality. In particular, the ugonin J (1) has a cyclohexyl on the B ring was estimated as a reversible, competitive and a slow binding inhibitor with parameters: Kiapp = 0.1234 μM, k3 = 0.5713 μM-1 min-1, and k4 = 0.0705 min-1. In-depth molecular docking experiments disclosed the specific binding sites and residues of competitive inhibitor (1) and non-competitive inhibitor (4) to PTP1B enzymes. As well, all six ugonins (1-6) also inhibited α-glucosidase effectively, in which cyclohexyl motif was also the key functionality of inhibitions.
Collapse
Affiliation(s)
- Abdul Bari Shah
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sanghwa Yoon
- Division of Life Science, Department of Bio & Medical Big-data (BK21 plus), RINS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeong Ho Kim
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kamila Zhumanova
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yeong Jun Ban
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Keun Woo Lee
- Division of Life Science, Department of Bio & Medical Big-data (BK21 plus), RINS, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Ki Hun Park
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
40
|
Smith SL, Pitt AR, Spickett CM. Approaches to Investigating the Protein Interactome of PTEN. J Proteome Res 2020; 20:60-77. [PMID: 33074689 DOI: 10.1021/acs.jproteome.0c00570] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The tumor suppressor phosphatase and tensin homologue (PTEN) is a redox-sensitive dual specificity phosphatase with an essential role in the negative regulation of the PI3K-AKT signaling pathway, affecting metabolic and cell survival processes. PTEN is commonly mutated in cancer, and dysregulation in the metabolism of PIP3 is implicated in other diseases such as diabetes. PTEN interactors are responsible for some functional roles of PTEN beyond the negative regulation of the PI3K pathway and are thus of great importance in cell biology. Both high-data content proteomics-based approaches and low-data content PPI approaches have been used to investigate the interactome of PTEN and elucidate further functions of PTEN. While low-data content approaches rely on co-immunoprecipitation and Western blotting, and as such require previously generated hypotheses, high-data content approaches such as affinity pull-down proteomic assays or the yeast 2-hybrid system are hypothesis generating. This review provides an overview of the PTEN interactome, including redox effects, and critically appraises the methods and results of high-data content investigations into the global interactome of PTEN. The biological significance of findings from recent studies is discussed and illustrates the breadth of cellular functions of PTEN that can be discovered by these approaches.
Collapse
Affiliation(s)
- Sarah L Smith
- School of Life and Health Sciences, Aston Triangle, Aston University, B4 7ET, Birmingham, U.K
| | - Andrew R Pitt
- School of Life and Health Sciences, Aston Triangle, Aston University, B4 7ET, Birmingham, U.K.,Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, U.K
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston Triangle, Aston University, B4 7ET, Birmingham, U.K
| |
Collapse
|
41
|
Plank M, Berti M, Loewith R. Phosphoproteomic Effects of Acute Depletion of PP2A Regulatory Subunit Cdc55. Proteomics 2020; 21:e2000166. [PMID: 32970932 DOI: 10.1002/pmic.202000166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/15/2020] [Indexed: 11/08/2022]
Abstract
Protein phosphatase regulatory subunits are increasingly recognized as promising drug targets. In the absence of an existing drug, inducible degradation provides a means of predicting candidate targets. Here auxin-inducible degradation of Saccharomyces cerevisiae PP2A regulatory subunit Cdc55 in combination with quantitative phosphoproteomics is employed. A prevalence of hyperphosphorylated phosphopeptides indicates that the approach successfully identified direct PP2ACdc55 targets. PRM follow up of data-dependent acquisition results confirmed that vacuolar amino acid transporters are among the proteins most strongly affected by Cdc55 depletion.
Collapse
Affiliation(s)
- Michael Plank
- Department of Molecular Biology, University of Geneva, Geneva, CH-1211, Switzerland.,National Centre of Competence in Research-Chemical Biology, University of Geneva, Geneva, CH-1211, Switzerland
| | - Marina Berti
- Department of Molecular Biology, University of Geneva, Geneva, CH-1211, Switzerland
| | - Robbie Loewith
- Department of Molecular Biology, University of Geneva, Geneva, CH-1211, Switzerland.,National Centre of Competence in Research-Chemical Biology, University of Geneva, Geneva, CH-1211, Switzerland
| |
Collapse
|
42
|
Partners in crime: POPX2 phosphatase and its interacting proteins in cancer. Cell Death Dis 2020; 11:840. [PMID: 33037179 PMCID: PMC7547661 DOI: 10.1038/s41419-020-03061-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Protein phosphorylation and dephosphorylation govern intracellular signal transduction and cellular functions. Kinases and phosphatases are involved in the regulation and development of many diseases such as Alzheimer’s, diabetes, and cancer. While the functions and roles of many kinases, as well as their substrates, are well understood, phosphatases are comparatively less well studied. Recent studies have shown that rather than acting on fewer and more distinct substrates like the kinases, phosphatases can recognize specific phosphorylation sites on many different proteins, making the study of phosphatases and their substrates challenging. One approach to understand the biological functions of phosphatases is through understanding their protein–protein interaction network. POPX2 (Partner of PIX 2; also known as PPM1F or CaMKP) is a serine/threonine phosphatase that belongs to the PP2C family. It has been implicated in cancer cell motility and invasiveness. This review aims to summarize the different binding partners of POPX2 phosphatase and explore the various functions of POPX2 through its interactome in the cell. In particular, we focus on the impact of POPX2 on cancer progression. Acting via its different substrates and interacting proteins, POPX2’s involvement in metastasis is multifaceted and varied according to the stages of metastasis.
Collapse
|
43
|
Luong NC, Abiko Y, Shibata T, Uchida K, Warabi E, Suzuki M, Noguchi T, Matsuzawa A, Kumagai Y. Redox cycling of 9,10-phenanthrenequinone activates epidermal growth factor receptor signaling through S-oxidation of protein tyrosine phosphatase 1B. J Toxicol Sci 2020; 45:349-363. [PMID: 32493877 DOI: 10.2131/jts.45.349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
9,10-Phenanthrenequinone (9,10-PQ) is a polycyclic aromatic hydrocarbon quinone contaminated in diesel exhaust particles and particulate matter 2.5. It is an efficient electron acceptor that induces redox cycling with electron donors, resulting in excessive reactive oxygen species and oxidized protein production in cells. The current study examined whether 9,10-PQ could activate epidermal growth factor receptor (EGFR) signaling in A431 cells through S-oxidation of its negative regulators such as protein tyrosine phosphatase (PTP) 1B. 9,10-PQ oxidized recombinant human PTP1B at Cys215 and inhibited its catalytic activity, an effect that was blocked by catalase (CAT), whereas cis-9,10-dihydroxy-9,10-dihydrophenanthrene (DDP), which lacks redox cycling activity, had no effect on PTP1B activity. Exposure of A431 cells to 9,10-PQ, but not DDP, activated signaling through EGFR and its downstream extracellular signal-regulated kinase 1/2 (ERK1/2), coupled with a decrease of cellular PTP activity. Immunoprecipitation and UPLC-MSE revealed that PTP1B easily undergoes oxidation during exposure of A431 cells to 9,10-PQ. Pretreatment with polyethylene glycol conjugated with CAT (PEG-CAT) abolished 9,10-PQ-generated H2O2 production and significantly blocked the activation of EGFR-ERK1/2 signaling by 9,10-PQ, indicating the involvement of H2O2 in the activation because scavenging agents for hydroxyl radicals had no effect on the redox signal activation. These results suggest that such an air pollutant producing H2O2, activates EGFR-ERK1/2 signaling, presumably through the S-oxidation of PTPs such as PTP1B, and activation of the signal cascade may contribute, at least in part, to cellular responses in A431 cells.
Collapse
Affiliation(s)
- Nho Cong Luong
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Vietnam
| | - Yumi Abiko
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Faculty of Medicine, University of Tsukuba
| | | | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University.,Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Eiji Warabi
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Faculty of Medicine, University of Tsukuba
| | - Midori Suzuki
- Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Takuya Noguchi
- Graduate School of Pharmaceutical Sciences, Tohoku University
| | | | - Yoshito Kumagai
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Faculty of Medicine, University of Tsukuba
| |
Collapse
|
44
|
An N, Bassil K, Al Jowf GI, Steinbusch HWM, Rothermel M, de Nijs L, Rutten BPF. Dual-specificity phosphatases in mental and neurological disorders. Prog Neurobiol 2020; 198:101906. [PMID: 32905807 DOI: 10.1016/j.pneurobio.2020.101906] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 01/01/2023]
Abstract
The dual-specificity phosphatase (DUSP) family includes a heterogeneous group of protein phosphatases that dephosphorylate both phospho-tyrosine and phospho-serine/phospho-threonine residues within a single substrate. These protein phosphatases have many substrates and modulate diverse neural functions, such as neurogenesis, differentiation, and apoptosis. DUSP genes have furthermore been associated with mental disorders such as depression and neurological disorders such as Alzheimer's disease. Herein, we review the current literature on the DUSP family of genes concerning mental and neurological disorders. This review i) outlines the structure and general functions of DUSP genes, and ii) overviews the literature on DUSP genes concerning mental and neurological disorders, including model systems, while furthermore providing perspectives for future research.
Collapse
Affiliation(s)
- Ning An
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Katherine Bassil
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Ghazi I Al Jowf
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; College of Applied Medical Sciences, Department of Public Health, King Faisal University, Al-Ahsa, Saudi Arabia; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Harry W M Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Markus Rothermel
- European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Chemosensation - AG Neuromodulation, RWTH Aachen University, Aachen, Germany
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
45
|
Vu NK, Kim CS, Ha MT, Ngo QMT, Park SE, Kwon H, Lee D, Choi JS, Kim JA, Min BS. Antioxidant and Antidiabetic Activities of Flavonoid Derivatives from the Outer Skins of Allium cepa L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8797-8811. [PMID: 32603104 DOI: 10.1021/acs.jafc.0c02122] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The onion, known as the bulb onion or common onion, is not only a key ingredient in many tasty and healthy vegetarian meals but also many traditional medicines. Nine new flavonoids [cepaflavas A, B (5, 6), cepadials A-D (7-9 and 14), and cepabiflas A-C (10-12)] and six known compounds (1-4, 13, 15) were obtained from the outer skins of Allium cepa L. Among them, compounds 5, 6, and 9 might be artificial products formed during extraction and isolation. New compounds were structurally elucidated using various spectroscopy/spectrometry techniques, including NMR and HRMS, and computational methods. Their absolute configurations were determined using time-dependent density functional theory calculations, combined with ECD spectroscopy, optical rotation calculation, and statistical procedures (CP3 and DP4 analysis). The free radical scavenging assays revealed that the new compounds 10-12 possessed considerable antioxidant activities with IC50 values of 4.25-8.88 and 7.12-8.14 μM against DPPH and ABTS•+, respectively. Compounds 13-15 showed substantial inhibitory activities against both α-glucosidase and protein tyrosine phosphatase 1B (PTP1B), with IC50 values of 0.89-6.80 and 1.13-6.82 μM, respectively. On the basis of molecular docking studies, 13 and 15 were predicted to have high binding capacity and strong affinity toward the active site of PTP1B.
Collapse
Affiliation(s)
- Ngoc Khanh Vu
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea
| | - Chung Sub Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Manh Tuan Ha
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea
| | - Quynh-Mai Thi Ngo
- College of Pharmacy, Hai Phong University of Medicine and Pharmacy, 72A Nguyen Binh Khiem, Hai Phong 180000, Viet Nam
| | - Se Eun Park
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Haeun Kwon
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Dongho Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Jeong Ah Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea
| |
Collapse
|
46
|
DeMarco AG, Milholland KL, Pendleton AL, Whitney JJ, Zhu P, Wesenberg DT, Nambiar M, Pepe A, Paula S, Chmielewski J, Wisecaver JH, Tao WA, Hall MC. Conservation of Cdc14 phosphatase specificity in plant fungal pathogens: implications for antifungal development. Sci Rep 2020; 10:12073. [PMID: 32694511 PMCID: PMC7374715 DOI: 10.1038/s41598-020-68921-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/24/2020] [Indexed: 11/08/2022] Open
Abstract
Cdc14 protein phosphatases play an important role in plant infection by several fungal pathogens. This and other properties of Cdc14 enzymes make them an intriguing target for development of new antifungal crop treatments. Active site architecture and substrate specificity of Cdc14 from the model fungus Saccharomyces cerevisiae (ScCdc14) are well-defined and unique among characterized phosphatases. Cdc14 appears absent from some model plants. However, the extent of conservation of Cdc14 sequence, structure, and specificity in fungal plant pathogens is unknown. We addressed this by performing a comprehensive phylogenetic analysis of the Cdc14 family and comparing the conservation of active site structure and specificity among a sampling of plant pathogen Cdc14 homologs. We show that Cdc14 was lost in the common ancestor of angiosperm plants but is ubiquitous in ascomycete and basidiomycete fungi. The unique substrate specificity of ScCdc14 was invariant in homologs from eight diverse species of dikarya, suggesting it is conserved across the lineage. A synthetic substrate mimetic inhibited diverse fungal Cdc14 homologs with similar low µM Ki values, but had little effect on related phosphatases. Our results justify future exploration of Cdc14 as a broad spectrum antifungal target for plant protection.
Collapse
Affiliation(s)
- Andrew G DeMarco
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Kedric L Milholland
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Amanda L Pendleton
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - John J Whitney
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Peipei Zhu
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Daniel T Wesenberg
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Monessha Nambiar
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Antonella Pepe
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | - Stefan Paula
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, California State University, 6000 J Street, Sacramento, CA, 95819, USA
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Jennifer H Wisecaver
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
47
|
Bheri M, Mahiwal S, Sanyal SK, Pandey GK. Plant protein phosphatases: What do we know about their mechanism of action? FEBS J 2020; 288:756-785. [PMID: 32542989 DOI: 10.1111/febs.15454] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Protein phosphorylation is a major reversible post-translational modification. Protein phosphatases function as 'critical regulators' in signaling networks through dephosphorylation of proteins, which have been phosphorylated by protein kinases. A large understanding of their working has been sourced from animal systems rather than the plant or the prokaryotic systems. The eukaryotic protein phosphatases include phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine(Ser)/threonine(Thr)-specific phosphatases (STPs), while PTP family is Tyr specific. Dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. PTPs lack sequence homology with STPs, indicating a difference in catalytic mechanisms, while the PPP and PPM families share a similar structural fold indicating a common catalytic mechanism. The catalytic cysteine (Cys) residue in the conserved HCX5 R active site motif of the PTPs acts as a nucleophile during hydrolysis. The PPP members require metal ions, which coordinate the phosphate group of the substrate, followed by a nucleophilic attack by a water molecule and hydrolysis. The variable holoenzyme assembly of protein phosphatase(s) and the overlap with other post-translational modifications like acetylation and ubiquitination add to their complexity. Though their functional characterization is extensively reported in plants, the mechanistic nature of their action is still being explored by researchers. In this review, we exclusively overview the plant protein phosphatases with an emphasis on their mechanistic action as well as structural characteristics.
Collapse
Affiliation(s)
- Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
48
|
Guo Y, Qiu W, Roche TE, Hackert ML. Crystal structure of the catalytic subunit of bovine pyruvate dehydrogenase phosphatase. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2020; 76:292-301. [PMID: 32627744 DOI: 10.1107/s2053230x20007943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/11/2020] [Indexed: 11/11/2022]
Abstract
Mammalian pyruvate dehydrogenase (PDH) activity is tightly regulated by phosphorylation and dephosphorylation, which is catalyzed by PDH kinase isomers and PDH phosphatase isomers, respectively. PDH phosphatase isomer 1 (PDP1) is a heterodimer consisting of a catalytic subunit (PDP1c) and a regulatory subunit (PDP1r). Here, the crystal structure of bovine PDP1c determined at 2.1 Å resolution is reported. The crystals belonged to space group P3221, with unit-cell parameters a = b = 75.3, c = 173.2 Å. The structure was solved by molecular-replacement methods and refined to a final R factor of 21.9% (Rfree = 24.7%). The final model consists of 402 of a possible 467 amino-acid residues of the PDP1c monomer, two Mn2+ ions in the active site, an additional Mn2+ ion coordinated by His410 and His414, two MnSO4 ion pairs at special positions near the crystallographic twofold symmetry axis and 226 water molecules. Several new features of the PDP1c structure are revealed. The requirements are described and plausible bases are deduced for the interaction of PDP1c with PDP1r and other components of the pyruvate dehydrogenase complex.
Collapse
Affiliation(s)
- Youzhong Guo
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Weihua Qiu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Thomas E Roche
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Marvin L Hackert
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
49
|
Patel AD, Pasha TY, Lunagariya P, Shah U, Bhambharoliya T, Tripathi RKP. A Library of Thiazolidin-4-one Derivatives as Protein Tyrosine Phosphatase 1B (PTP1B) Inhibitors: An Attempt To Discover Novel Antidiabetic Agents. ChemMedChem 2020; 15:1229-1242. [PMID: 32390300 DOI: 10.1002/cmdc.202000055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/28/2020] [Indexed: 01/18/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is an important target for the treatment of diabetes. A series of thiazolidin-4-one derivatives 8-22 was designed, synthesized and investigated as PTP1B inhibitors. The new molecules inhibited PTP1B with IC50 values in the micromolar range. 5-(Furan-2-ylmethylene)-2-(4-nitrophenylimino)thiazolidin-4-one (17) exhibited potency with a competitive type of enzyme inhibition. structure-activity relationship studies revealed various structural facets important for the potency of these analogues. The findings revealed a requirement for a nitro group-including hydrophobic heteroaryl ring for PTP1B inhibition. Molecular docking studies afforded good correlation with experimental results. H-bonding and π-π interactions were responsible for optimal binding and effective stabilization of virtual protein-ligand complexes. Furthermore, in-silico pharmacokinetic properties of test compounds predicted their drug-like characteristics for potential oral use as antidiabetic agents.Additionally, a binding site model demonstrating crucial pharmacophoric characteristics influencing potency and binding affinity of inhibitors has been proposed, which can be employed in the design of future potential PTP1B inhibitors.
Collapse
Affiliation(s)
- Ashish D Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Anand, 388421, India.,Department of Pharmaceutical Chemistry Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Thopallada Y Pasha
- Shri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B G Nagara, Karnataka, 571448, India
| | - Paras Lunagariya
- Smt. R. D. Gardi B. Pharmacy College, Rajkot, Gujarat, 360110, India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Anand, 388421, India
| | - Tushar Bhambharoliya
- Wilson College of Textiles, North Carolina State University, North Carolina, 27606, USA
| | - Rati K P Tripathi
- Department of Pharmaceutical Science Sushruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar, Assam, 788011, India.,Department of Pharmaceutical Chemistry Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| |
Collapse
|
50
|
Ma J, Gao B, Wang R, Li X, Chen S. Transcriptome analyses of Ditylenchus destructor in responses to cold and desiccation stress. Genet Mol Biol 2020; 43:e20180057. [PMID: 32232317 PMCID: PMC7198036 DOI: 10.1590/1678-4685-gmb-2018-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/03/2019] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to identify molecular responses in Ditylenchus destructor to cold and desiccation by means of transcriptomes analyses. A total of 102,517 unigenes were obtained, with an average length of 1,076 bp, in which 58,453 (57%) had a functional annotation. A total of 1154 simple sequence repeats (SSRs) distributed over 1078 unigenes were detected. Gene expression profiles in response to cold and desiccation stress and the expression of specific stress-related genes were compared. Gene ontology analysis and pathway-based analysis were used to further investigate the functions of the differentially expressed genes. The reliability of the sequencing data was verified through quantitative real-time PCR analysis of 19 stress-related genes. RNA interference used to further assess the functions of the cold-related unigenes 15628 and 15596 showed that the knockdown of each of these genes led to decreased cold tolerance of D. destructor. Hence, this study revealed molecular processes and pathways active in cold- or dessication-treated nematodes. The transcriptome profiles presented in this study provide insight into the transcriptome complexity and will contribute to further understand stress tolerance in D. destructor.
Collapse
Affiliation(s)
- Juan Ma
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences /IPM centre of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, China
| | - Bo Gao
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences /IPM centre of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, China
| | - Rongyan Wang
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences /IPM centre of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, China
| | - Xiuhua Li
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences /IPM centre of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, China
| | - Shulong Chen
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences /IPM centre of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, China
| |
Collapse
|