1
|
Chen H, Liu F, Chen J, Ji K, Cui Y, Ge W, Wang Z. Identification, molecular evolution, codon bias, and expansion analysis of NLP transcription factor family in foxtail millet ( Setaria italica L.) and closely related crops. Front Genet 2024; 15:1395224. [PMID: 38836039 PMCID: PMC11148446 DOI: 10.3389/fgene.2024.1395224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
The NODULE-INCEPTION-like protein (NLP) family is a plant-specific transcription factor (TF) family involved in nitrate transport and assimilation in plants, which are essential for improving plant nitrogen use efficiency. Currently, the molecular nature and evolutionary trajectory of NLP genes in the C4 model crop foxtail millet are unknown. Therefore, we performed a comprehensive analysis of NLP and molecular evolution in foxtail millet by scanning the genomes of foxtail millet and representative species of the plant kingdom. We identified seven NLP genes in the foxtail millet genome, all of which are individually and separately distributed on different chromosomes. They were not structurally identical to each other and were mainly expressed on root tissues. We unearthed two key genes (Si5G004100.1 and Si6G248300.1) with a variety of excellent characteristics. Regarding its molecular evolution, we found that NLP genes in Gramineae mainly underwent dispersed duplication, but maize NLP genes were mainly generated via WGD events. Other factors such as base mutations and natural selection have combined to promote the evolution of NLP genes. Intriguingly, the family in plants showed a gradual expansion during evolution with more duplications than losses, contrary to most gene families. In conclusion, this study advances the use of NLP genetic resources and the understanding of molecular evolution in cereals.
Collapse
Affiliation(s)
- Huilong Chen
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Fang Liu
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jing Chen
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Kexin Ji
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yutong Cui
- College of Management, North China University of Science and Technology, Tangshan, Hebei, China
| | - Weina Ge
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zhenyi Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
2
|
Gunn AL, Yashchenko AI, Dubrulle J, Johnson J, Hatch EM. A high-content screen reveals new regulators of nuclear membrane stability. Sci Rep 2024; 14:6013. [PMID: 38472343 PMCID: PMC10933478 DOI: 10.1038/s41598-024-56613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
Nuclear membrane rupture is a physiological response to multiple in vivo processes, such as cell migration, that can cause extensive genome instability and upregulate invasive and inflammatory pathways. However, the underlying molecular mechanisms of rupture are unclear and few regulators have been identified. In this study, we developed a reporter that is size excluded from re-compartmentalization following nuclear rupture events. This allows for robust detection of factors influencing nuclear integrity in fixed cells. We combined this with an automated image analysis pipeline in a high-content siRNA screen to identify new proteins that both increase and decrease nuclear rupture frequency in cancer cells. Pathway analysis identified an enrichment of nuclear membrane and ER factors in our hits and we demonstrate that one of these, the protein phosphatase CTDNEP1, is required for nuclear stability. Analysis of known rupture determinants, including an automated quantitative analysis of nuclear lamina gaps, are consistent with CTDNEP1 acting independently of actin and nuclear lamina organization. Our findings provide new insights into the molecular mechanism of nuclear rupture and define a highly adaptable program for rupture analysis that removes a substantial barrier to new discoveries in the field.
Collapse
Affiliation(s)
- Amanda L Gunn
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Artem I Yashchenko
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Julien Dubrulle
- Cellular Imaging Shared Resource, The Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jodiene Johnson
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Emily M Hatch
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
3
|
Rezaeeyan H, Arabfard M, Rasouli HR, Shahriary A, Gh BFNM. Evaluation of common protein biomarkers involved in the pathogenesis of respiratory diseases with proteomic methods: A systematic review. Immun Inflamm Dis 2023; 11:e1090. [PMID: 38018577 PMCID: PMC10659759 DOI: 10.1002/iid3.1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/22/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023] Open
Abstract
AIM Respiratory disease (RD) is one of the most common diseases characterized by lung dysfunction. Many diagnostic mechanisms have been used to identify the pathogenic agents of responsible for RD. Among these, proteomics emerges as a valuable diagnostic method for pinpointing the specific proteins involved in RD pathogenesis. Therefore, in this study, for the first time, we examined the protein markers involved in the pathogenesis of chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), asthma, bronchiolitis obliterans (BO), and chemical warfare victims exposed to mustard gas, using the proteomics method as a systematic study. MATERIALS AND METHODS A systematic search was performed up to September 2023 on several databases, including PubMed, Scopus, ISI Web of Science, and Cochrane. In total, selected 4246 articles were for evaluation according to the criteria. Finally, 119 studies were selected for this systematic review. RESULTS A total of 13,806 proteins were identified, 6471 in COPD, 1603 in Asthma, 5638 in IPF, three in BO, and 91 in mustard gas exposed victims. Alterations in the expression of these proteins were observed in the respective diseases. After evaluation, the results showed that 31 proteins were found to be shared among all five diseases. CONCLUSION Although these 31 proteins regulate different factors and molecular pathways in all five diseases, they ultimately lead to the regulation of inflammatory pathways. In other words, the expression of some proteins in COPD and mustard-exposed patients increases inflammatory reactions, while in IPF, they cause lung fibrosis. Asthma, causes allergic reactions due to T-cell differentiation toward Th2.
Collapse
Affiliation(s)
- Hadi Rezaeeyan
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion MedicineIranian Blood Transfusion Organization (IBTO)TehranIran
| | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Hamid R. Rasouli
- Trauma Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - B. Fatemeh Nobakht M. Gh
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Anthony AJ, Gautam AKS, Miller LM, Ma Y, Hardwick AG, Sharma A, Ghatak S, Matouschek A, Jarrold MF, Clemmer DE. CDMS Analysis of Intact 19S, 20S, 26S, and 30S Proteasomes: Evidence for Higher-Order 20S Assemblies at a Low pH†. Anal Chem 2023; 95:12209-12215. [PMID: 37552619 PMCID: PMC10916762 DOI: 10.1021/acs.analchem.3c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Charge detection mass spectrometry (CDMS) was examined as a means of studying proteasomes. To this end, the following masses of the 20S, 19S, 26S, and 30S proteasomes from Saccharomyces cerevisiae (budding yeast) were measured: m(20S) = 738.8 ± 2.9 kDa, m(19S) = 926.2 ± 4.8 kDa, m(26S) = 1,637.0 ± 7.6 kDa, and m(30S) = 2,534.2 ± 10.8 kDa. Under some conditions, larger (20S)x (where x = 1 to ∼13) assemblies are observed; the 19S regulatory particle also oligomerizes, but to a lesser extent, forming (19S)x complexes (where x = 1 to 4, favoring the x = 3 trimer). The (20S)x oligomers are favored in vitro, as the pH of the solution is lowered (from 7.0 to 5.4, in a 20 mM ammonium acetate solution) and may be related to in vivo proteasome storage granules that are observed under carbon starvation. From measurements of m(20S)x (x = 1 to ∼13) species, it appears that each multimer retains all 28 proteins of the 20S complex subunit. Several types of structures that might explain the formation of (20S)x assemblies are considered. We stress that each structural type [hypothetical planar, raft-like geometries (where individual proteasomes associate through side-by-side interactions); elongated, rodlike geometries (where subunits are bound end-to-end); and geometries that are roughly spherical (arising from aggregation through nonspecific subunit interactions)] is highly speculative but still interesting to consider, and a short discussion is provided. The utility of CDMS for characterizing proteasomes and related oligomers is discussed.
Collapse
Affiliation(s)
- Adam J Anthony
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Amit K S Gautam
- Department of Molecular Biosciences, University of Texas, Austin Texas 78712, United States
| | - Lohra M Miller
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Yiran Ma
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Anya G Hardwick
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Anu Sharma
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Andreas Matouschek
- Department of Molecular Biosciences, University of Texas, Austin Texas 78712, United States
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| |
Collapse
|
5
|
Yan C, Xiong J, Zhou Z, Li Q, Gao C, Zhang M, Yu L, Li J, Hu MM, Zhang CS, Cai C, Zhang H, Zhang J. A cleaved METTL3 potentiates the METTL3-WTAP interaction and breast cancer progression. eLife 2023; 12:RP87283. [PMID: 37589705 PMCID: PMC10435237 DOI: 10.7554/elife.87283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
N6-methyladenosine (m6A) methylation of RNA by the methyltransferase complex (MTC), with core components including METTL3-METTL14 heterodimers and Wilms' tumor 1-associated protein (WTAP), contributes to breast tumorigenesis, but the underlying regulatory mechanisms remain elusive. Here, we identify a novel cleaved form METTL3a (residues 239-580 of METTL3). We find that METTL3a is required for the METTL3-WTAP interaction, RNA m6A deposition, as well as cancer cell proliferation. Mechanistically, we find that METTL3a is essential for the METTL3-METTL3 interaction, which is a prerequisite step for recruitment of WTAP in MTC. Analysis of m6A sequencing data shows that depletion of METTL3a globally disrupts m6A deposition, and METTL3a mediates mammalian target of rapamycin (mTOR) activation via m6A-mediated suppression of TMEM127 expression. Moreover, we find that METTL3 cleavage is mediated by proteasome in an mTOR-dependent manner, revealing positive regulatory feedback between METTL3a and mTOR signaling. Our findings reveal METTL3a as an important component of MTC, and suggest the METTL3a-mTOR axis as a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Chaojun Yan
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Jingjing Xiong
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Zirui Zhou
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Qifang Li
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Chuan Gao
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Mengyao Zhang
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Liya Yu
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Jinpeng Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan UniversityWuhanChina
| | - Ming-Ming Hu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhanChina
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network School of Life Sciences, Xiamen UniversityFujianChina
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Haojian Zhang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhanChina
| | - Jing Zhang
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| |
Collapse
|
6
|
Hsu HC, Wang J, Kjellgren A, Li H, DeMartino GN. Ηigh-resolution structure of mammalian PI31-20S proteasome complex reveals mechanism of proteasome inhibition. J Biol Chem 2023; 299:104862. [PMID: 37236357 PMCID: PMC10319324 DOI: 10.1016/j.jbc.2023.104862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Proteasome-catalyzed protein degradation mediates and regulates critical aspects of many cellular functions and is an important element of proteostasis in health and disease. Proteasome function is determined in part by the types of proteasome holoenzymes formed between the 20S core particle that catalyzes peptide bond hydrolysis and any of multiple regulatory proteins to which it binds. One of these regulators, PI31, was previously identified as an in vitro 20S proteasome inhibitor, but neither the molecular mechanism nor the possible physiologic significance of PI31-mediated proteasome inhibition has been clear. Here we report a high-resolution cryo-EM structure of the mammalian 20S proteasome in complex with PI31. The structure shows that two copies of the intrinsically disordered carboxyl terminus of PI31 are present in the central cavity of the closed-gate conformation of the proteasome and interact with proteasome catalytic sites in a manner that blocks proteolysis of substrates but resists their own degradation. The two inhibitory polypeptide chains appear to originate from PI31 monomers that enter the catalytic chamber from opposite ends of the 20S cylinder. We present evidence that PI31 can inhibit proteasome activity in mammalian cells and may serve regulatory functions for the control of cellular proteostasis.
Collapse
Affiliation(s)
- Hao-Chi Hsu
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Jason Wang
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Abbey Kjellgren
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| | - George N DeMartino
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
7
|
D’Urso A, Purrello R, Cunsolo A, Milardi D, Fattorusso C, Persico M, Gaczynska M, Osmulski PA, Santoro AM. Electronic Circular Dichroism Detects Conformational Changes Associated with Proteasome Gating Confirmed Using AFM Imaging. Biomolecules 2023; 13:704. [PMID: 37189451 PMCID: PMC10136135 DOI: 10.3390/biom13040704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Many chronic diseases, including cancer and neurodegeneration, are linked to proteasome dysregulation. Proteasome activity, essential for maintaining proteostasis in a cell, is controlled by the gating mechanism and its underlying conformational transitions. Thus, developing effective methods to detect gate-related specific proteasome conformations could be a significant contribution to rational drug design. Since the structural analysis suggests that gate opening is associated with a decrease in the content of α-helices and β-sheets and an increase in random coil structures, we decided to explore the application of electronic circular dichroism (ECD) in the UV region to monitor the proteasome gating. A comparison of ECD spectra of wild type yeast 20S proteasome (predominantly closed) and an open-gate mutant (α3ΔN) revealed an increased intensity in the ECD band at 220 nm, which suggests increased contents of random coil and β-turn structures. This observation was further supported by evaluating ECD spectra of human 20S treated with low concentration of SDS, known as a gate-opening reagent. Next, to evaluate the power of ECD to probe a ligand-induced gate status, we treated the proteasome with H2T4, a tetracationic porphyrin that we showed previously to induce large-scale protein conformational changes upon binding to h20S. H2T4 caused a significant increase in the ECD band at 220 nm, interpreted as an induced opening of the 20S gate. In parallel, we imaged the gate-harboring alpha ring of the 20S with AFM, a technique that we used previously to visualize the predominantly closed gate in latent human or yeast 20S and the open gate in α3ΔN mutant. The results were convergent with the ECD data and showed a marked decrease in the content of closed-gate conformation in the H2T4-treated h20S. Our findings provide compelling support for the use of ECD measurements to conveniently monitor proteasome conformational changes related to gating phenomena. We predict that the observed association of spectroscopic and structural results will help with efficient design and characterization of exogenous proteasome regulators.
Collapse
Affiliation(s)
- Alessandro D’Urso
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.P.); (A.C.)
| | - Roberto Purrello
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.P.); (A.C.)
| | - Alessandra Cunsolo
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.P.); (A.C.)
| | - Danilo Milardi
- Istituto di Cristallografia—CNR Sede Secondaria di Catania, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Caterina Fattorusso
- Dipartimento di Farmacia, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (C.F.); (M.P.)
| | - Marco Persico
- Dipartimento di Farmacia, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (C.F.); (M.P.)
| | - Maria Gaczynska
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; (M.G.); (P.A.O.)
| | - Pawel A. Osmulski
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; (M.G.); (P.A.O.)
| | - Anna Maria Santoro
- Istituto di Cristallografia—CNR Sede Secondaria di Catania, Via P. Gaifami 18, 95126 Catania, Italy;
| |
Collapse
|
8
|
Hsu HC, Wang J, Kjellgren A, Li H, DeMartino GN. High-resolution structure of mammalian PI31â€"20S proteasome complex reveals mechanism of proteasome inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535455. [PMID: 37066326 PMCID: PMC10103979 DOI: 10.1101/2023.04.03.535455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Proteasome-catalyzed protein degradation mediates and regulates critical aspects of many cellular functions and is an important element of proteostasis in health and disease. Proteasome function is determined in part by the types of proteasome holoenzymes formed between the 20S core particle that catalyzes peptide bond hydrolysis and any of multiple regulatory proteins to which it binds. One of these regulators, PI31, was previously identified as an in vitro 20S proteasome inhibitor, but neither the molecular mechanism nor the possible physiologic significance of PI31-mediated proteasome inhibition has been clear. Here we report a high- resolution cryo-EM structure of the mammalian 20S proteasome in complex with PI31. The structure shows that two copies of the intrinsically-disordered carboxyl-terminus of PI31 are present in the central cavity of the closed-gate conformation of the proteasome and interact with proteasome catalytic sites in a manner that blocks proteolysis of substrates but resists their own degradation. The two inhibitory polypeptide chains appear to originate from PI31 monomers that enter the catalytic chamber from opposite ends of the 20S cylinder. We present evidence that PI31 can inhibit proteasome activity in mammalian cells and may serve regulatory functions for the control of cellular proteostasis.
Collapse
|
9
|
Sang W, Liu J, Xing Y, Feng C, Hu Q, Lang Y, Li X, Bao J, Jiang H. Transcriptome analysis of hepatopancreas of Chinese grass shrimp, Palaemonetes sinensis, infected by Enterocytospora artemiae. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108557. [PMID: 36669602 DOI: 10.1016/j.fsi.2023.108557] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
The emergence of the microsporidian, Enterocytospora artemiae, has caused serious economic losses to the aquaculture industry of Palaemonetes sinensis. The hepatopancreas is the main digestive and immune organ of P. sinensis, and the main site of E. artemiae infection. We used next-generation sequencing to determine the effects of E. artemiae parasitism on the hepatopancreas of P. sinensis at the transcriptome level. The hepatopancreas of P. sinensis was parasitized by E. artemiae, and 881 differentially expressed genes (DEGs) were obtained, of which 643 were upregulated and 238 were downregulated. These DEGs are mainly involved in DNA replication, transcription, translation, immunity, and metabolism. Among them, the cellular processes of DNA replication, transcription and translation are significantly strengthened, which may be related to the use of host ATP and nucleic acid by E. artemiae to achieve proliferation and damage to host cells to enhance DNA replication and repair. Moreover, to defend against E. artemiae, some immune genes related to antioxidation, such as glutathione metabolism, seleno compound metabolism, and cytochrome p450 2L1, were significantly upregulated, but simultaneously, tumor necrosis factor, NF-κB inhibitor α, and other immune-related genes were significantly down regulated, indicating that the parasitism of E. artemiae led to a significant decline in the immune defense ability of P. sinensis. From the perspective of metabolism, the metabolism-related DEGs of retinol, glycine, serine, and threonine metabolism, were significantly downregulated, resulting in insufficient nutrient absorption and decreased energy supply of the P. sinensis, which in turn affected their growth. The differential genes and pathways identified in this study can provide a reference basis to further elucidate the pathogenic mechanism of P. sinensis infected with E. artemiae and the prevention and control of microsporidia disease.
Collapse
Affiliation(s)
- Wenjia Sang
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jun Liu
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuenan Xing
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chengcheng Feng
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Qingbiao Hu
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuxi Lang
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xiaodong Li
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jie Bao
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.
| | - Hongbo Jiang
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
10
|
The β-Grasp Domain of Proteasomal ATPase Mpa Makes Critical Contacts with the Mycobacterium tuberculosis 20S Core Particle to Facilitate Degradation. mSphere 2022; 7:e0027422. [PMID: 35993699 PMCID: PMC9599533 DOI: 10.1128/msphere.00274-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mycobacterium tuberculosis possesses a Pup-proteasome system analogous to the eukaryotic ubiquitin-proteasome pathway. We have previously shown that the hexameric mycobacterial proteasome ATPase (Mpa) recruits pupylated protein substrates via interactions between amino-terminal coiled-coils in Mpa monomers and the degradation tag Pup. However, it is unclear how Mpa rings interact with a proteasome due to the presence of a carboxyl-terminal β-grasp domain unique to Mpa homologues that makes the interaction highly unstable. Here, we describe newly identified critical interactions between Mpa and 20S core proteasomes. Interestingly, the Mpa C-terminal GQYL motif binds the 20S core particle activation pocket differently than the same motif of the ATP-independent proteasome accessory factor PafE. We further found that the β-hairpin of the Mpa β-grasp domain interacts variably with the H0 helix on top of the 20S core particle via a series of ionic and hydrogen-bond interactions. Individually mutating several involved residues reduced Mpa-mediated protein degradation both in vitro and in vivo. IMPORTANCE The Pup-proteasome system in Mycobacterium tuberculosis is critical for this species to cause lethal infections in mice. Investigating the molecular mechanism of how the Mpa ATPase recruits and unfolds pupylated substrates to the 20S proteasomal core particle for degradation will be essential to fully understand how degradation is regulated, and the structural information we report may be useful for the development of new tuberculosis chemotherapies.
Collapse
|
11
|
Zheng L, Li J, Shi M, Chen Y, He X, Fu J. De Novo Transcription Responses Describe Host-Related Differentiation of Paracoccus marginatus (Hemiptera: Pseudococcidae). INSECTS 2022; 13:850. [PMID: 36135551 PMCID: PMC9502998 DOI: 10.3390/insects13090850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Paracoccus marginatus (Hemiptera: Pseudococcidae) is an invasive pest with a diverse host range, strong diffusion, and high fecundity. It has been observed that P. marginatus feeding on Carica papaya have a higher survival rate, fecundity, and longer lifespan than P. marginatus feeding on Solanum tuberosum, indicating their successful adaptation to C. papaya; however, the mechanisms underlying host plant adaptation remain unclear. Therefore, RNA-seq was performed to study the transcriptional responses of P. marginatus feeding on C. papaya and S. tuberosum plants. A total of 408 genes with significant differential expression were defined; most of them were downregulated in S. tuberosum, including those of digestive enzymes, detoxifying enzymes, ribosomes, and reproductive-related genes, which may result from the adaptation of the host to nutritional needs and changes in toxic chemical levels. Enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes showed that lysosome and longevity regulating pathways related to digestion, detoxification, and longevity were enriched. We suggest that C. papaya is a more suitable host than S. tuberosum, and downregulated target genes may have important effects on the adaptation of P. marginatus to host transfer.
Collapse
Affiliation(s)
- Lizhen Zheng
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Jianyu Li
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Mengzhu Shi
- Fujian Provincial Key Laboratory of Quality and Safety of Agricultural Products, Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Yanting Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Xiaoyun He
- Fujian Provincial Key Laboratory of Quality and Safety of Agricultural Products, Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Jianwei Fu
- Fujian Provincial Key Laboratory of Quality and Safety of Agricultural Products, Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| |
Collapse
|
12
|
Effect of FKBP12-Derived Intracellular Peptides on Rapamycin-Induced FKBP-FRB Interaction and Autophagy. Cells 2022; 11:cells11030385. [PMID: 35159195 PMCID: PMC8834644 DOI: 10.3390/cells11030385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Intracellular peptides (InPeps) generated by proteasomes were previously suggested as putative natural regulators of protein-protein interactions (PPI). Here, the main aim was to investigate the intracellular effects of intracellular peptide VFDVELL (VFD7) and related peptides on PPI. The internalization of the peptides was achieved using a C-terminus covalently bound cell-penetrating peptide (cpp; YGRKKRRQRRR). The possible inhibition of PPI was investigated using a NanoBiT® luciferase structural complementation reporter system, with a pair of plasmids vectors each encoding, simultaneously, either FK506-binding protein (FKBP) or FKBP-binding domain (FRB) of mechanistic target of rapamycin complex 1 (mTORC1). The interaction of FKBP-FRB within cells occurs under rapamycin induction. Results shown that rapamycin-induced interaction between FKBP-FRB within human embryonic kidney 293 (HEK293) cells was inhibited by VFD7-cpp (10-500 nM) and FDVELLYGRKKRRQRRR (VFD6-cpp; 1-500 nM); additional VFD7-cpp derivatives were either less or not effective in inhibiting FKBP-FRB interaction induced by rapamycin. Molecular dynamics simulations suggested that selected peptides, such as VFD7-cpp, VFD6-cpp, VFAVELLYGRKKKRRQRRR (VFA7-cpp), and VFEVELLYGRKKKRRQRRR (VFA7-cpp), bind to FKBP and to FRB protein surfaces. However, only VFD7-cpp and VFD6-cpp induced changes on FKBP structure, which could help with understanding their mechanism of PPI inhibition. InPeps extracted from HEK293 cells were found mainly associated with macromolecular components (i.e., proteins and/or nucleic acids), contributing to understanding InPeps' intracellular proteolytic stability and mechanism of action-inhibiting PPI within cells. In a model of cell death induced by hypoxia-reoxygenation, VFD6-cpp (1 µM) increased the viability of mouse embryonic fibroblasts cells (MEF) expressing mTORC1-regulated autophagy-related gene 5 (Atg5), but not in autophagy-deficient MEF cells lacking the expression of Atg5. These data suggest that VFD6-cpp could have therapeutic applications reducing undesired side effects of rapamycin long-term treatments. In summary, the present report provides further evidence that InPeps have biological significance and could be valuable tools for the rational design of therapeutic molecules targeting intracellular PPI.
Collapse
|
13
|
Höing A, Zimmermann A, Moews L, Killa M, Heimann M, Hensel A, Voskuhl J, Knauer SK. A Bivalent Supramolecular GCP Ligand Enables Blocking of the Taspase1/Importin α Interaction. ChemMedChem 2022; 17:e202100640. [PMID: 34623765 PMCID: PMC9298320 DOI: 10.1002/cmdc.202100640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 12/12/2022]
Abstract
Taspase1 is a unique protease not only pivotal for embryonic development but also implicated in leukemia as well as solid tumors. As such, it is a promising target in cancer therapy, although only a limited number of Taspase1 inhibitors lacking general applicability are currently available. Here we present a bivalent guanidiniocarbonyl-pyrrole (GCP)-containing supramolecular ligand that is capable of disrupting the essential interaction between Taspase1 and its cognate import receptor Importin α in a concentration-dependent manner in vitro with an IC50 of 35 μM. Here, size of the bivalent vs the monovalent construct as well as its derivation with an aromatic cbz-group arose as critical determinants for efficient interference of 2GC. This was also evident when we investigated the effects in different tumor cell lines, resulting in comparable EC50 values (∼40-70 μM). Of note, in higher concentrations, 2GC also interfered with Taspase1's proteolytic activity. We thus believe to set the stage for a novel class of Taspase1 inhibitors targeting a pivotal protein-protein interaction prerequisite for its cancer-associated proteolytic function.
Collapse
Affiliation(s)
- Alexander Höing
- Institute for Molecular Biology IICenter for Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstrasse 545117EssenGermany
| | - Alexander Zimmermann
- Faculty of Chemistry (Organic Chemistry) and CENIDEUniversity of Duisburg EssenUniversitätsstrasse 745141EssenGermany
| | - Lisa Moews
- Institute for Molecular Biology IICenter for Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstrasse 545117EssenGermany
| | - Matthias Killa
- Faculty of Chemistry (Organic Chemistry) and CENIDEUniversity of Duisburg EssenUniversitätsstrasse 745141EssenGermany
| | - Marius Heimann
- Faculty of Chemistry (Organic Chemistry) and CENIDEUniversity of Duisburg EssenUniversitätsstrasse 745141EssenGermany
| | - Astrid Hensel
- Institute for Molecular Biology IICenter for Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstrasse 545117EssenGermany
| | - Jens Voskuhl
- Faculty of Chemistry (Organic Chemistry) and CENIDEUniversity of Duisburg EssenUniversitätsstrasse 745141EssenGermany
| | - Shirley K. Knauer
- Institute for Molecular Biology IICenter for Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstrasse 545117EssenGermany
| |
Collapse
|
14
|
Barik S. Mechanisms of Viral Degradation of Cellular Signal Transducer and Activator of Transcription 2. Int J Mol Sci 2022; 23:ijms23010489. [PMID: 35008916 PMCID: PMC8745392 DOI: 10.3390/ijms23010489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022] Open
Abstract
Virus infection of eukaryotes triggers cellular innate immune response, a major arm of which is the type I interferon (IFN) family of cytokines. Binding of IFN to cell surface receptors triggers a signaling cascade in which the signal transducer and activator of transcription 2 (STAT2) plays a key role, ultimately leading to an antiviral state of the cell. In retaliation, many viruses counteract the immune response, often by the destruction and/or inactivation of STAT2, promoted by specific viral proteins that do not possess protease activities of their own. This review offers a summary of viral mechanisms of STAT2 subversion with emphasis on degradation. Some viruses also destroy STAT1, another major member of the STAT family, but most viruses are selective in targeting either STAT2 or STAT1. Interestingly, degradation of STAT2 by a few viruses requires the presence of both STAT proteins. Available evidence suggests a mechanism in which multiple sites and domains of STAT2 are required for engagement and degradation by a multi-subunit degradative complex, comprising viral and cellular proteins, including the ubiquitin–proteasomal system. However, the exact molecular nature of this complex and the alternative degradation mechanisms remain largely unknown, as critically presented here with prospective directions of future study.
Collapse
Affiliation(s)
- Sailen Barik
- EonBio, 3780 Pelham Drive, Mobile, AL 36619, USA
| |
Collapse
|
15
|
George DE, Tepe JJ. Advances in Proteasome Enhancement by Small Molecules. Biomolecules 2021; 11:1789. [PMID: 34944433 PMCID: PMC8699248 DOI: 10.3390/biom11121789] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 01/11/2023] Open
Abstract
The proteasome system is a large and complex molecular machinery responsible for the degradation of misfolded, damaged, and redundant cellular proteins. When proteasome function is impaired, unwanted proteins accumulate, which can lead to several diseases including age-related and neurodegenerative diseases. Enhancing proteasome-mediated substrate degradation with small molecules may therefore be a valuable strategy for the treatment of various neurodegenerative diseases such as Parkinson's, Alzheimer's, and Huntington's diseases. In this review, we discuss the structure of proteasome and how proteasome's proteolytic activity is associated with aging and various neurodegenerative diseases. We also summarize various classes of compounds that are capable of enhancing, directly or indirectly, proteasome-mediated protein degradation.
Collapse
Affiliation(s)
| | - Jetze J. Tepe
- Department of Chemistry and Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
16
|
Upadhyay A. Natural compounds in the regulation of proteostatic pathways: An invincible artillery against stress, ageing, and diseases. Acta Pharm Sin B 2021; 11:2995-3014. [PMID: 34729300 PMCID: PMC8546668 DOI: 10.1016/j.apsb.2021.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 01/13/2023] Open
Abstract
Cells have different sets of molecules for performing an array of physiological functions. Nucleic acids have stored and carried the information throughout evolution, whereas proteins have been attributed to performing most of the cellular functions. To perform these functions, proteins need to have a unique conformation and a definite lifespan. These attributes are achieved by a highly coordinated protein quality control (PQC) system comprising chaperones to fold the proteins in a proper three-dimensional structure, ubiquitin-proteasome system for selective degradation of proteins, and autophagy for bulk clearance of cell debris. Many kinds of stresses and perturbations may lead to the weakening of these protective cellular machinery, leading to the unfolding and aggregation of cellular proteins and the occurrence of numerous pathological conditions. However, modulating the expression and functional efficiency of molecular chaperones, E3 ubiquitin ligases, and autophagic proteins may diminish cellular proteotoxic load and mitigate various pathological effects. Natural medicine and small molecule-based therapies have been well-documented for their effectiveness in modulating these pathways and reestablishing the lost proteostasis inside the cells to combat disease conditions. The present article summarizes various similar reports and highlights the importance of the molecules obtained from natural sources in disease therapeutics.
Collapse
Key Words
- 17-AAG, 17-allylamino-geldanamycin
- APC, anaphase-promoting complex
- Ageing
- Autophagy
- BAG, BCL2-associated athanogene
- CAP, chaperone-assisted proteasomal degradation
- CASA, chaperone-assisted selective autophagy
- CHIP, carboxy-terminus of HSC70 interacting protein
- CMA, chaperone-mediated autophagy
- Cancer
- Chaperones
- DUBs, deubiquitinases
- Drug discovery
- EGCG, epigallocatechin-3-gallate
- ESCRT, endosomal sorting complexes required for transport
- HECT, homologous to the E6-AP carboxyl terminus
- HSC70, heat shock cognate 70
- HSF1, heat shock factor 1
- HSP, heat shock protein
- KFERQ, lysine-phenylalanine-glutamate-arginine-glutamine
- LAMP2a, lysosome-associated membrane protein 2a
- LC3, light chain 3
- NBR1, next to BRCA1 gene 1
- Natural molecules
- Neurodegeneration
- PQC, protein quality control
- Proteinopathies
- Proteostasis
- RING, really interesting new gene
- UPS, ubiquitin–proteasome system
- Ub, ubiquitin
- Ubiquitin proteasome system
Collapse
Affiliation(s)
- Arun Upadhyay
- Department of Biochemistry, Central University of Rajasthan, Bandar Sindari, Kishangarh, Ajmer, Rajasthan 305817, India
| |
Collapse
|
17
|
Gong Y, Zhang K, Geng N, Wu M, Yi X, Liu R, Challis JK, Codling G, Xu EG, Giesy JP. Molecular mechanisms of zooplanktonic toxicity in the okadaic acid-producing dinoflagellate Prorocentrum lima. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116942. [PMID: 33765503 DOI: 10.1016/j.envpol.2021.116942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Prorocentrum lima is a dinoflagellate that forms hazardous blooms and produces okadaic acid (OA), leading to adverse environmental consequences associated with the declines of zooplankton populations. However, little is known about the toxic effects and molecular mechanisms of P. lima or OA on zooplankton. Here, their toxic effects were investigated using the brine shrimp Artemia salina. Acute exposure of A. salina to P. lima resulted in lethality at concentrations 100-fold lower than densities observed during blooms. The first comprehensive results from global transcriptomic and metabolomic analyses in A. salina showed up-regulated mRNA expression of antioxidant enzymes and reduced non-enzyme antioxidants, indicating general detoxification responses to oxidative stress after exposure to P. lima. The significantly up-regulated mRNA expression of proteasome, spliceosome, and ribosome, as well as the increased fatty acid oxidation and oxidative phosphorylation suggested the proteolysis of damaged proteins and induction of energy expenditure. Exposure to OA increased catabolism of chitin, which may further disrupt the molting and reproduction activities of A. salina. Our data shed new insights on the molecular responses and toxicity mechanisms of A. salina to P. lima or OA. The simple zooplankton model integrated with omic methods provides a sensitive assessment approach for studying hazardous algae.
Collapse
Affiliation(s)
- Yufeng Gong
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin, Liaoning, China; Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Keke Zhang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin, Liaoning, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Minghuo Wu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin, Liaoning, China
| | - Xianliang Yi
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin, Liaoning, China.
| | - Renyan Liu
- National Marine Environmental Monitoring Center, Dalian, Liaoning, China
| | | | - Garry Codling
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; RECETOX Centre, Masaryk University, Kamenice, Brno, Czech Republic
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
18
|
Yan XT, Ye ZX, Wang X, Zhang CX, Chen JP, Li JM, Huang HJ. Insight into different host range of three planthoppers by transcriptomic and microbiomic analysis. INSECT MOLECULAR BIOLOGY 2021; 30:287-296. [PMID: 33452691 DOI: 10.1111/imb.12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Brown planthopper (BPH), white-backed planthopper (WBPH) and small brown planthopper (SBPH), are the closely related rice pests that perform differentially on wheat plants. Using fecundity as a fitness measure, we found that SBPH well-adapted on wheat plants, followed by WBPH, while BPH had the worst performance. The transcriptomic responses of SBPH and BPH to wheat plants have been compared previously. To understand the different fitness mechanisms of three planthoppers, this study first investigated the transcriptomic responses of WBPH to rice and wheat plants. Genes involved in detoxification, transportation and proteasome were significantly enriched in WBPH in response to different diets. Moreover, comparative analysis demonstrated that most co-regulated genes in BPH and SBPH showed different expression changes; whereas most co-regulated genes in BPH and WBPH exhibited similar expression changes. Subsequently, this study also investigated the influences of host plants on the bacterial community of three planthoppers. The three planthoppers harboured distant diversity of bacterial communities. However, there was no dramatic change in bacterial diversity or relative abundance in planthoppers colonized on different hosts. This study illustrates generic and species-specific changes of three rice planthoppers in response to different plants, which deepen our understanding towards the host fitness for planthopper species.
Collapse
Affiliation(s)
- X-T Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Z-X Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - X Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - C-X Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - J-P Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - J-M Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - H-J Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
19
|
Piedade WP, Famulski JK. E3 ubiquitin ligase-mediated regulation of vertebrate ocular development; new insights into the function of SIAH enzymes. Biochem Soc Trans 2021; 49:327-340. [PMID: 33616626 PMCID: PMC7924998 DOI: 10.1042/bst20200613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 01/18/2023]
Abstract
Developmental regulation of the vertebrate visual system has been a focus of investigation for generations as understanding this critical time period has direct implications on our understanding of congenital blinding disease. The majority of studies to date have focused on transcriptional regulation mediated by morphogen gradients and signaling pathways. However, recent studies of post translational regulation during ocular development have shed light on the role of the ubiquitin proteasome system (UPS). This rather ubiquitous yet highly diverse system is well known for regulating protein function and localization as well as stability via targeting for degradation by the 26S proteasome. Work from many model organisms has recently identified UPS activity during various milestones of ocular development including retinal morphogenesis, retinal ganglion cell function as well as photoreceptor homeostasis. In particular work from flies and zebrafish has highlighted the role of the E3 ligase enzyme family, Seven in Absentia Homologue (Siah) during these events. In this review, we summarize the current understanding of UPS activity during Drosophila and vertebrate ocular development, with a major focus on recent findings correlating Siah E3 ligase activity with two major developmental stages of vertebrate ocular development, retinal morphogenesis and photoreceptor specification and survival.
Collapse
|
20
|
Corrigan TS, Lotti Diaz LM, Border SE, Ratigan SC, Kasper KQ, Sojka D, Fajtova P, Caffrey CR, Salvesen GS, McElroy CA, Hadad CM, Doğan Ekici Ö. Design, synthesis, and in vitro evaluation of aza-peptide aldehydes and ketones as novel and selective protease inhibitors. J Enzyme Inhib Med Chem 2021; 35:1387-1402. [PMID: 32633155 PMCID: PMC7470110 DOI: 10.1080/14756366.2020.1781107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aza-peptide aldehydes and ketones are a new class of reversible protease inhibitors that are specific for the proteasome and clan CD cysteine proteases. We designed and synthesised aza-Leu derivatives that were specific for the chymotrypsin-like active site of the proteasome, aza-Asp derivatives that were effective inhibitors of caspases-3 and -6, and aza-Asn derivatives that inhibited S. mansoni and I. ricinus legumains. The crystal structure of caspase-3 in complex with our caspase-specific aza-peptide methyl ketone inhibitor with an aza-Asp residue at P1 revealed a covalent linkage between the inhibitor carbonyl carbon and the active site cysteinyl sulphur. Aza-peptide aldehydes and ketones showed no cross-reactivity towards cathepsin B or chymotrypsin. The initial in vitro selectivity of these inhibitors makes them suitable candidates for further development into therapeutic agents to potentially treat multiple myeloma, neurodegenerative diseases, and parasitic infections.
Collapse
Affiliation(s)
- Thomas S Corrigan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Leilani M Lotti Diaz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Sarah E Border
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Steven C Ratigan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Kayla Q Kasper
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Daniel Sojka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Pavla Fajtova
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Guy S Salvesen
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Craig A McElroy
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Özlem Doğan Ekici
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Department of Chemistry and Biochemistry, The Ohio State University at Newark, Newark, OH, USA
| |
Collapse
|
21
|
Zhao L, Zhao J, Zhang Y, Wang L, Zuo L, Niu A, Zhang W, Xue X, Zhao S, Sun C, Li K, Wang J, Bian Z, Zhao X, Saur D, Seidler B, Wang C, Qi T. Generation and identification of a conditional knockout allele for the PSMD11 gene in mice. BMC DEVELOPMENTAL BIOLOGY 2021; 21:4. [PMID: 33517884 PMCID: PMC7849139 DOI: 10.1186/s12861-020-00233-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Our previous study have shown that the PSMD11 protein was an important survival factor for cancer cells except for its key role in regulation of assembly and activity of the 26S proteasome. To further investigate the role of PSMD11 in carcinogenesis, we constructed a conditional exon 5 floxed allele of PSMD11 (PSMD11flx) in mice. RESULTS It was found that homozygous PSMD11 flx/flx mice showed normal and exhibited a normal life span and fertility, and showed roughly equivalent expression of PSMD11 in various tissues, suggesting that the floxed allele maintained the wild-type function. Cre recombinase could induce efficient knockout of the floxed PSMD11 allele both in vitro and in vivo. Mice with constitutive single allele deletion of PSMD11 derived from intercrossing between PSMD11flx/flx and CMV-Cre mice were all viable and fertile, and showed apparent growth retardation, suggesting that PSMD11 played a significant role in the development of mice pre- or postnatally. No whole-body PSMD11 deficient embryos (PSMD11-/-) were identified in E7.5-8.5 embryos in uteros, indicating that double allele knockout of PSMD11 leads to early embryonic lethality. To avoid embryonic lethality produced by whole-body PSMD11 deletion, we further developed conditional PSMD11 global knockout mice with genotype Flp;FSF-R26CAG - CreERT2/+; PSMD11 flx/flx, and demonstrated that PSMD11 could be depleted in a temporal and tissue-specific manner. Meanwhile, it was found that depletion of PSMD11 could induce massive apoptosis in MEFs. CONCLUSIONS In summary, our data demonstrated that we have successfully generated a conditional knockout allele of PSMD11 in mice, and found that PSMD11 played a key role in early and postnatal development in mice, the PSMD11 flx/flx mice will be an invaluable tool to explore the functions of PSMD11 in development and diseases.
Collapse
Affiliation(s)
- Linlin Zhao
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Jinming Zhao
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Yingying Zhang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Lele Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Longyan Zuo
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Airu Niu
- Department of Clinical Laboratory, Sanhe Yanjiao No.23 Hospital, Beijing, 065201, China
| | - Wei Zhang
- Department of Medical Imaging, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Xia Xue
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Suhong Zhao
- Department of Medical Imaging, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Chao Sun
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Kailin Li
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Jue Wang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Zhimin Bian
- Comprehensive Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery/Key Laboratory of Thoracic Cancer in Universities of Shandong, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Dieter Saur
- The II. Medizinische Klinik und Poliklinik der Technischen Universität München, Ismaningerstr. 22, 81675, Munich, Germany
| | - Barbara Seidler
- The II. Medizinische Klinik und Poliklinik der Technischen Universität München, Ismaningerstr. 22, 81675, Munich, Germany
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Tonggang Qi
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| |
Collapse
|
22
|
Hanley SE, Cooper KF. Sorting Nexins in Protein Homeostasis. Cells 2020; 10:cells10010017. [PMID: 33374212 PMCID: PMC7823608 DOI: 10.3390/cells10010017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis is maintained by removing misfolded, damaged, or excess proteins and damaged organelles from the cell by three major pathways; the ubiquitin-proteasome system, the autophagy-lysosomal pathway, and the endo-lysosomal pathway. The requirement for ubiquitin provides a link between all three pathways. Sorting nexins are a highly conserved and diverse family of membrane-associated proteins that not only traffic proteins throughout the cells but also provide a second common thread between protein homeostasis pathways. In this review, we will discuss the connections between sorting nexins, ubiquitin, and the interconnected roles they play in maintaining protein quality control mechanisms. Underlying their importance, genetic defects in sorting nexins are linked with a variety of human diseases including neurodegenerative, cardiovascular diseases, viral infections, and cancer. This serves to emphasize the critical roles sorting nexins play in many aspects of cellular function.
Collapse
|
23
|
van den Boom J, Hensel A, Trusch F, Matena A, Siemer S, Guel D, Docter D, Höing A, Bayer P, Stauber RH, Knauer SK. The other side of the corona: nanoparticles inhibit the protease taspase1 in a size-dependent manner. NANOSCALE 2020; 12:19093-19103. [PMID: 32662484 DOI: 10.1039/d0nr01631d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
When nanoparticles enter a physiological environment, they rapidly adsorb biomolecules, in particular cellular proteins. This biological coating, the so-called nanoparticle protein corona, undoubtedly affects the biological identity and potential cytotoxicity of the nanomaterial. To elucidate a possible impact on the adsorbed biomolecules, we focused on an important group of players in cellular homeostasis, namely proteolytic enzymes. We could demonstrate that amorphous silica nanoparticles are not only able to bind to the oncologically relevant threonine protease Taspase1 as revealed by microscale thermophoresis and fluorescence anisotropy measurements, but moreover inhibit its proteolytic activity in a non-competitive manner. As revealed by temperature-dependent unfolding and CD spectroscopy, binding did not alter the stability of Taspase1 or its secondary structure. Noteworthy, inhibition of protein function seems not a general feature of nanoparticles, as several control enzymes were not affected in their proteolytic activity. Our data suggests that nanoparticles bind Taspase1 as an αβ-dimer in a single layer without conformational change, resulting in noncompetitive inhibition that is either allostery-like or occludes the active site. Nanoparticle-based inhibition of Taspase1 could be also achieved in cell lysates and in live cells as shown by the use of a protease-specific cellular cleavage biosensor. Collectively, we could demonstrate that nanoparticles could not only bind but also selectively inhibit cellular enzymes, which might explain observed cytotoxicity but might serve as a starting point for the development of nanoparticle-based inhibitors as therapeutics.
Collapse
Affiliation(s)
- Johannes van den Boom
- Structural and Medicinal Biochemistry, Department of Biology, University Duisburg-Essen and Zentrum für Molekulare Biotechnologie (ZMB), Universitätsstrasse 5, Essen, 45141 Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
25
|
Mallik S, Tawfik DS. Determining the interaction status and evolutionary fate of duplicated homomeric proteins. PLoS Comput Biol 2020; 16:e1008145. [PMID: 32853212 PMCID: PMC7480870 DOI: 10.1371/journal.pcbi.1008145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/09/2020] [Accepted: 07/12/2020] [Indexed: 12/16/2022] Open
Abstract
Oligomeric proteins are central to life. Duplication and divergence of their genes is a key evolutionary driver, also because duplications can yield very different outcomes. Given a homomeric ancestor, duplication can yield two paralogs that form two distinct homomeric complexes, or a heteromeric complex comprising both paralogs. Alternatively, one paralog remains a homomer while the other acquires a new partner. However, so far, conflicting trends have been noted with respect to which fate dominates, primarily because different methods and criteria are being used to assign the interaction status of paralogs. Here, we systematically analyzed all Saccharomyces cerevisiae and Escherichia coli oligomeric complexes that include paralogous proteins. We found that the proportions of homo-hetero duplication fates strongly depend on a variety of factors, yet that nonetheless, rigorous filtering gives a consistent picture. In E. coli about 50%, of the paralogous pairs appear to have retained the ancestral homomeric interaction, whereas in S. cerevisiae only ~10% retained a homomeric state. This difference was also observed when unique complexes were counted instead of paralogous gene pairs. We further show that this difference is accounted for by multiple cases of heteromeric yeast complexes that share common ancestry with homomeric bacterial complexes. Our analysis settles contradicting trends and conflicting previous analyses, and provides a systematic and rigorous pipeline for delineating the fate of duplicated oligomers in any organism for which protein-protein interaction data are available. About half of all proteins assemble as oligomers, either by self-interaction (homomers) or via interaction with another protein (heteromers). The latter can be unrelated, yet, quite commonly, the interacting proteins are paralogs, namely two genes that arose by gene duplication. Indeed, while a homomer is encoded by a single gene, heteromers demand two genes as a minimum. Duplication can therefore yield two discrete homomeric complexes or a single heteromer. Do paralogs tend to retain the ancestral homomeric interaction, or do they mostly diverge into heteromeric complexes? Despite several studies addressing this question, to date, we lack a systematic, rigorous approach for delineating the oligomeric fates of paralogs on an organism scale. To this end, we developed a new pipeline for analysis of molecular interaction databases that includes various filtering steps and unambiguous definitions of all possible oligomeric fates. Applying this method to Escherichia coli and Saccharomyces cerevisiae we noted that paralogous pairs tend to remain homomeric in the former while in the latter heteromeric complexes dominate. We consequently note a systematic trend of homomeric bacterial proteins diverging into heteromeric complexes in eukaryotes.
Collapse
Affiliation(s)
- Saurav Mallik
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Dan S. Tawfik
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
26
|
Guzmán-Téllez P, Martínez-Valencia D, Silva-Olivares A, Del Ángel RM, Serrano-Luna J, Shibayama M. Naegleria fowleri and Naegleria gruberi 20S proteasome: identification and characterization. Eur J Cell Biol 2020; 99:151085. [PMID: 32646643 DOI: 10.1016/j.ejcb.2020.151085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/17/2020] [Accepted: 05/07/2020] [Indexed: 11/26/2022] Open
Abstract
The Naegleria are ubiquitous free-living amoebae and are characterized by the presence of three phases in their biological cycle: trophozoite, cyst and flagellate. Of this genus, only Naegleria fowleri has been reported as pathogenic to humans. The proteasome is a multi-catalytic complex and is considered to be the most important structure responsible for the degradation of intracellular proteins. This structure is related to the maintenance of cellular homeostasis and, in pathogenic microorganisms, to the modulation of their virulence. Until now, the proteasome and its function have not been described for the Naegleria genus. In the current study, using bioinformatic analysis, protein sequences homologous to those reported for the subunits of the 20S proteasome in other organisms were found, and virtual modelling was used to determine their three-dimensional structure. The presence of structural and catalytic subunits of the 20S proteasome was detected by Western and dot blot assays. Its localization was observed by immunofluorescence microscopy to be mainly in the cytoplasm, and a leading role of the chymotrypsin-like catalytic activity was determined using fluorogenic peptidase assays and specific proteasome inhibitors. Finally, the role of the 20S proteasome in the proliferation and differentiation of Naegleria genus trophozoites was demonstrated.
Collapse
Affiliation(s)
- Paula Guzmán-Téllez
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico
| | - Diana Martínez-Valencia
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico
| | - Angélica Silva-Olivares
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico
| | - Rosa M Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico.
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico.
| |
Collapse
|
27
|
Ukmar-Godec T, Fang P, Ibáñez de Opakua A, Henneberg F, Godec A, Pan KT, Cima-Omori MS, Chari A, Mandelkow E, Urlaub H, Zweckstetter M. Proteasomal degradation of the intrinsically disordered protein tau at single-residue resolution. SCIENCE ADVANCES 2020; 6:eaba3916. [PMID: 32832664 PMCID: PMC7439447 DOI: 10.1126/sciadv.aba3916] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/05/2020] [Indexed: 05/28/2023]
Abstract
Intrinsically disordered proteins (IDPs) can be degraded in a ubiquitin-independent process by the 20S proteasome. Decline in 20S activity characterizes neurodegenerative diseases. Here, we examine 20S degradation of IDP tau, a protein that aggregates into insoluble deposits in Alzheimer's disease. We show that cleavage of tau by the 20S proteasome is most efficient within the aggregation-prone repeat region of tau and generates both short, aggregation-deficient peptides and two long fragments containing residues 1 to 251 and 1 to 218. Phosphorylation of tau by the non-proline-directed Ca2+/calmodulin-dependent protein kinase II inhibits degradation by the 20S proteasome. Phosphorylation of tau by GSK3β, a major proline-directed tau kinase, modulates tau degradation kinetics in a residue-specific manner. The study provides detailed insights into the degradation products of tau generated by the 20S proteasome, the residue specificity of degradation, single-residue degradation kinetics, and their regulation by posttranslational modification.
Collapse
Affiliation(s)
- T. Ukmar-Godec
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Department of Neurology, University Medical Center Göttingen, University of Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - P. Fang
- Max Planck Institute for Biophysical Chemistry, Research group Mass Spectrometry, Am Fassberg 11, 37077 Göttingen, Germany
| | - A. Ibáñez de Opakua
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
| | - F. Henneberg
- Department for Structural Dynamics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - A. Godec
- Mathematical Biophysics Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - K.-T. Pan
- Max Planck Institute for Biophysical Chemistry, Research group Mass Spectrometry, Am Fassberg 11, 37077 Göttingen, Germany
| | - M.-S. Cima-Omori
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
| | - A. Chari
- Department for Structural Dynamics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - E. Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Geb. 99, 53127 Bonn, Germany
- CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - H. Urlaub
- Max Planck Institute for Biophysical Chemistry, Research group Mass Spectrometry, Am Fassberg 11, 37077 Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center, Robert-Koch-Strasse 420, 37075 Göttingen, Germany
| | - M. Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Department of Neurology, University Medical Center Göttingen, University of Göttingen, Waldweg 33, 37073 Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
28
|
Transient knots in intrinsically disordered proteins and neurodegeneration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:79-103. [PMID: 32828471 DOI: 10.1016/bs.pmbts.2020.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We provide a brief overview of the topological features found in structured proteins and of the dynamical processes that involve knots. We then discuss the knotted states that arise in the intrinsically disordered polyglutamine and α-synuclein. We argue that the existence of the knotted conformations stalls degradation by proteases and thus enhances aggregation. This mechanism works if the length of a peptide chain exceeds a threshold, as in the Huntington disease. We also study the cavities that form within the conformations of the disordered proteins. The volume of the cavities varies in time in a way that is different than that of the radius of gyration or the end-to-end distance. In addition, we study the traffic between the conformational basins and identify patterns associated with the deep and shallow knots. The results are obtained by molecular dynamics simulations that use coarse-grained and all-atom models (with and without the explicit solvent).
Collapse
|
29
|
Le-Trilling VTK, Trilling M. Ub to no good: How cytomegaloviruses exploit the ubiquitin proteasome system. Virus Res 2020; 281:197938. [PMID: 32198076 DOI: 10.1016/j.virusres.2020.197938] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022]
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous member of the Betaherpesvirinae subfamily, causing life-threatening diseases in individuals with impaired, immature, or senescent immunity. Accordingly, HIV-infected AIDS patients, transplant recipients, and congenitally infected neonates frequently suffer from symptomatic episodes of HCMV replication. Like all viruses, HCMV has a split relationship with the host proteome. Efficient virus replication can only be achieved if proteins involved in intrinsic, innate, and adaptive immune responses are sufficiently antagonized. Simultaneously, the abundance and function of proteins involved in the synthesis of chemical building blocks required for virus production, such as nucleotides, amino acids, and fatty acids, must be preserved or even enriched. The ubiquitin (Ub) proteasome system (UPS) constitutes one of the most relevant protein decay systems of eukaryotic cells. In addition to the regulation of the turn-over and abundance of thousands of proteins, the UPS also generates the majority of peptides presented by major histocompatibility complex (MHC) molecules to allow surveillance by T lymphocytes. Cytomegaloviruses exploit the UPS to regulate the abundance of viral proteins and to manipulate the host proteome in favour of viral replication and immune evasion. After summarizing the current knowledge of CMV-mediated misuse of the UPS, we discuss the evolution of viral proteins utilizing the UPS for the degradation of defined target proteins. We propose two alternative routes of adapter protein development and their mechanistic consequences.
Collapse
Affiliation(s)
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
30
|
Pathways of protein synthesis and degradation in PD pathogenesis. PROGRESS IN BRAIN RESEARCH 2020; 252:217-270. [PMID: 32247365 DOI: 10.1016/bs.pbr.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the discovery of protein aggregates in the brains of individuals with Parkinson's disease (PD) in the early 20th century, the scientific community has been interested in the role of dysfunctional protein metabolism in PD etiology. Recent advances in the field have implicated defective protein handling underlying PD through genetic, in vitro, and in vivo studies incorporating many disease models alongside neuropathological evidence. Here, we discuss the existing body of research focused on understanding cellular pathways of protein synthesis and degradation, and how aberrations in either system could engender PD pathology with special attention to α-synuclein-related consequences. We consider transcription, translation, and post-translational modification to constitute protein synthesis, and protein degradation to encompass proteasome-, lysosome- and endoplasmic reticulum-dependent mechanisms. Novel findings connecting each of these steps in protein metabolism to development of PD indicate that deregulation of protein production and turnover remains an exciting area in PD research.
Collapse
|
31
|
Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resist Updat 2020; 48:100663. [DOI: 10.1016/j.drup.2019.100663] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 02/07/2023]
|
32
|
Rathje CC, Randle SJ, Al Rawi S, Skinner BM, Nelson DE, Majumdar A, Johnson EEP, Bacon J, Vlazaki M, Affara NA, Ellis PJ, Laman H. A Conserved Requirement for Fbxo7 During Male Germ Cell Cytoplasmic Remodeling. Front Physiol 2019; 10:1278. [PMID: 31649556 PMCID: PMC6795710 DOI: 10.3389/fphys.2019.01278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Fbxo7 is the substrate-recognition subunit of an SCF-type ubiquitin E3 ligase complex. It has physiologically important functions in regulating mitophagy, proteasome activity and the cell cycle in multiple cell types, like neurons, lymphocytes and erythrocytes. Here, we show that in addition to the previously known Parkinsonian and hematopoietic phenotypes, male mice with reduced Fbxo7 expression are sterile. In these males, despite successful meiosis, nuclear elongation and eviction of histones from chromatin, the developing spermatids are phagocytosed by Sertoli cells during late spermiogenesis, as the spermatids undergo cytoplasmic remodeling. Surprisingly, despite the loss of all germ cells, there was no evidence of the symplast formation and cell sloughing that is typically associated with spermatid death in other mouse sterility models, suggesting that novel cell death and/or cell disposal mechanisms may be engaged in Fbxo7 mutant males. Mutation of the Drosophila Fbxo7 ortholog, nutcracker (ntc) also leads to sterility with germ cell death during cytoplasmic remodeling, indicating that the requirement for Fbxo7 at this stage is conserved. The ntc phenotype was attributed to decreased levels of the proteasome regulator, DmPI31 and reduced proteasome activity. Consistent with the fly model, we observe a reduction in PI31 levels in mutant mice; however, there is no alteration in proteasome activity in whole mouse testes. Our results are consistent with findings that Fbxo7 regulates PI31 protein levels, and indicates that a defect at the late stages of spermiogenesis, possibly due to faulty spatial dynamics of proteasomes during cytoplasmic remodeling, may underlie the fertility phenotype in mice.
Collapse
Affiliation(s)
- Claudia C Rathje
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Suzanne J Randle
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Sara Al Rawi
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin M Skinner
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - David E Nelson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Antara Majumdar
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Emma E P Johnson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Joanne Bacon
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Myrto Vlazaki
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nabeel A Affara
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Peter J Ellis
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Heike Laman
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
33
|
Cellular Responses to Proteasome Inhibition: Molecular Mechanisms and Beyond. Int J Mol Sci 2019; 20:ijms20143379. [PMID: 31295808 PMCID: PMC6678303 DOI: 10.3390/ijms20143379] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
Proteasome inhibitors have been actively tested as potential anticancer drugs and in the treatment of inflammatory and autoimmune diseases. Unfortunately, cells adapt to survive in the presence of proteasome inhibitors activating a variety of cell responses that explain why these therapies have not fulfilled their expected results. In addition, all proteasome inhibitors tested and approved by the FDA have caused a variety of side effects in humans. Here, we describe the different types of proteasome complexes found within cells and the variety of regulators proteins that can modulate their activities, including those that are upregulated in the context of inflammatory processes. We also summarize the adaptive cellular responses activated during proteasome inhibition with special emphasis on the activation of the Autophagic-Lysosomal Pathway (ALP), proteaphagy, p62/SQSTM1 enriched-inclusion bodies, and proteasome biogenesis dependent on Nrf1 and Nrf2 transcription factors. Moreover, we discuss the role of IRE1 and PERK sensors in ALP activation during ER stress and the involvement of two deubiquitinases, Rpn11 and USP14, in these processes. Finally, we discuss the aspects that should be currently considered in the development of novel strategies that use proteasome activity as a therapeutic target for the treatment of human diseases.
Collapse
|
34
|
Adámková L, Kvíčalová Z, Rozbeský D, Kukačka Z, Adámek D, Cebecauer M, Novák P. Oligomeric Architecture of Mouse Activating Nkrp1 Receptors on Living Cells. Int J Mol Sci 2019; 20:ijms20081884. [PMID: 30995786 PMCID: PMC6515139 DOI: 10.3390/ijms20081884] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/03/2022] Open
Abstract
Mouse activating Nkrp1 proteins are commonly described as type II transmembrane receptors with disulfide-linked homodimeric structure. Their function and the manner in which Nkrp1 proteins of mouse strain (C57BL/6) oligomerize are still poorly understood. To assess the oligomerization state of Nkrp1 proteins, mouse activating EGFP-Nkrp1s were expressed in mammalian lymphoid cells and their oligomerization evaluated by Förster resonance energy transfer (FRET). Alternatively, Nkrp1s oligomers were detected by Western blotting to specify the ratio between monomeric and dimeric forms. We also performed structural characterization of recombinant ectodomains of activating Nkrp1 receptors. Nkrp1 isoforms c1, c2 and f were expressed prevalently as homodimers, whereas the Nkrp1a displays larger proportion of monomers on the cell surface. Cysteine-to-serine mutants revealed the importance of all stalk cysteines for protein dimerization in living cells with a major influence of cysteine at position 74 in two Nkrp1 protein isoforms. Our results represent a new insight into the oligomerization of Nkrp1 receptors on lymphoid cells, which will help to determine their function.
Collapse
Affiliation(s)
- Ljubina Adámková
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic.
| | - Zuzana Kvíčalová
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 2155/3, 18223 Prague 8, Czech Republic.
| | - Daniel Rozbeský
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic.
| | - Zdeněk Kukačka
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic.
| | - David Adámek
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic.
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 2155/3, 18223 Prague 8, Czech Republic.
| | - Petr Novák
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic.
- Department of Biochemistry, Charles University, Hlavova 8, 12843 Prague 2, Czech Republic.
| |
Collapse
|
35
|
O'Neill EC, Schorn M, Larson CB, Millán-Aguiñaga N. Targeted antibiotic discovery through biosynthesis-associated resistance determinants: target directed genome mining. Crit Rev Microbiol 2019; 45:255-277. [PMID: 30985219 DOI: 10.1080/1040841x.2019.1590307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intense competition between microbes in the environment has directed the evolution of antibiotic production in bacteria. Humans have harnessed these natural molecules for medicinal purposes, magnifying them from environmental concentrations to industrial scale. This increased exposure to antibiotics has amplified antibiotic resistance across bacteria, spurring a global antimicrobial crisis and a search for antibiotics with new modes of action. Genetic insights into these antibiotic-producing microbes reveal that they have evolved several resistance strategies to avoid self-toxicity, including product modification, substrate transport and binding, and target duplication or modification. Of these mechanisms, target duplication or modification will be highlighted in this review, as it uniquely links an antibiotic to its mode of action. We will further discuss and propose a strategy to mine microbial genomes for these genes and their associated biosynthetic gene clusters to discover novel antibiotics using target directed genome mining.
Collapse
Affiliation(s)
- Ellis C O'Neill
- a Department of Plant Sciences, University of Oxford , Oxford , Oxfordshire , UK
| | - Michelle Schorn
- b Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California , San Diego , CA , USA
| | - Charles B Larson
- b Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California , San Diego , CA , USA
| | - Natalie Millán-Aguiñaga
- c Universidad Autónoma de Baja California, Facultad de Ciencias Marinas , Ensenada , Baja California , México
| |
Collapse
|
36
|
Steven A, Seliger B. Control of CREB expression in tumors: from molecular mechanisms and signal transduction pathways to therapeutic target. Oncotarget 2018; 7:35454-65. [PMID: 26934558 PMCID: PMC5085243 DOI: 10.18632/oncotarget.7721] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/26/2016] [Indexed: 12/11/2022] Open
Abstract
The cyclic AMP response element binding (CREB) protein has pleiotropic activities in physiologic processes. Due to its central position downstream of many growth signaling pathways CREB has the ability to influence cell survival, growth and differentiation of normal, but also of tumor cells suggesting an oncogenic potential of CREB. Indeed, increased CREB expression and activation is associated with tumor progression, chemotherapy resistance and reduced patients' survival. We summarize here the different cellular functions of CREB in tumors of distinct histology as well as its use as potential prognostic marker. In addition, the underlying molecular mechanisms to achieve constitutive activation of CREB including structural alterations, such as gene amplification and chromosomal translocation, and deregulation, which could occur at the transcriptional, post-transcriptional and post-translational level, will be described. Since downregulation of CREB by different strategies resulted in inhibition of cell proliferation, invasion and induction of apoptosis, the role of CREB as a promising target for cancer therapy will be also discussed.
Collapse
Affiliation(s)
- André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
37
|
The Architecture of the Anbu Complex Reflects an Evolutionary Intermediate at the Origin of the Proteasome System. Structure 2017; 25:834-845.e5. [PMID: 28479063 PMCID: PMC5666114 DOI: 10.1016/j.str.2017.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/23/2016] [Accepted: 04/14/2017] [Indexed: 11/22/2022]
Abstract
Proteasomes are self-compartmentalizing proteases that function at the core of the cellular protein degradation machinery in eukaryotes, archaea, and some bacteria. Although their evolutionary history is under debate, it is thought to be linked to that of the bacterial protease HslV and the hypothetical bacterial protease Anbu (ancestral beta subunit). Here, together with an extensive bioinformatic analysis, we present the first biophysical characterization of Anbu. Anbu forms a dodecameric complex with a unique architecture that was only accessible through the combination of X-ray crystallography and small-angle X-ray scattering. While forming continuous helices in crystals and electron microscopy preparations, refinement of sections from the crystal structure against the scattering data revealed a helical open-ring structure in solution, contrasting the ring-shaped structures of proteasome and HslV. Based on this primordial architecture and exhaustive sequence comparisons, we propose that Anbu represents an ancestral precursor at the origin of self-compartmentalization. The crystal structure of the bacterial proteasome homolog Anbu has been solved The dodecameric architecture reveals unique features compared with classical proteasomes Bioinformatic analysis places Anbu at the root of the proteasome family
Collapse
|
38
|
Goru SK, Kadakol A, Gaikwad AB. Hidden targets of ubiquitin proteasome system: To prevent diabetic nephropathy. Pharmacol Res 2017; 120:170-179. [PMID: 28363724 DOI: 10.1016/j.phrs.2017.03.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022]
Abstract
Diabetic nephropathy (DN) is the major cause of end stage renal failure. Although, several therapeutic targets have emerged to prevent the progression of DN, the number of people with DN still continues to rise worldwide, suggesting an urgent need of novel targets to prevent DN completely. Currently, the role of ubiquitin proteasome system (UPS) has been highlighted in the pathogenesis and progression of various diseases like obesity, insulin resistance, atherosclerosis, cancers, neurodegerative disorders and including secondary complications of diabetes. UPS mainly involves in protein homeostatis through ubiquitination (post translational modification) and proteasomal degradation of various proteins. Ubiquitination, not only involves in proteasomal degradation, but also directs the substrate proteins to participate in multitude of cell signalling pathways. However, very little is known about ubiquitination and UPS in the progression of DN. This review mainly focuses on UPS and its components including E2 conjugating enzymes, E3 ligases and deubiquitinases (DUBs) in the development of DN and thus may help us to find novel therapeutic targets with in UPS to prevent DN completely in future.
Collapse
Affiliation(s)
- Santosh Kumar Goru
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Almesh Kadakol
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
39
|
Joshi RG, Ratna Prabha C. Degrons of yeast and mammalian ornithine decarboxylase enzymes make potent combination for regulated targeted protein degradation. Appl Microbiol Biotechnol 2016; 101:2905-2917. [DOI: 10.1007/s00253-016-8023-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
|
40
|
Bruno M, Ross J, Ge Y. Proteomic responses of BEAS-2B cells to nontoxic and toxic chromium: Protein indicators of cytotoxicity conversion. Toxicol Lett 2016; 264:59-70. [PMID: 27592090 DOI: 10.1016/j.toxlet.2016.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 12/25/2022]
Abstract
Hexavalent chromium (Cr (VI)) is an environmental human carcinogen which primarily targets lungs. Among a variety of toxic mechanisms, disruption of biological pathways via translational and post-translational modifications represents a key mechanism through which Cr (VI) induces cytotoxicity and carcinogenesis. To identify those disruptions which are altered in response to cytotoxic Cr (VI) exposures, we measured and compared cytotoxicity and changes in expression and phosphorylation status of 15 critical biochemical pathway regulators in human BEAS-2B cells exposed for 48h to a non-toxic concentration (0.3μM) and a toxic concentration (1.8μM) of Cr (VI) by ELISA techniques. In addition, 43 functional proteins which may be altered in response to pathway signaling changes were identified using two dimensional electrophoresis (2-DE) and mass spectrometry. The proteins and fold changes observed in cells exposed to the non-toxic dose of Cr (VI) (0.3μM) were not necessarily the same as those found in the toxic one (1.8μM). A subset of signaling proteins that were correlated with the cytotoxic responses of human BEAS-2B cells to Cr (VI) treatments were identified. These proteins include regulators of glycolysis, glycogen synthase kinase 3 beta (GSK3β) and phosphoprotein 70 ribosomal protein s6 kinase (p70S6K), a signaling protein associated with oxidative stress and inflammation responses, JNK and metal regulatory transcription factor 1 (MTF-1), and a source of ubiquitin for signaling targeted protein degradation, polyubiquitin C (UBC). In addition, two dimensional gel electrophoresis (2-DE) was applied to identify key alterations in biochemical pathways differentiating between cytotoxic and non-cytotoxic exposures to Cr (VI), including glycolysis and gluconeogenesis, protein degradation, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Maribel Bruno
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Jeffrey Ross
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Yue Ge
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
41
|
Freitas ACS, Figueiredo MJ, Campos EC, Soave DF, Ramos SG, Tanowitz HB, Celes MRN. Activation of Both the Calpain and Ubiquitin-Proteasome Systems Contributes to Septic Cardiomyopathy through Dystrophin Loss/Disruption and mTOR Inhibition. PLoS One 2016; 11:e0166839. [PMID: 27880847 PMCID: PMC5120800 DOI: 10.1371/journal.pone.0166839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/05/2016] [Indexed: 11/18/2022] Open
Abstract
Cardiac dysfunction caused by the impairment of myocardial contractility has been recognized as an important factor contributing to the high mortality in sepsis. Calpain activation in the heart takes place in response to increased intracellular calcium influx resulting in proteolysis of structural and contractile proteins with subsequent myocardial dysfunction. The purpose of the present study was to test the hypothesis that increased levels of calpain in the septic heart leads to disruption of structural and contractile proteins and that administration of calpain inhibitor-1 (N-acetyl-leucinyl-leucinyl-norleucinal (ALLN)) after sepsis induced by cecal ligation and puncture prevents cardiac protein degradation. We also tested the hypothesis that calpain plays a role in the modulation of protein synthesis/degradation through the activation of proteasome-dependent proteolysis and inhibition of the mTOR pathway. Severe sepsis significantly increased heart calpain-1 levels and promoted ubiquitin and Pa28β over-expression with a reduction in the mTOR levels. In addition, sepsis reduced the expression of structural proteins dystrophin and β-dystroglycan as well as the contractile proteins actin and myosin. ALLN administration prevented sepsis-induced increases in calpain and ubiquitin levels in the heart, which resulted in decreased of structural and contractile proteins degradation and basal mTOR expression levels were re-established. Our results support the concept that increased calpain concentrations may be part of an important mechanism of sepsis-induced cardiac muscle proteolysis.
Collapse
Affiliation(s)
- Ana Caroline Silva Freitas
- Department of Pathology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Jose Figueiredo
- Department of Pathology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Erica Carolina Campos
- Department of Physiotherapy, Faculty of Physical Education, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Danilo Figueiredo Soave
- Department of Histology, Embryology and Cellular Biology, Federal University of Goias, Goias, Brazil
| | - Simone Gusmao Ramos
- Department of Pathology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Herbert B. Tanowitz
- Departments of Pathology and medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, United States of America
| | - Mara Rúbia N. Celes
- Department of Pathology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goias, Brazil
- * E-mail: ,
| |
Collapse
|
42
|
Dasgupta S, Yang C, Castro LM, Tashima AK, Ferro ES, Moir RD, Willis IM, Fricker LD. Analysis of the Yeast Peptidome and Comparison with the Human Peptidome. PLoS One 2016; 11:e0163312. [PMID: 27685651 PMCID: PMC5042401 DOI: 10.1371/journal.pone.0163312] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/07/2016] [Indexed: 12/22/2022] Open
Abstract
Peptides function as signaling molecules in species as diverse as humans and yeast. Mass spectrometry-based peptidomics techniques provide a relatively unbiased method to assess the peptidome of biological samples. In the present study, we used a quantitative peptidomic technique to characterize the peptidome of the yeast Saccharomyces cerevisiae and compare it to the peptidomes of mammalian cell lines and tissues. Altogether, 297 yeast peptides derived from 75 proteins were identified. The yeast peptides are similar to those of the human peptidome in average size and amino acid composition. Inhibition of proteasome activity with either bortezomib or epoxomicin led to decreased levels of some yeast peptides, suggesting that these peptides are generated by the proteasome. Approximately 30% of the yeast peptides correspond to the N- or C-terminus of the protein; the human peptidome is also highly represented in N- or C-terminal protein fragments. Most yeast and humans peptides are derived from a subset of abundant proteins, many with functions involving cellular metabolism or protein synthesis and folding. Of the 75 yeast proteins that give rise to peptides, 24 have orthologs that give rise to human and/or mouse peptides and for some, the same region of the proteins are found in the human, mouse, and yeast peptidomes. Taken together, these results support the hypothesis that intracellular peptides may have specific and conserved biological functions.
Collapse
Affiliation(s)
- Sayani Dasgupta
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, 10461, United States of America
| | - Ciyu Yang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, United States of America
| | - Leandro M. Castro
- Biomedical Science Institute, Campus on the São Paulo Coast, São Paulo State University, São Vicente, 11330–900, SP, Brazil
| | - Alexandre K. Tashima
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of Sao Paulo, Sao Paulo, SP, 04023–901, SP, Brazil
| | - Emer S. Ferro
- Department of Pharmacology, Biomedical Science Institute, University of São Paulo, São Paulo, 05508–000, SP, Brazil
| | - Robyn D. Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, 10461, United States of America
| | - Ian M. Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, 10461, United States of America
- Department of Systems & Computational Biology, Albert Einstein College of Medicine, Bronx, New York, 10461, United States of America
| | - Lloyd D. Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, 10461, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, 10461, United States of America
- * E-mail:
| |
Collapse
|
43
|
Schrader J, Henneberg F, Mata RA, Tittmann K, Schneider TR, Stark H, Bourenkov G, Chari A. The inhibition mechanism of human 20Sproteasomes enables next-generation inhibitor design. Science 2016; 353:594-8. [DOI: 10.1126/science.aaf8993] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 07/14/2016] [Indexed: 01/02/2023]
|
44
|
Mammalian proteasome subtypes: Their diversity in structure and function. Arch Biochem Biophys 2015; 591:132-40. [PMID: 26724758 DOI: 10.1016/j.abb.2015.12.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/22/2015] [Indexed: 11/21/2022]
Abstract
The 20S proteasome is a multicatalytic proteinase catalysing the degradation of the majority of intracellular proteins. Thereby it is involved in almost all basic cellular processes, which is facilitated by its association with various regulator complexes so that it appears in different disguises like 26S proteasome, hybrid-proteasome and others. The 20S proteasome has a cylindrical structure built up by four stacked rings composed of α- and β-subunits. Since the three active site-containing β-subunits can all or in part be replaced by immuno-subunits, three main subpopulations exist, namely standard-, immuno- and intermediate-proteasomes. Due to posttranslational modifications or/and genetic variations all α- and β-subunits occur in multiple iso- or proteoforms. This leads to the fact that each of the three subpopulations is composed of a variety of 20S proteasome subtypes. This review summarizes the knowledge of proteasome subtypes in mammalian cells and tissues and their possible biological and medical relevancy.
Collapse
|
45
|
Iron Loading Selectively Increases Hippocampal Levels of Ubiquitinated Proteins and Impairs Hippocampus-Dependent Memory. Mol Neurobiol 2015; 53:6228-6239. [DOI: 10.1007/s12035-015-9514-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/27/2015] [Indexed: 12/30/2022]
|
46
|
Zuo EW, Yang XG, Lu YQ, Xie L, Shang JH, Li D, Yang H, Hu LL, Zhao HM, Lu SS, Lu KH. ZPAC is required for normal spermatogenesis in mice. Mol Reprod Dev 2015; 82:747-55. [DOI: 10.1002/mrd.22507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/15/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Er-Wei Zuo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi 530004 China
| | - Xiao-Gan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi 530004 China
| | - Yang-Qing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi 530004 China
- Regenerative Bioscience Center; Department of Animal and Dairy Science; University of Georgia; Athens Georgia 30602 USA
| | - Long Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi 530004 China
| | - Jiang-Hua Shang
- Buffalo Research Institute; Chinese Academy of Agricultural Sciences; Nanning Guangxi 530001 China
| | - Di Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi 530004 China
| | - Huan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi 530004 China
| | - Lin-Lin Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi 530004 China
| | - Hui-Min Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi 530004 China
| | - Sheng-Sheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi 530004 China
| | - Ke-Huan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi 530004 China
| |
Collapse
|
47
|
Inhibition of proteasome deubiquitinase activity: a strategy to overcome resistance to conventional proteasome inhibitors? Drug Resist Updat 2015; 21-22:20-9. [DOI: 10.1016/j.drup.2015.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/22/2015] [Accepted: 06/27/2015] [Indexed: 11/19/2022]
|
48
|
Wojciechowski M, Szymczak P, Carrión-Vázquez M, Cieplak M. Protein unfolding by biological unfoldases: insights from modeling. Biophys J 2015; 107:1661-8. [PMID: 25296319 DOI: 10.1016/j.bpj.2014.07.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/09/2014] [Accepted: 07/15/2014] [Indexed: 10/24/2022] Open
Abstract
The molecular determinants of the high efficiency of biological machines like unfoldases (e.g., the proteasome) are not well understood. We propose a model to study protein translocation into the chamber of biological unfoldases represented as a funnel. It is argued that translocation is a much faster way of unfolding a protein than end-to-end stretching, especially in a low-force regime, because it allows for a conformational freedom while concentrating local tension on consecutive regions of a protein chain and preventing refolding. This results in a serial unfolding of the protein structures dominated by unzipping. Thus, pulling against the unfoldase pore is an efficient catalyst of the unfolding reaction. We also show that the presence of the funnel makes the tension along the backbone of the substrate protein nonuniform even when the protein gets unfolded. Hence, the stalling force measured by single-molecule force spectroscopy techniques may be smaller than the traction force of the unfoldase motor.
Collapse
Affiliation(s)
| | - Piotr Szymczak
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Mariano Carrión-Vázquez
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas and Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain
| | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
49
|
Xu HX, Hong Y, Zhang MZ, Wang YL, Liu SS, Wang XW. Transcriptional responses of invasive and indigenous whiteflies to different host plants reveal their disparate capacity of adaptation. Sci Rep 2015; 5:10774. [PMID: 26041313 PMCID: PMC4455138 DOI: 10.1038/srep10774] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 05/01/2015] [Indexed: 11/24/2022] Open
Abstract
The whitefly Bemisia tabaci contains more than 35 cryptic species. The higher adaptability of Middle East-Asia Minor 1 (MEAM1) cryptic species has been recognized as one important factor for its invasion and displacement of other indigenous species worldwide. Here we compared the performance of the invasive MEAM1 and the indigenous Asia II 3 whitefly species following host plant transfer from a suitable host (cotton) to an unsuitable host (tobacco) and analyzed their transcriptional responses. After transfer to tobacco for 24 h, MEAM1 performed much better than Asia II 3. Transcriptional analysis showed that the patterns of gene regulation were very different with most of the genes up-regulated in MEAM1 but down-regulated in Asia II 3. Whereas carbohydrate and energy metabolisms were repressed in Asia II 3, the gene expression and protein metabolisms were activated in MEAM1. Compared to the constitutive high expression of detoxification genes in MEAM1, most of the detoxification genes were down-regulated in Asia II 3. Enzymatic activities of P450, GST and esterase further verified that the detoxification of MEAM1 was much higher than that of Asia II 3. These results reveal obvious differences in responses of MEAM1 and Asia II 3 to host transfer.
Collapse
Affiliation(s)
- Hong-Xing Xu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Hong
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min-Zhu Zhang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong-Liang Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
50
|
Abstract
All living organisms require protein degradation to terminate biological processes and remove damaged proteins. One such machine is the 20S proteasome, a specialized barrel-shaped and compartmentalized multicatalytic protease. The activity of the 20S proteasome generally requires the binding of regulators/proteasome activators (PAs), which control the entrance of substrates. These include the PA700 (19S complex), which assembles with the 20S and forms the 26S proteasome and allows the efficient degradation of proteins usually labeled by ubiquitin tags, PA200 and PA28, which are involved in proteolysis through ubiquitin-independent mechanisms and PI31, which was initially identified as a 20S inhibitor in vitro. Unlike 20S proteasome, shown to be present in all Eukaryotes and Archaea, the evolutionary history of PAs remained fragmentary. Here, we made a comprehensive survey and phylogenetic analyses of the four types of regulators in 17 clades covering most of the eukaryotic supergroups. We found remarkable conservation of each PA700 subunit in all eukaryotes, indicating that the current complex PA700 structure was already set up in the last eukaryotic common ancestor (LECA). Also present in LECA, PA200, PA28, and PI31 showed a more contrasted evolutionary picture, because many lineages have subsequently lost one or two of them. The paramount conservation of PA700 composition in all eukaryotes and the dynamic evolution of PA200, PA28, and PI31 are discussed in the light of current knowledge on their physiological roles.
Collapse
Affiliation(s)
- Philippe Fort
- CNRS, CRBM, UMR5237, Montpellier, France Université de Montpellier, France
| | - Andrey V Kajava
- CNRS, CRBM, UMR5237, Montpellier, France Université de Montpellier, France Institut de Biologie Computationnelle, Montpellier, France
| | - Fredéric Delsuc
- Université de Montpellier, France CNRS, IRD, Institut des Sciences de l'Evolution, UMR 5554, Montpellier, France
| | - Olivier Coux
- CNRS, CRBM, UMR5237, Montpellier, France Université de Montpellier, France
| |
Collapse
|