1
|
Zhang Y, Wang Y, Weng J, Chen J, Zheng Y, Xia Y, Huang Z, Zhao L, Chen X, Tang H, Huang Y. Pyroptosis-related gene GSDMC indicates poor prognosis and promotes tumor progression by activating the AKT/mTOR pathway in lung squamous cell carcinoma. Mol Carcinog 2024; 63:2218-2236. [PMID: 39136610 DOI: 10.1002/mc.23805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/23/2024] [Accepted: 07/29/2024] [Indexed: 10/11/2024]
Abstract
Lung squamous cell carcinoma (LUSC) is one of the most common malignant tumors of the respiratory. Pyroptosis plays an essential role in cancer, but there is limited research investigating pyroptosis in LUSC. In this study, pyroptosis-related genes were observed to have extensive multiomics alterations in LUSC through analysis of the TCGA database. Utilizing machine learning for selection and verifying expression levels, GSDMC was chosen as the critical gene for further experiments. Our research found that GSDMC is overexpressed in LUSC tissues and cells, and is associated with poor prognosis. Knockdown of GSDMC in LUSC inhibits cell proliferation, invasion, metastasis, chemotherapeutic sensitivity, and reduced tumor formation in nude mice, accompanied by downregulation of proliferative and EMT-related protein expression. However, these effects were counteracted in cells where GSDMC is overexpressed. Mechanistically, the oncogenic role of GSDMC is primarily achieved through the activation of the AKT/mTOR pathway, and this effect can be significantly reversed by rapamycin. Finally, SMAD4's interaction with the promoter region of GSDMC results in the suppression of GSDMC expression. In summary, our study through bioinformatics and experimental approaches not only proves that SMAD4 regulates the protumorigenic role of GSDMC through transcriptional targeting, but also indicates the possibility of developing the SMAD4/GSDMC/AKT/mTOR signaling axis as a potential biomarker and treatment target for LUSC.
Collapse
Affiliation(s)
- Yi Zhang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Yuzhi Wang
- Department of Laboratory Medicine, Deyang People's Hospital, Deyang, Sichuan, China
| | - Jiamiao Weng
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Jianlin Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Yue Zheng
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Yu Xia
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
- Integrated Chinese and Western Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zhixin Huang
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
- Integrated Chinese and Western Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Lilan Zhao
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Department of General Thoracic Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiongfeng Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Department of Scientific Research, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Haijun Tang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Key Laboratory of Cardiovascular Disease, Fuzhou, Fujian, China
| | - Yi Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Key Laboratory of Cardiovascular Disease, Fuzhou, Fujian, China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, China
- Central Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
2
|
You Q, Li L, Ding H, Liu Y. Proteomics-based network pharmacology and molecular docking reveal the potential mechanisms of 5,6,7,4'-tetramethoxyflavone against HeLa cancer cells. Heliyon 2024; 10:e38951. [PMID: 39449708 PMCID: PMC11497385 DOI: 10.1016/j.heliyon.2024.e38951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/23/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Recent research has highlighted the therapeutic potential of citrus-derived dietary 5,6,7,4'-tetramethoxyflavone (TMF) against HeLa cancer. Our study aims to elucidate its mechanisms of action through proteomics analysis, network pharmacology, and molecular docking. The results suggested that TMF demonstrated efficacy by upregulating CD40, CD40L, Fas, Fas-L, HSP27, HSP60, IGFBP-1, IGFBP-2, IGF-1sR, Livin, p21, p27, sTNFR2, TRAILR2, TRAILAR3, TRAILR4, XIAP, p-Sre, p-Stat1, p-Stat2 p-c-Fos, p-SMAD1, p-SMAD2, p-SMAD4, p-SMAD5, p-IκBα, p-MSK1, p-NFκB, p-TAK1, p-TBK1, p-ZAP70, and p-MSK2, while downregulating p-EGFR, p-ATF2, p-cJUN, p-HSP27, p-JNK, and p-GSK3A. These targets are primarily involved in MAPK, apoptosis, and TNF signaling pathways. Notably, p21, p27, EGFR, SMAD4, JNK, ATF2, and c-JUN merged as pivotal targets contributing to TMF's anti-cancer efficacy against HeLa cells. This study is first to delineate the potential signaling pathways and core targets of TMF in treating of HeLa cancer, paving the way for further exploration of TMF's medical potential.
Collapse
Affiliation(s)
- Qiang You
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
- Department of Pharmacy, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570100, China
| | - Lan Li
- School of Nursing, Peking University, Beijing, 100091, China
| | - Haiyan Ding
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Youping Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
3
|
Wu M, Zhao Y, Zhang C, Pu K. Advancing Proteolysis Targeting Chimera (PROTAC) Nanotechnology in Protein Homeostasis Reprograming for Disease Treatment. ACS NANO 2024; 18:28502-28530. [PMID: 39377250 DOI: 10.1021/acsnano.4c09800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) represent a transformative class of therapeutic agents that leverage the intrinsic protein degradation machinery to modulate the hemostasis of key disease-associated proteins selectively. Although several PROTACs have been approved for clinical application, suboptimal therapeutic efficacy and potential adverse side effects remain challenging. Benefiting from the enhanced targeted delivery, reduced systemic toxicity, and improved bioavailability, nanomedicines can be tailored with precision to integrate with PROTACs which hold significant potential to facilitate PROTAC nanomedicines (nano-PROTACs) for clinical translation with enhanced efficacy and reduced side effects. In this review, we provide an overview of the recent progress in the convergence of nanotechnology with PROTAC design, leveraging the inherent properties of nanomaterials, such as lipids, polymers, inorganic nanoparticles, nanohydrogels, proteins, and nucleic acids, for precise PROTAC delivery. Additionally, we discuss the various categories of PROTAC targets and provide insights into their clinical translational potential, alongside the challenges that need to be addressed.
Collapse
Affiliation(s)
- Mengyao Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yilan Zhao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chi Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| |
Collapse
|
4
|
Trugilo KP, Cebinelli GCM, Castilha EP, da Silva MR, Berti FCB, de Oliveira KB. The role of transforming growth factor β in cervical carcinogenesis. Cytokine Growth Factor Rev 2024:S1359-6101(24)00086-8. [PMID: 39482191 DOI: 10.1016/j.cytogfr.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Human papillomavirus (HPV) is involved in virtually all cases of cervical cancer. However, HPV alone is not sufficient to cause malignant development. The effects of chronic inflammation and the interaction of immune components with the microenvironment infected with the high-risk HPV type (HR) may contribute to cancer development. Transforming growth factor β (TGFB) appears to play an important role in cervical carcinogenesis. Protein and mRNA levels of this cytokine gradually increase as normal tissue develops into malignant tissue and are closely related to the severity of HPV infection. At the onset of infection, TGFB can inhibit the proliferation of infected cells and viral amplification by inhibiting cell growth and downregulating the transcriptional activity of the long control region (LCR) of HPV, thereby reducing the expression of early genes. When infected cells progress to a malignant phenotype, the response to the cell growth inhibitory effect of TGFB1 is lost and the suppression of E6 and E7 expression decreases. Subsequently, TGFB1 expression is upregulated by high levels of E6 and E7 oncoproteins, leading to an increase in TGFB1 in the tumor microenvironment, where this molecule promotes epithelial-to-mesenchymal transition (EMT), cell motility, angiogenesis, and immunosuppression. This interaction between HPV oncoproteins and TGFB1 is an important mechanism promoting the development and progression of cervical cancer.
Collapse
Affiliation(s)
- Kleber Paiva Trugilo
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| | | | - Eliza Pizarro Castilha
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| | - Mariane Ricciardi da Silva
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| | | | - Karen Brajão de Oliveira
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| |
Collapse
|
5
|
Xiang QM, Chang L, Zhu JQ, Mu CK, Wang CL, Hou CC. The function of the cytoplasmic dynein light chain PTKM23 in the transport of PTSMAD2 during spermatogenesis in Portunus trituberculatus†. Biol Reprod 2024; 111:942-958. [PMID: 38900909 DOI: 10.1093/biolre/ioae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/12/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024] Open
Abstract
Cytoplasmic dynein participates in transport functions and is essential in spermatogenesis. KM23 belongs to the dynein light chain family. The TGFβ signaling pathway is indispensable in spermatogenesis, and Smad2 is an important member of this pathway. We cloned PTKM23 and PTSMAD2 from Portunus trituberculatus and measured their expression during spermatogenesis. PTKM23 may be related to cell division, acrosome formation, and nuclear remodeling, and PTSMAD2 may participate in regulating the expression of genes related to spermatogenesis. We assessed the localization of PTKM23 with PTDHC and α-tubulin, and the results suggested that PTKM23 functions in intracellular transport during spermatogenesis. We knocked down PTKM23 in vivo, and the expression of p53, B-CATAENIN and CYCLIN B decreased significantly, further suggesting a role of PTKM23 in transport and cell division. The localization of PTDIC with α-tubulin and that of PTSMAD2 with PTDHC changed after PTKM23 knockdown. We transfected PTKM23 and PTSMAD2 into HEK-293 T cells and verified their colocalization. These results indicate that PTKM23 is involved in the assembly of cytoplasmic dynein and microtubules during spermatogenesis and that PTKM23 mediates the participation of cytoplasmic dynein in the transport of PTSMAD2 during spermatogenesis.
Collapse
Affiliation(s)
- Qiu-Meng Xiang
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, Department of Aquaculture, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Le Chang
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, Department of Aquaculture, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Jun-Quan Zhu
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, Department of Aquaculture, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Chang-Kao Mu
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, Department of Aquaculture, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Chun-Lin Wang
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, Department of Aquaculture, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Cong-Cong Hou
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, Department of Aquaculture, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Zhang J, Jiang Y, Zhang Z, Li S, Fan H, Gu J, Mao R, Xu X. Repulsive guidance molecules b (RGMb): molecular mechanism, function and role in diseases. Expert Rev Mol Med 2024; 26:e24. [PMID: 39375839 PMCID: PMC11488336 DOI: 10.1017/erm.2024.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/23/2023] [Accepted: 06/11/2024] [Indexed: 10/09/2024]
Abstract
Repulsive guidance molecule b (RGMb), a glycosylphosphatidylinositol-anchored member of the RGM family, is initially identified as a co-receptor of bone morphogenetic protein (BMP) in the nervous system. The expression of RGMb is transcriptionally regulated by dorsal root ganglion 11 (DRG11), which is a transcription factor expressed in embryonic DRG and dorsal horn neurons and plays an important role in the development of sensory circuits. RGMb is involved in important physiological processes such as embryonic development, immune response, intercellular adhesion and tumorigenesis. Furthermore, RGMb is mainly involved in the regulation of RGMb-neogenin-Rho and BMP signalling pathways. The recent discovery of programmed death-ligand 2 (PD-L2)-RGMb binding reveals that the cell signalling network and functional regulation centred on RGMb are extremely complex. The latest report suggests that down-regulation of the PD-L2-RGMb pathway in the gut microbiota promotes an anti-tumour immune response, which defines a potentially effective immune strategy. However, the biological function of RGMb in a variety of human diseases has not been fully determined, and will remain an active research field. This article reviews the properties and functions of RGMb, focusing on its role under various physiological and pathological conditions.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yijing Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Zijian Zhang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Shilin Li
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Haowen Fan
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jinhua Gu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xiaohong Xu
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Xie Y, Shi S, Lv W, Wang X, Yue L, Deng C, Wang D, Han J, Ye T, Lin Y. Tetrahedral Framework Nucleic Acids Delivery of Pirfenidone for Anti-Inflammatory and Antioxidative Effects to Treat Idiopathic Pulmonary Fibrosis. ACS NANO 2024; 18:26704-26721. [PMID: 39276332 DOI: 10.1021/acsnano.4c06598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and irreversible lung disease, and developing an effective treatment remains a challenge. The limited therapeutic options are primarily delivered by the oral route, among which pirfenidone (PFD) improves pulmonary dysfunction and patient quality of life. However, its high dose and severe side effects (dyspepsia and systemic photosensitivity) limit its clinical value. Intratracheal aerosolization is an excellent alternative method for treating lung diseases because it increases the concentration of the drug needed to reach the focal site. Tetrahedral framework nucleic acid (tFNA) is a drug delivery system with exceptional delivery capabilities. Therefore, we synthesized a PFD-tFNA (Pt) complex using tFNA as the delivery vehicle and achieved quantitative nebulized drug delivery to the lungs via micronebulizer for lung fibrosis treatment. In vivo, Pt exhibited excellent immunomodulatory capacity and antioxidant effects. Furthermore, Pt reduced mortality, gradually restored body weight and improved lung tissue structure. Similarly, Pt also exhibited superior fibrosis inhibition in an in vitro fibrosis model, as shown by the suppression of excessive fibroblast activation and epithelial-mesenchymal transition (EMT) in epithelial cells exposed to TGF-β1. Conclusively, Pt, a complex with tFNA as a transport system, could enrich the therapeutic regimen for IPF via intratracheal aerosolization inhalation.
Collapse
Affiliation(s)
- Yuting Xie
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu 610041, China
| | - Weitong Lv
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinyu Wang
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Yue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Conghui Deng
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Doudou Wang
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Han
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang 550000, China
- National Health Commission Key Laboratory for Diagnosis and Treatment of Pulmonary Immune Diseases, Guiyang 550000, China
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu 610041, China
| |
Collapse
|
8
|
Sinha SK, Carpio MB, Nicholas SB. Fiery Connections: Macrophage-Mediated Inflammation, the Journey from Obesity to Type 2 Diabetes Mellitus and Diabetic Kidney Disease. Biomedicines 2024; 12:2209. [PMID: 39457523 PMCID: PMC11503991 DOI: 10.3390/biomedicines12102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
The high prevalence of diabetes mellitus (DM) poses a significant public health challenge, with diabetic kidney disease (DKD) as one of its most serious consequences. It has become increasingly clear that type 2 DM (T2D) and the complications of DKD are not purely metabolic disorders. This review outlines emerging evidence related to the step-by-step contribution of macrophages to the development and progression of DKD in individuals who specifically develop T2D as a result of obesity. The macrophage is a prominent inflammatory cell that contributes to obesity, where adipocyte hypertrophy leads to macrophage recruitment and eventually to the expansion of adipose tissue. The recruited macrophages secrete proinflammatory cytokines, which cause systemic inflammation, glucose dysregulation, and insulin sensitivity, ultimately contributing to the development of T2D. Under such pathological changes, the kidney is susceptible to elevated glucose and thereby activates signaling pathways that ultimately drive monocyte recruitment. In particular, the early recruitment of proinflammatory macrophages in the diabetic kidney produces inflammatory cytokines/chemokines that contribute to inflammation and tissue damage associated with DKD pathology. Macrophage activation and recruitment are crucial inciting factors that also persist as DKD progresses. Thus, targeting macrophage activation and function could be a promising therapeutic approach, potentially offering significant benefits for managing DKD at all stages of progression.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Maria Beatriz Carpio
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
9
|
Yu S, Zhang X, Li W, Lu Y, Xu X, Hu R, Liu H, Wang Y, Xing Q, Wei Z, Wang J. Thermosensitive hydrogel as a sustained release carrier for mesenchymal stem cell-derived extracellular vesicles in the treatment of intrauterine adhesion. J Nanobiotechnology 2024; 22:570. [PMID: 39289737 PMCID: PMC11406736 DOI: 10.1186/s12951-024-02780-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Intrauterine adhesion (IUA), a prevalent etiology of female infertility, is attributed to endometrial damage. However, conventional therapeutic interventions for IUA are plagued by high recurrence rates. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hUCMSC-EVs) demonstrate the promising therapeutic effects on IUA, but the current efficacy of extracellular vesicles (EVs) is hindered by lower retention and bioavailability. In this study, a thermosensitive hydrogel was utilized as a prolonged release carrier to improve the retention and bioavailability of hUCMSC-EVs in IUA treatment. The hydrogel-EVs complex effectively prolonged EVs retention in human endometrial stromal cells and an IUA mouse model. The complex exhibited superior protection against cellular injury, significantly alleviated endometrial damage, inhibited fibrosis, suppressed inflammation, and improved fertility compared to EVs alone. The results indicated that thermosensitive hydrogel enhanced the therapeutic capacity of EVs for IUA by prolonging their retention in the uterine environment. The hydrogel-EVs complex provides a novel strategy for the sustained release of hUCMSC-EVs in the treatment of IUA.
Collapse
Affiliation(s)
- Shujun Yu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Xinru Zhang
- School of Basic Medical Science, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Wenwen Li
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yueda Lu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Xuan Xu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Ruomeng Hu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Hongjiang Liu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Qiong Xing
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China.
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China.
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Jianye Wang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China.
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
10
|
Bustamante A, Baritaki S, Zaravinos A, Bonavida B. Relationship of Signaling Pathways between RKIP Expression and the Inhibition of EMT-Inducing Transcription Factors SNAIL1/2, TWIST1/2 and ZEB1/2. Cancers (Basel) 2024; 16:3180. [PMID: 39335152 PMCID: PMC11430682 DOI: 10.3390/cancers16183180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Untreated primary carcinomas often lead to progression, invasion and metastasis, a process that involves the epithelial-to-mesenchymal transition (EMT). Several transcription factors (TFs) mediate the development of EMT, including SNAIL1/SNAIL2, TWIST1/TWIST2 and ZEB1/ZEB2, which are overexpressed in various carcinomas along with the under expression of the metastasis suppressor Raf Kinase Inhibitor Protein (RKIP). Overexpression of RKIP inhibits EMT and the above associated TFs. We, therefore, hypothesized that there are inhibitory cross-talk signaling pathways between RKIP and these TFs. Accordingly, we analyzed the various properties and biomarkers associated with the epithelial and mesenchymal tissues and the various molecular signaling pathways that trigger the EMT phenotype such as the TGF-β, the RTK and the Wnt pathways. We also presented the various functions and the transcriptional, post-transcriptional and epigenetic regulations for the expression of each of the EMT TFs. Likewise, we describe the transcriptional, post-transcriptional and epigenetic regulations of RKIP expression. Various signaling pathways mediated by RKIP, including the Raf/MEK/ERK pathway, inhibit the TFs associated with EMT and the stabilization of epithelial E-Cadherin expression. The inverse relationship between RKIP and the TF expressions and the cross-talks were further analyzed by bioinformatic analysis. High mRNA levels of RKIP correlated negatively with those of SNAIL1, SNAIL2, TWIST1, TWIST2, ZEB1, and ZEB2 in several but not all carcinomas. However, in these carcinomas, high levels of RKIP were associated with good prognosis, whereas high levels of the above transcription factors were associated with poor prognosis. Based on the inverse relationship between RKIP and EMT TFs, it is postulated that the expression level of RKIP in various carcinomas is clinically relevant as both a prognostic and diagnostic biomarker. In addition, targeting RKIP induction by agonists, gene therapy and immunotherapy will result not only in the inhibition of EMT and metastases in carcinomas, but also in the inhibition of tumor growth and reversal of resistance to various therapeutic strategies. However, such targeting strategies must be better investigated as a result of tumor heterogeneities and inherent resistance and should be better adapted as personalized medicine.
Collapse
Affiliation(s)
- Andrew Bustamante
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Zaravinos
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Li L, Lu L, Xiao Z, Lv J, Huang H, Wu B, Zhao T, Li C, Wang W, Wang H. Deamidation enables pathogenic SMAD6 variants to activate the BMP signaling pathway. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1915-1927. [PMID: 38913236 DOI: 10.1007/s11427-023-2532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/23/2024] [Indexed: 06/25/2024]
Abstract
The BMP signaling pathway plays a crucial role in regulating early embryonic development and tissue homeostasis. SMAD6 encodes a negative regulator of BMP, and rare variants of SMAD6 are recurrently found in individuals with birth defects. However, we observed that a subset of rare pathogenic variants of SMAD6 consistently exhibited positive regulatory effects instead of the initial negative effects on the BMP signaling pathway. We sought to determine whether these SMAD6 variants have common pathogenic mechanisms. Here, we showed that pathogenic SMAD6 variants accompanying this functional reversal exhibit similar increases in deamidation. Mechanistically, increased deamidation of SMAD6 variants promotes the accumulation of the BMP receptor BMPR1A and the formation of new complexes, both of which lead to BMP signaling pathway activation. Specifically, two residues, N262 and N404, in SMAD6 were identified as the crucial sites of deamidation, which was catalyzed primarily by glutamine-fructose-6-phosphate transaminase 2 (GFPT2). Additionally, treatment of cells harboring SMAD6 variants with a deamidase inhibitor restored the inhibitory effect of SMAD6 on the BMP signaling pathway. Conversely, when wild-type SMAD6 was manually simulated to mimic the deamidated state, the reversed function of activating BMP signaling was reproduced. Taken together, these findings show that deamidation of SMAD6 plays a crucial role in the functional reversal of BMP signaling activity, which can be induced by a subset of various SMAD6 variants. Our study reveals a common pathogenic mechanism shared by these variants and provides a potential strategy for preventing birth defects through deamidation regulation, which might prevent the off-target effects of gene editing.
Collapse
Affiliation(s)
- Ling Li
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, and Children's Hospital, Fudan University, Shanghai, 200090, China
| | - Lei Lu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
| | - Ziqi Xiao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Jingyi Lv
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, and Children's Hospital, Fudan University, Shanghai, 200090, China
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, and Children's Hospital, Fudan University, Shanghai, 200090, China
| | - Bo Wu
- Prenatal Diagnosis Center of Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, 518028, China
| | - Tongjin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Chengtao Li
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weimin Wang
- Department of Pharmacy, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, and Children's Hospital, Fudan University, Shanghai, 200090, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
- Prenatal Diagnosis Center of Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, 518028, China.
| |
Collapse
|
12
|
Zelisko N, Lesyk R, Stoika R. Structure, unique biological properties, and mechanisms of action of transforming growth factor β. Bioorg Chem 2024; 150:107611. [PMID: 38964148 DOI: 10.1016/j.bioorg.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Transforming growth factor β (TGF-β) is a ubiquitous molecule that is extremely conserved structurally and plays a systemic role in human organism. TGF-β is a homodimeric molecule consisting of two subunits joined through a disulphide bond. In mammals, three genes code for TGF-β1, TGF-β2, and TGF-β3 isoforms of this cytokine with a dominating expression of TGF-β1. Virtually, all normal cells contain TGF-β and its specific receptors. Considering the exceptional role of fine balance played by the TGF-β in anumber of physiological and pathological processes in human body, this cytokine may be proposed for use in medicine as an immunosuppressant in transplantology, wound healing and bone repair. TGFb itself is an important target in oncology. Strategies for blocking members of TGF-β signaling pathway as therapeutic targets have been considered. In this review, signalling mechanisms of TGF-β1 action are addressed, and their role in physiology and pathology with main focus on carcinogenesis are described.
Collapse
Affiliation(s)
- Nataliya Zelisko
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine
| |
Collapse
|
13
|
Liu P, Shi C, Qiu L, Shang D, Lu Z, Tu Z, Liu H. Menin signaling and therapeutic targeting in breast cancer. Curr Probl Cancer 2024; 51:101118. [PMID: 38968834 DOI: 10.1016/j.currproblcancer.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
To date, mounting evidence have shown that patients with multiple endocrine neoplasia type 1 (MEN1) may face an increased risk for breast carcinogenesis. The product of the MEN1 gene, menin, was also indicated to be an important regulator in breast cancer signaling network. Menin directly interacts with MLL, EZH2, JunD, NF-κB, PPARγ, VDR, Smad3, β-catenin and ERα to modulate gene transcriptions leading to cell proliferation inhibition. Moreover, interaction of menin-FANCD2 contributes to the enhancement of BRCA1-mediated DNA repair mechanism. Ectopic expression of menin causes Bax-, Bak- and Caspase-8-dependent apoptosis. However, despite numbers of menin inhibitors were exploited in other cancers, data on the usage of menin inhibitors in breast cancer treatment remain limited. In this review, we focused on the menin associated signaling pathways and gene transcription regulations, with the aim of elucidating its molecular mechanisms and of guiding the development of novel menin targeted drugs in breast cancer therapy.
Collapse
Affiliation(s)
- Peng Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Chaowen Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Lipeng Qiu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Dongsheng Shang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Ziwen Lu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
14
|
Ju X, Wang K, Wang C, Zeng C, Wang Y, Yu J. Regulation of myofibroblast dedifferentiation in pulmonary fibrosis. Respir Res 2024; 25:284. [PMID: 39026235 PMCID: PMC11264880 DOI: 10.1186/s12931-024-02898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024] Open
Abstract
Idiopathic pulmonary fibrosis is a lethal, progressive, and irreversible condition that has become a significant focus of medical research due to its increasing incidence. This rising trend presents substantial challenges for patients, healthcare providers, and researchers. Despite the escalating burden of pulmonary fibrosis, the available therapeutic options remain limited. Currently, the United States Food and Drug Administration has approved two drugs for the treatment of pulmonary fibrosis-nintedanib and pirfenidone. However, their therapeutic effectiveness is limited, and they cannot reverse the fibrosis process. Additionally, these drugs are associated with significant side effects. Myofibroblasts play a central role in the pathophysiology of pulmonary fibrosis, significantly contributing to its progression. Consequently, strategies aimed at inhibiting myofibroblast differentiation or promoting their dedifferentiation hold promise as effective treatments. This review examines the regulation of myofibroblast dedifferentiation, exploring various signaling pathways, regulatory targets, and potential pharmaceutical interventions that could provide new directions for therapeutic development.
Collapse
Affiliation(s)
- Xuetao Ju
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Kai Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Congjian Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Chenxi Zeng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Yi Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
15
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
16
|
Sun Q, Zhang D, Ai Q, Yue Y, Wang H, Tang L, Yi X, Wang S, Zheng Y. Human umbilical cord mesenchymal stem cells improve uterine incision healing after cesarean delivery in rats by modulating the TGF-β/Smad signaling pathway. Arch Gynecol Obstet 2024; 310:103-111. [PMID: 38342828 PMCID: PMC11169019 DOI: 10.1007/s00404-024-07381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/07/2024] [Indexed: 02/13/2024]
Abstract
OBJECTIVE Although human umbilical cord-derived mesenchymal stem cells (HU-MSCs) have attracted increasing attention because of their pivotal functions in the process of wound healing, the underlying molecular mechanisms have been poorly understood. It has been shown that the TGF-β/Smad signaling pathway plays an important role in the process of scar formation. The present study focused on exploring whether HU-MSCs improve uterine incision healing after cesarean delivery in rats via the TGF-β/Smad signaling pathway. STUDY DESIGN Pregnant rats were randomly assigned to three groups, including the NP group, incision-injected group (HU-MSCs1 group), and tail vein-injected group (HU-MSCs2 group), and 30 days after cesarean section, sampling was carried out to further explore the specific mechanisms from tissue and protein levels. RESULTS HU-MSCs secretion could inhibit the fibrosis of scar tissue. We observed that the TGF-β induced expression of TGF-β1, Smad2, and Smad3 was attenuated upon HU-MSCs treatment in scar tissue, while the decrease in TGF-β3 expression was enhanced by HU-MSCs. Furthermore, HU-MSCs treatment accelerated wound healing and attenuated collagen deposition in a damaged uterine rat model, leading to the promoting of uterine incision scarring. In addition, the expression of alpha-smooth muscle actin (a-SMA) was enhanced by HU-MSCs treatment. CONCLUSION HU-MSCs transplantation promotes rat cesarean section uterine incision scar healing by modulating the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Qing Sun
- Postgraduate Training Base of Shenyang Women's and Children's Hospital of Jinzhou Medical University, Shenyang, Liaoning, China
| | - Dan Zhang
- Shenyang Women's and Children's Hospital, No.87, Danan Street, Shenhe District, Shenyang, Liaoning, China.
| | - Qiuying Ai
- Liaoning Zhongtian Stem Cell and Regenerative Medicine Innovation Research Institute, Liaoning, China
| | - Yang Yue
- Shenyang Women's and Children's Hospital, No.87, Danan Street, Shenhe District, Shenyang, Liaoning, China
| | - Haijiao Wang
- Shenyang Women's and Children's Hospital, No.87, Danan Street, Shenhe District, Shenyang, Liaoning, China
| | - Le Tang
- Postgraduate Training Base of Shenyang Women's and Children's Hospital of Jinzhou Medical University, Shenyang, Liaoning, China
| | - Xiling Yi
- Shenyang Women's and Children's Hospital, No.87, Danan Street, Shenhe District, Shenyang, Liaoning, China
| | - Siyuan Wang
- Postgraduate Training Base of Shenyang Women's and Children's Hospital of Jinzhou Medical University, Shenyang, Liaoning, China
| | - Yang Zheng
- Shenyang Women's and Children's Hospital, No.87, Danan Street, Shenhe District, Shenyang, Liaoning, China
| |
Collapse
|
17
|
Chia ZJ, Cao YN, Little PJ, Kamato D. Transforming growth factor-β receptors: versatile mechanisms of ligand activation. Acta Pharmacol Sin 2024; 45:1337-1348. [PMID: 38351317 PMCID: PMC11192764 DOI: 10.1038/s41401-024-01235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/28/2024] [Indexed: 02/19/2024] Open
Abstract
Transforming growth factor-β (TGF-β) signaling is initiated by activation of transmembrane TGF-β receptors (TGFBR), which deploys Smad2/3 transcription factors to control cellular responses. Failure or dysregulation in the TGF-β signaling pathways leads to pathological conditions. TGF-β signaling is regulated at different levels along the pathways and begins with the liberation of TGF-β ligand from its latent form. The mechanisms of TGFBR activation display selectivity to cell types, agonists, and TGF-β isoforms, enabling precise control of TGF-β signals. In addition, the cell surface compartments used to release active TGF-β are surprisingly vibrant, using thrombospondins, integrins, matrix metalloproteinases and reactive oxygen species. The scope of TGFBR activation is further unfolded with the discovery of TGFBR activation initiated by other signaling pathways. The unique combination of mechanisms works in series to trigger TGFBR activation, which can be explored as therapeutic targets. This comprehensive review provides valuable insights into the diverse mechanisms underpinning TGFBR activation, shedding light on potential avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Zheng-Jie Chia
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Ying-Nan Cao
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
18
|
Nong J, Shen S, Hong F, Xiao F, Meng L, Li P, Lei X, Chen YG. Verteporfin inhibits TGF-β signaling by disrupting the Smad2/3-Smad4 interaction. Mol Biol Cell 2024; 35:ar95. [PMID: 38696259 PMCID: PMC11244160 DOI: 10.1091/mbc.e24-02-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
Transforming growth factor-β (TGF-β) signaling plays a crucial role in pathogenesis, such as accelerating tissue fibrosis and promoting tumor development at the later stages of tumorigenesis by promoting epithelial-mesenchymal transition (EMT), cancer cell migration, and invasion. Targeting TGF-β signaling is a promising therapeutic approach, but nonspecific inhibition may result in adverse effects. In this study, we focus on the Smad2/3-Smad4 complex, a key component in TGF-β signaling transduction, as a potential target for cancer therapy. Through a phase-separated condensate-aided biomolecular interaction system, we identified verteporfin (VP) as a small-molecule inhibitor that specifically targets the Smad2/3-Smad4 interaction. VP effectively disrupted the interaction between Smad2/3 and Smad4 and thereby inhibited canonical TGF-β signaling, but not the interaction between Smad1 and Smad4 in bone morphogenetic protein (BMP) signaling. Furthermore, VP exhibited inhibitory effects on TGF-β-induced EMT and cell migration. Our findings indicate a novel approach to develop protein-protein interaction inhibitors of the canonical TGF-β signaling pathway for treatments of related diseases.
Collapse
Affiliation(s)
- Junxiu Nong
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shengqiang Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Fan Hong
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Fan Xiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lingtian Meng
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Pilong Li
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
- School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
19
|
Malinauskas T, Moore G, Rudolf AF, Eggington H, Belnoue-Davis HL, El Omari K, Griffiths SC, Woolley RE, Duman R, Wagner A, Leedham SJ, Baldock C, Ashe HL, Siebold C. Molecular mechanism of BMP signal control by Twisted gastrulation. Nat Commun 2024; 15:4976. [PMID: 38862520 PMCID: PMC11167000 DOI: 10.1038/s41467-024-49065-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Twisted gastrulation (TWSG1) is an evolutionarily conserved secreted glycoprotein which controls signaling by Bone Morphogenetic Proteins (BMPs). TWSG1 binds BMPs and their antagonist Chordin to control BMP signaling during embryonic development, kidney regeneration and cancer. We report crystal structures of TWSG1 alone and in complex with a BMP ligand, Growth Differentiation Factor 5. TWSG1 is composed of two distinct, disulfide-rich domains. The TWSG1 N-terminal domain occupies the BMP type 1 receptor binding site on BMPs, whereas the C-terminal domain binds to a Chordin family member. We show that TWSG1 inhibits BMP function in cellular signaling assays and mouse colon organoids. This inhibitory function is abolished in a TWSG1 mutant that cannot bind BMPs. The same mutation in the Drosophila TWSG1 ortholog Tsg fails to mediate BMP gradient formation required for dorsal-ventral axis patterning of the early embryo. Our studies reveal the evolutionarily conserved mechanism of BMP signaling inhibition by TWSG1.
Collapse
Affiliation(s)
- Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK.
| | - Gareth Moore
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Amalie F Rudolf
- Division of Structural Biology, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Holly Eggington
- Intestinal Stem Cell Biology Lab, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - Hayley L Belnoue-Davis
- Intestinal Stem Cell Biology Lab, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Samuel C Griffiths
- Division of Structural Biology, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Evotec (UK) Ltd., 90 Innovation Drive, Milton Park, Abingdon, OX14 4RZ, UK
| | - Rachel E Woolley
- Division of Structural Biology, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Etcembly Ltd., Atlas Building, Harwell Campus, OX11 0QX, UK
| | - Ramona Duman
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Armin Wagner
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Simon J Leedham
- Intestinal Stem Cell Biology Lab, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Hilary L Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
20
|
Song E, Kwon JW, Park CY, Kang JT, Park K. Alginate Hydrogel Integrated with a Human Fibroblast-Derived Extracellular Matrix Supports Corneal Endothelial Cell Functionality and Suppresses Endothelial-Mesenchymal Transition. ACS Biomater Sci Eng 2024; 10:3855-3867. [PMID: 38780042 DOI: 10.1021/acsbiomaterials.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Human corneal transplantation is still the only option to restore the function of corneal endothelial cells (CECs). Therefore, there is an urgent need for hCEC delivery systems to replace the human donor cornea. Here, we propose an alginate hydrogel (AH)-based delivery system, where a human fibroblast-derived, decellularized extracellular matrix (ECM) was physically integrated with AH. This AH securely combined with the ECM (ECM-AH) was approximately 50 μm thick, transparent, and permeable. The surface roughness and surface potential provided ECM-AH with a favorable microenvironment for CEC adhesion and growth in vitro. More importantly, ECM-AH could support the structural (ZO-1) and functional (Na+/K+-ATPase) markers of hCECs, as assessed via western blotting and quantitative polymerase chain reaction, which were comparable with those of a ferritic nitrocarburizing (FNC)-coated substrate (a positive control). The cell density per unit area was also significantly better with ECM-AH than the FNC substrate at day 7. A simulation test of cell engraftment in vitro showed that hCECs were successfully transferred into the decellularized porcine corneal tissue, where they were mostly alive. Furthermore, we found out that the endothelial-mesenchymal transition (EnMT)-inductive factors (Smad2 and vimentin) were largely declined with the hCECs grown on ECM-AH, whereas the EnMT inhibitory factor (Smad7) was significantly elevated. The difference was statistically significant compared to that of the FNC substrate. Moreover, we also observed that TGF-β1-treated hCECs showed faster recovery of cell phenotype on the ECM. Taken together, our study demonstrates that ECM-AH is a very promising material for hCEC culture and delivery, which endows an excellent microenvironment for cell function and phenotype maintenance.
Collapse
Affiliation(s)
- Euisun Song
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Jae Won Kwon
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Choul Yong Park
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea
| | - Jung-Taek Kang
- Biotechnology Research Institute, Mgenplus Co., Ltd, Seoul 06688, Republic of Korea
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
21
|
Mansour MA, Hassan GS, Serya RAT, Jaballah MY, Abouzid KAM. Advances in the discovery of activin receptor-like kinase 5 (ALK5) inhibitors. Bioorg Chem 2024; 147:107332. [PMID: 38581966 DOI: 10.1016/j.bioorg.2024.107332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Activin receptor‑like kinase-5 (ALK5) is an outstanding member of the transforming growth factor-β (TGF-β) family. (TGF-β) signaling pathway integrates pleiotropic proteins that regulate various cellular processes such as growth, proliferation, and differentiation. Dysregulation within the signaling pathway can cause variety of diseases, such as fibrosis, cardiovascular disease, and especially cancer, rendering ALK5 a potential drug target. Hence, various small molecules have been designed and synthesized as potent ALK5 inhibitors. In this review, we shed light on the current ATP-competitive inhibitors of ALK5 through diverse heterocyclic based scaffolds that are in clinical or pre-clinical phases of development. Moreover, we focused on the binding interactions of the compounds to the ATP binding site and the structure-activity relationship (SAR) of each scaffold, revealing new scopes for designing novel candidates with enhanced selectivity and metabolic profiles.
Collapse
Affiliation(s)
- Mai A Mansour
- Pharmaceutical Chemistry Department, School of Pharmacy, Badr University in Cairo, Egypt.
| | - Ghaneya S Hassan
- Pharmaceutical Chemistry Department, School of Pharmacy, Badr University in Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Maiy Y Jaballah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt.
| |
Collapse
|
22
|
Na J, Engwerda C. The role of CD4 + T cells in visceral leishmaniasis; new and emerging roles for NKG7 and TGFβ. Front Cell Infect Microbiol 2024; 14:1414493. [PMID: 38881737 PMCID: PMC11176485 DOI: 10.3389/fcimb.2024.1414493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Visceral leishmaniasis is a potentially devastating neglected tropical disease caused by the protozoan parasites Leishmania donovani and L. infantum (chagasi). These parasites reside in tissue macrophages and survive by deploying a number of mechanisms aimed at subverting the host immune response. CD4+ T cells play an important role in controlling Leishmania parasites by providing help in the form of pro-inflammatory cytokines to activate microbiocidal pathways in infected macrophages. However, because these cytokines can also cause tissue damage if over-produced, regulatory immune responses develop, and the balance between pro-inflammatory and regulatory CD4+ T cells responses determines the outcomes of infection. Past studies have identified important roles for pro-inflammatory cytokines such as IFNγ and TNF, as well as regulatory co-inhibitory receptors and the potent anti-inflammatory cytokine IL-10. More recently, other immunoregulatory molecules have been identified that play important roles in CD4+ T cell responses during VL. In this review, we will discuss recent findings about two of these molecules; the NK cell granule protein Nkg7 and the anti-inflammatory cytokine TGFβ, and describe how they impact CD4+ T cell functions and immune responses during visceral leishmaniasis.
Collapse
Affiliation(s)
- Jinrui Na
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
23
|
Barroso E, Jurado-Aguilar J, Wahli W, Palomer X, Vázquez-Carrera M. Increased hepatic gluconeogenesis and type 2 diabetes mellitus. Trends Endocrinol Metab 2024:S1043-2760(24)00124-3. [PMID: 38816269 DOI: 10.1016/j.tem.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Abnormally increased hepatic gluconeogenesis is a significant contributor to hyperglycemia in the fasting state in patients with type 2 diabetes mellitus (T2DM) due to insulin resistance. Metformin, the most prescribed drug for the treatment of T2DM, is believed to exert its effect mainly by reducing hepatic gluconeogenesis. Here, we discuss how increased hepatic gluconeogenesis contributes to T2DM and we review newly revealed mechanisms underlying the attenuation of gluconeogenesis by metformin. In addition, we analyze the recent findings on new determinants involved in the regulation of gluconeogenesis, which might ultimately lead to the identification of novel and targeted treatment strategies for T2DM.
Collapse
Affiliation(s)
- Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Javier Jurado-Aguilar
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232; ToxAlim (Research Center in Food Toxicology), INRAE, UMR1331, F-31300 Toulouse Cedex, France
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain.
| |
Collapse
|
24
|
Bakhsh T, Alhazmi S, Farsi A, Yusuf AS, Alharthi A, Qahl SH, Alghamdi MA, Alzahrani FA, Elgaddar OH, Ibrahim MA, Bahieldin A. Molecular detection of exosomal miRNAs of blood serum for prognosis of colorectal cancer. Sci Rep 2024; 14:8902. [PMID: 38632250 PMCID: PMC11024162 DOI: 10.1038/s41598-024-58536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer affecting people. The discovery of new, non-invasive, specific, and sensitive molecular biomarkers for CRC may assist in the diagnosis and support therapeutic decision making. Exosomal miRNAs have been demonstrated in carcinogenesis and CRC development, which makes these miRNAs strong biomarkers for CRC. Deep sequencing allows a robust high-throughput informatics investigation of the types and abundance of exosomal miRNAs. Thus, exosomal miRNAs can be efficiently examined as diagnostic biomarkers for disease screening. In the present study, a number of 660 mature miRNAs were detected in patients diagnosed with CRC at different stages. Of which, 29 miRNAs were differentially expressed in CRC patients compared with healthy controls. Twenty-nine miRNAs with high abundance levels were further selected for subsequent analysis. These miRNAs were either highly up-regulated (e.g., let-7a-5p, let-7c-5p, let-7f-5p, let-7d-3p, miR-423-5p, miR-3184-5p, and miR-584) or down-regulated (e.g., miR-30a-5p, miR-99-5p, miR-150-5p, miR-26-5p and miR-204-5p). These miRNAs influence critical genes in CRC, leading to either tumor growth or suppression. Most of the reported diagnostic exosomal miRNAs were shown to be circulating in blood serum. The latter is a novel miRNA that was found in exosomal profile of blood serum. Some of the predicted target genes of highly expressed miRNAs participate in several cancer pathways, including CRC pathway. These target genes include tumor suppressor genes, oncogenes and DNA repair genes. Main focus was given to multiple critical signaling cross-talking pathways including transforming growth factor β (TGFβ) signaling pathways that are directly linked to CRC. In conclusion, we recommend further analysis in order to experimentally confirm exact relationships between selected differentially expressed miRNAs and their predicted target genes and downstream functional consequences.
Collapse
Affiliation(s)
- Tahani Bakhsh
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia.
| | - Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, 80200, Jedaah, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, 80200, Jeddah, Saudi Arabia
- Central lab of biological Sciences, Faculty of Sciences, King Abdulaziz University, 80200, Jeddah, Saudi Arabia
| | - Ali Farsi
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Abdulaziz S Yusuf
- Department of Biochemistry, Faculty of science, Stem Cell Unit, King Fahad Center for Medical Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Medical Laboratory Sciences Department, Fakeeh College for Medical Sciences, 21461, Jeddah, Saudi Arabia
| | - Amani Alharthi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, 11952, Majmaah, Saudi Arabia
| | - Safa H Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Maha Ali Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Faisal A Alzahrani
- Department of Biochemistry, Faculty of science, Stem Cell Unit, King Fahad Center for Medical Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Ola H Elgaddar
- Department of Chemical Pathology, Alexandria University, Alexandria, Egypt
| | - Mohanad A Ibrahim
- Data Science Program, King Abdullah International Medical Research Center, 11481, Riyadh, Saudi Arabia
| | - Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
25
|
Kasimanickam R, Kasimanickam V. MicroRNAs in the Pathogenesis of Preeclampsia-A Case-Control In Silico Analysis. Curr Issues Mol Biol 2024; 46:3438-3459. [PMID: 38666946 PMCID: PMC11048894 DOI: 10.3390/cimb46040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Preeclampsia (PE) occurs in 5% to 7% of all pregnancies, and the PE that results from abnormal placentation acts as a primary cause of maternal and neonatal morbidity and mortality. The objective of this secondary analysis was to elucidate the pathogenesis of PE by probing protein-protein interactions from in silico analysis of transcriptomes between PE and normal placenta from Gene Expression Omnibus (GSE149812). The pathogenesis of PE is apparently determined by associations of miRNA molecules and their target genes and the degree of changes in their expressions with irregularities in the functions of hemostasis, vascular systems, and inflammatory processes at the fetal-maternal interface. These irregularities ultimately lead to impaired placental growth and hypoxic injuries, generally manifesting as placental insufficiency. These differentially expressed miRNAs or genes in placental tissue and/or in blood can serve as novel diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Ramanathan Kasimanickam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Vanmathy Kasimanickam
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
| |
Collapse
|
26
|
Song L, Golman M, Abraham AC, Zelzer E, Thomopoulos S. A role for TGFβ signaling in Gli1+ tendon and enthesis cells. FASEB J 2024; 38:e23568. [PMID: 38522021 PMCID: PMC10962263 DOI: 10.1096/fj.202301452r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
The development of musculoskeletal tissues such as tendon, enthesis, and bone relies on proliferation and differentiation of mesenchymal progenitor cells. Gli1+ cells have been described as putative stem cells in several tissues and are presumed to play critical roles in tissue formation and maintenance. For example, the enthesis, a fibrocartilage tissue that connects tendon to bone, is mineralized postnatally by a pool of Gli1+ progenitor cells. These cells are regulated by hedgehog signaling, but it is unclear if TGFβ signaling, necessary for tenogenesis, also plays a role in their behavior. To examine the role of TGFβ signaling in Gli1+ cell function, the receptor for TGFβ, TbR2, was deleted in Gli1-lineage cells in mice at P5. Decreased TGFβ signaling in these cells led to defects in tendon enthesis formation by P56, including defective bone morphometry underlying the enthesis and decreased mechanical properties. Immunohistochemical staining of these Gli1+ cells showed that loss of TGFβ signaling reduced proliferation and increased apoptosis. In vitro experiments using Gli1+ cells isolated from mouse tail tendons demonstrated that TGFβ controls cell proliferation and differentiation through canonical and non-canonical pathways and that TGFβ directly controls the tendon transcription factor scleraxis by binding to its distant enhancer. These results have implications in the development of treatments for tendon and enthesis pathologies.
Collapse
Affiliation(s)
- Lee Song
- Department of Orthopedic Surgery, Columbia University, New York, NY10032, USA
| | - Mikhail Golman
- Department of Orthopedic Surgery, Columbia University, New York, NY10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY10027, USA
| | - Adam C. Abraham
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY10027, USA
| |
Collapse
|
27
|
Liao Z, Tang S, Nozawa K, Shimada K, Ikawa M, Monsivais D, Matzuk M. Affinity-tagged SMAD1 and SMAD5 mouse lines reveal transcriptional reprogramming mechanisms during early pregnancy. eLife 2024; 12:RP91434. [PMID: 38536963 PMCID: PMC10972565 DOI: 10.7554/elife.91434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Endometrial decidualization, a prerequisite for successful pregnancies, relies on transcriptional reprogramming driven by progesterone receptor (PR) and bone morphogenetic protein (BMP)-SMAD1/SMAD5 signaling pathways. Despite their critical roles in early pregnancy, how these pathways intersect in reprogramming the endometrium into a receptive state remains unclear. To define how SMAD1 and/or SMAD5 integrate BMP signaling in the uterus during early pregnancy, we generated two novel transgenic mouse lines with affinity tags inserted into the endogenous SMAD1 and SMAD5 loci (Smad1HA/HA and Smad5PA/PA). By profiling the genome-wide distribution of SMAD1, SMAD5, and PR in the mouse uterus, we demonstrated the unique and shared roles of SMAD1 and SMAD5 during the window of implantation. We also showed the presence of a conserved SMAD1, SMAD5, and PR genomic binding signature in the uterus during early pregnancy. To functionally characterize the translational aspects of our findings, we demonstrated that SMAD1/5 knockdown in human endometrial stromal cells suppressed expressions of canonical decidual markers (IGFBP1, PRL, FOXO1) and PR-responsive genes (RORB, KLF15). Here, our studies provide novel tools to study BMP signaling pathways and highlight the fundamental roles of SMAD1/5 in mediating both BMP signaling pathways and the transcriptional response to progesterone (P4) during early pregnancy.
Collapse
Affiliation(s)
- Zian Liao
- Department of Pathology & Immunology, Baylor College of MedicineHoustonUnited States
- Graduate Program of Genetics and Genomics, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Center for Drug Discovery, Baylor College of MedicineHoustonUnited States
| | - Suni Tang
- Department of Pathology & Immunology, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Kaori Nozawa
- Department of Pathology & Immunology, Baylor College of MedicineHoustonUnited States
- Center for Drug Discovery, Baylor College of MedicineHoustonUnited States
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of MedicineHoustonUnited States
- Center for Drug Discovery, Baylor College of MedicineHoustonUnited States
| | - Martin Matzuk
- Department of Pathology & Immunology, Baylor College of MedicineHoustonUnited States
- Graduate Program of Genetics and Genomics, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Center for Drug Discovery, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
28
|
Chen J, He F, Peng H, Guo J. The underlying mechanism and targeted therapy strategy of miRNAs cross-regulating EMT process through multiple signaling pathways in hepatocellular carcinoma. Front Mol Biosci 2024; 11:1378386. [PMID: 38584703 PMCID: PMC10995332 DOI: 10.3389/fmolb.2024.1378386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
The consistent notion holds that hepatocellular carcinoma (HCC) initiation, progression, and clinical treatment failure treatment failure are affected by the accumulation of various genetic and epigenetic alterations. MicroRNAs (miRNAs) play an irreplaceable role in a variety of physiological and pathological states. meanwhile, epithelial-mesenchymal transition (EMT) is a crucial biological process that controls the development of HCC. miRNAs regulate the intermediation state of EMTor mesenchymal-epithelial transition (MTE)thereby regulating HCC progression. Notably, miRNAs regulate key HCC-related molecular pathways, including the Wnt/β-catenin pathway, PTEN/PI3K/AKT pathway, TGF-β pathway, and RAS/MAPK pathway. Therefore, we comprehensively reviewed how miRNAs produce EMT effects by multiple signaling pathways and their potential significance in the pathogenesis and treatment response of HCC. emphasizing their molecular pathways and progression in HCC initiation. Additionally, we also pay attention to regulatory mechanisms that are partially independent of signaling pathways. Finally, we summarize and propose miRNA-targeted therapy and diagnosis and defense strategies forHCC. The identification of the mechanism leading to the activation of EMT programs during HCC disease processes also provides a new protocol for the plasticity of distinct cellular phenotypes and possible therapeutic interventions. Consequently, we summarize the latest progress in this direction, with a promising path for further insight into this fast-moving field.
Collapse
Affiliation(s)
- Juan Chen
- Department of Pathology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Fuguo He
- Department of Pathology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Peng
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Jinjun Guo
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
29
|
Ding Y, Zhou G, Hu W. Epigenetic regulation of TGF-β pathway and its role in radiation response. Int J Radiat Biol 2024; 100:834-848. [PMID: 38506660 DOI: 10.1080/09553002.2024.2327395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE Transforming growth factor (TGF-β) plays a dual role in tumor progression as well as a pivotal role in radiation response. TGF-β-related epigenetic regulations, including DNA methylation, histone modifications (including methylation, acetylation, phosphorylation, ubiquitination), chromatin remodeling and non-coding RNA regulation, have been found to affect the occurrence and development of tumors as well as their radiation response in multiple dimensions. Due to the significance of radiotherapy in tumor treatment and the essential roles of TGF-β signaling in radiation response, it is important to better understand the role of epigenetic regulation mechanisms mediated by TGF-β signaling pathways in radiation-induced targeted and non-targeted effects. CONCLUSIONS By revealing the epigenetic mechanism related to TGF-β-mediated radiation response, summarizing the existing relevant adjuvant strategies for radiotherapy based on TGF-β signaling, and discovering potential therapeutic targets, we hope to provide a new perspective for improving clinical treatment.
Collapse
Affiliation(s)
- Yunan Ding
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
30
|
Bugara K, Pacwa A, Smedowski A. Molecular pathways in experimental glaucoma models. Front Neurosci 2024; 18:1363170. [PMID: 38562304 PMCID: PMC10982327 DOI: 10.3389/fnins.2024.1363170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Glaucoma is a complex and progressive disease that primarily affects the optic nerve axons, leading to irreversible vision loss. Although the exact molecular mechanisms underlying glaucoma pathogenesis are not fully understood, it is believed that except increased intraocular pressure, a combination of genetic and environmental factors play a role in the development of the disease. Animal models have been widely used in the study of glaucoma, allowing researchers to better understand the underlying mechanisms of the disease and test potential treatments. Several molecular pathways have been implicated in the pathogenesis of glaucoma, including oxidative stress, inflammation, and excitotoxic-induced neurodegeneration. This review summarizes the most important knowledge about molecular mechanisms involved in the glaucoma development. Although much research has been done to better understand the molecular mechanisms underlying this disease, there is still much to be learned to develop effective treatments and prevent vision loss in those affected by glaucoma.
Collapse
Affiliation(s)
- Klaudia Bugara
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Anna Pacwa
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| | - Adrian Smedowski
- GlaucoTech Co., Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
31
|
Ghomlaghi M, Theocharous M, Hoang N, Shin SY, von Kriegsheim A, O’ Neill E, Zhang T, Nguyen LK. Integrative modeling and analysis of signaling crosstalk reveal molecular switches coordinating Yes-associated protein transcriptional activities. iScience 2024; 27:109031. [PMID: 38380257 PMCID: PMC10877689 DOI: 10.1016/j.isci.2024.109031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 12/07/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
The transcriptional co-activator YAP forms complexes with distinct transcription factors, controlling cell fate decisions, such as proliferation and apoptosis. However, the mechanisms underlying its context-dependent function are poorly defined. This study explores the interplay between the TGF-β and Hippo pathways and their influence on YAP's association with specific transcription factors. By integrating iterative mathematical modeling with experimental validation, we uncover molecular switches, predominantly controlled by RASSF1A and ITCH, which dictate the formation of YAP-SMAD (proliferative) and YAP-p73 (apoptotic) complexes. Our results show that RASSF1A enhances the formation of apoptotic complexes, whereas ITCH promotes the formation of proliferative complexes. Notably, higher levels of ITCH transform YAP-SMAD activity from a transient to a sustained state, impacting cellular behaviors. Extending these findings to various breast cancer cell lines highlights the role of cellular context in YAP regulation. Our study provides new insights into the mechanisms of YAP transcriptional activities and their therapeutic implications.
Collapse
Affiliation(s)
- Milad Ghomlaghi
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Mandy Theocharous
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Nhan Hoang
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sung-Young Shin
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Eric O’ Neill
- CRUK/MRC Institute for Radiation Oncology and Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Tao Zhang
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Lan K. Nguyen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
32
|
Tai SB, Huang CY, Chung CL, Sung PJ, Wen ZH, Chen CL. Prodigiosin Inhibits Transforming Growth Factor β Signaling by Interfering Receptor Recycling and Subcellular Translocation in Epithelial Cells. Mol Pharmacol 2024; 105:286-300. [PMID: 38278554 DOI: 10.1124/molpharm.123.000776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 01/02/2024] [Indexed: 01/28/2024] Open
Abstract
Prodigiosin (PG) is a naturally occurring polypyrrole red pigment produced by numerous microorganisms including some Serratia and Streptomyces strains. PG has exhibited promising anticancer activity; however, the molecular mechanisms of action of PG on malignant cells remain ambiguous. Transforming growth factor-β (TGF-β) is a multifunctional cytokine that governs a wide array of cellular processes in development and tissue homeostasis. Malfunctions of TGF-β signaling are associated with numerous human cancers. Emerging evidence underscores the significance of internalized TGF-β receptors and their intracellular trafficking in initiating signaling cascades. In this study, we identified PG as a potent inhibitor of the TGF-β pathway. PG blocked TGF-β signaling by targeting multiple sites of this pathway, including facilitating the sequestering of TGF-β receptors in the cytoplasm by impeding the recycling of type II TGF-β receptors to the cell surface. Additionally, PG prompts a reduction in the abundance of receptors on the cell surface through the disruption of the receptor glycosylation. In human Caucasian lung carcinoma cells and human hepatocellular cancer cell line cells, nanomolar concentrations of PG substantially diminish TGF-β-triggered phosphorylation of Smad2 protein. This attenuation is further reflected in the suppression of downstream target gene expression, including those encoding fibronectin, plasminogen activator inhibitor-1, and N-cadherin. SIGNIFICANCE STATEMENT: Prodigiosin (PG) emerges from this study as a potent TGF-β pathway inhibitor, disrupting receptor trafficking and glycosylation and reducing TGF-β signaling and downstream gene expression. These findings not only shed light on PG's potential therapeutic role but also present a captivating avenue towards future anti-TGF-β strategies.
Collapse
Affiliation(s)
- Shun-Ban Tai
- Departments of Marine Biotechnology and Resources (S.-B.T., Z.-H.W.) and Biological Sciences (C.-L.Chu., C.-L.Che.), National Sun Yat-Sen University, Kaohsiung, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan (S.-B.T.); Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (C.-y.H.); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan (P.-J.S.); and Department of Biotechnology (C.-L.Che.) and Graduate Institute of Natural Products, College of Pharmacy (C.-L.Che.), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Yin Huang
- Departments of Marine Biotechnology and Resources (S.-B.T., Z.-H.W.) and Biological Sciences (C.-L.Chu., C.-L.Che.), National Sun Yat-Sen University, Kaohsiung, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan (S.-B.T.); Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (C.-y.H.); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan (P.-J.S.); and Department of Biotechnology (C.-L.Che.) and Graduate Institute of Natural Products, College of Pharmacy (C.-L.Che.), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Ling Chung
- Departments of Marine Biotechnology and Resources (S.-B.T., Z.-H.W.) and Biological Sciences (C.-L.Chu., C.-L.Che.), National Sun Yat-Sen University, Kaohsiung, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan (S.-B.T.); Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (C.-y.H.); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan (P.-J.S.); and Department of Biotechnology (C.-L.Che.) and Graduate Institute of Natural Products, College of Pharmacy (C.-L.Che.), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ping-Jyun Sung
- Departments of Marine Biotechnology and Resources (S.-B.T., Z.-H.W.) and Biological Sciences (C.-L.Chu., C.-L.Che.), National Sun Yat-Sen University, Kaohsiung, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan (S.-B.T.); Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (C.-y.H.); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan (P.-J.S.); and Department of Biotechnology (C.-L.Che.) and Graduate Institute of Natural Products, College of Pharmacy (C.-L.Che.), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Departments of Marine Biotechnology and Resources (S.-B.T., Z.-H.W.) and Biological Sciences (C.-L.Chu., C.-L.Che.), National Sun Yat-Sen University, Kaohsiung, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan (S.-B.T.); Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (C.-y.H.); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan (P.-J.S.); and Department of Biotechnology (C.-L.Che.) and Graduate Institute of Natural Products, College of Pharmacy (C.-L.Che.), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Lin Chen
- Departments of Marine Biotechnology and Resources (S.-B.T., Z.-H.W.) and Biological Sciences (C.-L.Chu., C.-L.Che.), National Sun Yat-Sen University, Kaohsiung, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan (S.-B.T.); Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (C.-y.H.); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan (P.-J.S.); and Department of Biotechnology (C.-L.Che.) and Graduate Institute of Natural Products, College of Pharmacy (C.-L.Che.), Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
33
|
Runa F, Ortiz-Soto G, de Barros NR, Kelber JA. Targeting SMAD-Dependent Signaling: Considerations in Epithelial and Mesenchymal Solid Tumors. Pharmaceuticals (Basel) 2024; 17:326. [PMID: 38543112 PMCID: PMC10975212 DOI: 10.3390/ph17030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 04/01/2024] Open
Abstract
SMADs are the canonical intracellular effector proteins of the TGF-β (transforming growth factor-β). SMADs translocate from plasma membrane receptors to the nucleus regulated by many SMAD-interacting proteins through phosphorylation and other post-translational modifications that govern their nucleocytoplasmic shuttling and subsequent transcriptional activity. The signaling pathway of TGF-β/SMAD exhibits both tumor-suppressing and tumor-promoting phenotypes in epithelial-derived solid tumors. Collectively, the pleiotropic nature of TGF-β/SMAD signaling presents significant challenges for the development of effective cancer therapies. Here, we review preclinical studies that evaluate the efficacy of inhibitors targeting major SMAD-regulating and/or -interacting proteins, particularly enzymes that may play important roles in epithelial or mesenchymal compartments within solid tumors.
Collapse
Affiliation(s)
- Farhana Runa
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| | | | | | - Jonathan A Kelber
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
- Department of Biology, Baylor University, Waco, TX 76706, USA
| |
Collapse
|
34
|
Yang Y, Yuan T, Wu R, Geng Z, Lian S, Wang J. The effect of bta-miR-1296 on the proliferation and extracellular matrix synthesis of bovine mammary fibroblasts. In Vitro Cell Dev Biol Anim 2024; 60:183-194. [PMID: 38409638 DOI: 10.1007/s11626-024-00851-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/11/2023] [Indexed: 02/28/2024]
Abstract
Mammary fibrosis in dairy cows is a chronic condition caused by mastitis, and can lead to serious culling of dairy cows resulting in huge economic losses in the dairy industry. MicroRNAs (miRNAs) exert an important role in regulating mammary gland health in dairy cows. This study investigated whether exosomal miRNAs in mammary epithelial cells can regulate the proliferation of bovine mammary fibroblasts (BMFBs) in mastitis. Liposome transfection technology was used to construct a cellular model of the overexpression and inhibition of miRNAs. The STarMir software, dual luciferase reporter gene test, real-time quantitative PCR (qRT-PCR), a Cell Counting Kit-8 (CCK-8), and a Western Blot and plate clone formation test were used to investigate the mechanism by which bta-miR-1296 regulates the proliferation of BMFBs. Target gene prediction results revealed that glutamate-ammonia ligase was a direct target gene by which bta-miR-1296 regulates cell proliferation. It was found that bta-miR-1296 significantly inhibited the proliferation of BMFBs. After BMFBs were transfected with a bta-miR-1296 mimic, mRNA expression in the extracellular matrix (ECM), α-smooth muscle actin (α-SMA), collagen type I alpha 1 chain (COL1α1) and collagen type III alpha 1 chain (COL3α1), and various cell growth factors (basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-β1 (TGF-β1)) were down-regulated, and the expressions of α-SMA, COL1α1, COL3α1, phospho-extracellular regulated protein kinases, phospho-protein kinase B, TGF-β1, and phospho-Smad family member3 proteins were inhibited. In conclusion, bta-miR-1296 can inhibit the proliferation of BMFBs and the synthesis of ECM in BMFBs, thus affecting the occurrence and development of mammary fibrosis in dairy cows and laying the foundation for further studies to clarify the regulatory mechanism of mammary fibrosis.
Collapse
Affiliation(s)
- Yuejie Yang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Heilongjiang Province, Daqing, 163319, People's Republic of China
| | - Tao Yuan
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Heilongjiang Province, Daqing, 163319, People's Republic of China
| | - Rui Wu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Heilongjiang Province, Daqing, 163319, People's Republic of China
| | - Zijian Geng
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Heilongjiang Province, Daqing, 163319, People's Republic of China
| | - Shuai Lian
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Heilongjiang Province, Daqing, 163319, People's Republic of China.
| | - Jianfa Wang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Heilongjiang Province, Daqing, 163319, People's Republic of China.
- Veterinary Medicine Faculty, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Daqing, People's Republic of China.
| |
Collapse
|
35
|
Gaikwad AV, Eapen MS, Dey S, Bhattarai P, Shahzad AM, Chia C, Jaffar J, Westall G, Sutherland D, Singhera GK, Hackett TL, Lu W, Sohal SS. TGF-β1, pSmad-2/3, Smad-7, and β-Catenin Are Augmented in the Pulmonary Arteries from Patients with Idiopathic Pulmonary Fibrosis (IPF): Role in Driving Endothelial-to-Mesenchymal Transition (EndMT). J Clin Med 2024; 13:1160. [PMID: 38398472 PMCID: PMC10888973 DOI: 10.3390/jcm13041160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Background: We have previously reported that endothelial-to-mesenchymal transition (EndMT) is an active process in patients with idiopathic pulmonary fibrosis (IPF) contributing to arterial remodelling. Here, we aim to quantify drivers of EndMT in IPF patients compared to normal controls (NCs). Methods: Lung resections from thirteen IPF patients and eleven NCs were immunohistochemically stained for EndMT drivers, including TGF-β1, pSmad-2/3, Smad-7, and β-catenin. Intima, media, and adventitia were analysed for expression of each EndMT driver in pulmonary arteries. Computer- and microscope-assisted Image ProPlus7.0 image analysis software was used for quantifications. Results: Significant TGF-β1, pSmad-2/3, Smad-7, and β-catenin expression was apparent across all arterial sizes in IPF (p < 0.05). Intimal TGF-β1, pSmad-2/3, Smad-7, and β-catenin were augmented in the arterial range of 100-1000 μm (p < 0.001) compared to NC. Intimal TGF-β1 and β-catenin percentage expression showed a strong correlation with the percentage expression of intimal vimentin (r' = 0.54, p = 0.05 and r' = 0.61, p = 0.02, respectively) and intimal N-cadherin (r' = 0.62, p = 0.03 and r' = 0.70, p = 0.001, respectively). Intimal TGF-β1 and β-catenin expression were significantly correlated with increased intimal thickness as well (r' = 0.52, p = 0.04; r' = 0.052, p = 0.04, respectively). Moreover, intimal TGF-β1 expression was also significantly associated with increased intimal elastin deposition (r' = 0.79, p = 0.002). Furthermore, total TGF-β1 expression significantly impacted the percentage of DLCO (r' = -0.61, p = 0.03). Conclusions: This is the first study to illustrate the involvement of active TGF-β/Smad-2/3-dependent and β-catenin-dependent Wnt signalling pathways in driving EndMT and resultant pulmonary arterial remodelling in patients with IPF. EndMT is a potential therapeutic target for vascular remodelling and fibrosis in general in patients with IPF.
Collapse
Affiliation(s)
- Archana Vijay Gaikwad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Surajit Dey
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| | - Prem Bhattarai
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| | - Affan Mahmood Shahzad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| | - Collin Chia
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
- Launceston Respiratory and Sleep Centre, Launceston, TAS 7250, Australia
- Department of Respiratory Medicine, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Jade Jaffar
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Glen Westall
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Darren Sutherland
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Gurpreet Kaur Singhera
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Tillie-Louise Hackett
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Launceston Respiratory and Sleep Centre, Launceston, TAS 7250, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Launceston Respiratory and Sleep Centre, Launceston, TAS 7250, Australia
| |
Collapse
|
36
|
Liao Z, Tang S, Nozawa K, Shimada K, Ikawa M, Monsivais D, Matzuk MM. Affinity-tagged SMAD1 and SMAD5 mouse lines reveal transcriptional reprogramming mechanisms during early pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.25.559321. [PMID: 38106095 PMCID: PMC10723262 DOI: 10.1101/2023.09.25.559321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Endometrial decidualization, a prerequisite for successful pregnancies, relies on transcriptional reprogramming driven by progesterone receptor (PR) and bone morphogenetic protein (BMP)-SMAD1/SMAD5 signaling pathways. Despite their critical roles in early pregnancy, how these pathways intersect in reprogramming the endometrium into a receptive state remains unclear. To define how SMAD1 and/or SMAD5 integrate BMP signaling in the uterus during early pregnancy, we generated two novel transgenic mouse lines with affinity tags inserted into the endogenous SMAD1 and SMAD5 loci (Smad1HA/HA and Smad5PA/PA). By profiling the genome-wide distribution of SMAD1, SMAD5, and PR in the mouse uterus, we demonstrated the unique and shared roles of SMAD1 and SMAD5 during the window of implantation. We also showed the presence of a conserved SMAD1, SMAD5, and PR genomic binding signature in the uterus during early pregnancy. To functionally characterize the translational aspects of our findings, we demonstrated that SMAD1/5 knockdown in human endometrial stromal cells suppressed expressions of canonical decidual markers (IGFBP1, PRL, FOXO1) and PR-responsive genes (RORB, KLF15). Here, our studies provide novel tools to study BMP signaling pathways and highlight the fundamental roles of SMAD1/5 in mediating both BMP signaling pathways and the transcriptional response to progesterone (P4) during early pregnancy.
Collapse
Affiliation(s)
- Zian Liao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Graduate Program of Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Suni Tang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kaori Nozawa
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Martin M. Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Graduate Program of Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
37
|
Shi D, Feng W, Zi Z. Machine learning unveils RNA polymerase II binding as a predictor for SMAD2-dependent transcription dynamics in response to Actvin signalling. IET Syst Biol 2024; 18:14-22. [PMID: 38193845 PMCID: PMC10860719 DOI: 10.1049/syb2.12085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 01/10/2024] Open
Abstract
The transforming growth factor-β (TGF-β) superfamily, including Nodal and Activin, plays a critical role in various cellular processes. Understanding the intricate regulation and gene expression dynamics of TGF-β signalling is of interest due to its diverse biological roles. A machine learning approach is used to predict gene expression patterns induced by Activin using features, such as histone modifications, RNA polymerase II binding, SMAD2-binding, and mRNA half-life. RNA sequencing and ChIP sequencing datasets were analysed and differentially expressed SMAD2-binding genes were identified. These genes were classified into activated and repressed categories based on their expression patterns. The predictive power of different features and combinations was evaluated using logistic regression models and their performances were assessed. Results showed that RNA polymerase II binding was the most informative feature for predicting the expression patterns of SMAD2-binding genes. The authors provide insights into the interplay between transcriptional regulation and Activin signalling and offers a computational framework for predicting gene expression patterns in response to cell signalling.
Collapse
Affiliation(s)
- Dan Shi
- Max Planck Institute for Molecular GeneticsOtto Warburg LaboratoryBerlinGermany
| | - Weihua Feng
- Zhengzhou Tobacco Research Institute of China National Tobacco CorporationZhengzhouChina
| | - Zhike Zi
- Max Planck Institute for Molecular GeneticsOtto Warburg LaboratoryBerlinGermany
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| |
Collapse
|
38
|
Joshi J, Xiong Y, Kuhn M, Radcliff AB, Baker TL, Watters JJ, Arendt LM. Gestational Intermittent Hypoxia Enhances Mammary Stem Cells and Alters Tumor Phenotype in Adult Female Offspring. Cells 2024; 13:249. [PMID: 38334641 PMCID: PMC10854849 DOI: 10.3390/cells13030249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
An adverse perinatal environment can increase long-term cancer risk, although the precise nature of associated perinatal triggers remain unknown. Sleep apnea is a common condition during pregnancy, characterized by recurrent cessations in breathing during sleep, and the potential consequences of sleep apnea during pregnancy as it relates to breast cancer risk in offspring have not been explored. To model sleep apnea, Sprague-Dawley dams were exposed during gestation to nightly intermittent hypoxia (GIH) or normoxia (GNx), and the mammary glands of female offspring were examined. GIH offspring demonstrated increased epithelial stem and progenitor cell populations, which are associated with diminished transforming growth factor beta (TGFβ) activity. Elevations in adipose tissue stem cells in the mammary gland were also identified in GIH offspring. In aging females, mammary tumors formed in GIH offspring. These tumors displayed a dramatic increase in stroma compared to tumors from GNx offspring, as well as distinct patterns of expression of stem cell-related pathways. Together, these results suggest that exposure to sleep apnea during pregnancy leads to lasting changes in the mammary glands of female offspring. Increased stem and progenitor cell populations as a result of GIH exposure could enhance long-term breast cancer risk, as well as alter the clinical behavior of resulting breast tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lisa M. Arendt
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA (T.L.B.); (J.J.W.)
| |
Collapse
|
39
|
Roux de Bézieux H, Van den Berge K, Street K, Dudoit S. Trajectory inference across multiple conditions with condiments. Nat Commun 2024; 15:833. [PMID: 38280860 PMCID: PMC10821945 DOI: 10.1038/s41467-024-44823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/08/2024] [Indexed: 01/29/2024] Open
Abstract
In single-cell RNA sequencing (scRNA-Seq), gene expression is assessed individually for each cell, allowing the investigation of developmental processes, such as embryogenesis and cellular differentiation and regeneration, at unprecedented resolution. In such dynamic biological systems, cellular states form a continuum, e.g., for the differentiation of stem cells into mature cell types. This process is often represented via a trajectory in a reduced-dimensional representation of the scRNA-Seq dataset. While many methods have been suggested for trajectory inference, it is often unclear how to handle multiple biological groups or conditions, e.g., inferring and comparing the differentiation trajectories of wild-type and knock-out stem cell populations. In this manuscript, we present condiments, a method for the inference and downstream interpretation of cell trajectories across multiple conditions. Our framework allows the interpretation of differences between conditions at the trajectory, cell population, and gene expression levels. We start by integrating datasets from multiple conditions into a single trajectory. By comparing the cell's conditions along the trajectory's path, we can detect large-scale changes, indicative of differential progression or fate selection. We also demonstrate how to detect subtler changes by finding genes that exhibit different behaviors between these conditions along a differentiation path.
Collapse
Affiliation(s)
- Hector Roux de Bézieux
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Koen Van den Berge
- Department of Statistics, University of California, Berkeley, CA, USA
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Statistics and Decision Sciences, J&J Innovative Medicine, Beerse, Belgium
| | - Kelly Street
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA.
| | - Sandrine Dudoit
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, CA, USA.
- Department of Statistics, University of California, Berkeley, CA, USA.
| |
Collapse
|
40
|
Xiao M, Wang F, Chen N, Zhang H, Cao J, Yu Y, Zhao B, Ji J, Xu P, Li L, Shen L, Lin X, Feng XH. Smad4 sequestered in SFPQ condensates prevents TGF-β tumor-suppressive signaling. Dev Cell 2024; 59:48-63.e8. [PMID: 38103553 DOI: 10.1016/j.devcel.2023.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/18/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Loss of TGF-β growth-inhibitory responses is a hallmark of human cancer. However, the molecular mechanisms underlying the TGF-β resistance of cancer cells remain to be fully elucidated. Splicing factor proline- and glutamine-rich (SFPQ) is a prion-like RNA-binding protein that is frequently upregulated in human cancers. In this study, we identified SFPQ as a potent suppressor of TGF-β signaling. The ability of SFPQ to suppress TGF-β responses depends on its prion-like domain (PrLD) that drives liquid-liquid phase separation (LLPS). Mechanistically, SFPQ physically restrained Smad4 in its condensates, which excluded Smad4 from the Smad complex and chromatin occupancy and thus functionally dampened Smad-dependent transcriptional responses. Accordingly, SFPQ deficiency or loss of phase separation activities rendered human cells hypersensitive to TGF-β responses. Together, our data identify an important function of SFPQ through LLPS that suppresses Smad transcriptional activation and TGF-β tumor-suppressive activity.
Collapse
Affiliation(s)
- Mu Xiao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Fei Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Nuo Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hanchenxi Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jin Cao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yi Yu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Junfang Ji
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Li
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xia Lin
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
41
|
Mbarek H, Gordon SD, Duffy DL, Hubers N, Mortlock S, Beck JJ, Hottenga JJ, Pool R, Dolan CV, Actkins KV, Gerring ZF, Van Dongen J, Ehli EA, Iacono WG, Mcgue M, Chasman DI, Gallagher CS, Schilit SLP, Morton CC, Paré G, Willemsen G, Whiteman DC, Olsen CM, Derom C, Vlietinck R, Gudbjartsson D, Cannon-Albright L, Krapohl E, Plomin R, Magnusson PKE, Pedersen NL, Hysi P, Mangino M, Spector TD, Palviainen T, Milaneschi Y, Penninnx BW, Campos AI, Ong KK, Perry JRB, Lambalk CB, Kaprio J, Ólafsson Í, Duroure K, Revenu C, Rentería ME, Yengo L, Davis L, Derks EM, Medland SE, Stefansson H, Stefansson K, Del Bene F, Reversade B, Montgomery GW, Boomsma DI, Martin NG. Genome-wide association study meta-analysis of dizygotic twinning illuminates genetic regulation of female fecundity. Hum Reprod 2024; 39:240-257. [PMID: 38052102 PMCID: PMC10767824 DOI: 10.1093/humrep/dead247] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2023] [Indexed: 12/07/2023] Open
Abstract
STUDY QUESTION Which genetic factors regulate female propensity for giving birth to spontaneous dizygotic (DZ) twins? SUMMARY ANSWER We identified four new loci, GNRH1, FSHR, ZFPM1, and IPO8, in addition to previously identified loci, FSHB and SMAD3. WHAT IS KNOWN ALREADY The propensity to give birth to DZ twins runs in families. Earlier, we reported that FSHB and SMAD3 as associated with DZ twinning and female fertility measures. STUDY DESIGN, SIZE, DURATION We conducted a genome-wide association meta-analysis (GWAMA) of mothers of spontaneous dizygotic (DZ) twins (8265 cases, 264 567 controls) and of independent DZ twin offspring (26 252 cases, 417 433 controls). PARTICIPANTS/MATERIALS, SETTING, METHODS Over 700 000 mothers of DZ twins, twin individuals and singletons from large cohorts in Australia/New Zealand, Europe, and the USA were carefully screened to exclude twins born after use of ARTs. Genetic association analyses by cohort were followed by meta-analysis, phenome wide association studies (PheWAS), in silico and in vivo annotations, and Zebrafish functional validation. MAIN RESULTS AND THE ROLE OF CHANCE This study enlarges the sample size considerably from previous efforts, finding four genome-wide significant loci, including two novel signals and a further two novel genes that are implicated by gene level enrichment analyses. The novel loci, GNRH1 and FSHR, have well-established roles in female reproduction whereas ZFPM1 and IPO8 have not previously been implicated in female fertility. We found significant genetic correlations with multiple aspects of female reproduction and body size as well as evidence for significant selection against DZ twinning during human evolution. The 26 top single nucleotide polymorphisms (SNPs) from our GWAMA in European-origin participants weakly predicted the crude twinning rates in 47 non-European populations (r = 0.23 between risk score and population prevalence, s.e. 0.11, 1-tail P = 0.058) indicating that genome-wide association studies (GWAS) are needed in African and Asian populations to explore the causes of their respectively high and low DZ twinning rates. In vivo functional tests in zebrafish for IPO8 validated its essential role in female, but not male, fertility. In most regions, risk SNPs linked to known expression quantitative trait loci (eQTLs). Top SNPs were associated with in vivo reproductive hormone levels with the top pathways including hormone ligand binding receptors and the ovulation cycle. LARGE SCALE DATA The full DZT GWAS summary statistics will made available after publication through the GWAS catalog (https://www.ebi.ac.uk/gwas/). LIMITATIONS, REASONS FOR CAUTION Our study only included European ancestry cohorts. Inclusion of data from Africa (with the highest twining rate) and Asia (with the lowest rate) would illuminate further the biology of twinning and female fertility. WIDER IMPLICATIONS OF THE FINDINGS About one in 40 babies born in the world is a twin and there is much speculation on why twinning runs in families. We hope our results will inform investigations of ovarian response in new and existing ARTs and the causes of female infertility. STUDY FUNDING/COMPETING INTEREST(S) Support for the Netherlands Twin Register came from the Netherlands Organization for Scientific Research (NWO) and The Netherlands Organization for Health Research and Development (ZonMW) grants, 904-61-193, 480-04-004, 400-05-717, Addiction-31160008, 911-09-032, Biobanking and Biomolecular Resources Research Infrastructure (BBMRI.NL, 184.021.007), Royal Netherlands Academy of Science Professor Award (PAH/6635) to DIB, European Research Council (ERC-230374), Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH R01 HD042157-01A1) and the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health and Grand Opportunity grants 1RC2 MH089951. The QIMR Berghofer Medical Research Institute (QIMR) study was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485, 552498, 1050208, 1075175). L.Y. is funded by Australian Research Council (Grant number DE200100425). The Minnesota Center for Twin and Family Research (MCTFR) was supported in part by USPHS Grants from the National Institute on Alcohol Abuse and Alcoholism (AA09367 and AA11886) and the National Institute on Drug Abuse (DA05147, DA13240, and DA024417). The Women's Genome Health Study (WGHS) was funded by the National Heart, Lung, and Blood Institute (HL043851 and HL080467) and the National Cancer Institute (CA047988 and UM1CA182913), with support for genotyping provided by Amgen. Data collection in the Finnish Twin Registry has been supported by the Wellcome Trust Sanger Institute, the Broad Institute, ENGAGE-European Network for Genetic and Genomic Epidemiology, FP7-HEALTH-F4-2007, grant agreement number 201413, National Institute of Alcohol Abuse and Alcoholism (grants AA-12502, AA-00145, AA-09203, AA15416, and K02AA018755) and the Academy of Finland (grants 100499, 205585, 118555, 141054, 264146, 308248, 312073 and 336823 to J. Kaprio). TwinsUK is funded by the Wellcome Trust, Medical Research Council, Versus Arthritis, European Union Horizon 2020, Chronic Disease Research Foundation (CDRF), Zoe Ltd and the National Institute for Health Research (NIHR) Clinical Research Network (CRN) and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. For NESDA, funding was obtained from the Netherlands Organization for Scientific Research (Geestkracht program grant 10000-1002), the Center for Medical Systems Biology (CSMB, NVVO Genomics), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL), VU University's Institutes for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam, University Medical Center Groningen, Leiden University Medical Center, National Institutes of Health (NIH, ROI D0042157-01A, MH081802, Grand Opportunity grants 1 RC2 Ml-1089951 and IRC2 MH089995). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health. Computing was supported by BiG Grid, the Dutch e-Science Grid, which is financially supported by NWO. Work in the Del Bene lab was supported by the Programme Investissements d'Avenir IHU FOReSIGHT (ANR-18-IAHU-01). C.R. was supported by an EU Horizon 2020 Marie Skłodowska-Curie Action fellowship (H2020-MSCA-IF-2014 #661527). H.S. and K.S. are employees of deCODE Genetics/Amgen. The other authors declare no competing financial interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Hamdi Mbarek
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
- Qatar Genome Program, Qatar Foundation, Doha, Qatar
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
| | - Scott D Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David L Duffy
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nikki Hubers
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
| | - Sally Mortlock
- Institute of Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Jeffrey J Beck
- Avera Institute for Human Genetics, Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
| | - René Pool
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
| | - Conor V Dolan
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
| | - Ky’Era V Actkins
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | | | - Jenny Van Dongen
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
| | - Erik A Ehli
- Avera Institute for Human Genetics, Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Matt Mcgue
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Daniel I Chasman
- Harvard Medical School, Harvard University, Boston, MA, USA
- Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Samantha L P Schilit
- Harvard Medical School, Harvard University, Boston, MA, USA
- Brigham and Women’s Hospital, Boston, MA, USA
| | - Cynthia C Morton
- Harvard Medical School, Harvard University, Boston, MA, USA
- Brigham and Women’s Hospital, Boston, MA, USA
| | - Guillaume Paré
- Population Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Gonneke Willemsen
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | | | | - Eva Krapohl
- Medical Research Council Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Statistical Sciences & Innovation, UCB Biosciences GmbH, Monheim, Germany
| | - Robert Plomin
- Medical Research Council Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Pirro Hysi
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK
| | - Massimo Mangino
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ Foundation Trust, London, UK
| | - Timothy D Spector
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Yuri Milaneschi
- Department of Psychiatry, EMGO Institute for Health and Care Research, Vrije Universiteit, Amsterdam, The Netherlands
| | - Brenda W Penninnx
- Department of Psychiatry, EMGO Institute for Health and Care Research, Vrije Universiteit, Amsterdam, The Netherlands
| | - Adrian I Campos
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Institute of Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Cornelis B Lambalk
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
- Amsterdam University Medical Centers Location VU Medical Center, Amsterdam, The Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Ísleifur Ólafsson
- Department of Clinical Biochemistry, National University Hospital of Iceland, Reykjavik, Iceland
| | - Karine Duroure
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Céline Revenu
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Loic Yengo
- Institute of Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Lea Davis
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Eske M Derks
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | | | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Bruno Reversade
- Genome Institute of Singapore, Laboratory of Human Genetics & Therapeutics, A*STAR, Singapore, Singapore
- Smart-Health Initiative, BESE, KAUST, Thuwal, Saudi Arabia
| | - Grant W Montgomery
- Institute of Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Dorret I Boomsma
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
42
|
Wu H, Mu C, Xu L, Yu K, Shen L, Zhu W. Host-microbiota interaction in intestinal stem cell homeostasis. Gut Microbes 2024; 16:2353399. [PMID: 38757687 PMCID: PMC11110705 DOI: 10.1080/19490976.2024.2353399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
Intestinal stem cells (ISCs) play a pivotal role in gut physiology by governing intestinal epithelium renewal through the precise regulation of proliferation and differentiation. The gut microbiota interacts closely with the epithelium through myriad of actions, including immune and metabolic interactions, which translate into tight connections between microbial activity and ISC function. Given the diverse functions of the gut microbiota in affecting the metabolism of macronutrients and micronutrients, dietary nutrients exert pronounced effects on host-microbiota interactions and, consequently, the ISC fate. Therefore, understanding the intricate host-microbiota interaction in regulating ISC homeostasis is imperative for improving gut health. Here, we review recent advances in understanding host-microbiota immune and metabolic interactions that shape ISC function, such as the role of pattern-recognition receptors and microbial metabolites, including lactate and indole metabolites. Additionally, the diverse regulatory effects of the microbiota on dietary nutrients, including proteins, carbohydrates, vitamins, and minerals (e.g. iron and zinc), are thoroughly explored in relation to their impact on ISCs. Thus, we highlight the multifaceted mechanisms governing host-microbiota interactions in ISC homeostasis. Insights gained from this review provide strategies for the development of dietary or microbiota-based interventions to foster gut health.
Collapse
Affiliation(s)
- Haiqin Wu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Chunlong Mu
- Food Informatics, AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Laipeng Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Kaifan Yu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Le Shen
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
43
|
Karimi P, Fakharzadeh S, Kalanaky S, Hafizi M, Hashemi M, Mahdavi M, Nazaran MH. Immunologic Mechanisms of BCc1 Nanomedicine Synthesized by Nanochelating Technology in Breast Tumor-bearing Mice: Immunomodulation and Tumor Suppression. Anticancer Agents Med Chem 2024; 24:1442-1456. [PMID: 39069805 DOI: 10.2174/0118715206302153240723053521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION The side effects of anti-cancer chemotherapy remain a concern for patients. So, designing alternative medications seems inevitable. In this research, the immunological mechanisms of BCc1 nanomedicine on tumor-bearing mice were investigated. METHODS BALB/c mice underwent tumor transplantation and were assigned into four groups. Group 1 was orally administered with PBS buffer, Group 2 was orally administered BCc1 10 mg/kg, and Group 3 was orally administered BCc1 40 mg/kg daily, respectively. In addition, a group of mice was administered Cyclophosphamide, 20 mg/kg daily. The weight and tumor volume of mice were evaluated bi-weekly. After 24 days of treatment, cytokines and CTL assay in the spleen cell and the tumor were assessed. Furthermore, the spleen, liver, kidney, lung, gut, and uterine tissue were stained with hematoxylin and eosin. Finally, the tumor samples were stained and analyzed for FOXP3. The survival rate of mice was recorded. RESULTS The results confirmed the histological safety of BCc1. This nanomedicine, especially BCc1 10 mg/kg, led to a strong IFN-γ response and suppressed TGF-β cytokine. The frequency of Treg in the tumor tissue of BCc1 nanomedicine groups was decreased. In addition, nanomedicine repressed tumor volume and tumor weight significantly, which was comparable to Cyclophosphamide. These immunologic events increased the survival rate of BCc1-treated groups. The results indicate that BCc1 nanomedicine can suppress tumor growth and thereby increase the survival rate of experimental mice. CONCLUSION It seems a modulation in the tumor microenvironment and polarization toward a Th1 response may be involved. So, BCc1 nanomedicine is efficient for human cancer therapy.
Collapse
Affiliation(s)
- Pegah Karimi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehdi Mahdavi
- Department of Advanced Therapy Medicinal Product (ATMP), Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Medical Division, Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | | |
Collapse
|
44
|
Reed EB, Orbeta S, Miao BA, Sitikov A, Chen B, Levitan I, Solway J, Mutlu GM, Fang Y, Mongin AA, Dulin NO. Anoctamin-1 is induced by TGF-β and contributes to lung myofibroblast differentiation. Am J Physiol Lung Cell Mol Physiol 2024; 326:L111-L123. [PMID: 38084409 PMCID: PMC11279757 DOI: 10.1152/ajplung.00155.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 12/26/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by progressive scarring of the lungs and resulting in deterioration in lung function. Transforming growth factor-β (TGF-β) is one of the most established drivers of fibrotic processes. TGF-β promotes the transformation of tissue fibroblasts to myofibroblasts, a key finding in the pathogenesis of pulmonary fibrosis. We report here that TGF-β robustly upregulates the expression of the calcium-activated chloride channel anoctamin-1 (ANO1) in human lung fibroblasts (HLFs) at mRNA and protein levels. ANO1 is readily detected in fibrotic areas of IPF lungs in the same area with smooth muscle α-actin (SMA)-positive myofibroblasts. TGF-β-induced myofibroblast differentiation (determined by the expression of SMA, collagen-1, and fibronectin) is significantly inhibited by a specific ANO1 inhibitor, T16Ainh-A01, or by siRNA-mediated ANO1 knockdown. T16Ainh-A01 and ANO1 siRNA attenuate profibrotic TGF-β signaling, including activation of RhoA pathway and AKT, without affecting initial Smad2 phosphorylation. Mechanistically, TGF-β treatment of HLFs results in a significant increase in intracellular chloride levels, which is prevented by T16Ainh-A01 or by ANO1 knockdown. The downstream mechanism involves the chloride-sensing "with-no-lysine (K)" kinase (WNK1). WNK1 siRNA significantly attenuates TGF-β-induced myofibroblast differentiation and signaling (RhoA pathway and AKT), whereas the WNK1 kinase inhibitor WNK463 is largely ineffective. Together, these data demonstrate that 1) ANO1 is a TGF-β-inducible chloride channel that contributes to increased intracellular chloride concentration in response to TGF-β; and 2) ANO1 mediates TGF-β-induced myofibroblast differentiation and fibrotic signaling in a manner dependent on WNK1 protein but independent of WNK1 kinase activity.NEW & NOTEWORTHY This study describes a novel mechanism of differentiation of human lung fibroblasts (HLFs) to myofibroblasts: the key process in the pathogenesis of pulmonary fibrosis. Transforming growth factor-β (TGF-β) drives the expression of calcium-activated chloride channel anoctmin-1 (ANO1) leading to an increase in intracellular levels of chloride. The latter recruits chloride-sensitive with-no-lysine (K) kinase (WNK1) to activate profibrotic RhoA and AKT signaling pathways, possibly through activation of mammalian target of rapamycin complex-2 (mTORC2), altogether promoting myofibroblast differentiation.
Collapse
Affiliation(s)
- Eleanor B Reed
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Shaina Orbeta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, United States
| | - Bernadette A Miao
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Albert Sitikov
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Bohao Chen
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Irena Levitan
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Julian Solway
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Yun Fang
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, United States
| | - Nickolai O Dulin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
45
|
Duminuco A, Chifotides HT, Giallongo S, Giallongo C, Tibullo D, Palumbo GA. ACVR1: A Novel Therapeutic Target to Treat Anemia in Myelofibrosis. Cancers (Basel) 2023; 16:154. [PMID: 38201581 PMCID: PMC10778144 DOI: 10.3390/cancers16010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Activin receptor type I (ACVR1) is a transmembrane kinase receptor belonging to bone morphogenic protein receptors (BMPs). ACVR1 plays an important role in hematopoiesis and anemia via the BMP6/ACVR1/SMAD pathway, which regulates expression of hepcidin, the master regulator of iron homeostasis. Elevated hepcidin levels are inversely associated with plasma iron levels, and chronic hepcidin expression leads to iron-restricted anemia. Anemia is one of the hallmarks of myelofibrosis (MF), a bone marrow (BM) malignancy characterized by BM scarring resulting in impaired hematopoiesis, splenomegaly, and systemic symptoms. Anemia and red blood cell transfusions negatively impact MF prognosis. Among the approved JAK inhibitors (ruxolitinib, fedratinib, momelotinib, and pacritinib) for MF, momelotinib and pacritinib are preferably used in cytopenic patients; both agents are potent ACVR1 inhibitors that suppress hepcidin expression via the BMP6/ACVR1/SMAD pathway and restore iron homeostasis/erythropoiesis. In September 2023, momelotinib was approved as a treatment for patients with MF and anemia. Zilurgisertib (ACVR1 inhibitor) and DISC-0974 (anti-hemojuvelin monoclonal antibody) are evaluated in early phase clinical trials in patients with MF and anemia. Luspatercept (ACVR2B ligand trap) is assessed in transfusion-dependent MF patients in a registrational phase 3 trial. Approved ACVR1 inhibitors and novel agents in development are poised to improve the outcomes of anemic MF patients.
Collapse
Affiliation(s)
- Andrea Duminuco
- Hematology Unit with BMT, A.O.U. Policlinico “G.Rodolico-San Marco”, 95123 Catania, Italy;
| | - Helen T. Chifotides
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd., Houston, TX 77030, USA;
| | - Sebastiano Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (C.G.)
| | - Cesarina Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (C.G.)
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Giuseppe A. Palumbo
- Hematology Unit with BMT, A.O.U. Policlinico “G.Rodolico-San Marco”, 95123 Catania, Italy;
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (C.G.)
| |
Collapse
|
46
|
Yang YH, Wen CS, Kuo YL, Fu SL, Lin TY, Chen CM, Wu PK, Chen WM, Wang JY. GuiLu-ErXian Glue extract promotes mesenchymal stem cells (MSC)-Induced chondrogenesis via exosomes release and delays aging in the MSC senescence process. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116784. [PMID: 37321426 DOI: 10.1016/j.jep.2023.116784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The treatment of osteoarthritis (OA) patients is a challenging problem. Mesenchymal stem cells (MSCs) are multipotent cells and play key roles in regenerative medicine for cartilage degeneration. GuiLu-ErXian Glue (GLEXG) is an herbal remedy widely used in traditional Chinese medicine to treat joint pain and disability in elderly OA patients. However, the mechanisms of how GLEXG affects MSCs-induced chondrogensis remains to be elucidated. AIM OF THE STUDY The aim of this study was to investigate the effects of GLEXG on MSC-derived chondrogenesis, both in vitro and in vivo and its potential mechanisms. METHODS Using human MSC (hMSCs) as in vitro model, the effects of HPLC-profiled GLEXG water extract on chondrogenic differentiation were investigated by 3D spheroid cultures under chondrogenesis-inducing medium (CIM) condition. The chondrogenesis process was evaluated by measuring the sphere sizes, chondrogenesis-related genes expression by reverse transcription real-time PCR that targeted type II/X collagens, SOX9, aggrecan, and protein expression by immunostaining. Anti-TGF-β1 neutralization antibody was used for mechanistic study. Mono-iodoacetate (MIA) induced OA joint was used to evaluate the effects of GLEXG on in vivo model. MSCs-derived exosomes were purified for proteomics study and senescence process was evaluated by cumulative population doublings and senescence-associated β-Galactosidase staining. RESULTS The results showed that GLEXG enhanced hMSCs chondrogenesis and upregulated RNA expression of type II/X collagen, SOX9 and aggrecan at 0.1 μg/mL, 0.3 μg/mL in vitro. In vivo, GLEXG at the dose of 0.3 μg intraarticular (i.a.) injection rescued the MIA-induced cartilage defect. Proteomics and ingenuity pathway analysis obtained from MSCs-released exosomes suggested that senescence pathway was less activated in GLEXG group than in vehicle group. Besides, GLEXG was able to increase cumulative population doubling and delayed hMSCs senescence process after four passages in cultures. CONCLUSION we conclude that GLEXG promotes in vitro MSC-induced chondrogenesis possibly via exosomes release and delays aging in the MSC senescence process and that treatment with GLEXG (0.3 μg, i.a.) rescued cartilage defects in rat OA knee model.
Collapse
Affiliation(s)
- Yong-Hong Yang
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
| | - Che-Sheng Wen
- Department of Orthopedics, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC.
| | - Yung-Ling Kuo
- School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, Taiwan, ROC.
| | - Su-Ling Fu
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
| | - Tung-Yi Lin
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
| | - Chao-Ming Chen
- Department of Orthopedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC; Department of Orthopedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan, ROC; Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
| | - Po-Kuei Wu
- Department of Orthopedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC; Department of Orthopedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan, ROC; Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
| | - Wei-Ming Chen
- Department of Orthopedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC; Department of Orthopedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
| | - Jir-You Wang
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC; Department of Orthopedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC; Department of Orthopedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
| |
Collapse
|
47
|
Schuhwerk H, Brabletz T. Mutual regulation of TGFβ-induced oncogenic EMT, cell cycle progression and the DDR. Semin Cancer Biol 2023; 97:86-103. [PMID: 38029866 DOI: 10.1016/j.semcancer.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
TGFβ signaling and the DNA damage response (DDR) are two cellular toolboxes with a strong impact on cancer biology. While TGFβ as a pleiotropic cytokine affects essentially all hallmarks of cancer, the multifunctional DDR mostly orchestrates cell cycle progression, DNA repair, chromatin remodeling and cell death. One oncogenic effect of TGFβ is the partial activation of epithelial-to-mesenchymal transition (EMT), conferring invasiveness, cellular plasticity and resistance to various noxae. Several reports show that both individual networks as well as their interface affect chemo-/radiotherapies. However, the underlying mechanisms remain poorly resolved. EMT often correlates with TGFβ-induced slowing of proliferation, yet numerous studies demonstrate that particularly the co-activated EMT transcription factors counteract anti-proliferative signaling in a partially non-redundant manner. Collectively, evidence piled up over decades underscore a multifaceted, reciprocal inter-connection of TGFβ signaling / EMT with the DDR / cell cycle progression, which we will discuss here. Altogether, we conclude that full cell cycle arrest is barely compatible with the propagation of oncogenic EMT traits and further propose that 'EMT-linked DDR plasticity' is a crucial, yet intricate facet of malignancy, decisively affecting metastasis formation and therapy resistance.
Collapse
Affiliation(s)
- Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
48
|
Krzysiek-Maczka G, Brzozowski T, Ptak-Belowska A. Helicobacter pylori-activated fibroblasts as a silent partner in gastric cancer development. Cancer Metastasis Rev 2023; 42:1219-1256. [PMID: 37460910 PMCID: PMC10713772 DOI: 10.1007/s10555-023-10122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 12/18/2023]
Abstract
The discovery of Helicobacter pylori (Hp) infection of gastric mucosa leading to active chronic gastritis, gastroduodenal ulcers, and MALT lymphoma laid the groundwork for understanding of the general relationship between chronic infection, inflammation, and cancer. Nevertheless, this sequence of events is still far from full understanding with new players and mediators being constantly identified. Originally, the Hp virulence factors affecting mainly gastric epithelium were proposed to contribute considerably to gastric inflammation, ulceration, and cancer. Furthermore, it has been shown that Hp possesses the ability to penetrate the mucus layer and directly interact with stroma components including fibroblasts and myofibroblasts. These cells, which are the source of biophysical and biochemical signals providing the proper balance between cell proliferation and differentiation within gastric epithelial stem cell compartment, when exposed to Hp, can convert into cancer-associated fibroblast (CAF) phenotype. The crosstalk between fibroblasts and myofibroblasts with gastric epithelial cells including stem/progenitor cell niche involves several pathways mediated by non-coding RNAs, Wnt, BMP, TGF-β, and Notch signaling ligands. The current review concentrates on the consequences of Hp-induced increase in gastric fibroblast and myofibroblast number, and their activation towards CAFs with the emphasis to the altered communication between mesenchymal and epithelial cell compartment, which may lead to inflammation, epithelial stem cell overproliferation, disturbed differentiation, and gradual gastric cancer development. Thus, Hp-activated fibroblasts may constitute the target for anti-cancer treatment and, importantly, for the pharmacotherapies diminishing their activation particularly at the early stages of Hp infection.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Agata Ptak-Belowska
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland
| |
Collapse
|
49
|
Wang DX, Dong ZJ, Deng SX, Tian YM, Xiao YJ, Li X, Ma XR, Li L, Li P, Chang HZ, Liu L, Wang F, Wu Y, Gao X, Zheng SS, Gu HM, Zhang YN, Wu JB, Wu F, Peng Y, Zhang XW, Zhan RY, Gao LX, Sun Q, Guo X, Zhao XD, Luo JH, Zhou R, Han L, Shu Y, Zhao JW. GDF11 slows excitatory neuronal senescence and brain ageing by repressing p21. Nat Commun 2023; 14:7476. [PMID: 37978295 PMCID: PMC10656444 DOI: 10.1038/s41467-023-43292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
As a major neuron type in the brain, the excitatory neuron (EN) regulates the lifespan in C. elegans. How the EN acquires senescence, however, is unknown. Here, we show that growth differentiation factor 11 (GDF11) is predominantly expressed in the EN in the adult mouse, marmoset and human brain. In mice, selective knock-out of GDF11 in the post-mitotic EN shapes the brain ageing-related transcriptional profile, induces EN senescence and hyperexcitability, prunes their dendrites, impedes their synaptic input, impairs object recognition memory and shortens the lifespan, establishing a functional link between GDF11, brain ageing and cognition. In vitro GDF11 deletion causes cellular senescence in Neuro-2a cells. Mechanistically, GDF11 deletion induces neuronal senescence via Smad2-induced transcription of the pro-senescence factor p21. This work indicates that endogenous GDF11 acts as a brake on EN senescence and brain ageing.
Collapse
Affiliation(s)
- Di-Xian Wang
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Zhao-Jun Dong
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Sui-Xin Deng
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, 201508, Shanghai, China
| | | | - Yu-Jie Xiao
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, 201508, Shanghai, China
| | - Xinran Li
- The Global Scientific and Technological Innovation Center and the MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xiao-Ru Ma
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Liang Li
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, 201508, Shanghai, China
| | - Pengxiao Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai; Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | | | | | - Fan Wang
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yang Wu
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xiang Gao
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Shuang-Shuang Zheng
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Hui-Min Gu
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Ya-Nan Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jian-Bin Wu
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Fan Wu
- Department of Neurosurgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, 310003, Hangzhou, China
| | - Yonglin Peng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai; Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiao-Wen Zhang
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Ren-Ya Zhan
- Department of Neurosurgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, 310003, Hangzhou, China
| | - Li-Xia Gao
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, 310020, Hangzhou, China
| | - Qiming Sun
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing Guo
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiao-Dong Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai; Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jian-Hong Luo
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lei Han
- BGI Research, 310030, Hangzhou, China.
| | - Yousheng Shu
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, 201508, Shanghai, China.
| | - Jing-Wei Zhao
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China.
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
50
|
Reed EB, Orbeta S, Miao BA, Sitikov A, Chen B, Levitan I, Solway J, Mutlu GM, Fang Y, Mongin AA, Dulin NO. Anoctamin-1 is induced by TGF-beta and contributes to lung myofibroblast differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544093. [PMID: 37333255 PMCID: PMC10274757 DOI: 10.1101/2023.06.07.544093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by progressive scarring of the lungs and resulting in deterioration in lung function. Transforming growth factor-beta (TGF-β) is one of the most established drivers of fibrotic processes. TGF-β promotes transformation of tissue fibroblasts to myofibroblasts, a key finding in the pathogenesis of pulmonary fibrosis. We report here that TGF-β robustly upregulates the expression of the calcium-activated chloride channel Anoctamin-1 (ANO1) in human lung fibroblasts (HLF) at mRNA and protein levels. ANO1 is readily detected in fibrotic areas of IPF lungs in the same area with smooth muscle alpha-actin (SMA)-positive myofibroblasts. TGF-β-induced myofibroblast differentiation (determined by the expression of SMA, collagen-1 and fibronectin) is significantly inhibited by a specific ANO1 inhibitor, T16Ainh-A01, or by siRNA-mediated ANO1 knockdown. T16Ainh-A01 and ANO1 siRNA attenuate pro-fibrotic TGF-β signaling, including activation of RhoA pathway and AKT, without affecting initial Smad2 phosphorylation. Mechanistically, TGF-β treatment of HLF results in a significant increase in intracellular chloride levels, which is prevented by T16Ainh-A01 or by ANO1 knockdown. The downstream mechanism involves the chloride-sensing "with-no-lysine (K)" kinase (WNK1). WNK1 siRNA significantly attenuates TGF-β-induced myofibroblast differentiation and signaling (RhoA pathway and AKT), whereas the WNK1 kinase inhibitor WNK463 is largely ineffective. Together, these data demonstrate that (i) ANO1 is a TGF-β-inducible chloride channel that contributes to increased intracellular chloride concentration in response to TGF-β; and (ii) ANO1 mediates TGF-β-induced myofibroblast differentiation and fibrotic signaling in a manner dependent on WNK1 protein, but independent of WNK1 kinase activity.
Collapse
Affiliation(s)
- Eleanor B. Reed
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Shaina Orbeta
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY
| | - Bernadette A. Miao
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Albert Sitikov
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Bohao Chen
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Irena Levitan
- Departments of Medicine, Pharmacology and Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Julian Solway
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Gökhan M. Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Yun Fang
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Alexander A. Mongin
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY
| | - Nickolai O. Dulin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|