1
|
Bede JC, Blande JD. Effects of Elevated CO 2 and O 3 on Aboveground Brassicaceous Plant-Insect Interactions. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:205-227. [PMID: 39357072 DOI: 10.1146/annurev-ento-022024-015159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Atmospheric gases, such as carbon dioxide (CO2) and ozone (O3), influence plant-insect interactions, with variable effects. The few studies that have investigated the direct effects of elevated CO2 (eCO2; 750-900 ppm) or elevated O3 (eO3; 60-200 ppb) on insects have shown mixed results. Instead, most research has focused on the indirect effects through changes in the host plant. In general, the lower nitrogen levels in C3 brassicaceous plants grown at eCO2 negatively affect insects and may result in compensatory feeding. Phytohormones involved in plant resistance may be altered by eCO2 or eO3. For example, stress-related jasmonate levels, which lead to induced resistance against chewing herbivores, are weakened at eCO2. In general, eCO2 does not affect herbivore-induced plant volatiles, which remain attractive to natural enemies. However, floral volatiles and herbivore-induced plant volatiles may be degraded by O3, affecting pollination and foraging natural enemy behavior. Thus, eCO2 and eO3 alter plant-insect interactions; however, many aspects remain poorly understood.
Collapse
Affiliation(s)
- Jacqueline C Bede
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada;
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
2
|
Zhang J, Duan S, Wang W, Liu D, Wang Y. Molecular Basis of CO 2 Sensing in Hyphantria cunea. Int J Mol Sci 2024; 25:5987. [PMID: 38892175 PMCID: PMC11172650 DOI: 10.3390/ijms25115987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Carbon dioxide (CO2) released by plants can serve as a cue for regulating insect behaviors. Hyphantria cunea is a widely distributed forestry pest that may use CO2 as a cue for foraging and oviposition. However, the molecular mechanism underlying its ability to sense CO2 has not been elucidated. Our initial study showed that CO2 is significantly attractive to H. cunea adults. Subsequently, 44 H. cunea gustatory receptors (GRs) were identified using transcriptome data, and 3 candidate CO2 receptors that are specifically expressed in the labial palps were identified. In vivo electrophysiological assays revealed that the labial palp is the primary organ for CO2 perception in H. cunea, which is similar to findings in other lepidopteran species. By using the Xenopus oocyte expression system, we showed that the HcunGR1 and HcunGR3 co-expressions produced a robust response to CO2, but HcunGR2 had an inhibitory effect on CO2 perception. Finally, immunohistochemical staining revealed sexual dimorphism in the CO2-sensitive labial pit organ glomerulus (LPOG). Taken together, our results clarified the mechanism by which H. cunea sense CO2, laying the foundation for further investigations into the role of CO2 in the rapid spread of H. cunea.
Collapse
Affiliation(s)
- Jian Zhang
- School of Life Sciences, Changchun Normal University, Changchun 130033, China
| | - Shiwen Duan
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Wenlong Wang
- School of Life Sciences, Changchun Normal University, Changchun 130033, China
| | - Duo Liu
- School of Life Sciences, Changchun Normal University, Changchun 130033, China
| | - Yinliang Wang
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
3
|
Wang G, Wang G, Li J, Ma Y, You Y, Zhou Z, Zhao Y, Men X, Song Y, Yu Y. Transcriptome Analysis Provides Insights into Water Immersion Promoting the Decocooning of Osmia excavata Alfken. INSECTS 2024; 15:288. [PMID: 38667418 PMCID: PMC11049900 DOI: 10.3390/insects15040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
The timing of decocooning and nesting during the flowering period are crucial for the reproduction and pollination activities of Osmia excavata. In order to improve the pollination efficiency of O. excavata, it is crucial to find a way to break the cocoon quickly. Our results showed that the decocooning rates at 6, 12, 24, 36, 48, and 72 h after 30 min of water immersion (WI) were 28.67%, 37.33%, 37.33%, 41.33%, 44.33%, and 53.00%, respectively. The decocooning rate fold of 6 h was 14.33 compared with the control group. Transcriptome sequencing resulted in 273 differentially expressed genes (DEGs) being identified between the WI and control groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that muscle-related functions play important roles in O. excavata decocooning in response to WI. Cluster analysis also showed that DEGs in cardiac muscle contraction and adrenergic signaling in cardiomyocytes were up-regulated in response to WI-promoted decocooning. In conclusion, the rate of decocooning can be improved by WI in a short time. During WI-promoted decocooning, muscle-related pathways play an important role. Therefore, the application of this technology will improve the pollination effect of O. excavata.
Collapse
Affiliation(s)
- Guiping Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.W.); (G.W.); (Y.M.); (Y.Y.); (X.M.); (Y.S.)
| | - Guangzhao Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.W.); (G.W.); (Y.M.); (Y.Y.); (X.M.); (Y.S.)
| | - Jiale Li
- School of Agricultural Science and Technology, Shandong Academy of Agricultural Engineering, Jinan 251100, China;
| | - Yixiang Ma
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.W.); (G.W.); (Y.M.); (Y.Y.); (X.M.); (Y.S.)
- School of Life Sciences, Yantai University, Yantai 264005, China
| | - Yinwei You
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.W.); (G.W.); (Y.M.); (Y.Y.); (X.M.); (Y.S.)
| | - Zizhang Zhou
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (Z.Z.); (Y.Z.)
| | - Yunhe Zhao
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (Z.Z.); (Y.Z.)
| | - Xingyuan Men
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.W.); (G.W.); (Y.M.); (Y.Y.); (X.M.); (Y.S.)
| | - Yingying Song
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.W.); (G.W.); (Y.M.); (Y.Y.); (X.M.); (Y.S.)
| | - Yi Yu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.W.); (G.W.); (Y.M.); (Y.Y.); (X.M.); (Y.S.)
| |
Collapse
|
4
|
Manrique G, Rojas JC, Lorenzo Figueiras AN, Barrozo RB, Guerenstein PG. Highlights, challenges, and perspectives in basic and applied chemical ecology of triatomines. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101101. [PMID: 37595884 DOI: 10.1016/j.cois.2023.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
Triatomines are vectors of Chagas disease. Due to failures in their control, there is an urgent need for more efficient and environmentally friendly monitoring and control tools. These hematophagous insects rely heavily on chemical information from the environment to detect hosts and cues/signals from conspecifics. Chemical ecology includes the elucidation of the functional role of chemicals mediating interactions between organisms. Studies on the chemical ecology of triatomines are leading to novel methods for their monitor and control. Thus, laboratory tests to develop chemical attractants and repellents are promissory and have led to the design of, for example, efficient baited traps. However, the monitoring and control tools proposed until now have not been as effective in the field.
Collapse
Affiliation(s)
- Gabriel Manrique
- Laboratorio de Fisiología de Insectos, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-UBA, Departamento de Biodiversidad y Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Julio C Rojas
- Departamento de Ecología de Artrópodos y Manejo de Plagas, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto km 2.5, Tapachula, Chiapas, Mexico
| | - Alicia N Lorenzo Figueiras
- Laboratorio de Fisiología de Insectos, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-UBA, Departamento de Biodiversidad y Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Romina B Barrozo
- Laboratorio de Neuroetología de Insectos, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-UBA, Departamento de Biodiversidad y Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Pablo G Guerenstein
- Laboratorio de Estudio de la Biología de Insectos, Centro de Investigación Científica y Transferencia Tecnológica a la Producción (CONICET-UADER-Gob de Entre Ríos), Diamante, Entre Ríos, Argentina; Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, Entre Ríos, Argentina.
| |
Collapse
|
5
|
Rands SA, Whitney HM, Hempel de Ibarra N. Multimodal floral recognition by bumblebees. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101086. [PMID: 37468044 DOI: 10.1016/j.cois.2023.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Flowers present information to their insect visitors in multiple simultaneous sensory modalities. Research has commonly focussed on information presented in visual and olfactory modalities. Recently, focus has shifted towards additional 'invisible' information, and whether information presented in multiple modalities enhances the interaction between flowers and their visitors. In this review, we highlight work that addresses how multimodality influences behaviour, focussing on work conducted on bumblebees (Bombus spp.), which are often used due to both their learning abilities and their ability to use multiple sensory modes to identify and differentiate between flowers. We review the evidence for bumblebees being able to use humidity, electrical potential, surface texture and temperature as additional modalities, and consider how multimodality enhances their performance. We consider mechanisms, including the cross-modal transfer of learning that occurs when bees are able to transfer patterns learnt in one modality to an additional modality without additional learning.
Collapse
Affiliation(s)
- Sean A Rands
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom.
| | - Heather M Whitney
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Natalie Hempel de Ibarra
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, United Kingdom
| |
Collapse
|
6
|
Liu L, Zhang Y, Yan SC, Yang B, Wang GR. Ultrastructural and Descriptive Study on the Adult Body Surface of Heortia vitessoides (Lepidoptera: Crambidae). INSECTS 2023; 14:687. [PMID: 37623397 PMCID: PMC10455263 DOI: 10.3390/insects14080687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Heortia vitessoides Moore, 1885 (Lepidoptera: Crambidae) is an economically important lepidopteran pest that caused severe damage to the plantation area of Aquilaria sinensis (Lour.) Gilg, 1825 (Thymelaeaceae), resulting in extensive defoliation of the trees during an epidemic. In this study, we used scanning electron microscopy (SEM) to analyze the external morphology and ultrastructure of sensilla on various body parts of H. vitessoides. Specifically, seven, four, four, and five types of sensilla were found, respectively, on the antennae, proboscis, labial palps, and legs. We described the types, distributions, and sexual dimorphism of these sensilla on antennae, and found that the number and size of sensilla differed significantly between males and females. This study provides crucial information for future investigations into the function of these sensilla in H. vitessoides.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Sustainable Forest Ecosystem Management—Ministry of Education, Northeast Forestry University, Harbin 150040, China; (L.L.); (Y.Z.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Yan Zhang
- Key Laboratory of Sustainable Forest Ecosystem Management—Ministry of Education, Northeast Forestry University, Harbin 150040, China; (L.L.); (Y.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shan-Chun Yan
- Key Laboratory of Sustainable Forest Ecosystem Management—Ministry of Education, Northeast Forestry University, Harbin 150040, China; (L.L.); (Y.Z.)
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
7
|
Gu Z, Zhang T, Long S, Li S, Wang C, Chen Q, Chen J, Feng Z, Cao Y. Responses of Thrips hawaiiensis and Thrips flavus populations to elevated CO2 concentrations. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:416-425. [PMID: 36895199 DOI: 10.1093/jee/toad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/30/2022] [Accepted: 02/01/2023] [Indexed: 05/30/2023]
Abstract
Increased atmospheric CO2 concentrations may directly affect insect behavior. Thrips hawaiiensis Morgan and T. flavus Schrank are economically important thrips pests native to China. We studied the development, survival, and oviposition of these two thrips under elevated CO2 concentrations (800 μl liter-1) and ambient CO2 (400 μl liter-1; control) conditions. Both thrips species developed faster but had lower survival rates under elevated CO2 levels compared with control conditions (developmental time: 13.25 days vs. 12.53 days in T. hawaiiensis, 12.18 days vs. 11.61 days in T. flavus; adult survival rate: 70.00% vs. 64.00% in T. hawaiiensis, 65.00% vs. 57.00% in T. flavus under control vs. 800 μl liter-1 CO2 conditions, respectively). The fecundity, net reproductive rate (R0), and intrinsic rate of increase (rm) of the two species were also lower under elevated CO2 concentrations (fecundity: 47.96 vs. 35.44 in T. hawaiiensis, 36.68 vs. 27.88 in T. flavus; R0: 19.83 vs. 13.62 in T. hawaiiensis, 14.02 vs. 9.86 in T. flavus; and rm: 0.131 vs. 0.121 in T. hawaiiensis, 0.113 vs. 0.104 in T. flavus under control and 800 μl liter-1 CO2 conditions, respectively). T. hawaiiensis developed slower but had a higher survival rate, fecundity, R0, and rm compared with T. flavus at each CO2 concentration. In summary, elevated CO2 concentrations negatively affected T. hawaiiensis and T. flavus populations. In a world with higher CO2 concentrations, T. hawaiiensis might be competitively superior to T. flavus where they co-occur.
Collapse
Affiliation(s)
- Zhaoyang Gu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Ting Zhang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Shaocheng Long
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Shuai Li
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Chun Wang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Qiuchi Chen
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Jie Chen
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Ziyi Feng
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Yu Cao
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| |
Collapse
|
8
|
Wang X, Liu H, Xie G, Wang W, Yang Y. Identification and expression analyses of the olfactory-related genes in different tissues' transcriptome of a predacious soldier beetle, Podabrus annulatus (Coleoptera, Cantharidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21997. [PMID: 36656761 DOI: 10.1002/arch.21997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
We sequenced and analyzed the transcriptomes from different tissues of the soldier beetle, Podabrus annulatus (Coleoptera: Cantharidae), and obtained 75.74 Gb clean reads which were assembled into 95,274 unigenes. Among these transcripts, 25,484 unigenes of highly quality were annotated. Based on annotation and tBLASTn results, we identified a total of 101 candidate olfactory-related genes for the first time, including 11 putative odorant-binding proteins (OBPs), 6 chemosensory proteins (CSP), 50 olfactory receptors (ORs), 25 gustatory receptors (GRs), 6 ionotropic receptors (IRs), and 3 sensory neuron membrane proteins (SNMPs). BLASTX best-hit results indicated that these chemosensory genes were most identical to their respective orthologs from Photinus pyralis. Phylogenetic analyses also revealed that the ORs, GRs, and IRs of Podabrus annulatus are closely related to those of Photinus pyralis. The fragment per kilobase per million mapped fragments (FPKM) values showed that the PannOBP2, PannOBP3, and PannOBP10 were predominantly expressed in the antennae, PannOBP1 in the abdomen-thorax, while others were not identified to be tissue-specific. These olfactory-related differentially expressed genes (DEGs) demonstrated different roles in the olfactory system of Podabrus annulatus. This study establishes the groundwork for future research into the molecular mechanism of olfactory recognition in Podabrus annulatus.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Haoyu Liu
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Guanglin Xie
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Wenkai Wang
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Yuxia Yang
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
9
|
Cressman A, Amsalem E. Impacts and mechanisms of CO2 narcosis in bumble bees: narcosis depends on dose, caste and mating status and is not induced by anoxia. J Exp Biol 2023; 226:286149. [PMID: 36541091 DOI: 10.1242/jeb.244746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Carbon dioxide (CO2) is commonly used to immobilize insects and to induce reproduction in bees. However, despite its wide use and potential off-target impacts, its underlying mechanisms are not fully understood. Here, we used Bombus impatiens to examine whether CO2 impacts are mediated by anoxia and whether these mechanisms differ between female castes or following mating in queens. We examined the behavior, physiology and gene expression of workers, mated queens and virgin queens following exposure to anoxia, hypoxia, full and partial hypercapnia, and controls. Hypercapnia and anoxia caused immobilization, but only hypercapnia resulted in behavioral, physiological and molecular impacts in bees. Recovery from hypercapnia resulted in increased abdominal contractions and took longer in queens. Additionally, hypercapnia activated the ovaries of queens, but inhibited those of workers in a dose-dependent manner and caused a depletion of fat-body lipids in both castes. All responses to hypercapnia were weaker following mating in queens. Analysis of gene expression related to hypoxia and hypercapnia supported the physiological findings in queens, demonstrating that the overall impacts of CO2, excluding virgin queen ovaries, were unique and were not induced by anoxia. This study contributes to our understanding of the impacts and the mechanistic basis of CO2 narcosis in insects and its impacts on bee physiology. This article has an associated ECR Spotlight interview with Anna Cressman.
Collapse
Affiliation(s)
- Anna Cressman
- Department of Entomology, Center for Chemical Ecology, Center for Pollination Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Etya Amsalem
- Department of Entomology, Center for Chemical Ecology, Center for Pollination Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
10
|
Dong JF, Yang HB, Li DX, Yu HQ, Tian CH. Identification and expression analysis of chemosensory receptors in the tarsi of fall armyworm, Spodoptera frugiperda (J. E. Smith). Front Physiol 2023; 14:1177297. [PMID: 37101698 PMCID: PMC10123274 DOI: 10.3389/fphys.2023.1177297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/29/2023] [Indexed: 04/28/2023] Open
Abstract
Chemosensation of tarsi provides moths with the ability to detect chemical signals which are important for food recognition. However, molecular mechanisms underlying the chemosensory roles of tarsi are still unknown. The fall armyworm Spodoptera frugiperda is a serious moth pest that can damage many plants worldwide. In the current study, we conducted transcriptome sequencing with total RNA extracted from S. frugiperda tarsi. Through sequence assembly and gene annotation, 23 odorant receptors 10 gustatory receptors and 10 inotropic receptors (IRs) were identified. Further phylogenetic analysis with these genes and homologs from other insect species indicated specific genes, including ORco, carbon dioxide receptors, fructose receptor, IR co-receptors, and sugar receptors were expressed in the tarsi of S. frugiperda. Expression profiling with RT-qPCR in different tissues of adult S. frugiperda showed that most annotated SfruORs and SfruIRs were mainly expressed in the antennae, and most SfruGRs were mainly expressed in the proboscises. However, SfruOR30, SfruGR9, SfruIR60a, SfruIR64a, SfruIR75d, and SfruIR76b were also highly enriched in the tarsi of S. frugiperda. Especially SfruGR9, the putative fructose receptor, was predominantly expressed in the tarsi, and with its levels significantly higher in the female tarsi than in the male ones. Moreover, SfruIR60a was also found to be expressed with higher levels in the tarsi than in other tissues. This study not only improves our insight into the tarsal chemoreception systems of S. frugiperda but also provides useful information for further functional studies of chemosensory receptors in S. frugiperda tarsi.
Collapse
Affiliation(s)
- Jun-Feng Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Hai-Bo Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Ding-Xu Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Hong-Qi Yu
- Information Center of Ministry of Natural Resources, Beijing, China
- *Correspondence: Hong-Qi Yu, ; Cai-Hong Tian,
| | - Cai-Hong Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan Province, China
- *Correspondence: Hong-Qi Yu, ; Cai-Hong Tian,
| |
Collapse
|
11
|
Amat C, Marion-Poll F, Navarro-Roldán MA, Gemeno C. Gustatory function of sensilla chaetica on the labial palps and antennae of three tortricid moths (Lepidoptera: Tortricidae). Sci Rep 2022; 12:18882. [PMID: 36344566 PMCID: PMC9640605 DOI: 10.1038/s41598-022-21825-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
In adult Lepidoptera the labial palps are best known for their role in CO2 detection, but they can also bear sensilla chaetica which function is unknown. The number and distribution of sensilla chaetica in labial palps was studied using a bright field microscope. To determine if these sensilla have a gustatory function, we performed single sensillum electrophysiology recordings from palp and antennal sensilla of adult moths of Cydia pomonella (L.), Grapholita molesta (Busck) and Lobesia botrana (Denis and Shieffermüller). Each sensillum was stimulated with 3 doses of one of four test stimulus (sucrose, fructose, KCl and NaCl). Overall, responses (spikes/s-1) increased with dose, and were higher in the palps than in the antennae, and higher to sugars than to salts. With sugars the response increased with concentration in the palp but not in the antenna. With salts there was a drop in response at the intermediate concentration. The number and position of sensilla chaetica on labial palps was variable among individuals. Sensilla were located in the most exposed areas of the palp. Differences in sensilla distribution were detected between species. Such differences among species and between palps and antenna suggest that taste sensilla on the palps have an unforeseen role in adaptation.
Collapse
Affiliation(s)
- Carles Amat
- grid.15043.330000 0001 2163 1432University of Lleida-Agrotecnio-CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Frédéric Marion-Poll
- grid.460789.40000 0004 4910 6535Université Paris-Saclay, CNRS, IRD, UMR EGCE, 12 rue 128, 91190 Gif-sur-Yvette, France ,grid.417885.70000 0001 2185 8223Université Paris-Saclay, AgroParisTech, 22 place de l’Agronomie, 91120 Palaiseau, France
| | - Miguel A. Navarro-Roldán
- grid.15043.330000 0001 2163 1432University of Lleida-Agrotecnio-CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - César Gemeno
- grid.15043.330000 0001 2163 1432University of Lleida-Agrotecnio-CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
12
|
Lu Z, Sun Z, Li Y, Hao R, Chen Y, Chen B, Qin X, Tao X, Gui F. Effects of Elevated CO 2 Concentration on Host Adaptability and Chlorantraniliprole Susceptibility in Spodoptera frugiperda. INSECTS 2022; 13:1029. [PMID: 36354853 PMCID: PMC9699368 DOI: 10.3390/insects13111029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Elevated atmospheric carbon dioxide concentrations (eCO2) can affect both herbivorous insects and their host plants. The fall armyworm (FAW), Spodoptera frugiperda, is a highly polyphagous agricultural pest that may attack more than 350 host plant species and has developed resistance to both conventional and novel-action insecticides. However, the effects of eCO2 on host adaptability and insecticide resistance of FAW are unclear. We hypothesized that eCO2 might affect insecticide resistance of FAW by affecting its host plants. To test this hypothesis, we investigated the effect of eCO2 on (1) FAW's susceptibility to chlorantraniliprole after feeding on wheat, (2) FAW's population performance traits (including the growth and reproduction), and (3) changes in gene expression in the FAW by transcriptome sequencing. The toxicity of chlorantraniliprole against the FAW under eCO2 (800 µL/L) stress showed that the LC50 values were 2.40, 2.06, and 1.46 times the values at the ambient CO2 concentration (400 µL/L, aCO2) for the three generations, respectively. Under eCO2, the life span of pupae and adults and the total number of generations were significantly shorter than the FAW under aCO2. Compared to the aCO2 treatment, the weights of the 3rd and 4th instar larvae and pupae of FAW under eCO2 were significantly heavier. Transcriptome sequencing results showed that more than 79 detoxification enzyme genes in FAW were upregulated under eCO2 treatment, including 40 P450, 5 CarE, 17 ABC, and 7 UGT genes. Our results showed that eCO2 increased the population performance of FAW on wheat and reduced its susceptibility to chlorantraniliprole by inducing the expression of detoxification enzyme genes. This study has important implications for assessing the damage of FAW in the future under the environment of increasing atmospheric CO2 concentration.
Collapse
Affiliation(s)
- Zhihui Lu
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Zhongxiang Sun
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yahong Li
- Yunnan Plant Protection and Quarantine Station, Kunming 650034, China
| | - Ruoshi Hao
- Yunnan Plateau Characteristic Agriculture Industry Research Institute, Kunming 650201, China
| | - Yaping Chen
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Chen
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoping Qin
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Xuan Tao
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Furong Gui
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
13
|
Zocchi D, Ye ES, Hauser V, O'Connell TF, Hong EJ. Parallel encoding of CO 2 in attractive and aversive glomeruli by selective lateral signaling between olfactory afferents. Curr Biol 2022; 32:4225-4239.e7. [PMID: 36070776 PMCID: PMC9561050 DOI: 10.1016/j.cub.2022.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/13/2022] [Accepted: 08/10/2022] [Indexed: 12/14/2022]
Abstract
We describe a novel form of selective crosstalk between specific classes of primary olfactory receptor neurons (ORNs) in the Drosophila antennal lobe. Neurotransmitter release from ORNs is driven by two distinct sources of excitation: direct activity derived from the odorant receptor and stimulus-selective lateral signals originating from stereotypic subsets of other ORNs. Consequently, the level of presynaptic neurotransmitter release from an ORN can be significantly dissociated from its firing rate. Stimulus-selective lateral signaling results in the distributed representation of CO2-a behaviorally important environmental cue that directly excites a single ORN class-in multiple olfactory glomeruli, each with distinct response dynamics. CO2-sensitive glomeruli coupled to behavioral attraction respond preferentially to fast changes in CO2 concentration, whereas those coupled to behavioral aversion more closely follow absolute levels of CO2. Behavioral responses to CO2 also depend on the temporal structure of the stimulus: flies walk upwind to fluctuating, but not sustained, pulses of CO2. Stimulus-selective lateral signaling generalizes to additional odors and glomeruli, revealing a subnetwork of lateral interactions between ORNs that reshapes the spatial and temporal structure of odor representations in a stimulus-specific manner.
Collapse
Affiliation(s)
- Dhruv Zocchi
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Emily S Ye
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Virginie Hauser
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Thomas F O'Connell
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Elizabeth J Hong
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
14
|
Barie K, Levin E, Amsalem E. CO 2 narcosis induces a metabolic shift mediated via juvenile hormone in Bombus impatiens gynes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 149:103831. [PMID: 36058439 DOI: 10.1016/j.ibmb.2022.103831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Carbon dioxide (CO2) has pleiotropic effects on insect physiology and behavior. Although diverse, many impacts are related to changes in metabolism and reallocation of macronutrients. Here we examined the metabolic shift induced by CO2 and its regulation using Bombus impatiens. CO2 applied to bumble bee gynes induces bypass of diapause and transition into reproduction. We analyzed ovary activation and macronutrient amounts in four tissues/body parts (fat body, thorax, ovaries, and crop) at three timepoints following CO2 administration. To tease apart the effects of CO2 on reproduction and metabolism, we monitored the metabolic changes in gynes following ovary removal and CO2 narcosis. We also explored the role of juvenile hormone in mediating CO2 impact by feeding queens with a JH antagonist (Precocene). Gynes ovary activation was increased following CO2 treatment. Additionally, CO2-treated gynes showed lower lipid amount in the fat body and higher glycogen and protein amount in the ovary ten days after the treatment. CO2 treatment following ovary removal also resulted in decreased fat body lipids, suggesting that CO2 operates by inducing a metabolic shift independent of reproduction. Lastly, gynes fed with precocence did not show a metabolic shift following CO2, suggesting CO2 impact is mediated via juvenile hormone. Overall, these data suggest that CO2 induces transfer of macronutrients and utilization of stored reserved by accelerating metabolism. The proposed mechanism of CO2 may explain many of the pleiotropic effects of CO2 across species and can aid in understanding how this common anastatic influences insect physiology.
Collapse
Affiliation(s)
- Katherine Barie
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Eran Levin
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Etya Amsalem
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
15
|
Barredo E, Raji JI, Ramon M, DeGennaro M, Theobald J. Carbon dioxide and blood-feeding shift visual cue tracking during navigation in Aedes aegypti mosquitoes. Biol Lett 2022; 18:20220270. [PMID: 36166270 PMCID: PMC9514554 DOI: 10.1098/rsbl.2022.0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Haematophagous mosquitoes need a blood meal to complete their reproductive cycle. To accomplish this, female mosquitoes seek vertebrate hosts, land on them and bite. As their eggs mature, they shift attention away from hosts and towards finding sites to lay eggs. We asked whether females were more tuned to visual cues when a host-related signal, carbon dioxide, was present, and further examined the effect of a blood meal, which shifts behaviour to ovipositing. Using a custom, tethered-flight arena that records wing stroke changes while displaying visual cues, we found the presence of carbon dioxide enhances visual attention towards discrete stimuli and improves contrast sensitivity for host-seeking Aedes aegypti mosquitoes. Conversely, intake of a blood meal reverses vertical bar tracking, a stimulus that non-fed females readily follow. This switch in behaviour suggests that having a blood meal modulates visual attention in mosquitoes, a phenomenon that has been described before in olfaction but not in visually driven behaviours.
Collapse
Affiliation(s)
- Elina Barredo
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Joshua I. Raji
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Michael Ramon
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Matthew DeGennaro
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Jamie Theobald
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
16
|
Hu J, Wang XY, Tan LS, Lu W, Zheng XL. Identification of Chemosensory Genes, Including Candidate Pheromone Receptors, in Phauda flammans (Walker) (Lepidoptera: Phaudidae) Through Transcriptomic Analyses. Front Physiol 2022; 13:907694. [PMID: 35846004 PMCID: PMC9283972 DOI: 10.3389/fphys.2022.907694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Olfactory and gustatory systems play an irreplaceable role in all cycles of growth of insects, such as host location, mating, and oviposition. Many chemosensory genes in many nocturnal moths have been identified via omics technology, but knowledge of these genes in diurnal moths is lacking. In our recent studies, we reported two sex pheromone compounds and three host plant volatiles that play a vital role in attracting the diurnal moth, Phauda flammans. The antennal full-length transcriptome sequence of P. flammans was obtained using the Pacbio sequencing to further explore the process of sex pheromone and host plant volatile recognition in P. flammans. Transcriptome analysis identified 166 candidate olfactory and gustatory genes, including 58 odorant-binding proteins (OBPs), 19 chemosensory proteins (CSPs), 59 olfactory receptors (ORs), 16 ionotropic receptors (IRs), 14 gustatory receptors (GRs), and 2 sensory neuron membrane proteins (SNMPs). Subsequently, a phylogenetic tree was established using P. flammans and other lepidopteran species to investigate orthologs. Among the 17 candidate pheromone receptor (PR) genes, the expression levels of PflaOR21, PflaOR25, PflaOR35, PflaOR40, PflaOR41, PflaOR42, PflaOR44, PflaOR49, PflaOR51, PflaOR61, and PflaOR63 in the antennae were significantly higher than those in other non-antennae tissues. Among these PR genes, PflaOR21, PflaOR27, PflaOR29, PflaOR35, PflaOR37, PflaOR40, PflaOR42, PflaOR44, PflaOR60, and PflaOR62 showed male-biased expression, whereas PflaOR49, PflaOR61, and PflaOR63 revealed female-biased expression. The functions of related OR genes were also discussed. This research filled the gap of the chemosensory genes of P. flammans and provided basic data for future functional molecular mechanisms studies on P. flammans olfaction.
Collapse
|
17
|
Elevated CO2 Altered Rice VOCs Aggravate Population Occurrence of Brown Planthoppers by Improving Host Selection Ability. BIOLOGY 2022; 11:biology11060882. [PMID: 35741403 PMCID: PMC9219841 DOI: 10.3390/biology11060882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary In recent years, the atmospheric CO2 concentration was increasing continuously, which has led to the change in the photosynthesis and chemical composition of rice plants. The growth and development of brown planthopper (BPH) Nilaparvata lugens are further affected. Plants release volatile organic compounds (VOCs) to mediate intra- and inter-specific interactions with other organisms in the surrounding environment. Therefore, here we aim to explore the effect of rice VOCs on the host selection ability of BPH under elevated CO2. Among the identified thirty-six rice VOCs, the contents of heptadecane, linalool and limonene from rice plants were significantly decreased under elevated CO2. Moreover, we found that the VOCs of rice damaged by BPH were also changed. Undecane, hexadecane, nonanal and 2,6-diphenylphenol from BPH-damaged rice plants under elevated CO2 were all significantly higher than those from healthy rice plants, which might lead to enhancement of the host selection ability of BPH, eventually aggravating the damage caused by BPH. However, the role of these VOCs in host selection ability of BPH is not clear, and more experiments are needed to verify their function. Abstract It is predicted that plant volatile organic compounds (VOCs) are affected by the atmospheric CO2 levels rising globally, which further affects the interaction between plants and herbivorous insects, especially the host selection behavior of herbivorous insects. In this study, the effects of elevated CO2 on the host-selection behavior of the brown planthopper (BPH) Nilaparvata lugens, and the emission of VOCs from the healthy and BPH-damaged rice plants were studied simultaneously to make clear the population occurrence of BPH under global climate change. Compared with ambient CO2, elevated CO2 significantly increased the host selection percent of BPH for the healthy (CK) and BPH-damaged rice plants, and the host selection percent of BPH for the BPH-damaged rice plants was significantly higher than that for the healthy rice plants under elevated CO2, which might be regulated by the transcription levels of OBP1, OBP2 and CSP8 in BPH due to the upregulated transcriptional levels of these three genes of BPH under elevated CO2. In addition, we analyzed and quantified the emission of VOCs in rice plants grown under ambient CO2 and elevated CO2 by GS-MS. A total of 36 VOCs from rice plants were identified into eight categories, including alkanes, alkenes, alcohols, aldehydes, ketones, esters, phenols and aromatic hydrocarbons. Elevated CO2 significantly decreased the contents of heptadecane, linalool and limonene from rice plants compared with ambient CO2. Besides, the contents of linalool, phytol, decanal, 1-methyldecalin and 2,6-diphenylphenol from BPH-damaged rice plants under ambient CO2, and undecane, hexadecane, nonanal and 2,6-diphenylphenol from BPH-damaged rice plants under elevated CO2 were all significantly higher than those from healthy rice plants. The percentage composition of phenols was positively correlated with the host selection rate of BPH. Our study indicates that elevated CO2 is beneficial to promote the host selection ability of BPH for rice plants damaged by BPHs due to the changed plant VOCs.
Collapse
|
18
|
Tonnang HE, Sokame BM, Abdel-Rahman EM, Dubois T. Measuring and modelling crop yield losses due to invasive insect pests under climate change. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100873. [PMID: 35051620 DOI: 10.1016/j.cois.2022.100873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Climate change and agriculture are strongly correlated, and the fast pace of climate change will have impacts on agroecosystems and crop productivity. This review summarizes potential impacts of rising temperatures and atmospheric CO2 concentrations on insect pest-crop interactions and provides two-way approaches for integrating these impacts into crop models for sustainable pest management strategies designing. Rising temperatures and CO2 levels affect insect physiology, accelerate their metabolism and increase their consumption, ultimately increasing population densities, which result in greater crop injury and damage, and yield loss. Whereas these direct effects are empirically demonstrated for temperature rises, they are less straightforward for CO2 increases. Furthermore, indirect effects of rising temperatures and CO2 levels remain largely unexploited and therefore unknown. Coupling insect pests and crops using a two-way feedback system model, whereby pest variables drive crop variables and vice versa, will improve analysis and forecasting of yield losses to better guide preparedness and intervention strategies.
Collapse
Affiliation(s)
- Henri Ez Tonnang
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
| | - Bonoukpoè M Sokame
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Elfatih M Abdel-Rahman
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Thomas Dubois
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
19
|
Siehler O, Wang S, Bloch G. Social synchronization of circadian rhythms with a focus on honeybees. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200342. [PMID: 34420390 PMCID: PMC8380977 DOI: 10.1098/rstb.2020.0342] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Many animals benefit from synchronizing their daily activities with conspecifics. In this hybrid paper, we first review recent literature supporting and extending earlier evidence for a lack of clear relationship between the level of sociality and social entrainment of circadian rhythms. Social entrainment is specifically potent in social animals that live in constant environments in which some or all individuals do not experience the ambient day-night cycles. We next focus on highly social honeybees in which there is good evidence that social cues entrain the circadian clocks of nest bees and can override the influence of conflicting light-dark cycles. The current understanding of social synchronization in honeybees is consistent with self-organization models in which surrogates of forager activity, such as substrate-borne vibrations and colony volatiles, entrain the circadian clocks of bees dwelling in the dark cavity of the nest. Finally, we present original findings showing that social synchronization is effective even in an array of individually caged callow bees placed on the same substrate and is improved for bees in connected cages. These findings reveal remarkable sensitivity to social time-giving cues and show that bees with attenuated rhythms (weak oscillators) can nevertheless be socially synchronized to a common phase of activity. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Collapse
Affiliation(s)
- Oliver Siehler
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
| | - Shuo Wang
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
- The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
| |
Collapse
|
20
|
Chen Q, Liu X, Cao S, Ma B, Guo M, Shen J, Wang G. Fine Structure and Olfactory Reception of the Labial Palps of Spodoptera frugiperda. Front Physiol 2021; 12:680697. [PMID: 34413785 PMCID: PMC8369160 DOI: 10.3389/fphys.2021.680697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/24/2021] [Indexed: 11/27/2022] Open
Abstract
The olfactory system of insects is essential in many crucial behaviors, such as host seeking, mate recognition, and locating oviposition sites. Lepidopteran moths possess two main olfactory organs, including antennae and labial palps. Compared to antennae, the labial palps are relatively specific and worthy of further investigation due to the labial-palp pit organ (LPO), which contains a large number of sensilla located on the tip segment. The fall armyworm, Spodoptera frugiperda, is a worldwide lepidopteran pest, which can damage more than 350 plants and cause significant economic losses. In this study, we surveyed the structure of the labial palps and LPO of S. frugiperda using a super-high magnification lens zoom 3D microscope. Then, the distribution and fine structure of sensilla located in the LPO of S. frugiperda were investigated using scanning electron microscopy. Subsequently, the electrophysiological responses of labial palps to CO2 and 29 plant volatiles were recorded by using electrolabialpalpography. Our results showed the fine structure of labial palps, the LPO, and the sensilla located in the LPO of S. frugiperda. Moreover, we demonstrated that the labial palps are olfactory organs that respond to both CO2 and other volatile compounds. Our work established a foundation for further study of the roles of labial palps in insect olfactory related behaviors. Further investigations on the function of labial palps and their biological roles together with CO2 and volatile compound responses in S. frugiperda are necessary, as they may provide better insect behavioral regulators for controlling this pest.
Collapse
Affiliation(s)
- Qiuyan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Entomology and MOA Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing, China
| | - Xiaolan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Baiwei Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengbo Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jie Shen
- Department of Entomology and MOA Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
21
|
Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies. J Chem Ecol 2021; 47:889-906. [PMID: 34415498 PMCID: PMC8613123 DOI: 10.1007/s10886-021-01303-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 10/28/2022]
Abstract
How climate change will modify belowground tritrophic interactions is poorly understood, despite their importance for agricultural productivity. Here, we manipulated the three major abiotic factors associated with climate change (atmospheric CO2, temperature, and soil moisture) and investigated their individual and joint effects on the interaction between maize, the banded cucumber beetle (Diabrotica balteata), and the entomopathogenic nematode (EPN) Heterorhabditis bacteriophora. Changes in individual abiotic parameters had a strong influence on plant biomass, leaf wilting, sugar concentrations, protein levels, and benzoxazinoid contents. Yet, when combined to simulate a predicted climate scenario (Representative Concentration Pathway 8.5, RCP 8.5), their effects mostly counter-balanced each other. Only the sharp negative impact of drought on leaf wilting was not fully compensated. In both current and predicted scenarios, root damage resulted in increased leaf wilting, reduced root biomass, and reconfigured the plant sugar metabolism. Single climatic variables modulated the herbivore performance and survival in an additive manner, although slight interactions were also observed. Increased temperature and CO2 levels both enhanced the performance of the insect, but elevated temperature also decreased its survival. Elevated temperatures and CO2 further directly impeded the EPN infectivity potential, while lower moisture levels improved it through plant- and/or herbivore-mediated changes. In the RCP 8.5 scenario, temperature and CO2 showed interactive effects on EPN infectivity, which was overall decreased by 40%. We conclude that root pest problems may worsen with climate change due to increased herbivore performance and reduced top-down control by biological control agents.
Collapse
|
22
|
Arce CC, Theepan V, Schimmel BC, Jaffuel G, Erb M, Machado RA. Plant-associated CO 2 mediates long-distance host location and foraging behaviour of a root herbivore. eLife 2021; 10:65575. [PMID: 33875133 PMCID: PMC8057813 DOI: 10.7554/elife.65575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Insect herbivores use different cues to locate host plants. The importance of CO2 in this context is not well understood. We manipulated CO2 perception in western corn rootworm (WCR) larvae through RNAi and studied how CO2 perception impacts their interaction with their host plant. The expression of a carbon dioxide receptor, DvvGr2, is specifically required for dose-dependent larval responses to CO2. Silencing CO2 perception or scrubbing plant-associated CO2 has no effect on the ability of WCR larvae to locate host plants at short distances (<9 cm), but impairs host location at greater distances. WCR larvae preferentially orient and prefer plants that grow in well-fertilized soils compared to plants that grow in nutrient-poor soils, a behaviour that has direct consequences for larval growth and depends on the ability of the larvae to perceive root-emitted CO2. This study unravels how CO2 can mediate plant–herbivore interactions by serving as a distance-dependent host location cue. Living deep in the ground and surrounded by darkness, soil insects must rely on the chemicals released by plants to find the roots they feed on. Carbon dioxide, for example, is a by-product of plant respiration, which, above ground, is thought to attract moths to flowers and flies to apples; underground, however, its role is still unclear. This gaseous compound can travel through soil and potentially act as a compass for root-eating insects. Yet, it is also produced by decaying plants or animals, which are not edible. It is therefore possible that insects use this signal as a long-range cue to orient themselves, but then switch to another chemical when closer to their target to narrow in on an actual food source. To test this idea, Arce et al. investigated whether carbon dioxide guides the larvae of Western corn rootworm to maize roots. First, the rootworm genes responsible for sensing carbon dioxide were identified and switched off, making the larvae unable to detect this gas. When the genetically engineered rootworms were further than 9cm from maize roots, they were less able to locate that food source; closer to the roots, however, the insects could orient themselves towards the plant. This suggests that the insects use carbon dioxide at long distances but rely on another chemicals to narrow down their search at close range. To confirm this finding, Arce et al. tried absorbing the carbon dioxide using soda lime, leading to similar effects: carbon dioxide sensitive insects stopped detecting the roots at long but not short distances. Additional experiments then revealed that the compound could help insects find the best roots to feed on. Indeed, eating plants that grow on rich terrain – for instance, fertilized soils – helps insects to grow bigger and faster. These roots also release more carbon dioxide, in turn attracting rootworms more frequently. In the United States and Eastern Europe, Western corn rootworms inflict major damage to crops, highlighting the need to understand and manage the link between fertilization regimes, carbon dioxide release and how these pests find their food.
Collapse
Affiliation(s)
- Carla Cm Arce
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Vanitha Theepan
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Geoffrey Jaffuel
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Ricardo Ar Machado
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Üçpunar HK, Grunwald Kadow IC. Flies Avoid Current Atmospheric CO 2 Concentrations. Front Physiol 2021; 12:646401. [PMID: 33927640 PMCID: PMC8076854 DOI: 10.3389/fphys.2021.646401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/22/2021] [Indexed: 11/23/2022] Open
Abstract
CO2 differs from most other odors by being ubiquitously present in the air animals inhale. CO2 levels of the atmosphere, however, are subject to change. Depending on the landscape, temperature, and time of the year, CO2 levels can change even on shortest time scales. In addition, since the 18th century the CO2 baseline keeps increasing due to the intensive fossil fuel usage. However, we do not know whether this change is significant for animals, and if yes whether and how animals adapt to this change. Most insects possess olfactory receptors to detect the gaseous molecule, and CO2 is one of the key odorants for insects such as the vinegar fly Drosophila melanogaster to find food sources and to warn con-specifics. So far, CO2 and its sensory system have been studied in the context of rotting fruit and other CO2-emitting sources to investigate flies’ response to significantly elevated levels of CO2. However, it has not been addressed whether flies detect and potentially react to atmospheric levels of CO2. By using behavioral experiments, here we show that flies can detect atmospheric CO2 concentrations and, if given the choice, prefer air with sub-atmospheric levels of the molecule. Blocking the synaptic release from CO2 receptor neurons abolishes this choice. Based on electrophysiological recordings, we hypothesize that CO2 receptors, similar to ambient temperature receptors, actively sample environmental CO2 concentrations close to atmospheric levels. Based on recent findings and our data, we hypothesize that Gr-dependent CO2 receptors do not primarily serve as a cue detector to find food sources or avoid danger, instead they function as sensors for preferred environmental conditions.
Collapse
Affiliation(s)
- Habibe K Üçpunar
- Department of Physiology, School of Medicine, Ankara Medipol University, Ankara, Turkey
| | | |
Collapse
|
24
|
Rondoni G, Roman A, Meslin C, Montagné N, Conti E, Jacquin-Joly E. Antennal Transcriptome Analysis and Identification of Candidate Chemosensory Genes of the Harlequin Ladybird Beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). INSECTS 2021; 12:insects12030209. [PMID: 33801288 PMCID: PMC8002065 DOI: 10.3390/insects12030209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary The predatory harlequin ladybird Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) has been widely released for classical and augmentative biological control programs of insect herbivores and is now distributed worldwide. Because of its invasive behavior and the threat it can pose to local biodiversity, this ladybird has been adopted as a model species for invasive biocontrol predators. A huge amount of existing literature is available on this species. However, little is known about the mechanisms underlying H. axyridis smell and taste, even though these senses are important in this ladybird for courtship, mating, and for locating suitable habitats for feeding and oviposition. Here we describe the first chemosensory gene repertoire that is expressed in the antennae of male and female H. axyridis. Our findings would likely represent the basis for future functional studies aiming at increasing the efficacy of H. axyridis in biological control or at reducing its populations in those areas where the ladybird has become a matter of concern due to its invasiveness. Abstract In predatory ladybirds (Coleoptera: Coccinellidae), antennae are important for chemosensory reception used during food and mate location, and for finding a suitable oviposition habitat. Based on NextSeq 550 Illumina sequencing, we assembled the antennal transcriptome of mated Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) males and females and described the first chemosensory gene repertoire expressed in this species. We annotated candidate chemosensory sequences encoding 26 odorant receptors (including the coreceptor, Orco), 17 gustatory receptors, 27 ionotropic receptors, 31 odorant-binding proteins, 12 chemosensory proteins, and 4 sensory neuron membrane proteins. Maximum-likelihood phylogenetic analyses allowed to assign candidate H. axyridis chemosensory genes to previously described groups in each of these families. Differential expression analysis between males and females revealed low variability between sexes, possibly reflecting the known absence of relevant sexual dimorphism in the structure of the antennae and in the distribution and abundance of the sensilla. However, we revealed significant differences in expression of three chemosensory genes, namely two male-biased odorant-binding proteins and one male-biased odorant receptor, suggesting their possible involvement in pheromone detection. Our data pave the way for improving the understanding of the molecular basis of chemosensory reception in Coccinellidae.
Collapse
Affiliation(s)
- Gabriele Rondoni
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 16123 Perugia, Italy; (A.R.); (E.C.)
- Correspondence:
| | - Alessandro Roman
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 16123 Perugia, Italy; (A.R.); (E.C.)
| | - Camille Meslin
- Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, 75013 Versailles, France; (C.M.); (N.M.); (E.J.-J.)
| | - Nicolas Montagné
- Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, 75013 Versailles, France; (C.M.); (N.M.); (E.J.-J.)
| | - Eric Conti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 16123 Perugia, Italy; (A.R.); (E.C.)
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, 75013 Versailles, France; (C.M.); (N.M.); (E.J.-J.)
| |
Collapse
|
25
|
González MA, Goiri F, Barandika JF, García-Pérez AL. Culicoides biting midges and mosquito fauna at three dog and cat shelters in rural and periurban areas in Northern Spain. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:79-87. [PMID: 32840900 DOI: 10.1111/mve.12471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The diversity and abundance of Culicoides (Diptera: Ceratopogonidae) and mosquitoes (Diptera: Culicidae) were studied in three animal protection centres (APCs) in Northern Spain between 1 July and 31 October 2018. Four miniature suction CDC light traps (two UV and two standard incandescent bulb traps, both types baited and non-baited with CO2 ) were placed in each APC to compare their efficiency in the collection of these Diptera groups. A total of 1176 biting midges (14 species), 224 mosquitoes (8 species) and 1 black fly were collected and identified by both morphological and molecular approaches. The Culicoides obsoletus complex (C. obsoletus/C. scoticus) accounted for 58.2% of the total collection within the Ceratopogonidae family, whereas Culex pipiens/Cx. torrentium comprised 76.8% of the Culicidae. The input of CO2 in light traps proved largely ineffective in improving the collections of both Diptera groups. UV-light traps were 7.8 and 2.2 times more effective than incandescent light traps in trapping Culicoides and mosquitoes, respectively. Seasonal dynamics differed between both Diptera taxa but captures of both taxa were significantly larger at the beginning of the summer. The epidemiological relevance of the most prevalent species is also discussed.
Collapse
Affiliation(s)
- M A González
- Department of Animal Health. NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - F Goiri
- Department of Animal Health. NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - J F Barandika
- Department of Animal Health. NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - A L García-Pérez
- Department of Animal Health. NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| |
Collapse
|
26
|
Schneider D, Ramos AG, Córdoba‐Aguilar A. Multigenerational experimental simulation of climate change on an economically important insect pest. Ecol Evol 2020; 10:12893-12909. [PMID: 33304502 PMCID: PMC7713942 DOI: 10.1002/ece3.6847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022] Open
Abstract
Long-term multigenerational experimental simulations of climate change on insect pests of economically and socially important crops are crucial to anticipate challenges for feeding humanity in the not-so-far future. Mexican bean weevil Zabrotes subfasciatus, is a worldwide pest that attacks the common bean Phaseolus vulgaris seeds, in crops and storage. We designed a long term (i.e., over 10 generations), experimental simulation of climate change by increasing temperature and CO2 air concentration in controlled conditions according to model predictions for 2100. Higher temperature and CO2 concentrations favored pest's egg-to-adult development survival, even at high female fecundity. It also induced a reduction of fat storage and increase of protein content but did not alter body size. After 10 generations of simulation, genetic adaptation was detected for total lipid content only, however, other traits showed signs of such process. Future experimental designs and methods similar to ours, are key for studying long-term effects of climate change through multigenerational experimental designs.
Collapse
Affiliation(s)
- David Schneider
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoMéxicoMexico
| | - Alejandra G. Ramos
- Facultad de CienciasUniversidad Autónoma de Baja CaliforniaEnsenadaMexico
| | - Alex Córdoba‐Aguilar
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoMéxicoMexico
| |
Collapse
|
27
|
Xu W. How do moth and butterfly taste?-Molecular basis of gustatory receptors in Lepidoptera. INSECT SCIENCE 2020; 27:1148-1157. [PMID: 31433559 PMCID: PMC7687262 DOI: 10.1111/1744-7917.12718] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/21/2019] [Accepted: 08/10/2019] [Indexed: 05/04/2023]
Abstract
Insect gustatory system plays a central role in guiding insect feeding behaviors, insect-plant interactions and coevolutions. Gustatory receptors (GRs) form the interface between the insect taste system and their environment. Previously, most studies on insect GRs are focused on Drosophila; much less attention has been paid to Lepidoptera species, which consist of a large number of serious agricultural crop pests. With the exceptional advances in the next generation sequencing (NGS), cellular biology, RNA interference (RNAi), and clustered regularly interspaced short palindromic repeats (CRISPR) technologies in recent years, extraordinary progresses have been achieved elucidating the molecular mechanisms of Lepidopteran GRs. In this review, we highlighted these advances, discussed what these advances have revealed and provide our new insights into this field.
Collapse
Affiliation(s)
- Wei Xu
- Agricultural SciencesCollege of Science, Health, Engineering and Education, Murdoch UniversityWAAustralia
| |
Collapse
|
28
|
Neuronal architecture of the second-order CO 2 pathway in the brain of a noctuid moth. Sci Rep 2020; 10:19838. [PMID: 33199810 PMCID: PMC7669840 DOI: 10.1038/s41598-020-76918-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022] Open
Abstract
Many insects possess the ability to detect fine fluctuations in the environmental CO2 concentration. In herbivorous species, plant-emitted CO2, in combination with other sensory cues, affect many behaviors including foraging and oviposition. In contrast to the comprehensive knowledge obtained on the insect olfactory pathway in recent years, we still know little about the central CO2 system. By utilizing intracellular labeling and mass staining, we report the neuroanatomy of projection neurons connected with the CO2 sensitive antennal-lobe glomerulus, the labial pit organ glomerulus (LPOG), in the noctuid moth, Helicoverpa armigera. We identified 15 individual LPOG projection neurons passing along different tracts. Most of these uniglomerular neurons terminated in the lateral horn, a previously well-described target area of plant-odor projection neurons originating from the numerous ordinary antennal-lobe glomeruli. The other higher-order processing area for odor information, the calyces, on the other hand, was weakly innervated by the LPOG neurons. The overlapping LPOG terminals in the lateral horn, which is considered important for innate behavior in insects, suggests the biological importance of integrating the CO2 input with plant odor information while the weak innervation of the calyces indicates the insignificance of this ubiquitous cue for learning mechanisms.
Collapse
|
29
|
Poldy J. Volatile Cues Influence Host-Choice in Arthropod Pests. Animals (Basel) 2020; 10:E1984. [PMID: 33126768 PMCID: PMC7692281 DOI: 10.3390/ani10111984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 01/05/2023] Open
Abstract
Many arthropod pests of humans and other animals select their preferred hosts by recognising volatile odour compounds contained in the hosts' 'volatilome'. Although there is prolific literature on chemical emissions from humans, published data on volatiles and vector attraction in other species are more sporadic. Despite several decades since the identification of a small number of critical volatiles underpinning specific host-vector relationships, synthetic chemicals or mixtures still largely fail to reproduce the attractiveness of natural hosts to their disease vectors. This review documents allelochemicals from non-human terrestrial animals and considers where challenges in collection and analysis have left shortfalls in animal volatilome research. A total of 1287 volatile organic compounds were identified from 141 species. Despite comparable diversity of entities in each compound class, no specific chemical is ubiquitous in all species reviewed, and over half are reported as unique to a single species. This review provides a rationale for future enquiries by highlighting research gaps, such as disregard for the contribution of breath volatiles to the whole animal volatilome and evaluating the role of allomones as vector deterrents. New opportunities to improve vector surveillance and disrupt disease transmission may be unveiled by understanding the host-associated stimuli that drive vector-host interactions.
Collapse
Affiliation(s)
- Jacqueline Poldy
- Commonwealth Scientific and Industrial Research Organisation, Health & Biosecurity, Black Mountain Laboratory, Canberra, ACT 2601, Australia
| |
Collapse
|
30
|
Alnajim I, Agarwal M, Liu T, Ren Y. A Novel Method for the Analysis of Volatile Organic Compounds (VOCs) from Red Flour Beetle Tribolium castaneum (H.) using Headspace-SPME Technology. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411015666190117125920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae)
is one of the world’s most serious stored grain insect pests. A method of early and rapid identification
of red flour beetle in stored products is urgently required to improve control options. Specific
chemical signals identified as Volatile Organic Compounds (VOCs) that are released by the
beetle can serve as biomarkers.
Methods:
The Headspace Solid Phase Microextraction (HS-SPME) technique and the analytical
conditions with GC and GCMS were optimised and validated for the determination of VOCs released
from T. castaneum.
Results:
The 50/30 μm DVB/CAR/PDMS SPME fibre was selected for extraction of VOCs from
T. castaneum. The efficiency of extraction of VOCs was significantly affected by the extraction time,
temperature, insect density and type of SPME fibre. Twenty-three VOCs were extracted from insects
in 4 mL flask at 35 ± 1°C for four hours of extraction and separated and identified with gas
chromatography-mass spectroscopy. The major VOCs or chemical signals from T. castaneum were
1-pentadecene, p-Benzoquinone, 2-methyl- and p-Benzoquinone, 2-ethyl.
Conclusion:
This study showed that HS-SPME GC technology is a robust and cost-effective method
for extraction and identification of the unique VOCs produced by T. castaneum. Therefore, this technology
could lead to a new approach in the timely detection of T. castaneum and its subsequent
treatment.
Collapse
Affiliation(s)
- Ihab Alnajim
- School of Veterinary and Life Sciences, Murdoch University, 90 South St., Murdoch, WA 6150, Australia
| | - Manjree Agarwal
- School of Veterinary and Life Sciences, Murdoch University, 90 South St., Murdoch, WA 6150, Australia
| | - Tao Liu
- Chinese Academy of Inspection and Quarantine, No. 241, Huixinxijie, Chaoyang District, Beijing 100029, China
| | - YongLin Ren
- School of Veterinary and Life Sciences, Murdoch University, 90 South St., Murdoch, WA 6150, Australia
| |
Collapse
|
31
|
Ibáñez-Justicia A, Koenraadt CJM, Stroo A, van Lammeren R, Takken W. Risk-Based and Adaptive Invasive Mosquito Surveillance at Lucky Bamboo and Used Tire Importers in the Netherlands. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2020; 36:89-98. [PMID: 33647128 DOI: 10.2987/20-6914.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The detection of Aedes albopictus in Lucky bamboo (Dracaena sanderiana) greenhouses and Ae. atropalpus at used tire importers illustrates that the Netherlands is exposed to the risk of introductions of invasive mosquito species (IMS). In this study we implemented a risk-based and adaptive surveillance (2010-16) in order to detect introductions and prevent potential proliferation of IMS at these locations. Results at Lucky bamboo greenhouses show that interceptions of Ae. albopictus occurred every year, with 2010 and 2012 being the years with most locations found positive for this species (n = 6), and 2015 the year with the highest percentage of positive samples (4.1%). Furthermore, our results demonstrate that Ae. japonicus can also be associated with the import of Lucky bamboo. At used tire companies, IMS were found at 12 locations. Invasive mosquito species identified were Ae. albopictus, Ae. atropalpus, Ae. aegypti, and Ae. japonicus, of which Ae. albopictus has been found every year since 2010. The proportion of samples containing IMS was significantly higher before application of a covenant between the used tire importers and the Dutch government in 2013 (12.96%) than in the successive 3 years (2014 [6.93%], 2015 [4.24%], 2016 [5.09%], 1-sided binomial test, P < 0.01). It is concluded that risk-based and adaptive surveillance is an effective methodology for detection of IMS, and that application of governmental management measures in combination with mosquito control has stabilized the situation.
Collapse
Affiliation(s)
- Adolfo Ibáñez-Justicia
- Centre for Monitoring of Vectors, Netherlands Food and Consumer Product Safety Authority, Geertjesweg 15, 6706 EA Wageningen, The Netherlands
| | - Constantianus J M Koenraadt
- Wageningen University & Research, Department of Plant Sciences, Laboratory of Entomology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Arjan Stroo
- Centre for Monitoring of Vectors, Netherlands Food and Consumer Product Safety Authority, Geertjesweg 15, 6706 EA Wageningen, The Netherlands
| | - Ron van Lammeren
- Wageningen University & Research, Department of Environmental Sciences, Laboratory of Geo-information Science and Remote Sensing, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Willem Takken
- Wageningen University & Research, Department of Plant Sciences, Laboratory of Entomology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
32
|
Siehler O, Bloch G. Colony Volatiles and Substrate-borne Vibrations Entrain Circadian Rhythms and Are Potential Cues Mediating Social Synchronization in Honey Bee Colonies. J Biol Rhythms 2020; 35:246-256. [PMID: 32295458 DOI: 10.1177/0748730420913362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Internal circadian clocks organize animal behavior and physiology and are entrained by ecologically relevant external time-givers such as light and temperature cycles. In the highly social honey bee, social time-givers are potent and can override photic entrainment, but the cues mediating social entrainment are unknown. Here, we tested whether substrate-borne vibrations and hive volatiles can mediate social synchronization in honey bees. We first placed newly emerged worker bees on the same or on a different substrate on which we placed cages with foragers entrained to ambient day-night cycles, while minimizing the spread of volatiles between cages. In the second experiment, we exposed young bees to constant airflow drawn from either a free-foraging colony or a similar-size control hive containing only heated empty honeycombs, while minimizing transfer of substrate-borne vibrations between cages. After 6 days, we isolated each focal bee in an individual cage in an environmental chamber and monitored her locomotor activity. We repeated each experiment 5 times, each trial with bees from a different source colony, monitoring a total of more than 1000 bees representing diverse genotypes. We found that bees placed on the same substrate as foragers showed a stronger phase coherence and a phase more similar to that of foragers compared with bees placed on a different substrate. In the second experiment, bees exposed to air drawn from a colony showed a stronger phase coherence and a phase more similar to that of foragers compared with bees exposed to air from an empty hive. These findings lend credence to the hypothesis that surrogates of activity entrain circadian rhythms and suggest that multiple social cues can act in concert to entrain social insect colonies to a common phase.
Collapse
Affiliation(s)
- Oliver Siehler
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel.,The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
| |
Collapse
|
33
|
Botha A, Kunert KJ, Maling’a J, Foyer CH. Defining biotechnological solutions for insect control in sub‐Saharan Africa. Food Energy Secur 2020. [DOI: 10.1002/fes3.191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Anna‐Maria Botha
- Department of Genetics Stellenbosch University Stellenbosch South Africa
| | - Karl J. Kunert
- Department of Plant Sciences FABI University of Pretoria Pretoria South Africa
| | - Joyce Maling’a
- Kenya Agriculture and Livestock Organization (KALRO) Food Crops Research Institute Kitale Kenya
| | - Christine H. Foyer
- School of Biosciences College of Life and Environmental Sciences University of Birmingham, Edgbaston Birmingham UK
| |
Collapse
|
34
|
Sun YL, Dong JF, Gu N, Wang SL. Identification of Candidate Chemosensory Receptors in the Antennae of the Variegated Cutworm, Peridroma saucia Hübner, Based on a Transcriptome Analysis. Front Physiol 2020; 11:39. [PMID: 32082194 PMCID: PMC7005060 DOI: 10.3389/fphys.2020.00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/16/2020] [Indexed: 12/26/2022] Open
Abstract
Insect chemoreception, including olfaction and gustation, involves several families of genes, including odorant receptors (ORs), ionotropic receptors (IRs), and gustatory receptors (GRs). The variegated cutworm Peridroma saucia Hübner (Lepidoptera: Noctuidae) is a worldwide agricultural pest that causes serious damage to many crops. To identify such olfactory and gustatory receptors in P. saucia, we performed a systematic analysis of the antennal transcriptome of adult P. saucia through Illumina sequencing. A total of 103 candidate chemosensory receptor genes were identified, including 63 putative ORs, 10 GRs, 24 IRs, and 6 ionotropic glutamate receptors (iGluRs). Phylogenetic relationships of these genes with those from other species were predicted, and specific chemosensory receptor genes were analyzed, including ORco, pheromone receptors (PRs), sugar receptors, CO2 receptors, and IR co-receptors. RT-qPCR analyses of these annotated genes revealed that 6 PRs were predominantly expressed in male antennae; 3 ORs, 1 GR, 2 IRs, and 2 iGluRs had higher expression levels in male than in female antennae; and 14 ORs, 1 GR, and 3 IRs had higher expression levels in female than in male antennae. This research increases the understanding of olfactory and gustatory systems in the antennae of P. saucia and facilitates the discovery of novel strategies for controlling this pest.
Collapse
Affiliation(s)
- Ya-Lan Sun
- Forestry College, Henan University of Science and Technology, Luoyang, China
| | - Jun-Feng Dong
- Forestry College, Henan University of Science and Technology, Luoyang, China
| | - Nan Gu
- Forestry College, Henan University of Science and Technology, Luoyang, China
| | - Shao-Li Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
Beets I, Zhang G, Fenk LA, Chen C, Nelson GM, Félix MA, de Bono M. Natural Variation in a Dendritic Scaffold Protein Remodels Experience-Dependent Plasticity by Altering Neuropeptide Expression. Neuron 2019; 105:106-121.e10. [PMID: 31757604 PMCID: PMC6953435 DOI: 10.1016/j.neuron.2019.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 08/18/2019] [Accepted: 09/28/2019] [Indexed: 12/13/2022]
Abstract
The extent to which behavior is shaped by experience varies between individuals. Genetic differences contribute to this variation, but the neural mechanisms are not understood. Here, we dissect natural variation in the behavioral flexibility of two Caenorhabditis elegans wild strains. In one strain, a memory of exposure to 21% O2 suppresses CO2-evoked locomotory arousal; in the other, CO2 evokes arousal regardless of previous O2 experience. We map that variation to a polymorphic dendritic scaffold protein, ARCP-1, expressed in sensory neurons. ARCP-1 binds the Ca2+-dependent phosphodiesterase PDE-1 and co-localizes PDE-1 with molecular sensors for CO2 at dendritic ends. Reducing ARCP-1 or PDE-1 activity promotes CO2 escape by altering neuropeptide expression in the BAG CO2 sensors. Variation in ARCP-1 alters behavioral plasticity in multiple paradigms. Our findings are reminiscent of genetic accommodation, an evolutionary process by which phenotypic flexibility in response to environmental variation is reset by genetic change. Behavioral flexibility varies across Caenorhabditis and C. elegans wild isolates A natural polymorphism in ARCP-1 underpins inter-individual variation in plasticity ARCP-1 is a dendritic scaffold protein localizing cGMP signaling machinery to cilia Disrupting ARCP-1 alters behavioral plasticity by changing neuropeptide expression
Collapse
Affiliation(s)
- Isabel Beets
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Gaotian Zhang
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris 75005, France
| | - Lorenz A Fenk
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Changchun Chen
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Geoffrey M Nelson
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris 75005, France.
| | - Mario de Bono
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
36
|
Conchou L, Lucas P, Meslin C, Proffit M, Staudt M, Renou M. Insect Odorscapes: From Plant Volatiles to Natural Olfactory Scenes. Front Physiol 2019; 10:972. [PMID: 31427985 PMCID: PMC6688386 DOI: 10.3389/fphys.2019.00972] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/11/2019] [Indexed: 11/13/2022] Open
Abstract
Olfaction is an essential sensory modality for insects and their olfactory environment is mostly made up of plant-emitted volatiles. The terrestrial vegetation produces an amazing diversity of volatile compounds, which are then transported, mixed, and degraded in the atmosphere. Each insect species expresses a set of olfactory receptors that bind part of the volatile compounds present in its habitat. Insect odorscapes are thus defined as species-specific olfactory spaces, dependent on the local habitat, and dynamic in time. Manipulations of pest-insect odorscapes are a promising approach to answer the strong demand for pesticide-free plant-protection strategies. Moreover, understanding their olfactory environment becomes a major concern in the context of global change and environmental stresses to insect populations. A considerable amount of information is available on the identity of volatiles mediating biotic interactions that involve insects. However, in the large body of research devoted to understanding how insects use olfaction to locate resources, an integrative vision of the olfactory environment has rarely been reached. This article aims to better apprehend the nature of the insect odorscape and its importance to insect behavioral ecology by reviewing the literature specific to different disciplines from plant ecophysiology to insect neuroethology. First, we discuss the determinants of odorscape composition, from the production of volatiles by plants (section "Plant Metabolism and Volatile Emissions") to their filtering during detection by the olfactory system of insects (section "Insect Olfaction: How Volatile Plant Compounds Are Encoded and Integrated by the Olfactory System"). We then summarize the physical and chemical processes by which volatile chemicals distribute in space (section "Transportation of Volatile Plant Compounds and Spatial Aspects of the Odorscape") and time (section "Temporal Aspects: The Dynamics of the Odorscape") in the atmosphere. The following sections consider the ecological importance of background odors in odorscapes and how insects adapt to their olfactory environment. Habitat provides an odor background and a sensory context that modulate the responses of insects to pheromones and other olfactory signals (section "Ecological Importance of Odorscapes"). In addition, insects do not respond inflexibly to single elements in their odorscape but integrate several components of their environment (section "Plasticity and Adaptation to Complex and Variable Odorscapes"). We finally discuss existing methods of odorscape manipulation for sustainable pest insect control and potential future developments in the context of agroecology (section "Odorscapes in Plant Protection and Agroecology").
Collapse
Affiliation(s)
- Lucie Conchou
- INRA, Sorbonne Université, INRA, CNRS, UPEC, IRD, University P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Philippe Lucas
- INRA, Sorbonne Université, INRA, CNRS, UPEC, IRD, University P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Camille Meslin
- INRA, Sorbonne Université, INRA, CNRS, UPEC, IRD, University P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Magali Proffit
- CEFE, CNRS, EPHE, IRD, Université de Montpellier, Université Paul-Valéry Montpellier, Montpellier, France
| | - Michael Staudt
- CEFE, CNRS, EPHE, IRD, Université de Montpellier, Université Paul-Valéry Montpellier, Montpellier, France
| | - Michel Renou
- INRA, Sorbonne Université, INRA, CNRS, UPEC, IRD, University P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| |
Collapse
|
37
|
Nowińska A, Brożek J. Antennal sensory structures in water bugs of Nepoidea (Insecta: Hemiptera: Nepomorpha), their morphology and function. ZOOMORPHOLOGY 2019. [DOI: 10.1007/s00435-019-00446-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Peach DAH, Gries R, Zhai H, Young N, Gries G. Multimodal floral cues guide mosquitoes to tansy inflorescences. Sci Rep 2019; 9:3908. [PMID: 30846726 PMCID: PMC6405845 DOI: 10.1038/s41598-019-39748-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/29/2019] [Indexed: 12/24/2022] Open
Abstract
Female mosquitoes exploit olfactory, CO2, visual, and thermal cues to locate vertebrate hosts. Male and female mosquitoes also consume floral nectar that provides essential energy for flight and survival. Heretofore, nectar-foraging mosquitoes were thought to be guided solely by floral odorants. Using common tansies, Tanacetum vulgare L., northern house mosquitoes, Culex pipiens L., and yellow fever mosquitoes, Aedes aegpyti (L.), we tested the hypothesis that the entire inflorescence Gestalt of olfactory, CO2 and visual cues is more attractive to mosquitoes than floral odorants alone. In laboratory experiments, we demonstrated that visual and olfactory inflorescence cues in combination attract more mosquitoes than olfactory cues alone. We established that tansies become net producers of CO2 after sunset, and that CO2 enhances the attractiveness of a floral blend comprising 20 synthetic odorants of tansy inflorescences. This blend included nine odorants found in human headspace. The "human-odorant-blend" attracted mosquitoes but was less effective than the entire 20-odorant floral blend. Our data support the hypothesis that the entire inflorescence Gestalt of olfactory, CO2 and visual cues is more attractive to mosquitoes than floral odorants alone. Overlapping cues between plants and vertebrates support the previously postulated concept that haematophagy of mosquitoes may have arisen from phytophagy.
Collapse
Affiliation(s)
- Daniel A H Peach
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Regine Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Huimin Zhai
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
- Eurofins|Alphora Research Inc., Mississauga, Ontario, L5K 1B3, Canada
| | - Nathan Young
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
39
|
Yan X, Wang Z, Xie J, Deng C, Sun X, Hao C. Glomerular Organization of the Antennal Lobes of the Diamondback Moth, Plutella xylostella L. Front Neuroanat 2019; 13:4. [PMID: 30804761 PMCID: PMC6371844 DOI: 10.3389/fnana.2019.00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/14/2019] [Indexed: 11/17/2022] Open
Abstract
The antennal lobe of the moth brain is the primary olfactory center processing information concerning pheromones and plant odors. Plutella xylostella is a major worldwide pest of cruciferous vegetables and its behavior is highly dependent on their olfactory system. However, detailed knowledge of the anatomy and function of the P. xylostella olfactory system remains limited. In the present study, we present the 3-Dimentional (3-D) map of the antennal lobe of P. xylostella, based on confocal microscopic analysis of glomerular segmentation and Neurobiotin backfills of Olfactory Receptor Neurons (ORNs). We identified 74–76 ordinary glomeruli and a macroglomerular complex (MGC) situated at the entrance of the antennal nerve in males. The MGC contained three glomeruli. The volumes of glomeruli in males ranged from 305.83 ± 129.53 to 25440.00 ± 1377.67 μm3. In females, 74–77 glomeruli were found, with the largest glomerulus ELG being situated at the entrance of the antennal nerve. The volumes of glomeruli in females ranged from 802.17 ± 95.68 to 8142.17 ± 509.46 μm3. Sexual dimorphism was observed in anomalous supernumerary, anomalous missing, shape, size, and array of several of the identified glomeruli in both sexes. All glomeruli, except one in the antennal lobe (AL), received projections of antennal ORNs. The glomeruli PV1 in both sexes received input from the labial palp nerve and was assumed as the labial pit organ glomerulus (LPOG). These results provide a foundation for better understanding of coding mechanisms of odors in this important pest insect.
Collapse
Affiliation(s)
- Xizhong Yan
- Department of Entomology, Agricultural College, Shanxi Agricultural University, Taigu, China
| | - Zhiyu Wang
- Department of Entomology, Agricultural College, Shanxi Agricultural University, Taigu, China
| | - Jiaoxin Xie
- Department of Entomology, Agricultural College, Shanxi Agricultural University, Taigu, China
| | - Caiping Deng
- Department of Entomology, Forestry College, Shanxi Agricultural University, Taigu, China
| | - Xuejun Sun
- Department of Entomology, Agricultural College, Shanxi Agricultural University, Taigu, China.,Department of Experimental Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Chi Hao
- Department of Entomology, Agricultural College, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
40
|
Qian L, He S, Liu X, Huang Z, Chen F, Gui F. Effect of elevated CO 2 on the interaction between invasive thrips, Frankliniella occidentalis, and its host kidney bean, Phaseolus vulgaris. PEST MANAGEMENT SCIENCE 2018; 74:2773-2782. [PMID: 29737621 DOI: 10.1002/ps.5064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/03/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Elevated CO2 can alter the leaf damage caused by insect herbivores. Frankliniella occidentalis (Pergande) is highly destructive invasive pest of crop production worldwide. To investigate how elevated CO2 affects F. occidentalis fed with Phaseolus vulgaris and, in particular, the interaction between plant defense and thrips anti-defense, nutrient content and antioxidant enzyme activity of P. vulgaris were measured, as well as the detoxifying enzyme activity of adult thrips. RESULTS Elevated CO2 increased the soluble sugar, soluble protein and free amino acid content in non thrip-infested plants, and decreased superoxide dismutase (SOD) and peroxidase (POD) activity in these plants. Feeding thrips reduced the nutrient content in plants, and increased their SOD, catalase and POD activity. Variations in nutrient content and antioxidant enzyme activity in plants showed an opposite tendency over thrip feeding time. After feeding, acetylcholinesterase, carboxylesterase, and mixed-function oxidase activity in thrips increased to counter the plant defenses. Greater thrip densities induced stronger plant defenses and, in turn, detoxifying enzyme levels in thrips increased over thrip numbers. CONCLUSION Our study revealed that F. occidentalis can induce not only an antioxidant-associated plant defense, but also detoxifying enzymes in thrips. Elevated CO2 might both enhance plant defense against thrip attack, and increase thrip anti-defense against plant defenses. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lei Qian
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Shuqi He
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xiaowei Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zujin Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Fajun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Furong Gui
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
41
|
van Breugel F, Huda A, Dickinson MH. Distinct activity-gated pathways mediate attraction and aversion to CO 2 in Drosophila. Nature 2018. [PMID: 30464346 DOI: 10.1038/s41586-018-0732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Carbon dioxide is produced by many organic processes and is a convenient volatile cue for insects1 that are searching for blood hosts2, flowers3, communal nests4, fruit5 and wildfires6. Although Drosophila melanogaster feed on yeast that produce CO2 and ethanol during fermentation, laboratory experiments7-12 suggest that walking flies avoid CO2. Here we resolve this paradox by showing that both flying and walking Drosophila find CO2 attractive, but only when they are in an active state associated with foraging. Their aversion to CO2 at low-activity levels may be an adaptation to avoid parasites that seek CO2, or to avoid succumbing to respiratory acidosis in the presence of high concentrations of CO2 that exist in nature13,14. In contrast to CO2, flies are attracted to ethanol in all behavioural states, and invest twice the time searching near ethanol compared to CO2. These behavioural differences reflect the fact that ethanol is a unique signature of yeast fermentation, whereas CO2 is generated by many natural processes. Using genetic tools, we determined that the evolutionarily conserved ionotropic co-receptor IR25a is required for CO2 attraction, and that the receptors necessary for CO2 avoidance are not involved in this attraction. Our study lays the foundation for future research to determine the neural circuits that underlie both state- and odorant-dependent decision-making in Drosophila.
Collapse
Affiliation(s)
- Floris van Breugel
- California Institute of Technology, Pasadena, CA, USA.,University of Nevada, Reno, NV, USA
| | - Ainul Huda
- California Institute of Technology, Pasadena, CA, USA
| | | |
Collapse
|
42
|
Distinct activity-gated pathways mediate attraction and aversion to CO 2 in Drosophila. Nature 2018; 564:420-424. [PMID: 30464346 PMCID: PMC6314688 DOI: 10.1038/s41586-018-0732-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 10/11/2018] [Indexed: 12/18/2022]
Abstract
Carbon dioxide is produced by many organic processes, and is a convenient volatile cue for insects1 searching for blood hosts2, flowers3, communal nests4, fruit5, and wildfires6. Curiously, although Drosophila melanogaster feed on yeast that produce CO2 and ethanol during fermentation, laboratory experiments suggest that walking flies avoid CO27–12. Here, we resolve this paradox by showing that both flying and walking Drosophila find CO2 attractive, but only when in an active state associated with foraging. Aversion at low activity levels may be an adaptation to avoid CO2-seeking-parasites, or succumbing to respiratory acidosis in the presence of high concentrations of CO2 that exist in nature13,14. In contrast to CO2, flies are attracted to ethanol in all behavioral states, and invest twice the time searching near ethanol compared to CO2. These behavioral differences reflect the fact that whereas CO2 is generated by many natural processes, ethanol is a unique signature of yeast fermentation. Using genetic tools, we determined that the evolutionarily ancient ionotropic co-receptor IR25a is required for CO2 attraction, and that the receptors necessary for CO2 avoidance are not involved. Our study lays the foundation for future research to determine the neural circuits underlying both state- and odorant- dependent decision making in Drosophila.
Collapse
|
43
|
Elevated atmospheric CO 2 promoted speciation in mosquitoes (Diptera, Culicidae). Commun Biol 2018; 1:182. [PMID: 30417119 PMCID: PMC6218564 DOI: 10.1038/s42003-018-0191-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/11/2018] [Indexed: 11/18/2022] Open
Abstract
Mosquitoes are of great medical significance as vectors of deadly diseases. Despite this, little is known about their evolutionary history or how their present day diversity has been shaped. Within a phylogenetic framework, here we show a strong correlation between climate change and mosquito speciation rates: the first time to our knowledge such an effect has been demonstrated for insects. Information theory reveals that although climate change is correlated with mosquito evolution there are other important factors at play. We identify one such driver to be the rise of mammals, which are predominant hosts of Culicidae. Regardless of the precise mechanism, we demonstrate a strong historical association. This finding, taken in combination with projected rises in atmospheric CO2 from anthropogenic activity, has important implications for culicid vector distributions and abundance, and consequently for human health. Chufei Tang and Katie E. Davis et al. show that an elevated atmospheric CO2 promotes the speciation rates of mosquitoes. They demonstrate that climate change can expedite the evolution of mammalian disease vectors, potentially increasing vector−pathogen interactions and affecting human health.
Collapse
|
44
|
Hu P, Gao C, Tao J, Lu P, Luo Y, Ren L. Sensilla on six olfactory organs of male Eogystia hippophaecolus (Lepidoptera: Cossidae). Microsc Res Tech 2018; 81:1059-1070. [PMID: 30351496 DOI: 10.1002/jemt.23072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 05/05/2018] [Accepted: 05/25/2018] [Indexed: 11/07/2022]
Abstract
Eogystia hippophaecolus (Hua et al.) is an important boring pest that primarily damages sea buckthorn, causing large ecological and economic damages in China. In this study, we used scanning electron microscopy to investigate the sensilla on six olfactory tissues of male E. hippophaecolus: antennae, labial palps, external genitals, propodeum, mesopodium, and metapedes. On the antennae, two types of sensillum trichodea, two types of sensillum basiconica, a type of sensillum coeloconica, and Böhm's bristles were found. The labial palps had sensilla trichodea and chaetica. On the external genitals, three types of sensilla trichodea were the only sensilla. Böhm bristles were found on the base of the tibia and at the terminus of the tarsus. Most sensilla were distributed on the tarsus of the three pairs of legs, and notably, a majority of which were sensilla trichodea and sensilla chaetica, were on the pretarsus and telotarsus of the three pairs of legs. In this study, the distribution, number, type, and morphology of the sensilla on six olfactory organs of E. hippophaecolus were determined, which established the foundation for a future immunohistochemical search of olfactory proteins. RESEARCH HIGHLIGHTS: Eogystia hippophaecolus is a serious pest of seabuckthorn. The distribution, number, type, and morphology of olfactory sensilla of E. hippophaecolus are determined. The function and distribution of sensilla are compared with those of other insects.
Collapse
Affiliation(s)
- Ping Hu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, P. R. China
- Xingan Vocational and technical college, Xinganmeng, China
| | - Chenglong Gao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, P. R. China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, P. R. China
| | - Pengfei Lu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, P. R. China
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, P. R. China
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, P. R. China
| |
Collapse
|
45
|
Dai Y, Wang MF, Jiang SL, Zhang YF, Parajulee MN, Chen FJ. Host-selection behavior and physiological mechanisms of the cotton aphid, Aphis gossypii, in response to rising atmospheric carbon dioxide levels. JOURNAL OF INSECT PHYSIOLOGY 2018; 109:149-156. [PMID: 29859837 DOI: 10.1016/j.jinsphys.2018.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Rising atmospheric carbon dioxide (CO2) levels can markedly affect the growth, development, reproduction and behavior of herbivorous insects, mainly by changing the primary and secondary metabolites of their host plants. However, little is known about the host-selection behavior and the respective intrinsic mechanism of sap-sucking insects in response to elevated CO2. In this experiment, the host-selection behavior, as well as the physiological mechanism based on the analysis of growth, development and energy substances, and the expression of the olfactory-related genes of the cotton aphid, Aphis gossypii, were studied under ambient (407.0 ± 4.3 μl/L) and elevated (810.5 ± 7.2 μl/L) CO2. The results indicated that the aphids reared under ambient and elevated CO2 did not differ in their level of preference for cotton seedlings, whatever the CO2 conditions in which the plants developed. However, aphids reared under elevated CO2 showed a greater ability to respond to the plant volatiles compared to aphids that developed under ambient CO2 (+23.3%). This suggests that rising atmospheric CO2 enhances the activity of host selection in this aphid. Compared with ambient CO2, elevated CO2 significantly increased aphid body weight (+36.7%) and the contents of glycogen (+18.9%), body fat (+14.6%), and amino acids (+16.8%) and increased the expression of odor-binding protein genes, OBP2 (+299.6%) and OBP7 (+47.4%), and chemosensory protein genes, CSP4 (+265.3%) and CSP6 (+50.9%), potentially enhancing the overall life activities and upregulating the olfactory ability of A. gossypii. We speculated that the rising atmospheric CO2 level would likely aggravate the damage caused by A. gossypii due to the higher potential host selection and increased general activity under future climate change.
Collapse
Affiliation(s)
- Yang Dai
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Meng-Fei Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Shou-Lin Jiang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; College of Civil Engineering and Architecture, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Yi-Fei Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Megha N Parajulee
- Texas A&M University AgriLife Research and Extension Center, Lubbock 79403-9803, TX, USA
| | - Fa-Jun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
46
|
Cho B, Spratford CM, Yoon S, Cha N, Banerjee U, Shim J. Systemic control of immune cell development by integrated carbon dioxide and hypoxia chemosensation in Drosophila. Nat Commun 2018; 9:2679. [PMID: 29992947 PMCID: PMC6041325 DOI: 10.1038/s41467-018-04990-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/08/2018] [Indexed: 02/04/2023] Open
Abstract
Drosophila hemocytes are akin to mammalian myeloid blood cells that function in stress and innate immune-related responses. A multi-potent progenitor population responds to local signals and to systemic stress by expanding the number of functional blood cells. Here we show mechanisms that demonstrate an integration of environmental carbon dioxide (CO2) and oxygen (O2) inputs that initiate a cascade of signaling events, involving multiple organs, as a stress response when the levels of these two important respiratory gases fall below a threshold. The CO2 and hypoxia-sensing neurons interact at the synaptic level in the brain sending a systemic signal via the fat body to modulate differentiation of a specific class of immune cells. Our findings establish a link between environmental gas sensation and myeloid cell development in Drosophila. A similar relationship exists in humans, but the underlying mechanisms remain to be established.
Collapse
Affiliation(s)
- Bumsik Cho
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Carrie M Spratford
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sunggyu Yoon
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Nuri Cha
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jiwon Shim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Natural Science, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
47
|
Römer D, Bollazzi M, Roces F. Carbon dioxide sensing in the social context: Leaf-cutting ants prefer elevated CO 2 levels to tend their brood. JOURNAL OF INSECT PHYSIOLOGY 2018; 108:40-47. [PMID: 29778905 DOI: 10.1016/j.jinsphys.2018.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Social insects show temperature and humidity preferences inside their nests to successfully rear brood. In underground nests, ants also encounter rising CO2 concentrations with increasing depth. It is an open question whether they use CO2 as a cue to decide where to place and tend the brood. Leaf-cutting ants do show CO2 preferences for the culturing of their symbiotic fungus. We evaluated their CO2 choices for brood placement in laboratory experiments. Workers of Acromyrmex lundii in the process of relocating brood were offered a binary choice consisting of two interconnected chambers with different CO2 concentrations. Values ranged from atmospheric to high concentrations of 4% CO2. The CO2 preferences shown by workers for themselves and for brood placement were assessed by quantifying the number of workers and relocated brood in each chamber. Ants showed clear CO2 preferences for brood placement. They avoided atmospheric levels, 1% and 4% CO2, and showed a preference for levels of 3%. This is the first report of CO2 preferences for the maintenance of brood in social insects. The observed preferences for brood location were independent of the workers' own CO2 preferences, since they showed no clear-cut pattern. Workers' CO2 preferences for brood maintenance were slightly higher than those reported for fungus culturing, although brood is reared in the same chambers as the fungus in leaf-cutting ant nests. Workers' choices for brood placement in natural nests are likely the result of competing preferences for other environmental factors more crucial for brood survival, aside from those for CO2.
Collapse
Affiliation(s)
- Daniela Römer
- Department of Behavioral Physiology and Sociobiology, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany; Unidad de Entomología, Departamento de Protección Vegetal, Facultad de Agronomía, Avda. Eugenio Garzon 780, Universidad de la República, 12900 Montevideo, Uruguay.
| | - Martin Bollazzi
- Unidad de Entomología, Departamento de Protección Vegetal, Facultad de Agronomía, Avda. Eugenio Garzon 780, Universidad de la República, 12900 Montevideo, Uruguay.
| | - Flavio Roces
- Department of Behavioral Physiology and Sociobiology, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany.
| |
Collapse
|
48
|
Navarro-Llopis V, Primo J, Vacas S. Improvements in Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) Trapping Systems. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:1298-1305. [PMID: 29579236 DOI: 10.1093/jee/toy065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Indexed: 06/08/2023]
Abstract
Improved trap efficacy is crucial for implementing control methods for red palm weevil, Rhynchophorus ferrugineus (Olivier; Coleoptera: Dryophthoridae), based on trapping systems, such as mass trapping, attract and infect or attract and sterilize techniques. Although new trap designs have been proposed and aggregation pheromone dispensers have been optimized, aspects such as the use of co-attractants (molasses) and trap placement are still not well defined and standardized. The efficacy of three concentrations of molasses and different formulations to reduce water evaporation in traps was studied in different field trials to improve trapping systems and to prolong trap servicing periods. In addition, the performance of installing groups of traps or single traps was also evaluated with the aim of improving the attracted/captured weevils ratio. Our results showed that captures increased when molasses were added at 15% to the water contained in the trap and that a thin layer of oil, created by adding 2-3% of paraffinic oil to water, was able to effectively reduce evaporation and prolong trap servicing periods. Moreover, 3.5-fold more weevils were captured when placing five traps instead of one at the same trapping point. Results obtained allow improved efficacy and may have an impact in the economic viability of trapping systems and, therefore, in integrated pest management programs.
Collapse
Affiliation(s)
- Vicente Navarro-Llopis
- Centro de Ecología Química Agrícola - Instituto Agroforestal del Mediterráneo. Universitat Politècnica de València, Camino de Vera s/n, edificio, Valencia, Spain
| | - Jaime Primo
- Centro de Ecología Química Agrícola - Instituto Agroforestal del Mediterráneo. Universitat Politècnica de València, Camino de Vera s/n, edificio, Valencia, Spain
| | - Sandra Vacas
- Centro de Ecología Química Agrícola - Instituto Agroforestal del Mediterráneo. Universitat Politècnica de València, Camino de Vera s/n, edificio, Valencia, Spain
| |
Collapse
|
49
|
Tabares M, Ortiz M, Gonzalez M, Carazzone C, Vives Florez MJ, Molina J. Behavioral responses of Rhodnius prolixus to volatile organic compounds released in vitro by bacteria isolated from human facial skin. PLoS Negl Trop Dis 2018; 12:e0006423. [PMID: 29684012 PMCID: PMC5933807 DOI: 10.1371/journal.pntd.0006423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/03/2018] [Accepted: 04/02/2018] [Indexed: 12/12/2022] Open
Abstract
Background Previous studies have demonstrated the role of volatile organic compounds (VOCs) produced by skin microbiota in the attraction of mosquitoes to humans. Recently, behavioral experiments confirmed the importance of VOCs released by skin microbiota in the attraction of Rhodnius prolixus (Hemiptera: Triatominae), a vector of Chagas disease. Methods/Findings In this study, we screened for VOCs released in vitro by bacteria isolated from human facial skin that were able to elicit behavioral responses in R. prolixus. The VOCs released in vitro by eight bacterial species during two growth phases were tested with adult Rhodnius prolixus insects using a dual-choice “T”-shaped olfactometer. In addition, the VOCs released by the bacteria were analyzed with headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). The VOCs produced by Staphylococcus capitis 11C, Staphylococcus warneri and Staphylococcus epidermidis 1 were attractive to R. prolixus, while the VOCs released by Citrobacter koseri 6P, Brevibacterium epidermidis and Micrococcus luteus 23 were non-attractive. Conclusions The results shown here indicate that VOCs released by bacteria isolated from human facial skin have a potential for biotechnological uses as a strategy to prevent the vectorial transmission of Chagas disease mediated by Rhodnius prolixus. Volatile organic compounds released by bacteria growing on human skin are mediating human-blood-sucking insects interactions. In this study we were interested in those volatile organic compounds produced in vitro by skin bacterial metabolism that are involved in the Rhodnius prolixus interaction with humans. Rhodnius prolixus is the main vector of Chagas disease in Northern South America. Using behavioral experiments, chemical analysis and microbiological techniques we determined the volatile organic compounds released in vitro by bacteria isolated from human faces and its effects on Rhodnius prolixus. We found that most of the Staphylococcus species tested here are mediating attraction, while non-Staphylococcus species are non-attractive. As a conclusion, our results showed that volatile organic compounds released by bacteria isolated from human faces have a potential for biotechnological uses as a strategy to control the vectorial transmission of Chagas disease mediated by Rhodnius prolixus.
Collapse
Affiliation(s)
- Marcela Tabares
- Centro de Investigaciones Microbiológicas (CIMIC), Universidad de los Andes, Bogotá, Colombia
| | - Mario Ortiz
- Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Universidad de los Andes, Bogotá, Colombia
| | - Mabel Gonzalez
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Universidad de los Andes, Bogotá, Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Universidad de los Andes, Bogotá, Colombia
| | - Martha J. Vives Florez
- Centro de Investigaciones Microbiológicas (CIMIC), Universidad de los Andes, Bogotá, Colombia
| | - Jorge Molina
- Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Universidad de los Andes, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
50
|
Yadav P, Borges RM. The insect ovipositor as a volatile sensor within a closed microcosm. ACTA ACUST UNITED AC 2018; 220:1554-1557. [PMID: 28468812 DOI: 10.1242/jeb.152777] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/20/2017] [Indexed: 01/18/2023]
Abstract
We show that the insect ovipositor is an olfactory organ that responds to volatiles and CO2 in gaseous form. We demonstrate this phenomenon in parasitic wasps associated with Ficus racemosa where ovipositors, as slender as a human hair, drill through the syconium (enclosed inflorescences) and act as a guiding probe to locate highly specific egg-laying sites hidden inside. We hypothesize that olfaction will occur in the ovipositors of insects such as parasitic fig wasps where the hosts are concealed and volatile concentrations can build up locally. Relevant stimuli such as herbivore-induced fig volatiles and CO2 elicited electrophysiological responses from the ovipositors. Silver nitrate staining also revealed pores in ovipositor sensilla, indicating their olfactory nature. Insects could use volatile sensors on their ovipositors to evaluate ecologically relevant stimuli for oviposition. Further investigations on the sensory nature of ovipositors can provide designs for development of ovipositor-inspired micro-chemosensors.
Collapse
Affiliation(s)
- Pratibha Yadav
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Renee M Borges
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|