1
|
Sabbahi R, Hock V, Azzaoui K, Hammouti B. Leishmania-sand fly interactions: exploring the role of the immune response and potential strategies for Leishmaniasis control. J Parasit Dis 2024; 48:655-670. [PMID: 39493480 PMCID: PMC11528092 DOI: 10.1007/s12639-024-01684-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/07/2024] [Indexed: 11/05/2024] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the genus Leishmania, affecting millions of people worldwide. The disease is transmitted by the bite of infected female sand flies, which act as vectors and hosts for the parasites. The interaction between Leishmania parasites and sand flies is complex and dynamic, involving various factors that influence parasite development, survival and transmission. This review examines how the immune response of sand flies affects vector competence and transmission of Leishmania parasites, and what the potential strategies are to prevent or reduce infection. The review also summarizes the main findings and conclusions of the existing literature and discusses implications and recommendations for future research and practice. The study reveals that the immune response of sand flies is a key determinant of vector competence and transmission of Leishmania parasites, and that several molecular and cellular mechanisms are involved in the interaction between parasite and vector. The study also suggests that there are potential strategies for controlling leishmaniasis, such as interfering with parasite development, modulating the vector's immune response or reducing the vector population. However, the study also identifies several gaps and limitations in current knowledge and calls for more comprehensive and systematic studies on vector-parasite interaction and its impact on leishmaniasis transmission and control.
Collapse
Affiliation(s)
- Rachid Sabbahi
- Research Team in Science and Technology, Higher School of Technology, Ibn Zohr University, 70000 Laayoune, Morocco
- Euro-Mediterranean University of Fez, P.O. Box 15, Fez, Morocco
| | - Virginia Hock
- Department of Biology, Dawson College, 3040 Sherbrooke St. W, Montreal, QC H3Z 1A4 Canada
| | - Khalil Azzaoui
- Euro-Mediterranean University of Fez, P.O. Box 15, Fez, Morocco
- Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, 30000 Fez, Morocco
| | | |
Collapse
|
2
|
Li L, Pang X, Wang C, Yang Y, Wu Y. piggyBac-based transgenic Helicoverpa armigera expressing the T92C allele of the tetraspanin gene HaTSPAN1 confers dominant resistance to Bacillus thuringiensis toxin Cry1Ac. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106096. [PMID: 39277420 DOI: 10.1016/j.pestbp.2024.106096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 09/17/2024]
Abstract
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized pest control. However, the evolution of resistance by target pests poses a significant threat to the long-term success of Bt crops. Understanding the genetics and mechanisms underlying Bt resistance is crucial for developing resistance detection methods and management tactics. The T92C mutation in a tetraspanin gene (HaTSPAN1), resulting in the L31S substitution, is associated with dominant resistance to Cry1Ac in a major pest, Helicoverpa armigera. Previous studies using CRISPR/Cas9 technique have demonstrated that knockin of the HaTSPAN1 T92C mutation confers a 125-fold resistance to Cry1Ac in the susceptible SCD strain of H. armigera. In this study, we employed the piggyBac transposon system to create two transgenic H. armigera strains based on SCD: one expressing the wild-type HaTSPAN1 gene (SCD-TSPANwt) and another expressing the T92C mutant form of HaTSPAN1 (SCD-TSPANmt). The SCD-TSPANmt strain exhibited an 82-fold resistance to Cry1Ac compared to the recipient SCD strain, while the SCD-TSPANwt strain remained susceptible. The Cry1Ac resistance followed an autosomal dominant inheritance mode and was genetically linked with the transgene locus in the SCD-TSPANmt strain of H. armigera. Our results further confirm the causal association between the T92C mutation of HaTSPAN1 and dominant resistance to Cry1Ac in H. armigera. Additionally, they suggest that the piggyBac-mediated transformation system we used in H. armigera is promising for functional investigations of candidate Bt resistance genes from other lepidopteran pests.
Collapse
Affiliation(s)
- Lin Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinru Pang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chenyang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Wudarski J, Aliabadi S, Gulia-Nuss M. Arthropod promoters for genetic control of disease vectors. Trends Parasitol 2024; 40:619-632. [PMID: 38824066 PMCID: PMC11223965 DOI: 10.1016/j.pt.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 06/03/2024]
Abstract
Vector-borne diseases (VBDs) impose devastating effects on human health and a heavy financial burden. Malaria, Lyme disease, and dengue fever are just a few examples of VBDs that cause severe illnesses. The current strategies to control VBDs consist mainly of environmental modification and chemical use, and to a small extent, genetic approaches. The genetic approaches, including transgenesis/genome modification and gene-drive technologies, provide the basis for developing new tools for VBD prevention by suppressing vector populations or reducing their capacity to transmit pathogens. The regulatory elements such as promoters are required for a robust sex-, tissue-, and stage-specific transgene expression. As discussed in this review, information on the regulatory elements is available for mosquito vectors but is scant for other vectors.
Collapse
Affiliation(s)
- Jakub Wudarski
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Simindokht Aliabadi
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA.
| |
Collapse
|
4
|
Yu S, Zheng H, Ye X, Dai X, Wang X, Zhao S, Dai X, Zhong B. TALEN-mediated homologous-recombination-based fibroin light chain in-fusion expression system in Bombyx mori. Front Bioeng Biotechnol 2024; 12:1399629. [PMID: 38832132 PMCID: PMC11144906 DOI: 10.3389/fbioe.2024.1399629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Silkworm was the first domesticated insect and has important economic value. It has also become an ideal model organism with applications in genetic and expression studies. In recent years, the use of transgenic strategies has made the silkworm silk gland an attractive bioreactor for the production of recombinant proteins, in particular, piggyBac-mediated transgenes. However, owing to differences in regulatory elements such as promoters, the expression levels of exogenous proteins have not reached expectations. Here, we used targeted gene editing to achieve site-specific integration of exogenous genes on genomic DNA and established the fibroin light chain (FibL) in-fusion expression system by TALEN-mediated homology-directed recombination. First, the histidine-rich cuticular protein (CP) was successfully site-directed inserted into the native FibL, and the FibL-CP fusion gene was correctly transcribed and expressed in the posterior silk gland under the control of the endogenous FibL promoter, with a protein expression level comparable with that of the native FibL protein. Moreover, we showed based on molecular docking that the fusion of FibL with cuticular protein may have a negative effect on disulfide bond formation between the C-terminal domain of fibroin heavy chain (FibH) and FibL-CP, resulting in abnormal spinning and cocoon in homozygotes, indicating a significant role of FibL in silk protein formation and secretion. Our results demonstrate the feasibility of using the FibL fusion system to express exogenous proteins in silkworm. We expect that this bioreactor system will be used to produce more proteins of interest, expanding the application value of the silk gland bioreactor.
Collapse
Affiliation(s)
- Shihua Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiaogang Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiangping Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xinqiu Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Shuo Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zheng Zhou, China
| | - Xiaoyan Dai
- Suposik Bioscience Technologies Ltd., Jiaxing, China
| | - Boxiong Zhong
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Long D, Liu R, Huang Y, Fu A, Zhang Y, Hao Z, Li Q, Xu H, Xiang Z, Zhao A. An efficient and safe strategy for germ cell-specific automatic excision of foreign DNA in F 1 hybrid transgenic silkworms. INSECT SCIENCE 2024; 31:28-46. [PMID: 37356084 DOI: 10.1111/1744-7917.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/27/2023]
Abstract
The safety of transgenic technology is a major obstacle in the popularization and use of transgenic silkworms and their products. In sericulture, only the first filial generation (F1 ) hybrid eggs produced by cross-breeding Japanese and Chinese original strains are usually used for the large-scale breeding of silkworms, but this may result in uncontrolled transgene dispersal during the popularization and application of the F1 hybrid transgenic eggs. To address this issue, we developed a safe and efficient strategy using the GAL4/Upstream activating sequence (UAS) system, the FLP/flippase recognition target (FRT) system, and the gonad-specific expression gene promoters (RSHP1p and Nanosp) for the germ cell-specific automatic excision of foreign DNA in the F1 hybrid transgenic silkworms. We established 2 types of activator strains, R1p::GAL4-Gr and Nsp::GAL4-Gr, containing the testis-specific GAL4 gene expression cassettes driven by RSHP1p or Nanosp, respectively, and 1 type of effector strain, UAS::FLP-Rg, containing the UAS-linked FLP gene expression cassette. The FLP recombinase-mediated sperm-specific complete excision of FRT-flanked target DNA in the F1 double-transgenic silkworms resulting from the hybridization of R1p::GAL4-Gr and UAS::FLP-Rg was 100%, whereas the complete excision efficiency resulting from the hybridization of Nsp::GAL4-Gr and UAS::FLP-Rg ranged from 13.73% to 80.3%. Additionally, we identified a gene, sw11114, that is expressed in both testis and ovary of Bombyx mori, and can be used to establish novel gonad-specific expression systems in transgenic silkworms. This strategy has the potential to fundamentally solve the safety issue in the production of F1 transgenic silkworm eggs and provides an important reference for the safety of transgenic technology in other insect species.
Collapse
Affiliation(s)
- Dingpei Long
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Rongpeng Liu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Yang Huang
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Anyao Fu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Yuli Zhang
- Guangxi Institute of Sericulture Science, Nanning, Guangxi, China
| | - Zhanzhang Hao
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Qiang Li
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, USA
| | - Hanfu Xu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Zhonghuai Xiang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Aichun Zhao
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Transgenic Improvement for Biotic Resistance of Crops. Int J Mol Sci 2022; 23:ijms232214370. [PMID: 36430848 PMCID: PMC9697442 DOI: 10.3390/ijms232214370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Biotic constraints, including pathogenic fungi, viruses and bacteria, herbivory insects, as well as parasitic nematodes, cause significant yield loss and quality deterioration of crops. The effect of conventional management of these biotic constraints is limited. The advances in transgenic technologies provide a direct and directional approach to improve crops for biotic resistance. More than a hundred transgenic events and hundreds of cultivars resistant to herbivory insects, pathogenic viruses, and fungi have been developed by the heterologous expression of exogenous genes and RNAi, authorized for cultivation and market, and resulted in a significant reduction in yield loss and quality deterioration. However, the exploration of transgenic improvement for resistance to bacteria and nematodes by overexpression of endogenous genes and RNAi remains at the testing stage. Recent advances in RNAi and CRISPR/Cas technologies open up possibilities to improve the resistance of crops to pathogenic bacteria and plant parasitic nematodes, as well as other biotic constraints.
Collapse
|
7
|
Samantsidis GR, Denecke S, Swevers L, Skavdis G, Geibel S, Vontas J. Identification of Helicoverpa armigera promoters for biotechnological applications. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103725. [PMID: 35093501 DOI: 10.1016/j.ibmb.2022.103725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Helicoverpa armigera and Helicoverpa zea are highly polyphagous major agricultural pests with a global distribution. Their control is based on insecticides, however, new, effective, and environmentally friendly control tools are required to be developed and validated. In an effort to facilitate the development of advanced biotechnological tools in these species that will take advantage of new powerful molecular biology techniques like CRISPR/Cas9, we used available transcriptomic data and literature resources, in order to identify RNA polymerase II and III promoters active in RP-HzGUT-AW1(MG), a midgut derived cell line from Helicoverpa zea. Following functional analysis in insect cell lines, four RNA polymerase II promoters from the genes HaLabial, HaTsp-2A, HaPtx-I and HaCaudal were found to exhibit high transcriptional activity in vitro. The HaTsp-2A promoter did not exhibit any activity in the non-midgut derived cell lines Sf-9 and Hi-5 despite high sequence conservation among Lepidoptera, suggesting that it may function in a gut specific manner. Furthermore, considering the utility of RNA polymerase III U6 promoters in methodologies such as RNAi and CRISPR/Cas9, we identified and evaluated four different U6 promoters of H. armigera. In vitro experiments based on luciferase and GFP reporter assays, as well as in vivo experiments targeting an essential gene of Helicoverpa, indicate that these U6 promoters are functional and can be used to experimentally silence or knockout target genes through the expression of shRNAs and sgRNAs respectively. Taking our findings together, we provide a set of promoters useful for the genetic manipulation of Helicoverpa species, that can be used in various applications in the context of agricultural biotechnology.
Collapse
Affiliation(s)
- George-Rafael Samantsidis
- Department of Biology, University of Crete, Vassilika Vouton, 71409, Heraklion, Crete, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Shane Denecke
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, National Centre for Scientific Research Demokritos, Institute of Biosciences and Applications, 15310, Athens, Greece
| | - George Skavdis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Sven Geibel
- R&D Pest Control, Bayer AG, Crop Science Division, Monheim, Germany
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Pesticide Science Lab, Department of Crop Science, Agricultural University of Athens, Greece.
| |
Collapse
|
8
|
Promislow DEL, Flatt T, Bonduriansky R. The Biology of Aging in Insects: From Drosophila to Other Insects and Back. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:83-103. [PMID: 34590891 PMCID: PMC8940561 DOI: 10.1146/annurev-ento-061621-064341] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
An enormous amount of work has been done on aging in Drosophila melanogaster, a classical genetic and molecular model system, but also in numerous other insects. However, these two extensive bodies of work remain poorly integrated to date. Studies in Drosophila often explore genetic, developmental, physiological, and nutrition-related aspects of aging in the lab, while studies in other insects often explore ecological, social, and somatic aspects of aging in both lab and natural populations. Alongside exciting genomic and molecular research advances in aging in Drosophila, many new studies have also been published on aging in various other insects, including studies on aging in natural populations of diverse species. However, no broad synthesis of these largely separate bodies of work has been attempted. In this review, we endeavor to synthesize these two semi-independent literatures to facilitate collaboration and foster the exchange of ideas and research tools. While lab studies of Drosophila have illuminated many fundamental aspects of senescence, the stunning diversity of aging patterns among insects, especially in the context of their rich ecology, remains vastlyunderstudied. Coupled with field studies and novel, more easily applicable molecular methods, this represents a major opportunity for deepening our understanding of the biology of aging in insects and beyond.
Collapse
Affiliation(s)
- Daniel E L Promislow
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA;
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - Thomas Flatt
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland;
| | - Russell Bonduriansky
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, New South Wales 2052, Australia;
| |
Collapse
|
9
|
Xu WY, Fang XD, Cao Q, Gao Q, Gao DM, Qiao JH, Zang Y, Xie L, Ding ZH, Yang YZ, Wang Y, Wang XB. A cytorhabdovirus-based expression vector in Nilaparvata lugens, Laodelphax striatellus, and Sogatella furcifera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 140:103703. [PMID: 34933088 DOI: 10.1016/j.ibmb.2021.103703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The brown planthopper (BPH, Nilaparvata lugens), the small brown planthopper (SBPH, Laodelphax striatellus), and the white-backed planthopper (WBPH, Sogatella furcifera) are problematic insect pests and cause severe yield losses through phloem sap-sucking and virus transmission. Barley yellow striate mosaic virus (BYSMV), a plant cytorhabdovirus, has been developed as versatile expression platforms in SBPHs and cereal plants. However, bio-safe overexpression vectors based on recombinant BYSMV (rBYSMV) remain to be developed and applied to the three kinds of planthoppers. Here, we found that rBYSMV was able to infect SBPHs, BPHs and WBPHs through microinjection with crude extracts from rBYSMV-infected barley leaves. To ensure bio-safety of the rBYSMV vectors, we generated an rBYSMV mutant by deleting the accessory protein P3, a putative viral movement protein. As expected, the resulting mutant abolished viral systemic infection in barley plants but had no effects on BYSMV infectivity in insect vectors. Subsequently, we used the modified rBYSMV vector to overexpress iron transport peptide (ITP) in the three kinds of planthoppers and revealed the potential functions of ITP. Overall, our results provide bio-safe overexpression platforms to facilitate functional genomics studies of planthoppers.
Collapse
Affiliation(s)
- Wen-Ya Xu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiao-Dong Fang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qing Cao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiang Gao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China; College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Dong-Min Gao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ji-Hui Qiao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Zang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liang Xie
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhi-Hang Ding
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi-Zhou Yang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Tang X, Ye X, Wang X, Zhao S, Wu M, Ruan J, Zhong B. High mechanical property silk produced by transgenic silkworms expressing the spidroins PySp1 and ASG1. Sci Rep 2021; 11:20980. [PMID: 34697320 PMCID: PMC8546084 DOI: 10.1038/s41598-021-00029-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/30/2021] [Indexed: 11/08/2022] Open
Abstract
Spider silk is one of the best natural fibers with excellent mechanical properties; however, due to the visual awareness, biting behavior and territory consciousness of spiders, we cannot obtain spider silk by large-scale breeding. Silkworms have a spinning system similar to that of spiders, and the use of transgenic technology in Bombyx mori, which is an ideal reactor for producing spider silk, is routine. In this study, the piggyBac transposon technique was used to achieve specific expression of two putative spider silk genes in the posterior silk glands of silkworms: aggregate spider glue 1 (ASG1) of Trichonephila clavipes (approximately 1.2 kb) and two repetitive units of pyriform spidroin 1 (PySp1) of Argiope argentata (approximately 1.4 kb). Then, two reconstituted spider silk-producing strains, the AG and PA strains, were obtained. Finally, the toughness of the silk fiber was increased by up to 91.5% and the maximum stress was enhanced by 36.9% in PA, and the respective properties in AG were increased by 21.0% and 34.2%. In summary, these two spider genes significantly enhanced the mechanical properties of silk fiber, which can provide a basis for spidroin silk production.
Collapse
Affiliation(s)
- Xiaoli Tang
- College of Animal Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaogang Ye
- College of Animal Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaoxiao Wang
- College of Animal Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Shuo Zhao
- College of Animal Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Meiyu Wu
- College of Animal Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Jinghua Ruan
- College of Animal Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Boxiong Zhong
- College of Animal Science, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
11
|
Sieriebriennikov B, Reinberg D, Desplan C. A molecular toolkit for superorganisms. Trends Genet 2021; 37:846-859. [PMID: 34116864 PMCID: PMC8355152 DOI: 10.1016/j.tig.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
Social insects, such as ants, bees, wasps, and termites, draw biologists' attention due to their distinctive lifestyles. As experimental systems, they provide unique opportunities to study organismal differentiation, division of labor, longevity, and the evolution of development. Ants are particularly attractive because several ant species can be propagated in the laboratory. However, the same lifestyle that makes social insects interesting also hampers the use of molecular genetic techniques. Here, we summarize the efforts of the ant research community to surmount these hurdles and obtain novel mechanistic insight into the biology of social insects. We review current approaches and propose novel ones involving genomics, transcriptomics, chromatin and DNA methylation profiling, RNA interference (RNAi), and genome editing in ants and discuss future experimental strategies.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA.
| | - Claude Desplan
- Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
12
|
Harapan H, Michie A, Sasmono RT, Imrie A. Dengue: A Minireview. Viruses 2020; 12:v12080829. [PMID: 32751561 PMCID: PMC7472303 DOI: 10.3390/v12080829] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Dengue, caused by infection of any of four dengue virus serotypes (DENV-1 to DENV-4), is a mosquito-borne disease of major public health concern associated with significant morbidity, mortality, and economic cost, particularly in developing countries. Dengue incidence has increased 30-fold in the last 50 years and over 50% of the world’s population, in more than 100 countries, live in areas at risk of DENV infection. We reviews DENV biology, epidemiology, transmission dynamics including circulating serotypes and genotypes, the immune response, the pathogenesis of the disease as well as updated diagnostic methods, treatments, vector control and vaccine developments.
Collapse
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia;
- Correspondence: (H.H.); (A.I.); Tel.: +62-(0)-651-7551843 (H.H.)
| | - Alice Michie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia;
| | - R. Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia;
| | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia;
- Correspondence: (H.H.); (A.I.); Tel.: +62-(0)-651-7551843 (H.H.)
| |
Collapse
|
13
|
Matthews BJ, Vosshall LB. How to turn an organism into a model organism in 10 'easy' steps. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb218198. [PMID: 32034051 DOI: 10.1242/jeb.218198] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many of the major biological discoveries of the 20th century were made using just six species: Escherichia coli bacteria, Saccharomyces cerevisiae and Schizosaccharomyces pombe yeast, Caenorhabditis elegans nematodes, Drosophila melanogaster flies and Mus musculus mice. Our molecular understanding of the cell division cycle, embryonic development, biological clocks and metabolism were all obtained through genetic analysis using these species. Yet the 'big 6' did not start out as genetic model organisms (hereafter 'model organisms'), so how did they mature into such powerful systems? First, these model organisms are abundant human commensals: they are the bacteria in our gut, the yeast in our beer and bread, the nematodes in our compost pile, the flies in our kitchen and the mice in our walls. Because of this, they are cheaply, easily and rapidly bred in the laboratory and in addition were amenable to genetic analysis. How and why should we add additional species to this roster? We argue that specialist species will reveal new secrets in important areas of biology and that with modern technological innovations like next-generation sequencing and CRISPR-Cas9 genome editing, the time is ripe to move beyond the big 6. In this review, we chart a 10-step path to this goal, using our own experience with the Aedes aegypti mosquito, which we built into a model organism for neurobiology in one decade. Insights into the biology of this deadly disease vector require that we work with the mosquito itself rather than modeling its biology in another species.
Collapse
Affiliation(s)
- Benjamin J Matthews
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA.,Howard Hughes Medical Institute, New York, NY 10065, USA.,Kavli Neural Systems Institute, New York, NY 10065, USA
| |
Collapse
|
14
|
Tomoyasu Y, Halfon MS. How to study enhancers in non-traditional insect models. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb212241. [PMID: 32034049 DOI: 10.1242/jeb.212241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcriptional enhancers are central to the function and evolution of genes and gene regulation. At the organismal level, enhancers play a crucial role in coordinating tissue- and context-dependent gene expression. At the population level, changes in enhancers are thought to be a major driving force that facilitates evolution of diverse traits. An amazing array of diverse traits seen in insect morphology, physiology and behavior has been the subject of research for centuries. Although enhancer studies in insects outside of Drosophila have been limited, recent advances in functional genomic approaches have begun to make such studies possible in an increasing selection of insect species. Here, instead of comprehensively reviewing currently available technologies for enhancer studies in established model organisms such as Drosophila, we focus on a subset of computational and experimental approaches that are likely applicable to non-Drosophila insects, and discuss the pros and cons of each approach. We discuss the importance of validating enhancer function and evaluate several possible validation methods, such as reporter assays and genome editing. Key points and potential pitfalls when establishing a reporter assay system in non-traditional insect models are also discussed. We close with a discussion of how to advance enhancer studies in insects, both by improving computational approaches and by expanding the genetic toolbox in various insects. Through these discussions, this Review provides a conceptual framework for studying the function and evolution of enhancers in non-traditional insect models.
Collapse
Affiliation(s)
| | - Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
15
|
Harapan H, Michie A, Yohan B, Shu P, Mudatsir M, Sasmono RT, Imrie A. Dengue viruses circulating in Indonesia: A systematic review and phylogenetic analysis of data from five decades. Rev Med Virol 2019; 29:e2037. [DOI: 10.1002/rmv.2037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of MedicineUniversitas Syiah Kuala Banda Aceh Indonesia
- School of Biomedical SciencesUniversity of Western Australia Nedlands Western Australia Australia
| | - Alice Michie
- School of Biomedical SciencesUniversity of Western Australia Nedlands Western Australia Australia
| | | | - Pei‐Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease ControlMinistry of Health and Welfare Taiwan Republic of China
| | - Mudatsir Mudatsir
- Medical Research Unit, School of MedicineUniversitas Syiah Kuala Banda Aceh Indonesia
- Department of Microbiology, School of MedicineUniversitas Syiah Kuala Banda Aceh Indonesia
| | | | - Allison Imrie
- School of Biomedical SciencesUniversity of Western Australia Nedlands Western Australia Australia
- Pathwest Laboratory Medicine Nedlands Western Australia Australia
| |
Collapse
|
16
|
Meza JS, ul Haq I, Vreysen MJB, Bourtzis K, Kyritsis GA, Cáceres C. Comparison of classical and transgenic genetic sexing strains of Mediterranean fruit fly (Diptera: Tephritidae) for application of the sterile insect technique. PLoS One 2018; 13:e0208880. [PMID: 30550598 PMCID: PMC6294381 DOI: 10.1371/journal.pone.0208880] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 11/27/2018] [Indexed: 11/22/2022] Open
Abstract
The development of genetic sexing strains (GSSs) based on classical genetic approaches has revolutionized the application of the sterile insect technique (SIT) against the Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). The global use of Mediterranean fruit fly GSS for SIT applications as part of area-wide integrated pest management (AW-IPM) programmes is testimony to their effectiveness. During recent years, transgenic sexing strains (TSSs) have been developed through genetic engineering techniques offering the possibility to produce male-only progeny by introducing female embryonic lethal genes and to increase the efficacy to identify released sterile males by means of the expression of fluorescent transgene markers. Here, we present a comparative analysis of two Mediterranean fruit fly strains: the classical GSS VIENNA 8D53-/Toliman and the transgenic FSEL#32. The strains were compared for production efficiency and quality control indices under semi mass-rearing conditions, response to sterilizing irradiation doses, male mating performance in walk-in field cages, and production cost of male-only pupae. The results showed that, the FSEL #32 TSS had a similar fecundity but a higher production of male-only pupae than the VIENNA 8D53-/Toliman GSS. For some of the quality control parameters tested, such as pupal weight and survival under starvation conditions, the FSEL #32 TSS was inferior to the VIENNA 8D53-/Toliman GSS. Both the transgenic and the classical genetic sexing strains have shown acceptable and similar mating competitiveness when compared with wild males for mating with wild females. The cost production for both strains is similar but the FSEL#32 TSS may potentially be more cost effective at higher production levels. The results are discussed in the context of incorporating the transgenic strain for SIT application.
Collapse
Affiliation(s)
- José S. Meza
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
- Programa Moscafrut, SAGARPA-IICA, Metapa de Domínguez, Chiapas, México
- * E-mail:
| | - Ihsan ul Haq
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
- National Agricultural Research Centre, Islamabad, Pakistan
| | - Marc J. B. Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Georgios A. Kyritsis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Carlos Cáceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
17
|
Xu J, Dong Q, Yu Y, Niu B, Ji D, Li M, Huang Y, Chen X, Tan A. Mass spider silk production through targeted gene replacement in Bombyx mori. Proc Natl Acad Sci U S A 2018; 115:8757-8762. [PMID: 30082397 PMCID: PMC6126722 DOI: 10.1073/pnas.1806805115] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spider silk is one of the best natural fibers and has superior mechanical properties. However, the large-scale harvesting of spider silk by rearing spiders is not feasible, due to their territorial and cannibalistic behaviors. The silkworm, Bombyx mori, has been the most well known silk producer for thousands of years and has been considered an ideal bioreactor for producing exogenous proteins, including spider silk. Previous attempts using transposon-mediated transgenic silkworms to produce spider silk could not achieve efficient yields, due to variable promoter activities and endogenous silk fibroin protein expression. Here, we report a massive spider silk production system in B. mori by using transcription activator-like effector nuclease-mediated homology-directed repair to replace the silkworm fibroin heavy chain gene (FibH) with the major ampullate spidroin-1 gene (MaSp1) in the spider Nephila clavipes We successfully replaced the ∼16-kb endogenous FibH gene with a 1.6-kb MaSp1 gene fused with a 1.1-kb partial FibH sequence and achieved up to 35.2% chimeric MaSp1 protein amounts in transformed cocoon shells. The presence of the MaSp1 peptide significantly changed the mechanical characteristics of the silk fiber, especially the extensibility. Our study provides a native promoter-driven, highly efficient system for expressing the heterologous spider silk gene instead of the transposon-based, random insertion of the spider gene into the silkworm genome. Targeted MaSp1 integration into silkworm silk glands provides a paradigm for the large-scale production of spider silk protein with genetically modified silkworms, and this approach will shed light on developing new biomaterials.
Collapse
Affiliation(s)
- Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Qinglin Dong
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Ye Yu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Baolong Niu
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Dongfeng Ji
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Muwang Li
- Sericultural Research Institute, Jiangsu University of Science and Technology, 212018 Zhenjiang, Jiangsu, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Anjiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China;
| |
Collapse
|
18
|
Developmental Sensitivity in Schistosoma mansoni to Puromycin To Establish Drug Selection of Transgenic Schistosomes. Antimicrob Agents Chemother 2018; 62:AAC.02568-17. [PMID: 29760143 DOI: 10.1128/aac.02568-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/27/2018] [Indexed: 01/05/2023] Open
Abstract
Schistosomiasis is considered the most important disease caused by helminth parasites, in terms of morbidity and mortality. Tools to facilitate gain- and loss-of-function approaches can be expected to precipitate the discovery of novel interventions, and drug selection of transgenic schistosomes would facilitate the establishment of stable lines of engineered parasites. Sensitivity of developmental stages of schistosomes to the aminonucleoside antibiotic puromycin was investigated. For the schistosomulum and sporocyst stages, viability was quantified by fluorescence microscopy following dual staining with fluorescein diacetate and propidium iodine. By 6 days in culture, the 50% lethal concentration (LC50) for schistosomula was 19 μg/ml whereas the sporocysts were 45-fold more resilient. Puromycin potently inhibited the development of in vitro-laid eggs (LC50, 68 ng/ml) but was less effective against liver eggs (LC50, 387 μg/ml). Toxicity for adult stages was evaluated using the xCELLigence-based, real-time motility assay (xWORM), which revealed LC50s after 48 h of 4.9 and 17.3 μg/ml for male and female schistosomes, respectively. Also, schistosomula transduced with pseudotyped retrovirus encoding the puromycin resistance marker were partially rescued when cultured in the presence of the antibiotic. Together, these findings will facilitate selection on puromycin of transgenic schistosomes and the enrichment of cultures of transgenic eggs and sporocysts to facilitate the establishment of schistosome transgenic lines. Streamlining schistosome transgenesis with drug selection will open new avenues to understand parasite biology and hopefully lead to new interventions for this neglected tropical disease.
Collapse
|
19
|
Chen J, Wu C, Zhang B, Cai Z, Wei L, Li Z, Li G, Guo T, Li Y, Guo W, Wang X. PiggyBac Transposon-Mediated Transgenesis in the Pacific Oyster ( Crassostrea gigas) - First Time in Mollusks. Front Physiol 2018; 9:811. [PMID: 30061837 PMCID: PMC6054966 DOI: 10.3389/fphys.2018.00811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/08/2018] [Indexed: 11/25/2022] Open
Abstract
As an effective method of transgenesis, the plasmid of PiggyBac transposon containing GFP (PiggyBac) transposon system has been widely used in various organisms but not yet in mollusks. In this work, piggyBac containing green fluorescent protein (GFP) was transferred into the Pacific oyster (Crassostrea gigas) by sperm-mediated gene transfer with or without electroporation. Fluorescent larvae were then observed and isolated under an inverted fluorescence microscope, and insertion of piggyBac was tested by polymerase chain reaction (PCR) using genomic DNA as template. Oyster larvae with green fluorescence were observed after transgenesis with or without electroporation, but electroporation increased the efficiency of sperm-mediated transgenesis. Subsequently, the recombinant piggyBac plasmid containing gGH (piggyBac-gGH) containing GFP and a growth hormone gene from orange-spotted grouper (gGH) was transferred into oysters using sperm mediation with electroporation, and fluorescent larvae were observed and isolated. The insertion of piggyBac-gGH was tested by PCR and genome walking analysis. PCR analysis indicated that piggyBac-gGH was transferred into oyster larvae; genome walking analysis further showed the detailed location where piggyBac-gGH was inserted in the oyster genome. This is the first time that piggyBac transposon-mediated transgenesis has been applied in mollusks.
Collapse
Affiliation(s)
- Jun Chen
- School of Agriculture, Ludong University, Yantai, China
| | - Changlu Wu
- School of Agriculture, Ludong University, Yantai, China
| | - Baolu Zhang
- Consultation Center, State Oceanic Administration, Beijing, China
| | - Zhongqiang Cai
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, China
| | - Zhuang Li
- School of Agriculture, Ludong University, Yantai, China
| | - Guangbin Li
- School of Agriculture, Ludong University, Yantai, China
| | - Ting Guo
- School of Agriculture, Ludong University, Yantai, China
| | - Yongchuan Li
- School of Agriculture, Ludong University, Yantai, China
| | - Wen Guo
- Center for Mollusc Study and Development, Marine Biology Institute of Shandong Province, Qingdao, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
20
|
Zhang K, Li C, Weng X, Su J, Shen L, Pan G, Long D, Zhao A, Cui H. Transgenic characterization of two silkworm tissue-specific promoters in the haemocyte plasmatocyte cells. INSECT MOLECULAR BIOLOGY 2018; 27:133-142. [PMID: 29131435 DOI: 10.1111/imb.12360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Haemocytes play crucial roles in insect metabolism, metamorphosis, and innate immunity. As a model of lepidopteran insects, the silkworm is a useful model to study the functions of both haematopoiesis and haemocytes. Tissue-specific promoters are excellent tools for genetic manipulation and are widely used in fundamental biological research. Herein, two haemocyte-specific genes, Integrin β2 and Integrin β3, were confirmed. Promoter activities of Integrin β2 and Integrin β3 were evaluated by genetic manipulation. Quantitative real-time PCR and western blotting suggested that both promoters can drive enhanced green fluorescent protein (EGFP) specifically expressed in haemocytes. Further evidence clearly demonstrated that the transgenic silkworm exhibited a high level of EGFP signal in plasmatocytes, but not in other detected haemocyte types. Moreover, EGFP fluorescence signals were observed in the haematopoietic organ of both transgenic strains. Thus, two promoters that enable plasmatocytes to express genes of interest were confirmed in our study. It is expected that the results of this study will facilitate advances in our understanding of insect haematopoiesis and immunity in the silkworm, Bombyx mori.
Collapse
Affiliation(s)
- K Zhang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - C Li
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - X Weng
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
- College of Biotechnology, Southwest University, Chongqing, China
| | - J Su
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - L Shen
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - G Pan
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - D Long
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - A Zhao
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - H Cui
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| |
Collapse
|
21
|
Intrinsic antimicrobial properties of silk spun by genetically modified silkworm strains. Transgenic Res 2018; 27:87-101. [PMID: 29435708 DOI: 10.1007/s11248-018-0059-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/19/2018] [Indexed: 02/08/2023]
Abstract
The domesticated silkworm, Bombyx mori, is a fundamental insect for silk industry. Silk is obtained from cocoons, protective envelopes produced during pupation and composed of single raw silk filaments secreted by the insect silk glands. Currently, silk is used as a textile fibre and to produce new materials for technical and biomedical applications. To enhance the use of both fabrics and silk-based materials, great efforts to obtain silk with antimicrobial properties have been made. In particular, a convincing approach is represented by the enrichment of the textile fibre with antimicrobial peptides, the main effectors of the innate immunity. To this aim, silkworm-based transgenic techniques appear to be cost-effective strategies to obtain cocoons in which antimicrobial peptides are integrated among the silk proteins. Recently, cocoons transgenic for a recombinant silk protein conjugated to the silkworm Cecropin B antimicrobial peptide were obtained and showed enhanced antibacterial properties (Li et al. in Mol Biol Rep 42:19-25, https://doi.org/10.1007/s11033-014-3735-z , 2015a). In this work we used the piggyBac-mediated germline transformation to generate several transgenic B. mori lines able to overexpress Cecropin B or Moricin antimicrobial peptides at the level of the silk gland. The derived cocoons were characterised by increased antimicrobial properties and the resulting silk fibre was able to inhibit the bacterial growth of the Gram-negative Escherichia coli. Our results suggest that the generation of silkworm overexpressing unconjugated antimicrobial peptides in the silk gland might represent an additional strategy to obtain antimicrobial peptide-enriched silk, for the production of new silk-based materials.
Collapse
|
22
|
Zhu GH, Peng YC, Zheng MY, Zhang XQ, Sun JB, Huang Y, Dong SL. CRISPR/Cas9 mediated BLOS2 knockout resulting in disappearance of yellow strips and white spots on the larval integument in Spodoptera litura. JOURNAL OF INSECT PHYSIOLOGY 2017; 103:29-35. [PMID: 28927827 DOI: 10.1016/j.jinsphys.2017.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
The custom-design bacterial CRISPR/Cas9 system has been recently used in some insects, indicating a powerful technique for studies on gene function and transgenic insects. However, its use in lepidopteran pests is scarce. Here, we reported a CRISPR/Cas9 system mediated mutagenesis of biogenesis of lysosome-related organelles complex1, subunit 2 (BLOS2) gene in a noctuid pest Spodoptera litura. A fragment of SlitBLOS2 was identified by analyzing a S. litura transcriptome database by local basic BLAST, and the full length cDNA was acquired by RACE strategy. To clarify the function of SlitBLOS2, CRISPR/Cas9 based target mutagenesis of SlitBLOS2 was achieved, displaying a mosaic translucent integument in 62.3-70.6% larvae of G0 generation. Further PCR-based genotype analysis demonstrated various mutations occurred at the SlitBLOS2 specific target site. A homozygote mutant individual was obtained in G1 generation, in which the yellow strips and white spots on the larval integument completely disappeared. Our study clearly demonstrates the function of SlitBLOS2 in the integument coloration, and thus provides a useful marker gene for genome editing based gene functional study and pest control strategy in S. litura as well as other lepidopteran pests.
Collapse
Affiliation(s)
- Guan-Heng Zhu
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying-Chuan Peng
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei-Yan Zheng
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Qing Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Jia-Bin Sun
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai Institutes for Biological Sciences, Shanghai 200032, China
| | - Shuang-Lin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
23
|
Kryuchkov M, Lehmann J, Schaab J, Cherepanov V, Blagodatski A, Fiebig M, Katanaev VL. Alternative moth-eye nanostructures: antireflective properties and composition of dimpled corneal nanocoatings in silk-moth ancestors. J Nanobiotechnology 2017; 15:61. [PMID: 28877691 PMCID: PMC5588701 DOI: 10.1186/s12951-017-0297-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/29/2017] [Indexed: 12/29/2022] Open
Abstract
Moth-eye nanostructures are a well-known example of biological antireflective surfaces formed by pseudoregular arrays of nipples and are often used as a template for biomimetic materials. Here, we provide morphological characterization of corneal nanostructures of moths from the Bombycidae family, including strains of domesticated Bombyx mori silk-moth, its wild ancestor Bombyx mandarina, and a more distantly related Apatelodes torrefacta. We find high diversification of the nanostructures and strong antireflective properties they provide. Curiously, the nano-dimple pattern of B. mandarina is found to reduce reflectance as efficiently as the nanopillars of A. torrefacta. Access to genome sequence of Bombyx further permitted us to pinpoint corneal proteins, likely contributing to formation of the antireflective nanocoatings. These findings open the door to bioengineering of nanostructures with novel properties, as well as invite industry to expand traditional moth-eye nanocoatings with the alternative ones described here.
Collapse
Affiliation(s)
- Mikhail Kryuchkov
- Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, 1011, Lausanne, Switzerland
| | - Jannis Lehmann
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Jakob Schaab
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Vsevolod Cherepanov
- School of Biomedicine, Far Eastern Federal University, Sukhanova Street 8, Vladivostok, 690922, Russian Federation
| | - Artem Blagodatski
- Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, 1011, Lausanne, Switzerland.,School of Biomedicine, Far Eastern Federal University, Sukhanova Street 8, Vladivostok, 690922, Russian Federation
| | - Manfred Fiebig
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Vladimir L Katanaev
- Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, 1011, Lausanne, Switzerland. .,School of Biomedicine, Far Eastern Federal University, Sukhanova Street 8, Vladivostok, 690922, Russian Federation.
| |
Collapse
|
24
|
Rather IA, Parray HA, Lone JB, Paek WK, Lim J, Bajpai VK, Park YH. Prevention and Control Strategies to Counter Dengue Virus Infection. Front Cell Infect Microbiol 2017; 7:336. [PMID: 28791258 PMCID: PMC5524668 DOI: 10.3389/fcimb.2017.00336] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/10/2017] [Indexed: 01/05/2023] Open
Abstract
Dengue is currently the highest and rapidly spreading vector-borne viral disease, which can lead to mortality in its severe form. The globally endemic dengue poses as a public health and economic challenge that has been attempted to suppress though application of various prevention and control techniques. Therefore, broad spectrum techniques, that are efficient, cost-effective, and environmentally sustainable, are proposed and practiced in dengue-endemic regions. The development of vaccines and immunotherapies have introduced a new dimension for effective dengue control and prevention. Thus, the present study focuses on the preventive and control strategies that are currently employed to counter dengue. While traditional control strategies bring temporary sustainability alone, implementation of novel biotechnological interventions, such as sterile insect technique, paratransgenesis, and production of genetically modified vectors, has improved the efficacy of the traditional strategies. Although a large-scale vector control strategy can be limited, innovative vaccine candidates have provided evidence for promising dengue prevention measures. The use of tetravalent dengue vaccine (CYD-TDV) has been the most effective so far in treating dengue infections. Nonetheless, challenges and limitation hinder the progress of developing integrated intervention methods and vaccines; while the improvement in the latest techniques and vaccine formulation continues, one can hope for a future without the threat of dengue virus.
Collapse
Affiliation(s)
- Irfan A Rather
- Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| | - Hilal A Parray
- Department of Biotechnology, Daegu UniversityGyungsan, South Korea
| | - Jameel B Lone
- Department of Biotechnology, Daegu UniversityGyungsan, South Korea
| | - Woon K Paek
- National Science Museum, Ministry of Science, ICT and Future PlanningDaejeon, South Korea
| | - Jeongheui Lim
- National Science Museum, Ministry of Science, ICT and Future PlanningDaejeon, South Korea
| | - Vivek K Bajpai
- Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| | - Yong-Ha Park
- Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| |
Collapse
|
25
|
Vertacnik KL, Linnen CR. Evolutionary genetics of host shifts in herbivorous insects: insights from the age of genomics. Ann N Y Acad Sci 2017; 1389:186-212. [DOI: 10.1111/nyas.13311] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/16/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
|
26
|
Liu K, Wessler SR. Functional characterization of the active Mutator-like transposable element, Muta1 from the mosquito Aedes aegypti. Mob DNA 2017; 8:1. [PMID: 28096902 PMCID: PMC5225508 DOI: 10.1186/s13100-016-0084-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/19/2016] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Mutator-like transposable elements (MULEs) are widespread with members in fungi, plants, and animals. Most of the research on the MULE superfamily has focused on plant MULEs where they were discovered and where some are extremely active and have significant impact on genome structure. The maize MuDR element has been widely used as a tool for both forward and reverse genetic studies because of its high transposition rate and preference for targeting genic regions. However, despite being widespread, only a few active MULEs have been identified, and only one, the rice Os3378, has demonstrated activity in a non-host organism. RESULTS Here we report the identification of potentially active MULEs in the mosquito Aedes aegypti. We demonstrate that one of these, Muta1, is capable of excision and reinsertion in a yeast transposition assay. Element reinsertion generated either 8 bp or 9 bp target site duplications (TSDs) with no apparent sequence preference. Mutagenesis analysis of donor site TSDs in the yeast assay indicates that their presence is important for precise excision and enhanced transposition. Site directed mutagenesis of the putative DDE catalytic motif and other conserved residues in the transposase protein abolished transposition activity. CONCLUSIONS Collectively, our data indicates that the Muta1 transposase of Ae. aegypti can efficiently catalyze both excision and reinsertion reactions in yeast. Mutagenesis analysis reveals that several conserved amino acids, including the DDE triad, play important roles in transposase function. In addition, donor site TSD also impacts the transposition of Muta1.
Collapse
Affiliation(s)
- Kun Liu
- Graduate Program in Botany and Plant Sciences, University of California, Riverside, CA 92521 USA
| | - Susan R Wessler
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521 USA
| |
Collapse
|
27
|
Kohl A, Pondeville E, Schnettler E, Crisanti A, Supparo C, Christophides GK, Kersey PJ, Maslen GL, Takken W, Koenraadt CJM, Oliva CF, Busquets N, Abad FX, Failloux AB, Levashina EA, Wilson AJ, Veronesi E, Pichard M, Arnaud Marsh S, Simard F, Vernick KD. Advancing vector biology research: a community survey for future directions, research applications and infrastructure requirements. Pathog Glob Health 2016; 110:164-72. [PMID: 27677378 PMCID: PMC5072118 DOI: 10.1080/20477724.2016.1211475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Vector-borne pathogens impact public health, animal production, and animal welfare. Research on arthropod vectors such as mosquitoes, ticks, sandflies, and midges which transmit pathogens to humans and economically important animals is crucial for development of new control measures that target transmission by the vector. While insecticides are an important part of this arsenal, appearance of resistance mechanisms is increasingly common. Novel tools for genetic manipulation of vectors, use of Wolbachia endosymbiotic bacteria, and other biological control mechanisms to prevent pathogen transmission have led to promising new intervention strategies, adding to strong interest in vector biology and genetics as well as vector-pathogen interactions. Vector research is therefore at a crucial juncture, and strategic decisions on future research directions and research infrastructure investment should be informed by the research community. A survey initiated by the European Horizon 2020 INFRAVEC-2 consortium set out to canvass priorities in the vector biology research community and to determine key activities that are needed for researchers to efficiently study vectors, vector-pathogen interactions, as well as access the structures and services that allow such activities to be carried out. We summarize the most important findings of the survey which in particular reflect the priorities of researchers in European countries, and which will be of use to stakeholders that include researchers, government, and research organizations.
Collapse
Affiliation(s)
- Alain Kohl
- a MRC-University of Glasgow Centre for Virus Research , Glasgow , UK
| | - Emilie Pondeville
- a MRC-University of Glasgow Centre for Virus Research , Glasgow , UK
| | - Esther Schnettler
- a MRC-University of Glasgow Centre for Virus Research , Glasgow , UK
| | - Andrea Crisanti
- b Department of Life Sciences , Imperial College London , London , UK
| | - Clelia Supparo
- b Department of Life Sciences , Imperial College London , London , UK
| | | | - Paul J Kersey
- c The European Molecular Biology Laboratory , The European Bioinformatics Institute, Wellcome Trust Genome Campus , Cambridge , UK
| | - Gareth L Maslen
- c The European Molecular Biology Laboratory , The European Bioinformatics Institute, Wellcome Trust Genome Campus , Cambridge , UK
| | - Willem Takken
- d Laboratory of Entomology , Wageningen University and Research Centre , Wageningen , The Netherlands
| | | | - Clelia F Oliva
- e Polo d'Innovazione di Genomica, Genetica e Biologia , Perugia , Italy
| | - Núria Busquets
- f Centre de Recerca en Sanitat Animal (CReSA) , Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB , Barcelona , Spain
| | - F Xavier Abad
- f Centre de Recerca en Sanitat Animal (CReSA) , Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB , Barcelona , Spain
| | - Anna-Bella Failloux
- g Arboviruses and Insect Vectors Unit, Department of Virology , Institut Pasteur , Paris cedex 15 , France
| | - Elena A Levashina
- h Department of Vector Biology , Max-Planck-Institut für Infektionsbiologie, Campus Charité Mitte , Berlin , Germany
| | - Anthony J Wilson
- i Integrative Entomology Group, Vector-borne Viral Diseases Programme , The Pirbright Institute , Surrey , UK
| | - Eva Veronesi
- j Swiss National Centre for Vector Entomology, Institute of Parasitology , University of Zürich , Zürich , Switzerland
| | - Maëlle Pichard
- k Department of Parasites and Insect Vectors , Institut Pasteur, Unit of Insect Vector Genetics and Genomics , Paris cedex 15 , France
| | - Sarah Arnaud Marsh
- k Department of Parasites and Insect Vectors , Institut Pasteur, Unit of Insect Vector Genetics and Genomics , Paris cedex 15 , France
| | - Frédéric Simard
- l MIVEGEC "Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle" , UMR IRD224-CNRS5290-Université de Montpellier , Montpellier France
| | - Kenneth D Vernick
- k Department of Parasites and Insect Vectors , Institut Pasteur, Unit of Insect Vector Genetics and Genomics , Paris cedex 15 , France.,m CNRS Unit of Hosts, Vectors and Pathogens (URA3012) , Institut Pasteur , Paris cedex 15 , France
| |
Collapse
|
28
|
Huang Y, Chen Y, Zeng B, Wang Y, James AA, Gurr GM, Yang G, Lin X, Huang Y, You M. CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in the global pest, diamondback moth (Plutella xylostella). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 75:98-106. [PMID: 27318252 DOI: 10.1016/j.ibmb.2016.06.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
The diamondback moth, Plutella xylostella (L.), is a worldwide agricultural pest that has developed resistance to multiple classes of insecticides. Genetics-based approaches show promise as alternative pest management approaches but require functional studies to identify suitable gene targets. Here we use the CRISPR/Cas9 system to target a gene, abdominal-A, which has an important role in determining the identity and functionality of abdominal segments. We report that P. xylostella abdominal-A (Pxabd-A) has two structurally-similar splice isoforms (A and B) that differ only in the length of exon II, with 15 additional nucleotides in isoform A. Pxabd-A transcripts were detected in all developmental stages, and particularly in pupae and adults. CRISPR/Cas9-based mutagenesis of Pxabd-A exon I produced 91% chimeric mutants following injection of 448 eggs. Phenotypes with abnormal prolegs and malformed segments were visible in hatched larvae and unhatched embryos, and various defects were inherited by the next generation (G1). Genotyping of mutants demonstrated several mutations at the Pxabd-A genomic locus. The results indicate that a series of insertions and deletions were induced in the Pxabd-A locus, not only in G0 survivors but also in G1 individuals, and this provides a foundation for genome editing. Our study demonstrates the utility of the CRISPR/Cas9 system for targeting genes in an agricultural pest and therefore provides a foundation the development of novel pest management tools.
Collapse
Affiliation(s)
- Yuping Huang
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Yazhou Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Baosheng Zeng
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yajun Wang
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92697-4025, USA; Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Geoff M Gurr
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Graham Centre, Charles Sturt University, Orange, NSW 2800, Australia
| | - Guang Yang
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Xijian Lin
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Minsheng You
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.
| |
Collapse
|
29
|
Gregory M, Alphey L, Morrison NI, Shimeld SM. Insect transformation with piggyBac: getting the number of injections just right. INSECT MOLECULAR BIOLOGY 2016; 25:259-271. [PMID: 27027400 PMCID: PMC4982070 DOI: 10.1111/imb.12220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The insertion of exogenous genetic cargo into insects using transposable elements is a powerful research tool with potential applications in meeting food security and public health challenges facing humanity. piggyBac is the transposable element most commonly utilized for insect germline transformation. The described efficiency of this process is variable in the published literature, and a comprehensive review of transformation efficiency in insects is lacking. This study compared and contrasted all available published data with a comprehensive data set provided by a biotechnology group specializing in insect transformation. Based on analysis of these data, with particular focus on the more complete observational data from the biotechnology group, we designed a decision tool to aid researchers' decision-making when using piggyBac to transform insects by microinjection. A combination of statistical techniques was used to define appropriate summary statistics of piggyBac transformation efficiency by species and insect order. Publication bias was assessed by comparing the data sets. The bias was assessed using strategies co-opted from the medical literature. The work culminated in building the Goldilocks decision tool, a Markov-Chain Monte-Carlo simulation operated via a graphical interface and providing guidance on best practice for those seeking to transform insects using piggyBac.
Collapse
Affiliation(s)
- M Gregory
- Department of Zoology, University of Oxford, Oxford, UK
- Oxitec Ltd, Abingdon, UK
| | - L Alphey
- Department of Zoology, University of Oxford, Oxford, UK
- Oxitec Ltd, Abingdon, UK
- The Pirbright Institute, Pirbright, Surrey, UK
| | | | - S M Shimeld
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Xu H, O'Brochta DA. Advanced technologies for genetically manipulating the silkworm Bombyx mori, a model Lepidopteran insect. Proc Biol Sci 2016; 282:rspb.2015.0487. [PMID: 26108630 DOI: 10.1098/rspb.2015.0487] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic technologies based on transposon-mediated transgenesis along with several recently developed genome-editing technologies have become the preferred methods of choice for genetically manipulating many organisms. The silkworm, Bombyx mori, is a Lepidopteran insect of great economic importance because of its use in silk production and because it is a valuable model insect that has greatly enhanced our understanding of the biology of insects, including many agricultural pests. In the past 10 years, great advances have been achieved in the development of genetic technologies in B. mori, including transposon-based technologies that rely on piggyBac-mediated transgenesis and genome-editing technologies that rely on protein- or RNA-guided modification of chromosomes. The successful development and application of these technologies has not only facilitated a better understanding of B. mori and its use as a silk production system, but also provided valuable experiences that have contributed to the development of similar technologies in non-model insects. This review summarizes the technologies currently available for use in B. mori, their application to the study of gene function and their use in genetically modifying B. mori for biotechnology applications. The challenges, solutions and future prospects associated with the development and application of genetic technologies in B. mori are also discussed.
Collapse
Affiliation(s)
- Hanfu Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China
| | - David A O'Brochta
- Department of Entomology, The Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, MD 20850, USA
| |
Collapse
|
31
|
Ernst KC, Haenchen S, Dickinson K, Doyle MS, Walker K, Monaghan AJ, Hayden MH. Awareness and support of release of genetically modified "sterile" mosquitoes, Key West, Florida, USA. Emerg Infect Dis 2015; 21:320-4. [PMID: 25625795 PMCID: PMC4313646 DOI: 10.3201/eid2102.141035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
After a dengue outbreak in Key West, Florida, during 2009–2010, authorities, considered conducting the first US release of male Aedes aegypti mosquitoes genetically modified to prevent reproduction. Despite outreach and media attention, only half of the community was aware of the proposal; half of those were supportive. Novel public health strategies require community engagement.
Collapse
|
32
|
Aedes aegypti Control Strategies in Brazil: Incorporation of New Technologies to Overcome the Persistence of Dengue Epidemics. INSECTS 2015; 6:576-94. [PMID: 26463204 PMCID: PMC4553499 DOI: 10.3390/insects6020576] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 12/22/2022]
Abstract
Dengue is considered to be the most important mosquito-borne viral disease in the world. The Aedes aegypti mosquito, its vector, is highly anthropophilic and is very well adapted to urban environments. Although several vaccine candidates are in advanced stages of development no licensed dengue vaccine is yet available. As a result, controlling the spread of dengue still requires that mosquitoes be targeted directly. We review the current methods of dengue vector control focusing on recent technical advances. We first examine the history of Brazil’s National Dengue Control Plan in effect since 2002, and we describe its establishment and operation. With the persistent recurrence of dengue epidemics, current strategies should be reassessed to bring to the forefront a discussion of the possible implementation of new technologies in Brazil’s mosquito control program.
Collapse
|
33
|
An efficient strategy for producing a stable, replaceable, highly efficient transgene expression system in silkworm, Bombyx mori. Sci Rep 2015; 5:8802. [PMID: 25739894 DOI: 10.1038/srep08802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/04/2015] [Indexed: 12/16/2022] Open
Abstract
We developed an efficient strategy that combines a method for the post-integration elimination of all transposon sequences, a site-specific recombination system, and an optimized fibroin H-chain expression system to produce a stable, replaceable, highly efficient transgene expression system in the silkworm (Bombyx mori) that overcomes the disadvantages of random insertion and post-integration instability of transposons. Here, we generated four different transgenic silkworm strains, and of one the transgenic strains, designated TS1-RgG2, with up to 16% (w/w) of the target protein in the cocoons, was selected. The subsequent elimination of all the transposon sequences from TS1-RgG2 was completed by the heat-shock-induced expression of the transposase in vivo. The resulting transgenic silkworm strain was designated TS3-g2 and contained only the attP-flanked optimized fibroin H-chain expression cassette in its genome. A phiC31/att-system-based recombinase-mediated cassette exchange (RMCE) method could be used to integrate other genes of interest into the same genome locus between the attP sites in TS3-g2. Controlling for position effects with phiC31-mediated RMCE will also allow the optimization of exogenous protein expression and fine gene function analyses in the silkworm. The strategy developed here is also applicable to other lepidopteran insects, to improve the ecological safety of transgenic strains in biocontrol programs.
Collapse
|
34
|
Wangler MF, Yamamoto S, Bellen HJ. Fruit flies in biomedical research. Genetics 2015; 199:639-53. [PMID: 25624315 PMCID: PMC4349060 DOI: 10.1534/genetics.114.171785] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022] Open
Abstract
Many scientists complain that the current funding situation is dire. Indeed, there has been an overall decline in support in funding for research from the National Institutes of Health and the National Science Foundation. Within the Drosophila field, some of us question how long this funding crunch will last as it demotivates principal investigators and perhaps more importantly affects the long-term career choice of many young scientists. Yet numerous very interesting biological processes and avenues remain to be investigated in Drosophila, and probing questions can be answered fast and efficiently in flies to reveal new biological phenomena. Moreover, Drosophila is an excellent model organism for studies that have translational impact for genetic disease and for other medical implications such as vector-borne illnesses. We would like to promote a better collaboration between Drosophila geneticists/biologists and human geneticists/bioinformaticians/clinicians, as it would benefit both fields and significantly impact the research on human diseases.
Collapse
Affiliation(s)
- Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine (BCM), Houston, Texas 77030 Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas 77030 Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030 Program in Developmental Biology, Baylor College of Medicine (BCM), Texas 77030
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas 77030 Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030 Program in Developmental Biology, Baylor College of Medicine (BCM), Texas 77030 Department of Neuroscience, Baylor College of Medicine (BCM), Texas 77030 Howard Hughes Medical Institute, Houston, Texas 77030
| |
Collapse
|
35
|
Wang F, Wang R, Wang Y, Xu H, Yuan L, Ding H, Ma S, Zhou Y, Zhao P, Xia Q. Remobilizing deleted piggyBac vector post-integration for transgene stability in silkworm. Mol Genet Genomics 2015; 290:1181-9. [PMID: 25589404 DOI: 10.1007/s00438-014-0982-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/24/2014] [Indexed: 12/29/2022]
Abstract
Deletion of transposable elements post-genomic integration holds great promise for stability of the transgene in the host genome and has an essential role for the practical application of transgenic animals. In this study, a modified piggyBac vector that mediated deletion of the transposon sequence post-integration for transgene stability in the economically important silkworm Bombyx mori was constructed. The piggyBac vector architecture contains inversed terminal repeat sequences L1, L2 and R1, which can form L1/R1 and L2/R1 types of transposition cassettes. hsp70-PIG as the piggyBac transposase expression cassette for initial transposition, further remobilization and transgene stabilization test was transiently expressed in a helper vector or integrated into the modified vector to produce a transgenic silkworm. Shortening L2 increased the transformation frequency of L1/R1 into the silkworm genome compared to L2/R1. After the integration of L1/R1 into the genome, the remobilization of L2/R1 impaired the transposon structure and the resulting transgene linked with an impaired transposon was stable in the genome even in the presence of exogenously introduced transposase, whereas those flanked by the intact transposon were highly mobile in the genome. Our results demonstrated the feasibility of post-integration deletion of transposable elements to guarantee true transgene stabilization in silkworm. We suggest that the modified vector will be a useful resource for studies of transgenic silkworms and other piggyBac-transformed organisms.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Tiansheng Road 216, Beibei, Chongqing, 400715, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Insect systems, including the baculovirus-insect cell and Drosophila S2 cell systems are widely used as recombinant protein production platforms. Historically, however, no insect-based system has been able to produce glycoproteins with human-type glycans, which often influence the clinical efficacy of therapeutic glycoproteins and the overall structures and functions of other recombinant glycoprotein products. In addition, some insect cell systems produce N-glycans with immunogenic epitopes. Over the past 20 years, these problems have been addressed by efforts to glyco-engineer insect-based expression systems. These efforts have focused on introducing the capacity to produce complex-type, terminally sialylated N-glycans and eliminating the capacity to produce immunogenic N-glycans. Various glyco-engineering approaches have included genetically engineering insect cells, baculoviral vectors, and/or insects with heterologous genes encoding the enzymes required to produce various glycosyltransferases, sugars, nucleotide sugars, and nucleotide sugar transporters, as well as an enzyme that can deplete GDP-fucose. In this chapter, we present an overview and history of glyco-engineering in insect expression systems as a prelude to subsequent chapters, which will highlight various methods used for this purpose.
Collapse
|
37
|
Gurr GM, You M. Conservation Biological Control of Pests in the Molecular Era: New Opportunities to Address Old Constraints. FRONTIERS IN PLANT SCIENCE 2015; 6:1255. [PMID: 26793225 PMCID: PMC4709504 DOI: 10.3389/fpls.2015.01255] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/23/2015] [Indexed: 05/18/2023]
Abstract
Biological control has long been considered a potential alternative to pesticidal strategies for pest management but its impact and level of use globally remain modest and inconsistent. A rapidly expanding range of molecular - particularly DNA-related - techniques is currently revolutionizing many life sciences. This review identifies a series of constraints on the development and uptake of conservation biological control and considers the contemporary and likely future influence of molecular methods on these constraints. Molecular approaches are now often used to complement morphological taxonomic methods for the identification and study of biological control agents including microbes. A succession of molecular techniques has been applied to 'who eats whom' questions in food-web ecology. Polymerase chain reaction (PCR) approaches have largely superseded immunological approaches such as enzyme-linked immunosorbent assay (ELISA) and now - in turn - are being overtaken by next generation sequencing (NGS)-based approaches that offer unparalleled power at a rapidly diminishing cost. There is scope also to use molecular techniques to manipulate biological control agents, which will be accelerated with the advent of gene editing tools, the CRISPR/Cas9 system in particular. Gene editing tools also offer unparalleled power to both elucidate and manipulate plant defense mechanisms including those that involve natural enemy attraction to attacked plants. Rapid advances in technology will allow the development of still more novel pest management options for which uptake is likely to be limited chiefly by regulatory hurdles.
Collapse
Affiliation(s)
- Geoff M. Gurr
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of AgricultureFuzhou, China
- Graham Centre, Charles Sturt UniversityOrange, NSW, Australia
- *Correspondence: Geoff M. Gurr,
| | - Minsheng You
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of AgricultureFuzhou, China
| |
Collapse
|
38
|
Isasawin S, Aketarawong N, Lertsiri S, Thanaphum S. Development of a genetic sexing strain in Bactrocera carambolae (Diptera: Tephritidae) by introgression of sex sorting components from B. dorsalis, Salaya1 strain. BMC Genet 2014; 15 Suppl 2:S2. [PMID: 25471905 PMCID: PMC4255791 DOI: 10.1186/1471-2156-15-s2-s2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The carambola fruit fly, Bactrocera carambolae Drew & Hancock is a high profile key pest that is widely distributed in the southwestern ASEAN region. In addition, it has trans-continentally invaded Suriname, where it has been expanding east and southward since 1975. This fruit fly belongs to Bactrocera dorsalis species complex. The development and application of a genetic sexing strain (Salaya1) of B. dorsalis sensu stricto (s.s.) (Hendel) for the sterile insect technique (SIT) has improved the fruit fly control. However, matings between B. dorsalis s.s. and B. carambolae are incompatible, which hinder the application of the Salaya1 strain to control the carambola fruit fly. To solve this problem, we introduced genetic sexing components from the Salaya1 strain into the B. carambolae genome by interspecific hybridization. RESULTS Morphological characteristics, mating competitiveness, male pheromone profiles, and genetic relationships revealed consistencies that helped to distinguish Salaya1 and B. carambolae strains. A Y-autosome translocation linking the dominant wild-type allele of white pupae gene and a free autosome carrying a recessive white pupae homologue from the Salaya1 strain were introgressed into the gene pool of B. carambolae. A panel of Y-pseudo-linked microsatellite loci of the Salaya1 strain served as markers for the introgression experiments. This resulted in a newly derived genetic sexing strain called Salaya5, with morphological characteristics corresponding to B. carambolae. The rectal gland pheromone profile of Salaya5 males also contained a distinctive component of B. carambolae. Microsatellite DNA analyses confirmed the close genetic relationships between the Salaya5 strain and wild B. carambolae populations. Further experiments showed that the sterile males of Salaya5 can compete with wild males for mating with wild females in field cage conditions. CONCLUSIONS Introgression of sex sorting components from the Salaya1 strain to a closely related B. carambolae strain generated a new genetic sexing strain, Salaya5. Morphology-based taxonomic characteristics, distinctive pheromone components, microsatellite DNA markers, genetic relationships, and mating competitiveness provided parental baseline data and validation tools for the new strain. The Salaya5 strain shows a close similarity with those features in the wild B. carambolae strain. In addition, mating competitiveness tests suggested that Salaya5 has a potential to be used in B. carambolae SIT programs based on male-only releases.
Collapse
|
39
|
Wang F, Xu H, Wang Y, Wang R, Yuan L, Ding H, Song C, Ma S, Peng Z, Peng Z, Zhao P, Xia Q. Advanced silk material spun by a transgenic silkworm promotes cell proliferation for biomedical application. Acta Biomater 2014; 10:4947-4955. [PMID: 24980060 DOI: 10.1016/j.actbio.2014.06.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
Abstract
Natural silk fiber spun by the silkworm Bombyx mori is widely used not only for textile materials, but also for biofunctional materials. In the present study, we genetically engineered an advanced silk material, named hSFSV, using a transgenic silkworm, in which the recombinant human acidic fibroblast growth factor (hFGF1) protein was specifically synthesized in the middle silk gland and secreted into the sericin layer to surround the silk fiber using our previously optimized sericin1 expression system. The content of the recombinant hFGF1 in the hSFSV silk was estimated to be approximate 0.07% of the cocoon shell weight. The mechanical properties of hSFSV raw silk fiber were enhanced slightly compared to those of the wild-type raw silk fiber, probably due to the presence of the recombinant of hFGF1 in the sericin layer. Remarkably, the hSFSV raw silk significantly stimulated the cell growth and proliferation of NIH/3T3 mouse embryonic fibroblast cells, suggesting that the mitogenic activity of recombinant hFGF1 was well maintained and functioned in the sericin layer of hSFSV raw silk. These results show that the genetically engineered raw silk hSFSV could be used directly as a fine biomedical material for mass application. In addition, the strategy whereby functional recombinant proteins are expressed in the sericin layer of silk might be used to create more genetically engineered silks with various biofunctions and applications.
Collapse
|
40
|
Coffey LL, Failloux AB, Weaver SC. Chikungunya virus-vector interactions. Viruses 2014; 6:4628-63. [PMID: 25421891 PMCID: PMC4246241 DOI: 10.3390/v6114628] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 12/25/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya fever, a severe, debilitating disease that often produces chronic arthralgia. Since 2004, CHIKV has emerged in Africa, Indian Ocean islands, Asia, Europe, and the Americas, causing millions of human infections. Central to understanding CHIKV emergence is knowledge of the natural ecology of transmission and vector infection dynamics. This review presents current understanding of CHIKV infection dynamics in mosquito vectors and its relationship to human disease emergence. The following topics are reviewed: CHIKV infection and vector life history traits including transmission cycles, genetic origins, distribution, emergence and spread, dispersal, vector competence, vector immunity and microbial interactions, and co-infection by CHIKV and other arboviruses. The genetics of vector susceptibility and host range changes, population heterogeneity and selection for the fittest viral genomes, dual host cycling and its impact on CHIKV adaptation, viral bottlenecks and intrahost diversity, and adaptive constraints on CHIKV evolution are also discussed. The potential for CHIKV re-emergence and expansion into new areas and prospects for prevention via vector control are also briefly reviewed.
Collapse
Affiliation(s)
- Lark L Coffey
- Center for Vectorborne Diseases, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, 25-28 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Scott C Weaver
- Institute for Human Infections and Immunity, Center for Tropical Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
41
|
Stoco PH, Wagner G, Talavera-Lopez C, Gerber A, Zaha A, Thompson CE, Bartholomeu DC, Lückemeyer DD, Bahia D, Loreto E, Prestes EB, Lima FM, Rodrigues-Luiz G, Vallejo GA, Filho JFDS, Schenkman S, Monteiro KM, Tyler KM, de Almeida LGP, Ortiz MF, Chiurillo MA, de Moraes MH, Cunha ODL, Mendonça-Neto R, Silva R, Teixeira SMR, Murta SMF, Sincero TCM, Mendes TADO, Urmenyi TP, Silva VG, DaRocha WD, Andersson B, Romanha ÁJ, Steindel M, de Vasconcelos ATR, Grisard EC. Genome of the avirulent human-infective trypanosome--Trypanosoma rangeli. PLoS Negl Trop Dis 2014; 8:e3176. [PMID: 25233456 PMCID: PMC4169256 DOI: 10.1371/journal.pntd.0003176] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 08/08/2014] [Indexed: 11/25/2022] Open
Abstract
Background Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. Methodology/Principal Findings The T. rangeli haploid genome is ∼24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heat-shock proteins. Conclusions/Significance Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets. Comparative genomics is a powerful tool that affords detailed study of the genetic and evolutionary basis for aspects of lifecycles and pathologies caused by phylogenetically related pathogens. The reference genome sequences of three trypanosomatids, T. brucei, T. cruzi and L. major, and subsequent addition of multiple Leishmania and Trypanosoma genomes has provided data upon which large-scale investigations delineating the complex systems biology of these human parasites has been built. Here, we compare the annotated genome sequence of T. rangeli strain SC-58 to available genomic sequence and annotation data from related species. We provide analysis of gene content, genome architecture and key characteristics associated with the biology of this non-pathogenic trypanosome. Moreover, we report striking new genomic features of T. rangeli compared with its closest relative, T. cruzi, such as (1) considerably less amplification on the gene copy number within multigene virulence factor families such as MASPs, trans-sialidases and mucins; (2) a reduced repertoire of genes encoding anti-oxidant defense enzymes; and (3) the presence of vestigial orthologs of the RNAi machinery, which are insufficient to constitute a functional pathway. Overall, the genome of T. rangeli provides for a much better understanding of the identity, evolution, regulation and function of trypanosome virulence determinants for both mammalian host and insect vector.
Collapse
Affiliation(s)
- Patrícia Hermes Stoco
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- * E-mail: (PHS); (ECG)
| | - Glauber Wagner
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Universidade do Oeste de Santa Catarina, Joaçaba, Santa Catarina, Brazil
| | - Carlos Talavera-Lopez
- Department of Cell and Molecular Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Gerber
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Arnaldo Zaha
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | - Diana Bahia
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | - Elgion Loreto
- Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Fábio Mitsuo Lima
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | | | | | | | - Sérgio Schenkman
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | | | - Kevin Morris Tyler
- Biomedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, United Kingdom
| | | | - Mauro Freitas Ortiz
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Miguel Angel Chiurillo
- Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Venezuela
| | | | | | | | - Rosane Silva
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | - Turán Peter Urmenyi
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Björn Andersson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Álvaro José Romanha
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Mário Steindel
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Edmundo Carlos Grisard
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- * E-mail: (PHS); (ECG)
| |
Collapse
|
42
|
Hillyer JF. Editorial overview: Vectors and medical and veterinary entomology: Immune responses to pathogen infections in insect vectors. CURRENT OPINION IN INSECT SCIENCE 2014; 3:v-vii. [PMID: 32846698 DOI: 10.1016/j.cois.2014.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences and Institute for Global Health, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
43
|
Wei W, Xin H, Roy B, Dai J, Miao Y, Gao G. Heritable genome editing with CRISPR/Cas9 in the silkworm, Bombyx mori. PLoS One 2014; 9:e101210. [PMID: 25013902 PMCID: PMC4094479 DOI: 10.1371/journal.pone.0101210] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 06/04/2014] [Indexed: 01/06/2023] Open
Abstract
We report the establishment of an efficient and heritable gene mutagenesis method in the silkworm Bombyx mori using modified type II clustered regularly interspaced short palindromic repeats (CRISPR) with an associated protein (Cas9) system. Using four loci Bm-ok, BmKMO, BmTH, and Bmtan as candidates, we proved that genome alterations at specific sites could be induced by direct microinjection of specific guide RNA and Cas9-mRNA into silkworm embryos. Mutation frequencies of 16.7-35.0% were observed in the injected generation, and DNA fragments deletions were also noted. Bm-ok mosaic mutants were used to test for mutant heritability due to the easily determined translucent epidermal phenotype of Bm-ok-disrupted cells. Two crossing strategies were used. In the first, injected Bm-ok moths were crossed with wild-type moths, and a 28.6% frequency of germline mutation transmission was observed. In the second strategy, two Bm-ok mosaic mutant moths were crossed with each other, and 93.6% of the offsprings appeared mutations in both alleles of Bm-ok gene (compound heterozygous). In summary, the CRISPR/Cas9 system can act as a highly specific and heritable gene-editing tool in Bombyx mori.
Collapse
Affiliation(s)
- Wei Wei
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Huhu Xin
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Bhaskar Roy
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Junbiao Dai
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yungen Miao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Guanjun Gao
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
44
|
Feasible introgression of an anti-pathogen transgene into an urban mosquito population without using gene-drive. PLoS Negl Trop Dis 2014; 8:e2827. [PMID: 24992213 PMCID: PMC4081001 DOI: 10.1371/journal.pntd.0002827] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 03/13/2014] [Indexed: 11/19/2022] Open
Abstract
Background Introgressing anti-pathogen constructs into wild vector populations could reduce disease transmission. It is generally assumed that such introgression would require linking an anti-pathogen gene with a selfish genetic element or similar technologies. Yet none of the proposed transgenic anti-pathogen gene-drive mechanisms are likely to be implemented as public health measures in the near future. Thus, much attention now focuses instead on transgenic strategies aimed at mosquito population suppression, an approach generally perceived to be practical. By contrast, aiming to replace vector competent mosquito populations with vector incompetent populations by releasing mosquitoes carrying a single anti-pathogen gene without a gene-drive mechanism is widely considered impractical. Methodology/Principal Findings Here we use Skeeter Buster, a previously published stochastic, spatially explicit model of Aedes aegypti to investigate whether a number of approaches for releasing mosquitoes with only an anti-pathogen construct would be efficient and effective in the tropical city of Iquitos, Peru. To assess the performance of such releases using realistic release numbers, we compare the transient and long-term effects of this strategy with two other genetic control strategies that have been developed in Ae. aegypti: release of a strain with female-specific lethality, and a strain with both female-specific lethality and an anti-pathogen gene. We find that releasing mosquitoes carrying only an anti-pathogen construct can substantially decrease vector competence of a natural population, even at release ratios well below that required for the two currently feasible alternatives that rely on population reduction. Finally, although current genetic control strategies based on population reduction are compromised by immigration of wild-type mosquitoes, releasing mosquitoes carrying only an anti-pathogen gene is considerably more robust to such immigration. Conclusions/Significance Contrary to the widely held view that transgenic control programs aimed at population replacement require linking an anti-pathogen gene to selfish genetic elements, we find releasing mosquitoes in numbers much smaller than those considered necessary for transgenic population reduction can result in comparatively rapid and robust population replacement. In light of this non-intuitive result, directing efforts to improve rearing capacity and logistical support for implementing releases, and reducing the fitness costs of existing recombinant technologies, may provide a viable, alternative route to introgressing anti-pathogen transgenes under field conditions. Dengue is transmitted by the Aedes aegypti mosquito. Releases of genetically sterile males have been shown to reduce wild mosquito numbers. An alternative approach is to release mosquitoes carrying genes blocking dengue transmission. It is often assumed that spreading such genes in mosquito populations requires using selfish genetic elements (SGEs - genes that are inherited at higher rates than other genes in the genome). Absent such techniques, the release numbers required to transform mosquito populations is seen as prohibitive. However, strategies that rely on SGEs or related technologies to spread anti-dengue genes are unlikely to be implemented in the near future as a public health response. Using a biologically detailed model of Aedes aegypti populations dynamics and genetics, we assess how many mosquitoes need to be released to spread an anti-pathogen gene in an urban environment without using an SGE. We compare release numbers with two other, currently feasible transgenic strategies: releasing mosquitoes with female-lethal genes, and mosquitoes carrying both female-lethal and anti-pathogen genes. We show that even without using SGEs, releasing mosquitoes in numbers much smaller than those considered necessary for transgenic population reduction can effectively reduce the ability of Aedes aegypti to spread dengue.
Collapse
|
45
|
|
46
|
Suzuki Y, Niu G, Hughes GL, Rasgon JL. A viral over-expression system for the major malaria mosquito Anopheles gambiae. Sci Rep 2014; 4:5127. [PMID: 24875042 PMCID: PMC4038844 DOI: 10.1038/srep05127] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/14/2014] [Indexed: 11/08/2022] Open
Abstract
Understanding pathogen/mosquito interactions is essential for developing novel strategies to control mosquito-borne diseases. Technical advances in reverse-genetics, such as RNA interference (RNAi), have facilitated elucidation of components of the mosquito immune system that are antagonistic to pathogen development, and host proteins essential for parasite development. Forward genetic approaches, however, are limited to generation of transgenic insects, and while powerful, mosquito transgenesis is a resource- and time-intensive technique that is not broadly available to most laboratories. The ability to easily "over-express" genes would enhance molecular studies in vector biology and expedite elucidation of pathogen-refractory genes without the need to make transgenic insects. We developed and characterized an efficient Anopheles gambiae densovirus (AgDNV) over-expression system for the major malaria vector Anopheles gambiae. High-levels of gene expression were detected at 3 days post-infection and increased over time, suggesting this is an effective system for gene induction. Strong expression was observed in the fat body and ovaries. We validated multiple short promoters for gene induction studies. Finally, we developed a polycistronic system to simultaneously express multiple genes of interest. This AgDNV-based toolset allows for consistent transduction of genes of interest and will be a powerful molecular tool for research in Anopheles gambiae mosquitoes.
Collapse
Affiliation(s)
- Yasutsugu Suzuki
- Department of Entomology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America
| | - Guodong Niu
- Department of Entomology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America
- Current address: Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, 73019, United States of America
| | - Grant L. Hughes
- Department of Entomology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America
| | - Jason L. Rasgon
- Department of Entomology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America
| |
Collapse
|
47
|
Affiliation(s)
- Luke Alphey
- Oxitec Limited, Milton Park, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Nina Alphey
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
48
|
Suckling DM, Stringer LD, Stephens AEA, Woods B, Williams DG, Baker G, El-Sayed AM. From integrated pest management to integrated pest eradication: technologies and future needs. PEST MANAGEMENT SCIENCE 2014; 70:179-189. [PMID: 24155254 DOI: 10.1002/ps.3670] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND With growing globalization and trade, insect incursions are increasing worldwide. A proportion of incursions involve pests of major economic crops (e.g.Mediterranean fruit fly), conservation value (e.g. tramp ants) or health significance(e.g.mosquitoes), and maybe the targets of eradication programmes. Historically, such responses have included the use of broad spectrum insecticides. However, with increasing public awareness of the negative aspects of pesticides, new environmentally friendly and effective techniques are needed. Here, we review and evaluate a range of selective to broad-spectrum tactical options for suppression which either have, or show potential for, integration within arthropod eradication programmes. RESULTS Most of the available technologies have their roots in pest management, but higher efficacy is required. Further refinement may be needed for use in eradication. Integration of several tactics is usually needed, as compatible tools can be used simultaneously to target different parts of the pest life cycle. However, not all technologies are fully compatible; for example, the simultaneous use of mass trapping and the sterile insect technique (SIT) may be suboptimal, although sequential application may still be effective. CONCLUSIONS Broad-spectrum insecticides are generally incompatible with some biologically based technologies such as the SIT, but may be used to reduce the population so that density-dependent tactics can be used. Several novel technologies with fewer nontarget impacts have been proposed in recent years, and need to be properly evaluated for their applicability to insecteradication. Overall, there are still major gaps in surveillance and selective eradication technologies for most insects.
Collapse
|
49
|
Alphey L, McKemey A, Nimmo D, Neira Oviedo M, Lacroix R, Matzen K, Beech C. Genetic control of Aedes mosquitoes. Pathog Glob Health 2014; 107:170-9. [PMID: 23816508 DOI: 10.1179/2047773213y.0000000095] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aedes mosquitoes include important vector species such as Aedes aegypti, the major vector of dengue. Genetic control methods are being developed for several of these species, stimulated by an urgent need owing to the poor effectiveness of current methods combined with an increase in chemical pesticide resistance. In this review we discuss the various genetic strategies that have been proposed, their present status, and future prospects. We focus particularly on those methods that are already being tested in the field, including RIDL and Wolbachia-based approaches.
Collapse
Affiliation(s)
- Luke Alphey
- Oxitec Limited, 71 Milton Park, Oxford OX14 4RX, UK.
| | | | | | | | | | | | | |
Collapse
|
50
|
Wang F, Ma S, Xu H, Duan J, Wang Y, Ding H, Liu Y, Wang X, Zhao P, Xia Q. High-efficiency system for construction and evaluation of customized TALENs for silkworm genome editing. Mol Genet Genomics 2013; 288:683-90. [DOI: 10.1007/s00438-013-0782-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/13/2013] [Indexed: 12/14/2022]
|