1
|
Ackerman JD, Tremblay RL, Arias T, Zotz G, Sharma J, Salazar GA, Kaur J. Persistent Habitat Instability and Patchiness, Sexual Attraction, Founder Events, Drift and Selection: A Recipe for Rapid Diversification of Orchids. PLANTS (BASEL, SWITZERLAND) 2025; 14:1193. [PMID: 40284080 PMCID: PMC12030281 DOI: 10.3390/plants14081193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/30/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Orchidaceae is one of the most species-rich families of flowering plants, with most current diversity having evolved within the last 5 My. Patterns associated with species richness and rapid diversification have been identified but have not often been associated with evolutionary processes. We review the most frequently identified correlates of diversity and suggest that the processes and rate by which they occur vary geographically and are largely dependent on persistent pulses of habitat instabilities, especially for epiphytes. Aggressive orogenesis creates fragmented habitats while global climatic cycles exacerbate the ecological instabilities. The need for repeated cycles of dispersal results in frequent founder events, which sets the stage for allopatric diversification via bouts of genetic drift and natural selection. The allopatry requirement can be bypassed by pollination systems involving flowers attracting pollinators through the production of sex signaling semiochemicals. The drift-selection model of diversification, coupled with persistent habitat instability throughout ecological and geological time scales, and sex signaling are the likely components of a multifactorial process leading to the rapid, recent diversification in this family.
Collapse
Affiliation(s)
- James D. Ackerman
- Department of Biology, University of Puerto Rico, 17 Avenida Universidad Suite 1701, San Juan, PR 00925, USA;
| | - Raymond L. Tremblay
- Department of Biology, University of Puerto Rico, 17 Avenida Universidad Suite 1701, San Juan, PR 00925, USA;
- Department of Biology, University of Puerto Rico at Humacao, 100 Carr. 908, Humacao, PR 00791, USA
| | - Tatiana Arias
- Orchids for Peace, Sabaneta 055450, Antioquia, Colombia;
| | - Gerhard Zotz
- Functional Ecology Group, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität, D-26111 Oldenburg, Germany;
- Smithsonian Tropical Research Institute, Panama City 08430, Panama
| | - Jyotsna Sharma
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA;
| | - Gerardo A. Salazar
- Instituto de Biología, Departamento de Botánica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Jaspreet Kaur
- Department of Biology, University of Wisconsin, La Crosse, WI 54601, USA;
| |
Collapse
|
2
|
Nosil P, de Carvalho CF, Villoutreix R, Zamorano LS, Sinclair-Waters M, Planidin NP, Parchman TL, Feder J, Gompert Z. Evolution repeats itself in replicate long-term studies in the wild. SCIENCE ADVANCES 2024; 10:eadl3149. [PMID: 38787954 PMCID: PMC11122682 DOI: 10.1126/sciadv.adl3149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
The extent to which evolution is repeatable remains debated. Here, we study changes over time in the frequency of cryptic color-pattern morphs in 10 replicate long-term field studies of a stick insect, each spanning at least a decade (across 30 years of total data). We find predictable "up-and-down" fluctuations in stripe frequency in all populations, representing repeatable evolutionary dynamics based on standing genetic variation. A field experiment demonstrates that these fluctuations involve negative frequency-dependent natural selection (NFDS). These fluctuations rely on demographic and selective variability that pushes populations away from equilibrium, such that they can reliably move back toward it via NFDS. Last, we show that the origin of new cryptic forms is associated with multiple structural genomic variants such that which mutations arise affects evolution at larger temporal scales. Thus, evolution from existing variation is predictable and repeatable, but mutation adds complexity even for traits evolving deterministically under natural selection.
Collapse
Affiliation(s)
- Patrik Nosil
- Theoretical and Experimental Ecology (SETE), CNRS, 2 route du CNRS, 09200 Moulis, France
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | | | - Laura S. Zamorano
- Theoretical and Experimental Ecology (SETE), CNRS, 2 route du CNRS, 09200 Moulis, France
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | | | | | - Jeffrey Feder
- Department of Biology, Notre Dame University, South Bend, IN 11111, USA
| | - Zach Gompert
- Department of Biology, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
3
|
Smaldino PE, Moser C, Pérez Velilla A, Werling M. Maintaining Transient Diversity Is a General Principle for Improving Collective Problem Solving. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2024; 19:454-464. [PMID: 37369100 PMCID: PMC10913329 DOI: 10.1177/17456916231180100] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Humans regularly solve complex problems in cooperative teams. A wide range of mechanisms have been identified that improve the quality of solutions achieved by those teams on reaching consensus. We argue that many of these mechanisms work via increasing the transient diversity of solutions while the group attempts to reach a consensus. These mechanisms can operate at the level of individual psychology (e.g., behavioral inertia), interpersonal communication (e.g., transmission noise), or group structure (e.g., sparse social networks). Transient diversity can be increased by widening the search space of possible solutions or by slowing the diffusion of information and delaying consensus. All of these mechanisms increase the quality of the solution at the cost of increased time to reach it. We review specific mechanisms that facilitate transient diversity and synthesize evidence from both empirical studies and diverse formal models-including multiarmed bandits, NK landscapes, cumulative-innovation models, and evolutionary-transmission models. Apparent exceptions to this principle occur primarily when problems are sufficiently simple that they can be solved by mere trial and error or when the incentives of team members are insufficiently aligned. This work has implications for our understanding of collective intelligence, problem solving, innovation, and cumulative cultural evolution.
Collapse
Affiliation(s)
- Paul E. Smaldino
- Department of Cognitive & Information Sciences, University of California, Merced
- Santa Fe Institute, Santa Fe, New Mexico
| | - Cody Moser
- Department of Cognitive & Information Sciences, University of California, Merced
| | | | - Mikkel Werling
- Department of Cognitive & Information Sciences, University of California, Merced
- Interacting Minds Centre, Aarhus University
| |
Collapse
|
4
|
Yamamichi M, Ellner SP, Hairston NG. Beyond simple adaptation: Incorporating other evolutionary processes and concepts into eco-evolutionary dynamics. Ecol Lett 2023; 26 Suppl 1:S16-S21. [PMID: 37840027 DOI: 10.1111/ele.14197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/18/2023] [Accepted: 02/20/2023] [Indexed: 10/17/2023]
Abstract
Studies of eco-evolutionary dynamics have integrated evolution with ecological processes at multiple scales (populations, communities and ecosystems) and with multiple interspecific interactions (antagonistic, mutualistic and competitive). However, evolution has often been conceptualised as a simple process: short-term directional adaptation that increases population growth. Here we argue that diverse other evolutionary processes, well studied in population genetics and evolutionary ecology, should also be considered to explore the full spectrum of feedback between ecological and evolutionary processes. Relevant but underappreciated processes include (1) drift and mutation, (2) disruptive selection causing lineage diversification or speciation reversal and (3) evolution driven by relative fitness differences that may decrease population growth. Because eco-evolutionary dynamics have often been studied by population and community ecologists, it will be important to incorporate a variety of concepts in population genetics and evolutionary ecology to better understand and predict eco-evolutionary dynamics in nature.
Collapse
Affiliation(s)
- Masato Yamamichi
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Stephen P Ellner
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Nelson G Hairston
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Lorioux-Chevalier U, Tuanama Valles M, Gallusser S, Mori Pezo R, Chouteau M. Unexpected colour pattern variation in mimetic frogs: implication for the diversification of warning signals in the genus Ranitomeya. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230354. [PMID: 37293365 PMCID: PMC10245201 DOI: 10.1098/rsos.230354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Predation is expected to promote uniformity in the warning coloration of defended prey, but also mimicry convergence between aposematic species. Despite selection constraining both colour-pattern and population divergence, many aposematic animals display numerous geographically structured populations with distinct warning signal. Here, we explore the extent of phenotypic variation of sympatric species of Ranitomeya poison frogs and test for theoretical expectations on variation and convergence in mimetic signals. We demonstrate that both warning signal and mimetic convergence are highly variable and are negatively correlated: some localities display high variability and no mimicry while in others the phenotype is fixed and mimicry is perfect. Moreover, variation in warning signals is always present within localities, and in many cases this variation overlaps between populations, such that variation is continuous. Finally, we show that coloration is consistently the least variable element and is likely of greater importance for predator avoidance compared to patterning. We discuss the implications of our results in the context of warning signal diversification and suggest that, like many other locally adapted traits, a combination of standing genetic variation and founding effect might be sufficient to enable divergence in colour pattern.
Collapse
Affiliation(s)
| | - Mario Tuanama Valles
- Instituto de Investigación Biológica de las Cordilleras Orientales, Tarapoto, Peru
| | - Stephanie Gallusser
- Instituto de Investigación Biológica de las Cordilleras Orientales, Tarapoto, Peru
| | - Ronald Mori Pezo
- Instituto de Investigación Biológica de las Cordilleras Orientales, Tarapoto, Peru
| | - Mathieu Chouteau
- LEEISA, UAR 3456, Université de Guyane, CNRS, IFREMER, Cayenne, France
| |
Collapse
|
6
|
Scerri EML, Will M. The revolution that still isn't: The origins of behavioral complexity in Homo sapiens. J Hum Evol 2023; 179:103358. [PMID: 37058868 DOI: 10.1016/j.jhevol.2023.103358] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
The behavioral origins of Homo sapiens can be traced back to the first material culture produced by our species in Africa, the Middle Stone Age (MSA). Beyond this broad consensus, the origins, patterns, and causes of behavioral complexity in modern humans remain debated. Here, we consider whether recent findings continue to support popular scenarios of: (1) a modern human 'package,' (2) a gradual and 'pan-African' emergence of behavioral complexity, and (3) a direct connection to changes in the human brain. Our geographically structured review shows that decades of scientific research have continuously failed to find a discrete threshold for a complete 'modernity package' and that the concept is theoretically obsolete. Instead of a continent-wide, gradual accumulation of complex material culture, the record exhibits a predominantly asynchronous presence and duration of many innovations across different regions of Africa. The emerging pattern of behavioral complexity from the MSA conforms to an intricate mosaic characterized by spatially discrete, temporally variable, and historically contingent trajectories. This archaeological record bears no direct relation to a simplistic shift in the human brain but rather reflects similar cognitive capacities that are variably manifested. The interaction of multiple causal factors constitutes the most parsimonious explanation driving the variable expression of complex behaviors, with demographic processes such as population structure, size, and connectivity playing a key role. While much emphasis has been given to innovation and variability in the MSA record, long periods of stasis and a lack of cumulative developments argue further against a strictly gradualistic nature in the record. Instead, we are confronted with humanity's deep, variegated roots in Africa, and a dynamic metapopulation that took many millennia to reach the critical mass capable of producing the ratchet effect commonly used to define contemporary human culture. Finally, we note a weakening link between 'modern' human biology and behavior from around 300 ka ago.
Collapse
Affiliation(s)
- Eleanor M L Scerri
- Pan-African Evolution Research Group, Max Planck Institute for Geoanthropology, Kahlaische Str. 10, 07749, Jena, Germany; Department of Classics and Archaeology, University of Malta, Msida, MSD 2080, Malta; Department of Prehistory, University of Cologne, 50931, Cologne, Germany.
| | - Manuel Will
- Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Schloss Hohentübingen, Burgsteige 11, 72070, Tübingen, Germany
| |
Collapse
|
7
|
Sant’Anna FH, Finger Andreis T, Salvato RS, Muterle Varela AP, Comerlato J, Gregianini TS, Barcellos RB, de Souza Godinho FM, Resende PC, da Luz Wallau G, y Castro TR, Casarin BC, de Almeida Vieira A, Schwarzbold AV, de Arruda Trindade P, Tumioto Giannini GL, Freese L, Bristot G, Brasil CS, de Oliveira Rocha B, Martins PB, de Oliveira FH, van Oosterhout C, Wendland E. Incipient Parallel Evolution of SARS-CoV-2 Deltacron Variant in South Brazil. Vaccines (Basel) 2023; 11:vaccines11020212. [PMID: 36851091 PMCID: PMC9961971 DOI: 10.3390/vaccines11020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
With the coexistence of multiple lineages and increased international travel, recombination and gene flow are likely to become increasingly important in the adaptive evolution of SARS-CoV-2. These processes could result in genetic introgression and the incipient parallel evolution of multiple recombinant lineages. However, identifying recombinant lineages is challenging, and the true extent of recombinant evolution in SARS-CoV-2 may be underestimated. This study describes the first SARS-CoV-2 Deltacron recombinant case identified in Brazil. We demonstrate that the recombination breakpoint is at the beginning of the Spike gene. The 5' genome portion (circa 22 kb) resembles the AY.101 (Delta), and the 3' genome portion (circa 8 kb nucleotides) is most similar to the BA.1.1 (Omicron). Furthermore, evolutionary genomic analyses indicate that the new strain emerged after a single recombination event between lineages of diverse geographical locations in December 2021 in South Brazil. This Deltacron, AYBA-RS, is one of the dozens of recombinants described in 2022. The submission of only four sequences in the GISAID database suggests that this lineage had a minor epidemiological impact. However, the recent emergence of this and other Deltacron recombinant lineages (XD, XF, and XS) suggests that gene flow and recombination may play an increasingly important role in the COVID-19 pandemic. We explain the evolutionary and population genetic theory that supports this assertion, concluding that this stresses the need for continued genomic surveillance. This monitoring is vital for countries where multiple variants are present, as well as for countries that receive significant inbound international travel.
Collapse
Affiliation(s)
| | | | - Richard Steiner Salvato
- Centro de Desenvolvimento Científico e Tecnológico, Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul (CDCT/CEVS/SES-RS), Porto Alegre 90450-190, RS, Brazil
| | | | | | - Tatiana Schäffer Gregianini
- Laboratório Central de Saúde Pública, Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul (LACEN/CEVS/SES-RS), Porto Alegre 90450-190, RS, Brazil
| | - Regina Bones Barcellos
- Centro de Desenvolvimento Científico e Tecnológico, Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul (CDCT/CEVS/SES-RS), Porto Alegre 90450-190, RS, Brazil
| | - Fernanda Marques de Souza Godinho
- Centro de Desenvolvimento Científico e Tecnológico, Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul (CDCT/CEVS/SES-RS), Porto Alegre 90450-190, RS, Brazil
| | - Paola Cristina Resende
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - Gabriel da Luz Wallau
- Departamento de Entomologia e Núcleo de Bioinformática, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz Pernambuco (FIOCRUZ-PE), Recife 50740-465, PE, Brazil
| | - Thaís Regina y Castro
- Departamento de Análises Clínicas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Bruna Campestrini Casarin
- Departamento de Análises Clínicas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Andressa de Almeida Vieira
- Departamento de Análises Clínicas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | | | | | | | - Luana Freese
- Hospital Moinhos de Vento, Porto Alegre 90035-000, RS, Brazil
| | - Giovana Bristot
- Hospital Moinhos de Vento, Porto Alegre 90035-000, RS, Brazil
| | | | | | | | | | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Correspondence:
| | - Eliana Wendland
- Hospital Moinhos de Vento, Porto Alegre 90035-000, RS, Brazil
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
8
|
Thorpe HA, Tourrette E, Yahara K, Vale FF, Liu S, Oleastro M, Alarcon T, Perets TT, Latifi-Navid S, Yamaoka Y, Martinez-Gonzalez B, Karayiannis I, Karamitros T, Sgouras DN, Elamin W, Pascoe B, Sheppard SK, Ronkainen J, Aro P, Engstrand L, Agreus L, Suerbaum S, Thorell K, Falush D. Repeated out-of-Africa expansions of Helicobacter pylori driven by replacement of deleterious mutations. Nat Commun 2022; 13:6842. [PMID: 36369175 PMCID: PMC9652371 DOI: 10.1038/s41467-022-34475-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Helicobacter pylori lives in the human stomach and has a population structure resembling that of its host. However, H. pylori from Europe and the Middle East trace substantially more ancestry from modern African populations than the humans that carry them. Here, we use a collection of Afro-Eurasian H. pylori genomes to show that this African ancestry is due to at least three distinct admixture events. H. pylori from East Asia, which have undergone little admixture, have accumulated many more non-synonymous mutations than African strains. European and Middle Eastern bacteria have elevated African ancestry at the sites of these mutations, implying selection to remove them during admixture. Simulations show that population fitness can be restored after bottlenecks by migration and subsequent admixture of small numbers of bacteria from non-bottlenecked populations. We conclude that recent spread of African DNA has been driven by deleterious mutations accumulated during the original out-of-Africa bottleneck.
Collapse
Affiliation(s)
- Harry A Thorpe
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Elise Tourrette
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Filipa F Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Siqi Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal
| | - Teresa Alarcon
- Department of Microbiology, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Tsachi-Tsadok Perets
- Gastroenterology Laboratory, Rabin Medical Center, Petah Tikva, Israel
- Department of Digital Medical Technologies, Holon Institute of Technology, Holon, Israel
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
- Department of Medicine-Gastroenterology, Baylor College of Medicine, Houston, TX, USA
| | | | - Ioannis Karayiannis
- Laboratory of Medical Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | | | | | - Wael Elamin
- G42 Healthcare, Abu Dhabi, UAE
- Elrazi University, Khartoum, Sudan
| | - Ben Pascoe
- Department of Biology, University of Oxford, Oxford, UK
| | - Samuel K Sheppard
- Ineos Oxford Institute, Department of Biology, University of Oxford, Oxford, UK
| | - Jukka Ronkainen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Primary Health Care Center, Tornio, Finland
| | | | - Lars Engstrand
- Center for Translational Microbiome Research, Department for Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Agreus
- Division of Family Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Suerbaum
- Department of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
- DZIF German Center for Infection Research, Hannover-Braunschweig and Munich Partner Sites, Munich, Germany
| | - Kaisa Thorell
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Daniel Falush
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
9
|
Carbeck K, Wang T, Reid JM, Arcese P. Adaptation to climate change through seasonal migration revealed by climatic versus demographic niche models. GLOBAL CHANGE BIOLOGY 2022; 28:4260-4275. [PMID: 35366358 DOI: 10.1111/gcb.16185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Predicting the geographic range of species and their response to climatic variation and change are entwined goals in conservation and evolutionary ecology. Species distribution models (SDMs) are foundational in this effort and used to visualize the geographic range of species as the spatial representation of its realized niche. SDMs are also used to forecast range shifts under climate change, but often in the absence of empirical evidence that climate limits population growth. We explored the influence of climate on demography, seasonal migration, and the extent of the geographic range in song sparrows (Melospiza melodia), a species thought to display marked local adaptation to regional climate. To do so, we developed SDMs to predict the demographic and climate niches of migratory and resident song sparrows across our study area in western North America from California to Alaska, using 48 years of demographic data from a focal population in British Columbia and 1.2 million continental-scale citizen science observations. Spatial agreement of our demographic and climate niche models in the region of our focal population was strong (76%), supporting the hypothesis that demographic performance and the occurrence of seasonal migration varied predictably with climatic conditions. In contrast, agreement at the northern (58%) and southern (40%) extents of our study area was lower, as expected if the factors limiting population growth vary regionally. Our results support the hypothesis that local climate drives spatial variation in the occurrence of seasonal migration in song sparrows by limiting the fitness of year-round residents, and suggest that climate warming has favored range expansions and facilitated an upward shift in elevational range song sparrows that forgo seasonal migration. Our work highlights the potential role of seasonal migration in climate adaptation and limits on the reliability of climate niche models not validated with demographic data.
Collapse
Affiliation(s)
- Katherine Carbeck
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tongli Wang
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jane M Reid
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- Centre for Biodiversity Dynamics, Institutt for Biologi, NTNU, Trondheim, Norway
| | - Peter Arcese
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Tanaka MM, Wahl LM. Surviving environmental change: when increasing population size can increase extinction risk. Proc Biol Sci 2022; 289:20220439. [PMID: 35642362 PMCID: PMC9156903 DOI: 10.1098/rspb.2022.0439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Populations threatened by an abrupt environmental change-due to rapid climate change, pathogens or invasive competitors-may survive if they possess or generate genetic combinations adapted to the novel, challenging condition. If these genotypes are initially rare or non-existent, the emergence of lineages that allow a declining population to survive is known as 'evolutionary rescue'. By contrast, the genotypes required for survival could, by chance, be common before the environmental change. Here, considering both of these possibilities, we find that the risk of extinction can be lower in very small or very large populations, but peaks at intermediate population sizes. This pattern occurs when the survival genotype has a small deleterious effect before the environmental change. Since mildly deleterious mutations constitute a large fraction of empirically measured fitness effects, we suggest that this unexpected result-an intermediate size that puts a population at a greater risk of extinction-may not be unusual in the face of environmental change.
Collapse
Affiliation(s)
- Mark M. Tanaka
- University of New South Wales, Sydney, NSW 2052, Australia
| | - Lindi M. Wahl
- Western University, London, Ontario, Canada, N6A 5B7
| |
Collapse
|
11
|
Skaien CL, Arcese P. On the capacity for rapid adaptation and plastic responses to herbivory and intraspecific competition in insular populations of
Plectritis congesta. Evol Appl 2022; 15:804-816. [PMID: 35603029 PMCID: PMC9108306 DOI: 10.1111/eva.13371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
A capacity for rapid adaptation should enhance the persistence of populations subject to temporal and spatial heterogeneity in natural selection, but examples from nature remain scarce. Plectritis congesta (Caprifoliaceae) is a winter annual that exhibits local adaptation to browsing by ungulates and hypothesized to show context‐dependent trade‐offs in traits affecting success in competition versus resistance or tolerance to browsing. We grew P. congesta from 44 insular populations historically exposed or naïve to ungulates in common gardens to (1) quantify genetic, plastic and competitive effects on phenotype; (2) estimate a capacity for rapid adaptation (evolvability); and (3) test whether traits favoured by selection with ungulates present were selected against in their absence. Plants from browsed populations bolted and flowered later, had smaller inflorescences, were less fecund and half as tall as plants from naïve populations on average, replicating patterns in nature. Estimated evolvabilities (3–36%) and narrow‐sense heritabilities (h2; 0.13–0.32) imply that differences in trait values as large as reported here can arise in 2–18 generations in an average population. Phenotypic plasticity was substantial, varied by browsing history and fruit phenotype and increased with competition. Fecundity increased with plasticity in flowering height given competition (0.47 ± 0.02 florets/cm, β ± se), but 23–77% faster in naïve plants bearing winged fruits (0.53 ± 0.04) than exposed‐wingless plants (0.43 ± 0.03) or exposed‐winged and naïve‐wingless plants (0.30 ± 0.03, each case). Our results support the hypothesis that context‐dependent variation in natural selection in P. congesta populations has conferred a substantial capacity for adaptation in response to selection in traits affecting success in competition versus resistance or tolerance to browsing in the absence versus presence of ungulates, respectively. Theory suggests that conserving adaptive capacity in P. congesta will require land managers to maintain spatial heterogeneity in natural selection, prevent local extinctions and maintain gene flow.
Collapse
Affiliation(s)
- Cora L. Skaien
- University of British Columbia Department of Forest and Conservation Sciences Faculty of Forestry 2424 Main Mall Vancouver BC V6T 1Z4 Canada
| | - Peter Arcese
- University of British Columbia Department of Forest and Conservation Sciences Faculty of Forestry 2424 Main Mall Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
12
|
Val P, Lyons NJ, Gasparini N, Willenbring JK, Albert JS. Landscape Evolution as a Diversification Driver in Freshwater Fishes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.788328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The exceptional concentration of vertebrate diversity in continental freshwaters has been termed the “freshwater fish paradox,” with > 15,000 fish species representing more than 20% of all vertebrate species compressed into tiny fractions of the Earth’s land surface area (<0.5%) or total aquatic habitat volume (<0.001%). This study asks if the fish species richness of the world’s river basins is explainable in terms of river captures using topographic metrics as proxies. The River Capture Hypothesis posits that drainage-network rearrangements have accelerated biotic diversification through their combined effects on dispersal, speciation, and extinction. Yet rates of river capture are poorly constrained at the basin scale worldwide. Here we assess correlations between fish species density (data for 14,953 obligate freshwater fish species) and basin-wide metrics of landscape evolution (data for 3,119 river basins), including: topography (elevation, average relief, slope, drainage area) and climate (average rainfall and air temperature). We assess the results in the context of both static landscapes (e.g., species-area and habitat heterogeneity relationships) and transient landscapes (e.g., river capture, tectonic activity, landscape disequilibrium). We also relax assumptions of functional neutrality of basins (tropical vs. extratropical, tectonically stable vs. active terrains). We found a disproportionate number of freshwater species in large, lowland river basins of tropical South America, Africa, and Southeast Asia, under predictable conditions of large geographic area, tropical climate, low topographic relief, and high habitat volume (i.e., high rainfall rates). However, our results show that these conditions are only necessary, but not fully sufficient, to explain the basins with the highest diversity. Basins with highest diversity are all located on tectonically stable regions, places where river capture is predicted to be most conducive to the formation of high fish species richness over evolutionary timescales. Our results are consistent with predictions of several landscape evolution models, including the River Capture Hypothesis, Mega Capture Hypothesis, and Intermediate Capture Rate Hypothesis, and support conclusions of numerical modeling studies indicating landscape transience as a mechanistic driver of net diversification in riverine and riparian organisms with widespread continental distributions.
Collapse
|
13
|
Abstract
The genetic basis for the emergence of creativity in modern humans remains a mystery despite sequencing the genomes of chimpanzees and Neanderthals, our closest hominid relatives. Data-driven methods allowed us to uncover networks of genes distinguishing the three major systems of modern human personality and adaptability: emotional reactivity, self-control, and self-awareness. Now we have identified which of these genes are present in chimpanzees and Neanderthals. We replicated our findings in separate analyses of three high-coverage genomes of Neanderthals. We found that Neanderthals had nearly the same genes for emotional reactivity as chimpanzees, and they were intermediate between modern humans and chimpanzees in their numbers of genes for both self-control and self-awareness. 95% of the 267 genes we found only in modern humans were not protein-coding, including many long-non-coding RNAs in the self-awareness network. These genes may have arisen by positive selection for the characteristics of human well-being and behavioral modernity, including creativity, prosocial behavior, and healthy longevity. The genes that cluster in association with those found only in modern humans are over-expressed in brain regions involved in human self-awareness and creativity, including late-myelinating and phylogenetically recent regions of neocortex for autobiographical memory in frontal, parietal, and temporal regions, as well as related components of cortico-thalamo-ponto-cerebellar-cortical and cortico-striato-cortical loops. We conclude that modern humans have more than 200 unique non-protein-coding genes regulating co-expression of many more protein-coding genes in coordinated networks that underlie their capacities for self-awareness, creativity, prosocial behavior, and healthy longevity, which are not found in chimpanzees or Neanderthals.
Collapse
|
14
|
Baquero F, Martínez JL, F. Lanza V, Rodríguez-Beltrán J, Galán JC, San Millán A, Cantón R, Coque TM. Evolutionary Pathways and Trajectories in Antibiotic Resistance. Clin Microbiol Rev 2021; 34:e0005019. [PMID: 34190572 PMCID: PMC8404696 DOI: 10.1128/cmr.00050-19] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Evolution is the hallmark of life. Descriptions of the evolution of microorganisms have provided a wealth of information, but knowledge regarding "what happened" has precluded a deeper understanding of "how" evolution has proceeded, as in the case of antimicrobial resistance. The difficulty in answering the "how" question lies in the multihierarchical dimensions of evolutionary processes, nested in complex networks, encompassing all units of selection, from genes to communities and ecosystems. At the simplest ontological level (as resistance genes), evolution proceeds by random (mutation and drift) and directional (natural selection) processes; however, sequential pathways of adaptive variation can occasionally be observed, and under fixed circumstances (particular fitness landscapes), evolution is predictable. At the highest level (such as that of plasmids, clones, species, microbiotas), the systems' degrees of freedom increase dramatically, related to the variable dispersal, fragmentation, relatedness, or coalescence of bacterial populations, depending on heterogeneous and changing niches and selective gradients in complex environments. Evolutionary trajectories of antibiotic resistance find their way in these changing landscapes subjected to random variations, becoming highly entropic and therefore unpredictable. However, experimental, phylogenetic, and ecogenetic analyses reveal preferential frequented paths (highways) where antibiotic resistance flows and propagates, allowing some understanding of evolutionary dynamics, modeling and designing interventions. Studies on antibiotic resistance have an applied aspect in improving individual health, One Health, and Global Health, as well as an academic value for understanding evolution. Most importantly, they have a heuristic significance as a model to reduce the negative influence of anthropogenic effects on the environment.
Collapse
Affiliation(s)
- F. Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - J. L. Martínez
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - V. F. Lanza
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Central Bioinformatics Unit, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - J. Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - J. C. Galán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - A. San Millán
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - R. Cantón
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - T. M. Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
15
|
Cannon CH. Is speciation an unrelenting march to reproductive isolation? Mol Ecol 2021; 30:4349-4352. [PMID: 34407243 DOI: 10.1111/mec.16129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/29/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022]
Abstract
Speciation is often portrayed as an "incomplete" or "incipient" process if two groups of organisms, technically distinguishable either by morphology or genetics, can exchange genes. The ultimate outcome of diversification, given this perspective, is complete reproductive isolation. But an increasing amount of evidence suggests that speciation is rarely complete and inter-fertility between different taxonomically accepted species is consistently maintained. In this issue of Molecular Ecology, Linan et al. (2021) provide results that bridge evolutionary processes from populations to phylogenies that indicate suites of closely related tree species in the Mascarene Islands actively exchange genes, evolving as a nested set of syngameons with a hierarchical pattern of interfertility. The deep insight into diversification provided by this study is particularly powerful because of the genomic scale of the data and the complete taxonomic sampling of an island clade evolving in situ. The prevalence of syngameon dynamics in a broad range of organisms indicates that we should adopt a fluid and comprehensive approach to defining evolutionary units for conservation and research. We should move beyond focusing on single endangered species in evolutionary and ecological isolation from other species but consider the entire network of potentially interfertile species and the potential for future adaptation and innovation, particularly in a human dominated world.
Collapse
Affiliation(s)
- Charles H Cannon
- Center for Tree Science, The Morton Arboretum, Lisle, Illinois, USA
| |
Collapse
|
16
|
Sánchez Á, Vila JCC, Chang CY, Diaz-Colunga J, Estrela S, Rebolleda-Gomez M. Directed Evolution of Microbial Communities. Annu Rev Biophys 2021; 50:323-341. [PMID: 33646814 PMCID: PMC8105285 DOI: 10.1146/annurev-biophys-101220-072829] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Directed evolution is a form of artificial selection that has been used for decades to find biomolecules and organisms with new or enhanced functional traits. Directed evolution can be conceptualized as a guided exploration of the genotype-phenotype map, where genetic variants with desirable phenotypes are first selected and then mutagenized to search the genotype space for an even better mutant. In recent years, the idea of applying artificial selection to microbial communities has gained momentum. In this article, we review the main limitations of artificial selection when applied to large and diverse collectives of asexually dividing microbes and discuss how the tools of directed evolution may be deployed to engineer communities from the top down. We conceptualize directed evolution of microbial communities as a guided exploration of an ecological structure-function landscape and propose practical guidelines for navigating these ecological landscapes.
Collapse
Affiliation(s)
- Álvaro Sánchez
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| | - Jean C C Vila
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| | - Chang-Yu Chang
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| | - Juan Diaz-Colunga
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| | - Sylvie Estrela
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| | - María Rebolleda-Gomez
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| |
Collapse
|
17
|
Tassone EE, Miles LS, Dyer RJ, Rosenberg MS, Cowling RM, Verrelli BC. Evolutionary stability, landscape heterogeneity, and human land-usage shape population genetic connectivity in the Cape Floristic Region biodiversity hotspot. Evol Appl 2021; 14:1109-1123. [PMID: 33897824 PMCID: PMC8061270 DOI: 10.1111/eva.13185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 01/06/2023] Open
Abstract
As human-induced change eliminates natural habitats, it impacts genetic diversity and population connectivity for local biodiversity. The South African Cape Floristic Region (CFR) is the most diverse extratropical area for plant biodiversity, and much of its habitat is protected as a UNESCO World Heritage site. There has long been great interest in explaining the underlying factors driving this unique diversity, especially as much of the CFR is endangered by urbanization and other anthropogenic activity. Here, we use a population and landscape genetic analysis of SNP data from the CFR endemic plant Leucadendron salignum or "common sunshine conebush" as a model to address the evolutionary and environmental factors shaping the vast CFR diversity. We found that high population structure, along with relatively deeper and older genealogies, is characteristic of the southwestern CFR, whereas low population structure and more recent lineage coalescence depict the eastern CFR. Population network analyses show genetic connectivity is facilitated in areas of lower elevation and higher seasonal precipitation. These population genetic signatures corroborate CFR species-level patterns consistent with high Pleistocene biome stability and landscape heterogeneity in the southwest, but with coincident instability in the east. Finally, we also find evidence of human land-usage as a significant gene flow barrier, especially in severely threatened lowlands where genetic connectivity has been historically the highest. These results help identify areas where conservation plans can prioritize protecting high genetic diversity threatened by contemporary human activities within this unique cultural UNESCO site.
Collapse
Affiliation(s)
| | - Lindsay S. Miles
- Center for the Study of Biological ComplexityVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Rodney J. Dyer
- Center for Environmental StudiesVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Michael S. Rosenberg
- School of Life SciencesArizona State UniversityTempeArizonaUSA
- Center for the Study of Biological ComplexityVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Richard M. Cowling
- African Centre for Coastal PalaeoscienceBotany DepartmentNelson Mandela UniversityPort ElizabethSouth Africa
| | - Brian C. Verrelli
- School of Life SciencesArizona State UniversityTempeArizonaUSA
- Center for the Study of Biological ComplexityVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
18
|
Cole CT, Morrow CJ, Barker HL, Rubert-Nason KF, Riehl JFL, Köllner TG, Lackus ND, Lindroth RL. Growing up aspen: ontogeny and trade-offs shape growth, defence and reproduction in a foundation species. ANNALS OF BOTANY 2021; 127:505-517. [PMID: 32296821 PMCID: PMC7988516 DOI: 10.1093/aob/mcaa070] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/13/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Intraspecific variation in foundation species of forest ecosystems can shape community and ecosystem properties, particularly when that variation has a genetic basis. Traits mediating interactions with other species are predicted by simple allocation models to follow ontogenetic patterns that are rarely studied in trees. The aim of this research was to identify the roles of genotype, ontogeny and genotypic trade-offs shaping growth, defence and reproduction in aspen. METHODS We established a common garden replicating >500 aspen genets in Wisconsin, USA. Trees were measured through the juvenile period into the onset of reproduction, for growth, defence chemistry (phenolic glycosides and condensed tannins), nitrogen, extrafloral nectaries, leaf morphology (specific leaf area), flower production and foliar herbivory and disease. We also assayed the TOZ19 sex marker and heterozygosity at ten microsatellite loci. KEY RESULTS We found high levels of genotypic variation for all traits, and high heritabilities for both the traits and their ontogenetic trajectories. Ontogeny strongly shaped intraspecific variation, and trade-offs among growth, defence and reproduction supported some predictions while contradicting others. Both direct resistance (chemical defence) and indirect defence (extrafloral nectaries) declined during the juvenile stage, prior to the onset of reproduction. Reproduction was higher in trees that were larger, male and had higher individual heterozygosity. Growth was diminished by genotypic allocation to both direct and indirect defence as well as to reproduction, but we found no evidence of trade-offs between defence and reproduction. CONCLUSIONS Key traits affecting the ecological communities of aspen have high levels of genotypic variation and heritability, strong patterns of ontogeny and clear trade-offs among growth, defence and reproduction. The architecture of aspen's community genetics - its ontogeny, trade-offs and especially its great variability - is shaped by both its broad range and the diverse community of associates, and in turn further fosters that diversity.
Collapse
Affiliation(s)
- Christopher T Cole
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, USA
| | - Clay J Morrow
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, USA
| | - Hilary L Barker
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, USA
| | - Kennedy F Rubert-Nason
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, USA
- Department of Natural and Behavioral Sciences, University of Maine at Ft. Kent, 23 University Drive, Fort Kent, ME, USA
| | - Jennifer F L Riehl
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, USA
| | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Strasse 8, Jena, Germany
| | - Nathalie D Lackus
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Strasse 8, Jena, Germany
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, USA
| |
Collapse
|
19
|
Jones CT, Youssef N, Susko E, Bielawski JP. A Phenotype-Genotype Codon Model for Detecting Adaptive Evolution. Syst Biol 2021; 69:722-738. [PMID: 31730199 DOI: 10.1093/sysbio/syz075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 01/03/2023] Open
Abstract
A central objective in biology is to link adaptive evolution in a gene to structural and/or functional phenotypic novelties. Yet most analytic methods make inferences mainly from either phenotypic data or genetic data alone. A small number of models have been developed to infer correlations between the rate of molecular evolution and changes in a discrete or continuous life history trait. But such correlations are not necessarily evidence of adaptation. Here, we present a novel approach called the phenotype-genotype branch-site model (PG-BSM) designed to detect evidence of adaptive codon evolution associated with discrete-state phenotype evolution. An episode of adaptation is inferred under standard codon substitution models when there is evidence of positive selection in the form of an elevation in the nonsynonymous-to-synonymous rate ratio $\omega$ to a value $\omega > 1$. As it is becoming increasingly clear that $\omega > 1$ can occur without adaptation, the PG-BSM was formulated to infer an instance of adaptive evolution without appealing to evidence of positive selection. The null model makes use of a covarion-like component to account for general heterotachy (i.e., random changes in the evolutionary rate at a site over time). The alternative model employs samples of the phenotypic evolutionary history to test for phenomenological patterns of heterotachy consistent with specific mechanisms of molecular adaptation. These include 1) a persistent increase/decrease in $\omega$ at a site following a change in phenotype (the pattern) consistent with an increase/decrease in the functional importance of the site (the mechanism); and 2) a transient increase in $\omega$ at a site along a branch over which the phenotype changed (the pattern) consistent with a change in the site's optimal amino acid (the mechanism). Rejection of the null is followed by post hoc analyses to identify sites with strongest evidence for adaptation in association with changes in the phenotype as well as the most likely evolutionary history of the phenotype. Simulation studies based on a novel method for generating mechanistically realistic signatures of molecular adaptation show that the PG-BSM has good statistical properties. Analyses of real alignments show that site patterns identified post hoc are consistent with the specific mechanisms of adaptation included in the alternate model. Further simulation studies show that the covarion-like component of the PG-BSM plays a crucial role in mitigating recently discovered statistical pathologies associated with confounding by accounting for heterotachy-by-any-cause. [Adaptive evolution; branch-site model; confounding; mutation-selection; phenotype-genotype.].
Collapse
Affiliation(s)
- Christopher T Jones
- Department of Mathematics and Statistics, Dalhousie University, 1233 LeMarchant Street, B3H 4R2, Halifax, Nova Scotia, Canada
| | - Noor Youssef
- Department of Biology, Dalhousie University, 1233 LeMarchant Street, B3H 4R2, Halifax, Nova Scotia, Canada
| | - Edward Susko
- Department of Mathematics and Statistics, Dalhousie University, 1233 LeMarchant Street, B3H 4R2, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, 1233 LeMarchant Street, B3H 4R2, Halifax, Nova Scotia, Canada
| | - Joseph P Bielawski
- Department of Mathematics and Statistics, Dalhousie University, 1233 LeMarchant Street, B3H 4R2, Halifax, Nova Scotia, Canada.,Department of Biology, Dalhousie University, 1233 LeMarchant Street, B3H 4R2, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, 1233 LeMarchant Street, B3H 4R2, Halifax, Nova Scotia, Canada
| |
Collapse
|
20
|
Ecology shapes epistasis in a genotype-phenotype-fitness map for stick insect colour. Nat Ecol Evol 2020; 4:1673-1684. [PMID: 32929238 DOI: 10.1038/s41559-020-01305-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/19/2020] [Indexed: 01/06/2023]
Abstract
Genetic interactions such as epistasis are widespread in nature and can shape evolutionary dynamics. Epistasis occurs due to nonlinearity in biological systems, which can arise via cellular processes that convert genotype to phenotype and via selective processes that connect phenotype to fitness. Few studies in nature have connected genotype to phenotype to fitness for multiple potentially interacting genetic variants. Thus, the causes of epistasis in the wild remain poorly understood. Here, we show that epistasis for fitness is an emergent and predictable property of nonlinear selective processes. We do so by measuring the genetic basis of cryptic colouration and survival in a field experiment with stick insects. We find that colouration shows a largely additive genetic basis but with some effects of epistasis that enhance differentiation between colour morphs. In terms of fitness, different combinations of loci affecting colouration confer high survival in one host-plant treatment. Specifically, nonlinear correlational selection for specific combinations of colour traits in this treatment drives the emergence of pairwise and higher-order epistasis for fitness at loci underlying colour. In turn, this results in a rugged fitness landscape for genotypes. In contrast, fitness epistasis was dampened in another treatment, where selection was weaker. Patterns of epistasis that are shaped by ecologically based selection could be common and central to understanding fitness landscapes, the dynamics of evolution and potentially other complex systems.
Collapse
|
21
|
Walter GM, Richards TJ, Wilkinson MJ, Blows MW, Aguirre JD, Ortiz‐Barrientos D. Loss of ecologically important genetic variation in late generation hybrids reveals links between adaptation and speciation. Evol Lett 2020; 4:302-316. [PMID: 32774880 PMCID: PMC7403682 DOI: 10.1002/evl3.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Adaptation to contrasting environments occurs when advantageous alleles accumulate in each population, but it remains largely unknown whether these same advantageous alleles create genetic incompatibilities that can cause intrinsic reproductive isolation leading to speciation. Identifying alleles that underlie both adaptation and reproductive isolation is further complicated by factors such as dominance and genetic interactions among loci, which can affect both processes differently and obscure potential links between adaptation and speciation. Here, we use a combination of field and glasshouse experiments to explore the connection between adaptation and speciation while accounting for dominance and genetic interactions. We created a hybrid population with equal contributions from four contrasting ecotypes of Senecio lautus (Asteraceae), which produced hybrid genomes both before (F1 hybrid generation) and after (F4 hybrid generation) recombination among the parental ecotypes. In the glasshouse, plants in the second generation (F2 hybrid generation) showed reduced fitness as a loss of fertility. However, fertility was recovered in subsequent generations, suggesting that genetic variation underlying the fitness reduction was lost in subsequent generations. To quantify the effects of losing genetic variation at the F2 generation on the fitness of later generation hybrids, we used a reciprocal transplant to test for fitness differences between parental ecotypes, and F1 and F4 hybrids in all four parental habitats. Compared to the parental ecotypes and F1 hybrids, variance in F4 hybrid fitness was lower, and lowest in habitats that showed stronger native-ecotype advantage, suggesting that stronger natural selection for the native ecotype reduced fitness variation in the F4 hybrids. Fitness trade-offs that were present in the parental ecotypes and F1 hybrids were absent in the F4 hybrid. Together, these results suggest that the genetic variation lost after the F2 generation was likely associated with both adaptation and intrinsic reproductive isolation among ecotypes from contrasting habitats.
Collapse
Affiliation(s)
- Greg M. Walter
- School of Biological SciencesUniversity of QueenslandBrisbane4072Australia
- Current address: School of Biological SciencesMonash UniversityMelbourne3800Australia
| | - Thomas J. Richards
- Department of Ecology and GeneticsUppsala UniversityUppsalaSE‐752 36Sweden
| | | | - Mark W. Blows
- School of Biological SciencesUniversity of QueenslandBrisbane4072Australia
| | - J. David Aguirre
- School of Natural and Computational SciencesMassey UniversityAuckland0745New Zealand
| | | |
Collapse
|
22
|
Subramanian H, Brown J, Gatenby R. Prebiotic competition and evolution in self-replicating polynucleotides can explain the properties of DNA/RNA in modern living systems. BMC Evol Biol 2020; 20:75. [PMID: 32590933 PMCID: PMC7318430 DOI: 10.1186/s12862-020-01641-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We hypothesize prebiotic evolution of self-replicating macro-molecules (Alberts, Molecular biology of the cell, 2015; Orgel, Crit Rev Biochem Mol Biol 39:99-123, 2004; Hud, Nat Commun 9:5171) favoured the constituent nucleotides and biophysical properties observed in the RNA and DNA of modern organisms. Assumed initial conditions are a shallow tide pool, containing a racemic mix of diverse nucleotide monomers (Barks et al., Chembiochem 11:1240-1243, 2010; Krishnamurthy, Nat Commun 9:5175, 2018; Hirao, Curr Opin Chem Biol 10:622-627), subject to day/night thermal fluctuations (Piccirilli et al., Nature 343:33-37, 1990). Self-replication, like Polymerase Chain Reactions, followed as higher daytime thermal energy "melted" inter-strand hydrogen bonds causing strand separation while solar UV radiation increased prebiotic nucleobase formation (Szathmary, Proc Biol Sci 245:91-99, 1991; Materese et al., Astrobiology 17:761-770, 2017; Bera et al., Astrobiology 17:771-785, 2017). Lower night energies allowed free monomers to form hydrogen bonds with their template counterparts leading to daughter strand synthesis (Hirao, Biotechniques 40:711, 2006). RESULTS Evolutionary selection favoured increasing strand length to maximize auto-catalytic function in RNA and polymer stability in double stranded DNA (Krishnamurthy, Chemistry 24:16708-16715, 2018; Szathmary, Nat Rev Genet 4:995-1001, 2003). However, synthesis of the full daughter strand before daytime temperatures produced strand separation, longer polymer length required increased speed of self-replication. Computer simulations demonstrate optimal polynucleotide autocatalytic speed is achieved when the constituent nucleotides possess a left-right asymmetry that decreases the hydrogen bond kinetic barrier for the free nucleotide attachment to the template on one side and increases bond barrier on the other side preventing it from releasing prior to covalent bond formation. This phenomenon is similar to asymmetric kinetics observed during polymerization of the front and the back ends of linear cytoskeletal proteins such as actin and microtubules (Orgel, Nature 343:18-20, 1990; Henry, Curr Opin Chem Biol 7:727-733, 2003; Walker et al., J Cell Biol 108:931-937, 1989; Crevenna et al., J Biol Chem 288:12102-12113, 2013). Since rotation of the nucleotide would disrupt the asymmetry, the optimal nucleotides must form two or more hydrogen bonds with their counterpart on the template strand. All nucleotides in modern RNA and DNA have these predicted properties. Our models demonstrate these constraints on the properties of constituent monomers result in biophysical properties found in modern DNA and RNA including strand directionality, anti-parallel strand orientation, homochirality, quadruplet alphabet, and complementary base pairing. Furthermore, competition between RNA and DNA auto-replicators for 3 nucleotides in common permit states coexistence and possible cooperative interactions that could be incorporated into nascent living systems. CONCLUSION Our findings demonstrate the molecular properties of DNA/RNA could have emerged from Darwinian competition among macromolecular replicators that selected nucleotide monomers that maximized the speed of autocatalysis.
Collapse
Affiliation(s)
- Hemachander Subramanian
- Cancer Biology and Evolution Program, Tampa, FL, 33612, USA.,Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL, 33612, USA.,Present Address: Department of Physics, National Institute of Technology, Durgapur, West Bengal, India
| | - Joel Brown
- Cancer Biology and Evolution Program, Tampa, FL, 33612, USA.,Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Robert Gatenby
- Cancer Biology and Evolution Program, Tampa, FL, 33612, USA. .,Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL, 33612, USA.
| |
Collapse
|
23
|
Skaien CL, Arcese P. Local adaptation in island populations of Plectritis congesta that differ in historic exposure to ungulate browsers. Ecology 2020; 101:e03054. [PMID: 32239504 DOI: 10.1002/ecy.3054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 11/07/2022]
Abstract
Spatial variation in the occurrence of browsing ungulates can drive local adaptation in plant traits but also lead to trade-offs among traits potentially enhancing competitive ability versus resistance or tolerance to browsing. Plectritis congesta populations co-occurring on islands with and without ungulates offer striking examples of population-level variation in traits, such as plant height and fruit morphology, which may also affect fitness. We monitored split-plot common gardens exposed to and protected from browsing ungulates for 5 yr to test for local adaptation (local vs. foreign comparison) in P. congesta by comparing the survival and fecundity of 4,392 sown fruits from six island populations where ungulates were present ("historically exposed") and six where they were absent ("historically naïve"). Our results indicate that local adaptation to browsing in P. congesta favored rosette formation, delayed flowering, reduced height, and the production of wingless fruits, all of which appeared to enhance survival, fecundity, and population growth in plants from populations historically exposed to ungulate browsers, as compared to plants from historically naïve populations. In contrast, plants from historically naïve populations displayed higher relative fitness in the absence of ungulates, increased in height, flowered earlier, and produced fewer but larger, winged fruits, often in large terminal inflorescences. Our results support the hypothesis that variation in the occurrence of ungulate browsers has led to (1) spatial heterogeneity in natural selection and rapid adaptation in P. congesta populations on islands, and (2) context-dependent trade-offs in the fitness value of traits linked to the resistance or tolerance of browsing versus success in competition for light, pollinators, or other resources. Because patterns of selection in plant communities will vary with the introduction or extirpation of top predators or browsers, we suggest historical context, local adaptation, and the capacity for rapid adaptation should be a focal concern of those aiming to maximize or predict population persistence under environmental change in conservation plans.
Collapse
Affiliation(s)
- Cora L Skaien
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Peter Arcese
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
24
|
Tonini JFR, Provete DB, Maciel NM, Morais AR, Goutte S, Toledo LF, Pyron RA. Allometric escape from acoustic constraints is rare for frog calls. Ecol Evol 2020; 10:3686-3695. [PMID: 32313627 PMCID: PMC7160179 DOI: 10.1002/ece3.6155] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/29/2020] [Accepted: 02/17/2020] [Indexed: 01/10/2023] Open
Abstract
Allometric constraint is a product of natural selection and physical laws, particularly with respect to body size and traits constrained by properties thereof, such as metabolism, longevity, and vocal frequency. Allometric relationships are often conserved across lineages, indicating that physical constraints dictate scaling patterns in deep time, despite substantial genetic and ecological divergence among organisms. In particular, acoustic allometry (sound frequency ~ body size) is conserved across frogs, in defiance of massive variation in both body size and frequency. Here, we ask how many instances of allometric escape have occurred across the frog tree of life using a Bayesian framework that estimates the location, number, and magnitude of shifts in the adaptive landscape of acoustic allometry. Moreover, we test whether ecology in terms of calling site could affect these relationships. We find that calling site has a major influence on acoustic allometry. Despite this, we identify only four major instances of allometric escape, potentially deriving from ecomorphological adaptations to new signal modalities. In these instances of allometric escape, the optima and strength of the scaling relationship are different than expected for most other frog species, representing new adaptive regimes of body size ~ call frequency. Allometric constraints on frog calls are highly conserved and have rarely allowed escape, despite frequent invasions of new adaptive regimes and dramatic ecomorphological divergence. Our results highlight the rare instances in which natural and sexual selection combined can overcome physical constraints on sound production.
Collapse
Affiliation(s)
- João Filipe Riva Tonini
- Department of Biological SciencesThe George Washington UniversityWashingtonDCUSA
- Museum of Comparative ZoologyDepartment of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| | - Diogo B. Provete
- Setor de EcologiaInstituto de BiociênciasUniversidade Federal de Mato Grosso do SulMato Grosso do SulCampo GrandeBrazil
- Gothenburg Global Biodiversity CentreGöteborgSweden
| | - Natan M. Maciel
- Departamento de EcologiaInstituto de Ciências BiológicasUniversidade Federal de GoiásGoiâniaBrazil
| | | | - Sandra Goutte
- Laboratório de História Natural de Anfíbios BrasileirosDepartamento de Biologia AnimalInstituto de BiologiaUniversidade Estadual de CampinasCampinasBrazil
- New York University Abu DhabiAbu DhabiUAE
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios BrasileirosDepartamento de Biologia AnimalInstituto de BiologiaUniversidade Estadual de CampinasCampinasBrazil
| | | |
Collapse
|
25
|
Naciri Y, Linder HP. The genetics of evolutionary radiations. Biol Rev Camb Philos Soc 2020; 95:1055-1072. [PMID: 32233014 DOI: 10.1111/brv.12598] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
With the realization that much of the biological diversity on Earth has been generated by discrete evolutionary radiations, there has been a rapid increase in research into the biotic (key innovations) and abiotic (key environments) circumstances in which such radiations took place. Here we focus on the potential importance of population genetic structure and trait genetic architecture in explaining radiations. We propose a verbal model describing the stages of an evolutionary radiation: first invading a suitable adaptive zone and expanding both spatially and ecologically through this zone; secondly, diverging genetically into numerous distinct populations; and, finally, speciating. There are numerous examples of the first stage; the difficulty, however, is explaining how genetic diversification can take place from the establishment of a, presumably, genetically depauperate population in a new adaptive zone. We explore the potential roles of epigenetics and transposable elements (TEs), of neutral process such as genetic drift in combination with trait genetic architecture, of gene flow limitation through isolation by distance (IBD), isolation by ecology and isolation by colonization, the possible role of intra-specific competition, and that of admixture and hybridization in increasing the genetic diversity of the founding populations. We show that many of the predictions of this model are corroborated. Most radiations occur in complex adaptive zones, which facilitate the establishment of many small populations exposed to genetic drift and divergent selection. We also show that many radiations (especially those resulting from long-distance dispersal) were established by polyploid lineages, and that many radiating lineages have small genome sizes. However, there are several other predictions which are not (yet) possible to test: that epigenetics has played a role in radiations, that radiations occur more frequently in clades with small gene flow distances, or that the ancestors of radiations had large fundamental niches. At least some of these may be testable in the future as more genome and epigenome data become available. The implication of this model is that many radiations may be hard polytomies because the genetic divergence leading to speciation happens within a very short time, and that the divergence history may be further obscured by hybridization. Furthermore, it suggests that only lineages with the appropriate genetic architecture will be able to radiate, and that such a radiation will happen in a meta-population environment. Understanding the genetic architecture of a lineage may be an essential part of accounting for why some lineages radiate, and some do not.
Collapse
Affiliation(s)
- Yamama Naciri
- Plant Systematics and Biodiversity Laboratory, Department of Botany and Plant biology of the University of Geneva, 1 Chemin de l'Impératrice, CH-1292, Chambésy, Geneva, Switzerland
| | - H Peter Linder
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| |
Collapse
|
26
|
Feder AF, Pennings PS, Hermisson J, Petrov DA. Evolutionary Dynamics in Structured Populations Under Strong Population Genetic Forces. G3 (BETHESDA, MD.) 2019; 9:3395-3407. [PMID: 31462443 PMCID: PMC6778802 DOI: 10.1534/g3.119.400605] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022]
Abstract
In the long-term neutral equilibrium, high rates of migration between subpopulations result in little population differentiation. However, in the short-term, even very abundant migration may not be enough for subpopulations to equilibrate immediately. In this study, we investigate dynamical patterns of short-term population differentiation in adapting populations via stochastic and analytical modeling through time. We characterize a regime in which selection and migration interact to create non-monotonic patterns of population differentiation over time when migration is weaker than selection, but stronger than drift. We demonstrate how these patterns can be leveraged to estimate high migration rates using approximate Bayesian computation. We apply this approach to estimate fast migration in a rapidly adapting intra-host Simian-HIV population sampled from different anatomical locations. We find differences in estimated migration rates between different compartments, even though all are above [Formula: see text] = 1. This work demonstrates how studying demographic processes on the timescale of selective sweeps illuminates processes too fast to leave signatures on neutral timescales.
Collapse
Affiliation(s)
- Alison F Feder
- Department of Biology, Stanford University,
- Department of Integrative Biology, University of California Berkeley
| | | | | | | |
Collapse
|
27
|
Medina-Villarreal A, González-Astorga J, Espinosa de los Monteros A. Evolution of Ceratozamia cycads: A proximate-ultimate approach. Mol Phylogenet Evol 2019; 139:106530. [DOI: 10.1016/j.ympev.2019.106530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022]
|
28
|
Miles LS, Rivkin LR, Johnson MTJ, Munshi‐South J, Verrelli BC. Gene flow and genetic drift in urban environments. Mol Ecol 2019; 28:4138-4151. [DOI: 10.1111/mec.15221] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Lindsay S. Miles
- Integrative Life Sciences Doctoral Program Virginia Commonwealth University Richmond VA USA
- Department of Biology University of Toronto Mississauga Mississauga ON Canada
| | - L. Ruth Rivkin
- Department of Biology University of Toronto Mississauga Mississauga ON Canada
- Centre for Urban Environments University of Toronto Mississauga Mississauga ON Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto ON Canada
| | - Marc T. J. Johnson
- Department of Biology University of Toronto Mississauga Mississauga ON Canada
- Centre for Urban Environments University of Toronto Mississauga Mississauga ON Canada
| | - Jason Munshi‐South
- Louis Calder Center—Biological Field Station Fordham University Armonk NY USA
| | - Brian C. Verrelli
- Center for Life Sciences Education Virginia Commonwealth University Richmond VA USA
| |
Collapse
|
29
|
Draghi J. Phenotypic variability can promote the evolution of adaptive plasticity by reducing the stringency of natural selection. J Evol Biol 2019; 32:1274-1289. [DOI: 10.1111/jeb.13527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Jeremy Draghi
- Department of Biological Sciences Virginia Tech Blacksburg VA USA
- Department of Biology Brooklyn College CUNY Brooklyn NY USA
- The Graduate Center of the City University of New York New York NY USA
| |
Collapse
|
30
|
Lawrence JP, Rojas B, Fouquet A, Mappes J, Blanchette A, Saporito RA, Bosque RJ, Courtois EA, Noonan BP. Weak warning signals can persist in the absence of gene flow. Proc Natl Acad Sci U S A 2019; 116:19037-19045. [PMID: 31481623 PMCID: PMC6754554 DOI: 10.1073/pnas.1901872116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aposematic organisms couple conspicuous warning signals with a secondary defense to deter predators from attacking. Novel signals of aposematic prey are expected to be selected against due to positive frequency-dependent selection. How, then, can novel phenotypes persist after they arise, and why do so many aposematic species exhibit intrapopulation signal variability? Using a polytypic poison frog (Dendrobates tinctorius), we explored the forces of selection on variable aposematic signals using 2 phenotypically distinct (white, yellow) populations. Contrary to expectations, local phenotype was not always better protected compared to novel phenotypes in either population; in the white population, the novel phenotype evoked greater avoidance in natural predators. Despite having a lower quantity of alkaloids, the skin extracts from yellow frogs provoked higher aversive reactions by birds than white frogs in the laboratory, although both populations differed from controls. Similarly, predators learned to avoid the yellow signal faster than the white signal, and generalized their learned avoidance of yellow but not white. We propose that signals that are easily learned and broadly generalized can protect rare, novel signals, and weak warning signals (i.e., signals with poor efficacy and/or poor defense) can persist when gene flow among populations, as in this case, is limited. This provides a mechanism for the persistence of intrapopulation aposematic variation, a likely precursor to polytypism and driver of speciation.
Collapse
Affiliation(s)
- J P Lawrence
- Department of Biology, University of Mississippi, University, MS 38677;
| | - Bibiana Rojas
- Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland;
| | - Antoine Fouquet
- Laboratoire Evolution et Diversité Biologique, Centre National de la Recherche Scientifique, UMR5174, 31062 Toulouse cedex 9, France
| | - Johanna Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Annelise Blanchette
- Department of Biology, John Carroll University, University Heights, OH 44118
| | - Ralph A Saporito
- Department of Biology, John Carroll University, University Heights, OH 44118
| | | | - Elodie A Courtois
- Laboratoire Ecologie, Evolution, Interactions des Systèmes Amazoniens, Centre de Recherche de Montabo, Universite de Guyane, BP 70620, 97334 Cayenne cedex, France
| | - Brice P Noonan
- Department of Biology, University of Mississippi, University, MS 38677
| |
Collapse
|
31
|
Seymour M, Räsänen K, Kristjánsson BK. Drift versus selection as drivers of phenotypic divergence at small spatial scales: The case of Belgjarskógur threespine stickleback. Ecol Evol 2019; 9:8133-8145. [PMID: 31380077 PMCID: PMC6662300 DOI: 10.1002/ece3.5381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 11/14/2022] Open
Abstract
Divergence in phenotypic traits is facilitated by a combination of natural selection, phenotypic plasticity, gene flow, and genetic drift, whereby the role of drift is expected to be particularly important in small and isolated populations. Separating the components of phenotypic divergence is notoriously difficult, particularly for multivariate phenotypes. Here, we assessed phenotypic divergence of threespine stickleback (Gasterosteus aculeatus) across 19 semi-interconnected ponds within a small geographic region (~7.5 km2) using comparisons of multivariate phenotypic divergence (PST), neutral genetic (FST), and environmental (EST) variation. We found phenotypic divergence across the ponds in a suite of functionally relevant phenotypic traits, including feeding, defense, and swimming traits, and body shape (geometric morphometric). Comparisons of PSTs with FSTs suggest that phenotypic divergence is predominantly driven by neutral processes or stabilizing selection, whereas phenotypic divergence in defensive traits is in accordance with divergent selection. Comparisons of population pairwise PSTs with ESTs suggest that phenotypic divergence in swimming traits is correlated with prey availability, whereas there were no clear associations between phenotypic divergence and environmental difference in the other phenotypic groups. Overall, our results suggest that phenotypic divergence of these small populations at small geographic scales is largely driven by neutral processes (gene flow, drift), although environmental determinants (natural selection or phenotypic plasticity) may play a role.
Collapse
Affiliation(s)
- Mathew Seymour
- Department of Aquaculture and Fish BiologyHólar UniversitySkagafjörðurIceland
- Department of Aquatic EcologyEAWAG and Institute of Integrative BiologyETH‐ZurichDübendorfSwitzerland
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Biological SciencesBangor UniversityBangorUK
| | - Katja Räsänen
- Department of Aquatic EcologyEAWAG and Institute of Integrative BiologyETH‐ZurichDübendorfSwitzerland
| | | |
Collapse
|
32
|
Soto W, Travisano M, Tolleson AR, Nishiguchi MK. Symbiont evolution during the free-living phase can improve host colonization. MICROBIOLOGY-SGM 2019; 165:174-187. [PMID: 30648935 PMCID: PMC7003651 DOI: 10.1099/mic.0.000756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For micro-organisms cycling between free-living and host-associated stages, where reproduction occurs in both of these lifestyles, an interesting inquiry is whether evolution during the free-living stage can be positively pleiotropic to microbial fitness in a host environment. To address this topic, the squid host Euprymna tasmanica and the marine bioluminescent bacterium Vibrio fischeri were utilized. Microbial ecological diversification in static liquid microcosms was used to simulate symbiont evolution during the free-living stage. Thirteen genetically distinct V. fischeri strains from a broad diversity of ecological sources (e.g. squid light organs, fish light organs and seawater) were examined to see if the results were reproducible in many different genetic settings. Genetic backgrounds that are closely related can be predisposed to considerable differences in how they respond to similar selection pressures. For all strains examined, new mutations with striking and facilitating effects on host colonization arose quickly during microbial evolution in the free-living stage, regardless of the ecological context under consideration for a strain’s genetic background. Microbial evolution outside a host environment promoted host range expansion, improved host colonization for a micro-organism, and diminished the negative correlation between biofilm formation and motility.
Collapse
Affiliation(s)
- William Soto
- 1College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr Williamsburg, VA 23185, USA
| | - Michael Travisano
- 2Department of Ecology, Evolution, and Behavior, University of Minnesota-Twin Cities, 100 Ecology Building, 1987 Upper Buford Circle, Saint Paul, MN 55108, USA.,3BioTechnology Institute, University of Minnesota-Twin Cities, 140 Gortner Labs, 1479 Gortner Avenue, St Paul, MN 55108, USA
| | - Alexandra Rose Tolleson
- 1College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr Williamsburg, VA 23185, USA
| | | |
Collapse
|
33
|
Nosil P, Soria-Carrasco V, Feder JL, Flaxman SM, Gompert Z. Local and system-wide adaptation is influenced by population connectivity. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1097-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Miles LS, Dyer RJ, Verrelli BC. Urban hubs of connectivity: contrasting patterns of gene flow within and among cities in the western black widow spider. Proc Biol Sci 2018; 285:rspb.2018.1224. [PMID: 30068686 DOI: 10.1098/rspb.2018.1224] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022] Open
Abstract
As urbanization drastically alters the natural landscape and generates novel habitats within cities, the potential for changes to gene flow for urban-dwelling species increases. The western black widow spider (Latrodectus hesperus) is a medically relevant urban adapter pest species, for which we have previously identified population genetic signatures consistent with urbanization facilitating gene flow, likely due to human-mediated transport. Here, in an analysis of 1.9 million genome-wide SNPs, we contrast broad-scale geographical analyses of 10 urban and 11 non-urban locales with fine-scale within-city analyses including 30 urban locales across the western USA. These hierarchical datasets enable us to test hypotheses of how urbanization impacts multiple urban cities and their genetic connectivity at different spatial scales. Coupled fine-scale and broad-scale analyses reveal contrasting patterns of high and low genetic differentiation among locales within cities as a result of low and high genetic connectivity, respectively, of these cities to the overall population network. We discuss these results as they challenge the use of cities as replicates of urban eco-evolution, and have implications for conservation and human health in a rapidly growing urban habitat.
Collapse
Affiliation(s)
- Lindsay S Miles
- Center for Life Sciences Education, Virginia Commonwealth University, Richmond, VA, USA.,Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA, USA
| | - Rodney J Dyer
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Brian C Verrelli
- Center for Life Sciences Education, Virginia Commonwealth University, Richmond, VA, USA .,Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
35
|
Miles LS, Johnson JC, Dyer RJ, Verrelli BC. Urbanization as a facilitator of gene flow in a human health pest. Mol Ecol 2018; 27:3219-3230. [PMID: 29972610 DOI: 10.1111/mec.14783] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/16/2018] [Accepted: 04/11/2018] [Indexed: 01/04/2023]
Abstract
Urban fragmentation can reduce gene flow that isolates populations, reduces genetic diversity and increases population differentiation, all of which have negative conservation implications. Alternatively, gene flow may actually be increased among urban areas consistent with an urban facilitation model. In fact, urban adapter pests are able to thrive in the urban environment and may be experiencing human-mediated transport. Here, we used social network theory with a population genetic approach to investigate the impact of urbanization on genetic connectivity in the Western black widow spider, as an urban pest model of human health concern. We collected genomewide single nucleotide polymorphism variation from mitochondrial and nuclear double-digest RAD (ddRAD) sequence data sets from 210 individuals sampled from 11 urban and 10 nonurban locales across its distribution of the Western United States. From urban and nonurban contrasts of population, phylogenetic, and network analyses, urban locales have higher within-population genetic diversity, lower between-population genetic differentiation and higher estimates of genetic connectivity. Social network analyses show that urban locales not only have more connections, but can act as hubs that drive connectivity among nonurban locales, which show signatures of historical isolation. These results are consistent with an urban facilitation model of gene flow and demonstrate the importance of sampling multiple cities and markers to identify the role that urbanization has had on larger spatial scales. As the urban landscape continues to grow, this approach will help determine what factors influence the spread and adaptation of pests, like the venomous black widow spider, in building policies for human and biodiversity health.
Collapse
Affiliation(s)
- Lindsay S Miles
- Center for Life Sciences Education, Virginia Commonwealth University, Richmond, Virginia
- Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, Virginia
| | - J Chadwick Johnson
- Division of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, Arizona
| | - Rodney J Dyer
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, Virginia
| | - Brian C Verrelli
- Center for Life Sciences Education, Virginia Commonwealth University, Richmond, Virginia
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
36
|
Saitou N. Chance, Finiteness, and History. Mol Biol Evol 2018; 35:1556-1557. [DOI: 10.1093/molbev/msy087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Naruya Saitou
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
37
|
Connallon T, Hall MD. Genetic constraints on adaptation: a theoretical primer for the genomics era. Ann N Y Acad Sci 2018; 1422:65-87. [PMID: 29363779 DOI: 10.1111/nyas.13536] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022]
Abstract
Genetic constraints are features of inheritance systems that slow or prohibit adaptation. Several population genetic mechanisms of constraint have received sustained attention within the field since they were first articulated in the early 20th century. This attention is now reflected in a rich, and still growing, theoretical literature on the genetic limits to adaptive change. In turn, empirical research on constraints has seen a rapid expansion over the last two decades in response to changing interests of evolutionary biologists, along with new technologies, expanding data sets, and creative analytical approaches that blend mathematical modeling with genomics. Indeed, one of the most notable and exciting features of recent progress in genetic constraints is the close connection between theoretical and empirical research. In this review, we discuss five major population genetic contexts of genetic constraint: genetic dominance, pleiotropy, fitness trade-offs between types of individuals of a population, sign epistasis, and genetic linkage between loci. For each, we outline historical antecedents of the theory, specific contexts where constraints manifest, and their quantitative consequences for adaptation. From each of these theoretical foundations, we discuss recent empirical approaches for identifying and characterizing genetic constraints, each grounded and motivated by this theory, and outline promising areas for future work.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological Sciences, and Centre for Geometric Biology, Monash University, Clayton, Victoria, Australia
| | - Matthew D Hall
- School of Biological Sciences, and Centre for Geometric Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
38
|
Lo Bianco S, Masters JC, Sineo L. The evolution of the Cercopithecini: a (post)modern synthesis. Evol Anthropol 2017; 26:336-349. [PMID: 29265656 DOI: 10.1002/evan.21567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 11/11/2022]
Abstract
The Cercopithecini, or African guenon monkeys, are one of the most diverse clades of living primates and comprise the most species-rich clade of Catarrhini. Species identity is announced by flamboyant coloration of the facial and genital regions and, more cryptically, by vigorous chromosomal rearrangements among taxa. Beneath the skin, however, these animals are skeletally conservative and show low levels of genetic sequence divergence consonant with recent divergence between congeneric species. The guenons clearly demonstrate that morphological, cytogenetic, and reproductive differentiation proceed at different rates during speciation. We review diverse kinds of data in an effort to understand this conundrum.
Collapse
Affiliation(s)
- Stefania Lo Bianco
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 18, 90123, Palermo, Italy
| | - Judith C Masters
- African Primate Initiative for Ecology and Speciation (APIES), University of Fort Hare, and Africa Earth Observatory Network (AEON), Earth Stewardship Science Research Institute, Nelson Mandela University, 6031, Port Elizabeth, South Africa
| | - Luca Sineo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 18, 90123, Palermo, Italy
| |
Collapse
|
39
|
Campbell KM, Kouris A, England W, Anderson RE, McCleskey RB, Nordstrom DK, Whitaker RJ. Sulfolobus islandicus meta-populations in Yellowstone National Park hot springs. Environ Microbiol 2017; 19:2334-2347. [PMID: 28276174 DOI: 10.1111/1462-2920.13728] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/25/2017] [Indexed: 12/01/2022]
Abstract
Abiotic and biotic forces shape the structure and evolution of microbial populations. We investigated forces that shape the spatial and temporal population structure of Sulfolobus islandicus by comparing geochemical and molecular analysis from seven hot springs in five regions sampled over 3 years in Yellowstone National Park. Through deep amplicon sequencing, we uncovered 148 unique alleles at two loci whose relative frequency provides clear evidence for independent populations in different hot springs. Although geography controls regional geochemical composition and population differentiation, temporal changes in population were not explained by corresponding variation in geochemistry. The data suggest that the influence of extinction, bottleneck events and/or selective sweeps within a spring and low migration between springs shape these populations. We suggest that hydrologic events such as storm events and surface snowmelt runoff destabilize smaller hot spring environments with smaller populations and result in high variation in the S. islandicus population over time. Therefore, physical abiotic features such as hot spring size and position in the landscape are important factors shaping the stability and diversity of the S. islandicus meta-population within Yellowstone National Park.
Collapse
Affiliation(s)
| | - Angela Kouris
- Department of Microbiology 601 S. Goodwin Ave, Urbana IL 61801 and Carl R. Woese Institute for Genomic Biology, 1206 W. Gregory Drive, Urbana, IL 61801
| | - Whitney England
- Department of Microbiology 601 S. Goodwin Ave, Urbana IL 61801 and Carl R. Woese Institute for Genomic Biology, 1206 W. Gregory Drive, Urbana, IL 61801
| | - Rika E Anderson
- Department of Microbiology 601 S. Goodwin Ave, Urbana IL 61801 and Carl R. Woese Institute for Genomic Biology, 1206 W. Gregory Drive, Urbana, IL 61801.,Biology Department, Carleton College, Northfield, MN, 55057
| | | | | | - Rachel J Whitaker
- Department of Microbiology 601 S. Goodwin Ave, Urbana IL 61801 and Carl R. Woese Institute for Genomic Biology, 1206 W. Gregory Drive, Urbana, IL 61801
| |
Collapse
|
40
|
Jones CT, Youssef N, Susko E, Bielawski JP. Shifting Balance on a Static Mutation-Selection Landscape: A Novel Scenario of Positive Selection. Mol Biol Evol 2017; 34:391-407. [PMID: 28110273 DOI: 10.1093/molbev/msw237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A version of the mechanistic mutation-selection (MutSel) model that accounts for temporal dynamics at a site is presented. This is used to show that the rate ratio dN/dS at a site can be transiently >1 even when fitness coefficients are fixed or the fitness landscape is static. This occurs whenever a site drifts away from its fitness peak and is then forced back by selection, a process reminiscent of shifting balance. Shifting balance is strongest when the substitution process is not dominated by selection or drift, but admits interplay between the two. Under this condition, site-specific changes in dN/dS were inferred in 78-100% of trials, and positive selection (i.e., dN/dS>1) in 10-40% of trials, when sequence alignments generated under MutSel were fitted to two popular phenomenological branch-site models. These results demonstrate that positive selection can occur without a change in fitness regime, and that this is detectable by branch-site models. In addition, MutSel is used to show that a site can be occupied by a sub-optimal amino acid for long periods on a fixed landscape when selection is stringent. This has implications for the interpretation of constant-but-different site patterns typically attributed to changes in fitness. Furthermore, a version of MutSel with episodic changes in fitness coefficients is used to illustrate systematic differences between parameters used to generate data under MutSel and their counterparts estimated by a simple codon model. Motivated by a discrepancy in the literature, interpretation of dN/dS in the context of MutSel is also discussed.
Collapse
Affiliation(s)
- Christopher T Jones
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia
| | - Noor Youssef
- Department of Biology, Dalhousie University, Halifax, Nova Scotia
| | - Edward Susko
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia.,Center for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia
| | - Joseph P Bielawski
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia.,Department of Biology, Dalhousie University, Halifax, Nova Scotia.,Center for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia
| |
Collapse
|
41
|
Berg EE, Hamrick JL. FINE-SCALE GENETIC STRUCTURE OF A TURKEY OAK FOREST. Evolution 2017; 49:110-120. [PMID: 28593662 DOI: 10.1111/j.1558-5646.1995.tb05963.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/1992] [Accepted: 03/30/1994] [Indexed: 11/29/2022]
Abstract
Theoretical models and computer simulations of the genetic structure of a continuous population predict the existence of patches of highly inbred individuals when gene flow within the population is limited. A map of the three genotypes of a two-allele locus is expected to exhibit patches of homozygotes embedded in a matrix of heterozygotes, when gene flow is limited. A search for such patch structure was made on a 160 × 160 m plot within a continuous 60+ ha old-growth stand of Quercus laevis (turkey oak). Approximately 3400 trees were genotyped for 9 polymorphic loci using starch-gel electrophoresis, and the genetic structure was analyzed with spatial autocorrelation (both nominal and interval), hierarchical F statistics, and number-of-alleles-in-common. Adults (diameter at breast height > 0) and juveniles were analyzed separately but showed similar structure. While no distinct patch structure was found, a greater degree of relatedness was observed on a scale of 5 m-10 m than at greater distances, probably because of the limited acorn dispersal from maternal trees and a small amount of cloning by root sprouts. A computer simulation of a 10,000 tree forest breeding for 10,000 yr indicates that the effective neighborhood sizes (of randomly drawn seed- and pollen-donors) are both in excess of 440 individuals. The model thus cannot distinguish the observed data from panmictic mating.
Collapse
Affiliation(s)
- Edward E Berg
- Department of Botany and Savannah River Ecology Lab, University of Georgia, Athens, Georgia, 30602
| | - James L Hamrick
- Departments of Botany and Genetics, University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
42
|
DiMichele WA, Aronson RB. THE PENNSYLVANIAN-PERMIAN VEGETATIONAL TRANSITION: A TERRESTRIAL ANALOGUE TO THE ONSHORE-OFFSHORE HYPOTHESIS. Evolution 2017; 46:807-824. [DOI: 10.1111/j.1558-5646.1992.tb02086.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/1990] [Accepted: 10/29/1991] [Indexed: 12/01/2022]
Affiliation(s)
- William A. DiMichele
- Department of Paleobiology; National Museum of Natural History, Smithsonian Institution; Washington, DC 20560 USA
| | - Richard B. Aronson
- Department of Paleobiology; National Museum of Natural History, Smithsonian Institution; Washington, DC 20560 USA
| |
Collapse
|
43
|
Dewey SE, Heywood JS. SPATIAL GENETIC STRUCTURE IN A POPULATION OF PSYCHOTRIA NERVOSA. I. DISTRIBUTION OF GENOTYPES. Evolution 2017; 42:834-838. [PMID: 28563859 DOI: 10.1111/j.1558-5646.1988.tb02504.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/1987] [Accepted: 02/26/1988] [Indexed: 11/30/2022]
Affiliation(s)
- Sarah E Dewey
- Department of Biology, University of Miami, Coral Gables, FL, 33124
| | - John S Heywood
- Department of Biology, University of Miami, Coral Gables, FL, 33124
| |
Collapse
|
44
|
Husband BC, Barrett SCH. EFFECTIVE POPULATION SIZE AND GENETIC DRIFT IN TRISTYLOUSEICHHORNIA PANICULATA(PONTEDERIACEAE). Evolution 2017; 46:1875-1890. [DOI: 10.1111/j.1558-5646.1992.tb01175.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/1991] [Accepted: 02/22/1992] [Indexed: 10/19/2022]
Affiliation(s)
- Brian C. Husband
- Department of Botany; University of Toronto; Toronto Ontario M5S 3B2 Canada
| | | |
Collapse
|
45
|
Crow JF, Engels WR, Denniston C. PHASE THREE OF WRIGHT'S SHIFTING-BALANCE THEORY. Evolution 2017; 44:233-247. [PMID: 28564383 DOI: 10.1111/j.1558-5646.1990.tb05194.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/1988] [Accepted: 10/30/1989] [Indexed: 11/29/2022]
Affiliation(s)
- J. F. Crow
- Laboratory of Genetics; University of Wisconsin; Madison WI 53706
| | - W. R. Engels
- Laboratory of Genetics; University of Wisconsin; Madison WI 53706
| | - C. Denniston
- Laboratory of Genetics; University of Wisconsin; Madison WI 53706
| |
Collapse
|
46
|
Driscoll DA. GENETIC STRUCTURE OF THE FROGS GEOCRINIA LUTEA
AND GEOCRINIA ROSEA
REFLECTS EXTREME POPULATION DIVERGENCE AND RANGE CHANGES, NOT DISPERSAL BARRIERS. Evolution 2017; 52:1147-1157. [DOI: 10.1111/j.1558-5646.1998.tb01841.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/1997] [Accepted: 03/16/1998] [Indexed: 11/28/2022]
Affiliation(s)
- Don A. Driscoll
- Department of Zoology; University of Western Australia; Nedlands, Perth Western Australia 6907 Australia
| |
Collapse
|
47
|
Coyne JA, Barton NH, Turelli M. PERSPECTIVE: A CRITIQUE OF SEWALL WRIGHT'S SHIFTING BALANCE THEORY OF EVOLUTION. Evolution 2017; 51:643-671. [PMID: 28568586 DOI: 10.1111/j.1558-5646.1997.tb03650.x] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/1996] [Accepted: 12/19/1996] [Indexed: 11/29/2022]
Affiliation(s)
- Jerry A. Coyne
- Department of Ecology and Evolution The University of Chicago 1101 East 57th Street Chicago Illinois 60637
| | - Nicholas H. Barton
- I.C.A.P.B., Division of Biological Sciences University of Edinburgh Edinburgh EH9 3JT UK
| | - Michael Turelli
- Section of Evolution and Ecology and Center for Population Biology University of California Davis California 95616
| |
Collapse
|
48
|
Ives PT, Band HT. CONTINUING STUDIES ON THE SOUTH AMHERST DROSOPHILA MELANOGASTER NATURAL POPULATION DURING THE 1970'S AND 1980'S. Evolution 2017; 40:1289-1302. [PMID: 28563498 DOI: 10.1111/j.1558-5646.1986.tb05752.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/1984] [Accepted: 07/02/1986] [Indexed: 11/29/2022]
Abstract
Continuing investigations on the South Amherst Drosophila melanogaster natural population following the significant decline and recovery of lethal (le) and semilethal (sle) frequencies in the late 1960's (Ives, 1970) show that the population has been remarkably stable although it contains MR (male recombination) and/or P DNA elements (Kidwell et al., 1977a; Green, 1980). A 13-year study affirms that the lethals present are nonrandomly distributed along the second chromosome and deficient on the right; they differ significantly in distribution from spontaneous (Ives, 1973) and δ-induced lethals (Minamori and Ito, 1971). Between 1970 and 1977, a total of 4,083 second chromosomes from the Markert subpopulation were analyzed; 28.9% of the chromosomes were lethal and 7.25% were semilethal in homozygous condition. Frequencies are similar for early summer and late fall collections although the rate of allelism among lethals is significantly higher in early summer than in late fall. For the large fall (1970-1979) Porch site population, 2,519 second chromosomes were analyzed; 29.5% were lethal and 8.0% were sublethal as homozygotes; the rate of allelism among lethals was 1.50%. At Hockanum, 1977-1983, lethal and semilethal frequencies were lower; the rate of allelism among lethals was 1.43%. The chromosome map distribution of lethals does not change between summer and late fall at Markert. The overall distributions of lethals at the Markert and Hockanum sites are similar. In tests for male recombination (MR) activity in the population over a 6-year period, a total of 0.47% recombinants were observed; these were uniformly distributed along the second chromosome. Comparisons are made with other long studied D. melanogaster populations.
Collapse
Affiliation(s)
- P T Ives
- Webster Center for Biological Sciences, Amherst College, Amherst, MA, 01002
| | - H T Band
- Department of Zoology, Michigan State University, East Lansing, MI, 48824
| |
Collapse
|
49
|
Schnabel A, Hamrick JL. UNDERSTANDING THE POPULATION GENETIC STRUCTURE OF GLEDITSIA TRIACANTHOS
L.: THE SCALE AND PATTERN OF POLLEN GENE FLOW. Evolution 2017; 49:921-931. [DOI: 10.1111/j.1558-5646.1995.tb02327.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/1994] [Accepted: 08/17/1994] [Indexed: 10/19/2022]
Affiliation(s)
- Andrew Schnabel
- Department of Botany; Iowa State University; Ames Iowa 50011
| | - J. L. Hamrick
- Departments of Botany and Genetics; University of Georgia; Athens Georgia 30602
| |
Collapse
|
50
|
Eckert CG, Barrett SCH. STOCHASTIC LOSS OF STYLE MORPHS FROM POPULATIONS OF TRISTYLOUSLYTHRUM SALICARIAANDDECODON VERTICILLATUS(LYTHRACEAE). Evolution 2017; 46:1014-1029. [PMID: 28564411 DOI: 10.1111/j.1558-5646.1992.tb00616.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/1991] [Accepted: 12/13/1991] [Indexed: 11/30/2022]
|