1
|
Béchon N, Tal N, Stokar-Avihail A, Savidor A, Kupervaser M, Melamed S, Amitai G, Sorek R. Diversification of molecular pattern recognition in bacterial NLR-like proteins. Nat Commun 2024; 15:9860. [PMID: 39543107 PMCID: PMC11564622 DOI: 10.1038/s41467-024-54214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Antiviral STANDs (Avs) are bacterial anti-phage proteins evolutionarily related to immune pattern recognition receptors of the NLR family. Type 2 Avs proteins (Avs2) were suggested to recognize the phage large terminase subunit as a signature of phage infection. Here, we show that Avs2 from Klebsiella pneumoniae (KpAvs2) can recognize several different phage proteins as signature for infection. While KpAvs2 recognizes the large terminase subunit of Seuratvirus phages, we find that to protect against Dhillonvirus phages, KpAvs2 recognizes a different phage protein named KpAvs2-stimulating protein 1 (Ksap1). KpAvs2 directly binds Ksap1 to become activated, and phages mutated in Ksap1 escape KpAvs2 defense despite encoding an intact terminase. We further show that KpAvs2 protects against a third group of phages by recognizing another protein, Ksap2. Our results exemplify the evolutionary diversification of molecular pattern recognition in bacterial Avs2, and show that a single pattern recognition receptor evolved to recognize different phage-encoded proteins.
Collapse
Affiliation(s)
- Nathalie Béchon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nitzan Tal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Kupervaser
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Melamed
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Prevo B, Earnshaw WC. DNA packaging by molecular motors: from bacteriophage to human chromosomes. Nat Rev Genet 2024; 25:785-802. [PMID: 38886215 DOI: 10.1038/s41576-024-00740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/20/2024]
Abstract
Dense packaging of genomic DNA is crucial for organismal survival, as DNA length always far exceeds the dimensions of the cells that contain it. Organisms, therefore, use sophisticated machineries to package their genomes. These systems range across kingdoms from a single ultra-powerful rotary motor that spools the DNA into a bacteriophage head, to hundreds of thousands of relatively weak molecular motors that coordinate the compaction of mitotic chromosomes in eukaryotic cells. Recent technological advances, such as DNA proximity-based sequencing approaches, polymer modelling and in vitro reconstitution of DNA loop extrusion, have shed light on the biological mechanisms driving DNA organization in different systems. Here, we discuss DNA packaging in bacteriophage, bacteria and eukaryotic cells, which, despite their extreme variation in size, structure and genomic content, all rely on the action of molecular motors to package their genomes.
Collapse
Affiliation(s)
- Bram Prevo
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Zhu J, Tao P, Chopra AK, Rao VB. Bacteriophage T4 as a Protein-Based, Adjuvant- and Needle-Free, Mucosal Pandemic Vaccine Design Platform. Annu Rev Virol 2024; 11:395-420. [PMID: 38768614 PMCID: PMC11690488 DOI: 10.1146/annurev-virology-111821-111145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The COVID-19 pandemic has transformed vaccinology. Rapid deployment of mRNA vaccines has saved countless lives. However, these platforms have inherent limitations including lack of durability of immune responses and mucosal immunity, high cost, and thermal instability. These and uncertainties about the nature of future pandemics underscore the need for exploring next-generation vaccine platforms. Here, we present a novel protein-based, bacteriophage T4 platform for rapid design of efficacious vaccines against bacterial and viral pathogens. Full-length antigens can be displayed at high density on a 120 × 86 nm phage capsid through nonessential capsid binding proteins Soc and Hoc. Such nanoparticles, without any adjuvant, induce robust humoral, cellular, and mucosal responses when administered intranasally and confer sterilizing immunity. Combined with structural stability and ease of manufacture, T4 phage provides an excellent needle-free, mucosal pandemic vaccine platform and allows equitable vaccine access to low- and middle-income communities across the globe.
Collapse
Affiliation(s)
- Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA; ,
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ashok K Chopra
- Department of Microbiology and Immunology, Sealy Institute for Vaccine Sciences, Institute for Human Infections and Immunity, and Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA; ,
| |
Collapse
|
4
|
Torkashvand N, Kamyab H, Shahverdi AR, Khoshayand MR, Karimi Tarshizi MA, Sepehrizadeh Z. Characterization and genome analysis of a broad host range lytic phage vB_SenS_TUMS_E19 against Salmonella enterica and its efficiency evaluation in the liquid egg. Can J Microbiol 2024; 70:358-369. [PMID: 38990097 DOI: 10.1139/cjm-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Salmonella enterica serovars are zoonotic bacterial that cause foodborne enteritis. Due to bacteria's antibiotic resistance, using bacteriophages for biocontrol and treatment is a new therapeutic approach. In this study, we isolated, characterized, and analyzed the genome of vB_SenS_TUMS_E19 (E19), a broad host range Salmonella bacteriophage, and evaluated the influence of E19 on liquid eggs infected with Salmonella enterica serovar Enteritidis. Transmission electron microscopy showed that the isolated bacteriophage had a siphovirus morphotype. E19 showed rapid adsorption (92% in 5 min), a short latent period (18 min), a large burst size (156 PFU per cell), and a broad host range against different Salmonella enterica serovars. Whole-genome sequencing analysis indicated that the isolated phage had a 42 813 bp long genome with 49.8% G + C content. Neither tRNA genes nor those associated with antibiotic resistance, virulence factors, or lysogenic formation were detected in the genome. The efficacy of E19 was evaluated in liquid eggs inoculated with S. Enteritidis at 4 and 25 °C, and results showed that it could effectively eradicate S. Enteritidis in just 30 min and prevented its growth up to 72 h. Our findings indicate that E19 can be an alternative to a preservative to control Salmonella in food samples and help prevent and treat salmonellosis.
Collapse
Affiliation(s)
- Narges Torkashvand
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Kamyab
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Shahverdi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Khoshayand
- Department of Food and Drug Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zargham Sepehrizadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Li X, Cheng R, Zhang C, Shao Z. Genomic characterization of SNW-1, a novel prophage of the deep-sea vent chemolithoautotroph Sulfurimonas indica NW79. Genet Mol Biol 2024; 47:e20230355. [PMID: 39093930 PMCID: PMC11290706 DOI: 10.1590/1678-4685-gmb-2023-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/17/2024] [Indexed: 08/04/2024] Open
Abstract
The globally widespread genus Sulfurimonas are playing important roles in different habitats, including the deep-sea hydrothermal vents. However, phages infecting Sulfurimonas have never been isolated and characterized to date. In the present study, a novel prophage SNW-1 was identified from Sulfurimonas indica NW79. Whole genome sequencing resulted in a circular, double-stranded DNA molecule of 37,096 bp with a mol% G+C content of 37. The genome includes 64 putative open reading frames, 33 of which code for proteins with predicted functions. Presence of hallmark genes associated with Caudoviricetes and genes involved in lysis and lysogeny indicated that SNW-1 should be a temperate, tailed phage. Phylogenetic and comparative proteomic analyses suggested that Sulfurimonas phage SNW-1 was distinct from other double stranded DNA phages and might represent a new viral genus.
Collapse
Affiliation(s)
- Xiaofeng Li
- Ningbo University, Institute of Plant Virology, State Key Laboratory
for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products,
Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of
Agriculture and Zhejiang Province, Ningbo, China
- Third Institute of Oceanography, Ministry of Natural Resources, Key
Laboratory of Marine Genetic Resources, Xiamen, China
| | - Ruolin Cheng
- Third Institute of Oceanography, Ministry of Natural Resources, Key
Laboratory of Marine Genetic Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resource,
Xiamen, China
| | - Chuanxi Zhang
- Ningbo University, Institute of Plant Virology, State Key Laboratory
for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products,
Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of
Agriculture and Zhejiang Province, Ningbo, China
| | - Zongze Shao
- Third Institute of Oceanography, Ministry of Natural Resources, Key
Laboratory of Marine Genetic Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resource,
Xiamen, China
| |
Collapse
|
6
|
Graham EB, Camargo AP, Wu R, Neches RY, Nolan M, Paez-Espino D, Kyrpides NC, Jansson JK, McDermott JE, Hofmockel KS. A global atlas of soil viruses reveals unexplored biodiversity and potential biogeochemical impacts. Nat Microbiol 2024; 9:1873-1883. [PMID: 38902374 PMCID: PMC11222151 DOI: 10.1038/s41564-024-01686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/25/2024] [Indexed: 06/22/2024]
Abstract
Historically neglected by microbial ecologists, soil viruses are now thought to be critical to global biogeochemical cycles. However, our understanding of their global distribution, activities and interactions with the soil microbiome remains limited. Here we present the Global Soil Virus Atlas, a comprehensive dataset compiled from 2,953 previously sequenced soil metagenomes and composed of 616,935 uncultivated viral genomes and 38,508 unique viral operational taxonomic units. Rarefaction curves from the Global Soil Virus Atlas indicate that most soil viral diversity remains unexplored, further underscored by high spatial turnover and low rates of shared viral operational taxonomic units across samples. By examining genes associated with biogeochemical functions, we also demonstrate the viral potential to impact soil carbon and nutrient cycling. This study represents an extensive characterization of soil viral diversity and provides a foundation for developing testable hypotheses regarding the role of the virosphere in the soil microbiome and global biogeochemistry.
Collapse
Affiliation(s)
- Emily B Graham
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
- School of Biological Sciences, Washington State University, Pullman, WA, USA.
| | - Antonio Pedro Camargo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ruonan Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Russell Y Neches
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Matt Nolan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Paez-Espino
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nikos C Kyrpides
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Kirsten S Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Agronomy, Iowa State University, Ames, IA, USA
| |
Collapse
|
7
|
Shymialevich D, Błażejak S, Średnicka P, Cieślak H, Ostrowska A, Sokołowska B, Wójcicki M. Biological Characterization and Genomic Analysis of Three Novel Serratia- and Enterobacter-Specific Virulent Phages. Int J Mol Sci 2024; 25:5944. [PMID: 38892136 PMCID: PMC11172527 DOI: 10.3390/ijms25115944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Due to the high microbiological contamination of raw food materials and the increase in the incidence of multidrug-resistant bacteria, new methods of ensuring microbiological food safety are being sought. One solution may be to use bacteriophages (so-called phages) as natural bacterial enemies. Therefore, the aim of this study was the biological and genomic characterization of three newly isolated Serratia- and Enterobacter-specific virulent bacteriophages as potential candidates for food biocontrol. Serratia phage KKP_3708 (vB_Sli-IAFB_3708), Serratia phage KKP_3709 (vB_Sma-IAFB_3709), and Enterobacter phage KKP_3711 (vB_Ecl-IAFB_3711) were isolated from municipal sewage against Serratia liquefaciens strain KKP 3654, Serratia marcescens strain KKP 3687, and Enterobacter cloacae strain KKP 3684, respectively. The effect of phage addition at different multiplicity of infection (MOI) rates on the growth kinetics of the bacterial hosts was determined using a Bioscreen C Pro growth analyzer. The phages retained high activity in a wide temperature range (from -20 °C to 60 °C) and active acidity values (pH from 3 to 12). Based on transmission electron microscopy (TEM) imaging and whole-genome sequencing (WGS), the isolated bacteriophages belong to the tailed bacteriophages from the Caudoviricetes class. Genomic analysis revealed that the phages have linear double-stranded DNA of size 40,461 bp (Serratia phage KKP_3708), 67,890 bp (Serratia phage KKP_3709), and 113,711 bp (Enterobacter phage KKP_3711). No virulence, toxins, or antibiotic resistance genes were detected in the phage genomes. The lack of lysogenic markers indicates that all three bacteriophages may be potential candidates for food biocontrol.
Collapse
Affiliation(s)
- Dziyana Shymialevich
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (D.S.); (H.C.)
| | - Stanisław Błażejak
- Department of Biotechnology and Food Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences (WULS–SGGW), Nowoursynowska 166 Str., 02-776 Warsaw, Poland;
| | - Paulina Średnicka
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland;
| | - Hanna Cieślak
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (D.S.); (H.C.)
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS–SGGW), Ciszewskiego 8 Str., 02-786 Warsaw, Poland;
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland;
| | - Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland;
| |
Collapse
|
8
|
Flores VS, Amgarten DE, Iha BKV, Ryon KA, Danko D, Tierney BT, Mason C, da Silva AM, Setubal JC. Discovery and description of novel phage genomes from urban microbiomes sampled by the MetaSUB consortium. Sci Rep 2024; 14:7913. [PMID: 38575625 PMCID: PMC10994904 DOI: 10.1038/s41598-024-58226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Bacteriophages are recognized as the most abundant members of microbiomes and have therefore a profound impact on microbial communities through the interactions with their bacterial hosts. The International Metagenomics and Metadesign of Subways and Urban Biomes Consortium (MetaSUB) has sampled mass-transit systems in 60 cities over 3 years using metagenomics, throwing light into these hitherto largely unexplored urban environments. MetaSUB focused primarily on the bacterial community. In this work, we explored MetaSUB metagenomic data in order to recover and analyze bacteriophage genomes. We recovered and analyzed 1714 phage genomes with size at least 40 kbp, from the class Caudoviricetes, the vast majority of which (80%) are novel. The recovered genomes were predicted to belong to temperate (69%) and lytic (31%) phages. Thirty-three of these genomes have more than 200 kbp, and one of them reaches 572 kbp, placing it among the largest phage genomes ever found. In general, the phages tended to be site-specific or nearly so, but 194 genomes could be identified in every city from which phage genomes were retrieved. We predicted hosts for 48% of the phages and observed general agreement between phage abundance and the respective bacterial host abundance, which include the most common nosocomial multidrug-resistant pathogens. A small fraction of the phage genomes are carriers of antibiotic resistance genes, and such genomes tended to be particularly abundant in the sites where they were found. We also detected CRISPR-Cas systems in five phage genomes. This study expands the previously reported MetaSUB results and is a contribution to the knowledge about phage diversity, global distribution, and phage genome content.
Collapse
Affiliation(s)
- Vinicius S Flores
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Deyvid E Amgarten
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Bruno Koshin Vázquez Iha
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | | | | | - Braden T Tierney
- Weill Cornell Medicine, New York, NY, USA
- Harvard Medical School, Cambridge, MA, USA
| | | | - Aline Maria da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil.
| | - João Carlos Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil.
| |
Collapse
|
9
|
Rossi FPN, Flores VS, Uceda-Campos G, Amgarten DE, Setubal JC, da Silva AM. Comparative Analyses of Bacteriophage Genomes. Methods Mol Biol 2024; 2802:427-453. [PMID: 38819567 DOI: 10.1007/978-1-0716-3838-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Bacterial viruses (bacteriophages or phages) are the most abundant and diverse biological entities on Earth. There is a renewed worldwide interest in phage-centered research motivated by their enormous potential as antimicrobials to cope with multidrug-resistant pathogens. An ever-growing number of complete phage genomes are becoming available, derived either from newly isolated phages (cultivated phages) or recovered from metagenomic sequencing data (uncultivated phages). Robust comparative analysis is crucial for a comprehensive understanding of genotypic variations of phages and their related evolutionary processes, and to investigate the interaction mechanisms between phages and their hosts. In this chapter, we present a protocol for phage comparative genomics employing tools selected out of the many currently available, focusing on complete genomes of phages classified in the class Caudoviricetes. This protocol provides accurate identification of similarities, differences, and patterns among new and previously known complete phage genomes as well as phage clustering and taxonomic classification.
Collapse
Affiliation(s)
| | - Vinicius Sousa Flores
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Guillermo Uceda-Campos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | | | - João Carlos Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Aline Maria da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
10
|
Daudén MI, Pérez-Ruiz M, Carrascosa JL, Cuervo A. Nucleic Acid Packaging in Viruses. Subcell Biochem 2024; 105:469-502. [PMID: 39738955 DOI: 10.1007/978-3-031-65187-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Viruses shield their genetic information by enclosing the viral nucleic acid inside a protein shell (capsid), in a process known as genome packaging. Viruses follow essentially two main strategies to package their genome: Either they co-assemble their genetic material together with the capsid protein or an empty shell (procapsid) is first assembled and then the genome is pumped inside the capsid by a molecular motor that uses the energy released by ATP hydrolysis. During packaging the viral nucleic acid is highly condensed through a meticulous arrangement in concentric layers inside the capsid. In this chapter we will first give an overview of the different strategies used for genome packaging to discuss later some specific virus models where the structures of the main proteins involved are presented and the biophysics underlying the packaging mechanism are discussed.
Collapse
Affiliation(s)
- María I Daudén
- Structural Biology Programme, Spanish National Cancer Research Centre, (CNIO), Madrid, Spain
| | - Mar Pérez-Ruiz
- Faculty of Health and Medical Sciences, Structural Biology of Molecular Machines Group, Protein Structure and Function Program, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - José L Carrascosa
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ana Cuervo
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
11
|
Mendoza-Cano F, Encinas-García T, Muhlia-Almazán A, Porchas-Cornejo M, de la Re-Vega E, Sánchez-Paz A. Development and validation of a real-time PCR assay protocol for the specific detection and quantification of pelagiphages in seawater samples. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106168. [PMID: 37708616 DOI: 10.1016/j.marenvres.2023.106168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/16/2023]
Abstract
Earth is inhabited by numerous adaptations of cellular forms shaped by the persistent scrutiny of natural selection. Thus, as natural selection has fixed beneficial adaptations of functional traits, cellular life has conquered almost all environmental niches on our planet. However, cellular life succumbs in number and genetic diversity to viruses. Among all viruses, phages are highly prevalent in diverse environments, and due to their vast genetic diversity and abundance, their relevant role as significant players in several ecological processes is now fully recognized. Pelagiphages, bacteriophages infecting bacteria of the SAR11 clade, are the most abundant viruses in the oceans. However, the ecological contribution of pelagiphages on populations of Pelagibacterales remains largely underestimated. An essential aspect of estimating the impact of bacteriophages is their absolute and precise quantification, which provides relevant information about the host-virus interactions and the structure of viral assemblages. Consequently, due to its abundance and claimed influence in the biogeochemical cycling of elements, the accurate quantification of pelagiphages results in an essential task. This study describes the development and validation of a sensitive, specific, accurate and reproducible qPCR platform targeting pelagiphages. Moreover, this method allowed the detection and quantification of pelagiphages in the Gulf of California for the first time.
Collapse
Affiliation(s)
- F Mendoza-Cano
- Laboratorio de Virología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), S.C. (Campus Hermosillo), Calle Hermosa 101, Fraccionamiento Los Ángeles, Hermosillo, Sonora, C.P. 83206, México
| | - T Encinas-García
- Laboratorio de Virología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), S.C. (Campus Hermosillo), Calle Hermosa 101, Fraccionamiento Los Ángeles, Hermosillo, Sonora, C.P. 83206, México; Departamento de Investigaciones Científicas y Tecnológicas (DICTUS), Universidad de Sonora, Hermosillo, Sonora, 83000, México
| | - A Muhlia-Almazán
- Bioenergetics and Molecular Genetics Lab, Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, 83304, México
| | - M Porchas-Cornejo
- Centro de Investigaciones Biológicas del Noroeste, S.C. Km 2.35 Carretera a Las Tinajas, S/N Colonia Tinajas, Guaymas, Sonora, C.P. 85460, México
| | - E de la Re-Vega
- Departamento de Investigaciones Científicas y Tecnológicas (DICTUS), Universidad de Sonora, Hermosillo, Sonora, 83000, México
| | - A Sánchez-Paz
- Laboratorio de Virología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), S.C. (Campus Hermosillo), Calle Hermosa 101, Fraccionamiento Los Ángeles, Hermosillo, Sonora, C.P. 83206, México.
| |
Collapse
|
12
|
Chen D, Guo C, Ren C, Xia Z, Xu H, Qu H, Wa Y, Guan C, Zhang C, Qian J, Gu R. Screening of Lactiplantibacillus plantarum 67 with Strong Adhesion to Caco-2 Cells and the Effects of Protective Agents on Its Adhesion Ability during Vacuum Freeze Drying. Foods 2023; 12:3604. [PMID: 37835257 PMCID: PMC10572606 DOI: 10.3390/foods12193604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Adhesion to the intestinal tract provides the foundation for Lactobacillus to exert its benefits. Vacuum freeze-drying (VFD) is currently one of the main processing methods for Lactobacillus products. Therefore, the effects of VFD on the adhesion and survival of Lactiplantibacillus plantarum 67 were investigated in this study. The results show that L. plantarum 67 exhibits remarkable tolerance following successive exposure to simulated saliva, gastric juice and intestinal juice, and also has a strong adhesion ability to Caco-2 cells. The adhesion and survival rates of L. plantarum 67 significantly decreased after VFD in phosphate-buffered saline (PBS), whereas they significantly increased in protective agents (PAs) (p < 0.05). Scanning electron microscope observations show that L. plantarum 67 aggregated more to Caco-2 cells in PAs than in PBS, and its shape and size were protected. Proteomics detection findings indicated that differentially expressed proteins (DEPs) related to adhesins and vitality and their pathways in L. plantarum 67 were significantly affected by VFD (p < 0.05). However, the expression of DEPs (such as cold shock protein, cell surface protein, adherence protein, chitin-binding domain and extracellular transglycosylase, membrane-bound protein) was improved by PAs. Compared with PBS, the PAs significantly adjusted the phosphotransferase system and amino sugar and nucleotide sugar metabolism pathways (p < 0.05). VFD decreased the adhesion and vitality of L. plantarum 67, while the PAs could exert protective effects by regulating proteins and pathways related to adhesion and vitality.
Collapse
Affiliation(s)
- Dawei Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
- Jiangsu Yuhang Food Technology Co., Ltd., Yancheng 224000, China
| | - Congcong Guo
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Chenyu Ren
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Zihan Xia
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Haiyan Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Hengxian Qu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Yunchao Wa
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Chengran Guan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Chenchen Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Jianya Qian
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Ruixia Gu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.)
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| |
Collapse
|
13
|
Šimoliūnas E, Šimoliūnienė M, Laskevičiūtė G, Kvederavičiūtė K, Skapas M, Kaupinis A, Valius M, Meškys R, Kuisienė N. Characterization of Parageobacillus Bacteriophage vB_PtoS_NIIg3.2-A Representative of a New Genus within Thermophilic Siphoviruses. Int J Mol Sci 2023; 24:13980. [PMID: 37762288 PMCID: PMC10530707 DOI: 10.3390/ijms241813980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
A high temperature-adapted bacteriophage, vB_PtoS_NIIg3.2 (NIIg3.2), was isolated in Lithuania from compost heaps using Parageobacillus toebii strain NIIg-3 as a host for phage propagation. Furthermore, NIIg3.2 was active against four strains of Geobacillus thermodenitrificans, and it infected the host cells from 50 to 80 °C. Transmission electron microscopy analysis revealed siphovirus morphology characterized by an isometric head (~59 nm in diameter) and a noncontractile tail (~226 nm in length). The double-stranded DNA genome of NIIg3.2 (38,970 bp) contained 71 probable protein-encoding genes and no genes for tRNA. In total, 29 NIIg3.2 ORFs were given a putative functional annotation, including those coding for the proteins responsible for DNA packaging, virion structure/morphogenesis, phage-host interactions, lysis/lysogeny, replication/regulation, and nucleotide metabolism. Based on comparative phylogenetic and bioinformatic analysis, NIIg3.2 cannot be assigned to any genus currently recognized by ICTV and potentially represents a new one within siphoviruses. The results of this study not only extend our knowledge about poorly explored thermophilic bacteriophages but also provide new insights for further investigation and understanding the evolution of Bacilllus-group bacteria-infecting viruses.
Collapse
Affiliation(s)
- Eugenijus Šimoliūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (G.L.); (R.M.)
- Department of Microbiology and Biotechnology, Institute of Bioscience, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania;
| | - Monika Šimoliūnienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (G.L.); (R.M.)
| | - Gintarė Laskevičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (G.L.); (R.M.)
| | - Kotryna Kvederavičiūtė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania;
| | - Martynas Skapas
- Department of Characterisation of Materials Structure, Center for Physical Sciences and Technology, Sauletekio av. 3, LT-10257 Vilnius, Lithuania;
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Mindaugas Valius
- Proteomics Centre, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (G.L.); (R.M.)
| | - Nomeda Kuisienė
- Department of Microbiology and Biotechnology, Institute of Bioscience, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
14
|
Šimoliūnas E, Šimoliūnienė M, Laskevičiūtė G, Kvederavičiūtė K, Skapas M, Kaupinis A, Valius M, Meškys R, Kuisienė N. Geobacillus Bacteriophages from Compost Heaps: Representatives of Three New Genera within Thermophilic Siphoviruses. Viruses 2023; 15:1691. [PMID: 37632033 PMCID: PMC10459684 DOI: 10.3390/v15081691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
We report a detailed characterization of five thermophilic bacteriophages (phages) that were isolated from compost heaps in Vilnius, Lithuania using Geobacillus thermodenitrificans strains as the hosts for phage propagation. The efficiency of plating experiments revealed that phages formed plaques from 45 to 80 °C. Furthermore, most of the phages formed plaques surrounded by halo zones, indicating the presence of phage-encoded bacterial exopolysaccharide (EPS)-degrading depolymerases. Transmission Electron Microscopy (TEM) analysis revealed that all phages were siphoviruses characterized by an isometric head (from ~63 nm to ~67 nm in diameter) and a non-contractile flexible tail (from ~137 nm to ~150 nm in length). The genome sequencing resulted in genomes ranging from 38,161 to 39,016 bp. Comparative genomic and phylogenetic analysis revealed that all the isolated phages had no close relatives to date, and potentially represent three new genera within siphoviruses. The results of this study not only improve our knowledge about poorly explored thermophilic bacteriophages but also give new insights for further investigation of thermophilic and/or thermostable enzymes of bacterial viruses.
Collapse
Affiliation(s)
- Eugenijus Šimoliūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (G.L.); (R.M.)
- Department of Microbiology and Biotechnology, Institute of Bioscience, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania;
| | - Monika Šimoliūnienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (G.L.); (R.M.)
| | - Gintarė Laskevičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (G.L.); (R.M.)
| | - Kotryna Kvederavičiūtė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania;
| | - Martynas Skapas
- Department of Characterisation of Materials Structure, Center for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania;
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Mindaugas Valius
- Proteomics Centre, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (G.L.); (R.M.)
| | - Nomeda Kuisienė
- Department of Microbiology and Biotechnology, Institute of Bioscience, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
15
|
Chee MSJ, Serrano E, Chiang YN, Harling-Lee J, Man R, Bacigalupe R, Fitzgerald JR, Penadés JR, Chen J. Dual pathogenicity island transfer by piggybacking lateral transduction. Cell 2023; 186:3414-3426.e16. [PMID: 37541198 DOI: 10.1016/j.cell.2023.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/30/2023] [Accepted: 07/03/2023] [Indexed: 08/06/2023]
Abstract
Lateral transduction (LT) is the process by which temperate phages mobilize large sections of bacterial genomes. Despite its importance, LT has only been observed during prophage induction. Here, we report that superantigen-carrying staphylococcal pathogenicity islands (SaPIs) employ a related but more versatile and complex mechanism of gene transfer to drive chromosomal hypermobility while self-transferring with additional virulence genes from the host. We found that after phage infection or prophage induction, activated SaPIs form concatamers in the bacterial chromosome by switching between parallel genomic tracks in replication bubbles. This dynamic life cycle enables SaPIbov1 to piggyback its LT of staphylococcal pathogenicity island vSaα, which encodes an array of genes involved in host-pathogen interactions, allowing both islands to be mobilized intact and transferred in a single infective particle. Our findings highlight previously unknown roles of pathogenicity islands in bacterial virulence and show that their evolutionary impact extends beyond the genes they carry.
Collapse
Affiliation(s)
- Melissa Su Juan Chee
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Ester Serrano
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Yin Ning Chiang
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Joshua Harling-Lee
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh EH259RG, UK
| | - Rebecca Man
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh EH259RG, UK
| | - Rodrigo Bacigalupe
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh EH259RG, UK
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh EH259RG, UK
| | - José R Penadés
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, 46113 Moncada, Spain; Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK.
| | - John Chen
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
| |
Collapse
|
16
|
Hawkins DEDP, Bayfield O, Fung HKH, Grba DN, Huet A, Conway J, Antson AA. Insights into a viral motor: the structure of the HK97 packaging termination assembly. Nucleic Acids Res 2023; 51:7025-7035. [PMID: 37293963 PMCID: PMC10359639 DOI: 10.1093/nar/gkad480] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023] Open
Abstract
Double-stranded DNA viruses utilise machinery, made of terminase proteins, to package viral DNA into the capsid. For cos bacteriophage, a defined signal, recognised by small terminase, flanks each genome unit. Here we present the first structural data for a cos virus DNA packaging motor, assembled from the bacteriophage HK97 terminase proteins, procapsids encompassing the portal protein, and DNA containing a cos site. The cryo-EM structure is consistent with the packaging termination state adopted after DNA cleavage, with DNA density within the large terminase assembly ending abruptly at the portal protein entrance. Retention of the large terminase complex after cleavage of the short DNA substrate suggests that motor dissociation from the capsid requires headful pressure, in common with pac viruses. Interestingly, the clip domain of the 12-subunit portal protein does not adhere to C12 symmetry, indicating asymmetry induced by binding of the large terminase/DNA. The motor assembly is also highly asymmetric, showing a ring of 5 large terminase monomers, tilted against the portal. Variable degrees of extension between N- and C-terminal domains of individual subunits suggest a mechanism of DNA translocation driven by inter-domain contraction and relaxation.
Collapse
Affiliation(s)
- Dorothy E D P Hawkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Oliver W Bayfield
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Herman K H Fung
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117Heidelberg, Germany
| | - Daniel N Grba
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Alexis Huet
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - James F Conway
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| |
Collapse
|
17
|
Zhu J, Batra H, Ananthaswamy N, Mahalingam M, Tao P, Wu X, Guo W, Fokine A, Rao VB. Design of bacteriophage T4-based artificial viral vectors for human genome remodeling. Nat Commun 2023; 14:2928. [PMID: 37253769 PMCID: PMC10229621 DOI: 10.1038/s41467-023-38364-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Designing artificial viral vectors (AVVs) programmed with biomolecules that can enter human cells and carry out molecular repairs will have broad applications. Here, we describe an assembly-line approach to build AVVs by engineering the well-characterized structural components of bacteriophage T4. Starting with a 120 × 86 nm capsid shell that can accommodate 171-Kbp DNA and thousands of protein copies, various combinations of biomolecules, including DNAs, proteins, RNAs, and ribonucleoproteins, are externally and internally incorporated. The nanoparticles are then coated with cationic lipid to enable efficient entry into human cells. As proof of concept, we assemble a series of AVVs designed to deliver full-length dystrophin gene or perform various molecular operations to remodel human genome, including genome editing, gene recombination, gene replacement, gene expression, and gene silencing. These large capacity, customizable, multiplex, and all-in-one phage-based AVVs represent an additional category of nanomaterial that could potentially transform gene therapies and personalized medicine.
Collapse
Affiliation(s)
- Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Himanshu Batra
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Neeti Ananthaswamy
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Marthandan Mahalingam
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Pan Tao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Xiaorong Wu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Wenzheng Guo
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA.
| |
Collapse
|
18
|
Kong J, Xuan G, Lin H, Wang J. Characterization of a novel phage vB_Pae_HB2107-3I that infects Pseudomonas aeruginosa. Mol Genet Genomics 2023:10.1007/s00438-023-02037-x. [PMID: 37247008 DOI: 10.1007/s00438-023-02037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
Bacteriophages are potential antibiotic substitutes for the treatment of antibiotic resistant bacteria. Here, we report the genome sequences of a double-stranded DNA podovirus vB_Pae_HB2107-3I against clinical multi-drug resistant Pseudomonas aeruginosa. Phage vB_Pae_HB2107-3I remained stable over a wide range of temperatures (37-60 °C) and pH values (pH 4-12). At MOI of 0.01, the latent period of vB_Pae_HB2107-3I was 10 min, and the final titer reached about 8.1 × 109 PFU/mL. The vB_Pae_HB2107-3I genome is 45,929 bp, with an average G + C content of 57%. A total of 72 open reading frames (ORFs) were predicted, of which 22 ORFs have a predicted function. Genome analyses confirmed the lysogenic nature of this phage. Phylogenetic analysis revealed that phage vB_Pae_HB2107-3I was a novel member of Caudovirales infecting P. aeruginosa. The characterization of vB_Pae_HB2107-3I enrich the research on Pseudomonas phages and provide a promising biocontrol agent against P. aeruginosa infections.
Collapse
Affiliation(s)
- Jiuna Kong
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Guanhua Xuan
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Jingxue Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
19
|
Lang J, Zhen J, Li G, Li B, Xie J. Characterization and genome analysis of G1 sub-cluster mycobacteriophage Lang. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 109:105417. [PMID: 36804468 DOI: 10.1016/j.meegid.2023.105417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Phage therapy is revitalized as an alternative to antibiotics therapy against antimicrobials resistant pathogens. Mycobacteriophages are genetically diverse viruses that can specifically infect Mycobacterium genus including Mycobacterium tuberculosis and Mycobacterium smegmatis. Here, we isolated and annotated the genome of a mycobacteriophage Lang, a temperate mycobacteriophage isolated from the soil of Hohhot, Inner Mongolia, China, by using Mycolicibacterium smegmatis mc2 155 as the host. It belongs to the Siphoviridae family of Caudovirales as determined by transmission electron microscopy. The morphological characteristics and certain biological properties of the phage were considered in detail. Phage Lang genomes is 41,487 bp in length with 66.85% GC content and encodes 60 putative open reading frames and belongs to the G1 sub-cluster. Genome annotation indicated that genes for structure proteins, assembly proteins, replications/transcription and lysis of the host are present in function clucters. The genome sequence of phage Lang is more than 95% similar to that of mycobacteriophage Grizzly and Sweets, differing in substitutions, insertions and deletions in Lang. One-step growth curve revealed that Lang has a latent period of 30 min and a outbreak period of 90 min. The short latent period and rapid outbreak mark the unique properties of phage Lang, which can be another potential source for combating M. tuberculosis.
Collapse
Affiliation(s)
- Junying Lang
- Tuberculosis Department of Hohhot Second Hospital, Inner Mongolia, 010020, China; Hohhot Tuberculosis Prevention and Control Institute, Inner Mongolia, 010020, China
| | - Junfeng Zhen
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Guimei Li
- Tuberculosis Department of Hohhot Second Hospital, Inner Mongolia, 010020, China
| | - Bin Li
- Intensive Care Medicine Department of Hohhot First Hospital, Inner Mongolia, 010020, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
20
|
Weitao T, Grandinetti G, Guo P. Revolving ATPase motors as asymmetrical hexamers in translocating lengthy dsDNA via conformational changes and electrostatic interactions in phi29, T7, herpesvirus, mimivirus, E. coli, and Streptomyces. EXPLORATION (BEIJING, CHINA) 2023; 3:20210056. [PMID: 37324034 PMCID: PMC10191066 DOI: 10.1002/exp.20210056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/28/2022] [Indexed: 06/17/2023]
Abstract
Investigations of the parallel architectures of biomotors in both prokaryotic and eukaryotic systems suggest a similar revolving mechanism in the use of ATP to drive translocation of the lengthy double-stranded (ds)DNA genomes. This mechanism is exemplified by the dsDNA packaging motor of bacteriophage phi29 that operates through revolving but not rotating dsDNA to "Push through a one-way valve". This unique and novel revolving mechanism discovered in phi29 DNA packaging motor was recently reported in other systems including the dsDNA packaging motor of herpesvirus, the dsDNA ejecting motor of bacteriophage T7, the plasmid conjugation machine TraB in Streptomyces, the dsDNA translocase FtsK of gram-negative bacteria, and the genome-packaging motor in mimivirus. These motors exhibit an asymmetrical hexameric structure for transporting the genome via an inch-worm sequential action. This review intends to delineate the revolving mechanism from a perspective of conformational changes and electrostatic interactions. In phi29, the positively charged residues Arg-Lys-Arg in the N-terminus of the connector bind the negatively charged interlocking domain of pRNA. ATP binding to an ATPase subunit induces the closed conformation of the ATPase. The ATPase associates with an adjacent subunit to form a dimer facilitated by the positively charged arginine finger. The ATP-binding induces a positive charging on its DNA binding surface via an allostery mechanism and thus the higher affinity for the negatively charged dsDNA. ATP hydrolysis induces an expanded conformation of the ATPase with a lower affinity for dsDNA due to the change of the surface charge, but the (ADP+Pi)-bound subunit in the dimer undergoes a conformational change that repels dsDNA. The positively charged lysine rings of the connector attract dsDNA stepwise and periodically to keep its revolving motion along the channel wall, thus maintaining the one-way translocation of dsDNA without reversal and sliding out. The finding of the presence of the asymmetrical hexameric architectures of many ATPases that use the revolving mechanism may provide insights into the understanding of translocation of the gigantic genomes including chromosomes in complicated systems without coiling and tangling to speed up dsDNA translocation and save energy.
Collapse
Affiliation(s)
- Tao Weitao
- UT Southwestern Medical CenterCenter for the Genetics of Host DefenseDallasTXUSA
- College of Science and MathematicsSouthwest Baptist UniversityBolivarMOUSA
| | - Giovanna Grandinetti
- Center for Electron Microscopy and AnalysisThe Ohio State UniversityColumbusOHUSA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and NanomedicineDivision of Pharmaceutics and Pharmacology, College of PharmacyDorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of MedicineThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
21
|
Duncan-Lowey B, Tal N, Johnson AG, Rawson S, Mayer ML, Doron S, Millman A, Melamed S, Fedorenko T, Kacen A, Brandis A, Mehlman T, Amitai G, Sorek R, Kranzusch PJ. Cryo-EM structure of the RADAR supramolecular anti-phage defense complex. Cell 2023; 186:987-998.e15. [PMID: 36764290 PMCID: PMC9994260 DOI: 10.1016/j.cell.2023.01.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/02/2022] [Accepted: 01/06/2023] [Indexed: 02/11/2023]
Abstract
RADAR is a two-protein bacterial defense system that was reported to defend against phage by "editing" messenger RNA. Here, we determine cryo-EM structures of the RADAR defense complex, revealing RdrA as a heptameric, two-layered AAA+ ATPase and RdrB as a dodecameric, hollow complex with twelve surface-exposed deaminase active sites. RdrA and RdrB join to form a giant assembly up to 10 MDa, with RdrA docked as a funnel over the RdrB active site. Surprisingly, our structures reveal an RdrB active site that targets mononucleotides. We show that RdrB catalyzes ATP-to-ITP conversion in vitro and induces the massive accumulation of inosine mononucleotides during phage infection in vivo, limiting phage replication. Our results define ATP mononucleotide deamination as a determinant of RADAR immunity and reveal supramolecular assembly of a nucleotide-modifying machine as a mechanism of anti-phage defense.
Collapse
Affiliation(s)
- Brianna Duncan-Lowey
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Nitzan Tal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Alex G Johnson
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Shaun Rawson
- Harvard Center for Cryo-Electron Microscopy, Harvard Medical School, Boston, MA 02115, USA
| | - Megan L Mayer
- Harvard Center for Cryo-Electron Microscopy, Harvard Medical School, Boston, MA 02115, USA
| | - Shany Doron
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Melamed
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Taya Fedorenko
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Kacen
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Tevie Mehlman
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Rao VB, Fokine A, Fang Q, Shao Q. Bacteriophage T4 Head: Structure, Assembly, and Genome Packaging. Viruses 2023; 15:527. [PMID: 36851741 PMCID: PMC9958956 DOI: 10.3390/v15020527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Bacteriophage (phage) T4 has served as an extraordinary model to elucidate biological structures and mechanisms. Recent discoveries on the T4 head (capsid) structure, portal vertex, and genome packaging add a significant body of new literature to phage biology. Head structures in unexpanded and expanded conformations show dramatic domain movements, structural remodeling, and a ~70% increase in inner volume while creating high-affinity binding sites for the outer decoration proteins Soc and Hoc. Small changes in intercapsomer interactions modulate angles between capsomer planes, leading to profound alterations in head length. The in situ cryo-EM structure of the symmetry-mismatched portal vertex shows the remarkable structural morphing of local regions of the portal protein, allowing similar interactions with the capsid protein in different structural environments. Conformational changes in these interactions trigger the structural remodeling of capsid protein subunits surrounding the portal vertex, which propagate as a wave of expansion throughout the capsid. A second symmetry mismatch is created when a pentameric packaging motor assembles at the outer "clip" domains of the dodecameric portal vertex. The single-molecule dynamics of the packaging machine suggests a continuous burst mechanism in which the motor subunits adjusted to the shape of the DNA fire ATP hydrolysis, generating speeds as high as 2000 bp/s.
Collapse
Affiliation(s)
- Venigalla B. Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Qianglin Fang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Qianqian Shao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
23
|
Bumunang EW, McAllister TA, Polo RO, Ateba CN, Stanford K, Schlechte J, Walker M, MacLean K, Niu YD. Genomic Profiling of Non-O157 Shiga Toxigenic Escherichia coli-Infecting Bacteriophages from South Africa. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:221-230. [PMID: 36793886 PMCID: PMC9917312 DOI: 10.1089/phage.2022.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Background Non-O157 Shiga toxigenic Escherichia coli (STEC) are one of the most important food and waterborne pathogens worldwide. Although bacteriophages (phages) have been used for the biocontrol of these pathogens, a comprehensive understanding of the genetic characteristics and lifestyle of potentially effective candidate phages is lacking. Materials and Methods In this study, 10 non-O157-infecting phages previously isolated from feedlot cattle and dairy farms in the North-West province of South Africa were sequenced, and their genomes were analyzed. Results Comparative genomics and proteomics revealed that the phages were closely related to other E. coli-infecting Tunaviruses, Seuratviruses, Carltongylesviruses, Tequatroviruses, and Mosigviruses from the National Center for Biotechnology Information GenBank database. Phages lacked integrases associated with a lysogenic cycle and genes associated with antibiotic resistance and Shiga toxins. Conclusions Comparative genomic analysis identified a diversity of unique non-O157-infecting phages, which could be used to mitigate the abundance of various non-O157 STEC serogroups without safety concerns.
Collapse
Affiliation(s)
- Emmanuel W. Bumunang
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Canada
| | - Rodrigo Ortega Polo
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Canada
| | - Collins N. Ateba
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Jared Schlechte
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Matthew Walker
- Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Canada
| | - Kellie MacLean
- Cumming School of Medicine, Faculty of Science, University of Calgary, Calgary, Canada
| | - Yan D. Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
24
|
Batinovic S, Stanton CR, Rice DTF, Rowe B, Beer M, Petrovski S. Tyroviruses are a new group of temperate phages that infect Bacillus species in soil environments worldwide. BMC Genomics 2022; 23:777. [PMID: 36443683 PMCID: PMC9703825 DOI: 10.1186/s12864-022-09023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Bacteriophages are widely considered to be highly abundant and genetically diverse, with their role in the evolution and virulence of many pathogens becoming increasingly clear. Less attention has been paid on phages preying on Bacillus, despite the potential for some of its members, such as Bacillus anthracis, to cause serious human disease. RESULTS We have isolated five phages infecting the causative agent of anthrax, Bacillus anthracis. Using modern phylogenetic approaches we place these five new Bacillus phages, as well as 21 similar phage genomes retrieved from publicly available databases and metagenomic datasets into the Tyrovirus group, a newly proposed group named so due to the conservation of three distinct tyrosine recombinases. Genomic analysis of these large phages (~ 160-170 kb) reveals their DNA packaging mechanism and genomic features contributing to virion morphogenesis, host cell lysis and phage DNA replication processes. Analysis of the three tyrosine recombinases suggest Tyroviruses undergo a prophage lifecycle that may involve both host integration and plasmid stages. Further we show that Tyroviruses rely on divergent invasion mechanisms, with a subset requiring host S-layer for infection. CONCLUSIONS Ultimately, we expand upon our understanding on the classification, phylogeny, and genomic organisation of a new and substantial phage group that prey on critically relevant Bacillus species. In an era characterised by a rapidly evolving landscape of phage genomics the deposition of future Tyroviruses will allow the further unravelling of the global spread and evolutionary history of these Bacillus phages.
Collapse
Affiliation(s)
- Steven Batinovic
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia ,grid.268446.a0000 0001 2185 8709Present address: Division of Materials Science and Chemical Engineering, Yokohama National University, Yokohama, Kanagawa Japan
| | - Cassandra R. Stanton
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Daniel T. F. Rice
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Brittany Rowe
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Michael Beer
- grid.431245.50000 0004 0385 5290Defence Science and Technology Group, Fishermans Bend, Victoria, Australia
| | - Steve Petrovski
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| |
Collapse
|
25
|
Lokareddy RK, Hou CFD, Doll SG, Li F, Gillilan RE, Forti F, Horner DS, Briani F, Cingolani G. Terminase Subunits from the Pseudomonas-Phage E217. J Mol Biol 2022; 434:167799. [PMID: 36007626 PMCID: PMC10026623 DOI: 10.1016/j.jmb.2022.167799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Pseudomonas phages are increasingly important biomedicines for phage therapy, but little is known about how these viruses package DNA. This paper explores the terminase subunits from the Myoviridae E217, a Pseudomonas-phage used in an experimental cocktail to eradicate P. aeruginosa in vitro and in animal models. We identified the large (TerL) and small (TerS) terminase subunits in two genes ∼58 kbs away from each other in the E217 genome. TerL presents a classical two-domain architecture, consisting of an N-terminal ATPase and C-terminal nuclease domain arranged into a bean-shaped tertiary structure. A 2.05 Å crystal structure of the C-terminal domain revealed an RNase H-like fold with two magnesium ions in the nuclease active site. Mutations in TerL residues involved in magnesium coordination had a dominant-negative effect on phage growth. However, the two ions identified in the active site were too far from each other to promote two-metal-ion catalysis, suggesting a conformational change is required for nuclease activity. We also determined a 3.38 Å cryo-EM reconstruction of E217 TerS that revealed a ring-like decamer, departing from the most common nonameric quaternary structure observed thus far. E217 TerS contains both N-terminal helix-turn-helix motifs enriched in basic residues and a central channel lined with basic residues large enough to accommodate double-stranded DNA. Overexpression of TerS caused a more than a 4-fold reduction of E217 burst size, suggesting a catalytic amount of the protein is required for packaging. Together, these data expand the molecular repertoire of viral terminase subunits to Pseudomonas-phages used for phage therapy.
Collapse
Affiliation(s)
- Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Chun-Feng David Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Steven G Doll
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Fenglin Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, 161 Synchrotron Drive, Ithaca, NY 14853, USA
| | - Francesca Forti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - David S Horner
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
26
|
Lokareddy RK, Hou CFD, Li F, Yang R, Cingolani G. Viral Small Terminase: A Divergent Structural Framework for a Conserved Biological Function. Viruses 2022; 14:v14102215. [PMID: 36298770 PMCID: PMC9611059 DOI: 10.3390/v14102215] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
The genome packaging motor of bacteriophages and herpesviruses is built by two terminase subunits, known as large (TerL) and small (TerS), both essential for viral genome packaging. TerL structure, composition, and assembly to an empty capsid, as well as the mechanisms of ATP-dependent DNA packaging, have been studied in depth, shedding light on the chemo-mechanical coupling between ATP hydrolysis and DNA translocation. Instead, significantly less is known about the small terminase subunit, TerS, which is dispensable or even inhibitory in vitro, but essential in vivo. By taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM) and building upon a wealth of crystallographic structures of phage TerSs, in this review, we take an inventory of known TerSs studied to date. Our analysis suggests that TerS evolved and diversified into a flexible molecular framework that can conserve biological function with minimal sequence and quaternary structure conservation to fit different packaging strategies and environmental conditions.
Collapse
|
27
|
Morganella Phage Mecenats66 Utilizes an Evolutionarily Distinct Subtype of Headful Genome Packaging with a Preferred Packaging Initiation Site. Microorganisms 2022; 10:microorganisms10091799. [PMID: 36144401 PMCID: PMC9503643 DOI: 10.3390/microorganisms10091799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Both recognized species from the genus Morganella (M. morganii and M. psychrotolerans) are Gram-negative facultative anaerobic rod-shaped bacteria that have been documented as sometimes being implicated in human disease. Complete genomes of seven Morganella-infecting phages are publicly available today. Here, we report on the genomic characterization of an insect associated Morganella sp. phage, which we named Mecenats66, isolated from dead worker honeybees. Phage Mecenats66 was propagated, purified, and subjected to whole-genome sequencing with subsequent complete genome annotation. After the genome de novo assembly, it was noted that Mecenats66 might employ a headful packaging with a preferred packaging initiation site, although its terminase amino acid sequence did not fall within any of the currently recognized headful packaging subtype employing phage (that had their packaging strategy experimentally verified) with clusters on a terminase sequence phylogenetic tree. The in silico predicted packaging strategy was verified experimentally, validating the packaging initiation site and suggesting that Mecenats66 represents an evolutionarily distinct headful genome packaging with a preferred packaging initiation site strategy subtype. These findings can possibly be attributed to several of the phages already found within the public biological sequence repositories and could aid newly isolated phage packaging strategy predictions in the future.
Collapse
|
28
|
Whole genome sequence analysis of bacteriophage P1 that infects the Lactobacillus plantarum. Virus Genes 2022; 58:570-583. [DOI: 10.1007/s11262-022-01929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/12/2022] [Indexed: 10/15/2022]
|
29
|
Rao VB, Zhu J. Bacteriophage T4 as a nanovehicle for delivery of genes and therapeutics into human cells. Curr Opin Virol 2022; 55:101255. [PMID: 35952598 PMCID: PMC11736861 DOI: 10.1016/j.coviro.2022.101255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022]
Abstract
The ability to deliver therapeutic genes and biomolecules into a human cell and restore a defective function has been the holy grail of medicine. Adeno-associated viruses and lentiviruses have been extensively used as delivery vehicles, but their capacity is limited to one (or two) gene(s). Bacteriophages are emerging as novel vehicles for gene therapy. The large 120 × 86-nm T4 capsid allows engineering of both its surface and its interior to incorporate combinations of DNAs, RNAs, proteins, and their complexes. In vitro assembly using purified components allows customization for various applications and for individualized therapies. Its large capacity, cell-targeting capability, safety, and inexpensive manufacturing could open unprecedented new possibilities for gene, cancer, and stem cell therapies. However, efficient entry into primary human cells and intracellular trafficking are significant barriers that must be overcome by gene engineering and evolution in order to translate phage-delivery technology from bench to bedside.
Collapse
Affiliation(s)
- Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| | - Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|
30
|
Li Z, Wang W, Ma B, Yin J, Hu C, Luo P, Wang Y. Genomic and biological characteristics of a newly isolated lytic bacteriophage PZJ0206 infecting the Enterobacter cloacae. Virus Res 2022; 316:198800. [DOI: 10.1016/j.virusres.2022.198800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
|
31
|
Isolation of Three Coliphages and the Evaluation of Their Phage Cocktail for Biocontrol of Shiga Toxin-Producing Escherichia coli O157 in Milk. Curr Microbiol 2022; 79:216. [PMID: 35678865 DOI: 10.1007/s00284-022-02908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) O157 is a well-known foodborne pathogen and a leading cause of many intestinal diseases. In this study, we explore the use of a phage cocktail to help control STEC O157 in broth and milk. We isolated three virulent phages from sanitary sewages using a STEC O157 as the indicator bacterium. Phenotypical characterizations revealed that these three phages belong to the Myoviridae family and were stable at different temperatures and pH. They displayed a short latent period between 10 and 20 min, and a burst size (32-65 per infected cell). No virulence factors and drug resistance genes were found in their genomes. Bacterial lysis assays showed that a phage cocktail comprising these three phages was more effective (at least 4.32 log reduction) against STEC O157 at 25 °C with multiplicity of infection (MOI) = 1000 in broth medium. At 4 °C, a 3.8 log reduction in the number of viable STEC O157 after 168-h treatment with phage cocktail at MOI = 1000 was observed in milk, compared to phage-free bacterial control group. Characterizations of phages suggest they could be developed into novel therapeutic agents to control STEC O157 in milk production.
Collapse
|
32
|
Adlhart M, Poetsch F, Hlevnjak M, Hoogmoed M, Polyansky A, Zagrovic B. Compositional complementarity between genomic RNA and coat proteins in positive-sense single-stranded RNA viruses. Nucleic Acids Res 2022; 50:4054-4067. [PMID: 35357492 PMCID: PMC9023274 DOI: 10.1093/nar/gkac202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 02/02/2023] Open
Abstract
During packaging in positive-sense single-stranded RNA (+ssRNA) viruses, coat proteins (CPs) interact directly with multiple regions in genomic RNA (gRNA), but the underlying physicochemical principles remain unclear. Here we analyze the high-resolution cryo-EM structure of bacteriophage MS2 and show that the gRNA/CP binding sites, including the known packaging signal, overlap significantly with regions where gRNA nucleobase-density profiles match the corresponding CP nucleobase-affinity profiles. Moreover, we show that the MS2 packaging signal corresponds to the global minimum in gRNA/CP interaction energy in the unstructured state as derived using a linearly additive model and knowledge-based nucleobase/amino-acid affinities. Motivated by this, we predict gRNA/CP interaction sites for a comprehensive set of 1082 +ssRNA viruses. We validate our predictions by comparing them with site-resolved information on gRNA/CP interactions derived in SELEX and CLIP experiments for 10 different viruses. Finally, we show that in experimentally studied systems CPs frequently interact with autologous coding regions in gRNA, in agreement with both predicted interaction energies and a recent proposal that proteins in general tend to interact with own mRNAs, if unstructured. Our results define a self-consistent framework for understanding packaging in +ssRNA viruses and implicate interactions between unstructured gRNA and CPs in the process.
Collapse
Affiliation(s)
- Marlene Adlhart
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030, Vienna, Austria
| | - Florian Poetsch
- Institute for Physiology and Pathophysiology, Center for Medical Research, Johannes Kepler University of Linz, Huemerstraße 3-5, 4020 Linz, Austria
| | - Mario Hlevnjak
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Megan Hoogmoed
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030, Vienna, Austria
| | - Anton A Polyansky
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030, Vienna, Austria
| | - Bojan Zagrovic
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, A-1030, Vienna, Austria
| |
Collapse
|
33
|
Gao M, Yi L, Wang Y, Gao J, Liu H, Zhang X, Pei G, Tong Y, Bai C. Characterization and Genomic Analysis of Bacteriophage vB_KpnM_IME346 Targeting Clinical Klebsiella pneumoniae Strain of the K63 Capsular Type. Curr Microbiol 2022; 79:160. [PMID: 35416546 PMCID: PMC9007800 DOI: 10.1007/s00284-022-02834-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
Abstract
A Klebsiella pneumoniae bacteriophage (vB_KpnM_IME346) was isolated from a hospital sewage sample. This bacteriophage specifically infects a clinical K. pneumoniae strain with a K63 capsular polysaccharide structure. The phage genome was evaluated by next-generation sequencing, which revealed a linear double-stranded DNA genome consisting of 49,482 base pairs with a G+C content of 49.1%. The latent period of vB_KpnM_IME346 was shown to be 20 min, and the burst size was 25–30 pfu (plaque-forming units)/infected cell. Transmission electron microscopy and phylogenetic analysis showed that the JD001-like phage belongs to the genus Jedunavirus of the family Myoviridae. The newly isolated vB_KpnM_IME346 shows infectivity in the clinical host K. pneumoniae KP576 strain, indicating that it is a promising alternative to antibacterial agents for removing K. pneumoniae from patients.
Collapse
Affiliation(s)
- Mingming Gao
- Department of Critical Care Medicine, PLA Strategic Support Characteristic Medical Center, Beijing, 100101, China
| | - Lingxian Yi
- Department of Critical Care Medicine, PLA Strategic Support Characteristic Medical Center, Beijing, 100101, China
| | - Yuan Wang
- Department of Critical Care Medicine, PLA Strategic Support Characteristic Medical Center, Beijing, 100101, China
| | - Jie Gao
- Department of Critical Care Medicine, PLA Strategic Support Characteristic Medical Center, Beijing, 100101, China
| | - Huiying Liu
- Department of Respiratory and Critical Care Diseases, The Fifth Medical Center, Chinese General Hospital of the PLA, Beijing, 100071, China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Guangqian Pei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Changqing Bai
- Department of Respiratory and Critical Care Diseases, The Fifth Medical Center, Chinese General Hospital of the PLA, Beijing, 100071, China.
| |
Collapse
|
34
|
Characterisation of Bacteriophage vB_SmaM_Ps15 Infective to Stenotrophomonas maltophilia Clinical Ocular Isolates. Viruses 2022; 14:v14040709. [PMID: 35458438 PMCID: PMC9025141 DOI: 10.3390/v14040709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Recent acknowledgment that multidrug resistant Stenotrophomonas maltophilia strains can cause severe infections has led to increasing global interest in addressing its pathogenicity. While being primarily associated with hospital-acquired respiratory tract infections, this bacterial species is also relevant to ophthalmology, particularly to contact lens-related diseases. In the current study, the capacity of Stenotrophomonas phage vB_SmaM_Ps15 to infect ocular S. maltophilia strains was investigated to explore its future potential as a phage therapeutic. The phage proved to be lytic to a range of clinical isolates collected in Australia from eye swabs, contact lenses and contact lens cases that had previously shown to be resistant to several antibiotics and multipurpose contact lenses disinfectant solutions. Morphological analysis by transmission electron microscopy placed the phage into the Myoviridae family. Its genome size was 161,350 bp with a G + C content of 54.2%, containing 276 putative protein-encoding genes and 24 tRNAs. A detailed comparative genomic analysis positioned vB_SmaM_Ps15 as a new species of the Menderavirus genus, which currently contains six very similar globally distributed members. It was confirmed as a virulent phage, free of known lysogenic and pathogenicity determinants, which supports its potential use for the treatment of S. maltophilia eye infections.
Collapse
|
35
|
Tadmor AD, Phillips R. MCRL: using a reference library to compress a metagenome into a non-redundant list of sequences, considering viruses as a case study. Bioinformatics 2022; 38:631-647. [PMID: 34636854 PMCID: PMC10060711 DOI: 10.1093/bioinformatics/btab703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Metagenomes offer a glimpse into the total genomic diversity contained within a sample. Currently, however, there is no straightforward way to obtain a non-redundant list of all putative homologs of a set of reference sequences present in a metagenome. RESULTS To address this problem, we developed a novel clustering approach called 'metagenomic clustering by reference library' (MCRL), where a reference library containing a set of reference genes is clustered with respect to an assembled metagenome. According to our proposed approach, reference genes homologous to similar sets of metagenomic sequences, termed 'signatures', are iteratively clustered in a greedy fashion, retaining at each step the reference genes yielding the lowest E values, and terminating when signatures of remaining reference genes have a minimal overlap. The outcome of this computation is a non-redundant list of reference genes homologous to minimally overlapping sets of contigs, representing potential candidates for gene families present in the metagenome. Unlike metagenomic clustering methods, there is no need for contigs to overlap to be associated with a cluster, enabling MCRL to draw on more information encoded in the metagenome when computing tentative gene families. We demonstrate how MCRL can be used to extract candidate viral gene families from an oral metagenome and an oral virome that otherwise could not be determined using standard approaches. We evaluate the sensitivity, accuracy and robustness of our proposed method for the viral case study and compare it with existing analysis approaches. AVAILABILITY AND IMPLEMENTATION https://github.com/a-tadmor/MCRL. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Arbel D Tadmor
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, 55131 Mainz, Germany
- Department of Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rob Phillips
- Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
36
|
Borodovich T, Shkoporov AN, Ross RP, Hill C. OUP accepted manuscript. Gastroenterol Rep (Oxf) 2022; 10:goac012. [PMID: 35425613 PMCID: PMC9006064 DOI: 10.1093/gastro/goac012] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/08/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022] Open
Abstract
Horizontal gene transfer (HGT) in the microbiome has profound consequences for human health and disease. The spread of antibiotic resistance genes, virulence, and pathogenicity determinants predominantly occurs by way of HGT. Evidence exists of extensive horizontal transfer in the human gut microbiome. Phage transduction is a type of HGT event in which a bacteriophage transfers non-viral DNA from one bacterial host cell to another. The abundance of tailed bacteriophages in the human gut suggests that transduction could act as a significant mode of HGT in the gut microbiome. Here we review in detail the known mechanisms of phage-mediated HGT, namely specialized and generalized transduction, lateral transduction, gene-transfer agents, and molecular piracy, as well as methods used to detect phage-mediated HGT, and discuss its potential implications for the human gut microbiome.
Collapse
Affiliation(s)
- Tatiana Borodovich
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Corresponding author. APC Microbiome Ireland, Biosciences Institute, University College Cork, Room 3.63, College Road, Cork, T12 YT20, Ireland.
| | - Andrey N Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
37
|
Cryo-EM Structures of Two Bacteriophage Portal Proteins Provide Insights for Antimicrobial Phage Engineering. Viruses 2021; 13:v13122532. [PMID: 34960800 PMCID: PMC8703570 DOI: 10.3390/v13122532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Widespread antibiotic resistance has returned attention to bacteriophages as a means of managing bacterial pathogenesis. Synthetic biology approaches to engineer phages have demonstrated genomic editing to broaden natural host ranges, or to optimise microbicidal action. Gram positive pathogens cause serious pastoral animal and human infections that are especially lethal in newborns. Such pathogens are targeted by the obligate lytic phages of the Salasmaviridae and Guelinviridae families. These phages have relatively small ~20 kb linear protein-capped genomes and their compact organisation, relatively few structural elements, and broad host range, are appealing from a phage-engineering standpoint. In this study, we focus on portal proteins, which are core elements for the assembly of such tailed phages. The structures of dodecameric portal complexes from Salasmaviridae phage GA1, which targets Bacillus pumilus, and Guelinviridae phage phiCPV4 that infects Clostridium perfringens, were determined at resolutions of 3.3 Å and 2.9 Å, respectively. Both are found to closely resemble the related phi29 portal protein fold. However, the portal protein of phiCPV4 exhibits interesting differences in the clip domain. These structures provide new insights on structural diversity in Caudovirales portal proteins and will be essential for considerations in phage structural engineering.
Collapse
|
38
|
Abstract
Although the process of genome encapsidation is highly conserved in tailed bacteriophages and eukaryotic double-stranded DNA viruses, there are two distinct packaging pathways that these viruses use to catalyze ATP-driven translocation of the viral genome into a preassembled procapsid shell. One pathway is used by ϕ29-like phages and adenoviruses, which replicate and subsequently package a monomeric, unit-length genome covalently attached to a virus/phage-encoded protein at each 5'-end of the dsDNA genome. In a second, more ubiquitous packaging pathway characterized by phage lambda and the herpesviruses, the viral DNA is replicated as multigenome concatemers linked in a head-to-tail fashion. Genome packaging in these viruses thus requires excision of individual genomes from the concatemer that are then translocated into a preassembled procapsid. Hence, the ATPases that power packaging in these viruses also possess nuclease activities that cut the genome from the concatemer at the beginning and end of packaging. This review focuses on proposed mechanisms of genome packaging in the dsDNA viruses using unit-length ϕ29 and concatemeric λ genome packaging motors as representative model systems.
Collapse
Affiliation(s)
- Carlos E Catalano
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States.
| | - Marc C Morais
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
39
|
Fillol-Salom A, Bacigalupe R, Humphrey S, Chiang YN, Chen J, Penadés JR. Lateral transduction is inherent to the life cycle of the archetypical Salmonella phage P22. Nat Commun 2021; 12:6510. [PMID: 34751192 PMCID: PMC8575938 DOI: 10.1038/s41467-021-26520-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/01/2021] [Indexed: 11/08/2022] Open
Abstract
Lysogenic induction ends the stable association between a bacteriophage and its host, and the transition to the lytic cycle begins with early prophage excision followed by DNA replication and packaging (ERP). This temporal program is considered universal for P22-like temperate phages, though there is no direct evidence to support the timing and sequence of these events. Here we report that the long-standing ERP program is an observation of the experimentally favored Salmonella phage P22 tsc229 heat-inducible mutant, and that wild-type P22 actually follows the replication-packaging-excision (RPE) program. We find that P22 tsc229 excises early after induction, but P22 delays excision to just before it is detrimental to phage production. This allows P22 to engage in lateral transduction. Thus, at minimal expense to itself, P22 has tuned the timing of excision to balance propagation with lateral transduction, powering the evolution of its host through gene transfer in the interest of self-preservation.
Collapse
Affiliation(s)
- Alfred Fillol-Salom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Rodrigo Bacigalupe
- Dep. Ciencias Biomédicas, Universidad CEU Cardenal Herrera, 46113, Moncada, Spain
- The Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Suzanne Humphrey
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Yin Ning Chiang
- Department of Microbiology and Immunology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, Singapore
| | - John Chen
- Department of Microbiology and Immunology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, Singapore.
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK.
- Dep. Ciencias Biomédicas, Universidad CEU Cardenal Herrera, 46113, Moncada, Spain.
| |
Collapse
|
40
|
Shape shifter: redirection of prolate phage capsid assembly by staphylococcal pathogenicity islands. Nat Commun 2021; 12:6408. [PMID: 34737316 PMCID: PMC8569155 DOI: 10.1038/s41467-021-26759-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus pathogenicity islands (SaPIs) are molecular parasites that hijack helper phages for their transfer. SaPIbov5, the prototypical member of a family of cos type SaPIs, redirects the assembly of ϕ12 helper capsids from prolate to isometric. This size and shape shift is dependent on the SaPIbov5-encoded protein Ccm, a homolog of the ϕ12 capsid protein (CP). Using cryo-electron microscopy, we have determined structures of prolate ϕ12 procapsids and isometric SaPIbov5 procapsids. ϕ12 procapsids have icosahedral end caps with Tend = 4 architecture and a Tmid = 14 cylindrical midsection, whereas SaPIbov5 procapsids have T = 4 icosahedral architecture. We built atomic models for CP and Ccm, and show that Ccm occupies the pentameric capsomers in the isometric SaPIbov5 procapsids, suggesting that preferential incorporation of Ccm pentamers prevents the cylindrical midsection from forming. Our results highlight that pirate elements have evolved diverse mechanisms to suppress phage multiplication, including the acquisition of phage capsid protein homologs. Phage-inducible chromosomal islands (PICIs) are a group of mobile genetic elements that hijack the replication and assembly machinery of helper bacteriophages. Here the authors describe a mechanism by which a group of PICIs from Staphylococcus aureus re-direct the assembly pathway of their helpers using a capsid protein homolog.
Collapse
|
41
|
Liu M, Zeng X, He Y, Xia C, Cheng L, Wu Z, Lan H, Pan D. iTRAQ‐based quantitative proteomic analysis of the effect of heat shock on freeze‐drying of
Lactobacillus
acidophilus
ATCC4356. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mingxue Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products Ningbo 315211 China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Sciences Ningbo University Ningbo 315800 China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products Ningbo 315211 China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Sciences Ningbo University Ningbo 315800 China
| | - Yating He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products Ningbo 315211 China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Sciences Ningbo University Ningbo 315800 China
| | - Chaoran Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products Ningbo 315211 China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Sciences Ningbo University Ningbo 315800 China
| | - Lu Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products Ningbo 315211 China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Sciences Ningbo University Ningbo 315800 China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products Ningbo 315211 China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Sciences Ningbo University Ningbo 315800 China
| | - Hangzhen Lan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products Ningbo 315211 China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Sciences Ningbo University Ningbo 315800 China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products Ningbo 315211 China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province College of Food and Pharmaceutical Sciences Ningbo University Ningbo 315800 China
| |
Collapse
|
42
|
Wangchuk J, Chatterjee A, Patil S, Madugula SK, Kondabagil K. The coevolution of large and small terminases of bacteriophages is a result of purifying selection leading to phenotypic stabilization. Virology 2021; 564:13-25. [PMID: 34598064 DOI: 10.1016/j.virol.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Genome packaging in many dsDNA phages requires a series of precisely coordinated actions of two phage-coded proteins, namely, large terminase (TerL) and small terminase (TerS) with DNA and ATP, and with each other. Despite the strict functional conservation, TerL and TerS homologs exhibit large sequence variations. We investigated the sequence variability across eight phage types and observed a coevolutionary framework wherein the genealogy of TerL homologs mirrored that of the corresponding TerS homologs. Furthermore, a high purifying selection observed (dN/dS«1) indicated strong structural constraints on both TerL and TerS, and identify coevolving residues in TerL and TerS of phage T4 and lambda. Using the highly coevolving (correlation coefficient of 0.99) TerL and TerS of phage N4, we show that their biochemical features are similar to the phylogenetically divergent phage λ terminases. We also demonstrate using the Surface Plasma Resonance (SPR) technique that phage N4 TerL transiently interacts with TerS.
Collapse
Affiliation(s)
- Jigme Wangchuk
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Anirvan Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Supriya Patil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Santhosh Kumar Madugula
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
43
|
Dkhili S, Ribeiro M, Ghariani S, Yahia HB, Hillion M, Poeta P, Slama KB, Hébraud M, Igrejas G. Bacteriophages as Antimicrobial Agents? Proteomic Insights on Three Novel Lytic Bacteriophages Infecting ESBL-Producing Escherichia coli. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:626-640. [PMID: 34559008 DOI: 10.1089/omi.2021.0122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
With the emergence of multiresistant bacteria, the use of bacteriophages is gaining renewed interest as potential antimicrobial agents. The aim of this study was to analyze the structure of three lytic bacteriophages infecting Escherichia coli (SD1, SD2, and SD3) using a gel-based proteomics approach and the cellular response of this bacterium to phage SD1 infection at the proteome level. The combination of the results of 1-DE and 2-DE followed by mass spectrometry led to the identification of 3, 14, and 9 structure proteins for SD1, SD2, and SD3 phages, respectively. Different protein profiles with common proteins were noticed. We also analyzed phage-induced effects by comparing samples from infected cells to those of noninfected cells. We verified important changes in E. coli proteins expression during phage SD1 infection, where there was an overexpression of proteins involved in stress response. Our results indicated that viral infection caused bacterial oxidative stress and bacterial cells response to stress was orchestrated by antioxidant defense mechanisms. This article makes an empirical scientific contribution toward the concept of bacteriophages as potential antimicrobial agents. With converging ecological threats in the 21st century, novel approaches to address the innovation gaps in antimicrobial development are more essential than ever. Further research on bacteriophages is called for in this broader context of planetary health and integrative biology.
Collapse
Affiliation(s)
- Sadika Dkhili
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Miguel Ribeiro
- Department of Genetics and Biotechnology and University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| | - Salma Ghariani
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Houssem Ben Yahia
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Mélanie Hillion
- University Clermont Auvergne, INRAE, UMR0454 Microbiology Digestive Environment Health (MEDiS), Saint-Genès Champanelle, France.,INRAE, Metabolism Exploration Platform, Proteomic Component (PFEMcp), Saint-Genès Champanelle, France
| | - Patricia Poeta
- Department of Genetics and Biotechnology and University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Karim Ben Slama
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Michel Hébraud
- University Clermont Auvergne, INRAE, UMR0454 Microbiology Digestive Environment Health (MEDiS), Saint-Genès Champanelle, France.,INRAE, Metabolism Exploration Platform, Proteomic Component (PFEMcp), Saint-Genès Champanelle, France
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology and University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| |
Collapse
|
44
|
Zhou K, Xu Y, Zhang R, Qian PY. Arms race in a cell: genomic, transcriptomic, and proteomic insights into intracellular phage-bacteria interplay in deep-sea snail holobionts. MICROBIOME 2021; 9:182. [PMID: 34479645 PMCID: PMC8418041 DOI: 10.1186/s40168-021-01099-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/20/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Deep-sea animals in hydrothermal vents often form endosymbioses with chemosynthetic bacteria. Endosymbionts serve essential biochemical and ecological functions, but the prokaryotic viruses (phages) that determine their fate are unknown. RESULTS We conducted metagenomic analysis of a deep-sea vent snail. We assembled four genome bins for Caudovirales phages that had developed dual endosymbiosis with sulphur-oxidising bacteria (SOB) and methane-oxidising bacteria (MOB). Clustered regularly interspaced short palindromic repeat (CRISPR) spacer mapping, genome comparison, and transcriptomic profiling revealed that phages Bin1, Bin2, and Bin4 infected SOB and MOB. The observation of prophages in the snail endosymbionts and expression of the phage integrase gene suggested the presence of lysogenic infection, and the expression of phage structural protein and lysozyme genes indicated active lytic infection. Furthermore, SOB and MOB appear to employ adaptive CRISPR-Cas systems to target phage DNA. Additional expressed defence systems, such as innate restriction-modification systems and dormancy-inducing toxin-antitoxin systems, may co-function and form multiple lines for anti-viral defence. To counter host defence, phages Bin1, Bin2, and Bin3 appear to have evolved anti-restriction mechanisms and expressed methyltransferase genes that potentially counterbalance host restriction activity. In addition, the high-level expression of the auxiliary metabolic genes narGH, which encode nitrate reductase subunits, may promote ATP production, thereby benefiting phage DNA packaging for replication. CONCLUSIONS This study provides new insights into phage-bacteria interplay in intracellular environments of a deep-sea vent snail. Video Abstract.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen University-HKUST Joint Marine Science Ph.D. Program, Shenzhen University, Shenzhen, 518060, China
| | - Ying Xu
- Shenzhen University-HKUST Joint Marine Science Ph.D. Program, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University (Xiang'an), Xiamen, Fujian, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
45
|
Ding W, Wang R, Liang Z, Zhang R, Qian PY, Zhang W. Expanding our understanding of marine viral diversity through metagenomic analyses of biofilms. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:395-404. [PMID: 37073293 PMCID: PMC10077207 DOI: 10.1007/s42995-020-00078-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/06/2020] [Indexed: 05/03/2023]
Abstract
Recent metagenomics surveys have provided insights into the marine virosphere. However, these surveys have focused solely on viruses in seawater, neglecting those associated with biofilms. By analyzing 1.75 terabases of biofilm metagenomic data, 3974 viral sequences were identified from eight locations around the world. Over 90% of these viral sequences were not found in previously reported datasets. Comparisons between biofilm and seawater metagenomes identified viruses that are endemic to the biofilm niche. Analysis of viral sequences integrated within biofilm-derived microbial genomes revealed potential functional genes for trimeric autotransporter adhesin and polysaccharide metabolism, which may contribute to biofilm formation by the bacterial hosts. However, more than 70% of the genes could not be annotated. These findings show marine biofilms to be a reservoir of novel viruses and have enhanced our understanding of natural virus-bacteria ecosystems.
Collapse
Affiliation(s)
- Wei Ding
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
| | - Ruojun Wang
- Department of Ocean Sciences, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhicong Liang
- Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005 China
| | - Pei-Yuan Qian
- Department of Ocean Sciences, Hong Kong University of Science and Technology, Hong Kong, China
| | - Weipeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
- Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100 China
- Department of Ocean Sciences, Hong Kong University of Science and Technology, Hong Kong, China
- Fok Ying Tung Research Institute, Hong Kong University of Science and Technology, Guangzhou, 510000 China
| |
Collapse
|
46
|
Šimoliūnienė M, Žukauskienė E, Truncaitė L, Cui L, Hutinet G, Kazlauskas D, Kaupinis A, Skapas M, de Crécy-Lagard V, Dedon PC, Valius M, Meškys R, Šimoliūnas E. Pantoea Bacteriophage vB_PagS_MED16-A Siphovirus Containing a 2'-Deoxy-7-amido-7-deazaguanosine-Modified DNA. Int J Mol Sci 2021; 22:7333. [PMID: 34298953 PMCID: PMC8306585 DOI: 10.3390/ijms22147333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
A novel siphovirus, vB_PagS_MED16 (MED16) was isolated in Lithuania using Pantoea agglomerans strain BSL for the phage propagation. The double-stranded DNA genome of MED16 (46,103 bp) contains 73 predicted open reading frames (ORFs) encoding proteins, but no tRNA. Our comparative sequence analysis revealed that 26 of these ORFs code for unique proteins that have no reliable identity when compared to database entries. Based on phylogenetic analysis, MED16 represents a new genus with siphovirus morphology. In total, 35 MED16 ORFs were given a putative functional annotation, including those coding for the proteins responsible for virion morphogenesis, phage-host interactions, and DNA metabolism. In addition, a gene encoding a preQ0 DNA deoxyribosyltransferase (DpdA) is present in the genome of MED16 and the LC-MS/MS analysis indicates 2'-deoxy-7-amido-7-deazaguanosine (dADG)-modified phage DNA, which, to our knowledge, has never been experimentally validated in genomes of Pantoea phages. Thus, the data presented in this study provide new information on Pantoea-infecting viruses and offer novel insights into the diversity of DNA modifications in bacteriophages.
Collapse
Affiliation(s)
- Monika Šimoliūnienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.Ž.); (L.T.); (R.M.)
| | - Emilija Žukauskienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.Ž.); (L.T.); (R.M.)
| | - Lidija Truncaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.Ž.); (L.T.); (R.M.)
| | - Liang Cui
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore; (L.C.); (P.C.D.)
| | - Geoffrey Hutinet
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (G.H.); (V.d.C.-L.)
| | - Darius Kazlauskas
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania;
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Martynas Skapas
- Department of Characterisation of Materials Structure, Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania;
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (G.H.); (V.d.C.-L.)
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Peter C. Dedon
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore; (L.C.); (P.C.D.)
- Department of Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mindaugas Valius
- Proteomics Centre, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.Ž.); (L.T.); (R.M.)
| | - Eugenijus Šimoliūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.Ž.); (L.T.); (R.M.)
| |
Collapse
|
47
|
Woodson M, Pajak J, Mahler BP, Zhao W, Zhang W, Arya G, White MA, Jardine PJ, Morais MC. A viral genome packaging motor transitions between cyclic and helical symmetry to translocate dsDNA. SCIENCE ADVANCES 2021; 7:7/19/eabc1955. [PMID: 33962953 PMCID: PMC8104870 DOI: 10.1126/sciadv.abc1955] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Molecular segregation and biopolymer manipulation require the action of molecular motors to do work by applying directional forces to macromolecules. The additional strand conserved E (ASCE) ring motors are an ancient family of molecular motors responsible for diverse biological polymer manipulation tasks. Viruses use ASCE segregation motors to package their genomes into their protein capsids and provide accessible experimental systems due to their relative simplicity. We show by cryo-EM-focused image reconstruction that ASCE ATPases in viral double-stranded DNA (dsDNA) packaging motors adopt helical symmetry complementary to their dsDNA substrates. Together with previous data, our results suggest that these motors cycle between helical and planar configurations, providing a possible mechanism for directional translocation of DNA. Similar changes in quaternary structure have been observed for proteasome and helicase motors, suggesting an ancient and common mechanism of force generation that has been adapted for specific tasks over the course of evolution.
Collapse
Affiliation(s)
- Michael Woodson
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joshua Pajak
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Bryon P Mahler
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Wei Zhao
- Department of Diagnostic and Biological Sciences, School of Dentistry, and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Zhang
- Department of Diagnostic and Biological Sciences, School of Dentistry, and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Characterization Facility, College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Mark A White
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Paul J Jardine
- Department of Diagnostic and Biological Sciences, School of Dentistry, and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Marc C Morais
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Diagnostic and Biological Sciences, School of Dentistry, and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
48
|
Chaudhari HV, Inamdar MM, Kondabagil K. Scaling relation between genome length and particle size of viruses provides insights into viral life history. iScience 2021; 24:102452. [PMID: 34113814 PMCID: PMC8169800 DOI: 10.1016/j.isci.2021.102452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
In terms of genome and particle sizes, viruses exhibit great diversity. With the discovery of several nucleocytoplasmic large DNA viruses (NCLDVs) and jumbo phages, the relationship between particle and genome sizes has emerged as an important criterion for understanding virus evolution. We use allometric scaling of capsid volume with the genome length of different groups of viruses to shed light on its relationship with virus life history. The allometric exponents for icosahedral dsDNA bacteriophages and NCDLVs were found to be 1 and 2, respectively, indicating that with increasing capsid size DNA packaging density remains the same in bacteriophages but decreases for NCLDVs. We argue that the exponents are largely shaped by their entry mechanism and capsid mechanical stability. We further show that these allometric size parameters are also intricately linked to the relative energy costs of translation and replication in viruses and can have further implications on viral life history. Capsid and genome size allometric exponent gives insights into viral life history The allometric exponent of NCLDVs is almost twice that of bacteriophages The exponent is largely shaped by the viral entry mechanism and capsid stability The relaxed genome size constraint allows large viruses to evolve greater autonomy
Collapse
Affiliation(s)
- Harshali V Chaudhari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
49
|
Žukauskienė E, Šimoliūnienė M, Truncaitė L, Skapas M, Kaupinis A, Valius M, Meškys R, Šimoliūnas E. Pantoea Bacteriophage vB_PagS_AAS23: A Singleton of the Genus Sauletekiovirus. Microorganisms 2021; 9:668. [PMID: 33807116 PMCID: PMC8004638 DOI: 10.3390/microorganisms9030668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022] Open
Abstract
A cold-adapted siphovirus, vB_PagS_AAS23 (AAS23) was isolated in Lithuania using the Pantoea agglomerans strain AUR for the phage propagation. The double-stranded DNA genome of AAS23 (51,170 bp) contains 92 probable protein encoding genes, and no genes for tRNA. A comparative sequence analysis revealed that 25 of all AAS23 open reading frames (ORFs) code for unique proteins that have no reliable identity to database entries. Based on the phylogenetic analysis, AAS23 has no close relationship to other viruses publicly available to date and represents a single species of the genus Sauletekiovirus within the family Drexlerviridae. The phage is able to form plaques in bacterial lawns even at 4 °C and demonstrates a depolymerase activity. Thus, the data presented in this study not only provides the information on Pantoea-infecting bacteriophages, but also offers novel insights into the diversity of cold-adapted viruses and their potential to be used as biocontrol agents.
Collapse
Affiliation(s)
- Emilija Žukauskienė
- Life Sciences Centre, Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (E.Ž.); (M.Š.); (R.M.)
| | - Monika Šimoliūnienė
- Life Sciences Centre, Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (E.Ž.); (M.Š.); (R.M.)
| | - Lidija Truncaitė
- Life Sciences Centre, Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (E.Ž.); (M.Š.); (R.M.)
| | - Martynas Skapas
- Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania;
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Mindaugas Valius
- Proteomics Centre, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Rolandas Meškys
- Life Sciences Centre, Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (E.Ž.); (M.Š.); (R.M.)
| | - Eugenijus Šimoliūnas
- Life Sciences Centre, Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (E.Ž.); (M.Š.); (R.M.)
| |
Collapse
|
50
|
Wang JB, Yu MS, Tseng TT, Lin LC. Molecular Characterization of Ahp2, a Lytic Bacteriophage of Aeromonas hydrophila. Viruses 2021; 13:v13030477. [PMID: 33799428 PMCID: PMC8001559 DOI: 10.3390/v13030477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Aeromonas hydrophila is an opportunistic pathogen that infects fish, amphibians, mammals, and humans. This study isolated a myophage, vB_AhyM_Ahp2 (Ahp2), that lytically infects A. hydrophila. We observed that 96% of the Ahp2 particles adsorbed to A. hydrophila within 18 min. Ahp2 also showed a latent period of 15 min with a burst size of 142 PFU/cell. This phage has a linear double-stranded DNA genome of 47,331 bp with a GC content of 57%. At least 20 Ahp2 proteins were detected by SDS-polyacrylamide gel electrophoresis; among them, a 40-kDa protein was predicted as the major capsid protein. Sequence analysis showed that Ahp2 has a genome organization closely related to a group of Aeromonas phages (13AhydR10RR, 14AhydR10RR, 85AhydR10RR, phage 3, 32 Asp37, 59.1), which infect Aeromonas hydrophila and Aeromonas salmonicida. The tail module encompassing ORF27-29 in the Ahp2 genome was present in all Aeromonas phages analyzed in this study and likely determines the host range of the virus. This study found that Ahp2 completely lyses A. hydrophila AH300206 in 3.5 h at a MOI of 0.0001 and does not lysogenize its host. Altogether, these findings show that Ahp2 is a lytic Aeromonas phage and could be a candidate for therapeutic phage cocktails.
Collapse
Affiliation(s)
- Jian-Bin Wang
- Laboratory of Microbial Genetics, Institute of Medical Sciences, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan;
| | - Mei-Shiuan Yu
- Department of Microbiology, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan;
- Master Program in Microbiology and Immunology, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan
| | - Tsai-Tien Tseng
- Department of Molecular and Cellular Biology, Kennesaw State University, 1000 Chastain Road, Kennesaw, GA 30144, USA;
| | - Ling-Chun Lin
- Department of Microbiology, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan;
- Master Program in Microbiology and Immunology, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan
- Correspondence: e-mail: ; Tel.: +886-3-8565301
| |
Collapse
|