1
|
Chen L, Rao W, Chen Y, Xie J. In vitro induction of anti‑lung cancer immune response by the A549 lung cancer stem cell lysate‑sensitized dendritic cell vaccine. Oncol Lett 2024; 28:550. [PMID: 39328277 PMCID: PMC11425031 DOI: 10.3892/ol.2024.14683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Lung adenocarcinoma is one of the most fatal types of cancer worldwide, with non-small cell lung cancer being the most common subtype. Therefore, there is need for improved treatment approaches. Tumor growth results from the proliferation of a very small number of tumor stem cells, giving rise to the theory of cancer stem cells (CSCs). Lung CSCs are associated with lung cancer development, and although chemotherapy drugs can inhibit the proliferation of lung cancer cells, they have difficulty acting on lung CSCs. Even if the tumor appears to have disappeared after chemotherapy, the presence of a small number of residual tumor stem cells can lead to cancer recurrence and metastasis. Hence, targeting and eliminating lung CSCs is of significant therapeutic importance. In this study, we cultured A549 cells in sphere-forming conditions using B27, EGF, and bFGF, isolated peripheral blood mononuclear cells (PBMCs), and induced and characterized dendritic cells (DCs). We also isolated and expanded T lymphocytes. DC vaccines were prepared using A549 stem cell lysate or A549 cell lysate for sensitization and compared with non-sensitized DC vaccines. The content of IFN-γ in the supernatant of cultures with vaccines and T cells was measured by ELISA. The cytotoxic effects of the vaccines on A549 cells and stem cells were assessed using the Cytotox96 assay, and the impact of the vaccines on A549 cell migration and apoptosis was evaluated using Transwell assays and flow cytometry. DC vaccines sensitized with human lung CSC lysates induced significant in vitro cytotoxic effects on A549 lung cancer cells and CSCs by T lymphocytes, while not producing immune cytotoxic effects on human airway epithelial cells. Moreover, the immune-killing effect induced by DC vaccines sensitized with lung CSC lysates was superior to that of DC vaccines sensitized with lung cancer cells.
Collapse
Affiliation(s)
- Letian Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Wei Rao
- Department of Urology, Yingtan People's Hospital, Yingtan, Jiangxi 335000, P.R. China
| | - Yujuan Chen
- Department of Pulmonary and Critical Care Medicine, Gaoan People's Hospital, Yichun, Jiangxi 336000, P.R. China
| | - Junping Xie
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
2
|
Li J, Xuan T, Wang Z, Qu L, Yu J, Meng S. Causal role of immune cells in lung cancer subtypes: Mendelian randomization study. Hum Immunol 2024; 85:111087. [PMID: 39153368 DOI: 10.1016/j.humimm.2024.111087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/11/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Lung cancer, characterized by its high incidence and mortality rates, is a challenging malignancy to treat. Immunotherapy has emerged as a crucial treatment modality, yet its effectiveness varies significantly among patients due to the diverse immune microenvironment involved. Our study aims to analyze the similarities and differences in immune cell profiles across different subtypes of lung cancer. We employed a comprehensive two-sample Mendelian randomization analysis to establish causal connections between immune cells and lung cancer. We examined differential expression of 731 immune cell types and compared their profiles among various lung cancer subtypes. Our analysis revealed that 47 immune cell types exhibited differential expression in lung cancer, with 15 showing a protective effect and 32 having a tumor-promoting effect. Notably, we observed greater similarities in immune cell profile between squamous carcinoma and adenocarcinoma subtypes, while small cell lung cancerHHHH displayed less overlap with the other two types. Specifically, CD4+ naive T cells showed differential expression across all three lung cancer subtypes, whereas three other immune cell types exhibited differential expression exclusively in adenocarcinoma and squamous cell carcinoma. Our findings substantiate a causal link between immune cell dynamics and lung cancer progression. Moreover, our identification of distinct immune cell composition among histological subtypes of lung cancer may serve as a valuable reference for further investigation into immunotherapeutic strategies.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Medical Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, No. 758 Hefei Road, Qingdao, Shandong 266035, China
| | - Tiantian Xuan
- Department of Medical Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, No. 758 Hefei Road, Qingdao, Shandong 266035, China
| | - Zhanmei Wang
- Department of Medical Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, No. 758 Hefei Road, Qingdao, Shandong 266035, China
| | - Linli Qu
- Department of Medical Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, No. 758 Hefei Road, Qingdao, Shandong 266035, China
| | - Jie Yu
- Department of Radiation Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, No. 758 Hefei Road, Qingdao 266035, China.
| | - Sibo Meng
- Department of Medical Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, No. 758 Hefei Road, Qingdao, Shandong 266035, China.
| |
Collapse
|
3
|
Wang X, Wu J, Xie W. Evolution of Treatment Strategies for Gestational Trophoblastic Neoplasia: Chemotherapy, Immunotherapy, and Molecular Targeted Therapy. Curr Treat Options Oncol 2024; 25:1055-1062. [PMID: 39052205 DOI: 10.1007/s11864-024-01235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
OPINION STATEMENT In addressing Gestational Trophoblastic Neoplasia (GTN), it is imperative to acknowledge the evolving landscape of treatment options, especially in light of the challenges posed by traditional methods. While historically, surgical interventions, radiation therapy, and chemotherapeutic agents have been the mainstays, the emergence of resistance and high-risk scenarios necessitates a reevaluation of our therapeutic approaches. Our review highlights the promising advancements in immunotherapy and molecular targeted therapy as viable alternatives for GTN management. The introduction of immune checkpoint inhibitors and kinase inhibitors offers a paradigm shift, particularly for patients resistant to conventional chemotherapy regimens. These novel therapies not only exhibit efficacy but also demonstrate manageable toxicity profiles, particularly in high-risk cases. However, integrating these innovative treatments into established international guidelines presents a formidable task. As we move forward, it is imperative that future research not only prioritizes fertility preservation but also rigorously evaluates long-term toxicity implications. International collaboration becomes pivotal in addressing the nuances of this rare and complex disease. In conclusion, our review underscores the need for a nuanced approach to GTN treatment, one that prioritizes reduced toxicity and improved quality of life. By embracing the advancements in immunotherapy and molecular targeted therapy, we can pave the way for more effective and patient-centered care in the management of GTN.
Collapse
Affiliation(s)
- Xiangyu Wang
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P.R. China
| | - Jianlei Wu
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P.R. China
| | - Wenli Xie
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong, 250033, P.R. China.
| |
Collapse
|
4
|
Subbarayan R, Srinivasan D, Balakrishnan R, Kumar A, Usmani SS, Srivastava N. DNA damage response and neoantigens: A favorable target for triple-negative breast cancer immunotherapy and vaccine development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:104-152. [PMID: 39396845 DOI: 10.1016/bs.ircmb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its aggressive nature and limited therapeutic options. The interplay between DNA damage response (DDR) mechanisms and the emergence of neoantigens represents a promising avenue for developing targeted immunotherapeutic strategies and vaccines for TNBC. The DDR is a complex network of cellular mechanisms designed to maintain genomic integrity. In TNBC, where genetic instability is a hallmark, dysregulation of DDR components plays a pivotal role in tumorigenesis and progression. This review explores the intricate relationship between DDR and neoantigens, shedding light on the potential vulnerabilities of TNBC cells. Neoantigens, arising from somatic mutations in cancer cells, represent unique antigens that can be recognized by the immune system. TNBC's propensity for genomic instability leads to an increased mutational burden, consequently yielding a rich repertoire of neoantigens. The convergence of DDR and neoantigens in TNBC offers a distinctive opportunity for immunotherapeutic targeting. Immunotherapy has revolutionized cancer treatment by harnessing the immune system to selectively target cancer cells. The unique immunogenicity conferred by DDR-related neoantigens in TNBC positions them as ideal targets for immunotherapeutic interventions. This review also explores various immunotherapeutic modalities, including immune checkpoint inhibitors (ICIs), adoptive cell therapies, and cancer vaccines, that leverage the DDR and neoantigen interplay to enhance anti-tumor immune responses. Moreover, the potential for developing vaccines targeting DDR-related neoantigens opens new frontiers in preventive and therapeutic strategies for TNBC. The rational design of vaccines tailored to the individual mutational landscape of TNBC holds promise for precision medicine approaches. In conclusion, the convergence of DDR and neoantigens in TNBC presents a compelling rationale for the development of innovative immunotherapies and vaccines. Understanding and targeting these interconnected processes may pave the way for personalized and effective interventions, offering new hope for patients grappling with the challenges posed by TNBCs.
Collapse
Affiliation(s)
- Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Dhasarathdev Srinivasan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ranjith Balakrishnan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ajeet Kumar
- Department of Psychiatry, Washington university School of Medicine, St louis, MO, United States
| | - Salman Sadullah Usmani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
5
|
Zhang L, Zhang X, Shi Y, Ni Y, Fei J, Jin Z, Li W, Wang X, Wu N. Role and potential therapeutic value of histone methyltransferases in drug resistance mechanisms in lung cancer. Front Oncol 2024; 14:1376916. [PMID: 38525426 PMCID: PMC10957659 DOI: 10.3389/fonc.2024.1376916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Lung cancer, ranking second globally in both incidence and high mortality among common malignant tumors, presents a significant challenge with frequent occurrences of drug resistance despite the continuous emergence of novel therapeutic agents. This exacerbates disease progression, tumor recurrence, and ultimately leads to poor prognosis. Beyond acquired resistance due to genetic mutations, mounting evidence suggests a critical role of epigenetic mechanisms in this process. Numerous studies have indicated abnormal expression of Histone Methyltransferases (HMTs) in lung cancer, with the abnormal activation of certain HMTs closely linked to drug resistance. HMTs mediate drug tolerance in lung cancer through pathways involving alterations in cellular metabolism, upregulation of cancer stem cell-related genes, promotion of epithelial-mesenchymal transition, and enhanced migratory capabilities. The use of HMT inhibitors also opens new avenues for lung cancer treatment, and targeting HMTs may contribute to reversing drug resistance. This comprehensive review delves into the pivotal roles and molecular mechanisms of HMTs in drug resistance in lung cancer, offering a fresh perspective on therapeutic strategies. By thoroughly examining treatment approaches, it provides new insights into understanding drug resistance in lung cancer, supporting personalized treatment, fostering drug development, and propelling lung cancer therapy into novel territories.
Collapse
Affiliation(s)
- Linxiang Zhang
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xueying Zhang
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yan Shi
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuhan Ni
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jiaojiao Fei
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhixin Jin
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wenjuan Li
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaojing Wang
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Nan Wu
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
6
|
Ilangumaran S, Gui Y, Shukla A, Ramanathan S. SOCS1 expression in cancer cells: potential roles in promoting antitumor immunity. Front Immunol 2024; 15:1362224. [PMID: 38415248 PMCID: PMC10897024 DOI: 10.3389/fimmu.2024.1362224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
Suppressor of cytokine signaling 1 (SOCS1) is a potent regulator immune cell responses and a proven tumor suppressor. Inhibition of SOCS1 in T cells can boost antitumor immunity, whereas its loss in tumor cells increases tumor aggressivity. Investigations into the tumor suppression mechanisms so far focused on tumor cell-intrinsic functions of SOCS1. However, it is possible that SOCS1 expression in tumor cells also regulate antitumor immune responses in a cell-extrinsic manner via direct and indirect mechanisms. Here, we discuss the evidence supporting the latter, and its implications for antitumor immunity.
Collapse
Affiliation(s)
- Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | |
Collapse
|
7
|
Najafi S, Mortezaee K. Modifying CAR-T cells with anti-checkpoints in cancer immunotherapy: A focus on anti PD-1/PD-L1 antibodies. Life Sci 2024; 338:122387. [PMID: 38154609 DOI: 10.1016/j.lfs.2023.122387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Chimeric antigen receptor-modified T (CAR-T) are genetically engineered cells to express tumor-specific antigens revolutionizing the treatment of hematologic malignancies. The hostile tumor microenvironment (TME) remains a challenge for CAR-T cell therapy in solid tumors. As a solution, combinational therapy with immune checkpoint inhibitors (ICIs) is shown to improve the safety and efficacy of CAR-T cell therapy. To avoid side effects related to the application of ICIs in combinational therapy, engineering CARs to express tumor-specific antigens may help improvement of clinical outcomes. Those CARs expressing single chain variable fragments (scFvs) or nanobodies against immune checkpoint stimulatory or inhibitory molecules, such as the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) signaling axis are being extensively studied in various clinical trials. In this review, we discuss the significance of anti-PD-(L)1 scFv-expressing CAR-T cells in the treatment of human cancers, describing current challenges and potential strategies to overcome such predicaments in the area of cancer immunotherapy.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
8
|
Wang L, Du C, Jiang B, Chen L, Wang Z. Adjusting the dose of traditional drugs combined with immunotherapy: reshaping the immune microenvironment in lung cancer. Front Immunol 2023; 14:1256740. [PMID: 37901223 PMCID: PMC10600379 DOI: 10.3389/fimmu.2023.1256740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/05/2023] [Indexed: 10/31/2023] Open
Abstract
Immunotherapy is currently the most promising clinical treatment for lung cancer, not only revolutionizing second-line therapy but now also approved for first-line treatment. However, its clinical efficiency is not high and not all patients benefit from it. Thus, finding the best combination strategy to expand anti-PD-1/PD-L1-based immunotherapy is now a hot research topic. The conventional use of chemotherapeutic drugs and targeted drugs inevitably leads to resistance, toxic side effects and other problems. Recent research, however, suggests that by adjusting the dosage of drugs and blocking the activation of mutational mechanisms that depend on acquired resistance, it is possible to reduce toxic side effects, activate immune cells, and reshape the immune microenvironment of lung cancer. Here, we discuss the effects of different chemotherapeutic drugs and targeted drugs on the immune microenvironment. We explore the effects of adjusting the dosing sequence and timing, and the mechanisms of such responses, and show how the effectiveness and reliability of combined immunotherapy provide improved treatment outcomes.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Changqi Du
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Bing Jiang
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Lin Chen
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zibing Wang
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Novobrantseva T, Manfra D, Nguyen A, Feldman I. Macrophages - Controlling the Bifurcation Between Tumor Existence or Regression. Adv Biol (Weinh) 2023; 7:e2300047. [PMID: 37083213 DOI: 10.1002/adbi.202300047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Indexed: 04/22/2023]
Abstract
Macrophages are multifunctional cells that are employed by the tumor to further its growth and adaptation. While tumor-associated macrophages (TAMs) have widely diverse phenotypes, tumors coevolve with the ones that can promote tumorigenesis. Functionally, TAMs/myeloid cells constitute the largest negative influence on the tumor microenvironment and need to be reprogrammed in order to enable successful anti-tumor response in most tumors. It is predicted that successful TAM repolarization has the potential to become a staple of immuno-oncology across most indications.
Collapse
Affiliation(s)
| | - Denise Manfra
- Research and Development, Verseau Therapeutics, Newton, MA, 02466, USA
| | - Ani Nguyen
- Research and Development, Verseau Therapeutics, Newton, MA, 02466, USA
| | - Igor Feldman
- Research and Development, Verseau Therapeutics, Newton, MA, 02466, USA
| |
Collapse
|
10
|
Pradeu T, Daignan-Fornier B, Ewald A, Germain PL, Okasha S, Plutynski A, Benzekry S, Bertolaso M, Bissell M, Brown JS, Chin-Yee B, Chin-Yee I, Clevers H, Cognet L, Darrason M, Farge E, Feunteun J, Galon J, Giroux E, Green S, Gross F, Jaulin F, Knight R, Laconi E, Larmonier N, Maley C, Mantovani A, Moreau V, Nassoy P, Rondeau E, Santamaria D, Sawai CM, Seluanov A, Sepich-Poore GD, Sisirak V, Solary E, Yvonnet S, Laplane L. Reuniting philosophy and science to advance cancer research. Biol Rev Camb Philos Soc 2023; 98:1668-1686. [PMID: 37157910 PMCID: PMC10869205 DOI: 10.1111/brv.12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Cancers rely on multiple, heterogeneous processes at different scales, pertaining to many biomedical fields. Therefore, understanding cancer is necessarily an interdisciplinary task that requires placing specialised experimental and clinical research into a broader conceptual, theoretical, and methodological framework. Without such a framework, oncology will collect piecemeal results, with scant dialogue between the different scientific communities studying cancer. We argue that one important way forward in service of a more successful dialogue is through greater integration of applied sciences (experimental and clinical) with conceptual and theoretical approaches, informed by philosophical methods. By way of illustration, we explore six central themes: (i) the role of mutations in cancer; (ii) the clonal evolution of cancer cells; (iii) the relationship between cancer and multicellularity; (iv) the tumour microenvironment; (v) the immune system; and (vi) stem cells. In each case, we examine open questions in the scientific literature through a philosophical methodology and show the benefit of such a synergy for the scientific and medical understanding of cancer.
Collapse
Affiliation(s)
- Thomas Pradeu
- CNRS UMR5164 ImmunoConcEpT, University of Bordeaux, 146 rue Leo Saignat, Bordeaux 33076, France
- CNRS UMR8590, Institut d’Histoire et Philosophie des Sciences et des Technique, University Paris I Panthéon-Sorbonne, 13 rue du Four, Paris 75006, France
| | - Bertrand Daignan-Fornier
- CNRS UMR 5095 Institut de Biochimie et Génétique Cellulaires, University of Bordeaux, 1 rue Camille St Saens, Bordeaux 33077, France
| | - Andrew Ewald
- Departments of Cell Biology and Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Pierre-Luc Germain
- Department of Health Sciences and Technology, Institute for Neurosciences, Eidgenössische Technische Hochschule (ETH) Zürich, Universitätstrasse 2, Zürich 8092, Switzerland
- Department of Molecular Life Sciences, Laboratory of Statistical Bioinformatics, Universität Zürich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Samir Okasha
- Department of Philosophy, University of Bristol, Cotham House, Bristol, BS6 6JL, UK
| | - Anya Plutynski
- Department of Philosophy, Washington University in St. Louis, and Associate with Division of Biology and Biomedical Sciences, St. Louis, MO 63105, USA
| | - Sébastien Benzekry
- Computational Pharmacology and Clinical Oncology (COMPO) Unit, Inria Sophia Antipolis-Méditerranée, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, 27, bd Jean Moulin, Marseille 13005, France
| | - Marta Bertolaso
- Research Unit of Philosophy of Science and Human Development, Università Campus Bio-Medico di Roma, Via Àlvaro del Portillo, 21-00128, Rome, Italy
- Centre for Cancer Biomarkers, University of Bergen, Bergen 5007, Norway
| | - Mina Bissell
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Joel S. Brown
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Benjamin Chin-Yee
- Division of Hematology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, 800 Commissioners Rd E, London, ON, Canada
- Rotman Institute of Philosophy, Western University, 1151 Richmond Street North, London, ON, Canada
| | - Ian Chin-Yee
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, 800 Commissioners Rd E, London, ON, Canada
| | - Hans Clevers
- Pharma, Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Laurent Cognet
- CNRS UMR 5298, Laboratoire Photonique Numérique et Nanosciences, University of Bordeaux, Rue François Mitterrand, Talence 33400, France
| | - Marie Darrason
- Department of Pneumology and Thoracic Oncology, University Hospital of Lyon, 165 Chem. du Grand Revoyet, 69310 Pierre Bénite, Lyon, France
- Lyon Institute of Philosophical Research, Lyon 3 Jean Moulin University, 1 Av. des Frères Lumière, Lyon 69007, France
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumor Development group, Institut Curie, CNRS, UMR168, Inserm, Centre Origines et conditions d’apparition de la vie (OCAV) Paris Sciences Lettres Research University, Sorbonne University, Institut Curie, 11 rue Pierre et Marie Curie, Paris 75005, France
| | - Jean Feunteun
- INSERM U981, Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94800, France
| | - Jérôme Galon
- INSERM UMRS1138, Integrative Cancer Immunology, Cordelier Research Center, Sorbonne Université, Université Paris Cité, 15 rue de l’École de Médecine, Paris 75006, France
| | - Elodie Giroux
- Lyon Institute of Philosophical Research, Lyon 3 Jean Moulin University, 1 Av. des Frères Lumière, Lyon 69007, France
| | - Sara Green
- Section for History and Philosophy of Science, Department of Science Education, University of Copenhagen, Rådmandsgade 64, Copenhagen 2200, Denmark
| | - Fridolin Gross
- CNRS UMR5164 ImmunoConcEpT, University of Bordeaux, 146 rue Leo Saignat, Bordeaux 33076, France
| | - Fanny Jaulin
- INSERM U1279, Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94800, France
| | - Rob Knight
- Department of Bioengineering, University of California San Diego, 3223 Voigt Dr, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Ezio Laconi
- Department of Biomedical Sciences, School of Medicine, University of Cagliari, Via Università 40, Cagliari 09124, Italy
| | - Nicolas Larmonier
- CNRS UMR5164 ImmunoConcEpT, University of Bordeaux, 146 rue Leo Saignat, Bordeaux 33076, France
| | - Carlo Maley
- Arizona Cancer Evolution Center, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85287, USA
- Biodesign Center for Mechanisms of Evolution, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85287, USA
- Center for Evolution and Medicine, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, 4 Via Rita Levi Montalcini, 20090 Pieve Emanuele, Milan, Italy
- Department of Immunology and Inflammation, Istituto Clinico Humanitas Humanitas Cancer Center (IRCCS) Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Violaine Moreau
- INSERM UMR1312, Bordeaux Institute of Oncology (BRIC), University of Bordeaux, 146 Rue Léo Saignat, Bordeaux 33076, France
| | - Pierre Nassoy
- CNRS UMR 5298, Laboratoire Photonique Numérique et Nanosciences, University of Bordeaux, Rue François Mitterrand, Talence 33400, France
| | - Elena Rondeau
- INSERM U1111, ENS Lyon and Centre International de Recherche en Infectionlogie (CIRI), 46 Allée d’Italie, Lyon 69007, France
| | - David Santamaria
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca 37007, Spain
| | - Catherine M. Sawai
- INSERM UMR1312, Bordeaux Institute of Oncology (BRIC), University of Bordeaux, 146 Rue Léo Saignat, Bordeaux 33076, France
| | - Andrei Seluanov
- Department of Biology and Medicine, University of Rochester, Rochester, NY 14627, USA
| | | | - Vanja Sisirak
- CNRS UMR5164 ImmunoConcEpT, University of Bordeaux, 146 rue Leo Saignat, Bordeaux 33076, France
| | - Eric Solary
- INSERM U1287, Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94800, France
- Département d’hématologie, Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94800, France
- Université Paris-Saclay, Faculté de Médecine, 63 Rue Gabriel Péri, Le Kremlin-Bicêtre 94270, France
| | - Sarah Yvonnet
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark
| | - Lucie Laplane
- CNRS UMR8590, Institut d’Histoire et Philosophie des Sciences et des Technique, University Paris I Panthéon-Sorbonne, 13 rue du Four, Paris 75006, France
- INSERM U1287, Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif 94800, France
- Center for Biology and Society, College of Liberal Arts and Sciences, Arizona State University, 1100 S McAllister Ave, Tempe, AZ 85281, USA
| |
Collapse
|
11
|
Jing K, Zhao H, Cai J, Chen L, Zheng P, Ouyang L, Li G, Wang R. The presence of autoantibodies is associated with improved overall survival in lung cancer patients. Front Oncol 2023; 13:1234847. [PMID: 37799460 PMCID: PMC10547871 DOI: 10.3389/fonc.2023.1234847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
Objective Autoantibodies have been reported to be associated with cancers. As a biomarker, autoantibodies have been widely used in the early screening of lung cancer. However, the correlation between autoantibodies and the prognosis of lung cancer patients is poorly understood, especially in the Asian population. This retrospective study investigated the association between the presence of autoantibodies and outcomes in patients with lung cancer. Methods A total of 264 patients diagnosed with lung cancer were tested for autoantibodies in Henan Provincial People's Hospital from January 2017 to June 2022. The general clinical data of these patients were collected, and after screening out those who met the exclusion criteria, 151 patients were finally included in the study. The Cox proportional hazards model was used to analyze the effect of autoantibodies on the outcomes of patients with lung cancer. The Kaplan-Meier curve was used to analyze the relationship between autoantibodies and the overall survival of patients with lung cancer. Results Compared to lung cancer patients without autoantibodies, those with autoantibodies had an associated reduced risk of death (HRs: 0.45, 95% CIs 0.27~0.77), independent of gender, age, smoking history, pathological type, and pathological stage of lung cancer. Additionally, the association was found to be more significant by subgroup analysis in male patients, younger patients, and patients with small cell lung cancer. Furthermore, lung cancer patients with autoantibodies had significantly longer survival time than those without autoantibodies. Conclusion The presence of autoantibodies is an independent indicator of good prognosis in patients with lung cancer, providing a new biomarker for prognostic evaluation in patients with lung cancer.
Collapse
Affiliation(s)
- Keying Jing
- Henan University People's Hospital, Department of Clinical Laboratory, Henan Provincial People’s Hospital, Henan University, Zhengzhou, Henan, China
| | - Huijuan Zhao
- Basic Medical College, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jun Cai
- Henan University People's Hospital, Department of Clinical Laboratory, Henan Provincial People’s Hospital, Henan University, Zhengzhou, Henan, China
| | - Lianlian Chen
- Henan Hospital of Integrated Chinese and Western Medicine, Zhengzhou, Henan, China
| | - Peiming Zheng
- Henan University People's Hospital, Department of Clinical Laboratory, Henan Provincial People’s Hospital, Henan University, Zhengzhou, Henan, China
| | - Libo Ouyang
- Henan University People's Hospital, Department of Clinical Laboratory, Henan Provincial People’s Hospital, Henan University, Zhengzhou, Henan, China
| | - Gang Li
- Henan University People's Hospital, Department of Clinical Laboratory, Henan Provincial People’s Hospital, Henan University, Zhengzhou, Henan, China
| | - Rong Wang
- Henan University People's Hospital, Department of Clinical Laboratory, Henan Provincial People’s Hospital, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Marconato L, Tiraboschi L, Aralla M, Sabattini S, Melacarne A, Agnoli C, Balboni A, Salvi M, Foglia A, Punzi S, Romagnoli N, Rescigno M. A Phase 2, Single-Arm, Open-Label Clinical Trial on Adjuvant Peptide-Based Vaccination in Dogs with Aggressive Hemangiosarcoma Undergoing Surgery and Chemotherapy. Cancers (Basel) 2023; 15:4209. [PMID: 37686485 PMCID: PMC10486958 DOI: 10.3390/cancers15174209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
To test the antitumor effect and safety of peptide-based anticancer vaccination in dogs with hemangiosarcoma undergoing the standard of care (SOC; surgery and doxorubicin), canine hemangiosarcoma cells were infected with Salmonella typhi Ty21a to release immunogenic endoplasmic reticulum stress-related peptides into the extracellular milieu via CX43 hemichannels opening. The infected tumor cell secretome constituted the vaccine. Following the SOC, dogs with biologically aggressive hemangiosarcoma were vaccinated a total of five times, once every 3 weeks, and were followed up with serial imaging. A retrospective population of dogs undergoing the SOC alone served as controls. The primary endpoints were the time to progression (TTP) and overall survival (OS), and the secondary endpoints were toxicity and immune responses. A total of 28 dogs were vaccinated along with the SOC, and 32 received only the SOC. A tumor-specific humoral response along with a vaccine-specific T-cell response was observed. Toxicity did not occur. The TTP and OS were significantly longer in vaccinated versus unvaccinated dogs (TTP: 195 vs. 160 days, respectively; p = 0.001; OS: 276 vs. 175 days, respectively; p = 0.002). One-year survival rates were 35.7% and 6.3% for vaccinated and unvaccinated dogs, respectively. In dogs with hemangiosarcoma undergoing the SOC, the addition of a peptide-based vaccine increased the TTP and OS, while maintaining a safe profile. Moreover, vaccinated dogs developed a tumor-specific response, supporting the feasibility of future phase three studies.
Collapse
Affiliation(s)
- Laura Marconato
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (S.S.); (C.A.); (A.B.); (A.F.); (S.P.); (N.R.)
| | - Luca Tiraboschi
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (L.T.); (A.M.); (M.S.); (M.R.)
| | - Marina Aralla
- Pronto Soccorso Veterinario Laudense, 26900 Lodi, Italy;
| | - Silvia Sabattini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (S.S.); (C.A.); (A.B.); (A.F.); (S.P.); (N.R.)
| | - Alessia Melacarne
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (L.T.); (A.M.); (M.S.); (M.R.)
| | - Chiara Agnoli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (S.S.); (C.A.); (A.B.); (A.F.); (S.P.); (N.R.)
| | - Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (S.S.); (C.A.); (A.B.); (A.F.); (S.P.); (N.R.)
| | - Marta Salvi
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (L.T.); (A.M.); (M.S.); (M.R.)
| | - Armando Foglia
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (S.S.); (C.A.); (A.B.); (A.F.); (S.P.); (N.R.)
| | - Sofia Punzi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (S.S.); (C.A.); (A.B.); (A.F.); (S.P.); (N.R.)
| | - Noemi Romagnoli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (S.S.); (C.A.); (A.B.); (A.F.); (S.P.); (N.R.)
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (L.T.); (A.M.); (M.S.); (M.R.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| |
Collapse
|
13
|
Pontoriero A, Critelli P, Chillari F, Ferrantelli G, Sciacca M, Brogna A, Parisi S, Pergolizzi S. Modulation of Radiation Doses and Chimeric Antigen Receptor T Cells: A Promising New Weapon in Solid Tumors-A Narrative Review. J Pers Med 2023; 13:1261. [PMID: 37623511 PMCID: PMC10455986 DOI: 10.3390/jpm13081261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Tumor behavior is determined by its interaction with the tumor microenvironment (TME). Chimeric antigen receptor (CART) cell therapy represents a new form of cellular immunotherapy (IT). Immune cells present a different sensitivity to radiation therapy (RT). RT can affect tumor cells both modifying the TME and inducing DNA damage, with different effects depending on the low and high doses delivered, and can favor the expression of CART cells. CART cells are patients' T cells genetically engineered to recognize surface structure and to eradicate cancer cells. High-dose radiation therapy (HDRT, >10-20 Gy/fractions) converts immunologically "cold" tumors into "hot" ones by inducing necrosis and massive inflammation and death. LDRT (low-dose radiation therapy, >5-10 Gy/fractions) increases the expansion of CART cells and leads to non-immunogenetic death. An innovative approach, defined as the LATTICE technique, combines a high dose in higher FDG- uptake areas and a low dose to the tumor periphery. The association of RT and immune checkpoint inhibitors increases tumor immunogenicity and immune response both in irradiated and non-irradiated sites. The aim of this narrative review is to clarify the knowledge, to date, on CART cell therapy and its possible association with radiation therapy in solid tumors.
Collapse
Affiliation(s)
- Antonio Pontoriero
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Paola Critelli
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Federico Chillari
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Giacomo Ferrantelli
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Miriam Sciacca
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Anna Brogna
- Radiotherapy Unit, Medical Physics Unit, A.O.U. “G. Martino”, 98125 Messina, Italy;
| | - Silvana Parisi
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Stefano Pergolizzi
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| |
Collapse
|
14
|
Ahmed EH, Lustberg M, Hale C, Sloan S, Mao C, Zhang X, Ozer HG, Schlotter S, Smith PL, Jeney F, Chan WK, Harrington BK, Weigel C, Brooks E, Klimaszewski HL, Oakes CC, Abebe T, Ibrahim ME, Alinari L, Behbehani GK, Shindiapina P, Caligiuri MA, Baiocchi RA. Follicular Helper and Regulatory T Cells Drive the Development of Spontaneous Epstein-Barr Virus Lymphoproliferative Disorder. Cancers (Basel) 2023; 15:3046. [PMID: 37297008 PMCID: PMC10252287 DOI: 10.3390/cancers15113046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous herpes virus associated with various cancers. EBV establishes latency with life-long persistence in memory B-cells and can reactivate lytic infection placing immunocompromised individuals at risk for EBV-driven lymphoproliferative disorders (EBV-LPD). Despite the ubiquity of EBV, only a small percentage of immunocompromised patients (~20%) develop EBV-LPD. Engraftment of immunodeficient mice with peripheral blood mononuclear cells (PBMCs) from healthy EBV-seropositive donors leads to spontaneous, malignant, human B-cell EBV-LPD. Only about 20% of EBV+ donors induce EBV-LPD in 100% of engrafted mice (High-Incidence, HI), while another 20% of donors never generate EBV-LPD (No-Incidence, NI). Here, we report HI donors to have significantly higher basal T follicular helper (Tfh) and regulatory T-cells (Treg), and depletion of these subsets prevents/delays EBV-LPD. Transcriptomic analysis of CD4+ T cells from ex vivo HI donor PBMC revealed amplified cytokine and inflammatory gene signatures. HI vs. NI donors showed a marked reduction in IFNγ production to EBV latent and lytic antigen stimulation. In addition, we observed abundant myeloid-derived suppressor cells in HI donor PBMC that decreased CTL proliferation in co-cultures with autologous EBV+ lymphoblasts. Our findings identify potential biomarkers that may identify individuals at risk for EBV-LPD and suggest possible strategies for prevention.
Collapse
Affiliation(s)
- Elshafa Hassan Ahmed
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (S.S.); (C.M.); (S.S.); (P.L.S.); (F.J.); (W.K.C.); (E.B.); (C.C.O.); (L.A.); (P.S.)
| | - Mark Lustberg
- Division of Infectious Disease, Department of Internal Medicine, Yale University, New Haven, CT 06520, USA;
| | - Claire Hale
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Shelby Sloan
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (S.S.); (C.M.); (S.S.); (P.L.S.); (F.J.); (W.K.C.); (E.B.); (C.C.O.); (L.A.); (P.S.)
| | - Charlene Mao
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (S.S.); (C.M.); (S.S.); (P.L.S.); (F.J.); (W.K.C.); (E.B.); (C.C.O.); (L.A.); (P.S.)
| | - Xiaoli Zhang
- Department of Biomedical Informatics/Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA;
| | - Hatice Gulcin Ozer
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA;
| | - Sarah Schlotter
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (S.S.); (C.M.); (S.S.); (P.L.S.); (F.J.); (W.K.C.); (E.B.); (C.C.O.); (L.A.); (P.S.)
| | - Porsha L. Smith
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (S.S.); (C.M.); (S.S.); (P.L.S.); (F.J.); (W.K.C.); (E.B.); (C.C.O.); (L.A.); (P.S.)
| | - Frankie Jeney
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (S.S.); (C.M.); (S.S.); (P.L.S.); (F.J.); (W.K.C.); (E.B.); (C.C.O.); (L.A.); (P.S.)
| | - Wing Keung Chan
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (S.S.); (C.M.); (S.S.); (P.L.S.); (F.J.); (W.K.C.); (E.B.); (C.C.O.); (L.A.); (P.S.)
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (C.W.); (G.K.B.)
| | - Bonnie K. Harrington
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - Christoph Weigel
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (C.W.); (G.K.B.)
| | - Eric Brooks
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (S.S.); (C.M.); (S.S.); (P.L.S.); (F.J.); (W.K.C.); (E.B.); (C.C.O.); (L.A.); (P.S.)
| | | | - Christopher C. Oakes
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (S.S.); (C.M.); (S.S.); (P.L.S.); (F.J.); (W.K.C.); (E.B.); (C.C.O.); (L.A.); (P.S.)
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA;
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (C.W.); (G.K.B.)
| | - Tamrat Abebe
- Department of Microbiology, Immunology, and Parasitology, School of Medicine Tikur Anbessa Specialized Hospital, College of Health Sciences, Addis Ababa University, Addis Ababa AB1000, Ethiopia;
| | - Muntaser E. Ibrahim
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan;
| | - Lapo Alinari
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (S.S.); (C.M.); (S.S.); (P.L.S.); (F.J.); (W.K.C.); (E.B.); (C.C.O.); (L.A.); (P.S.)
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (C.W.); (G.K.B.)
| | - Gregory K. Behbehani
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (C.W.); (G.K.B.)
| | - Polina Shindiapina
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (S.S.); (C.M.); (S.S.); (P.L.S.); (F.J.); (W.K.C.); (E.B.); (C.C.O.); (L.A.); (P.S.)
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (C.W.); (G.K.B.)
| | | | - Robert A. Baiocchi
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (S.S.); (C.M.); (S.S.); (P.L.S.); (F.J.); (W.K.C.); (E.B.); (C.C.O.); (L.A.); (P.S.)
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (C.W.); (G.K.B.)
| |
Collapse
|
15
|
Ash S, Askenasy N. Immunotherapy for neuroblastoma by hematopoietic cell transplantation and post-transplant immunomodulation. Crit Rev Oncol Hematol 2023; 185:103956. [PMID: 36893946 DOI: 10.1016/j.critrevonc.2023.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/14/2022] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Neuroblastoma represents a relatively common childhood tumor that imposes therapeutic difficulties. High risk neuroblastoma patients have poor prognosis, display limited response to radiochemotherapy and may be treated by hematopoietic cell transplantation. Allogeneic and haploidentical transplants have the distinct advantage of reinstitution of immune surveillance, reinforced by antigenic barriers. The key factors favorable to ignition of potent anti-tumor reactions are transition to adaptive immunity, recovery from lymphopenia and removal of inhibitory signals that inactivate immune cells at the local and systemic levels. Post-transplant immunomodulation may further foster anti-tumor reactivity, with positive but transient impact of infusions of lymphocytes and natural killer cells both from the donor, the recipient or third party. The most promising approaches include introduction of antigen-presenting cells in early post-transplant stages and neutralization of inhibitory signals. Further studies will likely shed light on the nature and actions of suppressor factors within tumor stroma and at the systemic level.
Collapse
Affiliation(s)
- Shifra Ash
- Department of Pediatric Hematology-Oncology, Rambam Medical Center, Haifa, Israel; Frankel Laboratory of Bone Marrow Transplantation, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
| | - Nadir Askenasy
- Frankel Laboratory of Bone Marrow Transplantation, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| |
Collapse
|
16
|
Lahiri A, Maji A, Potdar PD, Singh N, Parikh P, Bisht B, Mukherjee A, Paul MK. Lung cancer immunotherapy: progress, pitfalls, and promises. Mol Cancer 2023; 22:40. [PMID: 36810079 PMCID: PMC9942077 DOI: 10.1186/s12943-023-01740-y] [Citation(s) in RCA: 259] [Impact Index Per Article: 259.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/22/2022] [Indexed: 02/23/2023] Open
Abstract
Lung cancer is the primary cause of mortality in the United States and around the globe. Therapeutic options for lung cancer treatment include surgery, radiation therapy, chemotherapy, and targeted drug therapy. Medical management is often associated with the development of treatment resistance leading to relapse. Immunotherapy is profoundly altering the approach to cancer treatment owing to its tolerable safety profile, sustained therapeutic response due to immunological memory generation, and effectiveness across a broad patient population. Different tumor-specific vaccination strategies are gaining ground in the treatment of lung cancer. Recent advances in adoptive cell therapy (CAR T, TCR, TIL), the associated clinical trials on lung cancer, and associated hurdles are discussed in this review. Recent trials on lung cancer patients (without a targetable oncogenic driver alteration) reveal significant and sustained responses when treated with programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) checkpoint blockade immunotherapies. Accumulating evidence indicates that a loss of effective anti-tumor immunity is associated with lung tumor evolution. Therapeutic cancer vaccines combined with immune checkpoint inhibitors (ICI) can achieve better therapeutic effects. To this end, the present article encompasses a detailed overview of the recent developments in the immunotherapeutic landscape in targeting small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Additionally, the review also explores the implication of nanomedicine in lung cancer immunotherapy as well as the combinatorial application of traditional therapy along with immunotherapy regimens. Finally, ongoing clinical trials, significant obstacles, and the future outlook of this treatment strategy are also highlighted to boost further research in the field.
Collapse
Affiliation(s)
- Aritraa Lahiri
- grid.417960.d0000 0004 0614 7855Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246 India
| | - Avik Maji
- grid.416241.4Department of Radiation Oncology, N. R. S. Medical College & Hospital, 138 A.J.C. Bose Road, Kolkata, 700014 India
| | - Pravin D. Potdar
- grid.414939.20000 0004 1766 8488Department of Molecular Medicine and Stem Cell Biology, Jaslok Hospital and Research Centre, Mumbai, 400026 India
| | - Navneet Singh
- grid.415131.30000 0004 1767 2903Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Purvish Parikh
- Department of Clinical Hematology, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan 302022 India ,grid.410871.b0000 0004 1769 5793Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra 400012 India
| | - Bharti Bisht
- grid.19006.3e0000 0000 9632 6718Division of Thoracic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Anubhab Mukherjee
- Esperer Onco Nutrition Pvt Ltd, 4BA, 4Th Floor, B Wing, Gundecha Onclave, Khairani Road, Sakinaka, Andheri East, Mumbai, Maharashtra, 400072, India.
| | - Manash K. Paul
- grid.19006.3e0000 0000 9632 6718Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA ,grid.411639.80000 0001 0571 5193Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
17
|
Yang Q, Ye H, Sun G, Wang K, Dai L, Qiu C, Shi J, Zhu J, Wang X, Wang P. Human Proteome Microarray identifies autoantibodies to tumor-associated antigens as serological biomarkers for the diagnosis of hepatocellular carcinoma. Mol Oncol 2023; 17:887-900. [PMID: 36587394 PMCID: PMC10158779 DOI: 10.1002/1878-0261.13371] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/14/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023] Open
Abstract
The identification of the high-efficiency and non-invasive biomarkers for hepatocellular carcinoma (HCC) detection is urgently needed. This study aims to screen out potential autoantibodies to tumor-associated antigens (TAAbs) and to assess their diagnostic value for HCC. Fifteen potential TAAbs were screened out from the Human Proteome Microarray by 30 HCC sera and 22 normal control sera, of which eight passed multiple-stage validations by ELISA with a total of 1625 human serum samples from normal controls (NCs) and patients with HCC, liver cirrhosis, chronic hepatitis B, gastric cancer, esophageal cancer, and colorectal cancer. Finally, an immunodiagnostic model including six TAAbs (RAD23A, CAST, RUNX1T1, PAIP1, SARS, PRKCZ) was constructed by logistic regression, and yielded the area under curve (AUC) of 0.835 and 0.788 in training and validation sets, respectively. The serial serum samples from HCC model mice were tested to explore the change in TAAbs during HCC formation, and an increasing level of autoantibodies was observed. In conclusion, the panel of six TAAbs can provide potential value for HCC detection, and the strategy to identify novel serological biomarkers can also provide new clues in understanding immunodiagnostic biomarkers.
Collapse
Affiliation(s)
- Qian Yang
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, China.,Department of Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, China
| | - Hua Ye
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, China.,Department of Epidemiology and Health Statistics and Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, China
| | - Guiying Sun
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, China.,Department of Epidemiology and Health Statistics and Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, China
| | - Keyan Wang
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, China
| | - Liping Dai
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, China
| | - Cuipeng Qiu
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, China.,Department of Epidemiology and Health Statistics and Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, China
| | - Jianxiang Shi
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, China
| | - Jicun Zhu
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, China.,Department of Epidemiology and Health Statistics and Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, China
| | - Xiao Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, China
| | - Peng Wang
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, China.,Department of Epidemiology and Health Statistics and Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, China
| |
Collapse
|
18
|
Asmamaw Dejenie T, Tiruneh G/Medhin M, Dessie Terefe G, Tadele Admasu F, Wale Tesega W, Chekol Abebe E. Current updates on generations, approvals, and clinical trials of CAR T-cell therapy. Hum Vaccin Immunother 2022; 18:2114254. [PMID: 36094837 DOI: 10.1080/21645515.2022.2114254] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a novel, customized immunotherapy that is considered a 'living' and self-replicating drug to treat cancer, sometimes resulting in a complete cure. CAR T-cells are manufactured through genetic engineering of T-cells by equipping them with CARs to detect and target antigen-expressing cancer cells. CAR is designed to have an ectodomain extracellularly, a transmembrane domain spanning the cell membrane, and an endodomain intracellularly. Since its first discovery, the CAR structure has evolved greatly, from the first generation to the fifth generation, to offer new therapeutic alternatives for cancer patients. This treatment has achieved long-term and curative therapeutic efficacy in multiple blood malignancies that nowadays profoundly change the treatment landscape of lymphoma, leukemia, and multiple myeloma. But CART-cell therapy is associated with several hurdles, such as limited therapeutic efficacy, little effect on solid tumors, adverse effects, expensive cost, and feasibility issues, hindering its broader implications.
Collapse
Affiliation(s)
- Tadesse Asmamaw Dejenie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Markeshaw Tiruneh G/Medhin
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Gashaw Dessie Terefe
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Fitalew Tadele Admasu
- Department of Biochemistry, College of Medicine and Health Science Arbaminch University, Arbaminch, Ethiopia
| | - Wondwossen Wale Tesega
- Department of Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Endeshaw Chekol Abebe
- Department of Biochemistry, College of Medicine and Health Science Arbaminch University, Arbaminch, Ethiopia
| |
Collapse
|
19
|
Thudium K, Selby M, Zorn JA, Rak G, Wang XT, Bunch RT, Hogan JM, Strop P, Korman AJ. Preclinical Characterization of Relatlimab, a Human LAG-3-Blocking Antibody, Alone or in Combination with Nivolumab. Cancer Immunol Res 2022; 10:1175-1189. [PMID: 35981087 PMCID: PMC9530649 DOI: 10.1158/2326-6066.cir-22-0057] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/25/2022] [Accepted: 08/15/2022] [Indexed: 01/07/2023]
Abstract
Novel therapeutic approaches combining immune-checkpoint inhibitors are needed to improve clinical outcomes for patients with cancer. Lymphocyte-activation gene 3 (LAG-3) is an immune-checkpoint molecule that inhibits T-cell activity and antitumor immune responses, acting through an independent mechanism from that of programmed death-1 (PD-1) and cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4). Here, we describe the development and preclinical characterization of relatlimab, a human antibody that binds to human LAG-3 with high affinity and specificity to block the interaction of LAG-3 with the ligands MHC II and fibrinogen-like protein-1, and to reverse LAG-3-mediated inhibition of T-cell function in vitro. Consistent with previous reports, in mouse models, the combined blockade of LAG-3 and PD-1 with surrogate antibodies resulted in enhanced antitumor activity greater than the individual blockade of either receptor. In toxicity studies in cynomolgus monkeys, relatlimab was generally well tolerated when combined with nivolumab. These results are consistent with findings from the RELATIVITY-047 phase II/III trial showing that relatlimab combined with nivolumab is a well-tolerated regimen that demonstrates superior progression-free survival compared with nivolumab monotherapy in patients with unresectable or metastatic melanoma.
Collapse
Affiliation(s)
| | - Mark Selby
- Walking Fish Therapeutics Inc, South San Francisco, California
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Cytokine chemokine network in tumor microenvironment: Impact on CSC properties and therapeutic applications. Cytokine 2022; 156:155916. [DOI: 10.1016/j.cyto.2022.155916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
|
21
|
Ping W, Hong S, Xun Y, Li C. Comprehensive Bioinformatics Analysis of Toll-Like Receptors (TLRs) in Pan-Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4436646. [PMID: 35937402 PMCID: PMC9352480 DOI: 10.1155/2022/4436646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
Background To conduct a comprehensive bioinformatics analysis on the transcriptome signatures of Toll-like receptors (TLRs) in pan-cancer. Materials and methods. A total of 11,057 tissues consisting of 33 types of carcinoma in The Cancer Genome Atlas (TCGA) were retrieved, and then we further explored the correlation between TLRs' expression with tumorigenesis, immune infiltration, and drug sensitivity. We conducted a comprehensive bioinformatics analysis on TLR1 to 10 in pan-cancer, including differential expression analysis between normal and tumor tissues, differential immune subtype correlation, survival analysis, tumor immune infiltration estimating, stemness indices correlation, and drug responses correlation. Results TLR2 was highly expressed in most types of tumors. TLR9 was hardly expressed compared to other TLR genes, which lead to TLR9 showing less correlation with both immune-estimate scores and stromal-estimate scores. All the TLRs were related with immune subtype of tumor samples that all of them were differentially expressed in differential immune subtype samples. The expression of TLRs was positively related with immune-estimate scores and stromal-estimate scores in almost all types of tumor. The expression of TLRs was negatively correlated with mRNA expression-based stemness scores (RNAss) in nearly almost type of tumors except kidney renal clear cell carcinoma (KIRC) and also negatively correlated with DNA methylation-based stemness scores (DNAss) in many types of tumors except adrenocortical carcinoma (ACC), cholangiocarcinoma (CHOL), KIRC, acute myeloid leukemia (LAML), low-grade glioma (LGG), testicular germ cell tumors (TGCT), thyroid carcinoma (THCA), thymoma (THYM), and uveal melanoma (UVM). The expression of TLR9 was significantly positively correlated with the drug sensitivity of fluphenazine, alectinib, carmustine, and 7-hydroxystaurosporine. TLR7 was significantly positively correlated with the drug sensitivity of alectinib. Conclusions Our study reveals the significant role of TLRs family in pan-cancer and provides potential therapeutic strategies of cancer.
Collapse
Affiliation(s)
- Wei Ping
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Senyuan Hong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Cong Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| |
Collapse
|
22
|
Reticker-Flynn NE, Zhang W, Belk JA, Basto PA, Escalante NK, Pilarowski GOW, Bejnood A, Martins MM, Kenkel JA, Linde IL, Bagchi S, Yuan R, Chang S, Spitzer MH, Carmi Y, Cheng J, Tolentino LL, Choi O, Wu N, Kong CS, Gentles AJ, Sunwoo JB, Satpathy AT, Plevritis SK, Engleman EG. Lymph node colonization induces tumor-immune tolerance to promote distant metastasis. Cell 2022; 185:1924-1942.e23. [PMID: 35525247 PMCID: PMC9149144 DOI: 10.1016/j.cell.2022.04.019] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/31/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
For many solid malignancies, lymph node (LN) involvement represents a harbinger of distant metastatic disease and, therefore, an important prognostic factor. Beyond its utility as a biomarker, whether and how LN metastasis plays an active role in shaping distant metastasis remains an open question. Here, we develop a syngeneic melanoma mouse model of LN metastasis to investigate how tumors spread to LNs and whether LN colonization influences metastasis to distant tissues. We show that an epigenetically instilled tumor-intrinsic interferon response program confers enhanced LN metastatic potential by enabling the evasion of NK cells and promoting LN colonization. LN metastases resist T cell-mediated cytotoxicity, induce antigen-specific regulatory T cells, and generate tumor-specific immune tolerance that subsequently facilitates distant tumor colonization. These effects extend to human cancers and other murine cancer models, implicating a conserved systemic mechanism by which malignancies spread to distant organs.
Collapse
Affiliation(s)
| | - Weiruo Zhang
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Julia A Belk
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Pamela A Basto
- Division of Oncology, Department of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | | | | | - Alborz Bejnood
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Maria M Martins
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Justin A Kenkel
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Ian L Linde
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Sreya Bagchi
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Robert Yuan
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Serena Chang
- Institute for Immunity, Transplantation, and Infection Operations, Stanford University, Palo Alto, CA 94305, USA; Department of Otolaryngology-Head & Neck Surgery, Stanford University, Palo Alto, CA 94305, USA
| | - Matthew H Spitzer
- Department of Microbiology and Immunology and Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Yaron Carmi
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jiahan Cheng
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lorna L Tolentino
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Okmi Choi
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Nancy Wu
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Christina S Kong
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University, Palo Alto, CA 94305, USA
| | - Andrew J Gentles
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - John B Sunwoo
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, Palo Alto, CA 94305, USA; Stanford Cancer Institute, Stanford University, Palo Alto, CA 94305, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University, Palo Alto, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Sylvia K Plevritis
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Department of Radiology, Stanford University, Palo Alto, CA 94305, USA
| | - Edgar G Engleman
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University, Palo Alto, CA 94305, USA.
| |
Collapse
|
23
|
Dhas N, García MC, Kudarha R, Pandey A, Nikam AN, Gopalan D, Fernandes G, Soman S, Kulkarni S, Seetharam RN, Tiwari R, Wairkar S, Pardeshi C, Mutalik S. Advancements in cell membrane camouflaged nanoparticles: A bioinspired platform for cancer therapy. J Control Release 2022; 346:71-97. [PMID: 35439581 DOI: 10.1016/j.jconrel.2022.04.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022]
Abstract
The idea of employing natural cell membranes as a coating medium for nanoparticles (NPs) endows man-made vectors with natural capabilities and benefits. In addition to retaining the physicochemical characteristics of the NPs, the biomimetic NPs also have the functionality of source cell membranes. It has emerged as a promising approach to enhancing the properties of NPs for drug delivery, immune evasion, imaging, cancer-targeting, and phototherapy sensitivity. Several studies have been reported with a multitude of approaches to reengineering the surface of NPs using biological membranes. Owing to their low immunogenicity and intriguing biomimetic properties, cell-membrane-based biohybrid delivery systems have recently gained a lot of interest as therapeutic delivery systems. This review summarises different kinds of biomimetic NPs reported so far, their fabrication aspects, and their application in the biomedical field. Finally, it briefs on the latest advances available in this biohybrid concept.
Collapse
Affiliation(s)
- Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Mónica C García
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Ritu Kudarha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Divya Gopalan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Gasper Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchi Tiwari
- Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh 209305, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, 400056, India
| | - Chandrakantsing Pardeshi
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
24
|
Zhu L, Zhong Y, Wu S, Yan M, Cao Y, Mou N, Wang G, Sun D, Wu W. Cell membrane camouflaged biomimetic nanoparticles: Focusing on tumor theranostics. Mater Today Bio 2022; 14:100228. [PMID: 35265826 PMCID: PMC8898969 DOI: 10.1016/j.mtbio.2022.100228] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022] Open
Abstract
Nanoparticles (NPs) modified by cell membranes represent an emerging biomimetic platform that can mimic the innate biological functions resulting from the various cell membranes in biological systems. researchers focus on constructing the cell membrane camouflaged NPs using a wide variety of cells, such as red blood cell membranes (RBC), macrophages and cancer cells. Cell membrane camouflaged NPs (CMNPs) inherit the composition of cell membranes, including specific receptors, antigens, proteins, for target delivering to the tumor, escaping immune from clearance, and prolonging the blood circulation time, etc. Combining cell membrane-derived biological functions and the NP cores acted cargo carriers to encapsulate the imaging agents, CMNPs are widely developed to apply in tumor imaging techniques, including computed tomography (CT), magnetic resonance imaging (MRI), fluorescence imaging (FL) and photoacoustic imaging (PA). Herein, in this review, we systematically summarize the superior functions of various CMNPs in tumor imaging, especially highlighting the advanced applications in different imaging techniques, which is to provide the theoretical supports for the development of precise guided imaging and tumor treatment.
Collapse
Affiliation(s)
- Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Shuai Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Meng Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yu Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Nianlian Mou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Da Sun
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
25
|
Autoantibody to GNAS in Early Detection of Hepatocellular Carcinoma: A Large-Scale Sample Study Combined with Verification in Serial Sera from HCC Patients. Biomedicines 2022; 10:biomedicines10010097. [PMID: 35052777 PMCID: PMC8773227 DOI: 10.3390/biomedicines10010097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to explore the value of autoantibody to GNAS in the early detection of hepatocellular carcinoma (HCC). In a large-scale sample set of 912 participants (228 cases in each of HCC, liver cirrhosis (LC), chronic hepatitis B (CHB), and normal controls (NCs) groups), autoantibody to GNAS was detected with a positive result in 47.8% of HCC patients, which was significantly higher than that in patients with LC (35.1%), CHB (19.7%), and NCs (19.7%). Further analysis showed that the frequency of autoantibody to GNAS started increasing in compensated cirrhosis patients (37.0%) with a jump in decompensated cirrhosis patients (53.2%) and reached a peak in early HCC patients (62.4%). The increasing autoantibody response to GNAS in patients at different stages was closely associated with the progression of chronic liver lesions. The result from 44 human serial sera demonstrated that 5 of 11 (45.5%) HCC patients had elevated autoantibody to GNAS before and/or at diagnosis of HCC. Moreover, 46.1% and 62.4% of high positive rates in alpha-fetoprotein (AFP) negative and early-stage HCC patients can supplement AFP in early detection of HCC. These findings suggest that autoantibody to GNAS could be used as a potential biomarker for the early detection of HCC.
Collapse
|
26
|
Lamplugh Z, Fan Y. Vascular Microenvironment, Tumor Immunity and Immunotherapy. Front Immunol 2021; 12:811485. [PMID: 34987525 PMCID: PMC8720970 DOI: 10.3389/fimmu.2021.811485] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Immunotherapy holds great promise for treating cancer. Nonetheless, T cell-based immunotherapy of solid tumors has remained challenging, largely due to the lack of universal tumor-specific antigens and an immunosuppressive tumor microenvironment (TME) that inhibits lymphocyte infiltration and activation. Aberrant vascularity characterizes malignant solid tumors, which fuels the formation of an immune-hostile microenvironment and induces tumor resistance to immunotherapy, emerging as a crucial target for adjuvant treatment in cancer immunotherapy. In this review, we discuss the molecular and cellular basis of vascular microenvironment-mediated tumor evasion of immune responses and resistance to immunotherapy, with a focus on vessel abnormality, dysfunctional adhesion, immunosuppressive niche, and microenvironmental stress in tumor vasculature. We provide an overview of opportunities and challenges related to these mechanisms. We also propose genetic programming of tumor endothelial cells as an alternative approach to recondition the vascular microenvironment and to overcome tumor resistance to immunotherapy.
Collapse
Affiliation(s)
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
27
|
Pan H, Zheng M, Ma A, Liu L, Cai L. Cell/Bacteria-Based Bioactive Materials for Cancer Immune Modulation and Precision Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100241. [PMID: 34121236 DOI: 10.1002/adma.202100241] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Numerous clinical trials for cancer precision medicine research are limited due to the drug resistance, side effects, and low efficacy. Unsatisfactory outcomes are often caused by complex physiologic barriers and abnormal immune events in tumors, such as tumor target alterations and immunosuppression. Cell/bacteria-derived materials with unique bioactive properties have emerged as attractive tools for personalized therapy in cancer. Naturally derived bioactive materials, such as cell and bacterial therapeutic agents with native tropism or good biocompatibility, can precisely target tumors and effectively modulate immune microenvironments to inhibit tumors. Here, the recent advances in the development of cell/bacteria-based bioactive materials for immune modulation and precision therapy in cancer are summarized. Cell/bacterial constituents, including cell membranes, bacterial vesicles, and other active substances have inherited their unique targeting properties and antitumor capabilities. Strategies for engineering living cell/bacteria to overcome complex biological barriers and immunosuppression to promote antitumor efficacy are also summarized. Moreover, past and ongoing trials involving personalized bioactive materials and promising agents such as cell/bacteria-based micro/nano-biorobotics are further discussed, which may become another powerful tool for treatment in the near future.
Collapse
Affiliation(s)
- Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518112, P. R. China
| | - Aiqing Ma
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lanlan Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
28
|
Jiang G, Wang H, Huang D, Wu Y, Ding W, Zhou Q, Ding Q, Zhang N, Na R, Xu K. The Clinical Implications and Molecular Mechanism of CX3CL1 Expression in Urothelial Bladder Cancer. Front Oncol 2021; 11:752860. [PMID: 34671562 PMCID: PMC8521074 DOI: 10.3389/fonc.2021.752860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023] Open
Abstract
Background CX3CL1 is a chemokine that may play important roles in cancer immune regulation. Its mechanism in bladder cancer (BCa) is poorly understood. The objective of the current study was to evaluate the association between CX3CL1 and BCa and the related biological mechanisms. Methods A total of 277 patients with BCa were enrolled in the present study. The association between CX3CL1 expression and disease outcome was evaluated. In vitro and in vivo experiments were performed using the TCCSUP cell line to investigate the function of CX3CL1 in BCa. Results Compared with low expression, high expression of CX3CL1 was significantly associated with poorer progression-free survival (hazard ratio [HR]=2.03, 95% confidence interval [95% CI]: 1.26-3.27, P=0.006), cancer-specific survival (HR=2.16, 95% CI: 1.59-2.93, P<0.001), and overall survival (HR=1.55, 95% CI: 1.08-2.24, P=0.039). Multivariable Cox regression analysis suggested that CX3CL1 was an independent prognostic factor for BCa outcomes. In vitro and in vivo experiments indicated that high expression of CX3CL1 was significantly associated with cell proliferation (P<0.001) and invasion (P<0.001). Gene expression profiling results showed that after CX3CL1 knockdown, CDH1 was significantly upregulated, while ETS1, RAF1, and EIF4E were significantly downregulated. Pathway enrichment analysis suggested that the ERK/MAPK signaling pathway was significantly inhibited (P<0.001). Conclusions CX3CL1 is an independent predictor of a poor prognosis in BCa and can promote the proliferation and invasion of BCa cells.
Collapse
Affiliation(s)
- Guangliang Jiang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Da Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yishuo Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weihong Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qidong Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ning Zhang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Na
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Delmas D, Hermetet F, Aires V. PD-1/PD-L1 Checkpoints and Resveratrol: A Controversial New Way for a Therapeutic Strategy. Cancers (Basel) 2021; 13:cancers13184509. [PMID: 34572736 PMCID: PMC8467857 DOI: 10.3390/cancers13184509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Over the last decade, immunotherapies using antibodies targeting the programmed cell death 1 (PD-1) checkpoint or its ligand, programmed death ligand 1 (PD-L1), have emerged as promising therapeutic strategies against cancer. However, some current limitations include a relatively low rate of “responders”, the high cost of the treatment, and a rare risk of hyper-progression. Currently, the main challenge is, therefore, to improve these therapies, for instance, by using combined approaches. Here, we summarize the accumulating evidence that resveratrol (RSV) plays a role in the modulation of the PD-1/PD-L1 axis in cancer cells, suggesting the potential of therapeutic strategies combining RSV with PD-L1 or anti-PD-1 inhibitors. We then discuss the therapeutic potential of polyphenols such as RSV to be used in combination with PD-L1 or PD-1 inhibitors for the management of cancer patients. Abstract Immune checkpoints refer to a range of immunoregulatory molecules that modulate the immune response. For example, proteins expressed at the surface of T-cells (including PD-1 and CTLA-4) and their ligands (PD-L1 and B7-1/B7-2, respectively), expressed by cancer cells and antigen-presenting cells, are needed to prevent excessive immune responses. However, they dampen anti-tumor immunity by limiting T-cell activity, making them promising therapeutic targets in cancer. Although immunotherapies using checkpoint blocking/neutralizing antibodies targeting PD-L1 or PD-1 have proven their superiority over conventional chemotherapies or targeted therapies by enhancing T-cell-mediated anti-tumor immunity, some limitations have emerged. These include a relatively low rate of “responders” (<50%; irrespective of cancer type), the high cost of injections, and a rare risk of hyper-progression. For clinicians, the current challenge is thus to improve the existing therapies, potentially through combinatory approaches. Polyphenols such as resveratrol (RSV), a trihydroxystilbene found in various plants and an adjuvant in numerous nutraceuticals, have been proposed as potential therapeutic targets. Beyond its well-known pleiotropic effects, RSV affects PD-L1 and PD-1 expression as well as PD-L1 subcellular localization and post-translational modifications, which we review here. We also summarize the consequences of PD-1/PD-L1 signaling, the modalities of their blockade in the context of cancer, and the current status and limitations of these immunotherapies. Finally, we discuss their potential use in combination with chemotherapies, and, using RSV as a model, we propose polyphenols as adjuvants to enhance the efficacy of anti-PD-1/anti-PD-L1 immunotherapies.
Collapse
Affiliation(s)
- Dominique Delmas
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France;
- Bioactive Molecules and Health Research Group, Institut National de la Santé et de la Recherche Médicale (INSERM) Research Center U1231—Cancer and Adaptive Immune Response Team, F-21000 Dijon, France
- Centre Anticancéreux Georges François Leclerc Center, F-21000 Dijon, France
- Correspondence: ; Tel.: +33-380-39-32-26
| | - François Hermetet
- Cancer Campus Gustave Roussy, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1287, “Hematopoietic Stem Cells and the Development of Myeloid Malignancies” Team, Université Paris-Saclay, Gustave Roussy, F-94805 Villejuif, France;
| | - Virginie Aires
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France;
- Bioactive Molecules and Health Research Group, Institut National de la Santé et de la Recherche Médicale (INSERM) Research Center U1231—Cancer and Adaptive Immune Response Team, F-21000 Dijon, France
| |
Collapse
|
30
|
Cai Z, Teng Y, Chen Y. The Effect of Shenyi Capsule on Non-Small-Cell Lung Cancer Combined with Chemotherapy from the Yin-Yang Perspective. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:1653750. [PMID: 34512772 PMCID: PMC8426066 DOI: 10.1155/2021/1653750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/26/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022]
Abstract
As an example of Shenyi capsule on non-small-cell lung cancer combined with chemotherapy, this review discusses the synergistic effect and mechanism of natural drugs in oncotherapy from the yin-yang perspective in ancient Chinese philosophy, so as to reflect the therapeutic principle of natural drugs for tumor more comprehensively. The major focuses of this review are on the philosophical thinking of yin-yang as a tool which can not only explain the effect of Shenyi capsule in NSCLC combined with chemotherapy but also explore the mechanism of Shenyi capsule at the cellular and molecular level. Learning from the "yin-yang" thinking of ancient Chinese philosophy will bring more enlightenment to the research and development of traditional Chinese drugs in the future.
Collapse
Affiliation(s)
- Zhixing Cai
- Department of T.C.M, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China
| | - Yue Teng
- Outpatient Department of Clinic Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai 200437, China
| | - Yue Chen
- Department of T.C.M, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China
| |
Collapse
|
31
|
Qin F, Xia F, Chen H, Cui B, Feng Y, Zhang P, Chen J, Luo M. A Guide to Nucleic Acid Vaccines in the Prevention and Treatment of Infectious Diseases and Cancers: From Basic Principles to Current Applications. Front Cell Dev Biol 2021; 9:633776. [PMID: 34113610 PMCID: PMC8185206 DOI: 10.3389/fcell.2021.633776] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/17/2021] [Indexed: 02/05/2023] Open
Abstract
Faced with the challenges posed by infectious diseases and cancer, nucleic acid vaccines present excellent prospects in clinical applications. Compared with traditional vaccines, nucleic acid vaccines have the characteristics of high efficiency and low cost. Therefore, nucleic acid vaccines have potential advantages in disease prevention and treatment. However, the low immunogenicity and instability of nucleic acid vaccines have limited their development. Therefore, a large number of studies have been conducted to improve their immunogenicity and stability by improving delivery methods, thereby supporting progress and development for clinical applications. This article mainly reviews the advantages, disadvantages, mechanisms, delivery methods, and clinical applications of nucleic acid vaccines.
Collapse
Affiliation(s)
- Furong Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hongli Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bomiao Cui
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Xiong D, Zhang Z, Wang T, Wang X. A comparative study of multiple instance learning methods for cancer detection using T-cell receptor sequences. Comput Struct Biotechnol J 2021; 19:3255-3268. [PMID: 34141144 PMCID: PMC8192570 DOI: 10.1016/j.csbj.2021.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 11/02/2022] Open
Abstract
As a branch of machine learning, multiple instance learning (MIL) learns from a collection of labeled bags, each containing a set of instances. The learning process is weakly supervised due to ambiguous instance labels. Since its emergence, MIL has been applied to solve various problems including content-based image retrieval, object tracking/detection, and computer-aided diagnosis. In biomedical research, the use of MIL has been focused on medical image analysis and molecule activity prediction. We review and apply 16 methods to investigate the applicability of MIL to a novel biomedical application, cancer detection using T-cell receptor (TCR) sequences. This important application can be a viable approach for large-scale cancer screening, as TCRs can be easily profiled from a subject's peripheral blood. We consider two feasible data-generating mechanisms, and for the purpose of performance evaluation, we simulate data under each mechanism, where we vary potentially important factors to mimic realistic situations. We also apply the methods to sequencing data of ten cancer types from The Cancer Genome Atlas, as an early proof of concept for distinguishing tumor patients from healthy individuals via TCR sequencing of peripheral blood. We find that given an appropriate MIL method is used, satisfactory performance with Area Under the Receiver Operating Characteristic Curve above 80% can be achieved for five in the ten cancers. Based on our numerical results, we make suggestions about selection of a proper method and avoidance of any method with poor performance. We further point out directions of future research as well as identify a pressing need of new MIL methodologies for improved performance (for some cancer types) and more explainable outcomes.
Collapse
Affiliation(s)
- Danyi Xiong
- Department of Statistical Science, Southern Methodist University, 3225 Daniel Avenue, Dallas 75275, TX, USA
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas 75390, TX, USA
| | - Ze Zhang
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas 75390, TX, USA
| | - Tao Wang
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas 75390, TX, USA
| | - Xinlei Wang
- Department of Statistical Science, Southern Methodist University, 3225 Daniel Avenue, Dallas 75275, TX, USA
| |
Collapse
|
33
|
Bazzazi H, Shahraz A. A mechanistic systems pharmacology modeling platform to investigate the effect of PD-L1 expression heterogeneity and dynamics on the efficacy of PD-1 and PD-L1 blocking antibodies in cancer. J Theor Biol 2021; 522:110697. [PMID: 33794288 DOI: 10.1016/j.jtbi.2021.110697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/14/2020] [Accepted: 03/22/2021] [Indexed: 11/19/2022]
Abstract
Tumors have developed multitude of ways to evade immune response and suppress cytotoxic T cells. Programed cell death protein 1 (PD-1) and programed cell death ligand 1 (PD-L1) are immune checkpoints that when activated, rapidly inactivate the cytolytic activity of T cells. Expression heterogeneity of PD-L1 and the surface receptor dynamics of both PD-1 and PD-L1 may be important parameters in modulating the immune response. PD-L1 is expressed on both tumor and non-tumor immune cells and this differential expression reflects different aspects of anti-tumor immunity. Here, we developed a mechanistic computational model to investigate the role of PD-1 and PD-L1 dynamics in modulating the efficacy of PD-1 and PD-L1 blocking antibodies. Our model incorporates immunological synapse restricted interaction of PD-1 and PD-L1, basal parameters for receptor dynamics, and T cell interaction with tumor and non-tumor immune cells. Simulations predict the existence of a threshold in PD-1 expression above which there is no efficacy for both anti-PD-1 and anti-PD-L1. Model also predicts that anti-tumor response is more sensitive to PD-L1 expression on non-tumor immune cells than tumor cells. New combination strategies are suggested that may enhance efficacy in resistant cases such as combining anti-PD-1 with a low dose of anti-PD-L1 or with inhibitors of PD-L1 recycling and synthesis. Another combination strategy suggested by the model is the combination of anti-PD-1 and anti-PD-L1 with enhancers of PD-L1 degradation rate. Virtual patients are then generated to test specific biomarkers of response. Intriguing predictions that emerge from the virtual patient simulations are that PD-1 blocking antibody results in higher response rate than PD-L1 blockade and that PD-L1 expression density on non-tumor immune cells rather than tumor cells is a predictor of response.
Collapse
Affiliation(s)
- Hojjat Bazzazi
- Millenium Pharmaceuticals, a wholly-owned subsidiary of Takeda Pharmaceuticals, Cambridge, MA, United States.
| | - Azar Shahraz
- Simulations Plus Inc., Lancaster, CA, United States
| |
Collapse
|
34
|
Desai R, Coxon AT, Dunn GP. Therapeutic applications of the cancer immunoediting hypothesis. Semin Cancer Biol 2021; 78:63-77. [PMID: 33711414 DOI: 10.1016/j.semcancer.2021.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Since the late 19th century, the immune system has increasingly garnered interest as a novel avenue for cancer therapy, particularly given scientific breakthroughs in recent decades delineating the fundamental role of the immune system in tumorigenesis. The immunoediting hypothesis has articulated this role, describing three phases of the tumor-immune system interaction: Elimination, Equilibrium, and Escape wherein tumors progress from active immunologic surveillance and destruction through dynamic immunologic stasis to unfettered growth. The primary goals of immunotherapy are to restrict and revert progression through these phases, thereby improving the immune system's ability to control tumor growth. In this review, we detail the development and foundation of the cancer immunoediting hypothesis and apply this hypothesis to the dynamic immunotherapy field that includes checkpoint blockade, vaccine therapy, and adoptive cell transfer.
Collapse
Affiliation(s)
- Rupen Desai
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew T Coxon
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Gavin P Dunn
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
35
|
Shukla A, Cloutier M, Appiya Santharam M, Ramanathan S, Ilangumaran S. The MHC Class-I Transactivator NLRC5: Implications to Cancer Immunology and Potential Applications to Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22041964. [PMID: 33671123 PMCID: PMC7922096 DOI: 10.3390/ijms22041964] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
The immune system constantly monitors the emergence of cancerous cells and eliminates them. CD8+ cytotoxic T lymphocytes (CTLs), which kill tumor cells and provide antitumor immunity, select their targets by recognizing tumor antigenic peptides presented by MHC class-I (MHC-I) molecules. Cancer cells circumvent immune surveillance using diverse strategies. A key mechanism of cancer immune evasion is downregulation of MHC-I and key proteins of the antigen processing and presentation machinery (APM). Even though impaired MHC-I expression in cancers is well-known, reversing the MHC-I defects remains the least advanced area of tumor immunology. The discoveries that NLRC5 is the key transcriptional activator of MHC-I and APM genes, and genetic lesions and epigenetic modifications of NLRC5 are the most common cause of MHC-I defects in cancers, have raised the hopes for restoring MHC-I expression. Here, we provide an overview of cancer immunity mediated by CD8+ T cells and the functions of NLRC5 in MHC-I antigen presentation pathways. We describe the impressive advances made in understanding the regulation of NLRC5 expression, the data supporting the antitumor functions of NLRC5 and a few reports that argue for a pro-tumorigenic role. Finally, we explore the possible avenues of exploiting NLRC5 for cancer immunotherapy.
Collapse
Affiliation(s)
- Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Madanraj Appiya Santharam
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
- Correspondence: ; Tel.: +1-819-346-1110 (ext. 14834)
| |
Collapse
|
36
|
Standiford TJ, Keshamouni VG. Breaking the tolerance for tumor: Targeting negative regulators of TLR signaling. Oncoimmunology 2021; 1:340-345. [PMID: 22737610 PMCID: PMC3382869 DOI: 10.4161/onci.18434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tumors arise and progress in immunocompetent hosts presumably by activating tolerance mechanisms critical for normal homeostasis. Host immune cells can mount anti-tumor responses by activation of Toll-like receptors (TLRs). However, emerging data suggests that molecules that negatively regulate TLRs are exploited by tumors to induce tolerance and mitigate the host immunosurveillance. Targeting these negative regulators can be a potential new immunotherapeutic strategy.
Collapse
Affiliation(s)
- Theodore J Standiford
- Division of Pulmonary and Critical Care Medicine; Department of Internal Medicine; University of Michigan Medical Center; Ann Arbor, MI USA
| | | |
Collapse
|
37
|
Yang Y, Guo X, Hu B, He P, Jiang X, Wang Z, Zhu H, Hu L, Yu M, Feng M. Generated SecPen_NY-ESO-1_ubiquitin-pulsed dendritic cell cancer vaccine elicits stronger and specific T cell immune responses. Acta Pharm Sin B 2021; 11:476-487. [PMID: 33643825 PMCID: PMC7893120 DOI: 10.1016/j.apsb.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Dendritic cell-based cancer vaccines (DC vaccines) have been proved efficient and safe in immunotherapy of various cancers, including melanoma, ovarian and prostate cancer. However, the clinical responses were not always satisfied. Here we proposed a novel strategy to prepare DC vaccines. In the present study, a fusion protein SNU containing a secretin-penetratin (SecPen) peptide, NY-ESO-1 and ubiquitin was designed and expressed. To establish the DC vaccine (DC-SNU), the mouse bone marrow-derived DCs (BMDCs) were isolated, pulsed with SNU and maturated with cytokine cocktail. Then peripheral blood mononuclear cells (PBMCs) from C57BL/6 mice inoculated intraperitoneally with DC-SNU were separated and cocultured with MC38/MC38NY-ESO-1 tumor cells or DC vaccines. The results show that SNU was successfully expressed. This strategy made NY-ESO-1 entering cytoplasm of BMDCs more efficiently and degraded mainly by proteasome. As we expected, mature BMDCs expressed higher CD40, CD80 and CD86 than immature BMDCs. Thus, the PBMCs released more IFN-γ and TNF-α when stimulated with DC-SNU in vitro again. What's more, the PBMCs induced stronger and specific cytotoxicity towards MC38NY-ESO-1 tumor cells. Given the above, it demonstrated that DC-SNU loaded with SecPen and ubiquitin-fused NY-ESO-1 could elicit stronger and specific T cell immune responses. This strategy can be used as a platform for DC vaccine preparation and applied to various cancers treatment.
Collapse
Affiliation(s)
- Yunkai Yang
- Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiaohan Guo
- Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Bo Hu
- Shanghai Novoprotein Biotechnology Co., Ltd., Shanghai 201203, China
| | - Peng He
- Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiaowu Jiang
- Medical School of Yichun University, Yichun 336000, China
| | - Zuohuan Wang
- Clinical Research Center, 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou 310009, China
| | - Huaxing Zhu
- Shanghai Novoprotein Biotechnology Co., Ltd., Shanghai 201203, China
| | - Lina Hu
- Department of Oncology, Shanghai Pudong Hospital, Fudan University Pudong Medicine Center, Shanghai 201399, China
- Corresponding authors. Tel.: +86 21 51980035 (Meiqing Feng); +86 21 68035322 (Minghua Yu); +86 21 68035322 (Lina Hu).
| | - Minghua Yu
- Department of Oncology, Shanghai Pudong Hospital, Fudan University Pudong Medicine Center, Shanghai 201399, China
- Corresponding authors. Tel.: +86 21 51980035 (Meiqing Feng); +86 21 68035322 (Minghua Yu); +86 21 68035322 (Lina Hu).
| | - Meiqing Feng
- Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Corresponding authors. Tel.: +86 21 51980035 (Meiqing Feng); +86 21 68035322 (Minghua Yu); +86 21 68035322 (Lina Hu).
| |
Collapse
|
38
|
Bos R, Marquardt KL, Cheung J, Sherman LA. Functional differences between low- and high-affinity CD8(+) T cells in the tumor environment. Oncoimmunology 2021; 1:1239-1247. [PMID: 23243587 PMCID: PMC3518496 DOI: 10.4161/onci.21285] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Weak T-cell antigen receptor (TCR)-ligand interactions are sufficient to activate naïve CD8(+) T cells, but generally do not result in tumor eradication. How differences in TCR affinity affect the regulation of T-cell function in an immunosuppressive tumor environment has not been investigated. We have examined the functional differences of high- vs. low-affinity CD8(+) T cells and we observed that infiltration, accumulation, survival and cytotoxicity within the tumor are severely impacted by the strength of TCR-ligand interactions. In addition, high-affinity CD8(+) T cells were found to exhibit lower expression of inhibitory molecules including PD-1, LAG-3 and NKG2A, thus being less susceptible to suppressive mechanisms. Interferon γ and autocrine interleukin-2 were both found to influence the level of expression of these molecules. Interestingly, although high-affinity CD8(+) T cells were superior to low-affinity CD8(+) T cells in their ability to effect tumor eradication, they could be further improved by the presence of tumor specific CD4(+) T cells. These findings illustrate the importance of both TCR affinity and tumor-specific CD4 help in tumor immunotherapy.
Collapse
Affiliation(s)
- Rinke Bos
- Department of Immunology and Microbial Sciences; The Scripps Research Institute; La Jolla, CA USA
| | | | | | | |
Collapse
|
39
|
Sarkar T, Dhar S, Sa G. Tumor-infiltrating T-regulatory cells adapt to altered metabolism to promote tumor-immune escape. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:132-141. [PMID: 35492399 PMCID: PMC9040151 DOI: 10.1016/j.crimmu.2021.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/16/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor mass and its microenvironment alter host immune system in various ways to promote tumor growth. One of the modifications is evasion of immune surveillance by augmenting the number of Tregs in tumor vicinity. Elevated levels of Tregs are seen in peripheral circulation and tumor tissue of cancer patients. Cancer cells release several chemokines to attract Tregs in tumor-site. Infiltration of Tregs has clinical significance because being immunosuppressive infiltrating Tregs suppress other immune cells making the tumor microenvironment favorable for tumor growth. On the other hand, infiltrating Tregs show metabolic alteration in tumor microenvironment which allows their selective survival over the others. Persistence of Tregs in the tumor microenvironment and subsequent immunosuppression makes Tregs a potential therapeutic obstacle and the reason behind the failure of immunotherapy. In this review, we emphasize the recent development in the metabolic adaptation of tumor-infiltrating Tregs and the therapeutic approaches to boost immunity against cancer.
Collapse
|
40
|
Oaxaca-Camacho AR, Ochoa-Mojica OR, Aguilar-Lemarroy A, Jave-Suárez LF, Muñoz-Valle JF, Padilla-Camberos E, Núñez-Hernández JA, Herrera-Rodríguez SE, Martínez-Velázquez M, Carranza-Aranda AS, Cruz-Ramos JA, Gutiérrez-Ortega A, Hernández-Gutiérrez R. Serum Analysis of Women with Early-Stage Breast Cancer Using a Mini-Array of Tumor-Associated Antigens. BIOSENSORS 2020; 10:bios10100149. [PMID: 33096879 PMCID: PMC7590061 DOI: 10.3390/bios10100149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/03/2020] [Accepted: 10/08/2020] [Indexed: 05/30/2023]
Abstract
Background: Several studies have shown that patients with cancer have antibodies in serum that react with cellular autoantigens, known as Tumor-Associated Antigens (TAA). The present work aimed to determine whether a mini-array comprising four recombinant TAA increases the detection of specific serum antibodies for the diagnosis of early-stage breast cancer. Methods: The mini-array included Alpha 1-AntiTrypsin (A1AT), TriosePhosphate Isomerase 1 (TPI1), Peptidyl-Prolyl cis-trans Isomerase A (PPIA), and PeroxiReDoXin 2 (PRDX2) full-length recombinant proteins. The proteins were produced after gene cloning, expression, and purification, and were verified by Western blot assays. Then, Dot-Blot was performed to find antibodies against the four TAA in 12 sera from women with early-stage breast cancer (stage II) and 12 sera from healthy women. Results: Antibody detection against individual TAA in early-stage breast cancer sera ranged from 58.3% to 83.3%. However, evaluation of the four TAA showed that there was a positive antibody reaction reaching a sensitivity of 100% and a specificity of 85% in early-stage breast cancer, suggesting that this mini-array must be evaluated as a clinical diagnostic tool for early-stage breast cancer in a larger sample size. Conclusion: Our results suggest that TAA mini-arrays may provide a promising and powerful method for improving the detection of breast cancer in Mexican women.
Collapse
Affiliation(s)
- Alma Rosa Oaxaca-Camacho
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), 44270 Guadalajara, Mexico; (A.R.O.-C.); (O.R.O.-M.); (E.P.-C.); (J.A.N.-H.); (S.E.H.-R.); (M.M.-V.); (A.G.-O.)
| | - Oscar René Ochoa-Mojica
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), 44270 Guadalajara, Mexico; (A.R.O.-C.); (O.R.O.-M.); (E.P.-C.); (J.A.N.-H.); (S.E.H.-R.); (M.M.-V.); (A.G.-O.)
| | - Adriana Aguilar-Lemarroy
- Centro de Investigación Biomédica de Occidente (CIBO), División de Inmunología, Instituto Mexicano del Seguro Social (IMSS), 44340 Guadalajara, Mexico; (A.A.-L.); (L.F.J.-S.)
| | - Luis F. Jave-Suárez
- Centro de Investigación Biomédica de Occidente (CIBO), División de Inmunología, Instituto Mexicano del Seguro Social (IMSS), 44340 Guadalajara, Mexico; (A.A.-L.); (L.F.J.-S.)
| | - José Francisco Muñoz-Valle
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340 Guadalajara, Mexico; (J.F.M.-V.); (A.S.C.-A.); (J.A.C.-R.)
| | - Eduardo Padilla-Camberos
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), 44270 Guadalajara, Mexico; (A.R.O.-C.); (O.R.O.-M.); (E.P.-C.); (J.A.N.-H.); (S.E.H.-R.); (M.M.-V.); (A.G.-O.)
| | - Juan Antonio Núñez-Hernández
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), 44270 Guadalajara, Mexico; (A.R.O.-C.); (O.R.O.-M.); (E.P.-C.); (J.A.N.-H.); (S.E.H.-R.); (M.M.-V.); (A.G.-O.)
| | - Sara E. Herrera-Rodríguez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), 44270 Guadalajara, Mexico; (A.R.O.-C.); (O.R.O.-M.); (E.P.-C.); (J.A.N.-H.); (S.E.H.-R.); (M.M.-V.); (A.G.-O.)
| | - Moisés Martínez-Velázquez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), 44270 Guadalajara, Mexico; (A.R.O.-C.); (O.R.O.-M.); (E.P.-C.); (J.A.N.-H.); (S.E.H.-R.); (M.M.-V.); (A.G.-O.)
| | - Ahtziri Socorro Carranza-Aranda
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340 Guadalajara, Mexico; (J.F.M.-V.); (A.S.C.-A.); (J.A.C.-R.)
| | - José Alfonso Cruz-Ramos
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340 Guadalajara, Mexico; (J.F.M.-V.); (A.S.C.-A.); (J.A.C.-R.)
- Instituto Jalisciense de Cancerología (IJC), Departamento de Enseñanza, Capacitación e Investigación, 44280 Guadalajara, Mexico
| | - Abel Gutiérrez-Ortega
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), 44270 Guadalajara, Mexico; (A.R.O.-C.); (O.R.O.-M.); (E.P.-C.); (J.A.N.-H.); (S.E.H.-R.); (M.M.-V.); (A.G.-O.)
| | - Rodolfo Hernández-Gutiérrez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), 44270 Guadalajara, Mexico; (A.R.O.-C.); (O.R.O.-M.); (E.P.-C.); (J.A.N.-H.); (S.E.H.-R.); (M.M.-V.); (A.G.-O.)
| |
Collapse
|
41
|
Welberry C, Macdonald I, McElveen J, Parsy-Kowalska C, Allen J, Healey G, Irving W, Murray A, Chapman C. Tumor-associated autoantibodies in combination with alpha-fetoprotein for detection of early stage hepatocellular carcinoma. PLoS One 2020; 15:e0232247. [PMID: 32374744 PMCID: PMC7202612 DOI: 10.1371/journal.pone.0232247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) continues to be a leading challenge in modern oncology. Early detection via blood-based screening tests has the potential to cause a stage-shift at diagnosis and improve clinical outcomes. Tumor associated autoantibodies (TA-AAbs) have previously shown the ability to distinguish HCC from patients with high-risk liver disease. This research aimed to further show the utility of TA-AAbs as biomarkers of HCC and assess their use in combination with Alpha-fetoprotein (AFP) for detection of HCC across multiple tumor stages. METHODS Levels of circulating G class antibodies to 44 recombinant tumor associated antigens and circulating AFP were measured in the serum of patients with HCC, non-cancerous chronic liver disease (NCCLD) and healthy controls via enzyme-linked immunosorbent assay (ELISA). TA-AAb cut-offs were set at the highest Youden's J statistic at a specificity ≥95.00%. Panels of TA-AAbs were formed using net reclassification improvement. AFP was assessed at a cut-off of 200 ng/ml. RESULTS Sensitivities ranged from 1.01% to 12.24% at specificities of 95.96% to 100.00% for single TA-AAbs. An ELISA test measuring a panel of 10 of these TA-AAbs achieved a combined sensitivity of 36.73% at a specificity of 89.89% when distinguishing HCC from NCCLD controls. At a cut-off of 200 ng/ml, AFP achieved a sensitivity of 31.63% at a specificity of 100.00% in the same cohort. Combination of the TA-AAb panel with AFP significantly increased the sensitivity for stage one (40.00%) and two (55.00%) HCC over the TA-AAb panel or AFP alone. CONCLUSIONS A panel of TA-AAbs in combination with AFP could be clinically relevant as a replacement for measuring levels of AFP alone in surveillance and diagnosis strategies. The increased early stage sensitivity could lead to a stage shift with positive prognostic outcomes.
Collapse
Affiliation(s)
- Christopher Welberry
- Oncimmune ltd, Nottingham, United Kingdom
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- * E-mail: ,
| | | | | | | | - Jared Allen
- Oncimmune ltd, Nottingham, United Kingdom
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | - William Irving
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
| | | | - Caroline Chapman
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Bowel Cancer Screening Program, Nottingham University NHS Trust, Nottingham, United Kingdom
| |
Collapse
|
42
|
Sun Y, Zhai W, Liu X, Song X, Gao X, Xu K, Tang B. Homotypic cell membrane-cloaked biomimetic nanocarrier for the accurate photothermal-chemotherapy treatment of recurrent hepatocellular carcinoma. J Nanobiotechnology 2020; 18:60. [PMID: 32299505 PMCID: PMC7164213 DOI: 10.1186/s12951-020-00617-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Tumor recurrence in patients after surgery severely reduces the survival rate of surgical patients. Targeting and killing recurrent tumor cells and tissues is extremely important for the cancer treatment. RESULTS Herein, we designed a nano-biomimetic photothermal-controlled drug-loading platform HepM-TSL with good targeting ability and immunocompatibility for the treatment of recurrent hepatocellular carcinoma. HepM-TSL can accurately target the recurrent tumor area with the aid of the cloaked homotypic cell membrane and release the chemotherapy drugs in a controlled manner. In vivo results have confirmed that HepM-TSL loaded with drugs and photosensitizer achieves the synergistic treatment of recurrent hepatocellular carcinoma with good therapeutic effect and slight side effects. CONCLUSION Accordingly, HepM-TSL provides a sound photothermal-chemotherapy synergistic strategy for the treatment of other recurrent cancers besides of recurrent hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yingxue Sun
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, People's Republic of China
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Wenhui Zhai
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xiaojun Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Xiangyi Song
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Kehua Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
43
|
Nicolini A, Rossi G, Ferrari P, Morganti R, Carpi A. A new immunotherapy schedule in addition to first-line hormone therapy for metastatic breast cancer patients in a state of clinical benefit during hormone therapy. J Mol Med (Berl) 2020; 98:375-382. [PMID: 31996953 DOI: 10.1007/s00109-020-01881-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/27/2023]
Abstract
Acquired resistance occurs in metastatic hormone receptor-positive breast cancer patients. The addition of interferon beta/interleukin-2 immunotherapy to first-line salvage hormone therapy (HT) prolonged progression-free (PFS) and overall survivals (OS) in 26 patients, as compared with 30 historical controls and literature data. This was a 2 : 1 ratio case-control retrospective observational study. The cases were from an open pilot study, started in 1992, and controls were recruited in 2006. The planned mean follow-up time was the time at which more than 80% of controls progressed. The median PFS was significantly longer in the cases than that in controls, 33.1 (95% CI 24.5-41.8) vs 18 (95% CI 12.1-23.8) months (p < 0.0001). Also, median OS was significantly longer in the cases, 81 vs 62 (95% CI 48.1-75.9) months (p < 0.0029). When analysis of the 2 groups was adjusted for the disease-free interval (DFI), hormone receptor status, HER2, site of metastases and molecular-targeted therapies, the hazard ratio for PFS and for OS in the cases increased from 2.347 to 3.090 and from 1.874 to 2.147, respectively. This occurred in spite of the higher proportion of controls (82% vs 7.1%) treated with aromatase inhibitors (AIs), while selective oestrogen receptor modulators (SERMs) were given to 92.9% of the cases and to 18% of the control group (p < 0.0001). Immunotherapy significantly prolonged PFS and OS during conventional first-line HT. A multi-centre randomised clinical trial is advised to enter this immunotherapy into clinical practice. KEY MESSAGES: • Acquired resistance occurs in metastatic endocrine-dependent breast cancer patients. • Interferon beta-interleukin-2 immunotherapy added to first-line salvage hormone therapy prolonged progression-free (PFS) and overall (OS) survivals in 26 patients of a pilot study as compared with 30 historical controls. • In this 2:1 ratio case-control prospective observational study, the PFS median time was significantly longer in the study group than that in controls, 33.1 (95% CI 24.5-41.8) vs 18 (95% CI 12.1-23.8) months (p < 0.0001). • Also, the OS median time was significantly longer in the study group, 81 vs 62 (95% CI 48.1-75.9) months (p < 0.0029).
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy.
| | - Giuseppe Rossi
- Epidemiology and Biostatistics Unit, Institute of Clinical Physiology,, National Research Council (CNR) and G. Monasterio Foundation, Pisa, Italy
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | | | - Angelo Carpi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
44
|
Revelation of Proteomic Indicators for Colorectal Cancer in Initial Stages of Development. Molecules 2020; 25:molecules25030619. [PMID: 32023884 PMCID: PMC7036866 DOI: 10.3390/molecules25030619] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Colorectal cancer (CRC) at a current clinical level is still hardly diagnosed, especially with regard to nascent tumors, which are typically asymptotic. Searching for reliable biomarkers of early diagnosis is an extremely essential task. Identification of specific post-translational modifications (PTM) may also significantly improve net benefits and tailor the process of CRC recognition. We examined depleted plasma samples obtained from 41 healthy volunteers and 28 patients with CRC at different stages to conduct comparative proteome-scaled analysis. The main goal of the study was to establish a constellation of protein markers in combination with their PTMs and semi-quantitative ratios that may support and realize the distinction of CRC until the disease has a poor clinical manifestation. Results: Proteomic analysis revealed 119 and 166 proteins for patients in stages I–II and III–IV, correspondingly. Plenty of proteins (44 proteins) reflected conditions of the immune response, lipid metabolism, and response to stress, but only a small portion of them were significant (p < 0.01) for distinguishing stages I–II of CRC. Among them, some cytokines (Clusterin (CLU), C4b-binding protein (C4BP), and CD59 glycoprotein (CD59), etc.) were the most prominent and the lectin pathway was specifically enhanced in patients with CRC. Significant alterations in Inter-alpha-trypsin inhibitor heavy chains (ITIH1, ITIH2, ITIH3, and ITIH4) levels were also observed due to their implication in tumor growth and the malignancy process. Other markers (Alpha-1-acid glycoprotein 2 (ORM2), Alpha-1B-glycoprotein (A1BG), Haptoglobin (HP), and Leucine-rich alpha-2-glycoprotein (LRG1), etc.) were found to create an ambiguous core involved in cancer development but also to exactly promote tumor progression in the early stages. Additionally, we identified post-translational modifications, which according to the literature are associated with the development of colorectal cancer, including kininogen 1 protein (T327-p), alpha-2-HS-glycoprotein (S138-p) and newly identified PTMs, i.e., vitamin D-binding protein (K75-ac and K370-ac) and plasma protease C1 inhibitor (Y294-p), which may also contribute and negatively impact on CRC progression. Conclusions: The contribution of cytokines and proteins of the extracellular matrix is the most significant factor in CRC development in the early stages. This can be concluded since tumor growth is tightly associated with chronic aseptic inflammation and concatenated malignancy related to loss of extracellular matrix stability. Due attention should be paid to Apolipoprotein E (APOE), Apolipoprotein C1 (APOC1), and Apolipoprotein B-100 (APOB) because of their impact on the malfunction of DNA repair and their capability to regulate mTOR and PI3K pathways. The contribution of the observed PTMs is still equivocal, but a significant decrease in the likelihood between modified and native proteins was not detected confidently.
Collapse
|
45
|
Javaid N, Choi S. Toll-like Receptors from the Perspective of Cancer Treatment. Cancers (Basel) 2020; 12:E297. [PMID: 32012718 PMCID: PMC7072551 DOI: 10.3390/cancers12020297] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) represent a family of pattern recognition receptors that recognize certain pathogen-associated molecular patterns and damage-associated molecular patterns. TLRs are highly interesting to researchers including immunologists because of the involvement in various diseases including cancers, allergies, autoimmunity, infections, and inflammation. After ligand engagement, TLRs trigger multiple signaling pathways involving nuclear factor-κB (NF-κB), interferon-regulatory factors (IRFs), and mitogen-activated protein kinases (MAPKs) for the production of various cytokines that play an important role in diseases like cancer. TLR activation in immune as well as cancer cells may prevent the formation and growth of a tumor. Nonetheless, under certain conditions, either hyperactivation or hypoactivation of TLRs supports the survival and metastasis of a tumor. Therefore, the design of TLR-targeting agonists as well as antagonists is a promising immunotherapeutic approach to cancer. In this review, we mainly describe TLRs, their involvement in cancer, and their promising properties for anticancer drug discovery.
Collapse
Affiliation(s)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea;
| |
Collapse
|
46
|
Ajina R, Zahavi DJ, Zhang YW, Weiner LM. Overcoming malignant cell-based mechanisms of resistance to immune checkpoint blockade antibodies. Semin Cancer Biol 2019; 65:28-37. [PMID: 31866479 DOI: 10.1016/j.semcancer.2019.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/09/2019] [Accepted: 12/14/2019] [Indexed: 12/12/2022]
Abstract
Traditional cancer treatment approaches have focused on surgery, radiation therapy, and cytotoxic chemotherapy. However, with rare exceptions, metastatic cancers were considered to be incurable by traditional therapy. Over the past 20 years a fourth modality - immunotherapy - has emerged as a potentially curative approach for patients with advanced metastatic cancer. However, in many patients cancer "finds a way" to evade the anti-tumor effects of immunotherapy. Immunotherapy resistance mechanisms can be employed by both cancer cells and the non-cancer elements of tumor microenvironment. This review focuses on the resistance mechanisms that are specifically mediated by cancer cells. In order to extend the impact of immunotherapy to more patients and across all cancer types, and to inhibit the development of acquired resistance, the underlying biology driving immune escape needs to be better understood. Elucidating mechanisms of immune escape may shed light on new therapeutic targets, and lead to successful combination therapeutic strategies.
Collapse
Affiliation(s)
- Reham Ajina
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, United States
| | - David J Zahavi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, United States
| | - Yong-Wei Zhang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, United States
| | - Louis M Weiner
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, United States.
| |
Collapse
|
47
|
Leufven E, Bruserud Ø. Immunosuppression and Immunotargeted Therapy in Acute Myeloid Leukemia - The Potential Use of Checkpoint Inhibitors in Combination with Other Treatments. Curr Med Chem 2019; 26:5244-5261. [PMID: 30907305 DOI: 10.2174/0929867326666190325095853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Immunotherapy by using checkpoint inhibitors is now tried in the treatment of several malignancies, including Acute Myeloid Leukemia (AML). The treatment is tried both as monotherapy and as a part of combined therapy. METHODS Relevant publications were identified through literature searches in the PubMed database. We searched for (i) original articles describing the results from clinical studies of checkpoint inhibition; (ii) published articles describing the immunocompromised status of AML patients; and (iii) published studies of antileukemic immune reactivity and immunotherapy in AML. RESULTS Studies of monotherapy suggest that checkpoint inhibition has a modest antileukemic effect and complete hematological remissions are uncommon, whereas combination with conventional chemotherapy increases the antileukemic efficiency with acceptable toxicity. The experience with a combination of different checkpoint inhibitors is limited. Thalidomide derivatives are referred to as immunomodulatory drugs and seem to reverse leukemia-induced immunosuppression, but in addition, they have direct inhibitory effects on the AML cells. The combination of checkpoint targeting and thalidomide derivatives thus represents a strategy for dual immunotargeting together with a direct antileukemic effect. CONCLUSION Checkpoint inhibitors are now tried in AML. Experimental studies suggest that these inhibitors should be combined with immunomodulatory agents (i.e. thalidomide derivatives) and/or new targeted or conventional antileukemic treatment. Such combinations would allow dual immunotargeting (checkpoint inhibitor, immunomodulatory agents) together with a double/triple direct targeting of the leukemic cells.
Collapse
Affiliation(s)
- Eva Leufven
- Department of Clinical Science, University of Bergen, Jonas Lies vei 87, N-5020 Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, Jonas Lies vei 87, N-5020 Bergen, Norway.,Section for Hematology, Department of Medicine, Haukeland University Hospital, N-5021, Bergen, Norway
| |
Collapse
|
48
|
Zhang X, Qi Y, Zhang Q, Liu W. Application of mass spectrometry-based MHC immunopeptidome profiling in neoantigen identification for tumor immunotherapy. Biomed Pharmacother 2019; 120:109542. [PMID: 31629254 DOI: 10.1016/j.biopha.2019.109542] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022] Open
Abstract
One of the challenges for cancer vaccine and adoptive T-cell-based immunotherapy is to identify the major histocompatibility complex (MHC)-associated non-self neoantigens recognized by T cells. T cell epitope in silico prediction algorithms have been widely used for neoantigen prediction; nonetheless, this platform lacks the experimental evidence of directly identification of the presented epitopes on cell surface. Currently, mass spectrometry (MS)-based proteomics is an advanced analytical technology for large-scale peptide sequencing, which has become a powerful tool for directly profiling the immunopeptidome presented by MHC molecules. Integrating with next-generation sequencing, proteogenomic analysis provides the "gold standard" for neoantigen identification at protein level. This method discovers the tumor-specific neoantigens derived from somatic mutations, proteasome splicing, noncoding RNA, and post-translational modified antigens. Herein, we review basis of antigen processing and presentation, tumor antigen classification, existing approaches for neoantigen discovery, quantitative proteomics, epitope prediction programs, and advantages and drawbacks of proteomics workflow for MHC immunopeptidome profiling. Furthermore, we summarize 40 recently published reports addressing the fundamental theory, breakthrough and most advanced updates for the mass spectrometry-based neoantigen discovery for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yue Qi
- Thoracic & GI oncology branch, National Cancer Institute, CCR, NIH, Bethesda, MD 20814, USA
| | - Qi Zhang
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Wei Liu
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Thoracic & GI oncology branch, National Cancer Institute, CCR, NIH, Bethesda, MD 20814, USA.
| |
Collapse
|
49
|
Li H, Lu J, Yan C, Xu L. Tumor cell membrane-coated biomimetic nanoplatform for homologous targeted therapy of colorectal carcinoma. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1667804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hui Li
- Department of Anorectal Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, PR China
| | - Jianbo Lu
- Department of Ultrasound, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, PR China
| | - Chengqiu Yan
- Department of Anorectal Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, PR China
| | - Liwei Xu
- Department of Hematology and Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, PR China
| |
Collapse
|
50
|
Kiaee F, Azizi G, Rafiemanesh H, Zainaldain H, Sadaat Rizvi F, Alizadeh M, Jamee M, Mohammadi S, Habibi S, Sharifi L, Jadidi-Niaragh F, Haghi S, Yazdani R, Abolhassani H, Aghamohammadi A. Malignancy in common variable immunodeficiency: a systematic review and meta-analysis. Expert Rev Clin Immunol 2019; 15:1105-1113. [PMID: 31452405 DOI: 10.1080/1744666x.2019.1658523] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: Common variable immunodeficiency (CVID) is the most common clinically significant primary immunodeficiency (PID) disorder characterized by variable clinical manifestations including recurrent infections, autoimmune disorders, enteropathy, lymphoproliferative disorders, and malignancy. The aim of this study is to estimate the overall prevalence of malignancy in patients with CVID. Methods: PubMed, Web of Science and Scopus were searched systemically to find eligible studies from the earliest available date to March 2019 with standard keywords. Pooled estimates of the malignancy prevalence and the corresponding 95% confidence intervals (CI) were calculated using random effects models. Results: Forty-eight studies with a total of 8123 CVID patients met the inclusion criteria and were finally included in the meta-analysis. Overall prevalence of malignancy was 8.6% (95% CI: 7.1-10.0; I2 = 79.2%). The prevalence of lymphoma, gastric cancer, and breast cancer in CVID patients were 4.1% (95% CI: 3.3-4.9; I2 = 62.6%), 1.5% (95% CI: 0.78-2.2; I2 = 68.9%), and 1.3% (95% CI: 0.64-1.9; I2 = 54.9%), respectively. Moreover, autoimmunity and malabsorption were more frequent in patients with malignancy than those without malignancy. Conclusion: The prevalence of malignancy has increased in CVID patients due to recent improvement in survival rate and the lymphoma is the most common type. This research highlighted the significance of malignancy screening and management in CVID patients.
Collapse
Affiliation(s)
- Fatemeh Kiaee
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences , Karaj , Iran
| | - Hosein Rafiemanesh
- Student Research Committee, Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Hamed Zainaldain
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Fatema Sadaat Rizvi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Mahla Alizadeh
- Evidence- Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences , Karaj , Iran.,Student Research Committee, Alborz University of Medical Sciences , Karaj , Iran
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences , Karaj , Iran
| | - Sara Mohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Sima Habibi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Laleh Sharifi
- Uro-Oncology Research Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Sabahat Haghi
- Department of Hematology & Oncology, School of Medicine, Alborz University of Medical Sciences , Karaj , Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|