1
|
Bai M, He J, Zheng F, Lv S, Wang Z, Hrynsphan D, Savitskaya T, Chen J. Gene cloning, expression and performance validation of nitric oxide dismutase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173455. [PMID: 38782282 DOI: 10.1016/j.scitotenv.2024.173455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Nitrous oxide (N2O) is a significant contributor to global warming and possesses an ozone-depleting impact nearly 298 times that of CO2. To reduce N2O emissions, the newly-discovered nod gene which can directly convert NO into N2 and O2 was successfully cloned from the anaerobic denitrification sludge. The recombinant plasmid containing the nod gene was built, and the expression of nod gene in Escherichia coli was determined, leading to the construction of recombinant engineering bacteria. Results showed that the recombinant engineering bacteria E. coli BL21 (DE3)-pET28a-nod could autonomously degrade NO, with a degradation rate of 72 % within 48 h, and could produce 2479.72 ppm of N2 and 75.12 mL of O2. The cumulative O2 production of the sludge sample and recombinant E. coli within 8 h was 1.75 mL and 8.45 mL, respectively. The cumulative O2 production of recombinant E. coli was at least 4.82 times higher than that of the sludge sample. The investigation proposed a new biodegradation pathway for nitrogen pollution.
Collapse
Affiliation(s)
- Mengwei Bai
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiamei He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fengzhen Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Sini Lv
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Tatsiana Savitskaya
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
2
|
Mishra S, Zhang X, Yang X. Plant communication with rhizosphere microbes can be revealed by understanding microbial functional gene composition. Microbiol Res 2024; 284:127726. [PMID: 38643524 DOI: 10.1016/j.micres.2024.127726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
Understanding rhizosphere microbial ecology is necessary to reveal the interplay between plants and associated microbial communities. The significance of rhizosphere-microbial interactions in plant growth promotion, mediated by several key processes such as auxin synthesis, enhanced nutrient uptake, stress alleviation, disease resistance, etc., is unquestionable and well reported in numerous literature. Moreover, rhizosphere research has witnessed tremendous progress due to the integration of the metagenomics approach and further shift in our viewpoint from taxonomic to functional diversity over the past decades. The microbial functional genes corresponding to the beneficial functions provide a solid foundation for the successful establishment of positive plant-microbe interactions. The microbial functional gene composition in the rhizosphere can be regulated by several factors, e.g., the nutritional requirements of plants, soil chemistry, soil nutrient status, pathogen attack, abiotic stresses, etc. Knowing the pattern of functional gene composition in the rhizosphere can shed light on the dynamics of rhizosphere microbial ecology and the strength of cooperation between plants and associated microbes. This knowledge is crucial to realizing how microbial functions respond to unprecedented challenges which are obvious in the Anthropocene. Unraveling how microbes-mediated beneficial functions will change under the influence of several challenges, requires knowledge of the pattern and composition of functional genes corresponding to beneficial functions such as biogeochemical functions (nutrient cycle), plant growth promotion, stress mitigation, etc. Here, we focus on the molecular traits of plant growth-promoting functions delivered by a set of microbial functional genes that can be useful to the emerging field of rhizosphere functional ecology.
Collapse
Affiliation(s)
- Sandhya Mishra
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China.
| | - Xianxian Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China.
| |
Collapse
|
3
|
Cellini A, Shankar MK, Nimmrich A, Hunt LA, Monrroy L, Mutisya J, Furrer A, Beale EV, Carrillo M, Malla TN, Maj P, Vrhovac L, Dworkowski F, Cirelli C, Johnson PJM, Ozerov D, Stojković EA, Hammarström L, Bacellar C, Standfuss J, Maj M, Schmidt M, Weinert T, Ihalainen JA, Wahlgren WY, Westenhoff S. Directed ultrafast conformational changes accompany electron transfer in a photolyase as resolved by serial crystallography. Nat Chem 2024; 16:624-632. [PMID: 38225270 PMCID: PMC10997514 DOI: 10.1038/s41557-023-01413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/28/2023] [Indexed: 01/17/2024]
Abstract
Charge-transfer reactions in proteins are important for life, such as in photolyases which repair DNA, but the role of structural dynamics remains unclear. Here, using femtosecond X-ray crystallography, we report the structural changes that take place while electrons transfer along a chain of four conserved tryptophans in the Drosophila melanogaster (6-4) photolyase. At femto- and picosecond delays, photoreduction of the flavin by the first tryptophan causes directed structural responses at a key asparagine, at a conserved salt bridge, and by rearrangements of nearby water molecules. We detect charge-induced structural changes close to the second tryptophan from 1 ps to 20 ps, identifying a nearby methionine as an active participant in the redox chain, and from 20 ps around the fourth tryptophan. The photolyase undergoes highly directed and carefully timed adaptations of its structure. This questions the validity of the linear solvent response approximation in Marcus theory and indicates that evolution has optimized fast protein fluctuations for optimal charge transfer.
Collapse
Affiliation(s)
- Andrea Cellini
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Madan Kumar Shankar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Amke Nimmrich
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Leigh Anna Hunt
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Leonardo Monrroy
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Jennifer Mutisya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | | | | | | | - Tek Narsingh Malla
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Piotr Maj
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Lidija Vrhovac
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | | | | | | | | | - Emina A Stojković
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
| | - Leif Hammarström
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | - Michał Maj
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | - Janne A Ihalainen
- Department of Biological and Environmental Sciences, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology and the Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Sun Y, Cao J, Xu R, Zhang T, Luo J, Xue Z, Chen S, Wang S, Zhou H. Influence of C/N ratio and ammonia on nitrogen removal and N 2O emissions from one-stage partial denitrification coupled with anammox. CHEMOSPHERE 2023; 341:140035. [PMID: 37660784 DOI: 10.1016/j.chemosphere.2023.140035] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/15/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
The development of low carbon treatment processes is an important issue worldwide. Partial denitrification coupled with anammox (PD/A) is a novel strategy to remove nitrogen and reduce N2O emissions. The influence of C/N ratio and NH4+ concentration on nitrogen removal and N2O emissions was investigated in batch reactors filled with PD/A coupled sludge. A C/N ratio of 2.1 was effective for nitrogen removal and N2O reduction; higher ammonia concentration might make anammox more active and indirectly reduce N2O emissions. Long-term operation further confirmed that a C/N ratio of 2.1 resulted in a minimum effluent N2O concentration (mean value of 0.94 μmol L-1); as the influent NH4+ concentration decreased to 50 mg L-1 (NH4+-N/NO3--N: 1), the nitrogen removal rate increased to 82.41%. Microbial analysis showed that anammox bacteria (Candidatus Jettenia and Ca. Brocadia) were enriched in the PD/A system and Ca. Brocadia gradually dominated the anammox community, with the relative abundance increasing from 1.69% to 18.44% between days 97 and 141. Finally, functional gene analysis indicated that the abundance of nirS/K and hao involved in partial denitrification and anammox, respectively, increased during long-term operation of the reactor; this change benefitted nitrogen metabolism in anammox, which could indirectly reduce N2O emissions.
Collapse
Affiliation(s)
- Yiwen Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China; Guohe Environmental Research Institute (Nanjing) Co, Ltd, Nanjing, 211599, China.
| | - Runze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Teng Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China; Guohe Environmental Research Institute (Nanjing) Co, Ltd, Nanjing, 211599, China
| | - Zhaoxia Xue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China; Guohe Environmental Research Institute (Nanjing) Co, Ltd, Nanjing, 211599, China
| | - Shaofeng Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Shilong Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Hailun Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
5
|
Jiang Z, Qian L, Cui M, Jiang Y, Shi L, Dong Y, Li J, Wang Y. Bacterial Sulfate Reduction Facilitates Iodine Mobilization in the Deep Confined Aquifer of the North China Plain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15277-15287. [PMID: 37751521 DOI: 10.1021/acs.est.3c05513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Bacterial sulfate reduction plays a crucial role in the mobilization of toxic substances in aquifers. However, the role of bacterial sulfate reduction on iodine mobilization in geogenic high-iodine groundwater systems has been unexplored. In this study, the enrichment of groundwater δ34SSO4 (15.56 to 69.31‰) and its significantly positive correlation with iodide and total iodine concentrations in deep groundwater samples of the North China Plain suggested that bacterial sulfate reduction participates in the mobilization of groundwater iodine. Similar significantly positive correlations were further observed between the concentrations of iodide and total iodine and the relative abundance of the dsrB gene by qPCR, as well as the composition and abundance of sulfate-reducing bacteria (SRB) predicted from 16S rRNA gene high-throughput sequencing data. Subsequent batch culture experiments by the SRB Desulfovibrio sp. B304 demonstrated that SRB could facilitate iodine mobilization through the enzyme-driven biotic and sulfide-driven abiotic reduction of iodate to iodide. In addition, the dehalogenation of organoiodine compounds by SRB and the reductive dissolution of iodine-bearing iron minerals by biogenic sulfide could liberate bound or adsorbed iodine into groundwater. The role of bacterial sulfate reduction in iodine mobilization revealed in this study provides new insights into our understanding of iodide enrichment in iodine-rich aquifers worldwide.
Collapse
Affiliation(s)
- Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
| | - Li Qian
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
| | - Mengjie Cui
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
| | - Yongguang Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan ,Hubei 430074, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, Hubei 430074, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan ,Hubei 430074, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan ,Hubei 430074, China
| | - Junxia Li
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, Hubei 430074, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan ,Hubei 430074, China
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan ,Hubei 430074, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, Hubei 430074, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan ,Hubei 430074, China
| |
Collapse
|
6
|
Khanthong K, Jang H, Kadam R, Jo S, Lee J, Park J. Bioelectrochemical system for nitrogen removal: Fundamentals, current status, trends, and challenges. CHEMOSPHERE 2023; 339:139776. [PMID: 37567277 DOI: 10.1016/j.chemosphere.2023.139776] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Biological nitrogen removal (BNR) is essential for the treatment of nitrogen-containing wastewater. However, the requirement for aeration and the addition of external carbon sources, resulting in greenhouse gas emissions and additional costs, are disadvantages of the traditional BNR process. Alternative technologies have been devised to overcome these drawbacks. Bioelectrochemical nitrogen removal (BENR) has been proposed for efficient nitrogen removal, demonstrating flexibility and versatility. BENR can be performed by combining nitrification, denitrification, anaerobic ammonium oxidation (ANAMMOX), or organic carbon oxidation. Bioelectrochemical-ANAMMOX (BE-ANAMMOX) is the most promising method for nitrogen removal, as it can directly convert NH4+ to N2 and H2 in one step when the electrode is arranged as an electron acceptor. High-value-added hydrogen can potentially be recovered with efficient nitrogen removal using this concept, maximizing the benefits of BENR. Using alternative electron acceptors, such as electrodes and metal ions, for complete total nitrogen removal is a promising technology to substitute NO2- production from NH4+ oxidation by aeration. However, the requirement of electron donors for NO3- reduction, low NH4+ removal efficiency, and low competitiveness of exoelectrogenic bacteria still remain the main obstacles. The future direction for successful BENR should aim to achieve complete anaerobic NH4+ oxidation without any electron acceptor and to maximize selectivity in H2 production. Therefore, the bioelectrochemical pathways and balances between efficient nitrogen removal and high-value-added chemical production should be further studied for carbon and energy neutralities.
Collapse
Affiliation(s)
- Kamonwan Khanthong
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea.
| | - Heewon Jang
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea
| | - Rahul Kadam
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea
| | - Sangyeol Jo
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea
| | - Jonghwa Lee
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea
| | - Jungyu Park
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61457, Republic of Korea.
| |
Collapse
|
7
|
Abada A, Beiralas R, Narvaez D, Sperfeld M, Duchin-Rapp Y, Lipsman V, Yuda L, Cohen B, Carmieli R, Ben-Dor S, Rocha J, Huang Zhang I, Babbin AR, Segev E. Aerobic bacteria produce nitric oxide via denitrification and promote algal population collapse. THE ISME JOURNAL 2023:10.1038/s41396-023-01427-8. [PMID: 37173383 DOI: 10.1038/s41396-023-01427-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Microbial interactions govern marine biogeochemistry. These interactions are generally considered to rely on exchange of organic molecules. Here we report on a novel inorganic route of microbial communication, showing that algal-bacterial interactions between Phaeobacter inhibens bacteria and Gephyrocapsa huxleyi algae are mediated through inorganic nitrogen exchange. Under oxygen-rich conditions, aerobic bacteria reduce algal-secreted nitrite to nitric oxide (NO) through denitrification, a well-studied anaerobic respiratory mechanism. The bacterial NO is involved in triggering a cascade in algae akin to programmed cell death. During death, algae further generate NO, thereby propagating the signal in the algal population. Eventually, the algal population collapses, similar to the sudden demise of oceanic algal blooms. Our study suggests that the exchange of inorganic nitrogen species in oxygenated environments is a potentially significant route of microbial communication within and across kingdoms.
Collapse
Affiliation(s)
- Adi Abada
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Roni Beiralas
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Delia Narvaez
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Martin Sperfeld
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Yemima Duchin-Rapp
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Valeria Lipsman
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Lilach Yuda
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Bar Cohen
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Raanan Carmieli
- Depertment of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Life Science Core Facilities, The Weizmann Institute of Science, Rehovot, Israel
| | - Jorge Rocha
- CIDEA Consortium Conacyt-Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Irene Huang Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew R Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Einat Segev
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
8
|
Bozal-Leorri A, Corrochano-Monsalve M, Arregui LM, Aparicio-Tejo PM, González-Murua C. Evaluation of a crop rotation with biological inhibition potential to avoid N 2O emissions in comparison with synthetic nitrification inhibition. J Environ Sci (China) 2023; 127:222-233. [PMID: 36522055 DOI: 10.1016/j.jes.2022.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 06/17/2023]
Abstract
Agriculture has increased the release of reactive nitrogen to the environment due to crops' low nitrogen-use efficiency (NUE) after the application of nitrogen-fertilisers. Practices like the use of stabilized-fertilisers with nitrification inhibitors such as DMPP (3,4-dimethylpyrazole phosphate) have been adopted to reduce nitrogen losses. Otherwise, cover crops can be used in crop-rotation-strategies to reduce soil nitrogen pollution and benefit the following culture. Sorghum (Sorghum bicolor) could be a good candidate as it is drought tolerant and its culture can reduce nitrogen losses derived from nitrification because it exudates biological nitrification inhibitors (BNIs). This work aimed to evaluate the effect of fallow-wheat and sorghum cover crop-wheat rotations on N2O emissions and the grain yield of winter wheat crop. In addition, the suitability of DMPP addition was also analyzed. The use of sorghum as a cover crop might not be a suitable option to mitigate nitrogen losses in the subsequent crop. Although sorghum-wheat rotation was able to reduce 22% the abundance of amoA, it presented an increment of 77% in cumulative N2O emissions compared to fallow-wheat rotation, which was probably related to a greater abundance of heterotrophic-denitrification genes. On the other hand, the application of DMPP avoided the growth of ammonia-oxidizing bacteria and maintained the N2O emissions at the levels of unfertilized-soils in both rotations. As a conclusion, the use of DMPP would be recommendable regardless of the rotation since it maintains NH4+ in the soil for longer and mitigates the impact of the crop residues on nitrogen soil dynamics.
Collapse
Affiliation(s)
- Adrián Bozal-Leorri
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao 48940, Spain.
| | - Mario Corrochano-Monsalve
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao 48940, Spain
| | - Luis M Arregui
- Institute for Innovation and Sustainable Development in Food Chain (ISFOOD), Public University of Navarre, Pamplona 31006, Spain
| | - Pedro M Aparicio-Tejo
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre, Pamplona 31006, Spain
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao 48940, Spain
| |
Collapse
|
9
|
Partipilo M, Claassens NJ, Slotboom DJ. A Hitchhiker's Guide to Supplying Enzymatic Reducing Power into Synthetic Cells. ACS Synth Biol 2023; 12:947-962. [PMID: 37052416 PMCID: PMC10127272 DOI: 10.1021/acssynbio.3c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Indexed: 04/14/2023]
Abstract
The construction from scratch of synthetic cells by assembling molecular building blocks is unquestionably an ambitious goal from a scientific and technological point of view. To realize functional life-like systems, minimal enzymatic modules are required to sustain the processes underlying the out-of-equilibrium thermodynamic status hallmarking life, including the essential supply of energy in the form of electrons. The nicotinamide cofactors NAD(H) and NADP(H) are the main electron carriers fueling reductive redox reactions of the metabolic network of living cells. One way to ensure the continuous availability of reduced nicotinamide cofactors in a synthetic cell is to build a minimal enzymatic module that can oxidize an external electron donor and reduce NAD(P)+. In the diverse world of metabolism there is a plethora of potential electron donors and enzymes known from living organisms to provide reducing power to NAD(P)+ coenzymes. This perspective proposes guidelines to enable the reduction of nicotinamide cofactors enclosed in phospholipid vesicles, while avoiding high burdens of or cross-talk with other encapsulated metabolic modules. By determining key requirements, such as the feasibility of the reaction and transport of the electron donor into the cell-like compartment, we select a shortlist of potentially suitable electron donors. We review the most convenient proteins for the use of these reducing agents, highlighting their main biochemical and structural features. Noting that specificity toward either NAD(H) or NADP(H) imposes a limitation common to most of the analyzed enzymes, we discuss the need for specific enzymes─transhydrogenases─to overcome this potential bottleneck.
Collapse
Affiliation(s)
- Michele Partipilo
- Department
of Biochemistry, Groningen Institute of Biomolecular Sciences &
Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nico J. Claassens
- Laboratory
of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Jan Slotboom
- Department
of Biochemistry, Groningen Institute of Biomolecular Sciences &
Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
10
|
Kulbir, Das S, Devi T, Ghosh S, Chandra Sahoo S, Kumar P. Acid-induced nitrite reduction of nonheme iron(ii)-nitrite: mimicking biological Fe-NiR reactions. Chem Sci 2023; 14:2935-2942. [PMID: 36937601 PMCID: PMC10016336 DOI: 10.1039/d2sc06704h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Nitrite reductase (NiR) catalyzes nitrite (NO2 -) to nitric oxide (NO) transformation in the presence of an acid (H+ ions/pH) and serves as a critical step in NO biosynthesis. In addition to the NiR enzyme, NO synthases (NOSs) participate in NO production. The chemistry involved in the catalytic reduction of NO2 -, in the presence of H+, generates NO with a H2O molecule utilizing two H+ + one electron from cytochromes and is believed to be affected by the pH. Here, to understand the effect of H+ ions on NO2 - reduction, we report the acid-induced NO2 - reduction chemistry of a nonheme FeII-nitrito complex, [(12TMC)FeII(NO2 -)]+ (FeII-NO2 -, 2), with variable amounts of H+. FeII-NO2 - upon reaction with one-equiv. of acid (H+) generates [(12TMC)Fe(NO)]2+, {FeNO}7 (3) with H2O2 rather than H2O. However, the amount of H2O2 decreases with increasing equivalents of H+ and entirely disappears when H+ reaches ≅ two-equiv. and shows H2O formation. Furthermore, we have spectroscopically characterized and followed the formation of H2O2 (H+ = one-equiv.) and H2O (H+ ≅ two-equiv.) and explained why bio-driven NiR reactions end with NO and H2O. Mechanistic investigations, using 15N-labeled-15NO2 - and 2H-labeled-CF3SO3D (D+ source), revealed that the N atom in the {Fe14/15NO}7 is derived from the NO2 - ligand and the H atom in H2O or H2O2 is derived from the H+ source, respectively.
Collapse
Affiliation(s)
- Kulbir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Tarali Devi
- Humboldt-Universität zu Berlin, Institut für Chemie Brook-Taylor-Straße 2 D-12489 Berlin Germany
| | - Somnath Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | | | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| |
Collapse
|
11
|
Bozal-Leorri A, Subbarao GV, Kishii M, Urmeneta L, Kommerell V, Karwat H, Braun HJ, Aparicio-Tejo PM, Ortiz-Monasterio I, González-Murua C, González-Moro MB. Biological nitrification inhibitor-trait enhances nitrogen uptake by suppressing nitrifier activity and improves ammonium assimilation in two elite wheat varieties. FRONTIERS IN PLANT SCIENCE 2022; 13:1034219. [PMID: 36438125 PMCID: PMC9695736 DOI: 10.3389/fpls.2022.1034219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Synthetic nitrification inhibitors (SNI) and biological nitrification inhibitors (BNI) are promising tools to limit nitrogen (N) pollution derived from agriculture. Modern wheat cultivars lack sufficient capacity to exude BNIs, but, fortunately, the chromosome region (Lr#n-SA) controlling BNI production in Leymus racemosus, a wild relative of wheat, was introduced into two elite wheat cultivars, ROELFS and MUNAL. Using BNI-isogenic-lines could become a cost-effective, farmer-friendly, and globally scalable technology that incentivizes more sustainable and environmentally friendly agronomic practices. We studied how BNI-trait improves N-uptake, and N-use, both with ammonium and nitrate fertilization, analysing representative indicators of soil nitrification inhibition, and plant metabolism. Synthesizing BNI molecules did not mean a metabolic cost since Control and BNI-isogenic-lines from ROELFS and MUNAL presented similar agronomic performance and plant development. In the soil, ROELFS-BNI and MUNAL-BNI plants decreased ammonia-oxidizing bacteria (AOB) abundance by 60% and 45% respectively, delaying ammonium oxidation without reducing the total abundance of bacteria or archaea. Interestingly, BNI-trait presented a synergistic effect with SNIs since made it also possible to decrease the AOA abundance. ROELFS-BNI and MUNAL-BNI plants showed a reduced leaf nitrate reductase (NR) activity as a consequence of lower soilNO 3 - formation and a higher amino acid content compared to BNI-trait lacking lines, indicating that the transfer of Lr#-SA was able to induce a higher capacity to assimilate ammonium. Moreover, the impact of the BNI-trait in wheat cultivars was also noticeable for nitrate fertilization, with improved N absorption, and therefore, reducing soil nitrate content.
Collapse
Affiliation(s)
- Adrián Bozal-Leorri
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Guntur V. Subbarao
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Ibaraki, Japan
| | - Masahiro Kishii
- Global Wheat Program, International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Leyre Urmeneta
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Víctor Kommerell
- Global Wheat Program, International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Hannes Karwat
- Global Wheat Program, International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Hans-Joachim Braun
- Global Wheat Program, International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Pedro Mª Aparicio-Tejo
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre, Pamplona, Spain
| | - Iván Ortiz-Monasterio
- Global Wheat Program, International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Mª Begoña González-Moro
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
12
|
Spero MA, Jones J, Lomenick B, Chou TF, Newman DK. Mechanisms of chlorate toxicity and resistance in Pseudomonas aeruginosa. Mol Microbiol 2022; 118:321-335. [PMID: 36271736 PMCID: PMC9589919 DOI: 10.1111/mmi.14972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that often encounters hypoxic/anoxic environments within the host, which increases its tolerance to many conventional antibiotics. Toward identifying novel treatments, we explored the therapeutic potential of chlorate, a pro-drug that kills hypoxic/anoxic, antibiotic-tolerant P. aeruginosa populations. While chlorate itself is relatively nontoxic, it is enzymatically reduced to the toxic oxidizing agent, chlorite, by hypoxically induced nitrate reductase. To better assess chlorate's therapeutic potential, we investigated mechanisms of chlorate toxicity and resistance in P. aeruginosa. We used transposon mutagenesis to identify genes that alter P. aeruginosa fitness during chlorate treatment, finding that methionine sulfoxide reductases (Msr), which repair oxidized methionine residues, support survival during chlorate stress. Chlorate treatment leads to proteome-wide methionine oxidation, which is exacerbated in a ∆msrA∆msrB strain. In response to chlorate, P. aeruginosa upregulates proteins involved in a wide range of functions, including metabolism, DNA replication/repair, protein repair, transcription, and translation, and these newly synthesized proteins are particularly vulnerable to methionine oxidation. The addition of exogenous methionine partially rescues P. aeruginosa survival during chlorate treatment, suggesting that widespread methionine oxidation contributes to death. Finally, we found that mutations that decrease nitrate reductase activity are a common mechanism of chlorate resistance.
Collapse
Affiliation(s)
- Melanie A. Spero
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Present address: Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Jeff Jones
- Proteome Exploration Laboratory, Beckman Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Brett Lomenick
- Proteome Exploration Laboratory, Beckman Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tsui-Fen Chou
- Proteome Exploration Laboratory, Beckman Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
13
|
Venturin B, Rodrigues HC, Bonassa G, Hollas CE, Bolsan AC, Antes FG, De Prá MC, Fongaro G, Treichel H, Kunz A. Key enzymes involved in anammox-based processes for wastewater treatment: An applied overview. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10780. [PMID: 36058650 DOI: 10.1002/wer.10780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process has attracted significant attention as an economic, robustness, and sustainable method for the treatment of nitrogen (N)-rich wastewater. Anammox bacteria (AnAOB) coexist with other microorganisms, and particularly with ammonia-oxidizing bacteria (AOB) and/or heterotrophic bacteria (HB), in symbiosis in favor of the substrate requirement (ammonium and nitrite) of the AnAOB being supplied by these other organisms. The dynamics of these microbial communities have a significant effect on the N-removal performance, but the corresponding metabolic pathways are still not fully understood. These processes involve many common metabolites that may act as key factors to control the symbiotic interactions between these organisms, to maximize N-removal efficiency from wastewater. Therefore, this work overviews the current state of knowledge about the metabolism of these microorganisms including key enzymes and intermediate metabolites and summarizes already reported experiences based on the employment of certain metabolites for the improvement of N-removal using anammox-based processes. PRACTITIONER POINTS: Approaches knowledge about the biochemistry and metabolic pathways involved in anammox-based processes. Some molecular tools can be used to determine enzymatic activity, serving as an optimization in nitrogen removal processes. Enzymatic evaluation allied to the physical-chemical and biomolecular analysis of the nitrogen removal processes expands the application in different effluents.
Collapse
Affiliation(s)
- Bruno Venturin
- Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | | | - Gabriela Bonassa
- Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | | | | | | | | | - Gislaine Fongaro
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Helen Treichel
- Universidade Federal da Fronteira Sul, Erechim, Rio Grande do Sul, Brazil
| | - Airton Kunz
- Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
- Universidade Federal da Fronteira Sul, Erechim, Rio Grande do Sul, Brazil
| |
Collapse
|
14
|
Brunet F, Tisserand D, Lanson M, Malvoisin B, Bertrand M, Bonnaud C. Real-time monitoring of aqueous Hg 2+ reduction dynamics by magnetite/iron metal composite powders synthesized hydrothermally. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:596-609. [PMID: 35960839 DOI: 10.2166/wst.2022.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An iron-based powder material composed of zerovalent iron (8 wt.%) and magnetite (92 wt.%), has been synthesized hydrothermally at 200 °C from zero-valent iron. Its effect on the reduction of aqueous Hg2+ into gaseous Hg0 has been investigated at ambient conditions for pH comprised between 4 and 8.5. The production of Hg0 was monitored with an online mercury vapor analyzer at the picogram level for concentrations of iron-based composite of a few tenths of mg L-1. Starting from a solution having an Hg2+ concentration of 25 ng L-1 at pH = 4, a succession of two Hg0 production events was recorded. The first event is related to the Hg2+ reduction by ZVI which fully dissolved within the first hours. Upon ZVI consumption, pH drifted towards the pH window where magnetite can efficiently reduce Hg2+ at the hour timescale, resulting in a second Hg0 production peak. The combined use of ZVI and magnetite to remove aqueous Hg2+ by formation of Hg0 (volatile) under mild acidic pH allows (1) to maximize the Hg2+ reduction rate and (2) to take benefit of the longer lifetime of magnetite compared to ZVI.
Collapse
Affiliation(s)
- Fabrice Brunet
- ISTERRE, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, Grenoble 38000, France E-mail:
| | - Delphine Tisserand
- ISTERRE, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, Grenoble 38000, France E-mail:
| | - Martine Lanson
- ISTERRE, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, Grenoble 38000, France E-mail:
| | - Benjamin Malvoisin
- ISTERRE, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, Grenoble 38000, France E-mail:
| | | | | |
Collapse
|
15
|
Das S, Ray S, Devi T, Ghosh S, Harmalkar SS, Dhuri SN, Mondal P, Kumar P. Why Intermolecular Nitric Oxide (NO) Transfer? Exploring the Factors and Mechanistic Aspects of NO Transfer Reaction. Chem Sci 2022; 13:1706-1714. [PMID: 35282634 PMCID: PMC8827119 DOI: 10.1039/d1sc06803b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
Small molecule activation & their transfer reactions in biological or catalytic reactions are greatly influenced by the metal-centers and the ligand frameworks. Here, we report the metal-directed nitric oxide (NO)...
Collapse
Affiliation(s)
- Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Soumyadip Ray
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Tarali Devi
- Humboldt-Universität zu Berlin, Institut für Chemie Brook-Taylor-Straße 2 D-12489 Berlin Germany
| | - Somnath Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | | | - Sunder N Dhuri
- School of Chemical Sciences, Goa University Goa-403206 India
| | - Padmabati Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| |
Collapse
|
16
|
Kulbir, Das S, Devi T, Goswami M, Yenuganti M, Bhardwaj P, Ghosh S, Chandra Sahoo S, Kumar P. Oxygen atom transfer promoted nitrate to nitric oxide transformation: a step-wise reduction of nitrate → nitrite → nitric oxide. Chem Sci 2021; 12:10605-10612. [PMID: 35003574 PMCID: PMC8666158 DOI: 10.1039/d1sc00803j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/01/2021] [Indexed: 12/22/2022] Open
Abstract
Nitrate reductases (NRs) are molybdoenzymes that reduce nitrate (NO3−) to nitrite (NO2−) in both mammals and plants. In mammals, the salival microbes take part in the generation of the NO2− from NO3−, which further produces nitric oxide (NO) either in acid-induced NO2− reduction or in the presence of nitrite reductases (NiRs). Here, we report a new approach of VCl3 (V3+ ion source) induced step-wise reduction of NO3− in a CoII-nitrato complex, [(12-TMC)CoII(NO3−)]+ (2,{CoII–NO3−}), to a CoIII–nitrosyl complex, [(12-TMC)CoIII(NO)]2+ (4,{CoNO}8), bearing an N-tetramethylated cyclam (TMC) ligand. The VCl3 inspired reduction of NO3− to NO is believed to occur in two consecutive oxygen atom transfer (OAT) reactions, i.e., OAT-1 = NO3− → NO2− (r1) and OAT-2 = NO2− → NO (r2). In these OAT reactions, VCl3 functions as an O-atom abstracting species, and the reaction of 2 with VCl3 produces a CoIII-nitrosyl ({CoNO}8) with VV-Oxo ({VV
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O}3+) species, via a proposed CoII-nitrito (3, {CoII–NO2−}) intermediate species. Further, in a separate experiment, we explored the reaction of isolated complex 3 with VCl3, which showed the generation of 4 with VV-Oxo, validating our proposed reaction sequences of OAT reactions. We ensured and characterized 3 using VCl3 as a limiting reagent, as the second-order rate constant of OAT-2 (k2/) is found to be ∼1420 times faster than that of the OAT-1 (k2) reaction. Binding constant (Kb) calculations also support our proposition of NO3− to NO transformation in two successive OAT reactions, as Kb(CoII–NO2−) is higher than Kb(CoII–NO3−), hence the reaction moves in the forward direction (OAT-1). However, Kb(CoII–NO2−) is comparable to Kb{CoNO}8, and therefore sequenced the second OAT reaction (OAT-2). Mechanistic investigations of these reactions using 15N-labeled-15NO3− and 15NO2− revealed that the N-atom in the {CoNO}8 is derived from NO3− ligand. This work highlights the first-ever report of VCl3 induced step-wise NO3− reduction (NRs activity) followed by the OAT induced NO2− reduction and then the generation of Co-nitrosyl species {CoNO}8. Single metal-induced reduction of NO3− → {NO2−} → NO via oxygen atom transfer reaction.![]()
Collapse
Affiliation(s)
- Kulbir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Tarali Devi
- Humboldt-Universität zu Berlin, Institut für Chemie Brook-Taylor-Straße 2 D-12489 Berlin Germany
| | - Mrigaraj Goswami
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Mahesh Yenuganti
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Prabhakar Bhardwaj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Somnath Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | | | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| |
Collapse
|
17
|
Duan H, Zhao Y, Koch K, Wells GF, Zheng M, Yuan Z, Ye L. Insights into Nitrous Oxide Mitigation Strategies in Wastewater Treatment and Challenges for Wider Implementation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7208-7224. [PMID: 33975433 DOI: 10.1021/acs.est.1c00840] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nitrous oxide (N2O) emissions account for the majority of the carbon footprint of wastewater treatment plants (WWTPs). Many N2O mitigation strategies have since been developed while a holistic view is still missing. This article reviews the state-of-the-art of N2O mitigation studies in wastewater treatment. Through analyzing existing studies, this article presents the essential knowledge to guide N2O mitigations, and the logics behind mitigation strategies. In practice, mitigations are mainly carried out by aeration control, feed scheme optimization, and process optimization. Despite increasingly more studies, real implementation remains rare, which is a combined result of unclear climate change policies/incentives, as well as technical challenges. Five critical technical challenges, as well as opportunities, of N2O mitigations were identified. It is proposed that (i) quantification methods for overall N2O emissions and pathway contributions need improvement; (ii) a reliable while straightforward mathematical model is required to quantify benefits and compare mitigation strategies; (iii) tailored risk assessment needs to be conducted for WWTPs, in which more long-term full-scale trials of N2O mitigation are urgently needed to enable robust assessments of the resulting operational costs and impact on nutrient removal performance; (iv) current mitigation strategies focus on centralized WWTPs, more investigations are warranted for decentralised systems, especially decentralized activated sludge WWTPs; and (v) N2O may be mitigated by adopting novel strategies promoting N2O reduction denitrification or microorganisms that emit less N2O. Overall, we conclude N2O mitigation research is reaching a maturity while challenges still exist for a wider implementation, especially in relation to the reliability of N2O mitigation strategies and potential risks to nutrient removal performances of WWTPs.
Collapse
Affiliation(s)
- Haoran Duan
- School of Chemical Engineering, the University of Queensland, St. Lucia, Queensland 4072, Australia
- Advanced Water Management Centre (AWMC), the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yingfen Zhao
- School of Chemical Engineering, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Min Zheng
- Advanced Water Management Centre (AWMC), the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, the University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
18
|
Zheng Y, Hou L, Zhang Z, Gao D, Yin G, Han P, Dong H, Liang X, Yang Y, Liu M. Community dynamics and activity of nirS-harboring denitrifiers in sediments of the Indus River Estuary. MARINE POLLUTION BULLETIN 2020; 153:110971. [PMID: 32275529 DOI: 10.1016/j.marpolbul.2020.110971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
Denitrification is an important pathway for reactive nitrogen removal from aquatic ecosystems. In this study, the biodiversity, abundance, and activity of cytochrome cd1-type nitrate reductase gene (nirS)-harboring denitrifiers in the sediments of the Indus River Estuary were examined by molecular and isotope-tracing techniques. Results showed that the nirS-harboring denitrifier communities showed significant geographical variations along the estuarine salinity gradient. Real-time quantitative PCR showed that the abundance of nirS-harboring denitrifiers ranged from 5.3 × 106 to 2.5 × 108 copies g-1, without significant spatiotemporal variation. The potential rates of denitrification varied from 0.01 to 6.27 μmol N kg-1 h-1 and correlated significantly to TOC and Fe(II) (P < 0.05). On the basis of 15N isotope-tracing experiments, the denitrification process contributed 18.4-99.4% to the total nitrogen loss in the sediments of the Indus River Estuary. This study provides novel insights into the microbial mechanism of nitrogen removal process in estuarine ecosystems.
Collapse
Affiliation(s)
- Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China.
| | - Zongxiao Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Dengzhou Gao
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Ping Han
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Yi Yang
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| |
Collapse
|
19
|
Wang M, Xie X, Wang M, Wu J, Zhou Q, Sun Y. The bacterial microbiota in florfenicol contaminated soils: The antibiotic resistome and the nitrogen cycle. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113901. [PMID: 32023788 DOI: 10.1016/j.envpol.2019.113901] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/18/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Soil antibiotic resistome and the nitrogen cycle are affected by florfenicol addition to manured soils but their interactions have not been fully described. In the present study, antibiotic resistance genes (ARGs) and nitrogen cycle genes possessed by soil bacteria were characterized using real-time fluorescence quantification PCR (qPCR) and metagenomic sequencing in a short-term (30 d) soil model experiment. Florfenicol significantly changed in the abundance of genes conferring resistance to aminoglycosides, β-lactams, tetracyclines and macrolides. And the abundance of Sphingomonadaceae, the protein metabolic and nitrogen metabolic functions, as well as NO reductase, nitrate reductase, nitrite reductase and N2O reductase can also be affected by florfenicol. In this way, ARG types of genes conferring resistance to aminoglycosides, β-lactamases, tetracyclines, colistin, fosfomycin, phenicols and trimethoprim were closely associated with multiple nitrogen cycle genes. Actinobacteria, Chlorobi, Firmicutes, Gemmatimonadetes, Nitrospirae, Proteobacteria and Verrucomicrobia played an important role in spreading of ARGs. Moreover, soil physicochemical properties were important factors affecting the distribution of soil flora. This study provides a theoretical basis for further exploration of the transmission regularity and interference mechanism of ARGs in soil bacteria responsible for nitrogen cycle.
Collapse
Affiliation(s)
- Mei Wang
- The Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Xiying Xie
- The Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Mianzhi Wang
- The Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Jing Wu
- The Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Qin Zhou
- The Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Yongxue Sun
- The Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
20
|
Zhong XZ, Zeng Y, Wang SP, Sun ZY, Tang YQ, Kida K. Insight into the microbiology of nitrogen cycle in the dairy manure composting process revealed by combining high-throughput sequencing and quantitative PCR. BIORESOURCE TECHNOLOGY 2020; 301:122760. [PMID: 31972401 DOI: 10.1016/j.biortech.2020.122760] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Nitrogen cycling during composting process is not yet fully understood. This study explored the key genes involved in nitrogen cycling during dairy manure composting process using high-throughput sequencing and quantitative PCR technologies. Results showed that nitrogen fixation occurred mainly during the thermophilic and cooling phases, and significantly enhanced the nitrogen content of compost. Thermoclostridium stercorarium was the main diazotroph. Ammonia oxidation occurred during the maturation phase and Nitrosomonas sp. was the most abundant ammonia oxidizing bacteria. Denitrification contributed to the greatest nitrogen loss during the composting process. The nirK community was dominated by Luteimonas sp. and Achromobacter sp., while the nirS community was dominated by Alcaligenes faecalis and Pseudomonas stutzeri. The nosZ community varied in a succession of Halomonas ilicicola, Pseudomonas flexibili and Labrenzia alba dominated communities according to different composting phases. Based on these results, nitrogen cycling models for different phases of the dairy manure composting process were established.
Collapse
Affiliation(s)
- Xiao-Zhong Zhong
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Yan Zeng
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Shi-Peng Wang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China.
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Kenji Kida
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
INDISIM-Denitrification, an individual-based model for study the denitrification process. J Ind Microbiol Biotechnol 2019; 47:1-20. [PMID: 31691030 DOI: 10.1007/s10295-019-02245-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022]
Abstract
Denitrification is one of the key processes of the global nitrogen (N) cycle driven by bacteria. It has been widely known for more than 100 years as a process by which the biogeochemical N-cycle is balanced. To study this process, we develop an individual-based model called INDISIM-Denitrification. The model embeds a thermodynamic model for bacterial yield prediction inside the individual-based model INDISIM and is designed to simulate in aerobic and anaerobic conditions the cell growth kinetics of denitrifying bacteria. INDISIM-Denitrification simulates a bioreactor that contains a culture medium with succinate as a carbon source, ammonium as nitrogen source and various electron acceptors. To implement INDISIM-Denitrification, the individual-based model INDISIM was used to give sub-models for nutrient uptake, stirring and reproduction cycle. Using a thermodynamic approach, the denitrification pathway, cellular maintenance and individual mass degradation were modeled using microbial metabolic reactions. These equations are the basis of the sub-models for metabolic maintenance, individual mass synthesis and reducing internal cytotoxic products. The model was implemented in the open-access platform NetLogo. INDISIM-Denitrification is validated using a set of experimental data of two denitrifying bacteria in two different experimental conditions. This provides an interactive tool to study the denitrification process carried out by any denitrifying bacterium since INDISIM-Denitrification allows changes in the microbial empirical formula and in the energy-transfer-efficiency used to represent the metabolic pathways involved in the denitrification process. The simulator can be obtained from the authors on request.
Collapse
|
22
|
Qiu Y, Jiang Y, Guo L, Zhang L, Burkey KO, Zobel RW, Reberg-Horton SC, Shew HD, Hu S. Shifts in the Composition and Activities of Denitrifiers Dominate CO 2 Stimulation of N 2O Emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11204-11213. [PMID: 31465213 DOI: 10.1021/acs.est.9b02983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Elevated atmospheric CO2 (eCO2) often increases soil N2O emissions, but the underlying mechanisms remain largely unknown. One hypothesis suggests that high N2O emissions may stem from increased denitrification induced by CO2 enhancement of plant carbon (C) allocation belowground. However, direct evidence illustrating linkages among N2O emissions, plant C allocation, and denitrifying microbes under eCO2 is still lacking. We examined the impact of eCO2 on plant C allocation to roots and their associated arbuscular mycorrhizal fungi and its subsequent effects on N2O emissions and denitrifying microbes in the presence of two distinct N sources, ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N). Our results showed that the form of the N inputs dominated the effects of eCO2 on N2O emissions: eCO2 significantly increased N2O emissions with NO3--N inputs but had no effect with NH4+-N inputs. eCO2 increased plant biomass N more with NH4+-N than with NO3--N inputs, likely reducing microbial access to available N under NH4+-N inputs and/or contributing to higher N2O emissions under NO3--N inputs. eCO2 enhanced root and mycorrhizal N uptake and also increased N2O emissions under NO3--N inputs. Further, eCO2 enhancement of N2O emissions under NO3--N inputs concurred with a shift in the soil denitrifier community composition in favor of N2O-producing (nirK- and nirS-type) over N2O-consuming (nosZ-type) denitrifiers. Together, these results indicate that eCO2 stimulated N2O emissions mainly through altering plant N preference in favor of NH4+ over NO3- and thus stimulating soil denitrifiers and their activities. These findings suggest that effective management of N sources may mitigate N2O emissions by negating the eCO2 stimulation of soil denitrifying microbes and their activities.
Collapse
Affiliation(s)
| | | | - Lijin Guo
- Institute of Tropical Agriculture and Forestry , Hainan University , Haikou , Hainan 570228 , China
| | | | - Kent O Burkey
- USDA-ARS , Plant Sciences Research Unit , Raleigh , North Carolina 27607 , United States
| | | | | | | | | |
Collapse
|
23
|
Vasilaki V, Massara TM, Stanchev P, Fatone F, Katsou E. A decade of nitrous oxide (N 2O) monitoring in full-scale wastewater treatment processes: A critical review. WATER RESEARCH 2019; 161:392-412. [PMID: 31226538 DOI: 10.1016/j.watres.2019.04.022] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Direct nitrous oxide (N2O) emissions during the biological nitrogen removal (BNR) processes can significantly increase the carbon footprint of wastewater treatment plant (WWTP) operations. Recent onsite measurement of N2O emissions at WWTPs have been used as an alternative to the controversial theoretical methods for the N2O calculation. The full-scale N2O monitoring campaigns help to expand our knowledge on the N2O production pathways and the triggering operational conditions of processes. The accurate N2O monitoring could help to find better process control solutions to mitigate N2O emissions of wastewater treatment systems. However, quantifying the emissions and understanding the long-term behaviour of N2O fluxes in WWTPs remains challenging and costly. A review of the recent full-scale N2O monitoring campaigns is conducted. The analysis covers the quantification and mitigation of emissions for different process groups, focusing on techniques that have been applied for the identification of dominant N2O pathways and triggering operational conditions, techniques using operational data and N2O data to identify mitigation measures and mechanistic modelling. The analysis of various studies showed that there are still difficulties in the comparison of N2O emissions and the development of emission factor (EF) databases; the N2O fluxes reported in literature vary significantly even among groups of similar processes. The results indicated that the duration of the monitoring campaigns can impact the EF range. Most N2O monitoring campaigns lasting less than one month, have reported N2O EFs less than 0.3% of the N-load, whereas studies lasting over a year have a median EF equal to 1.7% of the N-load. The findings of the current study indicate that complex feature extraction and multivariate data mining methods can efficiently convert wastewater operational and N2O data into information, determine complex relationships within the available datasets and boost the long-term understanding of the N2O fluxes behaviour. The acquisition of reliable full-scale N2O monitoring data is significant for the calibration and validation of the mechanistic models -describing the N2O emission generation in WWTPs. They can be combined with the multivariate tools to further enhance the interpretation of the complicated full-scale N2O emission patterns. Finally, a gap between the identification of effective N2O mitigation strategies and their actual implementation within the monitoring and control of WWTPs has been identified. This study concludes that there is a further need for i) long-term N2O monitoring studies, ii) development of data-driven methodological approaches for the analysis of WWTP operational and N2O data, and iii) better understanding of the trade-offs among N2O emissions, energy consumption and system performance to support the optimization of the WWTPs operation.
Collapse
Affiliation(s)
- V Vasilaki
- Department of Civil & Environmental Engineering, Brunel University London, Uxbridge Campus, Middlesex, UB8 3PH, Uxbridge, UK
| | - T M Massara
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge Campus, Middlesex, UB8 3PH, Uxbridge, UK
| | - P Stanchev
- Department of Civil & Environmental Engineering, Brunel University London, Uxbridge Campus, Middlesex, UB8 3PH, Uxbridge, UK
| | - F Fatone
- Department of Science and Engineering of Materials, Environment and City Planning, Faculty of Engineering, Polytechnic University of Marche, Ancona, Italy
| | - E Katsou
- Department of Civil & Environmental Engineering, Brunel University London, Uxbridge Campus, Middlesex, UB8 3PH, Uxbridge, UK; Institute of Environment, Health and Societies, Brunel University London, Uxbridge Campus, Middlesex, UB8 3PH, Uxbridge, UK.
| |
Collapse
|
24
|
Brotto AC, Annavajhala MK, Chandran K. Metatranscriptomic Investigation of Adaptation in NO and N 2O Production From a Lab-Scale Nitrification Process Upon Repeated Exposure to Anoxic-Aerobic Cycling. Front Microbiol 2018; 9:3012. [PMID: 30574136 PMCID: PMC6291752 DOI: 10.3389/fmicb.2018.03012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/21/2018] [Indexed: 11/13/2022] Open
Abstract
The molecular mechanisms of microbial adaptation to repeated anoxic-aerobic cycling were investigated by integrating whole community gene expression (metatranscriptomics) and physiological responses, including the production of nitric (NO) and nitrous (N2O) oxides. Anoxic-aerobic cycling was imposed for 17 days in a lab-scale full-nitrification mixed culture system. Prior to cycling, NO and N2O levels were sustained at 0.097 ± 0.006 and 0.054 ± 0.019 ppmv, respectively. Once the anoxic-aerobic cycling was initiated, peak emissions were highest on the first day (9.8 and 1.3 ppmv, respectively). By the end of day 17, NO production returned to pre-cycling levels (a peak of 0.12 ± 0.007 ppmv), while N2O production reached a new baseline (a peak of 0.32 ± 0.05 ppmv), one order of magnitude higher than steady-state conditions. Concurrently, post-cycling transcription of norBQ and nosZ returned to pre-cycling levels after an initial 5.7- and 9.5-fold increase, while nirK remained significantly expressed (1.6-fold) for the duration of and after cycling conditions. The imbalance in nirK and nosZ mRNA abundance coupled with continuous conversion of NO to N2O might explain the elevated post-cycling baseline for N2O. Metatranscriptomic investigation notably indicated possible NO production by NOB under anoxic-aerobic cycling through a significant increase in nirK expression. Opposing effects on AOB (down-regulation) and NOB (up-regulation) CO2 fixation were observed, suggesting that nitrifying bacteria are differently impacted by anoxic-aerobic cycling. Genes encoding the terminal oxidase of the electron transport chain (ccoNP, coxBC) were the most significantly transcribed, highlighting a hitherto unexplored pathway to manage high electron fluxes resulting from increased ammonia oxidation rates, and leading to overall, increased NO and N2O production. In sum, this study identified underlying metabolic processes and mechanisms contributing to NO and N2O production through a systems-level interrogation, which revealed the differential ability of specific microbial groups to adapt to sustained operational conditions in engineered biological nitrogen removal processes.
Collapse
Affiliation(s)
| | | | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, United States
| |
Collapse
|
25
|
Chlorate Specifically Targets Oxidant-Starved, Antibiotic-Tolerant Populations of Pseudomonas aeruginosa Biofilms. mBio 2018; 9:mBio.01400-18. [PMID: 30254119 PMCID: PMC6156191 DOI: 10.1128/mbio.01400-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The anaerobic growth and survival of bacteria are often correlated with physiological tolerance to conventional antibiotics, motivating the development of novel strategies targeting pathogens in anoxic environments. A key challenge is to identify drug targets that are specific to this metabolic state. Chlorate is a nontoxic compound that can be reduced to toxic chlorite by a widespread enzyme of anaerobic metabolism. We tested the antibacterial properties of chlorate against Pseudomonas aeruginosa, a pathogen that can inhabit hypoxic or anoxic microenvironments, including those that arise in human infection. Chlorate and the antibiotic tobramycin kill distinct metabolic populations in P. aeruginosa biofilms, where chlorate targets anaerobic cells that tolerate tobramycin. Chlorate is particularly effective against P. aeruginosalasR mutants, which are frequently isolated from human infections and more resistant to some antibiotics. This work suggests that chlorate may hold potential as an anaerobic prodrug. Nitrate respiration is a widespread mode of anaerobic energy generation used by many bacterial pathogens, and the respiratory nitrate reductase, Nar, has long been known to reduce chlorate to the toxic oxidizing agent chlorite. Here, we demonstrate the antibacterial activity of chlorate against Pseudomonas aeruginosa, a representative pathogen that can inhabit hypoxic or anoxic host microenvironments during infection. Aerobically grown P. aeruginosa cells are tobramycin sensitive but chlorate tolerant. In the absence of oxygen or an alternative electron acceptor, cells are tobramycin tolerant but chlorate sensitive via Nar-dependent reduction. The fact that chlorite, the product of chlorate reduction, is not detected in culture supernatants suggests that it may react rapidly and be retained intracellularly. Tobramycin and chlorate target distinct populations within metabolically stratified aggregate biofilms; tobramycin kills cells on the oxic periphery, whereas chlorate kills hypoxic and anoxic cells in the interior. In a matrix populated by multiple aggregates, tobramycin-mediated death of surface aggregates enables deeper oxygen penetration into the matrix, benefiting select aggregate populations by increasing survival and removing chlorate sensitivity. Finally, lasR mutants, which commonly arise in P. aeruginosa infections and are known to withstand conventional antibiotic treatment, are hypersensitive to chlorate. A lasR mutant shows a propensity to respire nitrate and reduce chlorate more rapidly than the wild type does, consistent with its heightened chlorate sensitivity. These findings illustrate chlorate’s potential to selectively target oxidant-starved pathogens, including physiological states and genotypes of P. aeruginosa that represent antibiotic-tolerant populations during infections.
Collapse
|
26
|
|
27
|
Duan H, Ye L, Erler D, Ni BJ, Yuan Z. Quantifying nitrous oxide production pathways in wastewater treatment systems using isotope technology - A critical review. WATER RESEARCH 2017; 122:96-113. [PMID: 28595125 DOI: 10.1016/j.watres.2017.05.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/01/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas and an ozone-depleting substance which can be emitted from wastewater treatment systems (WWTS) causing significant environmental impacts. Understanding the N2O production pathways and their contribution to total emissions is the key to effective mitigation. Isotope technology is a promising method that has been applied to WWTS for quantifying the N2O production pathways. Within the scope of WWTS, this article reviews the current status of different isotope approaches, including both natural abundance and labelled isotope approaches, to N2O production pathways quantification. It identifies the limitations and potential problems with these approaches, as well as improvement opportunities. We conclude that, while the capabilities of isotope technology have been largely recognized, the quantification of N2O production pathways with isotope technology in WWTS require further improvement, particularly in relation to its accuracy and reliability.
Collapse
Affiliation(s)
- Haoran Duan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Dirk Erler
- Centre for Coastal Biogeochemistry, School of Environmental Science and Engineering, Southern Cross University, Lismore, NSW 2480 Australia
| | - Bing-Jie Ni
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
28
|
Lennon EFE, Houlton BZ. Coupled molecular and isotopic evidence for denitrifier controls over terrestrial nitrogen availability. THE ISME JOURNAL 2017; 11:727-740. [PMID: 27935591 PMCID: PMC5322299 DOI: 10.1038/ismej.2016.147] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/09/2016] [Accepted: 09/16/2016] [Indexed: 11/08/2022]
Abstract
Denitrification removes ecologically available nitrogen (N) from the biosphere and influences both the pace and magnitude of global climate change. Disagreements exist over the degree to which this microbial process influences N-availability patterns across Earth's ecosystems. We combine natural stable isotope methods with qPCR to investigate how denitrifier gene abundance is related to variations in nitrate (NO3-) pool sizes across diverse terrestrial biomes and conditions. We analyze NO3- isotope composition (15N/14N, 18O/16O) and denitrifier gene nirS in 52 soil samples from different California ecosystems, spanning desert, chaparral, oak-woodland/savanna and forest. δ15N-NO3- correlates positively with δ18O-NO3- (P⩽0.03) and nirS abundance (P=0.00002) across sites, revealing the widespread importance of isotopic discrimination by soil denitrifiers. Furthermore, NO3- concentrations correlate negatively to nirS (P=0.002) and δ15N-NO3- (P=0.003) across sites. We also observe these spatial relationships in short-term (7-day), in situ soil-incubation experiments; NO3--depletion strongly corresponds with increased nirS, nirS/16 rRNA, and enrichment of heavy NO3- isotopes over time. Overall, these findings suggest that microbial denitrification can consume plant-available NO3- to low levels at multiple time scales, contributing to N-limitation patterns across sites, particularly in moist, carbon-rich soils. Furthermore, our study provides a new approach for understanding the relationships between microbial gene abundance and terrestrial ecosystem functioning.
Collapse
Affiliation(s)
- Erin F E Lennon
- Department of Land Air and Water Resources, University of California at Davis, Davis, CA, USA
| | - Benjamin Z Houlton
- Department of Land Air and Water Resources, University of California at Davis, Davis, CA, USA
| |
Collapse
|
29
|
Treatment of raw and ozonated oil sands process-affected water under decoupled denitrifying anoxic and nitrifying aerobic conditions: a comparative study. Biodegradation 2016; 27:247-264. [PMID: 27558502 DOI: 10.1007/s10532-016-9770-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
Batch experiments were performed to evaluate biodegradation of raw and ozonated oil sands process-affected water (OSPW) under denitrifying anoxic and nitrifying aerobic conditions for 33 days. The results showed both the anoxic and aerobic conditions are effective in degrading OSPW classical and oxidized naphthenic acids (NAs) with the aerobic conditions demonstrating higher removal efficiency. The reactors under nitrifying aerobic condition reduced the total classical NAs of raw OSPW by 69.1 %, with better efficiency for species of higher hydrophobicity. Compared with conventional aerobic reactor, nitrifying aerobic condition substantially shortened the NA degradation half-life to 16 days. The mild-dose ozonation remarkably accelerated the subsequent aerobic biodegradation of classical NAs within the first 14 days, especially for those with long carbon chains. Moreover, the ozone pretreatment enhanced the biological removal of OSPW classical NAs by leaving a considerably lower final residual concentration of 10.4 mg/L under anoxic conditions, and 5.7 mg/L under aerobic conditions. The combination of ozonation and nitrifying aerobic biodegradation removed total classical NAs by 76.5 % and total oxy-NAs (O3-O6) by 23.6 %. 454 Pyrosequencing revealed that microbial species capable of degrading recalcitrant hydrocarbons were dominant in all reactors. The most abundant genus in the raw and ozonated anoxic reactors was Thauera (~56 % in the raw OSPW anoxic reactor, and ~65 % in the ozonated OSPW anoxic reactor); whereas Rhodanobacter (~40 %) and Pseudomonas (~40 %) dominated the raw and ozonated aerobic reactors, respectively. Therefore, the combination of mild-dose ozone pretreatment and subsequent biological process could be a competent choice for OSPW treatment.
Collapse
|
30
|
Li H, Pan M, Zhou S, Huang S, Zhang Y. Characterization of nitrous oxide emissions from a thermophilic denitrifying bacterium Chelatococcus daeguensis TAD1 in an aerated sequencing batch reactor. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.04.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Torregrosa-Crespo J, Martínez-Espinosa RM, Esclapez J, Bautista V, Pire C, Camacho M, Richardson DJ, Bonete MJ. Anaerobic Metabolism in Haloferax Genus: Denitrification as Case of Study. Adv Microb Physiol 2016; 68:41-85. [PMID: 27134021 DOI: 10.1016/bs.ampbs.2016.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A number of species of Haloferax genus (halophilic archaea) are able to grow microaerobically or even anaerobically using different alternative electron acceptors such as fumarate, nitrate, chlorate, dimethyl sulphoxide, sulphide and/or trimethylamine. This metabolic capability is also shown by other species of the Halobacteriaceae and Haloferacaceae families (Archaea domain) and it has been mainly tested by physiological studies where cell growth is observed under anaerobic conditions in the presence of the mentioned compounds. This work summarises the main reported features on anaerobic metabolism in the Haloferax, one of the better described haloarchaeal genus with significant potential uses in biotechnology and bioremediation. Special attention has been paid to denitrification, also called nitrate respiration. This pathway has been studied so far from Haloferax mediterranei and Haloferax denitrificans mainly from biochemical point of view (purification and characterisation of the enzymes catalysing the two first reactions). However, gene expression and gene regulation is far from known at the time of writing this chapter.
Collapse
Affiliation(s)
| | | | - J Esclapez
- Universidad de Alicante, Alicante, Spain
| | - V Bautista
- Universidad de Alicante, Alicante, Spain
| | - C Pire
- Universidad de Alicante, Alicante, Spain
| | - M Camacho
- Universidad de Alicante, Alicante, Spain
| | | | - M J Bonete
- Universidad de Alicante, Alicante, Spain
| |
Collapse
|
32
|
Wei W, Isobe K, Nishizawa T, Zhu L, Shiratori Y, Ohte N, Koba K, Otsuka S, Senoo K. Higher diversity and abundance of denitrifying microorganisms in environments than considered previously. ISME JOURNAL 2015; 9:1954-65. [PMID: 25756678 DOI: 10.1038/ismej.2015.9] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/22/2014] [Accepted: 12/29/2014] [Indexed: 11/09/2022]
Abstract
Denitrification is an important process in the global nitrogen cycle. The genes encoding NirK and NirS (nirK and nirS), which catalyze the reduction of nitrite to nitric oxide, have been used as marker genes to study the ecological behavior of denitrifiers in environments. However, conventional polymerase chain reaction (PCR) primers can only detect a limited range of the phylogenetically diverse nirK and nirS. Thus, we developed new PCR primers covering the diverse nirK and nirS. Clone library and qPCR analysis using the primers showed that nirK and nirS in terrestrial environments are more phylogenetically diverse and 2-6 times more abundant than those revealed with the conventional primers. RNA- and culture-based analyses using a cropland soil also suggested that microorganisms with previously unconsidered nirK or nirS are responsible for denitrification in the soil. PCR techniques still have a greater capacity for the deep analysis of target genes than PCR-independent methods including metagenome analysis, although efforts are needed to minimize the PCR biases. The methodology and the insights obtained here should allow us to achieve a more precise understanding of the ecological behavior of denitrifiers and facilitate more precise estimate of denitrification in environments.
Collapse
Affiliation(s)
- Wei Wei
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Isobe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoyasu Nishizawa
- 1] Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan [2] Department of Bioresource Science, College of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Lin Zhu
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | | | - Nobuhito Ohte
- Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keisuke Koba
- Institute of Agriculture, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shigeto Otsuka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
|
34
|
Bak DW, Weerapana E. Cysteine-mediated redox signalling in the mitochondria. MOLECULAR BIOSYSTEMS 2015; 11:678-97. [DOI: 10.1039/c4mb00571f] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review represents a novel look at the many sources, cysteine targets, and signaling processes of ROS in the mitochondria.
Collapse
Affiliation(s)
- D. W. Bak
- Department of Chemistry
- Merkert Chemistry Center
- Boston College
- Massachusetts 02467
- USA
| | - E. Weerapana
- Department of Chemistry
- Merkert Chemistry Center
- Boston College
- Massachusetts 02467
- USA
| |
Collapse
|
35
|
Ontiveros-Valencia A, Tang Y, Zhao HP, Friese D, Overstreet R, Smith J, Evans P, Rittmann BE, Krajmalnik-Brown R. Pyrosequencing analysis yields comprehensive assessment of microbial communities in pilot-scale two-stage membrane biofilm reactors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7511-7518. [PMID: 24917125 DOI: 10.1021/es5012466] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO3(-)) and perchlorate (ClO4(-)) in contaminated groundwater. The groundwater also contained oxygen (O2) and sulfate (SO4(2-)), which became important electron sinks that affected the NO3(-) and ClO4(-) removal rates. Using pyrosequencing, we elucidated how important phylotypes of each "primary" microbial group, i.e., denitrifying bacteria (DB), perchlorate-reducing bacteria (PRB), and sulfate-reducing bacteria (SRB), responded to changes in electron-acceptor loading. UniFrac, principal coordinate analysis (PCoA), and diversity analyses documented that the microbial community of biofilms sampled when the MBfRs had a high acceptor loading were phylogenetically distant from and less diverse than the microbial community of biofilm samples with lower acceptor loadings. Diminished acceptor loading led to SO4(2-) reduction in the lag MBfR, which allowed Desulfovibrionales (an SRB) and Thiothrichales (sulfur-oxidizers) to thrive through S cycling. As a result of this cooperative relationship, they competed effectively with DB/PRB phylotypes such as Xanthomonadales and Rhodobacterales. Thus, pyrosequencing illustrated that while DB, PRB, and SRB responded predictably to changes in acceptor loading, a decrease in total acceptor loading led to important shifts within the "primary" groups, the onset of other members (e.g., Thiothrichales), and overall greater diversity.
Collapse
Affiliation(s)
- Aura Ontiveros-Valencia
- Biodesign Institute, Swette Center for Environmental Biotechnology, Arizona State University , 1001 South McAllister Avenue, Tempe, Arizona 85287-5701, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yang JK, Cheng ZB, Li J, Miao LH. Community composition of nirS-type denitrifier in a shallow eutrophic lake. MICROBIAL ECOLOGY 2013; 66:796-805. [PMID: 23884715 DOI: 10.1007/s00248-013-0265-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 07/08/2013] [Indexed: 06/02/2023]
Abstract
Denitrification is a major biological process to reduce nitrate to molecular nitrogen (N2). In shallow eutrophic lakes, this process can remove the largest portion of fixed nitrogen and plays an important role in self-purification of this ecosystem. To understand the structure of denitrifying communities in a shallow eutrophic lake, denitrifier communities in four sub-lakes of East Lake in Wuhan, China, were explored by restriction fragment length polymorphisms (RFLP) analysis and sequencing of nirS gene clone libraries. nirS is a functional marker gene for denitrification encoding cytochrome cd 1-containing nitrite reductase, which catalyzes the reduction of nitrite to nitric oxide. Both RFLP fingerprints clustering analysis and phylogeny analysis based on the amino acid sequences of NirS revealed that NirS-type communities in East Lake sediment could be roughly divided into three clusters. Cluster I accounted for 74-82 % of clones from the moderately eutrophic sub-lakes Tuan, Tang Ling, and Guo Zheng. Cluster II accounted for 76 % of the communities in hypertrophic sub-lake Miao Lake and cluster III as a minor group (7 % of the total), mainly presented in Miao Lake. Phylogenetic analysis revealed that cluster I was related to the reference clones from a broad range of ecological environments, and clusters II and III were more phylogenetically related to the reference clones from entrophic environments. Canonical correspondence analysis indicated that total nitrogen, total phosphate, total organic carbon, and NH4-N and NO2-N were important environmental factors affecting the dispersion of NirS-type denitrifier in the sediments. Cluster I showed a weak relationship with the nutrient content, while cluster II and III were positively related with the nutrient content. Principal coordinates analysis indicated that NirS-type communities from Tuan Lake, Tang Ling Lake, and Guo Zheng Lake sediments were divergent from those found in river, estuary sediment, and forest soil but similar to communities in constructed wetland sediment despite large geographic distances. The communities from the hypertrophic sub-lake Miao Lake deviated from other sub-lakes and the reference communities and clustered independently. Our results support the argument that environmental factors regulate the composition and distribution of the functional bacterial groups.
Collapse
Affiliation(s)
- Jiang-Ke Yang
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023, China,
| | | | | | | |
Collapse
|
37
|
Hajaya MG, Pavlostathis SG. Modeling the fate and effect of benzalkonium chlorides in a continuous-flow biological nitrogen removal system treating poultry processing wastewater. BIORESOURCE TECHNOLOGY 2013; 130:278-287. [PMID: 23313672 DOI: 10.1016/j.biortech.2012.11.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/18/2012] [Accepted: 11/25/2012] [Indexed: 06/01/2023]
Abstract
The fate and effect of the antimicrobial compounds benzalkonium chlorides (BACs) on the biological nitrogen removal (BNR) processes for a continuous-flow, three-stage laboratory-scale BNR system were modeled. Three kinetic sub-models, corresponding to each reactor, were developed and then combined in a comprehensive ASM1-based model. Kinetic parameters for the three sub-models were evaluated using experimental data obtained from independent batch assays. The biodegradation of BACs was modeled with a mixed-substrate Monod equation. The inhibitory effect of BACs on the utilization of degradable COD and denitrification was modeled as competitive inhibition, whereas non-competitive inhibition was used to model the effect of BACs on nitrification and inhibition coefficients were evaluated. The model simulated well the long-term performance of the BNR system treating a poultry processing wastewater with and without BACs. Enhanced BAC degradation by heterotrophs and increased resistance of nitrifiers to BACs, reflecting acclimation/enrichment over time, is a salient feature of the model.
Collapse
Affiliation(s)
- Malek G Hajaya
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA
| | | |
Collapse
|
38
|
Smith NA. CAMBRIDGE PRIZE LECTURE NITRATE REDUCTION AND N-NITROSATION IN BREWING*. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/j.2050-0416.1994.tb00835.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Smith NA. NITRATE REDUCTION AND ATNC FORMATION BY BREWERY WILD YEASTS. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/j.2050-0416.1992.tb01125.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Smith NA, Smith P, Woodruff CA. THE ROLE OFBACILLUSspp. IN N-NITROSAMINE FORMATION DURING WORT PRODUCTION. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/j.2050-0416.1992.tb01124.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Tang Y, Zhao H, Marcus AK, Krajmalnik-Brown R, Rittmann BE. A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate, part 1: model development and numerical solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:1598-1607. [PMID: 22191376 DOI: 10.1021/es203129s] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A multispecies biofilm model is developed for simultaneous reduction of nitrate and perchlorate in the H(2)-based membrane biofilm reactor. The one-dimension model includes dual-substrate Monod kinetics for a steady-state biofilm with five solid and five dissolved components. The solid components are autotrophic denitrifying bacteria, autotrophic perchlorate-reducing bacteria, heterotrophic bacteria, inert biomass, and extracellular polymeric substances (EPS). The dissolved components are nitrate, perchlorate, hydrogen (H(2)), substrate-utilization-associated products, and biomass-associated products (BAP). The model explicitly considers four mechanisms involved in how three important operating conditions (H(2) pressure, nitrate loading, and perchlorate loading) affect nitrate and perchlorate removals: (1) competition for H(2), (2) promotion of PRB growth due to having two electron acceptors (nitrate and perchlorate), (3) competition between nitrate and perchlorate reduction for the same resources in the PRB: electrons and possibly reductase enzymes, and (4) competition for space in the biofilm. Two other special features are having H(2) delivered from the membrane substratum and solving directly for steady state using a novel three-step approach: finite-difference for approximating partial differential and/or integral equations, Newton-Raphson for solving nonlinear equations, and an iterative scheme to obtain the steady-state biofilm thickness. An example result illustrates the model's features.
Collapse
Affiliation(s)
- Youneng Tang
- Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, 1001 South McAllister Ave., Tempe, Arizona 85287-5701, United States
| | | | | | | | | |
Collapse
|
42
|
Tang Y, Zhao H, Marcus AK, Krajmalnik-Brown R, Rittmann BE. A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate, part 2: parameter optimization and results and discussion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:1608-1615. [PMID: 22191805 DOI: 10.1021/es203130r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Part 1 of this work developed a steady-state, multispecies biofilm model for simultaneous reduction of nitrate and perchlorate in the H(2)-based membrane biofilm reactor (MBfR) and presented a novel method to solve it. In Part 2, the half-maximum-rate concentrations and inhibition coefficients of nitrate and perchlorate are optimized by fitting data from experiments with different combinations of influent nitrate and perchlorate concentrations. The model with optimized parameters is used to quantitatively and systematically explain how three important operating conditions (nitrate loading, perchlorate loading, and H(2) pressure) affect nitrate and perchlorate reduction and biomass distribution in these reducing biofilms. Perchlorate reduction and accumulation of perchlorate-reducing bacteria (PRB) in the biofilm are affected by four promotion or inhibition mechanisms: simultaneous use of nitrate and perchlorate by PRB and competition for H(2), the same resources in PRB, and space in a biofilm. For the hydrogen pressure evaluated experimentally, a low nitrate loading (<0.1 g N/m(2)-d) slightly promotes perchlorate removal, because of the beneficial effect from PRB using both acceptors. However, a nitrate loading of >0.6 g N/m(2)-d begins to inhibit perchlorate removal, as the competition effects become dominant.
Collapse
Affiliation(s)
- Youneng Tang
- Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, 1001 South McAllister Ave., Tempe, Arizona 85287-5701, United States
| | | | | | | | | |
Collapse
|
43
|
Khan A, Sarkar D. Nitrate reduction pathways in mycobacteria and their implications during latency. MICROBIOLOGY-SGM 2011; 158:301-307. [PMID: 22174380 DOI: 10.1099/mic.0.054759-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mycobacterial persistence has gained a lot of attention with respect to developing novel antitubercular drugs, which could drastically reduce the duration of tuberculosis (TB) therapy. A better understanding of the physiology of Mycobacterium tuberculosis, and of the metabolic state of the bacillus during the latent period, is a primary need in finding drug targets against persistent TB. Recent biochemical and genetic studies of nitrate reduction in mycobacteria have revealed the roles of distinct proteins and enzymes involved in the pathway. The differential degree of nitrate reduction among pathogenic and non-pathogenic mycobacterial species, and its regulation during oxygen and nutrient limitation, suggest a link between nitrate reduction pathways and latency. The respiratory and assimilatory reduction of nitrate in mycobacteria may be interconnected to facilitate rapid adaptation to changing oxygen and/or nitrogen conditions, increasing metabolic flexibility for survival in the hostile host environment. This review summarizes the nitrate metabolic pathways operative in mycobacteria to provide an insight into the mechanisms that M. tuberculosis has evolved to adapt successfully to the host environment.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Pathology and Laboratory Medicine, University of Texas, Health Science Center at Houston, Medical School, Houston, TX 77030, USA
| | - Dhiman Sarkar
- Combi Chem-Bio Resource Center, National Chemical Laboratory, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
44
|
Hajaya MG, Tezel U, Pavlostathis SG. Effect of temperature and benzalkonium chloride on nitrate reduction. BIORESOURCE TECHNOLOGY 2011; 102:5039-5047. [PMID: 21334883 DOI: 10.1016/j.biortech.2011.01.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/23/2011] [Accepted: 01/25/2011] [Indexed: 05/30/2023]
Abstract
The effect of temperature and benzalkonium chloride (BAC) on nitrate reduction was investigated in batch assays using a mixed nitrate reducing culture. Nitrate was transformed completely, mainly through denitrification, to dinitrogen at 5, 10, 15 and 22 °C. In the absence of BAC, reduction of individual nitrogen oxides had different susceptibility to temperature and transient nitrite accumulation was observed at low temperatures. When the effect of BAC was tested up to 100 mg/L from 5 to 22 °C, denitrification was inhibited at and above 50mg BAC/L with transient nitrite accumulation at all temperatures. The effect of BAC was described by a competitive inhibition model. Nitrite reduction was the denitrification step most susceptible to BAC, especially at low temperatures. BAC was not degraded during the batch incubation and was mostly biomass-adsorbed. Overall, this study shows that low temperatures exacerbate the BAC inhibitory effect, which in turn is controlled by adsorption to biomass.
Collapse
Affiliation(s)
- Malek G Hajaya
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA
| | | | | |
Collapse
|
45
|
Paul PP, Miller MA, Heimrich MJ, Schwab ST. Emission Control Catalyst Derived from Mesoporous Molecular Sieves. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-431-117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractA lean NOx catalyst is needed to control NOx emissions generated by oxygen-rich combustion processes to obtain higher fuel economy. We have developed such a catalyst using modified mesoporous molecular sieves (MCM-41). An iron(II)-complex impregnated MCM-41 has been synthesized which has been further treated with [Pd(NH3)4]Cl2. This treatment resulted in further exchange of Na+ ions of the molecular sieves with Pd(NH3)42+ thus forming Catalyst A. The catalytic activity towards NOx, CO and HC was studied using simulated exhaust gas, as well as engine exhaust gas.
Collapse
|
46
|
|
47
|
Filimonenkov AA, Zvyagilskaya RA, Tikhonova TV, Popov VO. Isolation and characterization of nitrate reductase from the halophilic sulfur-oxidizing bacterium Thioalkalivibrio nitratireducens. BIOCHEMISTRY (MOSCOW) 2010; 75:744-51. [PMID: 20636266 DOI: 10.1134/s000629791006009x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel nitrate reductase (NR) was isolated from cell extract of the haloalkaliphilic bacterium Thioalkalivibrio nitratireducens strain ALEN 2 and characterized. This enzyme is a classical nitrate reductase containing molybdopterin cofactor in the active site and at least one iron-sulfur cluster per subunit. Mass spectrometric analysis showed high homology of NR with the catalytic subunit NarG of the membrane nitrate reductase from the moderately halophilic bacterium Halomonas halodenitrificans. In solution, NR exists as a monomer with a molecular weight of 130-140 kDa and as a homotetramer of about 600 kDa. The specific nitrate reductase activity of NR is 12 micromol/min per mg protein, the maximal values being observed within the neutral range of pH. Like other membrane nitrate reductases, NR reduces chlorate and is inhibited by azide and cyanide. It exhibits a higher thermal stability than most mesophilic enzymes.
Collapse
Affiliation(s)
- A A Filimonenkov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | |
Collapse
|
48
|
Ketchum PA, Payne WJ. Purification of Two Nitrate Reductases from Xanthomonas maltophilia Grown in Aerobic Cultures. Appl Environ Microbiol 2010; 58:3586-92. [PMID: 16348805 PMCID: PMC183148 DOI: 10.1128/aem.58.11.3586-3592.1992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xanthomonas maltophilia ATCC 17666 is an obligate aerobe that accumulates nitrite when grown on nitrate. Spectra of membranes from nitrate-grown cells exhibited b-type cytochrome peaks and A(615-630) indicative of d-type cytochrome but no absorption peaks corresponding to c-type cytochromes. The nitrate reductase (NR) activity was located in the membrane fraction. Triton X-100-extracted reduced methyl viologen-NRs were purified on DE-52, hydroxylapatite, and Sephacryl S-300 columns to specific activities of 52 to 67 mumol of nitrite formed per min per mg of protein. The cytochrome-containing NR(I) separated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis into a 135-kDa alpha-subunit, a 64-kDa beta-subunit, and a 23-kDa gamma-subunit with relative band intensities indicative of a 1:1:1 alpha/beta/gamma subunit ratio and a M(r) of 222,000. The electronic spectrum of dithionite-reduced purified NR displayed peaks at 425, 528, and 558 nm, indicative of the presence of a cytochrome b, an interpretation consistent with the pyridine hemochrome spectrum formed. The cytochrome b of the NR was reduced under anaerobic conditions by menadiol and oxidized by nitrate with the production of nitrite. This NR contained 0.96 Mo, 12.5 nonheme iron, and 1 heme per 222 kDa: molybdopterin was detected with the Neurospora crassa nit-1 assay. A smaller reduced methyl viologen-NR (169 kDa), present in various concentrations in the Triton X-100 preparations, lacked a cytochrome spectrum and did not oxidize menadiol. The characteristics of the NRs and the absence of c-type cytochromes provide insights into why X. maltophilia accumulates nitrite.
Collapse
Affiliation(s)
- P A Ketchum
- Department of Biological Sciences, Oakland University, Rochester Hills, Michigan 48309-4401, and Department of Microbiology, University of Georgia, Athens, Georgia 30602-2605
| | | |
Collapse
|
49
|
Mahne I, Tiedje JM. Criteria and methodology for identifying respiratory denitrifiers. Appl Environ Microbiol 2010; 61:1110-5. [PMID: 16534960 PMCID: PMC1388392 DOI: 10.1128/aem.61.3.1110-1115.1995] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory denitrification is not always adequately established when bacteria are characterized. We have tested a simple method that allows one to evaluate whether the two necessary criteria to claim denitrification have been met, namely, that N(inf2) or N(inf2)O is produced from nitrate or nitrite and that this reduction is coupled to a growth yield increase. Microorganisms were cultured in sealed tubes under a helium headspace and in the presence of 0, 2, 4, 7, and 10 mM nitrate or nitrite. After growth had ceased, N(inf2) and N(inf2)O were quantified by gas chromatography and the final protein concentration was measured. Net protein production was linearly related to nitrate concentration for all denitrifiers tested and ranged from 2 to 6 g of protein per mol of electron equivalent reduced. Nitrogen recovery as N(inf2) plus N(inf2)O from nitrate and nitrite transformed exceeded 80% for all denitrifiers. We also suggest that a rate of N gas production of >10 (mu)mol/min/g of protein can be used as an additional characteristic definitive of denitrification since this process produces gas more rapidly than other processes. These characteristics were established after evaluation of a variety of well-characterized respiratory denitrifiers and other N(inf2)O-producing nitrate reducers. Several poorly characterized denitrifiers were also tested and confirmed as respiratory denitrifiers, including Aquaspirillum itersonii, Aquaspirillum fasciculus, Bacillus azotoformans, and Corynebacterium nephridii. These criteria distinguished respiratory denitrifiers from other groups that reduce nitrate or produce N(inf2)O. Furthermore, they correctly identified respiratory denitrification in weak denitrifiers, a group in which the existence of this process may be overlooked.
Collapse
|
50
|
Chung J, Shin S, Oh J. Influence of nitrate, sulfate and operational parameters on the bioreduction of perchlorate using an up-flow packed bed reactor at high salinity. ENVIRONMENTAL TECHNOLOGY 2010; 31:693-704. [PMID: 20540430 DOI: 10.1080/09593331003621557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this study we have investigated whether electron acceptors, such as nitrate or sulphate ions, competitively inhibit the reduction of perchlorate in brine in continuous up-flow packed bed bioreactors. The effect of pH and hydraulic retention time (HRT) on the reduction of perchlorate at high salinity has also been examined. Reduction of perchlorate was found to be only moderately influenced by nitrate (under 163 mg N L-'), implying that there was no significant microbial competition for electron acceptors. As a result of microbial diversity, there were few differences between microbial communities fed with a variety of media, suggesting that most nitrate-reducing bacteria are able to reduce perchlorate at high salinity. Reduction of perchlorate was almost complete at relatively high sulfate levels (1000 mg L(-1)), neutral pH (6-8) and relatively long HRTs (> 10 h).
Collapse
Affiliation(s)
- J Chung
- R&D Center, Samsung Engineering Co Ltd, 415-10 Woncheon-Dong, Youngting-Gu, Suwon, Gyeonggi-Do, 443-823, Korea
| | | | | |
Collapse
|