1
|
Deng Y, Wang F, Wang T, Zhang X, Chen D, Wang Y, Chen C, Pan G. Research progress in the mechanisms and functions of specialized pro-resolving mediators in neurological diseases. Prostaglandins Other Lipid Mediat 2024; 175:106905. [PMID: 39265777 DOI: 10.1016/j.prostaglandins.2024.106905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The nervous system interacts with the immune system through a variety of cellular regulators, signaling pathways, and molecular mechanisms. Disruptions in these interactions lead to the development of multiple neurological diseases. Recent studies have identified that specialized pro-resolving mediators (SPMs) play a regulatory role in the neuroimmune system. This study reviews recent research on the function of SPMs in the inflammatory process and their association with the nervous system. The review aims to provide new perspectives for studying the pathogenesis of neurological diseases and identify novel targets for clinical therapy.
Collapse
Affiliation(s)
- Yu Deng
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China
| | - Fei Wang
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu 224000, China; Yancheng TCM Hospital, Yancheng, Jiangsu 224000, China
| | - Tianle Wang
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China
| | - Xu Zhang
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China
| | - Du Chen
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China
| | - Yuhan Wang
- Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Chaojun Chen
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China.
| | - Guangtao Pan
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu 224000, China; Yancheng TCM Hospital, Yancheng, Jiangsu 224000, China.
| |
Collapse
|
2
|
Tabacof L, Salazar SI, Breyman E, Nasr L, Dewill S, Aitken A, Canori A, Kypros M, Cortes M, Fry A, Wood J, Putrino D. Immersive virtual reality for chronic neuropathic pain after spinal cord injury: a pilot, randomized, controlled trial. Pain Rep 2024; 9:e1173. [PMID: 39391768 PMCID: PMC11463206 DOI: 10.1097/pr9.0000000000001173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Neuropathic pain (NP) poses significant challenges for individuals with spinal cord injury (SCI), often inadequately managed by current interventions. Immersive virtual reality (IVR) has emerged as a promising approach for pain modulation, yet robust evidence is lacking. Objectives This pilot study investigated the analgesic effects of different IVR environments (scenic, somatic) compared with a control environment, and explored psychomotor properties influencing pain attenuation. Methods Twenty-two participants with NP caused by SCI were randomized into 3 IVR environments: somatic (n = 8), scenic (n = 7), and control (n = 8), undergoing 3 weekly sessions over 4 weeks with baseline, postintervention, and one-month follow-ups. Results There was a significant interaction effect between VR environment and time point on Neuropathic Pain Symptom Inventory scores (F(4,37.0) = 2.80, P = 0.04). Scenic VR participants exhibited reduced scores postintervention and at follow-up, with no significant changes in somatic VR or control environments. Similar trends were observed in secondary measures, such as Neuropathic Pain Scale and pain numeric rating scale. Enjoyment and presence were associated with decreased pain-change scores (F(1, 252) = 4.68, P = 0.03 for enjoyment; F(1, 223.342) = 7.92, P = 0.005 for presence), although not significantly influenced by VR environment or time point. Conclusion Both environments showed reduced pain outcomes, underscoring the need for personalized IVR pain therapies and informing further technology development for NP management.
Collapse
Affiliation(s)
- Laura Tabacof
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophia I. Salazar
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erica Breyman
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leila Nasr
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophie Dewill
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Annie Aitken
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra Canori
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Kypros
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mar Cortes
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Fry
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jamie Wood
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Putrino
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Kremiller KM, Kulkarni GC, Harris LM, Gunasekara H, Kashyap Y, Ilktach G, Nguyen A, Ondrus AE, Hu YS, Wang ZJ, Riley AP, Peters CJ. Discovery of Antinociceptive α9α10 Nicotinic Acetylcholine Receptor Antagonists by Stable Receptor Expression. ACS Chem Biol 2024; 19:2291-2303. [PMID: 39396195 DOI: 10.1021/acschembio.4c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Chronic neuropathic pain is an increasingly prevalent societal issue that responds poorly to existing therapeutic strategies. The α9α10 nicotinic acetylcholine receptor (nAChR) has emerged as a potential target to treat neuropathic pain. However, challenges in expressing functional α9α10 nAChRs in mammalian cell lines have slowed the discovery of α9α10 ligands and studies into the relationship between α9α10 nAChRs and neuropathic pain. Here, we develop a cell line in the HEK293 background that stably expresses functional α9α10 nAChRs. By also developing cell lines expressing only α9 and α10 subunits, we identify distinct receptor pharmacology between homomeric α9 or α10 and heteromeric α9α10 nAChRs. Moreover, we demonstrate that incubation with nAChR ligands differentially regulates the expression of α9- or α10-containing nAChRs, suggesting a possible mechanism by which ligands may modify receptor composition and trafficking in α9- and α10-expressing cells. We then apply our α9α10 cell line in a screen of FDA-approved and investigational drugs to identify α9α10 ligands that provide new tools to probe α9α10 nAChR function. We demonstrate that one compound from this screen, diphenidol, possesses antinociceptive activity in a murine model of neuropathic pain. These results expand our understanding of α9α10 receptor pharmacology and provide new starting points for developing efficacious neuropathic pain treatments.
Collapse
Affiliation(s)
- Kyle M Kremiller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Gauri C Kulkarni
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Lauren M Harris
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Yavnika Kashyap
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Giokdjen Ilktach
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Angela Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Alison E Ondrus
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Zaijie J Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Andrew P Riley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Christian J Peters
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
4
|
Kamiński K, Socała K, Abram M, Jakubiec M, Reeb KL, Temmermand R, Zagaja M, Maj M, Kolasa M, Faron-Górecka A, Andres-Mach M, Szewczyk A, Hameed MQ, Fontana ACK, Rotenberg A, Kamiński RM. Enhancement of Glutamate Uptake as Novel Antiseizure Approach: Preclinical Proof of Concept. Ann Neurol 2024. [PMID: 39512205 DOI: 10.1002/ana.27124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/14/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVE Excitotoxicity is a common hallmark of epilepsy and other neurological diseases associated with elevated extracellular glutamate levels. Thus, here, we studied the protective effects of (R)-AS-1, a positive allosteric modulator (PAM) of glutamate uptake in epilepsy models. METHODS (R)-AS-1 was evaluated in a range of acute and chronic seizure models, while its adverse effect profile was assessed in a panel of standard tests in rodents. The effect of (R)-AS-1 on glutamate uptake was assessed in COS-7 cells expressing the transporter. WAY 213613, a selective competitive EAAT2 inhibitor, was used to probe the reversal of the enhanced glutamate uptake in the same transporter expression system. Confocal microscopy and Western blotting analyses were used to study a potential influence of (R)-AS-1 on GLT-1 expression in mice. RESULTS (R)-AS-1 showed robust protection in a panel of animal models of seizures and epilepsy, including the maximal electroshock- and 6 Hz-induced seizures, corneal kindling, mesial temporal lobe epilepsy, lamotrigine-resistant amygdala kindling, as well as seizures induced by pilocarpine or Theiler's murine encephalomyelitis virus. Importantly, (R)-AS-1 displayed a favorable adverse effect profile in the rotarod, the minimal motor impairment, and the Irwin tests. (R)-AS-1 enhanced glutamate uptake in vitro and this effect was abolished by WAY 213613, while no influence on GLT-1 expression in vivo was observed after repeated treatment. INTERPRETATION Collectively, our results show that (R)-AS-1 has favorable tolerability and provides robust preclinical efficacy against seizures. Thus, allosteric enhancement of EAAT2 function could offer a novel therapeutic strategy for treatment of epilepsy and potentially other neurological disorders associated with glutamate excitotoxicity. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Katelyn L Reeb
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Rhea Temmermand
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Magdalena Kolasa
- Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Agata Faron-Górecka
- Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Aleksandra Szewczyk
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Mustafa Q Hameed
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Neuromodulation Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Alexander Rotenberg
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Neuromodulation Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
5
|
Vasylyev DV, Zhao P, Schulman BR, Waxman SG. Interplay of Nav1.8 and Nav1.7 channels drives neuronal hyperexcitability in neuropathic pain. J Gen Physiol 2024; 156:e202413596. [PMID: 39378238 PMCID: PMC11465073 DOI: 10.1085/jgp.202413596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/09/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
While voltage-gated sodium channels Nav1.7 and Nav1.8 both contribute to electrogenesis in dorsal root ganglion (DRG) neurons, details of their interactions have remained unexplored. Here, we studied the functional contribution of Nav1.8 in DRG neurons using a dynamic clamp to express Nav1.7L848H, a gain-of-function Nav1.7 mutation that causes inherited erythromelalgia (IEM), a human genetic model of neuropathic pain, and demonstrate a profound functional interaction of Nav1.8 with Nav1.7 close to the threshold for AP generation. At the voltage threshold of -21.9 mV, we observed that Nav1.8 channel open-probability exceeded Nav1.7WT channel open-probability ninefold. Using a kinetic model of Nav1.8, we showed that a reduction of Nav1.8 current by even 25-50% increases rheobase and reduces firing probability in small DRG neurons expressing Nav1.7L848H. Nav1.8 subtraction also reduces the amplitudes of subthreshold membrane potential oscillations in these cells. Our results show that within DRG neurons that express peripheral sodium channel Nav1.7, the Nav1.8 channel amplifies excitability at a broad range of membrane voltages with a predominant effect close to the AP voltage threshold, while Nav1.7 plays a major role at voltages closer to resting membrane potential. Our data show that dynamic-clamp reduction of Nav1.8 conductance by 25-50% can reverse hyperexcitability of DRG neurons expressing a gain-of-function Nav1.7 mutation that causes pain in humans and suggests, more generally, that full inhibition of Nav1.8 may not be required for relief of pain due to DRG neuron hyperexcitability.
Collapse
Affiliation(s)
- Dmytro V. Vasylyev
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Peng Zhao
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Betsy R. Schulman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G. Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
6
|
Anitua E, Troya M, Alkhraisat MH. Effectiveness of platelet derivatives in neuropathic pain management: A systematic review. Biomed Pharmacother 2024; 180:117507. [PMID: 39378680 DOI: 10.1016/j.biopha.2024.117507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Neuropathic pain (NP) has a considerable impact on the global economic burden and seriously impairs patients' quality of life. Currently there is no evidence-based "effective" treatment and new treatments are needed. Recently, platelet rich plasma (PRP) has emerged as an alternative treatment. Therefore, a systematic review has been conducted to present an evidence-based assessment of the use of PRP in the treatment of NP. METHODS Randomized studies that investigated the effect of PRP injection on patients with NP compared to alternative treatments or placebo were included. An encompassing search of specific databases, from their inception to April 2024, was performed. The databases were as follows: PubMed, Web of Sciences (MEDLINE) and Cochrane Library. The Cochrane Risk-of-Bias 2 tool was used to assess study methodological quality. RESULTS A total of 12 randomized studies with 754 patients with different NP conditions were included in this systematic review. According to the results from the qualitative analysis, PRP injection exerted a positive effect on improving pain intensity on most of the trials (8 out of 12). In the remaining studies, no differences were found. A high safety profile was reported with no serious adverse effects in the analysed patients. CONCLUSION PRP treatment might be an effective therapeutic approach for patients with different neuropathic pain conditions. The efficacy of PRP was not dependant on the aetiology of the underlying disorder; nevertheless, interpretations of the results should be performed cautiously, as for the under-representation of NP conditions.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| | - María Troya
- BTI Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Mohammad H Alkhraisat
- BTI Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Adjunct professor, Faculty of Dentistry, University of Jordan, Amman, Jordan
| |
Collapse
|
7
|
Asquini G, Devecchi V, Viscuso D, Bucci R, Michelotti A, Liew BXW, Falla D. An exploratory data-driven approach to classify subgroups of patients with temporomandibular disorders based on pain mechanisms. THE JOURNAL OF PAIN 2024; 26:104721. [PMID: 39461455 DOI: 10.1016/j.jpain.2024.104721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/29/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Temporomandibular disorders (TMDs) are a common musculoskeletal condition, presenting treatment challenges due to their non-specific nature. Categorizing patients with TMDs into clusters based on neurobiological pain mechanisms could provide a promising approach to facilitate targeted treatments. This observational study (1) used a network analysis (NA) to explore the complexity of TMDs by investigating relationships among biopsychosocial variables, and (2) validated potential TMD subgroups based on mechanism-specific pain categories. One hundred and two patients with TMD were included. Biopsychosocial variables covered: general health, psychosocial features, TMD pain, and TMD characteristics. A NA evaluated the associations between variables and determined the role of each feature within the network. Hierarchical clustering was used to identify TMD subgroups. The NA revealed significant correlations primarily within the same feature domains, indicating a strong interplay between symptoms and psychological factors. Cluster analysis identified two subgroups driven by nociceptive and nociplastic pain mechanisms; the nociplastic group exhibited higher levels of anxiety, depression, pain catastrophization, central sensitization, pain duration, and more pain locations, along with poorer sleep quality, quality of life, and health status. In contrast, the nociceptive group exhibited restricted maximal mouth opening (MMO), heightened pain during TMJ palpation and mouth opening, and a greater positive response to manual therapy. Across all features, psychological factors, pain locations, and MMO primarily contributed to the separation of subgroups. By adopting a data-driven approach, these results support the significant role of considering the neurobiological basis of pain to improve patient classification. This knowledge may facilitate clinical reasoning and personalized treatments. PERSPECTIVE: This study used a network analysis to explore the complex biopsychosocial interactions present in people with TMDs, identifying important variables such as the Central Sensitization Inventory and pain-free maximal mouth opening. The findings distinguish potential nociceptive and nociplastic pain subgroups, offering important insights for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Giacomo Asquini
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Italian Stomatologic Institute, Craniomandibular Physiotherapy Service, Via Pace 21, 20122 Milan, Italy
| | - Valter Devecchi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Domenico Viscuso
- Italian Stomatologic Institute, Craniomandibular Physiotherapy Service, Via Pace 21, 20122 Milan, Italy; University of Cagliari, Department of Surgical Sciences, Dental Service, Via Università 40, Cagliari, Italy
| | - Rosaria Bucci
- Department of Neurosciences, Reproductive Sciences and Oral Sciences, School of Orthodontics, University of Naples Federico II, Naples, Italy
| | - Ambra Michelotti
- Department of Neurosciences, Reproductive Sciences and Oral Sciences, School of Orthodontics, University of Naples Federico II, Naples, Italy
| | - Bernard X W Liew
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex, United Kingdom
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
8
|
Shrinidhi A, Dwyer TS, Scott JA, Watts VJ, Flaherty DP. Pyrazolo-Pyrimidinones with Improved Solubility and Selective Inhibition of Adenylyl Cyclase Type 1 Activity for Treatment of Inflammatory Pain. J Med Chem 2024; 67:18290-18316. [PMID: 39404162 DOI: 10.1021/acs.jmedchem.4c01645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Adenylyl cyclase isoform 1 (AC1) is considered a promising target for treating inflammatory pain. Our group identified the pyrazolyl-pyrimidinone scaffold as potent and selective inhibitors of Ca2+/CaM-mediated AC1 activity; however, the molecules suffered from poor aqueous solubility. The current study presents a strategy to improve aqueous solubility of the scaffold by reduction of crystal packing energy and increasing rotational degrees of freedom within the molecule. Structure-activity and property relationship studies identified the second generation lead 7-47A (AC10142A) that demonstrated and AC1 IC50 value of 0.26 μM and aqueous solubility of 74 ± 7 μM. After in vitro ADME characterization, the scaffold advanced to in vivo pharmacokinetic evaluation, demonstrating adequate levels of exposure. Finally, 7-47A exhibited antiallodynic efficacy in a rat complete Freund's adjuvant model for inflammatory pain showing improvement over previous iterations of this scaffold. These results further validate AC1 inhibition as a viable therapeutic strategy for treating chronic and inflammatory pain.
Collapse
Affiliation(s)
- Annadka Shrinidhi
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tiffany S Dwyer
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jason A Scott
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Val J Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Drug Discovery, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, 207 South Martin Jischke Dr., West Lafayette, Indiana 47907, United States
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Drug Discovery, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, 207 South Martin Jischke Dr., West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Yang J, Xie YF, Smith R, Ratté S, Prescott SA. Discordance between preclinical and clinical testing of NaV1.7-selective inhibitors for pain. Pain 2024:00006396-990000000-00751. [PMID: 39446737 DOI: 10.1097/j.pain.0000000000003425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/13/2024] [Indexed: 10/26/2024]
Abstract
ABSTRACT The voltage-gated sodium channel NaV1.7 plays an important role in pain processing according to genetic data. Those data made NaV1.7 a popular drug target, especially since its relatively selective expression in nociceptors promised pain relief without the adverse effects associated with broader sodium channel blockade. Despite encouraging preclinical data in rodents, NaV1.7-selective inhibitors have not yet proven effective in clinical trials. Discrepancies between preclinical and clinical results should raise alarms. We reviewed preclinical and clinical reports on the analgesic efficacy of NaV1.7-selective inhibitors and found critical differences in several factors. Putting aside species differences, most preclinical studies tested young male rodents with limited genetic variability, inconsistent with the clinical population. Inflammatory pain was the most common preclinical chronic pain model whereas nearly all clinical trials focused on neuropathic pain despite some evidence suggesting NaV1.7 channels are not essential for neuropathic pain. Preclinical studies almost exclusively measured evoked pain whereas most clinical trials assessed average pain intensity without distinguishing between evoked and spontaneous pain. Nearly all preclinical studies gave a single dose of drug unlike the repeat dosing used clinically, thus precluding preclinical data from demonstrating whether tolerance or other slow processes occur. In summary, preclinical testing of NaV1.7-selective inhibitors aligned poorly with clinical testing. Beyond issues that have already garnered widespread attention in the pain literature, our results highlight the treatment regimen and choice of pain model as areas for improvement.
Collapse
Affiliation(s)
- Jane Yang
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Yu-Feng Xie
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Russell Smith
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stéphanie Ratté
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Canh Pham E, Van Doan V, Le Thi TV, Van Ngo C, Vo Van L. In vivo and in silico antihypertensive, anti-inflammatory, and analgesic activities of Vernonia amygdalina Del. leaf extracts. Heliyon 2024; 10:e38634. [PMID: 39435095 PMCID: PMC11492254 DOI: 10.1016/j.heliyon.2024.e38634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Vernonia amygdalina (VA) leaves contain many potential active ingredients and exhibit diverse pharmacological activities. The antihypertensive, anti-inflammatory, and analgesic effects of VA crude and fraction extracts were carried out using Swiss albino mice models. VAE is considered safe to be administered due to LD50 being greater than 10,000 mg/kg body weight. A dose-dependent increase in antihypertensive, anti-inflammatory, and analgesic activities was observed in both VAE and fractions, similar to the reference drugs. The antihypertensive effect of the VAE 2.0 (2000 mg/kg, SBP: ↓26.05 %, DBP: ↓34.51 %) was nearly equivalent to Captopril (100 mg/kg, SBP: ↓30.28 %, DBP: ↓40.71 %) with no statistically significant difference (p > 0.05). The VAE 1.0 (1000 mg/kg), and EA 30 (30 mg/kg) showed potent anti-inflammatory activity when reducing the total edematous paw volume significantly (p < 0.01) by ↓65.58 %, and ↓69.34 %, respectively, similar to Ibuprofen (7.5 mg/kg, ↓67.03 %). Besides, VAE (>500 mg/kg), and W 400 (water, 400 mg/kg) fraction extracts showed a potent analgesic effect equivalent to Para 50 (paracetamol 50 mg/kg) for the highest protection (>65 %) against the acetic acid-induced writhing after 35 min. Moreover, cepharanthine, cynaroside, and vernoniosides of VA leaf extract exhibited the highest affinity (>10 kcal/mol) in anti-inflammatory and analgesic targets (iNOS and COX-2) and antihypertensive targets (ACE and β1 adrenoreceptor). Therefore, the crude and fraction extracts of VA leaves from the percolation method and bioactive metabolites are a potential source that can be developed into antihypertensive, anti-inflammatory, and analgesic agents in herbal medicine.
Collapse
Affiliation(s)
- Em Canh Pham
- Faculty of Pharmacy, Hong Bang International University, 700000, Ho Chi Minh City, Viet Nam
| | - Vien Van Doan
- Faculty of Pharmacy, Lac Hong University, 810000, Dong Nai Province, Viet Nam
| | - Tuong Vi Le Thi
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Viet Nam
| | - Cuong Van Ngo
- Faculty of Pharmacy, Lac Hong University, 810000, Dong Nai Province, Viet Nam
| | - Lenh Vo Van
- Faculty of Pharmacy, Lac Hong University, 810000, Dong Nai Province, Viet Nam
| |
Collapse
|
11
|
Hayward R, Moore S, Artun D, Madhavan A, Harte E, Torres-Pérez JV, Nagy I. Transcriptional reprogramming post-peripheral nerve injury: A systematic review. Neurobiol Dis 2024; 200:106624. [PMID: 39097036 DOI: 10.1016/j.nbd.2024.106624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
Neuropathic pain is characterised by periodic or continuous hyperalgesia, numbness, or allodynia, and results from insults to the somatosensory nervous system. Peripheral nerve injury induces transcriptional reprogramming in peripheral sensory neurons, contributing to increased spinal nociceptive input and the development of neuropathic pain. Effective treatment for neuropathic pain remains an unmet medical need as current therapeutics offer limited effectiveness and have undesirable effects. Understanding transcriptional changes in peripheral nerve injury-induced neuropathy might offer a path for novel analgesics. Our literature search identified 65 papers exploring transcriptomic changes post-peripheral nerve injury, many of which were conducted in animal models. We scrutinize their transcriptional changes data and conduct gene ontology enrichment analysis to reveal their common functional profile. Focusing on genes involved in 'sensory perception of pain' (GO:0019233), we identified transcriptional changes for different ion channels, receptors, and neurotransmitters, shedding light on its role in nociception. Examining peripheral sensory neurons subtype-specific transcriptional reprograming and regeneration-associated genes, we delved into downstream regulation of hypersensitivity. Identifying the temporal program of transcription regulatory mechanisms might help develop better therapeutics to target them effectively and selectively, thus preventing the development of neuropathic pain without affecting other physiological functions.
Collapse
Affiliation(s)
- R Hayward
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - S Moore
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - D Artun
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - A Madhavan
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - E Harte
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - J V Torres-Pérez
- Departament de Biologia Cel·lular, Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, C/Dr. Moliner 50, 46100 Burjassot, Spain.
| | - I Nagy
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK.
| |
Collapse
|
12
|
Haam CE, Choi S, Byeon S, Oh EY, Choi SK, Lee YH. Alteration of Piezo1 signaling in type 2 diabetic mice: focus on endothelium and BK Ca channel. Pflugers Arch 2024; 476:1479-1492. [PMID: 38955832 PMCID: PMC11381481 DOI: 10.1007/s00424-024-02983-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Piezo1 mechanosensitive ion channel plays a important role in vascular physiology and disease. This study aimed to elucidate the altered signaling elicited by Piezo1 activation in the arteries of type 2 diabetes. Ten- to 12-week-old male C57BL/6 (control) and type 2 diabetic mice (db-/db-) were used. The second-order mesenteric arteries (~ 150 μm) were used for isometric tension experiments. Western blot analysis and immunofluorescence staining were performed to observe protein expression. Piezo1 was significantly decreased in mesenteric arteries of type 2 diabetic mice compared to control mice, as analyzed by western blot and immunofluorescence staining. Piezo1 agonist, Yoda1, concentration-dependently induced relaxation of mesenteric arteries in both groups. Interestingly, the relaxation response was significantly greater in control mice than in db-/db- mice. The removal of endothelium reduced relaxation responses induced by Yoda1, which was greater in control mice than db-/db- mice. Furthermore, the relaxation response was reduced by pre-treatment with various types of K+ channel blockers in endothelium-intact arteries in control mice. In endothelium-denuded arteries, pre-incubation with charybdotoxin, an Ca2+-activated K+ channel (BKCa channel) blocker, significantly attenuated Yoda1-induced relaxation in db-/db- mice, while there was no effect in control mice. Co-immunofluorescence staining showed co-localization of Piezo1 and BKCa channel was more pronounced in db-/db- mice than in control mice. These results indicate that the vascular responses induced by Piezo1 activation are different in the mesenteric resistance arteries in type 2 diabetic mice.
Collapse
Affiliation(s)
- Chae Eun Haam
- Department of Physiology, Yonsei University College of Medicine, 50 Yonseiro, Seodaemun-gu, Seoul, 03722, Korea
| | - Sooyeon Choi
- Department of Physiology, Yonsei University College of Medicine, 50 Yonseiro, Seodaemun-gu, Seoul, 03722, Korea
| | - Seonhee Byeon
- Department of Physiology, Yonsei University College of Medicine, 50 Yonseiro, Seodaemun-gu, Seoul, 03722, Korea
| | - Eun Yi Oh
- Department of Physiology, Yonsei University College of Medicine, 50 Yonseiro, Seodaemun-gu, Seoul, 03722, Korea
| | - Soo-Kyoung Choi
- Department of Physiology, Yonsei University College of Medicine, 50 Yonseiro, Seodaemun-gu, Seoul, 03722, Korea.
| | - Young-Ho Lee
- Department of Physiology, Yonsei University College of Medicine, 50 Yonseiro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
13
|
Cai Y, Li J, Fan K, Zhang D, Lu H, Chen G. Downregulation of chloride voltage-gated channel 7 contributes to hyperalgesia following spared nerve injury. J Biol Chem 2024; 300:107779. [PMID: 39276933 PMCID: PMC11490881 DOI: 10.1016/j.jbc.2024.107779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024] Open
Abstract
Alterations in anion balance potential, along with the involvement of cation-chloride cotransporters, play pivotal roles in the development of hyperalgesia after peripheral nerve injury. Chloride voltage-gated channel seven (CLCN7) is the predominant member of the CLC protein family. Investigations on CLCN7 have focused primarily on its involvement in osteosclerosis and lysosomal storage disorders; nevertheless, its contribution to neuropathic pain has not been determined. In this investigation, we noted high expression of CLCN7 in neurons situated within the spinal dorsal horns and dorsal root ganglions (DRGs). Immunofluorescence analysis revealed that CLCN7 was predominantly distributed among IB4-positive and CGRP-positive neurons. Furthermore, the expression of CLCN7 was observed to be mainly reduced in neurons within the spinal dorsal horns and in small- and medium-sized neurons located in the DRGs of spared nerve injury mice. Knockdown of CLCN7 via siRNA in the DRGs resulted in increased mechanical and thermal hyperalgesia in naïve mice. Furthermore, the excitability of cultured DRG neurons in vitro was augmented upon treatment with CLCN7 siRNA. These findings suggested that CLCN7 downregulation following SNI was crucial for the manifestation of mechanical and thermal hyperalgesia, highlighting potential targeting strategies for treating neuropathic pain.
Collapse
Affiliation(s)
- Yunyun Cai
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China
| | - Jiajie Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Kewei Fan
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China
| | - Dongmei Zhang
- Department of Rehabilitation Medicine, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China; Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit of Immunology, Nantong First People's Hospital, Nantong, Jiangsu, China
| | - Hongjian Lu
- Department of Rehabilitation Medicine, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China; Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit of Immunology, Nantong First People's Hospital, Nantong, Jiangsu, China; Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China.
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China; Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
14
|
Lebel A, Schuster NM. Pediatric Pain. Continuum (Minneap Minn) 2024; 30:1517-1535. [PMID: 39445932 DOI: 10.1212/con.0000000000001489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
OBJECTIVE This article reviews pain disorders encountered in pediatric neurology practice and provides current information regarding the assessment and treatment of pediatric chronic pain. LATEST DEVELOPMENTS Data about pediatric pain management remain sparse, owing to a dearth of controlled trials and longitudinal studies in these patients. However, the field of pain management and understanding of central and peripheral pain processing has expanded to allow more effective treatment of a broad group of children and adolescents with pain associated with neurologic disease. Neuroimaging visualizes sensory and nonsensory systems, and genetic markers of sensitivity and disease may guide specific therapy. The concept of central sensitization in chronic pain disorders has supported the development of multidisciplinary paradigms for the comprehensive care of these patients. ESSENTIAL POINTS Pain involves sensory activation and central nervous system modulation in pediatric patients. Pediatric neurologists should be prepared to define, investigate, and treat pain disorders in this complex patient population. Appropriate interventions during childhood may attenuate or prevent chronic pain later in life. Current interventions include behavioral, physical, and pharmacologic approaches, as well as potential noninvasive tools for neuromodulation. Research is progressing in sensory measurement, neuroimaging, genetics, and neuroinflammation to guide future targeted therapies.
Collapse
|
15
|
Xia Y, Xue M, Sun Y, Wang Y, Huang Z, Huang C. Electroacupuncture inhibits TLR4/NF-κB signaling in the dorsal root ganglion of rats with spared nerve injury. Acupunct Med 2024; 42:275-284. [PMID: 39340148 DOI: 10.1177/09645284241279874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
OBJECTIVE Neuropathic pain can be provoked by high mobility group box 1 (HMGB1) activation of toll-like receptor (TLR)4/nuclear factor (NF)-κB signaling in the dorsal root ganglion (DRG). Electroacupuncture (EA) has been reported to effectively alleviate neuropathic pain with few side effects, but its precise mechanism of action remains unknown. The aim of this study was to explore whether 2 Hz EA stimulation suppresses TLR4/NF-κB signaling in the DRG following spared nerve injury (SNI) in a rat model. METHODS In this experiment, SNI rats were given 2 Hz EA once every other day for a total of 21 days. Paw withdrawal threshold (PWT) was measured to assess SNI-induced mechanical hypersensitivity, and western blotting and immunofluorescence staining were used to determine the levels of pain-related signaling molecules and pro-inflammatory mediators in the DRG. RESULTS SNI up-regulated HMGB1, TLR4, myeloid differentiation factor-88 adaptor protein (MyD88) and NF-κB p65 protein expression in the DRG. In addition, immunofluorescence staining demonstrated that SNI induced higher levels of TLR4 and MyD88 in the DRG. We also demonstrated co-localization of TLR4 and MyD88 with both calcitonin gene-related peptide (CGRP) and isolectin GS-IB4 in the DRG of SNI rats, respectively. Meanwhile, 2 Hz EA stimulation effectively reversed the elevations of HMGB1, TLR4, MyD88 and NF-κB p65 induced by SNI in the DRG, which was coupled with amelioration of SNI-induced mechanical hypersensitivity. CONCLUSIONS The results of this study suggested that inhibition of the TLR4/NF-κB signaling pathway in the DRG by 2 Hz EA might be exploited as a therapeutic option for neuropathic pain.
Collapse
Affiliation(s)
- Yangyang Xia
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
| | - Meng Xue
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
| | - Yalan Sun
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
| | - Ying Wang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
| | - Zhihua Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
- Pain Medicine Research Institute, Gannan Medical University, Ganzhou, P.R. China
| | - Cheng Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
- Pain Medicine Research Institute, Gannan Medical University, Ganzhou, P.R. China
| |
Collapse
|
16
|
Fayazzadeh S, Fakhri S, Abbaszadeh F, Farzaei MH. Role of l -arginine/nitric oxide/cyclic GMP/K ATP channel signaling pathway and opioid receptors in the antinociceptive effect of rutin in mice. Behav Pharmacol 2024; 35:399-407. [PMID: 39230435 DOI: 10.1097/fbp.0000000000000792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The l -arginine ( l -Arg)/nitric oxide/cyclic GMP/potassium channel (K ATP ) pathway and opioid receptors are known to play critical roles in pain perception and the antinociceptive effects of various compounds. While there is evidence suggesting that the analgesic effects of rutin may involve nitric oxide modulation, the direct link between rutin and the l -Arg/nitric oxide/cyclic GMP/K ATP pathway in the context of pain modulation requires further investigation. The antinociceptive effect of rutin was studied in male NMRI mice using the formalin test. To investigate the role of the l -Arg/nitric oxide/cyclic GMP/K ATP pathway and opioid receptors, the mice were pretreated intraperitoneally with different substances. These substances included l -Arg (a precursor of nitric oxide), S-nitroso- N -acetylpenicillamine (SNAP, a nitric oxide donor), N(gamma)-nitro- l -arginine methyl ester (L-NAME, an inhibitor of nitric oxide synthase), sildenafil (an inhibitor of phosphodiesterase enzyme), glibenclamide (a K ATP channel blocker), and naloxone (an opioid receptor antagonist). All pretreatments were administered 20 min before the administration of the most effective dose of rutin. Based on our investigation, it was found that rutin exhibited a dose-dependent antinociceptive effect. The administration of SNAP enhanced the analgesic effects of rutin during both the initial and secondary phases. Moreover, L-NAME, naloxone, and glibenclamide reduced the analgesic effects of rutin in both the primary and secondary phases. In conclusion, rutin holds significant value as a flavonoid with analgesic properties, and its analgesic effect is directly mediated through the nitric oxide/cyclic GMP/K ATP channel pathway.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah
| |
Collapse
|
17
|
Sun ZC, Han WJ, Dou ZW, Lu N, Wang X, Wang FD, Ma SB, Tian ZC, Xian H, Liu WN, Liu YY, Wu WB, Chu WG, Guo H, Wang F, Ding H, Liu YY, Tao HR, Freichel M, Birnbaumer L, Li ZZ, Xie RG, Wu SX, Luo C. TRPC3/6 Channels Mediate Mechanical Pain Hypersensitivity via Enhancement of Nociceptor Excitability and of Spinal Synaptic Transmission. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404342. [PMID: 39340833 DOI: 10.1002/advs.202404342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Patients with tissue inflammation or injury often experience aberrant mechanical pain hypersensitivity, one of leading symptoms in clinic. Despite this, the molecular mechanisms underlying mechanical distortion are poorly understood. Canonical transient receptor potential (TRPC) channels confer sensitivity to mechanical stimulation. TRPC3 and TRPC6 proteins, coassembling as heterotetrameric channels, are highly expressed in sensory neurons. However, how these channels mediate mechanical pain hypersensitivity has remained elusive. It is shown that in mice and human, TRPC3 and TRPC6 are upregulated in DRG and spinal dorsal horn under pathological states. Double knockout of TRPC3/6 blunts mechanical pain hypersensitivity, largely by decreasing nociceptor hyperexcitability and spinal synaptic potentiation via presynaptic mechanism. In corroboration with this, nociceptor-specific ablation of TRPC3/6 produces comparable pain relief. Mechanistic analysis reveals that upon peripheral inflammation, TRPC3/6 in primary sensory neurons get recruited via released bradykinin acting on B1/B2 receptors, facilitating BDNF secretion from spinal nociceptor terminals, which in turn potentiates synaptic transmission through TRPC3/6 and eventually results in mechanical pain hypersensitivity. Antagonizing TRPC3/6 in DRG relieves mechanical pain hypersensitivity in mice and nociceptor hyperexcitability in human. Thus, TRPC3/6 in nociceptors is crucially involved in pain plasticity and constitutes a promising therapeutic target against mechanical pain hypersensitivity with minor side effects.
Collapse
Affiliation(s)
- Zhi-Chuan Sun
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Department of Neurosurgery, Xi'an Daxing Hospital, Xi'an, 710016, China
| | - Wen-Juan Han
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi-Wei Dou
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Na Lu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, Xi'an, 710000, China
| | - Xu Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Fu-Dong Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Sui-Bin Ma
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi-Cheng Tian
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hang Xian
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wan-Neng Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying-Ying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wen-Bin Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wen-Guang Chu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Huan Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Fei Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Ding
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan-Ying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hui-Ren Tao
- Department of Orthopedic Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, 69120, Heidelberg, Germany
| | - Lutz Birnbaumer
- Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, C1107AVV, Argentina
- Signal Transduction Laboratory, National institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | - Zhen-Zhen Li
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Sheng-Xi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Innovation Research Institute, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
18
|
Xu Y, Wang Y, Mei S, Hu J, Wu L, Xu L, Bao L, Fang X. The mechanism and potential therapeutic target of piezo channels in pain. FRONTIERS IN PAIN RESEARCH 2024; 5:1452389. [PMID: 39398533 PMCID: PMC11466900 DOI: 10.3389/fpain.2024.1452389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Pain is a common symptom of many clinical diseases; it adversely affects patients' physical and mental health, reduces their quality of life, and heavily burdens patients and society. Pain treatment is one of the most difficult problems today. There is an urgent need to explore the potential factors involved in the pathogenesis of pain to improve its diagnosis and treatment rate. Piezo1/2, a newly identified mechanosensitive ion channel opens in response to mechanical stimuli and plays a critical role in regulating pain-related diseases. Inhibition or downregulation of Piezo1/2 alleviates disease-induced pain. Therefore, in this study, we comprehensively discussed the biology of this gene, focusing on its potential relevance in pain-related diseases, and explored the pharmacological effects of drugs using this gene for the treatment of pain.
Collapse
Affiliation(s)
- Yi Xu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Yuheng Wang
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Shuchong Mei
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Luyang Xu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Lijie Bao
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xiaowei Fang
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Peng W, Wang P, Tan C, Zhao H, Chen K, Si H, Tian Y, Lou A, Zhu Z, Yuan Y, Wu K, Chang C, Wu Y, Chen T. High-frequency terahertz stimulation alleviates neuropathic pain by inhibiting the pyramidal neuron activity in the anterior cingulate cortex of mice. eLife 2024; 13:RP97444. [PMID: 39331514 PMCID: PMC11434610 DOI: 10.7554/elife.97444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Neuropathic pain (NP) is caused by a lesion or disease of the somatosensory system and is characterized by abnormal hypersensitivity to stimuli and nociceptive responses to non-noxious stimuli, affecting approximately 7-10% of the general population. However, current first-line drugs like non-steroidal anti-inflammatory agents and opioids have limitations, including dose-limiting side effects, dependence, and tolerability issues. Therefore, developing new interventions for the management of NP is urgent. In this study, we discovered that the high-frequency terahertz stimulation (HFTS) at approximately 36 THz effectively alleviates NP symptoms in mice with spared nerve injury. Computational simulation suggests that the frequency resonates with the carbonyl group in the filter region of Kv1.2 channels, facilitating the translocation of potassium ions. In vivo and in vitro results demonstrate that HFTS reduces the excitability of pyramidal neurons in the anterior cingulate cortex likely through enhancing the voltage-gated K+ and also the leak K+ conductance. This research presents a novel optical intervention strategy with terahertz waves for the treatment of NP and holds promising applications in other nervous system diseases.
Collapse
Affiliation(s)
- Wenyu Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, The Fourth Military Medical UniversityXi'anChina
| | - Pan Wang
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’anChina
| | - Chaoyang Tan
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’anChina
| | - Han Zhao
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’anChina
| | - Kun Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’anChina
| | - Huaxing Si
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’anChina
| | - Yuchen Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, The Fourth Military Medical UniversityXi'anChina
| | - Anxin Lou
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’anChina
| | - Zhi Zhu
- Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and TechnologyShanghaiChina
| | - Yifang Yuan
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense TechnologyBeijingChina
| | - Kaijie Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui UniversityHefeiChina
- School of Electronic and Information Engineering, Anhui UniversityHefeiChina
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense TechnologyBeijingChina
- School of Physics, Peking UniversityBeijingChina
| | - Yuanming Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, The Fourth Military Medical UniversityXi'anChina
| | - Tao Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’anChina
| |
Collapse
|
20
|
Kim SI, Yang J, Shin J, Shin N, Shin HJ, Lee J, Noh C, Kim DW, Lee SY. Amitriptyline nanoparticle repositioning prolongs the anti-allodynic effect of enhanced microglia targeting. Nanomedicine (Lond) 2024; 19:2099-2112. [PMID: 39229790 PMCID: PMC11485917 DOI: 10.1080/17435889.2024.2390349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Aim: Amitriptyline (AMI) has been used to treat neuropathic pain. However, the clinical outcomes remain unsatisfactory, presumably due to a limited understanding of the underlying molecular mechanisms. Here, we investigated a drug repositioning strategy using a low-dose of AMI encapsulated in poly (D, L lactic-co-glycolic acid) (PLGA) nanoparticles (AMI NPs) for neuropathic pain, since PLGA nanoparticles are known to enhance delivery to microglia.Methods: We evaluated the anti-allodynic effects of AMI and AMI NPs on neuropathic pain by assessing behaviors and inflammatory responses in a rat model of spinal nerve ligation (SNL). While the anti-allodynic effect of AMI (30 μg) drug injection on SNL-induced neuropathic pain persisted for 12 h, AMI NPs significantly alleviated mechanical allodynia for 3 days.Results: Histological and cytokine analyses showed AMI NPs facilitated the reduction of microglial activation and pro-inflammatory mediators in the spinal dorsal horn. This study suggests that AMI NPs can provide a sustained anti-allodynic effect by enhancing the targeting of microglia and regulating the release of pro-inflammatory cytokines from activated microglia.Conclusion: Our findings suggest that the use of microglial-targeted NPs continuously releasing AMI (2 μg) as a drug repositioning strategy offers long-term anti-allodynic effects.
Collapse
Affiliation(s)
- Song I Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy & Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Jiah Yang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77054, USA
| | - Juhee Shin
- Center for Cognition & Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Nara Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy & Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyo Jung Shin
- Department of Anatomy & Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Jiyong Lee
- Department of Anesthesia & Pain Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Chan Noh
- Department of Anesthesia & Pain Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Dong Woon Kim
- Department of Oral Anatomy & Developmental Biology, College of Dentistry Kyung Hee University 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Sun Yeul Lee
- Department of Anesthesia & Pain Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| |
Collapse
|
21
|
Hung 洪瑋辰 WC, Chen 陳志成 CC, Yen 嚴震東 CT, Min 閔明源 MY. Presynaptic Enhancement of Transmission from Nociceptors Expressing Nav1.8 onto Lamina-I Spinothalamic Tract Neurons by Spared Nerve Injury in Mice. eNeuro 2024; 11:ENEURO.0087-24.2024. [PMID: 39256039 PMCID: PMC11391502 DOI: 10.1523/eneuro.0087-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Alteration of synaptic function in the dorsal horn (DH) has been implicated as a cellular substrate for the development of neuropathic pain, but certain details remain unclear. In particular, the lack of information on the types of synapses that undergo functional changes hinders the understanding of disease pathogenesis from a synaptic plasticity perspective. Here, we addressed this issue by using optogenetic and retrograde tracing ex vivo to selectively stimulate first-order nociceptors expressing Nav1.8 (NRsNav1.8) and record the responses of spinothalamic tract neurons in spinal lamina I (L1-STTNs). We found that spared nerve injury (SNI) increased excitatory postsynaptic currents (EPSCs) in L1-STTNs evoked by photostimulation of NRsNav1.8 (referred to as Nav1.8-STTN EPSCs). This effect was accompanied by a significant change in the failure rate and paired-pulse ratio of synaptic transmission from NRsNav1.8 to L1-STTN and in the frequency (not amplitude) of spontaneous EPSCs recorded in L1-STTNs. However, no change was observed in the ratio of AMPA to NMDA receptor-mediated components of Nav1.8-STTN EPSCs or in the amplitude of unitary EPSCs constituting Nav1.8-STTN EPSCs recorded with extracellular Ca2+ replaced by Sr2+ In addition, there was a small increase (approximately 10%) in the number of L1-STTNs showing immunoreactivity for phosphorylated extracellular signal-regulated kinases in mice after SNI compared with sham. Similarly, only a small percentage of L1-STTNs showed a lower action potential threshold after SNI. In conclusion, our results show that SNI induces presynaptic modulation at NRNav1.8 (consisting of both peptidergic and nonpeptidergic nociceptors) synapses on L1-STTNs forming the lateral spinothalamic tract.
Collapse
Affiliation(s)
- Wei-Chen Hung 洪瑋辰
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Centre, National Taiwan University, Taipei 10617, Taiwan
| | | | - Cheng-Tung Yen 嚴震東
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Centre, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Yuan Min 閔明源
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Centre, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
22
|
Kim YM, Son JY, Ahn DK. Botulinum toxin type A is a potential therapeutic drug for chronic orofacial pain. J Oral Biosci 2024; 66:496-503. [PMID: 38908515 DOI: 10.1016/j.job.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Botulinum toxin type A (BTX-A), produced by the gram-positive anaerobic bacterium Clostridium botulinum, acts by cleaving synaptosome-associated protein-25 (SNAP-25), an essential component of the presynaptic neuronal membrane that is necessary for fusion with the membrane proteins of neurotransmitter-containing vesicles. Recent studies have highlighted the efficacy of BTX-A in treating chronic pain conditions, including lower back pain, chronic neck pain, neuropathic pain, and trigeminal neuralgia, particularly when patients are unresponsive to traditional painkillers. This review focuses on the analgesic effects of BTX-A in various chronic pain conditions, with a particular emphasis on the orofacial region. HIGHLIGHT This review focuses on the mechanisms by which BTX-A induces analgesia in patients with inflammatory and temporomandibular joint pain. This review also highlights the fact that BTX-A can effectively manage neuropathic pain and trigeminal neuralgia, which are difficult-to-treat chronic pain conditions. Herein, we present a comprehensive assessment of the central analgesic effects of BTX-A and a discussion of its various applications in clinical dental practice. CONCLUSION BTX-A is an approved treatment option for various chronic pain conditions. Although there is evidence of axonal transport of BTX-A from peripheral to central endings in motor neurons, the precise mechanism underlying its pain-modulating effects remains unclear. This review discusses the evidence supporting the effectiveness of BTX-A in controlling chronic pain conditions in the orofacial region. BTX-A is a promising therapeutic agent for treating pain conditions that do not respond to conventional analgesics.
Collapse
Affiliation(s)
- Yu-Mi Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jo-Young Son
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Dong-Kuk Ahn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
23
|
Jaleh Z, Rahimi B, Shahrezaei A, Sohani M, Sagen J, Nasirinezhad F. Exploring the Therapeutic Potential of Mesenchymal Stem Cells-derived conditioned medium: An In-depth Analysis of Pain Alleviation, Spinal CCL2 Levels, and Oxidative Stress. Cell Biochem Biophys 2024; 82:2977-2988. [PMID: 39031248 DOI: 10.1007/s12013-024-01410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 07/22/2024]
Abstract
Neuropathic pain, a debilitating condition, remains a significant challenge due to the lack of effective therapeutic solutions. This study aimed to evaluate the potential of mesenchymal stromal cell (MSC)-derived conditioned medium in alleviating neuropathic pain induced by sciatic nerve compression injury in adult male rats. Forty Wistar rats were randomly assigned to four groups: control, nerve injury, nerve injury with intra-neural injection of conditioned medium, and nerve injury with intra-neural injection of culture medium. Following sciatic nerve compression, the respective groups received either 10 µl of conditioned medium from amniotic fluid-derived stem cells or an equal volume of control culture medium. Behavioral tests for cold allodynia, mechanical allodynia, and thermal hyperalgesia were conducted, and the spinal cord was analyzed using Western Blot and oxidative stress assays. The behavioral experiments showed a decrease in mechanical hyperalgesia and cold allodynia in the group receiving conditioned medium compared to the injury group and the control medium group. Western blot data revealed a decrease in the expression of the CCL2 protein and an increase in GAD65. Oxidative stress tests also showed increased levels of SOD and glutathione in conditioned media-treated animals compared to animals with nerve injury. The findings suggest that conditioned medium derived from amniotic fluid-derived stem cells can effectively reduce neuropathic pain, potentially through the provision of supportive factors that mitigate oxidative stress and inflammation in the spinal cord.
Collapse
Affiliation(s)
- Zeinab Jaleh
- Department of Physiology, School of Medicine, Iran Univerisity of Medical Sciences, Tehran, Iran
| | - Behnaz Rahimi
- Department of Physiology, School of Medicine, Iran Univerisity of Medical Sciences, Tehran, Iran
| | - Aidin Shahrezaei
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sohani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jacqueline Sagen
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Farinaz Nasirinezhad
- Department of Physiology, School of Medicine, Iran Univerisity of Medical Sciences, Tehran, Iran.
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Center of Experimental and Comparative Study, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Secondulfo C, Mazzeo F, Pastorino GMG, Vicidomini A, Meccariello R, Operto FF. Opioid and Cannabinoid Systems in Pain: Emerging Molecular Mechanisms and Use in Clinical Practice, Health, and Fitness. Int J Mol Sci 2024; 25:9407. [PMID: 39273354 PMCID: PMC11394805 DOI: 10.3390/ijms25179407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Pain is an unpleasant sensory and emotional experience. Adequate pain control is often challenging, particularly in patients with chronic pain. Despite advances in pain management, drug addiction, overtreatment, or substance use disorders are not rare. Hence the need for further studies in the field. The substantial progress made over the last decade has revealed genes, signalling pathways, molecules, and neuronal networks in pain control thus opening new clinical perspectives in pain management. In this respect, data on the epigenetic modulation of opioid and cannabinoid receptors, key actors in the modulation of pain, offered new perspectives to preserve the activity of opioid and endocannabinoid systems to increase the analgesic efficacy of opioid- and cannabinoid-based drugs. Similarly, upcoming data on cannabidiol (CBD), a non-psychoactive cannabinoid in the marijuana plant Cannabis sativa, suggests analgesic, anti-inflammatory, antioxidant, anticonvulsivant and ansiolitic effects and supports its potential application in clinical contexts such as cancer, neurodegeneration, and autoimmune diseases but also in health and fitness with potential use in athletes. Hence, in this review article, we summarize the emerging epigenetic modifications of opioid and cannabinoid receptors and focus on CBD as an emerging non-psychoactive cannabinoid in pain management in clinical practice, health, and fitness.
Collapse
Affiliation(s)
- Carmine Secondulfo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Filomena Mazzeo
- Department of Economics, Law, Cybersecurity and Sports Sciences, University of Naples Parthenope, 80035 Nola, Italy
| | - Grazia Maria Giovanna Pastorino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
- Child and Adolescent Neuropsychiatry Unit, "San Giovanni di Dio e Ruggi d'Aragona" Hospital, 84131 Salerno, Italy
| | - Antonella Vicidomini
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Rosaria Meccariello
- Department of Medical, Human Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy
| | - Francesca Felicia Operto
- Department of Science of Health, School of Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
25
|
Zoltick AH, Mann S, Coetzee JF. Pain pathophysiology and pharmacology of cattle: how improved understanding can enhance pain prevention, mitigation, and welfare. FRONTIERS IN PAIN RESEARCH 2024; 5:1396992. [PMID: 39258013 PMCID: PMC11385012 DOI: 10.3389/fpain.2024.1396992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/29/2024] [Indexed: 09/12/2024] Open
Abstract
Globally, humans rely on cattle for food production; however, there is rising societal concern surrounding the welfare of farm animals. From a young age, cattle raised for dairy and beef production experience pain caused by routine management procedures and common disease conditions. The fundamental mechanisms, nociceptive pathways, and central nervous system structures required for pain perception are highly conserved among mammalian species. However, there are limitations to a comparative approach to pain assessment due to interspecies differences in the expression of pain. The stoicism of prey species may impede pain identification and lead to the assumption that cattle lack pain sensitivity. This highlights the importance of establishing validated bovine-specific indicators of pain-a prerequisite for evidence-based pain assessment and mitigation. Our first objective is to provide an overview of pain pathophysiology to illustrate the importance of targeted analgesia in livestock medicine and the negative welfare outcomes associated with unmitigated pain. This is followed by a review of available analgesics, the regulations governing their use, and barriers to implementation of on-farm pain management. We then investigate the current research undertaken to evaluate the pain response in cattle-a critical aspect of the drug approval process. With an emphasis on emerging research in animal cognition and pain pathology, we conclude by discussing the significant influence that pain has on cattle welfare and areas where further research and modified practices are indicated.
Collapse
Affiliation(s)
- Abigale H Zoltick
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA, United States
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, United States
| | - Sabine Mann
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, United States
| | - Johann F Coetzee
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
26
|
Wong CE, Liu W, Huang CC, Lee PH, Huang HW, Chang Y, Lo HT, Chen HF, Kuo LC, Lee JS. Sciatic nerve stimulation alleviates neuropathic pain and associated neuroinflammation in the dorsal root ganglia in a rodent model. J Transl Med 2024; 22:770. [PMID: 39143617 PMCID: PMC11325705 DOI: 10.1186/s12967-024-05573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Satellite glial cells (SGCs) in the dorsal root ganglia (DRG) play a pivotal role in the formation of neuropathic pain (NP). Sciatic nerve stimulation (SNS) neuromodulation was reported to alleviate NP and reduce neuroinflammation. However, the mechanisms underlying SNS in the DRG remain unclear. This study aimed to elucidate the mechanism of electric stimulation in reducing NP, focusing on the DRG. METHODS L5 nerve root ligation (NRL) NP rat model was studied. Ipsilateral SNS performed 1 day after NRL. Behavioral tests were performed to assess pain phenotypes. NanoString Ncounter technology was used to explore the differentially expressed genes and cellular pathways. Activated SGCs were characterized in vivo and in vitro. The histochemical alterations of SGCs, macrophages, and neurons in DRG were examined in vivo on post-injury day 8. RESULTS NRL induced NP behaviors including decreased pain threshold and latency on von Frey and Hargreaves tests. We found that following nerve injury, SGCs were hyperactivated, neurotoxic and had increased expression of NP-related ion channels including TRPA1, Cx43, and SGC-neuron gap junctions. Mechanistically, nerve injury induced reciprocal activation of SGCs and M1 macrophages via cytokines including IL-6, CCL3, and TNF-α mediated by the HIF-1α-NF-κB pathways. SNS suppressed SGC hyperactivation, reduced the expression of NP-related ion channels, and induced M2 macrophage polarization, thereby alleviating NP and associated neuroinflammation in the DRG. CONCLUSIONS NRL induced hyperactivation of SGCs, which had increased expression of NP-related ion channels. Reciprocal activation of SGCs and M1 macrophages surrounding the primary sensory neurons was mediated by the HIF-1α and NF-κB pathways. SNS suppressed SGC hyperactivation and skewed M1 macrophage towards M2. Our findings establish SGC activation as a crucial pathomechanism in the gliopathic alterations in NP, which can be modulated by SNS neuromodulation.
Collapse
Affiliation(s)
- Chia-En Wong
- Division of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Wentai Liu
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Department of Electrical and Computer Engineering, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Chi-Chen Huang
- Division of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Po-Hsuan Lee
- Division of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Han-Wei Huang
- Department of Neurology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yu Chang
- Division of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Hsin-Tien Lo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Fang Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Chieh Kuo
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jung-Shun Lee
- Division of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan.
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
27
|
Raissi-Dehkordi N, Raissi-Dehkordi N, Hajikarimloo B, Khakpai F, Zarrindast MR. Potentiation of Imipramine-Induced Anti-hyperalgesic and Anti-Nociceptive Effects by Citicoline in the Sciatic Nerve Ligated Mice. ARCHIVES OF IRANIAN MEDICINE 2024; 27:456-464. [PMID: 39306718 PMCID: PMC11416695 DOI: 10.34172/aim.28772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/12/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Peripheral neuropathic pain is a result of damage/illness of the peripheral nerves. The mechanisms caused by its pathophysiology are not completely understood. METHODS Imipramine is a tricyclic antidepressant that is sometimes used to treat neuropathic pain. Moreover, citicoline is considered a novel adjuvant for painful disorders such as neuropathic pain. So, a possible interaction between imipramine and citicoline on pain behavior was examined in nerve-ligated mice using tail-flick and hot plate tests. RESULTS The results indicated that induction of neuropathic pain by sciatic nerve ligation caused hyperalgesia in nerve-ligated mice. On the other hand, intraperitoneal (i.p.) administration of citicoline (50, 75, and 100 mg/kg), and imipramine (2.5 and 5 mg/kg) induced anti-hyperalgesic and anti-nociceptive effects in nerve-ligated mice. Furthermore, citicoline potentiated the anti-hyperalgesic and anti-nociceptive effects of imipramine when they were co-administrated in nerve-ligated mice. Interestingly, there was an additive effect between imipramine and citicoline upon induction of anti-hyperalgesic and anti-nociceptive effects in nerve-ligated mice. CONCLUSION Therefore, it can be concluded that citicoline (as an adjuvant substance) enhanced the efficacy of imipramine for the modulation of pain behavior in nerve-ligated mice.
Collapse
Affiliation(s)
| | | | - Bardia Hajikarimloo
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Moammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| |
Collapse
|
28
|
Canlı K, Van Oijen J, Van Oosterwijck J, Meeus M, Van Oosterwijck S, De Meulemeester K. Influence of sensory retraining on cortical reorganization in peripheral neuropathy: A systematic review. PM R 2024; 16:888-907. [PMID: 38155585 DOI: 10.1002/pmrj.13126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/19/2023] [Accepted: 12/14/2023] [Indexed: 12/30/2023]
Abstract
OBJECTIVE This study systematically reviewed the literature about sensory retraining effect in comparison to other rehabilitative techniques on cortical reorganization in patients with peripheral neuropathic pain. TYPE: Systematic review. LITERATURE SURVEY After an electronic search of PubMed, Web of Science, and Embase, risk of bias was assessed using the revised Cochrane risk of bias tool for randomized controlled trials and the ROBINS-1 (Risk of bias in non-randomized studies-of interventions) for non-randomized studies of intervention. METHODOLOGY The strength of conclusion was determined using the evidence-based guideline development approach. SYNTHESIS Limited evidence indicates a higher increase in cortical inhibition and a higher reduction in cortical activation during a motor task of the affected hemisphere after graded motor imagery compared to wait-list. Higher reductions in map volume (total excitability of the cortical representation) of the affected hemisphere after peripheral electrical stimulation (PES) were observed when compared to transcranial direct current stimulation (tDCS) or to sham treatment with limited evidence. No other differences in cortical excitability and representation of the affected and non-affected hemisphere were observed when comparing mirror therapy with sham therapy or tDCS, PES with sham therapy or tDCS, and graded motor imagery with wait-list. CONCLUSIONS Graded motor imagery and PES result in higher cortical excitability reductions of the affected hemisphere compared to wait-list, tDCS and sham treatment, respectively.
Collapse
Affiliation(s)
- Kübra Canlı
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Türkiye
| | - Joris Van Oijen
- Department of Rehabilitation Sciences, Spine, Pain and Head Research Unit Ghent, Ghent University, Ghent, Belgium
| | - Jessica Van Oosterwijck
- Department of Rehabilitation Sciences, Spine, Pain and Head Research Unit Ghent, Ghent University, Ghent, Belgium
- Pain in Motion International Research Group, Brussels, Belgium
| | - Mira Meeus
- Department of Rehabilitation Sciences, Spine, Pain and Head Research Unit Ghent, Ghent University, Ghent, Belgium
- Pain in Motion International Research Group, Brussels, Belgium
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerpen, Belgium
| | - Sophie Van Oosterwijck
- Department of Rehabilitation Sciences, Spine, Pain and Head Research Unit Ghent, Ghent University, Ghent, Belgium
- Pain in Motion International Research Group, Brussels, Belgium
- Research Foundation-Flanders (FWO), Brussels, Belgium
| | - Kayleigh De Meulemeester
- Department of Rehabilitation Sciences, Spine, Pain and Head Research Unit Ghent, Ghent University, Ghent, Belgium
- Pain in Motion International Research Group, Brussels, Belgium
| |
Collapse
|
29
|
Salib AMN, Crane MJ, Jamieson AM, Lipscombe D. Peripheral Ca V2.2 channels in skin regulate prolonged heat hypersensitivity during neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603149. [PMID: 39071304 PMCID: PMC11275762 DOI: 10.1101/2024.07.13.603149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Neuroinflammation can lead to chronic maladaptive pain affecting millions of people worldwide. Neurotransmitters, cytokines, and ion channels are implicated in neuro-immune cell signaling but their roles in specific behavioral responses are not fully elucidated. Voltage-gated CaV2.2 channel activity in skin controls rapid and transient heat hypersensitivity induced by intradermal capsaicin via IL-1α cytokine signaling. CaV2.2 channels are not, however, involved in mechanical hypersensitivity that developed in the same animal model. Here, we show that CaV2.2 channels are also critical for heat hypersensitivity induced by the intradermal (id) Complete Freund's Adjuvant (CFA) model of chronic neuroinflammation that involves ongoing cytokine signaling for days. Ongoing CFA-induced cytokine signaling cascades in skin lead to pronounced edema, and hypersensitivity to sensory stimuli. Peripheral CaV2.2 channel activity in skin is required for the full development and week-long time course of heat hypersensitivity induced by id CFA. CaV2.2 channels, by contrast, are not involved in paw edema and mechanical hypersensitivity. CFA induced increases in cytokines in hind paws including IL-6 which was dependent on CaV2.2 channel activity. Using IL-6 specific neutralizing antibodies, we show that IL-6 contributes to heat hypersensitivity and, neutralizing both IL-1α and IL-6 was even more effective at reducing the magnitude and duration of CFA-induced heat hypersensitivity. Our findings demonstrate a functional link between CaV2.2 channel activity and the release of IL-6 in skin and show that CaV2.2 channels have a privileged role in the induction and maintenance of heat hypersensitivity during chronic forms of neuroinflammation in skin.
Collapse
Affiliation(s)
- Anne-Mary N Salib
- Department of Neuroscience & the Carney Institute for Brain Science Brown University, Providence, RI 02912, USA
| | - Meredith J Crane
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Amanda M Jamieson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Diane Lipscombe
- Department of Neuroscience & the Carney Institute for Brain Science Brown University, Providence, RI 02912, USA
| |
Collapse
|
30
|
Wu Y, Lin Y, Zhang M, He K, Tian G. Causal association between circulating inflammatory markers and sciatica development: a Mendelian randomization study. Front Neurol 2024; 15:1380719. [PMID: 39015317 PMCID: PMC11250389 DOI: 10.3389/fneur.2024.1380719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/03/2024] [Indexed: 07/18/2024] Open
Abstract
Background This research explores the causal association between circulating inflammatory markers and the development of sciatica, a common and debilitating condition. While previous studies have indicated that inflammation may be a factor in sciatica, but a thorough genetic investigation to determine a cause-and-effect relationship has not yet been carried out. Gaining insight into these interactions may uncover novel treatment targets. Methods We utilized data from the OpenGWAS database, incorporating a large European cohort of 484,598 individuals, including 4,549 sciatica patients. Our study focused on 91 distinct circulating inflammatory markers. Genetic variations were employed as instrumental variables (IVs) for these markers. The analysis was conducted using inverse variance weighting (IVW) as the primary method, supplemented by weighted median-based estimation. Validation of the findings was conducted by sensitivity studies, utilizing the R software for statistical computations. Results The analysis revealed that 52 out of the 91 inflammatory markers studied showed a significant causal association with the risk of developing sciatica. Key markers like CCL2, monocyte chemotactic protein-4, and protein S100-A12 demonstrated a positive correlation. In addition, there was no heterogeneity or horizontal pleiotropy in these results. Interestingly, a reverse Mendelian randomization analysis also indicated potential causative effects of sciatica on certain inflammatory markers, notably Fms-related tyrosine kinase 3 ligands. Discussion The study provides robust evidence linking specific circulating inflammatory markers with the risk of sciatica, highlighting the role of inflammation in its pathogenesis. These findings could inform future research into targeted treatments and enhance our understanding of the biological mechanisms underlying sciatica.
Collapse
Affiliation(s)
- Yang Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Lin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mengpei Zhang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Ke He
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guihua Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
31
|
Swanson KA, Nguyen KL, Gupta S, Ricard J, Bethea JR. TNFR1/p38αMAPK signaling in Nex + supraspinal neurons regulates estrogen-dependent chronic neuropathic pain. Brain Behav Immun 2024; 119:261-271. [PMID: 38570102 PMCID: PMC11162907 DOI: 10.1016/j.bbi.2024.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024] Open
Abstract
Upregulation of soluble tumor necrosis factor (sTNF) cytokine signaling through TNF receptor 1 (TNFR1) and subsequent neuronal hyperexcitability are observed in both animal models and human chronic neuropathic pain (CNP). Previously, we have shown that estrogen modulates sTNF/TNFR1 signaling in CNP, which may contribute to female prevalence of CNP. The estrogen-dependent role of TNFR1-mediated supraspinal neuronal circuitry in CNP remains unknown. In this study, we interrogated the intersect between supraspinal TNFR1 mediated neuronal signaling and sex specificity by selectively removing TNFR1 in Nex + neurons in adult mice (NexCreERT2::TNFR1f/f). We determined that mechanical hypersensitivity induced by chronic constriction injury (CCI) decreases over time in males, but not in females. Subsequently, we investigated two downstream pathways, p38MAPK and NF-κB, important in TNFR1 signaling and injury response. We detected p38MAPK and NF-κB activation in male cortical tissue; however, p38MAPK phosphorylation was reduced in NexCreERT2::TNFR1f/f males. We observed a similar recovery from acute pain in male mice following CCI when p38αMAPK was knocked out of supraspinal Nex + neurons (NexCreERT2::p38αMAPKf/f), while chronic pain developed in female mice. To explore the intersection between estrogen and inflammation in CNP we used a combination therapy of an estrogen receptor β (ER β) inhibitor with a sTNF/TNFR1 or general p38MAPK inhibitor. We determined both combination therapies lends therapeutic relief to females following CCI comparable to the response evaluated in male mice. These data suggest that TNFR1/p38αMAPK signaling in Nex + neurons in CNP is male-specific and lack of therapeutic efficacy following sTNF inhibition in females is due to ER β interference. These studies highlight sex-specific differences in pathways important to pain chronification and elucidate potential therapeutic strategies that would be effective in both sexes.
Collapse
Affiliation(s)
- Kathryn A Swanson
- Department of Biology, Drexel University, Papadakis Integrated Science Building, Philadelphia, PA 19104, USA
| | - Kayla L Nguyen
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Ross Hall, 2300 I (Eye) St NW, Rm.530A, Washington, D.C 20052, USA.
| | - Shruti Gupta
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Ross Hall, 2300 I (Eye) St NW, Rm.530A, Washington, D.C 20052, USA
| | - Jerome Ricard
- Department of Biology, Drexel University, Papadakis Integrated Science Building, Philadelphia, PA 19104, USA
| | - John R Bethea
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Ross Hall, 2300 I (Eye) St NW, Rm.530A, Washington, D.C 20052, USA.
| |
Collapse
|
32
|
Hai-Na Z, Jun-Jie J, Guang-Meng X. Peptides derived from growth factors: Exploring their diverse impact from antimicrobial properties to neuroprotection. Biomed Pharmacother 2024; 176:116830. [PMID: 38824833 DOI: 10.1016/j.biopha.2024.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
Growth factor-derived peptides are bioactive molecules that play a crucial role in various physiological processes within the human body. Over the years, extensive research has revealed their diverse applications, ranging from antimicrobial properties to their potential in neuroprotection and treating various diseases. These peptides exhibit innate immune responses and have been found to possess potent antimicrobial properties against a wide range of pathogens. Growth factor-derived peptides have demonstrated the ability to promote neuronal survival, prevent cell death, and stimulate neural regeneration. As a result, they hold immense promise in the treatment of various neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, as well as in the management of traumatic brain injuries. Moreover, growth factor-derived peptides have shown potential for supporting tissue repair and wound healing processes. By enhancing cell proliferation and migration, these peptides contribute to the regeneration of damaged tissues and promote a more efficient healing response. The applications of growth factor-derived peptides extend beyond their therapeutic potential in health; they also have a role in various disease conditions. For example, researchers have explored their influence on cancer cells, where some peptides have demonstrated anti-cancer properties, inhibiting tumor growth and promoting apoptosis in cancer cells. Additionally, their immunomodulatory properties have been investigated for potential applications in autoimmune disorders. Despite the immense promise shown by growth factor-derived peptides, some challenges need to be addressed. Nevertheless, ongoing research and advancements in biotechnology offer promising avenues to overcome these obstacles. The review summarizes the foundational biology of growth factors and the intricate signaling pathways in various physiological processes as well as diseases such as cancer, neurodegenerative disorders, cardiovascular ailments, and metabolic syndromes.
Collapse
Affiliation(s)
- Zhang Hai-Na
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun 130000, PR China
| | - Jiang Jun-Jie
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun 130000, PR China
| | - Xu Guang-Meng
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, PR China.
| |
Collapse
|
33
|
Lister KC, Wong C, Uttam S, Parisien M, Stecum P, Brown N, Cai W, Hooshmandi M, Gu N, Amiri M, Beaudry F, Jafarnejad SM, Tavares-Ferreira D, Inturi NN, Mazhar K, Zhao HT, Fitzsimmons B, Gkogkas CG, Sonenberg N, Price TJ, Diatchenko L, Atlasi Y, Mogil JS, Khoutorsky A. Translational control in the spinal cord regulates gene expression and pain hypersensitivity in the chronic phase of neuropathic pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600539. [PMID: 38979173 PMCID: PMC11230214 DOI: 10.1101/2024.06.24.600539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sensitization of spinal nociceptive circuits plays a crucial role in neuropathic pain. This sensitization depends on new gene expression that is primarily regulated via transcriptional and translational control mechanisms. The relative roles of these mechanisms in regulating gene expression in the clinically relevant chronic phase of neuropathic pain are not well understood. Here, we show that changes in gene expression in the spinal cord during the chronic phase of neuropathic pain are substantially regulated at the translational level. Downregulating spinal translation at the chronic phase alleviated pain hypersensitivity. Cell-type-specific profiling revealed that spinal inhibitory neurons exhibited greater changes in translation after peripheral nerve injury compared to excitatory neurons. Notably, increasing translation selectively in all inhibitory neurons or parvalbumin-positive (PV+) interneurons, but not excitatory neurons, promoted mechanical pain hypersensitivity. Furthermore, increasing translation in PV+ neurons decreased their intrinsic excitability and spiking activity, whereas reducing translation in spinal PV+ neurons prevented the nerve injury-induced decrease in excitability. Thus, translational control mechanisms in the spinal cord, particularly in inhibitory neurons, play a role in mediating neuropathic pain hypersensitivity.
Collapse
Affiliation(s)
- Kevin C. Lister
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Calvin Wong
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Sonali Uttam
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Marc Parisien
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Patricia Stecum
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Nicole Brown
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Weihua Cai
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Mehdi Hooshmandi
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Ning Gu
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Mehdi Amiri
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Francis Beaudry
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre de recherche sur le cerveau et l’apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, BT9 7AE, UK
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, 75080
| | - Nikhil Nageshwar Inturi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, 75080
| | - Khadijah Mazhar
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, 75080
| | | | | | - Christos G. Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, 75080
| | - Luda Diatchenko
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Yaser Atlasi
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, BT9 7AE, UK
| | - Jeffrey S. Mogil
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Psychology, Faculty of Science, McGill University, Montreal, QC, Canada
| | - Arkady Khoutorsky
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
34
|
Alalami K, Goff J, Grimson H, Martin O, McDonald E, Mirza T, Mistry D, Ofodile A, Raja S, Shaker T, Sleibi D, Forget P. Does Topical Capsaicin Affect the Central Nervous System in Neuropathic Pain? A Narrative Review. Pharmaceuticals (Basel) 2024; 17:842. [PMID: 39065693 PMCID: PMC11279538 DOI: 10.3390/ph17070842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Research has been conducted investigating the neuronal pathways responsible for the generation of chronic neuropathic pain, including the components of it in conditions such as chronic post-surgical pain, phantom limb pain, and cluster headaches. Forming part of the management of such conditions, capsaicin as a molecule has proven effective. This review has investigated the central nervous system modifications exhibited in such conditions and the pharmacological mechanisms of capsaicin relevant to this. The current paradigm for explaining topical capsaicin-induced analgesia is that TRPV1-mediated calcium ion influx induces calpain, in turn causing axonal ablation and functional defunctionalisation in the PNS (Peripheral Nervous System). Demonstrated through the analysis of existing data, this review demonstrates the changes seen in the CNS (Central Nervous System) in chronic neuropathic pain, as well as some of the evidence for capsaicin modulation on the CNS. Further supporting this, the specific molecular mechanisms of capsaicin-induced analgesia will also be explored, including the action of TRPV1, as well as discussing the further need for clinical research into this area of uncertainty due to the limited specific data with suitable parameters. Further research this review identified as potentially useful in this field included fMRI (functional Magnetic Resonance Imaging) studies, though more specific observational studies of patients who have already been administered capsaicin as a current treatment may prove helpful in studying the modification of the CNS in the long term.
Collapse
Affiliation(s)
- Kareem Alalami
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Polwarth Building, Foresterhill Health Campus, Aberdeen AB24 3FX, UK; (K.A.); (D.S.)
| | - Jenna Goff
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Polwarth Building, Foresterhill Health Campus, Aberdeen AB24 3FX, UK; (K.A.); (D.S.)
| | - Hannah Grimson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Polwarth Building, Foresterhill Health Campus, Aberdeen AB24 3FX, UK; (K.A.); (D.S.)
| | - Oliver Martin
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Polwarth Building, Foresterhill Health Campus, Aberdeen AB24 3FX, UK; (K.A.); (D.S.)
| | - Eloise McDonald
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Polwarth Building, Foresterhill Health Campus, Aberdeen AB24 3FX, UK; (K.A.); (D.S.)
| | - Thonima Mirza
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Polwarth Building, Foresterhill Health Campus, Aberdeen AB24 3FX, UK; (K.A.); (D.S.)
| | - Dhruvi Mistry
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Polwarth Building, Foresterhill Health Campus, Aberdeen AB24 3FX, UK; (K.A.); (D.S.)
| | - Adanma Ofodile
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Polwarth Building, Foresterhill Health Campus, Aberdeen AB24 3FX, UK; (K.A.); (D.S.)
| | - Sara Raja
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Polwarth Building, Foresterhill Health Campus, Aberdeen AB24 3FX, UK; (K.A.); (D.S.)
| | - Tooba Shaker
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Polwarth Building, Foresterhill Health Campus, Aberdeen AB24 3FX, UK; (K.A.); (D.S.)
| | - Danah Sleibi
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Polwarth Building, Foresterhill Health Campus, Aberdeen AB24 3FX, UK; (K.A.); (D.S.)
| | - Patrice Forget
- Epidemiology Group, Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Polwarth Building, Foresterhill Health Campus, Aberdeen AB25 2ZN, UK
- Department of Anaesthesia, NHS Grampian, Aberdeen AB25 2ZN, UK
- Pain and Opioids after Surgery (PANDOS) Research Groups, European Society of Anaesthesiology and Intensive Care, 1000 Brussels, Belgium
- Anesthesia Critical Care, Emergency and Pain Medicine Division, 30900 Nîmes University Hospital, IMAGINE UR UM 103, Montpellier University, 30900 Nîmes, France
| |
Collapse
|
35
|
He WC, Hou SL, Wang KB, Xu N, Li K, Xiong T, Luo J. Treadmill running on neuropathic pain: via modulation of neuroinflammation. Front Mol Neurosci 2024; 17:1345864. [PMID: 38989156 PMCID: PMC11233809 DOI: 10.3389/fnmol.2024.1345864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/24/2024] [Indexed: 07/12/2024] Open
Abstract
Neuropathic pain is a type of chronic pain caused by an injury or somatosensory nervous system disease. Drugs and exercise could effectively relieve neuropathic pain, but no treatment can completely stop neuropathic pain. The integration of exercise into neuropathic pain management has attracted considerable interest in recent years, and treadmill training is the most used among exercise therapies. Neuropathic pain can be effectively treated if its mechanism is clarified. In recent years, the association between neuroinflammation and neuropathic pain has been explored. Neuroinflammation can trigger proinflammatory cytokines, activate microglia, inhibit descending pain modulatory systems, and promote the overexpression of brain-derived neurotrophic factor, which lead to the generation of neuropathic pain and hypersensitivity. Treadmill exercise can alleviate neuropathic pain mainly by regulating neuroinflammation, including inhibiting the activity of pro-inflammatory factors and over activation of microglia in the dorsal horn, regulating the expression of mu opioid receptor expression in the rostral ventromedial medulla and levels of γ-aminobutyric acid to activate the descending pain modulatory system and the overexpression of brain-derived neurotrophic factor. This article reviews and summarizes research on the effect of treadmill exercise on neuropathic pain and its role in the regulation of neuroinflammation to explore its benefits for neuropathic pain treatment.
Collapse
Affiliation(s)
- Wei-Chun He
- Department of Rehabilitation Medicine, General Hospital of NingXia Medical University, Yinchuan, China
| | - Shuang-Long Hou
- Department of Sport Rehabilitation, Xi’an Physical Education University, Xi’an, China
| | - Kai-Bin Wang
- Department of Rehabilitation Medicine, General Hospital of NingXia Medical University, Yinchuan, China
| | - Ning Xu
- Department of Rehabilitation Medicine, General Hospital of NingXia Medical University, Yinchuan, China
| | - Ke Li
- Department of Rehabilitation Medicine, General Hospital of NingXia Medical University, Yinchuan, China
| | - Ting Xiong
- Department of Rehabilitation Medicine, General Hospital of NingXia Medical University, Yinchuan, China
| | - Jing Luo
- Department of Rehabilitation Medicine, General Hospital of NingXia Medical University, Yinchuan, China
- Department of Sport Rehabilitation, Xi’an Physical Education University, Xi’an, China
| |
Collapse
|
36
|
Ferron L, Harding EK, Gandini MA, Brideau C, Stys PK, Zamponi GW. Functional remodeling of presynaptic voltage-gated calcium channels in superficial layers of the dorsal horn during neuropathic pain. iScience 2024; 27:109973. [PMID: 38827405 PMCID: PMC11140212 DOI: 10.1016/j.isci.2024.109973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024] Open
Abstract
N- and P/Q-type voltage-gated Ca2+ channels are critical for synaptic transmission. While their expression is increased in the dorsal root ganglion (DRG) neuron cell bodies during neuropathic pain conditions, less is known about their synaptic remodeling. Here, we combined genetic tools with 2-photon Ca2+ imaging to explore the functional remodeling that occurs in central presynaptic terminals of DRG neurons during neuropathic pain. We imaged GCaMP6s fluorescence responses in an ex vivo spinal cord preparation from mice expressing GCaMP6s in Trpv1-Cre lineage nociceptors. We show that Ca2+ transient amplitude is increased in central terminals of these neurons after spared nerve injury, and that this increase is mediated by both N- and P/Q-type channels. We found that GABA-B receptor-dependent inhibition of Ca2+ transients was potentiated in the superficial layer of the dorsal horn. Our results provide direct evidence toward nerve injury-induced functional remodeling of presynaptic Ca2+ channels in Trpv1-lineage nociceptor terminals.
Collapse
Affiliation(s)
- Laurent Ferron
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Erika K. Harding
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Maria A. Gandini
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Craig Brideau
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Peter K. Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Gerald W. Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
37
|
Nyqvist L, Åkerstedt J, Thoreson O. Current trends in the medical treatment of neuropathic low back pain: a Swedish registry-based study of 1.7 million people. BMC Musculoskelet Disord 2024; 25:486. [PMID: 38902709 PMCID: PMC11191223 DOI: 10.1186/s12891-024-07599-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Low back pain, a common problem worldwide, causes more global disability than any other condition and is associated with high costs to society. This observational registry-based study describes the current trends in the medical treatment of neuropathic low back pain in the Swedish region of Västra Götaland, which has a population of 1.7 million. The study aims to; (1) identify the prevalence of neuropathic low back pain within the study population; (2) to explore the patterns of medical treatment utilization, including the prevalence and distribution of opioids (OG) and analgesics specified for neuropathic low back pain (NG) and (3) to evaluate the long-term trends and changes in medical treatment practice for neuropathic low back pain over the study period. METHODS This study includes a descriptive analysis of aggregated data extracted from the Swedish primary care registry VEGA and the pharmaceutical prescription registry Digitalis between the years 2017 and 2021. The data were stratified by year, age, gender, pharmaceutical code (ATC), and sub-diagnoses and presented as the prevalence of unique patients retrieving prescribed medication within six months before or after a registered diagnosis of neuropathic low back pain. The pharmaceutical codes were furthermore grouped into two groups depending on their mechanism of action; opioid group (OG) and neuropathic group (NG). RESULTS In all four diagnosis groups, more patients used opioid analgesics than neuropathic analgesics. The greatest difference between the opioid group and neuropathic group was in the lumbar spinal stenosis diagnosis group (67.1% vs. 40.6%), followed by the lumbar root canal stenosis diagnosis (65.9% vs. 44.2%), the nerve root and plexus compressions in intervertebral disc disorders diagnosis (57.5% vs. 40.8%), and lumbago with sciatica diagnosis (38.4% vs. 22.7%). CONCLUSIONS The trends suggest a general increase in the prescription rate and therefore patients' use of neuropathic analgesics for neuropathic pain associated with the studied diagnoses. However, opioid treatment remains the most common. The results indicate that the treatment for neuropathic low back pain needs to be improved.
Collapse
Affiliation(s)
- Linus Nyqvist
- Spine Unit, Department of Orthopedics, Umeå University Hospital, Umeå, Sweden
| | - Josefin Åkerstedt
- Spine Unit, Department of Orthopedics, Umeå University Hospital, Umeå, Sweden
- Department of Diagnostics and Intervention, Orthopedics and Spine Surgery, Umeå University, Umeå, Sweden
| | - Olof Thoreson
- Department of Orthopedics, Institute of Clinical Sciences at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Research and Development Primary Health Care Center, Gothenburg, Sweden.
| |
Collapse
|
38
|
Carrascosa AJ, Navarrete F, Saldaña R, García-Gutiérrez MS, Montalbán B, Navarro D, Gómez-Guijarro FM, Gasparyan A, Murcia-Sánchez E, Torregrosa AB, Pérez-Doblado P, Gutiérrez L, Manzanares J. Cannabinoid Analgesia in Postoperative Pain Management: From Molecular Mechanisms to Clinical Reality. Int J Mol Sci 2024; 25:6268. [PMID: 38892456 PMCID: PMC11172912 DOI: 10.3390/ijms25116268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Postoperative pain (POP) is a challenging clinical phenomenon that affects the majority of surgical patients and demands effective management to mitigate adverse outcomes such as persistent pain. The primary goal of POP management is to alleviate suffering and facilitate a seamless return to normal function for the patient. Despite compelling evidence of its drawbacks, opioid analgesia remains the basis of POP treatment. Novel therapeutic approaches rely on multimodal analgesia, integrating different pharmacological strategies to optimize efficacy while minimizing adverse effects. The recognition of the imperative role of the endocannabinoid system in pain regulation has prompted the investigation of cannabinoid compounds as a new therapeutic avenue. Cannabinoids may serve as adjuvants, enhancing the analgesic effects of other drugs and potentially replacing or at least reducing the dependence on other long-term analgesics in pain management. This narrative review succinctly summarizes pertinent information on the molecular mechanisms, clinical therapeutic benefits, and considerations associated with the plausible use of various cannabinoid compounds in treating POP. According to the available evidence, cannabinoid compounds modulate specific molecular mechanisms intimately involved in POP. However, only two of the eleven clinical trials that evaluated the efficacy of different cannabinoid interventions showed positive results.
Collapse
Affiliation(s)
- Antonio J. Carrascosa
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Raquel Saldaña
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - María S. García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Belinda Montalbán
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Fernando M. Gómez-Guijarro
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Elena Murcia-Sánchez
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Abraham B. Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Paloma Pérez-Doblado
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Luisa Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
39
|
Fan F, Yin T, Wu B, Zheng J, Deng J, Wu G, Hu S. The role of spinal neurons targeted by corticospinal neurons in central poststroke neuropathic pain. CNS Neurosci Ther 2024; 30:e14813. [PMID: 38887838 PMCID: PMC11183184 DOI: 10.1111/cns.14813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Central poststroke pain (CPSP) is one of the primary sequelae following stroke, yet its underlying mechanisms are poorly understood. METHODS By lesioning the lateral thalamic nuclei, we first established a CPSP model that exhibits mechanical and thermal hypersensitivity. Innocuous mechanical stimuli following the thalamic lesion evoked robust neural activation in somatosensory corticospinal neurons (CSNs), as well as in the deep dorsal horn, where low threshold mechanosensory afferents terminate. In this study, we used viral-based mapping and intersectional functional manipulations to decipher the role of somatosensory CSNs and their spinal targets in the CPSP pathophysiology. RESULTS We first mapped the post-synaptic spinal targets of lumbar innervating CSNs using an anterograde trans-synaptic AAV1-based strategy and showed these spinal interneurons were activated by innocuous tactile stimuli post-thalamic lesion. Functionally, tetanus toxin-based chronic inactivation of spinal neurons targeted by CSNs prevented the development of CPSP. Consistently, transient chemogenetic silencing of these neurons alleviated established mechanical pain hypersensitivity and innocuous tactile stimuli evoked aversion linked to the CPSP. In contrast, chemogenetic activation of these neurons was insufficient to induce robust mechanical allodynia typically observed in the CPSP. CONCLUSION The CSNs and their spinal targets are required but insufficient for the establishment of CPSP hypersensitivity. Our study provided novel insights into the neural mechanisms underlying CPSP and potential therapeutic interventions to treat refractory central neuropathic pain conditions.
Collapse
Affiliation(s)
- Fenqqi Fan
- Department of Pain, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Tianze Yin
- Department of Pain, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Biwu Wu
- Department of Neurosurgery and Neurocritical Care, Huashan HospitalFudan UniversityShanghaiChina
| | - Jiajun Zheng
- Department of Neurosurgery and Neurocritical Care, Huashan HospitalFudan UniversityShanghaiChina
| | - Jiaojiao Deng
- Department of Neurosurgery and Neurocritical Care, Huashan HospitalFudan UniversityShanghaiChina
| | - Gang Wu
- Department of Neurosurgery and Neurocritical Care, Huashan HospitalFudan UniversityShanghaiChina
| | - Shukun Hu
- Department of Neurosurgery and Neurocritical Care, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
40
|
Sumizono M, Yoshizato Y, Imai T, Tani A, Nakanishi K, Nojima N, Kakimoto S, Sakakima H. Effects of Pain Relief Through Minimal Exercise Intervention in a Rat Model of Neuropathic Pain. Cureus 2024; 16:e62897. [PMID: 39044893 PMCID: PMC11262913 DOI: 10.7759/cureus.62897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 07/25/2024] Open
Abstract
We aimed to minimize the frequency of exercise intervention and test the efficacy of pain relief. We also investigated the mechanism of neuropathic pain to determine the best frequency of pain relief for neuropathic pain. The chronic constriction injury (CCI) rat model was randomly divided into three groups: exercise (Ex), No-Ex, and normal. The treadmill exercise intervention was administered, and the 50% withdrawal threshold was assessed using the Von Frey Test. Ionized calcium-binding adaptor molecule 1 (IBA1), glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF), C-C chemokine receptor type 2 (CCR2), and tumor necrosis factor receptor-associated factor 6 (TRAF6) activation was determined through immunohistochemistry. In the brain, we examined the increased expression of β-endorphin/met-enkephalin in the gray matter of the midbrain aqueduct. Co-expression of CCR2, IBA1, and Neu-N was observed in the spinal cord dorsal horn by immunofluorescence staining. The 50% pain response threshold was significantly lower in the Ex group than in the No-Ex group at five weeks post-CCI, indicating a high analgesic effect. In the dorsal horn of the spinal cord, IBA1 and GFAP were significantly decreased in the Ex group than in the No-Ex group at five weeks post-CCI. However, no significant difference in activation of BDNF, CCR2, and TRAF6 was observed. In the midbrain, the Ex group showed a significant increase compared to the No-Ex group. In summary, our results suggest that in minimal-exercise intervention, neuropathic pain relief is achieved by activation of the descending pain inhibitory system in the midbrain.
Collapse
Affiliation(s)
- Megumi Sumizono
- Rehabilitation, Kyushu University of Nursing and Social Welfare, Tamana, JPN
- Physical Therapy, School of Health Sciences, Kagoshima University, Kagoshima, JPN
| | - Yushin Yoshizato
- Rehabilitation, Kyushu University of Nursing and Social Welfare, Tamana, JPN
| | - Takaki Imai
- Rehabilitation, Kyushu University of Nursing and Social Welfare, Tamana, JPN
| | - Akira Tani
- Physical Therapy, School of Health Sciences, Kagoshima University, Kagoshima, JPN
| | - Kazuki Nakanishi
- Physical Therapy, School of Health Sciences, Kagoshima University, Kagoshima, JPN
| | - Nao Nojima
- Physical Therapy, School of Health Sciences, Kagoshima University, Kagoshima, JPN
| | - Shogo Kakimoto
- Physical Therapy, School of Health Sciences, Kagoshima University, Kagoshima, JPN
| | - Harutoshi Sakakima
- Physical Therapy, School of Health Sciences, Kagoshima University, Kagoshima, JPN
| |
Collapse
|
41
|
Abstract
Neuropathic pain is a debilitating form of pain arising from injury or disease of the nervous system that affects millions of people worldwide. Despite its prevalence, the underlying mechanisms of neuropathic pain are still not fully understood. Dendritic spines are small protrusions on the surface of neurons that play an important role in synaptic transmission. Recent studies have shown that dendritic spines reorganize in the superficial and deeper laminae of the spinal cord dorsal horn with the development of neuropathic pain in multiple models of disease or injury. Given the importance of dendritic spines in synaptic transmission, it is possible that studying dendritic spines could lead to new therapeutic approaches for managing intractable pain. In this review article, we highlight the emergent role of dendritic spines in neuropathic pain, as well as discuss the potential for studying dendritic spines for the development of new therapeutics.
Collapse
Affiliation(s)
- Curtis A Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jared F King
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Marike L Reimer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sierra D Kauer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
42
|
Ferland S, Wang F, De Koninck Y, Ferrini F. An improved conflict avoidance assay reveals modality-specific differences in pain hypersensitivity across sexes. Pain 2024; 165:1304-1316. [PMID: 38277178 PMCID: PMC11090034 DOI: 10.1097/j.pain.0000000000003132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 01/27/2024]
Abstract
ABSTRACT Abnormal encoding of somatosensory modalities (ie, mechanical, cold, and heat) are a critical part of pathological pain states. Detailed phenotyping of patients' responses to these modalities have raised hopes that analgesic treatments could one day be tailored to a patient's phenotype. Such precise treatment would require a profound understanding of the underlying mechanisms of specific pain phenotypes at molecular, cellular, and circuitry levels. Although preclinical pain models have helped in that regard, the lack of a unified assay quantifying detailed mechanical, cold, and heat pain responses on the same scale precludes comparing how analgesic compounds act on different sensory phenotypes. The conflict avoidance assay is promising in that regard, but testing conditions require validation for its use with multiple modalities. In this study, we improve upon the conflict avoidance assay to provide a validated and detailed assessment of all 3 modalities within the same animal, in mice. We first optimized testing conditions to minimize the necessary amount of training and to reduce sex differences in performances. We then tested what range of stimuli produce dynamic stimulus-response relationships for different outcome measures in naive mice. We finally used this assay to show that nerve injury produces modality-specific sex differences in pain behavior. Our improved assay opens new avenues to study the basis of modality-specific abnormalities in pain behavior.
Collapse
Affiliation(s)
| | - Feng Wang
- CERVO Brain Research Centre, Québec, QC, Canada
- Faculty of Dentistry, Université Laval, Québec, QC, Canada
| | - Yves De Koninck
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Francesco Ferrini
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
43
|
Wang H, Zuo W, Feng X, Huo X, Liang Y, Wang B, Sharma D, Li X, Yasin B, Ye JH, Hu H, Tao YX. ESRRG-controlled downregulation of KCNN1 in primary sensory neurons is required for neuropathic pain. JCI Insight 2024; 9:e180085. [PMID: 38912580 PMCID: PMC11383585 DOI: 10.1172/jci.insight.180085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/02/2024] [Indexed: 06/25/2024] Open
Abstract
Peripheral nerve injury-induced neuronal hyperactivity in the dorsal root ganglion (DRG) participates in neuropathic pain. The calcium-activated potassium channel subfamily N member 1 (KCNN1) mediates action potential afterhyperpolarization (AHP) and gates neuronal excitability. However, the specific contribution of DRG KCNN1 to neuropathic pain is not yet clear. We report that chronic constriction injury (CCI) of the unilateral sciatic nerve or unilateral ligation of the fourth lumbar nerve produced the downregulation of Kcnn1 mRNA and KCNN1 protein in the injured DRG. This downregulation was partially attributed to a decrease in DRG estrogen-related receptor gamma (ESRRG), a transcription factor, which led to reduced binding to the Kcnn1 promoter. Rescuing this downregulation prevented CCI-induced decreases in total potassium voltage currents and AHP currents, reduced excitability in the injured DRG neurons, and alleviated CCI-induced development and maintenance of nociceptive hypersensitivities, without affecting locomotor function and acute pain. Mimicking the CCI-induced DRG KCNN1 downregulation resulted in augmented responses to mechanical, heat, and cold stimuli in naive mice. Our findings indicate that ESRRG-controlled downregulation of DRG KCNN1 is likely essential for the development and maintenance of neuropathic pain. Thus, KCNN1 may serve as a potential target for managing this disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jiang-Hong Ye
- Department of Anesthesiology
- Department of Physiology, Pharmacology & Neuroscience; and
| | - Huijuan Hu
- Department of Anesthesiology
- Department of Physiology, Pharmacology & Neuroscience; and
| | - Yuan-Xiang Tao
- Department of Anesthesiology
- Department of Physiology, Pharmacology & Neuroscience; and
- Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
44
|
Nessler JN, Delarocque J, Kloock T, Twele L, Neudeck S, Meyerhoff N, Riese F, Cavalleri JMV, Tipold A, Feige K, Niebuhr T. Sensory nerve conduction stimulus threshold measurements of the infraorbital nerve and its applicability as a diagnostic tool in horses with trigeminal-mediated headshaking. BMC Vet Res 2024; 20:201. [PMID: 38750534 PMCID: PMC11097574 DOI: 10.1186/s12917-024-04068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND To determine whether sensory nerve conduction stimulus threshold measurements of the infraorbital nerve are able to differentiate horses with idiopathic trigeminal-mediated headshaking (i-TMHS) from healthy horses and from horses with secondary trigeminal-mediated headshaking (s-TMHS). In a prospective trial, headshaking horses were examined using a standardized diagnostic protocol, including advanced diagnostics such as computed tomography and 3-Tesla-magnetic resonance imaging (MRI), to differentiate s-TMHS from i-TMHS. Clinically healthy horses served as controls. Within this process, patients underwent general anesthesia, and the minimal sensory nerve conduction stimulus threshold (SNCT) of the infraorbital nerve was measured using a bipolar concentric needle electrode. Sensory nerve action potentials (SNAP) were assessed in 2.5-5 mA intervals. Minimal SNCT as well as additional measurements were calculated. RESULTS In 60 horses, SNAP could be recorded, of which 43 horses had i-TMHS, six had suspected s-TMHS, three horses had non-facial headshaking, and eight healthy horses served as controls. Controls had a minimal SNCT ≥ 15 mA, whereas 14/43 horses with i-TMHS and 2/6 horses with s-TMHS showed a minimal SNCT ≤ 10 mA. Minimal SNCT ≤ 10 mA showed 100% specificity to distinguish TMHS from controls, but the sensitivity was only 41%. CONCLUSION A minimal SNCT of the infraorbital nerve ≤ 10 mA was able to differentiate healthy horses from horses with TMHS. Nevertheless, a higher minimal SNCT did not exclude i-TMHS or s-TMHS and minimal SNCT does not distinguish s-TMHS from i-TMHS.
Collapse
Affiliation(s)
- Jasmin Nicole Nessler
- Department of Small Animal Internal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Foundation, Hannover, Germany.
| | - Julien Delarocque
- Clinic for Horses, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Foundation, Hannover, Germany
| | - Tanja Kloock
- Clinic for Horses, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Foundation, Hannover, Germany
| | - Lara Twele
- Clinic for Horses, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Foundation, Hannover, Germany
| | - Stephan Neudeck
- Clinic for Horses, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Foundation, Hannover, Germany
| | - Nina Meyerhoff
- Department of Small Animal Internal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Foundation, Hannover, Germany
| | - Franziska Riese
- Department of Small Animal Internal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Foundation, Hannover, Germany
| | - Jessica-M V Cavalleri
- Clinical unit of equine internal medicine, Department of small animals and horses, University of veterinary medicine, Vienna, Austria
| | - Andrea Tipold
- Department of Small Animal Internal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Foundation, Hannover, Germany
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Foundation, Hannover, Germany
| | - Tobias Niebuhr
- Clinic for Horses, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Foundation, Hannover, Germany
| |
Collapse
|
45
|
Xia W, Zhang M, Liu C, Wang S, Xu A, Xia Z, Pang L, Cai Y. Exploring the therapeutic potential of tetrahydrobiopterin for heart failure with preserved ejection fraction: A path forward. Life Sci 2024; 345:122594. [PMID: 38537900 DOI: 10.1016/j.lfs.2024.122594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/10/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
A large number of patients are affected by classical heart failure (HF) symptomatology with preserved ejection fraction (HFpEF) and multiorgan syndrome. Due to high morbidity and mortality rate, hospitalization and mortality remain serious socioeconomic problems, while the lack of effective pharmacological or device treatment means that HFpEF presents a major unmet medical need. Evidence from clinical and basic studies demonstrates that systemic inflammation, increased oxidative stress, and impaired mitochondrial function are the common pathological mechanisms in HFpEF. Tetrahydrobiopterin (BH4), beyond being an endogenous co-factor for catalyzing the conversion of some essential biomolecules, has the capacity to prevent systemic inflammation, enhance antioxidant resistance, and modulate mitochondrial energy production. Therefore, BH4 has emerged in the last decade as a promising agent to prevent or reverse the progression of disorders such as cardiovascular disease. In this review, we cover the clinical progress and limitations of using downstream targets of nitric oxide (NO) through NO donors, soluble guanylate cyclase activators, phosphodiesterase inhibitors, and sodium-glucose co-transporter 2 inhibitors in treating cardiovascular diseases, including HFpEF. We discuss the use of BH4 in association with HFpEF, providing new evidence for its potential use as a pharmacological option for treating HFpEF.
Collapse
Affiliation(s)
- Weiyi Xia
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Miao Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Guangdong, China
| | - Chang Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China
| | - Sheng Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China; Department of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Lei Pang
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China.
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
46
|
Dócs K, Balázs A, Papp I, Szücs P, Hegyi Z. Reactive spinal glia convert 2-AG to prostaglandins to drive aberrant astroglial calcium signaling. Front Cell Neurosci 2024; 18:1382465. [PMID: 38784707 PMCID: PMC11112260 DOI: 10.3389/fncel.2024.1382465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The endogenous cannabinoid 2-arachidonoylglycerol (2-AG) influences neurotransmission in the central nervous system mainly by activating type 1 cannabinoid receptor (CB1). Following its release, 2-AG is broken down by hydrolases to yield arachidonic acid, which may subsequently be metabolized by cyclooxygenase-2 (COX-2). COX-2 converts arachidonic acid and also 2-AG into prostanoids, well-known inflammatory and pro-nociceptive mediators. Here, using immunohistochemical and biochemical methods and pharmacological manipulations, we found that reactive spinal astrocytes and microglia increase the expression of COX-2 and the production of prostaglandin E2 when exposed to 2-AG. Both 2-AG and PGE2 evoke calcium transients in spinal astrocytes, but PGE2 showed 30% more efficacy and 55 times more potency than 2-AG. Unstimulated spinal dorsal horn astrocytes responded to 2-AG with calcium transients mainly through the activation of CB1. 2-AG induced exaggerated calcium transients in reactive astrocytes, but this increase in the frequency and area under the curve of calcium signals was only partially dependent on CB1. Instead, aberrant calcium transients were almost completely abolished by COX-2 inhibition. Our results suggest that both reactive spinal astrocytes and microglia perform an endocannabinoid-prostanoid switch to produce PGE2 at the expense of 2-AG. PGE2 in turn is responsible for the induction of aberrant astroglial calcium signals which, together with PGE2 production may play role in the development and maintenance of spinal neuroinflammation-associated disturbances such as central sensitization.
Collapse
Affiliation(s)
- Klaudia Dócs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anita Balázs
- Department of Theoretical and Integrative Health Sciences, Institute of Health Sciences, Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Ildikó Papp
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Szücs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-DE Neuroscience Research Group, University of Debrecen, Debrecen, Hungary
| | - Zoltán Hegyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
47
|
Parameshwarappa V, Siponen MI, Watabe I, Karkaba A, Galazyuk A, Noreña AJ. Noise-induced hearing loss alters potassium-chloride cotransporter KCC2 and GABA inhibition in the auditory centers. Sci Rep 2024; 14:10689. [PMID: 38724641 PMCID: PMC11082187 DOI: 10.1038/s41598-024-60858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Homeostatic plasticity, the ability of neurons to maintain their averaged activity constant around a set point value, is thought to account for the central hyperactivity after hearing loss. Here, we investigated the putative role of GABAergic neurotransmission in this mechanism after a noise-induced hearing loss larger than 50 dB in high frequencies in guinea pigs. The effect of GABAergic inhibition is linked to the normal functioning of K + -Cl- co-transporter isoform 2 (KCC2) which maintains a low intracellular concentration of chloride. The expression of membrane KCC2 were investigated before and after noise trauma in the ventral and dorsal cochlear nucleus (VCN and DCN, respectively) and in the inferior colliculus (IC). Moreover, the effect of gabazine (GBZ), a GABA antagonist, was also studied on the neural activity in IC. We show that KCC2 is downregulated in VCN, DCN and IC 3 days after noise trauma, and in DCN and IC 30 days after the trauma. As expected, GBZ application in the IC of control animals resulted in an increase of spontaneous and stimulus-evoked activity. In the noise exposed animals, on the other hand, GBZ application decreased the stimulus-evoked activity in IC neurons. The functional implications of these central changes are discussed.
Collapse
Affiliation(s)
- V Parameshwarappa
- Laboratory of Cognitive Neurosciences, Centre National de la Recherche Scientifique, Aix-Marseille University, 3 Place Victor Hugo, 13003, Marseille, France
| | - M I Siponen
- Laboratory of Cognitive Neurosciences, Centre National de la Recherche Scientifique, Aix-Marseille University, 3 Place Victor Hugo, 13003, Marseille, France
| | - I Watabe
- Laboratory of Cognitive Neurosciences, Centre National de la Recherche Scientifique, Aix-Marseille University, 3 Place Victor Hugo, 13003, Marseille, France
| | - A Karkaba
- Laboratory of Cognitive Neurosciences, Centre National de la Recherche Scientifique, Aix-Marseille University, 3 Place Victor Hugo, 13003, Marseille, France
| | - A Galazyuk
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - A J Noreña
- Laboratory of Cognitive Neurosciences, Centre National de la Recherche Scientifique, Aix-Marseille University, 3 Place Victor Hugo, 13003, Marseille, France.
| |
Collapse
|
48
|
Jain A, Hakim S, Woolf CJ. Immune drivers of physiological and pathological pain. J Exp Med 2024; 221:e20221687. [PMID: 38607420 PMCID: PMC11010323 DOI: 10.1084/jem.20221687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/25/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Physiological pain serves as a warning of exposure to danger and prompts us to withdraw from noxious stimuli to prevent tissue damage. Pain can also alert us of an infection or organ dysfunction and aids in locating such malfunction. However, there are instances where pain is purely pathological, such as unresolved pain following an inflammation or injury to the nervous system, and this can be debilitating and persistent. We now appreciate that immune cells are integral to both physiological and pathological pain, and that pain, in consequence, is not strictly a neuronal phenomenon. Here, we discuss recent findings on how immune cells in the skin, nerve, dorsal root ganglia, and spinal cord interact with somatosensory neurons to mediate pain. We also discuss how both innate and adaptive immune cells, by releasing various ligands and mediators, contribute to the initiation, modulation, persistence, or resolution of various modalities of pain. Finally, we propose that the neuroimmune axis is an attractive target for pain treatment, but the challenges in objectively quantifying pain preclinically, variable sex differences in pain presentation, as well as adverse outcomes associated with immune system modulation, all need to be considered in the development of immunotherapies against pain.
Collapse
Affiliation(s)
- Aakanksha Jain
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
| | - Sara Hakim
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Clifford J. Woolf
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Ventura-Martínez R, Ángeles-López GE, González-Ugalde D, Domínguez-Páez T, Navarrete-Vázquez G, Jaimez R, Déciga-Campos M. Antinociceptive effect of LMH-2, a new sigma-1 receptor antagonist analog of haloperidol, on the neuropathic pain of diabetic mice. Biomed Pharmacother 2024; 174:116524. [PMID: 38574622 DOI: 10.1016/j.biopha.2024.116524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
This study evaluates the antiallodynic and antihyperalgesic effects of LMH-2, a new haloperidol (HAL) analog that acts as sigma-1 receptor (σ1 R) antagonist, in diabetic mice using a model of neuropathic pain induced by chronic hyperglycemia. Additionally, we compared its effects with those of HAL. Hyperglycemia was induced in mice by nicotinamide-streptozotocin administration (NA-STZ, 50-130 mg/kg). Four weeks later, mechanical allodynia was assessed using the up-down method, and hyperalgesia was evoked with formalin 0.5%. We evaluated antiallodynic and antihyperalgesic effects of LMH-2 (5.6-56.2 mg/kg), HAL (0.018-0.18 mg/kg) and gabapentin (GBP, 5.6-56.2 mg/kg). The results showed that LMH-2 had a more significant antiallodynic effect compared to HAL and GBP (90.4±8.7 vs 75.1±3.1 and 41.9±2.3%, respectively; P<0.05), as well as an antihyperalgesic effect (96.3±1.2 vs 86.9±7.41 and 86.9±4.8%, respectively; P<0.05). Moreover, the antiallodynic and antihyperalgesic effect of both LMH-2 and HAL were completely abolished by PRE-084 (σ1 R agonist); and partially by pramipexole (a D2-like receptor agonist). Finally, the effect of all treatments on the rotarod test, barra, open field and exploratory behaviors showed that LMH-2 did not alter the animals' balance or the exploratory behavior, unlike as HAL or GBP. The molecular docking included indicate that LMH-2 has lower affinity to the D2R than HAL. These results provide evidence that LMH-2 exerts its antinociceptive effects as a σ1 R antagonist without the adverse effects induced by HAL or GBP. Consequently, LMH-2 can be considered a good and safe strategy for treating neuropathic pain caused by hyperglycemia in patients with diabetes.
Collapse
Affiliation(s)
- Rosa Ventura-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Av Universidad No. 3000, Col. Ciudad Universitaria, Alcaldía Coyoacán, Ciudad de México 04510, Mexico.
| | - Guadalupe Esther Ángeles-López
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Av Universidad No. 3000, Col. Ciudad Universitaria, Alcaldía Coyoacán, Ciudad de México 04510, Mexico
| | - Diana González-Ugalde
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Tania Domínguez-Páez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Gabriel Navarrete-Vázquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico
| | - Ruth Jaimez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Av Universidad No. 3000, Col. Ciudad Universitaria, Alcaldía Coyoacán, Ciudad de México 04510, Mexico
| | - Myrna Déciga-Campos
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico.
| |
Collapse
|
50
|
Pires MP, McBenedict B, Ahmed IE, Yau RCC, Fong YB, Goh KS, Lim YS, Mohamed SA, Ngu O, Devan JN, Hauwanga WN, Lima Pessôa B. Exploring the Thalamus as a Target for Neuropathic Pain Management: An Integrative Review. Cureus 2024; 16:e60130. [PMID: 38864037 PMCID: PMC11165437 DOI: 10.7759/cureus.60130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/11/2024] [Indexed: 06/13/2024] Open
Abstract
Neuropathic pain (NP), resulting from damage to the somatosensory system, is characterized by either spontaneous or evoked pain. In the context of NP, wherein aberrant signaling pathways contribute to the perception of pain, the thalamus emerges as a key player. This structure is integral to the pain network that includes connections to the dorsal horn of the spinal cord, highlighting its role in the affective-motivational aspects of pain perception. Given its significant involvement, the thalamus is targeted in advanced treatments such as thalamotomy and deep brain stimulation (DBS) when traditional therapies fail, emphasizing the need to understand its function in NP to improve management strategies. This review aimed to provide an overview of the role of the thalamus in the transmission of nociceptive information in NP by discussing the existing evidence, including the effectiveness and safety of current techniques in the management and treatment of NP. This is an integrative review involving the qualitative analysis of scientific articles published in PubMed/MEDLINE, Embase, Scopus, and Web of Science. A total of 687 articles were identified, and after selection, 15 articles were included in this study. All studies reviewed demonstrated varying degrees of effectiveness of DBS and thalamotomy in alleviating painful symptoms, although the relief was often temporary. Many studies noted a reduction in pain perception at the conclusion of treatment compared to pre-treatment levels, with this decrease maintained throughout patient follow-ups. However, adverse events associated with these treatments were also reported. In conclusion, there are some benefits, albeit temporary, to using thalamotomy and DBS to alleviate the painful symptoms of NP. Both procedures are considered advanced forms of surgical intervention that aim to modulate pain pathways in the brain, providing significant relief for patients suffering from chronic pain resistant to conventional treatment. Despite limitations, these surgical interventions offer renewed hope for patients facing disabling chronic pain and can provide a significant improvement in quality of life.
Collapse
Affiliation(s)
| | | | | | | | - Yan Bin Fong
- Surgery, Universiti Putra Malaysia, Serdang, MYS
| | - Kang Suen Goh
- Internal Medicine, Monash University Malaysia, Subang Jaya, MYS
| | - Yee Siew Lim
- Surgery, International Medical University, Seremban, MYS
| | - Suber Abdi Mohamed
- Medicine, Jiangsu University, Zhenjiang Jiangbin Hospital, Zhenjiang, CHN
| | - Owen Ngu
- Medicine, University of Malaya, Kuala Lumpur, MYS
| | - Jeshua N Devan
- Surgery, Asian Institute of Medicine, Science and Technology University, Bedong, MYS
| | - Wilhelmina N Hauwanga
- Family Medicine, Faculty of Medicine, Federal University of the State of Rio de Janeiro, Rio de Janeiro, BRA
| | | |
Collapse
|