1
|
Zhang X, Ren Q, Li Y, Liu L. Uncovering the sensing mechanism of a zinc ion sensor: Fluorescence enhancement induced by the elimination of the TICT state. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124756. [PMID: 39032230 DOI: 10.1016/j.saa.2024.124756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
Precise detection of zinc ion is of fundamental importance in the fields of environment protection and food safety. A comprehensive understanding of the sensing mechanism will help to the design of such sensors. The detailed photophysical process of a zinc ion sensor as well as the sensing mechanism are uncovered with the aid of density functional theory (DFT) and time-dependent density functional theory (TDDFT). Both the ground state and first excited state potential energy surfaces (PES) of the sensor are carefully explored to reveal the photo-physical process of the sensor. Excited state intramolecular proton transfer (ESIPT) is observed on the S1 state PES. Then, the twist motion of C=N double bond is triggered after the ESIPT process, which leads to a twisted intramolecular charge transfer (TICT) state. This TICT state is found to make the sensor non-emissive. With the addition of Zn2+, the TICT state is eliminated which greatly enhances the fluorescence of the sensor and achieves zinc ion detection. The interaction of the sensor with Cd2+ and Hg2+ are also explored, which well explains the good selectivity of the sensor.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Mechanical and vehicle Engineering, Jilin Engineering Normal University, China
| | - Qiuhe Ren
- School of Mechanical and vehicle Engineering, Jilin Engineering Normal University, China
| | - Yi Li
- School of Mechanical and vehicle Engineering, Jilin Engineering Normal University, China.
| | - Lei Liu
- College of Chemical and Materials Engineering, Anhui Science and Technology University, China; State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
| |
Collapse
|
2
|
Luo C, Kong N, Li X, Sun S, Jiang C, Qiao X, Wang L, Song L. The c.503A>G polymorphism in ZIP1-II of Pacific oyster Crassostrea gigas associated with zinc content. Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110988. [PMID: 38768804 DOI: 10.1016/j.cbpb.2024.110988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
The Pacific oyster Crassostrea gigas is renowned for its high zinc content, but the significant variation among individuals diminishes its value as a reliable source of zinc supplementation. The Zrt/Irt-like protein 1 (ZIP1), a pivotal zinc transporter that facilitates zinc uptake in various organisms, plays crucial roles in regulating zinc content. In the present study, polymorphisms of a ZIP1 gene in C. gigas (CgZIP1-II) were investigated, and their association with zinc content was evaluated through preliminary association analysis in 41 oysters and verification analysis in another 200 oysters. A total of 17 single nucleotide polymorphisms (SNPs) were identified in the exonic region of CgZIP1-II gene, with c.503A>G significantly associated with zinc content. Protein sequence and structure prediction showed that c.503A>G caused a p.Met110Val nonsynonymous mutation located in the metal-binding region of CgZIP1-II, which could influence its affinity for zinc ions, thereby modulating its zinc transport functionality. These results indicate the potential influence of CgZIP1-II polymorphisms on zinc content and provide candidate markers for selecting C. gigas with high zinc content.
Collapse
Affiliation(s)
- Cong Luo
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Xiang Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Shiqing Sun
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Chunyu Jiang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Xin Qiao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
3
|
Bauer CD, Mosley DD, Samuelson DR, Poole JA, Smith DR, Knoell DL, Wyatt TA. Zinc Protects against Swine Barn Dust-Induced Cilia Slowing. Biomolecules 2024; 14:843. [PMID: 39062557 PMCID: PMC11274422 DOI: 10.3390/biom14070843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Agricultural workers exposed to organic dust from swine concentrated animal feeding operations (CAFOs) have increased chances of contracting chronic lung disease. Mucociliary clearance represents a first line of defense against inhaled dusts, but organic dust extracts (ODEs) from swine barns cause cilia slowing, leading to decreased bacterial clearance and increased lung inflammation. Because nutritional zinc deficiency is associated with chronic lung disease, we examined the role of zinc supplementation in ODE-mediated cilia slowing. Ciliated mouse tracheal epithelial cells were pretreated with 0-10 µg/mL ZinProTM for 1 h, followed by treatment with 5% ODE for 24 h. Cilia beat frequency (CBF) and protein kinase C epsilon (PKCε) activity were assayed. ODE treatment resulted in cilia slowing after 24 h, which was reversed with 0.5 and 1.0 µg/mL ZinPro pre-treatment. No zinc protection was observed at 50 ng/mL, and ciliated cells detached at high concentrations (100 µg/mL). ZinPro alone produced no changes in the baseline CBF and showed no toxicity to the cells at concentrations of up to 10 µg/mL. Pre-treatment with ZinPro inhibited ODE-stimulated PKCε activation in a dose-dependent manner. Based on ZinPro's superior cell permeability compared to zinc salts, it may be therapeutically more effective at reversing ODE-mediated cilia slowing through a PKCε pathway. These data demonstrate that zinc supplementation may support the mucociliary transport apparatus in the protection of CAFO workers against dust-mediated chronic lung disease.
Collapse
Affiliation(s)
- Christopher D. Bauer
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of Nebraska Medical Center, 985910 Nebraska Medical Center, Omaha, NE 68198, USA; (C.D.B.); (D.D.M.); (D.R.S.)
| | - Deanna D. Mosley
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of Nebraska Medical Center, 985910 Nebraska Medical Center, Omaha, NE 68198, USA; (C.D.B.); (D.D.M.); (D.R.S.)
| | - Derrick R. Samuelson
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of Nebraska Medical Center, 985910 Nebraska Medical Center, Omaha, NE 68198, USA; (C.D.B.); (D.D.M.); (D.R.S.)
| | - Jill A. Poole
- Department of Internal Medicine, Division of Allergy & Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Deandra R. Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (D.L.K.)
| | - Daren L. Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (D.L.K.)
| | - Todd A. Wyatt
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of Nebraska Medical Center, 985910 Nebraska Medical Center, Omaha, NE 68198, USA; (C.D.B.); (D.D.M.); (D.R.S.)
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
4
|
Azzollini L, Prete DD, Wolf G, Klimek C, Saggioro M, Ricci F, Christodoulaki E, Wiedmer T, Ingles-Prieto A, Superti-Furga G, Scarabottolo L. Development of a live cell assay for the zinc transporter ZnT8. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100166. [PMID: 38848895 DOI: 10.1016/j.slasd.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Zinc is an essential trace element that is involved in many biological processes and in cellular homeostasis. In pancreatic β-cells, zinc is crucial for the synthesis, processing, and secretion of insulin, which plays a key role in glucose homeostasis and which deficiency is the cause of diabetes. The accumulation of zinc in pancreatic cells is regulated by the solute carrier transporter SLC30A8 (or Zinc Transporter 8, ZnT8), which transports zinc from cytoplasm in intracellular vesicles. Allelic variants of SLC30A8 gene have been linked to diabetes. Given the physiological intracellular localization of SLC30A8 in pancreatic β-cells and the ubiquitous endogenous expression of other Zinc transporters in different cell lines that could be used as cellular model for SLC30A8 recombinant over-expression, it is challenging to develop a functional assay to measure SLC30A8 activity. To achieve this goal, we have firstly generated a HEK293 cell line stably overexpressing SLC30A8, where the over-expression favors the partial localization of SLC30A8 on the plasma membrane. Then, we used the combination of this cell model, commercial FluoZin-3 cell permeant zinc dye and live cell imaging approach to follow zinc flux across SLC30A8 over-expressed on plasma membrane, thus developing a novel functional imaging- based assay specific for SLC30A8. Our novel approach can be further explored and optimized, paving the way for future small molecule medium-throughput screening.
Collapse
Affiliation(s)
- Lucia Azzollini
- Axxam SpA, Openzone, Via Meucci 3 20091 Bresso, Milan, Italy.
| | | | - Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Klimek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mattia Saggioro
- Axxam SpA, Openzone, Via Meucci 3 20091 Bresso, Milan, Italy
| | - Fernanda Ricci
- Axxam SpA, Openzone, Via Meucci 3 20091 Bresso, Milan, Italy
| | - Eirini Christodoulaki
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
5
|
Jin D, Wei X, He Y, Zhong L, Lu H, Lan J, Wei Y, Liu Z, Liu H. The nutritional roles of zinc for immune system and COVID-19 patients. Front Nutr 2024; 11:1385591. [PMID: 38706559 PMCID: PMC11066294 DOI: 10.3389/fnut.2024.1385591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
Zinc (Zn) is a vital micronutrient that strengthens the immune system, aids cellular activities, and treats infectious diseases. A deficiency in Zn can lead to an imbalance in the immune system. This imbalance is particularly evident in severe deficiency cases, where there is a high susceptibility to various viral infections, including COVID-19 caused by SARS-CoV-2. This review article examines the nutritional roles of Zn in human health, the maintenance of Zn concentration, and Zn uptake. As Zn is an essential trace element that plays a critical role in the immune system and is necessary for immune cell function and cell signaling, the roles of Zn in the human immune system, immune cells, interleukins, and its role in SARS-CoV-2 infection are further discussed. In summary, this review paper encapsulates the nutritional role of Zn in the human immune system, with the hope of providing specific insights into Zn research.
Collapse
Affiliation(s)
- Di Jin
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Department of Laboratory Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Xinran Wei
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Department of Laboratory Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Yunyi He
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Luying Zhong
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Huijie Lu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Jiaxin Lan
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Yuting Wei
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Zheng Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Hongbo Liu
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Department of Laboratory Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| |
Collapse
|
6
|
Qiu N, Pechalrieu D, Abegg D, Adibekian A. Chemoproteomic Profiling Maps Zinc-Dependent Cysteine Reactivity. Chem Res Toxicol 2024; 37:620-632. [PMID: 38484110 DOI: 10.1021/acs.chemrestox.3c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
As a vital micronutrient, zinc is integral to the structure, function, and signaling networks of diverse proteins. Dysregulated zinc levels, due to either excess intake or deficiency, are associated with a spectrum of health disorders. In this context, understanding zinc-regulated biological processes at the molecular level holds significant relevance to public health and clinical practice. Identifying and characterizing zinc-regulated proteins in their diverse proteoforms, however, remain a difficult task in advancing zinc biology. Herein, we address this challenge by developing a quantitative chemical proteomics platform that globally profiles the reactivities of proteinaceous cysteines upon cellular zinc depletion. Exploiting a protein-conjugated resin for the selective removal of Zn2+ from culture media, we identify an array of zinc-sensitive cysteines on proteins with diverse functions based on their increased reactivity upon zinc depletion. Notably, we find that zinc regulates the enzymatic activities, post-translational modifications, and subcellular distributions of selected target proteins such as peroxiredoxin 6 (PRDX6), platelet-activating factor acetylhydrolase IB subunit alpha1 (PAFAH1B3), and phosphoglycerate kinase (PGK1).
Collapse
Affiliation(s)
- Nan Qiu
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St., Chicago, Illinois 60607, United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Dany Pechalrieu
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St., Chicago, Illinois 60607, United States
| | - Daniel Abegg
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St., Chicago, Illinois 60607, United States
| | - Alexander Adibekian
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St., Chicago, Illinois 60607, United States
- Department of Pharmaceutical Sciences, University of Illinois Chicago, 833 S Wood St., Chicago, Illinois 60612, United States
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, 900 S Ashland Ave., Chicago, Illinois 60607, United States
| |
Collapse
|
7
|
Mairinger E, Wessolly M, Buderath P, Borchert S, Henrich L, Mach P, Steinborn J, Kimming R, Jasani B, Schmid KW, Bankfalvi A, Mairinger FD. Tumor cell cytoplasmic metallothionein expression associates with differential tumor immunogenicity and prognostic outcome in high-grade serous ovarian carcinoma. Front Oncol 2023; 13:1252700. [PMID: 38023247 PMCID: PMC10663300 DOI: 10.3389/fonc.2023.1252700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background The underlying mechanism of high T-cell presence as a favorable prognostic factor in high-grade serous ovarian carcinoma (HGSOC) is not yet understood. In addition to immune cells, various cofactors are essential for immune processes. One of those are metallothioneins (MTs), metal-binding proteins comprising various isoforms. MTs play a role in tumor development and drug resistance. Moreover, MTs influence inflammatory processes by regulating zinc homeostasis. In particular, T-cell function and polarization are particularly susceptible to changes in zinc status. The aim of the present study was to investigate a possible role of MT-mediated immune response and its association with prognostic outcome in ovarian cancer. Methods A retrospective study was conducted on a clinically well-characterized cohort of 24 patients with HGSOC treated at the University Hospital of Essen. Gene expression patterns for anti-cancer immunogenicity-related targets were performed using the NanoString nCounter platform for digital gene expression analysis with the appurtenant PanCancer Immune Profiling panel, consisting of 770 targets and 30 reference genes. Tumor-associated immunohistochemical MT protein expression was evaluated using a semi-quantitative four-tier Immunohistochemistry (IHC) scoring. Results MT immunoexpression was detected in 43% (10/23) of all HGSOC samples. MT immunoexpression levels showed a significant association to survival, leading to prolonged progression-free and overall survival in positively stained tumors. Furthermore, T-cell receptor signaling gene signature showed a strong activation in MT-positive tumors. Activated downstream signaling cascades resulting in elevated interferon-gamma expression with a shift in the balance between T helper cells (TH1 and TH2) could be observed in the MT-positive subgroup. In addition, a higher expression pattern of perforin and several granzymes could be detected, overall suggestive of acute, targeted anti-cancer immune response in MT-positive samples. Conclusion This is the first study combining broad, digital mRNA screening of anti-tumor immune response-associated genes and their relation to MT-I/II in ovarian cancer. MT overexpression is associated with molecular characteristics of an anti-cancer immune response and is a strong prognostic marker in ovarian HGSOC. The observed immune cell activation associated with tumor MT expression comprises but is not limited to T cells and natural killer cells.
Collapse
Affiliation(s)
- Elena Mairinger
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Michael Wessolly
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Paul Buderath
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Larissa Henrich
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Pawel Mach
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Julia Steinborn
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Rainer Kimming
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Bharat Jasani
- Department of Pathology, Targos - A Discovery Life Sciences Company, Kassel, Germany
| | | | - Agnes Bankfalvi
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | | |
Collapse
|
8
|
Stefanache A, Lungu II, Butnariu IA, Calin G, Gutu C, Marcu C, Grierosu C, Bogdan Goroftei ER, Duceac LD, Dabija MG, Popa F, Damir D. Understanding How Minerals Contribute to Optimal Immune Function. J Immunol Res 2023; 2023:3355733. [PMID: 37946846 PMCID: PMC10632063 DOI: 10.1155/2023/3355733] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 09/09/2023] [Indexed: 11/12/2023] Open
Abstract
Sufficient mineral supply is vital not only for the innate immune system but also for the components of the adaptive immune defense, which encompass defense mechanisms against pathogens and the delicate balance of pro- and anti-inflammatory regulation in the long term. Generally, a well-balanced diet is capable of providing the necessary minerals to support the immune system. Nevertheless, specific vulnerable populations should be cautious about obtaining adequate amounts of minerals such as magnesium, zinc, copper, iron, and selenium. Inadequate levels of these minerals can temporarily impair immune competence and disrupt the long-term regulation of systemic inflammation. Therefore, comprehending the mechanisms and sources of these minerals is crucial. In exceptional circumstances, mineral deficiencies may necessitate supplementation; however, excessive intake of supplements can have adverse effects on the immune system and should be avoided. Consequently, any supplementation should be approved by medical professionals and administered in recommended doses. This review emphasizes the crucial significance of minerals in promoting optimal functioning of the immune system. It investigates the indispensable minerals required for immune system function and the regulation of inflammation. Moreover, it delves into the significance of maintaining an optimized intake of minerals from a nutritional standpoint.
Collapse
Affiliation(s)
- Alina Stefanache
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Ionut-Iulian Lungu
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | | | - Gabriela Calin
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11 Pacurari Street, Iasi 700511, Romania
| | - Cristian Gutu
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | - Constantin Marcu
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | - Carmen Grierosu
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11 Pacurari Street, Iasi 700511, Romania
| | | | - Letitia-Doina Duceac
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | | | - Florina Popa
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | - Daniela Damir
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
9
|
Briassoulis G, Briassoulis P, Ilia S, Miliaraki M, Briassouli E. The Anti-Oxidative, Anti-Inflammatory, Anti-Apoptotic, and Anti-Necroptotic Role of Zinc in COVID-19 and Sepsis. Antioxidants (Basel) 2023; 12:1942. [PMID: 38001795 PMCID: PMC10669546 DOI: 10.3390/antiox12111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Zinc is a structural component of proteins, functions as a catalytic co-factor in DNA synthesis and transcription of hundreds of enzymes, and has a regulatory role in protein-DNA interactions of zinc-finger proteins. For many years, zinc has been acknowledged for its anti-oxidative and anti-inflammatory functions. Furthermore, zinc is a potent inhibitor of caspases-3, -7, and -8, modulating the caspase-controlled apoptosis and necroptosis. In recent years, the immunomodulatory role of zinc in sepsis and COVID-19 has been investigated. Both sepsis and COVID-19 are related to various regulated cell death (RCD) pathways, including apoptosis and necroptosis. Lack of zinc may have a negative effect on many immune functions, such as oxidative burst, cytokine production, chemotaxis, degranulation, phagocytosis, and RCD. While plasma zinc concentrations decline swiftly during both sepsis and COVID-19, this reduction is primarily attributed to a redistribution process associated with the inflammatory response. In this response, hepatic metallothionein production increases in reaction to cytokine release, which is linked to inflammation, and this protein effectively captures and stores zinc in the liver. Multiple regulatory mechanisms come into play, influencing the uptake of zinc, the binding of zinc to blood albumin and red blood cells, as well as the buffering and modulation of cytosolic zinc levels. Decreased zinc levels are associated with increasing severity of organ dysfunction, prolonged hospital stay and increased mortality in septic and COVID-19 patients. Results of recent studies focusing on these topics are summarized and discussed in this narrative review. Existing evidence currently does not support pharmacological zinc supplementation in patients with sepsis or COVID-19. Complementation and repletion should follow current guidelines for micronutrients in critically ill patients. Further research investigating the pharmacological mechanism of zinc in programmed cell death caused by invasive infections and its therapeutic potential in sepsis and COVID-19 could be worthwhile.
Collapse
Affiliation(s)
- George Briassoulis
- Postgraduate Program “Emergency and Intensive Care in Children, Adolescents, and Young Adults”, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Panagiotis Briassoulis
- Second Department of Anesthesiology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Stavroula Ilia
- Postgraduate Program “Emergency and Intensive Care in Children, Adolescents, and Young Adults”, School of Medicine, University of Crete, 71003 Heraklion, Greece;
- Paediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, 71110 Heraklion, Greece;
| | - Marianna Miliaraki
- Paediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, 71110 Heraklion, Greece;
| | - Efrossini Briassouli
- Infectious Diseases Department “MAKKA”, First Department of Paediatrics, “Aghia Sophia” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
10
|
Kumar S, Ansari S, Narayanan S, Ranjith-Kumar CT, Surjit M. Antiviral activity of zinc against hepatitis viruses: current status and future prospects. Front Microbiol 2023; 14:1218654. [PMID: 37908540 PMCID: PMC10613677 DOI: 10.3389/fmicb.2023.1218654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Viral hepatitis is a major public health concern globally. World health organization aims at eliminating viral hepatitis as a public health threat by 2030. Among the hepatitis causing viruses, hepatitis B and C are primarily transmitted via contaminated blood. Hepatitis A and E, which gets transmitted primarily via the feco-oral route, are the leading cause of acute viral hepatitis. Although vaccines are available against some of these viruses, new cases continue to be reported. There is an urgent need to devise a potent yet economical antiviral strategy against the hepatitis-causing viruses (denoted as hepatitis viruses) for achieving global elimination of viral hepatitis. Although zinc was known to mankind for a long time (since before Christ era), it was identified as an element in 1746 and its importance for human health was discovered in 1963 by the pioneering work of Dr. Ananda S. Prasad. A series of follow up studies involving zinc supplementation as a therapy demonstrated zinc as an essential element for humans, leading to establishment of a recommended dietary allowance (RDA) of 15 milligram zinc [United States RDA for zinc]. Being an essential component of many cellular enzymes and transcription factors, zinc is vital for growth and homeostasis of most living organisms, including human. Importantly, several studies indicate potent antiviral activity of zinc. Multiple studies have demonstrated antiviral activity of zinc against viruses that cause hepatitis. This article provides a comprehensive overview of the findings on antiviral activity of zinc against hepatitis viruses, discusses the mechanisms underlying the antiviral properties of zinc and summarizes the prospects of harnessing the therapeutic benefit of zinc supplementation therapy in reducing the disease burden due to viral hepatitis.
Collapse
Affiliation(s)
- Shiv Kumar
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shabnam Ansari
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sriram Narayanan
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - C. T. Ranjith-Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Milan Surjit
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
11
|
Shruthi B, Revanasiddappa HD, Shivamallu C, Iqbal M, Amachawadi RG, Majani SS, Kollur SP. Highly selective fluorescent and colorimetric methylphenyl-based sensor towards Zn2+ ion detection: Synthesis, X-ray crystallography and selectivity studies. Inorganica Chim Acta 2023; 556:121614. [DOI: 10.1016/j.ica.2023.121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
|
12
|
Yang Q, Cai X, Zhu Y, Hu Z, Wei Y, Dang Q, Zhang Y, Zhao X, Jiang X, Yu H. Oat β-glucan supplementation pre- and during pregnancy alleviates fetal intestinal immunity development damaged by gestational diabetes in rats. Food Funct 2023; 14:8453-8466. [PMID: 37622658 DOI: 10.1039/d3fo00429e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Oat β-glucan (OG) has been shown to improve intestinal microecology in gestational diabetes mellitus (GDM), but the effect on fetal intestine health is unknown. Herein, we aimed to investigate the effects of OG supplementation during gestation in GDM dams on fetal intestinal immune development. OG was supplemented one week before mating until the end of the experiment. GDM rats were made with a high-fat diet (HFD) with a minimal streptozotocin (STZ) dose. The fetal intestines were sampled at gestation day (GD) 19.5, and the intestinal morphology, chemical barrier molecules, intraepithelial immune cell makers, and levels of inflammatory cytokines were investigated. The results showed that OG supplementation alleviated the decrease of the depth of fetal intestinal villi and crypts, the number of goblet cells (GCs), protein expression of mucin-1 (Muc1) and Muc2, the mRNA levels of Gpr41, Gpr43, and T cell markers, and increased the number of paneth cells (PCs), the mRNA levels of defensin-6 (defa6), and macrophage (Mø) marker and the expression of cytokines induced by GDM. In addition, OG supplementation alleviated the function of immune cell self-proliferation, chemotaxis and assembly capabilities, protein, fat, folic acid, and zinc absorption damaged by GDM. As indicated by these findings, OG supplementation before and during pregnancy improved the fetal intestinal chemical barriers, immune cells, cytokines, and the metabolism of nutrients to protect the fetal intestinal immunity.
Collapse
Affiliation(s)
- Qian Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Xiaxia Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Yandi Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Zhuo Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Yuchen Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Qinyu Dang
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Yadi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Xiaoyan Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Xinyin Jiang
- Departments of Health and Nutrition Sciences, Brooklyn College of City, University of New York, NY 11210, USA
| | - Huanling Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| |
Collapse
|
13
|
Kerwin AL, Graef GM, Ryan CM, Ferro L, Ordaz Puga S, Westhoff TA, Barbano DM, Kleinschmit DH, Overton TR. Effect of replacing a portion of inorganic chloride trace minerals with trace mineral amino acid complexes. J Dairy Sci 2023; 106:6128-6145. [PMID: 37479575 DOI: 10.3168/jds.2022-22953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/17/2023] [Indexed: 07/23/2023]
Abstract
The objective was to determine whether replacing a portion of inorganic chloride trace minerals and cobalt carbonate in the diet with AA complexes of trace minerals and cobalt glucoheptonate will improve lactating cow performance, feed efficiency, and calf performance. In a clinical trial, 69 Holstein cows entering second lactation and greater were randomly assigned to 1 of 2 treatments, with the total dietary trace mineral concentration the same between treatments, starting 1 wk after dry off (50 to 57 d before expected parturition) until 154 d in milk (DIM): (1) an inorganic chloride trace mineral (ITM) blend consisting of Zn (75 mg/kg), Mn (65 mg/kg), and Cu (10 mg/kg) as hydroxychlorides and Co (1 mg/kg) as carbonate (n = 37) or (2) partial replacement of ITM with AA complexes of Zn (40 mg/kg), Mn (20 mg/kg), and Cu (3.5 mg/kg) and Co glucoheptonate (1 mg/kg; AATM; Availa-Dairy, Zinpro Corp.; n = 32). Dry matter intake (DMI) was recorded daily from enrollment through wk 8, and milk yields were recorded daily from calving through wk 22. Milk composition and body weights (BW) were collected weekly. Serum samples were analyzed for albumin (Alb), cholesterol (Chol), total bilirubin (Bili), aspartate aminotransferase (AST), haptoglobin, β-hydroxybutyrate (BHB), and Ca. A liver health index (LHI) was calculated based on Bili, Chol, and Alb concentrations. A liver functionality index (LFI) was calculated to standardize changes in Alb, Chol, and Bili from 4 to 29 DIM. Greater LHI and LFI indicate better health status. Colostrum was analyzed for IgG and Brix, and calf serum was analyzed for IgG. Calf growth was monitored through 9 wk of age (AATM: n = 12, ITM: n = 10). Data were analyzed using SAS software with mixed effects models and repeated-measures analysis, when applicable. Survival analysis for pregnancy by 154 DIM was analyzed by Cox proportional and Kaplan-Meier hazards models. Disorder incidence was tested with Fisher's exact test. Prepartum DMI as a percent of BW was lower in cows fed AATM and not significant postpartum. Cows fed AATM produced more milk from wk 1 to 8 and from wk 1 to 22. Energy-corrected milk yield and colostrum measures did not significantly differ between treatments. A treatment by time interaction was seen for AST and BHB; cows fed AATM tended to have lower AST concentrations at 28 DIM and lower concentrations in BHB through 29 DIM, though not statistically significant. Cows fed AATM had greater LHI at 4 DIM. Haptoglobin, Ca, LFI, hazard of pregnancy, risk to first service, survival curves, or services per pregnancy did not significantly differ. Calf serum IgG and birth weight did not significantly differ between treatments. Calves from dams fed AATM had greater average daily gain than calves from dams fed ITM. Overall, cows fed AATM during the dry period and early lactation had improved postpartum performance and potential health improvements.
Collapse
Affiliation(s)
- A L Kerwin
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - G M Graef
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - C M Ryan
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - L Ferro
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - S Ordaz Puga
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - T A Westhoff
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - D M Barbano
- Department of Food Science, Cornell University, Ithaca, NY 14853
| | | | - T R Overton
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
14
|
Rupanagunta GP, Nandave M, Rawat D, Upadhyay J, Rashid S, Ansari MN. Postpartum depression: aetiology, pathogenesis and the role of nutrients and dietary supplements in prevention and management. Saudi Pharm J 2023; 31:1274-1293. [PMID: 37304359 PMCID: PMC10250836 DOI: 10.1016/j.jsps.2023.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Postpartum depression (PPD) is a challenging psychological disorder faced by 10-30% of mothers across the globe. In India, it occurs among 22% of mothers. Its aetiology and pathophysiology aren't fully understood as of today but multiple theories on the interplay of hormones, neurotransmitters, genetics, epigenetics, nutrients, socio-environmental factors, etc. exist. Nutrients are not only essential for the synthesis of neurotransmitters, but they may also indirectly influence genomic pathways that methylate DNA, and there is evidence for molecular associations between nutritional quality and psychological well-being. Increased behavioural disorders have been attributed to macro- and micronutrient deficiencies, and dietary supplementation has been effective in treating several neuropsychiatric illnesses. Nutritional deficiencies occur frequently in women, especially during pregnancy and breastfeeding. The aim of this study was to perform a comprehensive literature review of evidence-based research in order to identify, gather and summarize existing knowledge on PPD's aetiology, pathophysiology, and the role of nutrients in its prevention as well as management. The possible mechanisms of action of nutrients are also presented here. Study findings show that the risk of depression increases when omega-3 fatty acid levels are low. Both fish oil and folic acid supplements have been used to effectively treat depression. Antidepressant efficacy is lowered by folate insufficiency. Folate, vitamin B12, iron, etc. deficiencies are more prevalent in depressed people than in non-depressed people. Serum cholesterol levels and plasma tryptophan levels are found to be inversely correlated with PPD. Serum vitamin D levels were associated inversely with perinatal depression. These findings highlight the importance of adequate nutrition in the antepartum period. Given that nutritional therapies can be affordable, safe, simple to use, and are typically well-accepted by patients, more focus should be placed on dietary variables in PPD.
Collapse
Affiliation(s)
- Gnana Prasoona Rupanagunta
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres Campus, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), MB Road, Pushp Vihar, Sector 3, New Delhi 110017, India
| | - Divya Rawat
- Department of Allied Health Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres Campus, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres Campus, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
15
|
Medoro A, Davinelli S, Colletti A, Di Micoli V, Grandi E, Fogacci F, Scapagnini G, Cicero AFG. Nutraceuticals as Modulators of Immune Function: A Review of Potential Therapeutic Effects. Prev Nutr Food Sci 2023; 28:89-107. [PMID: 37416796 PMCID: PMC10321448 DOI: 10.3746/pnf.2023.28.2.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 07/08/2023] Open
Abstract
Dietary supplementation with nutraceuticals can promote optimal immune system activation, modulating different pathways that enhance immune defenses. Therefore, the immunity-boosting effects of nutraceuticals encompass not only immunomodulatory but also antioxidant, antitumor, antiviral, antibacterial, and antifungal properties, with therapeutic effects against diverse pathological conditions. However, the complexity of the pathways that regulate the immune system, numerous mechanisms of action, and heterogeneity of the immunodeficiencies, and subjects treated make their application in the clinical field difficult. Some nutraceuticals appear to safely improve immune system function, particularly by preventing viral and bacterial infections in specific groups, such as children, the elderly, and athletes, as well as in frail patients, such as those affected by autoimmune diseases, chronic diseases, or cancer. Several nutraceuticals, such as vitamins, mineral salts, polyunsaturated omega-3 fatty acids, many types of phytocompounds, and probiotic strains, have the most consolidated evidence in humans. In most cases, further large and long-term randomized clinical trials are needed to confirm the available preliminary positive data.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
- Italian Nutraceutical Society (SINut), Bologna 40138, Italy
| | - Alessandro Colletti
- Italian Nutraceutical Society (SINut), Bologna 40138, Italy
- Department of Science and Drug Technology, University of Turin, Turin 10125, Italy
| | - Valentina Di Micoli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
| | - Elisa Grandi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
| | - Federica Fogacci
- Italian Nutraceutical Society (SINut), Bologna 40138, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
- Italian Nutraceutical Society (SINut), Bologna 40138, Italy
| | - Arrigo F. G. Cicero
- Italian Nutraceutical Society (SINut), Bologna 40138, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero Universitaria Policlinico S. Orsola-Malpighi, Bologna 40138, Italy
| |
Collapse
|
16
|
Samuelson DR, Smith DR, Cunningham KC, Haq S, Villageliú DN, Ellis CM, Chowdhury NB, Ramer-Tait AE, Price JD, Knoell DL. The Inherited Intestinal Microbiota from Myeloid-Specific ZIP8KO Mice Impairs Pulmonary Host Defense against Pneumococcal Pneumonia. Pathogens 2023; 12:639. [PMID: 37242309 PMCID: PMC10222741 DOI: 10.3390/pathogens12050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Intestinal dysbiosis increases susceptibility to infection through the alteration of metabolic profiles, which increases morbidity. Zinc (Zn) homeostasis in mammals is tightly regulated by 24 Zn transporters. ZIP8 is unique in that it is required by myeloid cells to maintain proper host defense against bacterial pneumonia. In addition, a frequently occurring ZIP8 defective variant (SLC39A8 rs13107325) is strongly associated with inflammation-based disorders and bacterial infection. In this study, we developed a novel model to study the effects of ZIP8-mediated intestinal dysbiosis on pulmonary host defense independent of the genetic effects. Cecal microbial communities from a myeloid-specific Zip8 knockout mouse model were transplanted into germ-free mice. Conventionalized ZIP8KO-microbiota mice were then bred to produce F1 and F2 generations of ZIP8KO-microbiota mice. F1 ZIP8KO-microbiota mice were also infected with S. pneumoniae, and pulmonary host defense was assessed. Strikingly, the instillation of pneumococcus into the lung of F1 ZIP8KO-microbiota mice resulted in a significant increase in weight loss, inflammation, and mortality when compared to F1 wild-type (WT)-microbiota recipients. Similar defects in pulmonary host defense were observed in both genders, although consistently greater in females. From these results, we conclude that myeloid Zn homeostasis is not only critical for myeloid function but also plays a significant role in the maintenance and control of gut microbiota composition. Further, these data demonstrate that the intestinal microbiota, independent of host genetics, play a critical role in governing host defense in the lung against infection. Finally, these data strongly support future microbiome-based interventional studies, given the high incidence of zinc deficiency and the rs13107325 allele in humans.
Collapse
Affiliation(s)
- Derrick R. Samuelson
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68508, USA
| | - Deandra R. Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6120, USA
| | - Kelly C. Cunningham
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA
| | - Sabah Haq
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6120, USA
| | - Daniel N. Villageliú
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA
| | - Christi M. Ellis
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA
| | - Niaz Bahar Chowdhury
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0643, USA
| | - Amanda E. Ramer-Tait
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68508, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA
| | - Jeffrey D. Price
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68508, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA
| | - Daren L. Knoell
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6120, USA
| |
Collapse
|
17
|
Wu D, Wang H, Wang W, Qing C, Zhang W, Gao X, Shi Y, Li Y, Zheng Z. Association between composite dietary antioxidant index and handgrip strength in American adults: Data from National Health and Nutrition Examination Survey (NHANES, 2011-2014). Front Nutr 2023; 10:1147869. [PMID: 37063339 PMCID: PMC10102380 DOI: 10.3389/fnut.2023.1147869] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Background The Composite Dietary Antioxidant Index (CDAI), a composite score of multiple dietary antioxidants (including vitamin A, C, and E, selenium, zinc, and carotenoids), represents an individual's comprehensive dietary antioxidant intake profile. CDAI was developed based on its combined effect on pro-inflammatory markers Tumor Necrosis Factor-α (TNF-α) and anti-inflammatory effects of Interleukin-1β (IL-1β), which are associated with many health outcomes, including depression, all-cause mortality, colorectal cancer, etc. Handgrip strength is used as a simple measure of muscle strength, not only is it highly correlated with overall muscle strength, but also serves as a diagnostic tool for many adverse health outcomes, including sarcopenia and frailty syndromes. Purpose The association between CDAI and Handgrip strength (HGS) is currently unclear. This study investigated the association between CDAI (including its components) and HGS in 6,019 American adults. Method The research data were selected from the 2011-2014 National Health and Nutrition Survey (NHANES), and a total of 6,019 American adults were screened and included. A weighted generalized linear regression model was used to evaluate CDAI (including its components) and HGS. Results (1) CDAI was significantly positively correlated with HGS (β = 0.009, 0.005∼0.013, P < 0.001), and the trend test showed that compared with the lowest quartile of CDAI, the highest quartile of CDAI was positively correlated with HGS (β = 0.084, 0.042∼0.126, P = 0.002) and significant in trend test (P for trend < 0.0100). Gender subgroup analysis showed that male CDAI was significantly positively correlated with HGS (β = 0.015, 0.007∼0.023, P = 0.002), and the trend test showed that compared with the lowest quartile of CDAI, the highest quartile of CDAI was positively correlated with HGS (β = 0.131, 0.049∼0.213, P = 0.006) and the trend test was significant (P for trend < 0.0100). There was no correlation between female CDAI and HGS, and the trend test was not statistically significant (P > 0.05). (2) The intake of dietary vitamin E, Zinc and Selenium showed a significant positive correlation with HGS (β = 0.004, 0.002∼0.007, P = 0.006; β = 0.007, 0.004∼0.009, P < 0.001; β = 0.001, 0.001∼0.001, P < 0.001), vitamin A, vitamin C and carotenoid were significantly associated with HGS in the Crude Model, but this significant association disappeared in the complete model with the increase of control variables. Gender subgroup analysis showed that in model 3, male dietary intake levels of vitamin E, Zinc, and Selenium were significantly positively correlated with HGS (β = 0.005, 0.002∼0.009, P = 0.011; β = 0.007, 0.004∼0.011, P = 0.001; β = 0.001, 0.001∼0.001, P = 0.004), the rest of the indicators had no significant correlation with HGS. Among the female subjects, dietary zinc intake was significantly positively correlated with HGS (β = 0.005, 0.001∼0.008, P = 0.008), and there was no significant correlation between other indicators and HGS (P > 0.05). Conclusion There was an association between the CDAI and HGS, but there was a gender difference, and there was an association between the CDAI and HGS in male, but the association was not significant in female. Intake of the dietary antioxidants vitamin E, selenium, and zinc was associated with HGS in male, but only zinc was associated with HGS among dietary antioxidants in female.
Collapse
Affiliation(s)
- Dongzhe Wu
- Department of Physical Education, Central South University, Changsha, China
- Sports Rehabilitation Center, China Institute of Sport Science, Beijing, China
| | - Hao Wang
- Sports Rehabilitation Center, China Institute of Sport Science, Beijing, China
| | - Wendi Wang
- Sports Rehabilitation Center, China Institute of Sport Science, Beijing, China
| | - Chang Qing
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Weiqiang Zhang
- Department of Physical Education, Central South University, Changsha, China
| | - Xiaolin Gao
- Sports Rehabilitation Center, China Institute of Sport Science, Beijing, China
| | - Yongjin Shi
- Department of Physical Education and Art, China Agricultural University, Beijing, China
| | - Yanbin Li
- Department of Human Health Science Research, Tokyo Metropolitan University, Tokyo, Japan
| | - Zicheng Zheng
- Human and Social Sciences, Chemnitz University of Technology, Chemnitz, Germany
| |
Collapse
|
18
|
Vrieling F, Stienstra R. Obesity and dysregulated innate immune responses: impact of micronutrient deficiencies. Trends Immunol 2023; 44:217-230. [PMID: 36709082 DOI: 10.1016/j.it.2023.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/28/2023]
Abstract
Obesity is associated with the development of various complications, including diabetes, atherosclerosis, and an increased risk for infections, driven by dysfunctional innate immune responses. Recent insights have revealed that the availability of nutrients is a key determinant of innate immune cell function. Although the presence of obesity is associated with overnutrition of macronutrients, several micronutrient deficiencies, including Vitamin D and zinc, are often present. Micronutrients have been attributed important immunomodulatory roles. In this review, we summarize current knowledge of the immunomodulatory effects of Vitamin D and zinc. We also suggest future lines of research to further improve our understanding of these micronutrients; this may serve as a stepping-stone to explore micronutrient supplementation to improve innate immune cell function during obesity.
Collapse
Affiliation(s)
- Frank Vrieling
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Rinke Stienstra
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands; Department of Internal Medicine, RadboudUMC, Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Design, synthesis, experimental investigations, theoretical corroborations, and distinct applications of a futuristic fluorescence chemosensor for the unveiling of Zn2+ ions. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
20
|
Sadeghmousavi S, Rezaei N, Hanaei S. Nutrition and Diet: A Double-Edged Sword in Development and Treatment of Brain Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1394:153-180. [PMID: 36587387 DOI: 10.1007/978-3-031-14732-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Brain tumor (BT) is the second most common pediatric cancer, one of the most common cancers among adults, and the major cause of cancer-related morbidity and mortality worldwide. Both genetics and environment can contribute to BT induction. One of the environmental risks is diet which has not been proven as a certain hazard yet. The objective of the current chapter was to review the literature concerning both positive and negative effects of nutrition on BT risk.
Collapse
Affiliation(s)
- Shaghayegh Sadeghmousavi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sara Hanaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
21
|
Dong J, Wang W, Zhou W, Zhang S, Li M, Li N, Pan G, Zhang X, Bai J, Zhu C. Immunomodulatory biomaterials for implant-associated infections: from conventional to advanced therapeutic strategies. Biomater Res 2022; 26:72. [PMID: 36471454 PMCID: PMC9721013 DOI: 10.1186/s40824-022-00326-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/19/2022] [Indexed: 12/11/2022] Open
Abstract
Implant-associated infection (IAI) is increasingly emerging as a serious threat with the massive application of biomaterials. Bacteria attached to the surface of implants are often difficult to remove and exhibit high resistance to bactericides. In the quest for novel antimicrobial strategies, conventional antimicrobial materials often fail to exert their function because they tend to focus on direct bactericidal activity while neglecting the modulation of immune systems. The inflammatory response induced by host immune cells was thought to be a detrimental force impeding wound healing. However, the immune system has recently received increasing attention as a vital player in the host's defense against infection. Anti-infective strategies based on the modulation of host immune defenses are emerging as a field of interest. This review explains the importance of the immune system in combating infections and describes current advanced immune-enhanced anti-infection strategies. First, the characteristics of traditional/conventional implant biomaterials and the reasons for the difficulty of bacterial clearance in IAI were reviewed. Second, the importance of immune cells in the battle against bacteria is elucidated. Then, we discuss how to design biomaterials that activate the defense function of immune cells to enhance the antimicrobial potential. Based on the key premise of restoring proper host-protective immunity, varying advanced immune-enhanced antimicrobial strategies were discussed. Finally, current issues and perspectives in this field were offered. This review will provide scientific guidance to enhance the development of advanced anti-infective biomaterials.
Collapse
Affiliation(s)
- Jiale Dong
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Wenzhi Wang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Wei Zhou
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Siming Zhang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Meng Li
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China ,grid.263761.70000 0001 0198 0694Medical College, Soochow University, 215006 Suzhou, Jiangsu P. R. China
| | - Ning Li
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Guoqing Pan
- grid.440785.a0000 0001 0743 511XInstitute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Xianzuo Zhang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Jiaxiang Bai
- grid.263761.70000 0001 0198 0694Medical College, Soochow University, 215006 Suzhou, Jiangsu P. R. China
| | - Chen Zhu
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| |
Collapse
|
22
|
Samkange A, van der Westhuizen J, Voigts AS, Chitate F, Kaatura I, Khaiseb S, Hikufe EH, Kabajani J, Bishi AS, Mbiri P, Hawanga NN, Mushonga B. Investigation of the outbreaks of abortions and orchitis in livestock in Namibia during 2016-2018. Trop Anim Health Prod 2022; 54:346. [PMID: 36242679 DOI: 10.1007/s11250-022-03342-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022]
Abstract
This study investigated outbreaks of seemingly related abortions and orchitis which occurred in the Khomas, Omaheke and Otjozondjupa regions of Namibia from 2016 to 2018, affecting cattle, sheep and goats. Fifty-nine questionnaires were administered, and 48 were completed giving an 81.4% return. The outbreaks were limited to Namibia's east and central regions, mainly on farms rearing cattle, sheep and goats and on farms with a mixture of these species. There was no significant difference between Khomas and other regions on abortion reporting at the farm level [X2 (1, N = 48) = 0.0002, p = 0.987851]. However, there was a significant difference in the abortions at the animal level among the three regions [X2 (2, N = 6246) = 239.8339, p = .00001]. In addition, the proportions of abortions calculated at the animal level at each farm were significantly different when the Khomas region was compared to the other regions. Seventeen cattle sera, 35 sheep sera, 52 caprine sera, 18 bovine liver samples, one caprine liver, five aborted cattle foetuses, two cattle placentas, 18 testes (one bull, eight bucks and nine rams) and ten bull sheath scrapings were collected and tested. Histopathology, microbiology, serology, immunohistochemistry, real-time PCR and mineral analytical techniques were used to establish the aetiology of the abortion and orchitis outbreaks. The gross and histopathological findings on the 18 testicles were characteristic of chronic orchitis. In aborted foetuses, significant histopathological findings included meconium aspiration, funisitis and cardiomyopathy. Placentitis and endometritis were the primary pathologies observed in cows. The bacteria isolated from microbiological samples included Enterococcus spp. (65.5% [19/29]), Enterobacter spp. (6.9% [2/29]) and Streptococcus spp. (10.3% [3/29]), Trueperella pyogenes (3.4% [1/29]), Stenotrophomonas maltophilia (3.4% [1/29]), Staphylococcus epidermidis (3.4% [1/29]), Providencia rettgeri (3.4% [1/29]) and Acinetobacter lwoffii (3.4% [1/29]), mostly opportunistic bacteria. On mineral analysis, 28%, 33%, 83%, 33% and 17% (n = 18) of cattle livers were low in copper, zinc, manganese, selenium and iron, respectively. Twenty-three percent (12/52) of the caprine sera were positive for Brucella melitensis on the Rose Bengal and complement fixation tests. Thirty-five ovine sera were tested for B. melitensis, B. ovis and Coxiella burnetii, and the prevalence for each was 2.9% (1/35). PCR tests on foetuses were all negative for Brucella spp., Coxiella burnetii, Chlamydia spp., Listeria monocytogenes, Salmonella spp., Campylobacter fetus spp., Leptospira pathogenic strains, bovine viral diarrhoea virus, Rift Valley fever virus, Anaplasma phagocytophilum and bovine herpes virus 4 Campylobacter fetus spp. and Trichomonas foetus spp. The authors concluded that Brucella spp., Enterococcus spp., Escherichia coli, Streptococcus spp., Trueperella pyogenes and Coxiella burnetii could have contributed to this outbreak. Micronutrient imbalances and pathogenic abiotic nanoparticles were also identified as possible contributors to the abortion outbreaks.
Collapse
Affiliation(s)
- Alaster Samkange
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, P. Bag 13301, Windhoek, Namibia.
| | | | | | - Frank Chitate
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, P. Bag 13301, Windhoek, Namibia
| | - Israel Kaatura
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, P. Bag 13301, Windhoek, Namibia
| | - Siegfried Khaiseb
- Directorate of Veterinary Services, Central Veterinary Laboratory, Private Bag 13187, Windhoek, Namibia
| | - Emmanuel H Hikufe
- Directorate of Veterinary Services, Central Veterinary Laboratory, Private Bag 13187, Windhoek, Namibia
| | - Juliet Kabajani
- Directorate of Veterinary Services, Central Veterinary Laboratory, Private Bag 13187, Windhoek, Namibia
| | - Alec S Bishi
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, P. Bag 13301, Windhoek, Namibia
| | - Pricilla Mbiri
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, P. Bag 13301, Windhoek, Namibia
| | - Ndahafa N Hawanga
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, P. Bag 13301, Windhoek, Namibia
| | - Borden Mushonga
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, P. Bag 13301, Windhoek, Namibia
| |
Collapse
|
23
|
Calder PC, Ortega EF, Meydani SN, Adkins Y, Stephensen CB, Thompson B, Zwickey H. Nutrition, Immunosenescence, and Infectious Disease: An Overview of the Scientific Evidence on Micronutrients and on Modulation of the Gut Microbiota. Adv Nutr 2022; 13:S1-S26. [PMID: 36183242 PMCID: PMC9526826 DOI: 10.1093/advances/nmac052] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 01/28/2023] Open
Abstract
The immune system is key to host defense against pathogenic organisms. Aging is associated with changes in the immune system, with a decline in protective components (immunosenescence), increasing susceptibility to infectious disease, and a chronic elevation in low-grade inflammation (inflammaging), increasing the risk of multiple noncommunicable diseases. Nutrition is a determinant of immune cell function and of the gut microbiota. In turn, the gut microbiota shapes and controls the immune and inflammatory responses. Many older people show changes in the gut microbiota. Age-related changes in immune competence, low-grade inflammation, and gut dysbiosis may be interlinked and may relate, at least in part, to age-related changes in nutrition. A number of micronutrients (vitamins C, D, and E and zinc and selenium) play roles in supporting the function of many immune cell types. Some trials report that providing these micronutrients as individual supplements can reverse immune deficits in older people and/or in those with insufficient intakes. There is inconsistent evidence that this will reduce the risk or severity of infections including respiratory infections. Probiotic, prebiotic, or synbiotic strategies that modulate the gut microbiota, especially by promoting the colonization of lactobacilli and bifidobacteria, have been demonstrated to modulate some immune and inflammatory biomarkers in older people and, in some cases, to reduce the risk and severity of gastrointestinal and respiratory infections, although, again, the evidence is inconsistent. Further research with well-designed and well-powered trials in at-risk older populations is required to be more certain about the role of micronutrients and of strategies that modify the gut microbiota-host relationship in protecting against infection, especially respiratory infection.
Collapse
Affiliation(s)
- Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Edwin Frank Ortega
- Nutritional Immunology Laboratory, Jean Mayer–USDA Human Nutrition Research on Aging at Tufts University, Boston, MA, USA
| | - Simin N Meydani
- Nutritional Immunology Laboratory, Jean Mayer–USDA Human Nutrition Research on Aging at Tufts University, Boston, MA, USA
| | - Yuriko Adkins
- USDA Western Human Nutrition Research Center, Davis, CA, USA
- Nutrition Department, University of California, Davis, CA, USA
| | - Charles B Stephensen
- USDA Western Human Nutrition Research Center, Davis, CA, USA
- Nutrition Department, University of California, Davis, CA, USA
| | - Brice Thompson
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Heather Zwickey
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR, USA
| |
Collapse
|
24
|
Wang F, Zhong J, Zhang R, Sun Y, Dong Y, Wang M, Sun C. Zinc and COVID-19: Immunity, Susceptibility, Severity and Intervention. Crit Rev Food Sci Nutr 2022; 64:1969-1987. [PMID: 36094452 DOI: 10.1080/10408398.2022.2119932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic and continuing emergence of viral mutants, there has been a lack of effective treatment methods. Zinc maintains immune function, with direct and indirect antiviral activities. Zinc nutritional status is a critical factor in antiviral immune responses. Importantly, COVID-19 and zinc deficiency overlap in high-risk population. Hence, the potential effect of zinc as a preventive and adjunct therapy for COVID-19 is intriguing. Here, this review summarizes the immune and antiviral function of zinc, the relationship between zinc levels, susceptibility, and severity of COVID-19, and the effect of zinc supplementation on COVID-19. Existing studies have confirmed that zinc deficiency was associated with COVID-19 susceptibility and severity. Zinc supplementation plays a potentially protective role in enhancing immunity, decreasing susceptibility, shortening illness duration, and reducing the severity of COVID-19. We recommend that zinc levels should be monitored, particularly in COVID-19 patients, and zinc as a preventive and adjunct therapy for COVID-19 should be considered for groups at risk of zinc deficiency to reduce susceptibility and disease severity.
Collapse
Affiliation(s)
- Fan Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Jiayi Zhong
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Rui Zhang
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Yongzhi Sun
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Yingran Dong
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Maoqing Wang
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Changhao Sun
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Liu L, Sun B, Ding R, Mao Y. Exploring the Photophysics of a Zn 2+ Fluorescence Sensor and Its Sensing Mechanism. J Phys Chem A 2022; 126:6124-6134. [PMID: 36069475 DOI: 10.1021/acs.jpca.2c04385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensor X is a turn-on sensor, which is applied in the fluorescence detection of Zn2+ ions. Its photophysical process is comprehensively investigated to clarify its weak fluorescence. With the aid of density functional theory (DFT) and time-dependent density functional theory (TDDFT), the potential energy surfaces (PES) of X on both ground and first excited states are studied. Excited-state intramolecular proton transfer (EPT) processes as well as molecule twisting motion are observed, which induces several minima on the excited-state PES. Transition states as well as rate constants for these dynamic processes are obtained to evaluate their occurrences. The twisting motion of the sensor is an ultrafast process, which is initiated by a specific EPT process and leads to a nonemissive twisted intramolecular charge transfer (TICT) state. The fluorescence of the sensor is barely observable because of the easily attainable TICT state on the excited PES. This mechanism is trustworthy and intrinsically different from the previously proposed mechanism. After clarifying the photophysical process of the sensor, the Zn2+ sensing mechanism is uncovered. Also, the selectivity against Cd2+ and Hg2+ is fully discussed.
Collapse
Affiliation(s)
- Lei Liu
- College of Chemical and Materials Engineering, Anhui Science and Technology University, Fengyang 233100, China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bingqing Sun
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ran Ding
- College of Chemical and Materials Engineering, Anhui Science and Technology University, Fengyang 233100, China
| | - Yueyuan Mao
- College of Chemical and Materials Engineering, Anhui Science and Technology University, Fengyang 233100, China
| |
Collapse
|
26
|
Mbugi EV, den Hartog G, Veenemans J, Chilongola JO, Verhoef H, Savelkoul HFJ. Nutrient Deficiencies and Potential Alteration in Plasma Levels of Naturally Acquired Malaria-Specific Antibody Responses in Tanzanian Children. Front Nutr 2022; 9:872710. [PMID: 35782946 PMCID: PMC9247637 DOI: 10.3389/fnut.2022.872710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022] Open
Abstract
Immunoglobulin G (IgG) subclasses have been suggested to confer naturally acquired immunity to Plasmodium falciparum malaria. Cytophilic IgG1 and IgG3 with their potential for opsonization, phagocytosis, and antibody-dependent cellular inhibition in association with monocytes have been suggested to have a critical role in malaria. The potential for production of antibodies is influenced by micronutrient status. This study aimed at exploring the effect of micronutrients, particularly zinc status, on the profiles of IgG subclasses in 304 Tanzanian children aged ≤ 5 years. An enzyme-linked immunosorbent assay was performed using whole asexual blood stage malaria antigens to determine plasma malaria-specific antibody titers. This baseline cross-sectional study was done from 2005 – 2010 prior to the larger randomized control trial of the Micronutrient and Child Health (MACH) Study. Plasma concentrations of zinc and magnesium were measured by inductively coupled plasma atomic emission spectrometry and results correlated with plasma IgG subclass levels. The findings reveal zinc deficiency to possibly influence the production of IgM, total IgG, and several IgG subclasses in a malaria status-dependent manner. Among IgG subclasses, IgG3 and partly IgG2 displayed a remarkable association with zinc deficiency, particularly IgG3 which was predominant in children with malaria. Nevertheless, zinc, magnesium, and malaria status did not influence the association between IgG3 and IgG4. The study leads to the conclusion that, under conditions of micronutrient deficiency and malaria status, an imbalance in IgG subclass production may occur leading to predominantly higher levels of IgG3 and IgG2 that may not confer sufficient protection from infection. The profile of both cytophilic and non-cytophilic IgG subclasses has been shown to be variably influenced by zinc status; the effects vary with age at least in under-fives. These results provide insight for inclusion of micronutrients, particularly precise amounts of zinc, in future malaria interventional programs in endemic areas.
Collapse
Affiliation(s)
- Erasto V. Mbugi
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
- *Correspondence: Erasto V. Mbugi ;
| | - Gerco den Hartog
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Jacobien Veenemans
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Jaffu O. Chilongola
- Department of Biochemistry, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Hans Verhoef
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
- Nutrition and Public Health Intervention Research Unit, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
27
|
Xia W, Li C, Zhao D, Xu L, Kuang M, Yao X, Hu H. The Impact of Zinc Supplementation on Critically Ill Patients With Acute Kidney Injury: A Propensity Score Matching Analysis. Front Nutr 2022; 9:894572. [PMID: 35769374 PMCID: PMC9234667 DOI: 10.3389/fnut.2022.894572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/17/2022] [Indexed: 12/05/2022] Open
Abstract
Background Zinc is an essential trace element involved in multiple metabolic processes. Acute kidney injury (AKI) is associated with low plasma zinc, but outcomes with zinc supplementation in critically ill patients with AKI remain unknown. Our objective was to investigate the effectiveness of zinc supplementation in this patient population. Methods Critically ill patients with AKI were identified from the Medical Informative Mart for Intensive Care IV database. Prosperity score matching (PSM) was applied to match patients receiving zinc treatment to those without zinc treatment. The association between zinc sulfate use and in-hospital mortality and 30-day mortality, need for renal replacement therapy (RRT), and length of stay was determined by logistic regression and Cox proportional hazards modeling. Results A total of 9,811 AKI patients were included in the study. PSM yielded 222 pairs of patients who received zinc treatment and those who did not. Zinc supplementation was associated with reduced in-hospital mortality (HR = 0.48 (95% CI: 0.28, 0.83) P = 0.009) and 30-day mortality (HR = 0.51 (95% CI, 0.30, 0.86) P = 0.012). In the subgroup analysis, zinc use was associated with reduced in-hospital mortality in patients with stage 1 AKI and those with sepsis. Conclusions Zinc supplementation was associated with improved survival in critically ill patients with AKI. The supplementation was especially effective in those with stage 1 AKI and sepsis. These results need to be verified in randomized controlled trials.
Collapse
Affiliation(s)
- Wenkai Xia
- Department of Nephrology, The Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, China
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Chenyu Li
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Danyang Zhao
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lingyu Xu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meisi Kuang
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Xiajuan Yao
- Department of Nephrology, The Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, China
| | - Hong Hu
- Department of Nephrology, The Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, China
- *Correspondence: Hong Hu
| |
Collapse
|
28
|
Zhang HL, Wang XC, Liu R. Zinc in Regulating Protein Kinases and Phosphatases in Neurodegenerative Diseases. Biomolecules 2022; 12:biom12060785. [PMID: 35740910 PMCID: PMC9220840 DOI: 10.3390/biom12060785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Zinc is essential for human growth and development. As a trace nutrient, zinc plays important roles in numerous signal transduction pathways involved in distinct physiologic or pathologic processes. Protein phosphorylation is a posttranslational modification which regulates protein activity, degradation, and interaction with other molecules. Protein kinases (PKs) and phosphatases (PPs), with their effects of adding phosphate to or removing phosphate from certain substrates, are master regulators in controlling the phosphorylation of proteins. In this review, we summarize the disturbance of zinc homeostasis and role of zinc disturbance in regulating protein kinases and protein phosphatases in neurodegenerative diseases, with the focus of that in Alzheimer’s disease, providing a new perspective for understanding the mechanisms of these neurologic diseases.
Collapse
|
29
|
Hussain S, Khan M, Sheikh TMM, Mumtaz MZ, Chohan TA, Shamim S, Liu Y. Zinc Essentiality, Toxicity, and Its Bacterial Bioremediation: A Comprehensive Insight. Front Microbiol 2022; 13:900740. [PMID: 35711754 PMCID: PMC9197589 DOI: 10.3389/fmicb.2022.900740] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Zinc (Zn) is one of the most abundantly found heavy metals in the Earth's crust and is reported to be an essential trace metal required for the growth of living beings, with it being a cofactor of major proteins, and mediating the regulation of several immunomodulatory functions. However, its essentiality also runs parallel to its toxicity, which is induced through various anthropogenic sources, constant exposure to polluted sites, and other natural phenomena. The bioavailability of Zn is attributable to various vegetables, beef, and dairy products, which are a good source of Zn for safe consumption by humans. However, conditions of Zn toxicity can also occur through the overdosage of Zn supplements, which is increasing at an alarming rate attributing to lack of awareness. Though Zn toxicity in humans is a treatable and non-life-threatening condition, several symptoms cause distress to human activities and lifestyle, including fever, breathing difficulty, nausea, chest pain, and cough. In the environment, Zn is generally found in soil and water bodies, where it is introduced through the action of weathering, and release of industrial effluents, respectively. Excessive levels of Zn in these sources can alter soil and aquatic microbial diversity, and can thus affect the bioavailability and absorption of other metals as well. Several Gram-positive and -negative species, such as Bacillus sp., Staphylococcus sp., Streptococcus sp., and Escherichia coli, Pseudomonas sp., Klebsiella sp., and Enterobacter sp., respectively, have been reported to be promising agents of Zn bioremediation. This review intends to present an overview of Zn and its properties, uses, bioavailability, toxicity, as well as the major mechanisms involved in its bioremediation from polluted soil and wastewaters.
Collapse
Affiliation(s)
- Sarfraz Hussain
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Maryam Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Taha Majid Mahmood Sheikh
- Institute of Plant Protection, Jiangsu Academy of Agriculture Sciences, Nanjing, China,*Correspondence: Taha Majid Mahmood Sheikh,
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Talha Ali Chohan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan,Saba Shamim,
| | - Yuhong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China,Yuhong Liu,
| |
Collapse
|
30
|
Meng Q, Wu M, Shang Z, Zhang Z, Zhang R. Responsive gadolinium(III) complex-based small molecule magnetic resonance imaging probes: Design, mechanism and application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Langenmayer MC, Jung S, Fux R, Wittlinger C, Tschoner T, Majzoub-Altweck M, Knubben-Schweizer G, Fries R, Hermanns W, Trefz FM. Macrophages in dermal disease progression of phospholipase D4-deficient Fleckvieh calves. Vet Pathol 2022; 59:319-327. [PMID: 34856834 DOI: 10.1177/03009858211062629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A new gene defect in Fleckvieh calves leads to a syndrome with partial phenotype overlap with bovine hereditary zinc deficiency. A mutation in a gene encoding phospholipase D4 (PLD4), an endosomal exonuclease, causes the disorder. In mice, PLD4 activity indirectly regulates the Toll-like receptor 9 (TLR9) pathway via degradation of microbial DNA. PLD4 absence thus results in visceral macrophage activation comparable to human macrophage activation syndrome. In this study, disease progression and the role of macrophages in affected calves were monitored clinically, clinicopathologically, and histologically over time. Breeding data identified 73 risk matings of heterozygous carriers resulting in 54 potentially PLD4-deficient calves born on farms. PLD4 status was examined via 5'-exonuclease assay, detecting 6 calves carrying the defect. These were purchased and monitored daily until final necropsy. The calves developed progressive skin lesions starting with small scaling areas terminating in severe crusting dermatitis, especially in areas with mechanical exposure. Histological and immunohistochemical analyses indicated that macrophages with cytoplasmic vacuolation increased considerably in skin sections obtained weekly during the disease course. Macrophage increase correlated with increased dermal lesion severity. Macrophage activation was confirmed by prominent phagocytic activity in the superficial dermis using electron microscopy. Dermal mRNA abundance of CCL2 and CCL3 measured by quantitative polymerase chain reaction verified macrophage activation. Further increase in mRNA of downstream molecule MyD88 and cytokine IL12b connected bovine PLD4 deficiency to increased TLR9 pathway activation. In contrast to human macrophage activation syndrome, the main feature of bovine PLD4 deficiency was local disease in organs with contact to microbial DNA (skin, intestine, lungs).
Collapse
Affiliation(s)
- Martin C Langenmayer
- Ludwig-Maximilians-Universität München, Munich, Germany
- Specialty Practice for Veterinary Pathology, Munich, Germany
| | - Simone Jung
- Technische Universität München, Freising, Germany
- Bayern-Genetik GmbH, Grub, Germany
| | - Robert Fux
- Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | | - Ruedi Fries
- Technische Universität München, Freising, Germany
| | | | - Florian M Trefz
- Ludwig-Maximilians-Universität München, Munich, Germany
- University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Li J, Cao D, Huang Y, Chen B, Chen Z, Wang R, Dong Q, Wei Q, Liu L. Zinc Intakes and Health Outcomes: An Umbrella Review. Front Nutr 2022; 9:798078. [PMID: 35211497 PMCID: PMC8861317 DOI: 10.3389/fnut.2022.798078] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
It is widely accepted that the zinc element is crucial in human beings. Zinc has gained more attention during the COVID-19 pandemic due to its utilization for the treatment and prevention of respiratory tract infections. However, some studies also pointed out that zinc intake might cause unwanted side effects and even be dangerous when overdosed. To reveal the relationship between zinc intake and health outcomes, we performed an umbrella review from human studies. In total, the umbrella review included 43 articles and identified 11 outcomes for dietary zinc intake and 86 outcomes for supplementary zinc intake. Dietary zinc intake in the highest dose would decrease the risk of overall and specific digestive tract cancers, depression, and type 2 diabetes mellitus (T2DM) in adults. Supplementary zinc consumption in adults was linked to an improvement of depression, antioxidant capacity and sperm quality, higher serum zinc concentration, and lower concentration of inflammatory markers. Zinc supplementation in children would reduce the incidence of diarrhea and pneumonia, improve zinc deficiency and boost growth. However, zinc might not decrease all-cause mortality in adults or the in-hospital mortality of COVID-19. And better maternal and neonatal outcomes may not derive from pregnant women who consumed higher or lower doses of zinc supplementation (>20 mg/day and <20 mg/day, respectively). Dose-response analyses revealed that a daily 5 mg increment of zinc would lower the risk of colorectal and esophageal cancer, whereas a large dose of zinc supplementation (daily 100 mg) showed no benefit in reducing prostate cancer risk.
Collapse
Affiliation(s)
- Jin Li
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Dehong Cao
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yin Huang
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Bo Chen
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Zeyu Chen
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Ruyi Wang
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Dong
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qiang Wei
| | - Liangren Liu
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Liangren Liu
| |
Collapse
|
33
|
Weyh C, Krüger K, Peeling P, Castell L. The Role of Minerals in the Optimal Functioning of the Immune System. Nutrients 2022; 14:644. [PMID: 35277003 PMCID: PMC8840645 DOI: 10.3390/nu14030644] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
Minerals fulfil a wide variety of functions in the optimal functioning of the immune system. This review reports on the minerals that are essential for the immune system's function and inflammation regulation. We also discuss nutritional aspects of optimized mineral supply. The supply of minerals is important for the optimal function of the innate immune system as well as for components of adaptive immune defense; this involves defense mechanisms against pathogens in addition to the long-term balance of pro- and anti-inflammatory regulation. Generally, a balanced diet is sufficient to supply the required balance of minerals to help support the immune system. Although a mineral deficiency is rare, there are nevertheless at-risk groups who should pay attention to ensure they are receiving a sufficient supply of minerals such as magnesium, zinc, copper, iron, and selenium. A deficiency in any of these minerals could temporarily reduce immune competence, or even disrupt systemic inflammation regulation in the long term. Therefore, knowledge of the mechanisms and supply of these minerals is important. In exceptional cases, a deficiency should be compensated by supplementation; however, supplement over-consumption may be negative to the immune system, and should be avoided. Accordingly, any supplementation should be medically clarified and should only be administered in prescribed concentrations.
Collapse
Affiliation(s)
- Christopher Weyh
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany;
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany;
| | - Peter Peeling
- School of Human Sciences (Sport and Exercise Science), University of Western Australia, Crawley, WA 6009, Australia;
- Western Australian Institute of Sport, Mt Claremont, WA 6010, Australia
| | - Lindy Castell
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK;
| |
Collapse
|
34
|
Baarz BR, Rink L. Rebalancing the unbalanced aged immune system - A special focus on zinc. Ageing Res Rev 2022; 74:101541. [PMID: 34915196 DOI: 10.1016/j.arr.2021.101541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
Nowadays, aging is understood as a dynamic and multifaceted dysregulation process that spares almost no human organ or cell. The immune system being among the most affected, it has been shown predominantly that its integrity determines the tightrope walk between the difference of escaping or suffering from age-related diseases. Next to drug-based anti-aging strategies, micronutrient intervention may represent an emerging but less radical way to slow immune aging. While a sufficient supply of a variety of micronutrients is undeniably important, adequate intake of the trace element zinc appears to tower over others in terms of reaching old age. Inconveniently, zinc deficiency prevalence among the elderly is high, which in turn contributes to increased susceptibility to infection, decreased anti-tumor immunity as well as attenuated response to vaccination. Driven by this research, this review aims to provide a comprehensive and up-to-date overview of the various rebalancing capabilities of zinc in the unbalanced immune system of the elderly. This includes an in-depth and cell type-centered discussion on the role of zinc in immunosenescence and inflammaging. We further address upcoming translational aspects e.g. how zinc deficiency promotes the flourishing of certain pathogenic taxa of the gut microbiome and how zinc supply counteracts such alterations in a manner that may contribute to longevity. In the light of the ongoing COVID-19 pandemic, we also briefly review current knowledge on the interdependency between age, zinc status, and respiratory infections. Based on two concrete examples and considering the latest findings in the field we conclude our remarks by outlining tremendous parallels between suboptimal zinc status and accelerated aging on the one hand and an optimized zinc status and successful aging on the other hand.
Collapse
|
35
|
Wessels I, Rolles B, Slusarenko AJ, Rink L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br J Nutr 2022; 127:214-232. [PMID: 33641685 PMCID: PMC8047403 DOI: 10.1017/s0007114521000738] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/07/2021] [Accepted: 02/21/2021] [Indexed: 01/08/2023]
Abstract
The importance of Zn for human health becomes obvious during Zn deficiency. Even mild insufficiencies of Zn cause alterations in haematopoiesis and immune functions, resulting in a proinflammatory phenotype and a disturbed redox metabolism. Although immune system malfunction has the most obvious effect, the functions of several tissue cell types are disturbed if Zn supply is limiting. Adhesion molecules and tight junction proteins decrease, while cell death increases, generating barrier dysfunction and possibly organ failure. Taken together, Zn deficiency both weakens the resistance of the human body towards pathogens and at the same time increases the danger of an overactive immune response that may cause tissue damage. The case numbers of Corona Virus Disease 19 (COVID-19) are still increasing, which is causing enormous problems for health systems and economies. There is an urgent need to reduce both the number of severe cases and the resulting deaths. While therapeutic options are still under investigation, and first vaccines have been approved, cost-effective ways to reduce the likelihood of or even prevent infection, and the transition from mild symptoms to more serious detrimental disease, are highly desirable. Nutritional supplementation might be an effective option to achieve these aims. In this review, we discuss known Zn deficiency effects in the context of an infection with Severe Acute Respiratory Syndrome-Coronavirus-2 and its currently known pathogenic mechanisms and elaborate on how severe pre-existing Zn deficiency may pre-dispose patients to a severe progression of COVID-19. First published clinical data on the association of Zn homoeostasis with COVID-19 and registered studies in progress are listed.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074Aachen, Germany
| | - Benjamin Rolles
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074Aachen, Germany
| | - Alan J. Slusarenko
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52074Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074Aachen, Germany
| |
Collapse
|
36
|
Samuelson DR, Smith DR, Cunningham KC, Wyatt TA, Hall SC, Murry DJ, Chhonker YS, Knoell DL. ZIP8-Mediated Intestinal Dysbiosis Impairs Pulmonary Host Defense against Bacterial Pneumonia. Int J Mol Sci 2022; 23:1022. [PMID: 35162945 PMCID: PMC8834709 DOI: 10.3390/ijms23031022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Pneumococcal pneumonia is a leading cause of morbidity and mortality worldwide. An increased susceptibility is due, in part, to compromised immune function. Zinc is required for proper immune function, and an insufficient dietary intake increases the risk of pneumonia. Our group was the first to reveal that the Zn transporter, ZIP8, is required for host defense. Furthermore, the gut microbiota that is essential for lung immunity is adversely impacted by a commonly occurring defective ZIP8 allele in humans. Taken together, we hypothesized that loss of the ZIP8 function would lead to intestinal dysbiosis and impaired host defense against pneumonia. To test this, we utilized a novel myeloid-specific Zip8KO mouse model in our studies. The comparison of the cecal microbial composition of wild-type and Zip8KO mice revealed significant differences in microbial community structure. Most strikingly, upon a S. pneumoniae lung infection, mice recolonized with Zip8KO-derived microbiota exhibited an increase in weight loss, bacterial dissemination, and lung inflammation compared to mice recolonized with WT microbiota. For the first time, we reveal the critical role of myeloid-specific ZIP8 on the maintenance of the gut microbiome structure, and that loss of ZIP8 leads to intestinal dysbiosis and impaired host defense in the lung. Given the high incidence of dietary Zn deficiency and the ZIP8 variant allele in the human population, additional investigation is warranted to improve surveillance and treatment strategies.
Collapse
Affiliation(s)
- Derrick R. Samuelson
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.C.C.); (T.A.W.)
| | - Deandra R. Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (S.C.H.); (D.J.M.); (Y.S.C.)
| | - Kelly C. Cunningham
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.C.C.); (T.A.W.)
| | - Todd A. Wyatt
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.C.C.); (T.A.W.)
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Sannette C. Hall
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (S.C.H.); (D.J.M.); (Y.S.C.)
| | - Daryl J. Murry
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (S.C.H.); (D.J.M.); (Y.S.C.)
| | - Yashpal S. Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (S.C.H.); (D.J.M.); (Y.S.C.)
| | - Daren L. Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (S.C.H.); (D.J.M.); (Y.S.C.)
| |
Collapse
|
37
|
Ho E, Wong CP, King JC. Impact of zinc on DNA integrity and age-related inflammation. Free Radic Biol Med 2022; 178:391-397. [PMID: 34921929 DOI: 10.1016/j.freeradbiomed.2021.12.256] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
Dr. Bruce Ames was a pioneer in understanding the role of oxidative stress and DNA damage, and in the 1990s began to make connections between micronutrient deficiencies and DNA damage. Zinc is an essential micronutrient for human health and a key component for the function of numerous cellular processes. In particular, zinc plays a critical role in cellular antioxidant defense, the maintenance of DNA integrity and is also essential for the normal development and function of the immune system. This review highlights the work helping connect zinc deficiency to oxidative stress, susceptibility to DNA damage and chronic inflammation that was initiated while working with Dr. Ames. This review outlines the body of work in this area, from cells to humans. The article also reviews the unique challenges of maintaining zinc status as we age and the interplay between zinc deficiency and age-related inflammation and immune dysfunction. Several micronutrient deficiencies, including zinc deficiency, can drastically affect the risk of many chronic diseases and underscores the importance of adequate nutrition for healthy aging.
Collapse
Affiliation(s)
- Emily Ho
- Linus Pauling Institute, 307 Linus Pauling Science Center, Oregon State University, Corvallis, OR, 97331, USA; School of Biological and Population Health Sciences, 101 Milam Hall, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Carmen P Wong
- Linus Pauling Institute, 307 Linus Pauling Science Center, Oregon State University, Corvallis, OR, 97331, USA; School of Biological and Population Health Sciences, 101 Milam Hall, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Janet C King
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 94720, USA
| |
Collapse
|
38
|
Bag R, Sikdar Y, Sahu S, Islam MM, Mandal S, Goswami S. Benzimidazole–acid hydrazide Schiff–Mannich combo ligands enable nano–molar detection of Zn 2+ via fluorescence turn–on mode from semi–aqueous medium, HuH–7 cells, and plants. NEW J CHEM 2022. [DOI: 10.1039/d2nj02875a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we have synthesized two unsymmetrical and dipodal Schiff–Mannich combo ligands, benzoic acid (3–benzoimidazol–1–ylmethyl–2–hydroxy–5–methyl–benzylidene)–hydrazide (H2BBH) and the hydroxyl analogue, 2–hydroxy–benzoic acid (3–benzoimidazol–1–ylmethyl–2–hydroxy–5–methyl–benzylidene)–hydrazide (H3BSH) for selective detection of Zn2+ in semi–aqueous...
Collapse
|
39
|
Zinc-nutrient element based alloys for absorbable wound closure devices fabrication: Current status, challenges, and future prospects. Biomaterials 2021; 280:121301. [PMID: 34922270 DOI: 10.1016/j.biomaterials.2021.121301] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023]
Abstract
The need for the development of load-bearing, absorbable wound closure devices is driving the research for novel materials that possess both good biodegradability and superior mechanical characteristics. Biodegradable metals (BMs), namely: magnesium (Mg), zinc (Zn) and iron (Fe), which are currently being investigated for absorbable vascular stent and orthopaedic implant applications, are slowly gaining research interest for the fabrication of wound closure devices. The current review presents an overview of the traditional and novel BM-based intracutaneous and transcutaneous wound closure devices, and identifies Zn as a promising substitute for the traditional materials used in the fabrication of absorbable load-bearing sutures, internal staples, and subcuticular staples. In order to further strengthen Zn to be used in highly stressed situations, nutrient elements (NEs), including calcium (Ca), Mg, Fe, and copper (Cu), are identified as promising alloying elements for the strengthening of Zn-based wound closure device material that simultaneously provide potential therapeutic benefit to the wound healing process during implant biodegradation process. The influence of NEs on the fundamental characteristics of biodegradable Zn are reviewed and critically assessed with regard to the mechanical properties and biodegradability requirements of different wound closure devices. The opportunities and challenges in the development of Zn-based wound closure device materials are presented to inspire future research on this rapidly growing field.
Collapse
|
40
|
Sagar R, Lou J, Watson AJ, Best MD. Zinc Triggered Release of Encapsulated Cargo from Liposomes via a Synthetic Lipid Switch. Bioconjug Chem 2021; 32:2485-2496. [PMID: 34870414 DOI: 10.1021/acs.bioconjchem.1c00425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Liposomes are effective nanocarriers due to their ability to encapsulate and deliver a wide variety of therapeutics. However, therapeutic potential would be improved by enhanced control over the release of drug cargo. Zinc ions provide exciting new targets for stimuli-responsive lipid design due to their overly abundant concentrations associated with diseased cells. Herein, we report zinc-triggered release of liposomal contents exploiting synthetic lipid switches designed to undergo conformational changes in the presence of this ion. Initially, Nile red leakage assays were conducted that validated successful dose-dependent triggering of release using zinc-responsive lipids (ZRLs). In addition, dynamic light scattering and confocal microscopy experiments showed that zinc treatment led to morphological changes in lipid nanoparticles only when ZRLs were present in formulations. Next, zinc-binding experiments conducted in a solution (NMR, MS) or membrane (zeta potential) context confirmed ZRL-Zn complexation. Finally, polar cargo release from liposomes was achieved. The results from these wide-ranging experiments using four different compounds indicated that zinc-responsive properties varied based on ZRL structure, providing insights into the structural requirements for activity. This work has established zinc-responsive liposomal platforms toward the development of clinical triggered release formulations.
Collapse
Affiliation(s)
- Ruhani Sagar
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Alexa J Watson
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
41
|
Planeta Kepp K. Bioinorganic Chemistry of Zinc in Relation to the Immune System. Chembiochem 2021; 23:e202100554. [PMID: 34889510 DOI: 10.1002/cbic.202100554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/09/2021] [Indexed: 01/18/2023]
Abstract
Zinc is well-known to have a central role in human inflammation and immunity and is itself an anti-inflammatory and antiviral agent. Despite its massively documented role in such processes, the underlying chemistry of zinc in relation to specific proteins and pathways of the immune system has not received much focus. This short review provides an overview of this topic, with emphasis on the structures of key proteins, zinc coordination chemistry, and probable mechanisms involved in zinc-based immunity, with some focus points for future chemical and biological research.
Collapse
Affiliation(s)
- Kasper Planeta Kepp
- DTU Chemistry, Technical University of Denmark, Building 206, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
42
|
Yu S, Li Y, Gao L, Zhao P, Wang L, Li L, Lin YW. A highly selective and sensitive Zn 2+ fluorescent sensor based on zinc finger-like peptide and its application in cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120042. [PMID: 34116420 DOI: 10.1016/j.saa.2021.120042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Developing new chemosensors for detection of Zn2+ has attracted great attentions because of the important roles of Zn2+ in biological systems, and it will produce toxic effects with an excessive intake of zinc ion. Metalloproteins are often used as an effective template for the design and development of peptide-based fluorescent sensors. In this study, we designed a new and simple ratiometric fluorescent sensor for Zn2+, which was based on a zinc finger-like peptide and labeled with a dansyl group, i.e., Dansyl-His-Gln-Arg-Thr-His-Trp-NH2 (D-P6), by using solid phase peptide synthesis (SPPS). The dimeric peptide has a high affinity for Zn2+ overothermetalions, as indicated by spectroscopic studies, as well as molecular modeling. Remarkably, the sensor exhibited a highly selective and sensitive ratiometric fluorescent response to Zn2+ by fluorescent resonance energy transfer effect between tryptophan residue and fluorophore dansyl group, with a very low detection limit of 33 nM in aqueous solution. Furthermore, the sensor displayed a very low biotoxicity, which allows successful detection of Zn2+ in living HeLa cells. We believe that the new sensor may have potential applications in biological science.
Collapse
Affiliation(s)
- Shuaibing Yu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Yan Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Lei Gao
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital Affiliated to Shandong University, Liaocheng, China
| | - Peiran Zhao
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital Affiliated to Shandong University, Liaocheng, China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China.
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China.
| |
Collapse
|
43
|
Zhou J, Zhao R, Liu S, Feng L, Li W, He F, Gai S, Yang P. Europium Doped Silicon Quantum Dot As a Novel FRET Based Dual Detection Probe: Sensitive Detection of Tetracycline, Zinc, and Cadmium. SMALL METHODS 2021; 5:e2100812. [PMID: 34927952 DOI: 10.1002/smtd.202100812] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/04/2021] [Indexed: 06/14/2023]
Abstract
The imbalance of Zn2+ /Cd2+ in the human body can lead to many serious diseases due to the overuse of antibiotics and deposition in animal products. Developing a functional material for detecting is challenging and in demand. Herein, silicon quantum dots (SiQDs) are designed as a functional platform for the detection of tetracycline and Zn2+ /Cd2+ . The COOH functionalized SiQDs with the emission wavelength of 450 nm are chelated with Eu(NO3 )3 to form SiQDs-Eu3+ ratio fluorescent probes, which can be used to detect tetracycline (TCs) and Zn2+ /Cd2+ by fluorescence resonance energy transfer (FRET) principle sequentially. The fluorescent probe showed good linearity between ion concentration and fluorescence enhancement. The detection limit of TCs and Zn2+ /Cd2+ are 0.2 × 10-6 m and 3 × 10-6 m, respectively, when the pH of the solution is 7.4. In addition, the synthesized SiQDs-Eu3+ exhibited good stability (from 94.9% to 103.1%). The relative standard deviations (RSD, n = 10) of human serum and urine were both less than 3%. Therefore, the SiQDs-Eu3+ ratio fluorescence probe will provide a good application prospect in actual sample detection.
Collapse
Affiliation(s)
- Jialing Zhou
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ruoxi Zhao
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shikai Liu
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Wenting Li
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
44
|
Chowdhury A, Sajid M, Jahan N, Adelusi TI, Maitra P, Yin G, Wu X, Gao Y, Wang S. A secondary approach with conventional medicines and supplements to recuperate current COVID-19 status. Biomed Pharmacother 2021; 142:111956. [PMID: 34332377 PMCID: PMC8313489 DOI: 10.1016/j.biopha.2021.111956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/18/2023] Open
Abstract
Novel coronavirus 2019 (COVID-19) is a zoonosis that revised the global economic and societal progress since early 2020. The SARS-CoV-2 has been recognized as the responsible pathogen for COVID-19 with high infection and mortality rate potential. It has spread in 192 countries and infected about 1.5% of the world population, and still, a proper therapeutic approach is not unveiled. COVID-19 indication starts with fever to shortness of breathing, leading to ICU admission with the ventilation support in severe conditions. Besides the symptomatic mainstay clinical therapeutic approach, only Remdesivir has been approved by the FDA. Several pharmaceutical companies claimed different vaccines with exceptionally high efficacy (90-95%) against COVID-19; how long these vaccines can protect and long-term safety with the new variants are unpredictable. After the worldwide spread of the COVID-19 pandemic, numerous clinical trials with different phases are being performed to find the most appropriate solution to this condition. Some of these trials with old FDA-approved drugs showed promising results. In this review, we have precisely compiled the efforts to curb the disease and discussed the clinical findings of Ivermectin, Doxycycline, Vitamin-D, Vitamin-C, Zinc, and cannabidiol and their combinations. Additionally, the correlation of these molecules on the prophylactic and diseased ministration against COVID-19 has been explored.
Collapse
Affiliation(s)
- Apu Chowdhury
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Muhammad Sajid
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Nabila Jahan
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Temitope Isaac Adelusi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Pulak Maitra
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Guolian Yin
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Xudong Wu
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Yuan Gao
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Sicen Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
45
|
Pothulapadu CAS, Jayaraj A, N S, Priyanka RN, Sivaraman G. Novel Benzothiazole-Based Highly Selective Ratiometric Fluorescent Turn-On Sensors for Zn 2+ and Colorimetric Chemosensors for Zn 2+, Cu 2+, and Ni 2+ Ions. ACS OMEGA 2021; 6:24473-24483. [PMID: 34604629 PMCID: PMC8482408 DOI: 10.1021/acsomega.1c02855] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 05/17/2023]
Abstract
Metal ions play a very important role in environmental as well as biological fields. The detection of specific metal ions at a minute level caught much attention, and hence, several probes are available in the literature. Even though benzothiazole-based molecules have a special place in the medicinal field, only very few chemosensors are reported based on this moiety. The current work describes the design and synthesis of the benzothiazole-based chemosensor for a highly selective and sensitive detection of biologically important metal ions such as Zn2+, Cu2+, and Ni2+. The sensing studies of compound-1 showed a ratiometric as well as colorimetric response toward Zn2+, Cu2+, and Ni2+ ions and color changes from colorless to yellow and is found to be insensitive toward various metal ions (Cd2+, Cr3+, Mn2+, Pb2+, Ba2+, Al3+, Ca2+, Fe2+, Fe3+, Mg2+, K+, and Na+). Further, compound-1 exhibited ratiometric as well as turn-on-enhanced fluorescence response toward Zn2+ ions and turn off response for Cu2+ and Ni2+ ions. The Job plots revealed that the binding stoichiometry of compound-1 and metal ions is 2:1. The detection limits were found to be 0.25 ppm for Zn2+, while it was 0.30 ppm and 0.34 ppm for Ni2+ and Cu2+, respectively. In addition, density functional theory results strongly support the colorimetric response of metals, and the reversibility studies suggested that compound-1 can be used as a powerful chemosensor for the detection of Zn2+, Cu2+, and Ni2+ ions. The bioimaging data illustrated that compound-1 is a very effective ratiometric sensor for Zn2+ ions in live cells.
Collapse
Affiliation(s)
- Chinna Ayya Swamy Pothulapadu
- Main
Group Organometallics Materials, Supramolecular Chemistry and Catalysis
Lab, Department of Chemistry, National Institute
of Technology, Calicut 673601, India
| | - Anjitha Jayaraj
- Main
Group Organometallics Materials, Supramolecular Chemistry and Catalysis
Lab, Department of Chemistry, National Institute
of Technology, Calicut 673601, India
| | - Swathi N
- Maharani
Lakshmi Ammanni College for Women (Autonomous), Bangalore 560012, India
| | - Ragam N. Priyanka
- School
of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, India
| | - Gandhi Sivaraman
- Department
of Chemistry, Gandhigram Rural Institute
(Deemed to be University), Gandhigram 624302, India
| |
Collapse
|
46
|
Hall SC, Smith DR, Dyavar SR, Wyatt TA, Samuelson DR, Bailey KL, Knoell DL. Critical Role of Zinc Transporter (ZIP8) in Myeloid Innate Immune Cell Function and the Host Response against Bacterial Pneumonia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1357-1370. [PMID: 34380651 PMCID: PMC10575710 DOI: 10.4049/jimmunol.2001395] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/29/2021] [Indexed: 11/19/2022]
Abstract
Zinc (Zn) is required for proper immune function and host defense. Zn homeostasis is tightly regulated by Zn transporters that coordinate biological processes through Zn mobilization. Zn deficiency is associated with increased susceptibility to bacterial infections, including Streptococcus pneumoniae, the most commonly identified cause of community-acquired pneumonia. Myeloid cells, including macrophages and dendritic cells (DCs), are at the front line of host defense against invading bacterial pathogens in the lung and play a critical role early on in shaping the immune response. Expression of the Zn transporter ZIP8 is rapidly induced following bacterial infection and regulates myeloid cell function in a Zn-dependent manner. To what extent ZIP8 is instrumental in myeloid cell function requires further study. Using a novel, myeloid-specific, Zip8 knockout model, we identified vital roles of ZIP8 in macrophage and DC function upon pneumococcal infection. Administration of S. pneumoniae into the lung resulted in increased inflammation, morbidity, and mortality in Zip8 knockout mice compared with wild-type counterparts. This was associated with increased numbers of myeloid cells, cytokine production, and cell death. In vitro analysis of macrophage and DC function revealed deficits in phagocytosis and increased cytokine production upon bacterial stimulation that was, in part, due to increased NF-κB signaling. Strikingly, alteration of myeloid cell function resulted in an imbalance of Th17/Th2 responses, which is potentially detrimental to host defense. These results (for the first time, to our knowledge) reveal a vital ZIP8- and Zn-mediated axis that alters the lung myeloid cell landscape and the host response against pneumococcus.
Collapse
Affiliation(s)
- Sannette C Hall
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Deandra R Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Shetty Ravi Dyavar
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE
| | - Todd A Wyatt
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE
- Pulmonary Division, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE; and
- Department of Veterans Affairs Nebraska, University of Nebraska Medical Center, Western Iowa Health Care System, Omaha, NE
| | - Derrick R Samuelson
- Pulmonary Division, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE; and
| | - Kristina L Bailey
- Pulmonary Division, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE; and
- Department of Veterans Affairs Nebraska, University of Nebraska Medical Center, Western Iowa Health Care System, Omaha, NE
| | - Daren L Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE;
| |
Collapse
|
47
|
Saha D, Ota MOC, Pereira P, Buchy P, Badur S. Rotavirus vaccines performance: dynamic interdependence of host, pathogen and environment. Expert Rev Vaccines 2021; 20:945-957. [PMID: 34224290 DOI: 10.1080/14760584.2021.1951247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION As of January 2021, rotavirus vaccination programs have been implemented in 109 countries and their use has resulted in a positive impact on rotavirus-related diarrheal hospitalizations and mortality in children below 5 years of age. Despite these successes, several countries in Africa and Asia where disease burden is high have not yet implemented rotavirus vaccination at all or at a scale sufficient enough to demonstrate impact. This could be, among other reasons, due to poor vaccine coverage and the modest levels of efficacy and effectiveness of the vaccines in these resource-limited settings. AREAS COVERED We review various factors related to the human host (malnutrition, maternally derived antibodies and breastfeeding, genetic factors, blood group, and co-administration with oral polio vaccine), rotavirus pathogen (force of infection, strain diversity and coinfections), and the environment (related to the human microbiome) which reflect complex and interconnected processes leading to diminished vaccine performance in resource-limited settings. EXPERT OPINION Addressing the limiting factors for vaccine efficacy is needed but likely to take a long time to be resolved. An immediate solution is to increase the immunization coverage to higher values generating an overall effect of adequate proportion of protected population to reduce the prevalence of rotavirus disease.
Collapse
|
48
|
Abstract
Evidence for the importance of zinc for all immune cells and for mounting an efficient and balanced immune response to various environmental stressors has been accumulating in recent years. This article describes the role of zinc in fundamental biological processes and summarizes our current knowledge of zinc's effect on hematopoiesis, including differentiation into immune cell subtypes. In addition, the important role of zinc during activation and function of immune cells is detailed and associated with the specific immune responses to bacteria, parasites, and viruses. The association of zinc with autoimmune reactions and cancers as diseases with increased or decreased immune responses is also discussed. This article provides a broad overview of the manifold roles that zinc, or its deficiency, plays in physiology and during various diseases. Consequently, we discuss why zinc supplementation should be considered, especially for people at risk of deficiency. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| | | | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
49
|
Luo M, Xu L, Qian Z, Sun X. Infection-Associated Thymic Atrophy. Front Immunol 2021; 12:652538. [PMID: 34113341 PMCID: PMC8186317 DOI: 10.3389/fimmu.2021.652538] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
The thymus is a vital organ of the immune system that plays an essential role in thymocyte development and maturation. Thymic atrophy occurs with age (physiological thymic atrophy) or as a result of viral, bacterial, parasitic or fungal infection (pathological thymic atrophy). Thymic atrophy directly results in loss of thymocytes and/or destruction of the thymic architecture, and indirectly leads to a decrease in naïve T cells and limited T cell receptor diversity. Thus, it is important to recognize the causes and mechanisms that induce thymic atrophy. In this review, we highlight current progress in infection-associated pathogenic thymic atrophy and discuss its possible mechanisms. In addition, we discuss whether extracellular vesicles/exosomes could be potential carriers of pathogenic substances to the thymus, and potential drugs for the treatment of thymic atrophy. Having acknowledged that most current research is limited to serological aspects, we look forward to the possibility of extending future work regarding the impact of neural modulation on thymic atrophy.
Collapse
Affiliation(s)
- Mingli Luo
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lingxin Xu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhengyu Qian
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
50
|
Effects of the Consumption of Low-Fat Cooked Ham with Reduced Salt Enriched with Antioxidants on the Improvement of Cardiovascular Health: A Randomized Clinical Trial. Nutrients 2021; 13:nu13051480. [PMID: 33925704 PMCID: PMC8146046 DOI: 10.3390/nu13051480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of the study was to analyze how cardiovascular risk factors can be modified using nutritionally improved cooked ham enriched with a pool of antioxidants to influence relevant metabolic targets. Sixty-five untreated subjects (49.2% males, 50.8% females, mean age 40.92 ± 9.03 years) with total cholesterol level ≥180 mg/dL or LDL cholesterol ≥130 mg/dL participated in a 8-weeks randomized, double-blind controlled trial. Participant in the intervention group (51.5% males, 48.5% females, mean age 41.6 ± 9.8 years and mean BMI 25.1 ± 3.6 kg/m2) consumed cooked ham enriched with antioxidants (100 g/d) and controls (49.9% males, 53.1% females, mean age 40.2 ± 8.3 years and mean BMI 26.3 ± 3.2 kg/m2) received placebo. At 8 weeks, oxidized LDL decreased significantly between experimental and placebo groups (p < 0.036). Experimental group differences were also significant (p < 0.05). Similar findings in malondialdehyde, total cholesterol, high-sensitivity C-reactive protein, and interleukin 6 were observed in the intervention group. Significant between-group differences in these variables were also found, except for total cholesterol and interleukin 6. The effects on inflammation and oxidation support the direct action of these antioxidants on the etiopathogenic factors of atheromatous plaque. We also observed an improvement in the lipid profiles among the subjects.
Collapse
|