1
|
Luo D, Zhang Y, Li Y, Liu Z, Wu H, Xue W. Structural Models of Human Norepinephrine Transporter Ensemble Reveal the Allosteric Sites and Ligand-Binding Mechanism. J Phys Chem B 2024; 128:8651-8661. [PMID: 39207306 DOI: 10.1021/acs.jpcb.4c03731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The norepinephrine transporter (NET) plays a pivotal role in recycling norepinephrine (NE) from the synaptic cleft. However, the structures referring to the conformational heterogeneity of NET during the transport cycle remain poorly understood. Here, three structural models of NE bound to the orthosteric site of NET in outward-open (OOholo), outward-occluded (OCholo), and inward-open (IOholo) conformations were first obtained using the multistate structures of serotonin transporter as templates and further characterized through Gaussian-accelerated molecular dynamics and free energy reweighting. Analysis of the structures revealed eight potential allosteric sites on the functional-specific states of NET. One of the pharmacologically relevant pockets located at the extracellular vestibule was further verified by simulating the binding behaviors of a clinical trial drug χ-MrIA that is allosterically regulating NET. These structural and energetic insights into NET advanced our understanding of NE reuptake and paved the way for discovering novel molecules targeting the allosteric sites.
Collapse
Affiliation(s)
- Ding Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yang Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Yinghong Li
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical Co., Ltd., Luzhou 646000, China
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
2
|
Miskowiak KW, Obel ZK, Guglielmo R, Bonnin CDM, Bowie CR, Balanzá-Martínez V, Burdick KE, Carvalho AF, Dols A, Douglas K, Gallagher P, Kessing LV, Lafer B, Lewandowski KE, López-Jaramillo C, Martinez-Aran A, McIntyre RS, Porter RJ, Purdon SE, Schaffer A, Stokes PRA, Sumiyoshi T, Torres IJ, Van Rheenen TE, Yatham LN, Young AH, Vieta E, Hasler G. Efficacy and safety of established and off-label ADHD drug therapies for cognitive impairment or attention-deficit hyperactivity disorder symptoms in bipolar disorder: A systematic review by the ISBD Targeting Cognition Task Force. Bipolar Disord 2024; 26:216-239. [PMID: 38433530 DOI: 10.1111/bdi.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
BACKGROUND Abnormalities in dopamine and norepinephrine signaling are implicated in cognitive impairments in bipolar disorder (BD) and attention-deficit hyperactivity disorder (ADHD). This systematic review by the ISBD Targeting Cognition Task Force therefore aimed to investigate the possible benefits on cognition and/or ADHD symptoms and safety of established and off-label ADHD therapies in BD. METHODS We included studies of ADHD medications in BD patients, which involved cognitive and/or safety measures. We followed the procedures of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 statement. Searches were conducted on PubMed, Embase and PsycINFO from inception until June 2023. Two authors reviewed the studies independently using the Revised Cochrane Collaboration's Risk of Bias tool for Randomized trials. RESULTS Seventeen studies were identified (N = 2136), investigating armodafinil (k = 4, N = 1581), methylphenidate (k = 4, N = 84), bupropion (k = 4, n = 249), clonidine (k = 1, n = 70), lisdexamphetamine (k = 1, n = 25), mixed amphetamine salts (k = 1, n = 30), or modafinil (k = 2, n = 97). Three studies investigated cognition, four ADHD symptoms, and 10 the safety. Three studies found treatment-related ADHD symptom reduction: two involved methylphenidate and one amphetamine salts. One study found a trend towards pro-cognitive effects of modafinil on some cognitive domains. No increased risk of (hypo)mania was observed. Five studies had low risk of bias, eleven a moderate risk, and one a serious risk of bias. CONCLUSIONS Methylphenidate or mixed amphetamine salts may improve ADHD symptoms in BD. However, there is limited evidence regarding the effectiveness on cognition. The medications produced no increased mania risk when used alongside mood stabilizers. Further robust studies are needed to assess cognition in BD patients receiving psychostimulant treatment alongside mood stabilizers.
Collapse
Affiliation(s)
- Kamilla W Miskowiak
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Department of Psychology, University of Copenhagen | Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Zacharias K Obel
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Department of Psychology, University of Copenhagen | Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Riccardo Guglielmo
- Psychiatry Research Unit, University of Fribourg, Fribourg, Switzerland
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Caterina Del Mar Bonnin
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | | | | | - Katherine E Burdick
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Andre F Carvalho
- IMPACT Strategic Research Centre (Innovation in Mental and Physical Health and Clinical Treatment), Deakin University, Geelong, Victoria, Australia
| | - Annemieke Dols
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Katie Douglas
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Peter Gallagher
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Lars V Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Beny Lafer
- Bipolar Disorder Research Program, Institute of Psychiatry, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Kathryn E Lewandowski
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- McLean Hospital, Schizophrenia and Bipolar Disorder Program, Belmont, Massachusetts, USA
| | - Carlos López-Jaramillo
- Research Group in Psychiatry, Department of Psychiatry, Universidad de Antioquia, Medellín, Colombia
| | - Anabel Martinez-Aran
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Brain and Cognition Discovery Foundation, University of Toronto, Toronto, Canada
| | - Richard J Porter
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Scot E Purdon
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | - Ayal Schaffer
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Paul R A Stokes
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ivan J Torres
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Carlton, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University, Melbourne, Australia
| | - Lakshmi N Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eduard Vieta
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Gregor Hasler
- Psychiatry Research Unit, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
3
|
Vaughan RA, Henry LK, Foster JD, Brown CR. Post-translational mechanisms in psychostimulant-induced neurotransmitter efflux. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 99:1-33. [PMID: 38467478 DOI: 10.1016/bs.apha.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The availability of monoamine neurotransmitters in the brain is under the control of dopamine, norepinephrine, and serotonin transporters expressed on the plasma membrane of monoaminergic neurons. By regulating transmitter levels these proteins mediate crucial functions including cognition, attention, and reward, and dysregulation of their activity is linked to mood and psychiatric disorders of these systems. Amphetamine-based transporter substrates stimulate non-exocytotic transmitter efflux that induces psychomotor stimulation, addiction, altered mood, hallucinations, and psychosis, thus constituting a major component of drug neurochemical and behavioral outcomes. Efflux is under the control of transporter post-translational modifications that synergize with other regulatory events, and this review will summarize our knowledge of these processes and their role in drug mechanisms.
Collapse
Affiliation(s)
- Roxanne A Vaughan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States.
| | - L Keith Henry
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - James D Foster
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Christopher R Brown
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
4
|
Kukułowicz J, Pietrzak-Lichwa K, Klimończyk K, Idlin N, Bajda M. The SLC6A15-SLC6A20 Neutral Amino Acid Transporter Subfamily: Functions, Diseases, and Their Therapeutic Relevance. Pharmacol Rev 2023; 76:142-193. [PMID: 37940347 DOI: 10.1124/pharmrev.123.000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
The neutral amino acid transporter subfamily that consists of six members, consecutively SLC6A15-SLC620, also called orphan transporters, represents membrane, sodium-dependent symporter proteins that belong to the family of solute carrier 6 (SLC6). Primarily, they mediate the transport of neutral amino acids from the extracellular milieu toward cell or storage vesicles utilizing an electric membrane potential as the driving force. Orphan transporters are widely distributed throughout the body, covering many systems; for instance, the central nervous, renal, or intestinal system, supplying cells into molecules used in biochemical, signaling, and building pathways afterward. They are responsible for intestinal absorption and renal reabsorption of amino acids. In the central nervous system, orphan transporters constitute a significant medium for the provision of neurotransmitter precursors. Diseases related with aforementioned transporters highlight their significance; SLC6A19 mutations are associated with metabolic Hartnup disorder, whereas altered expression of SLC6A15 has been associated with a depression/stress-related disorders. Mutations of SLC6A18-SLCA20 cause iminoglycinuria and/or hyperglycinuria. SLC6A18-SLC6A20 to reach the cellular membrane require an ancillary unit ACE2 that is a molecular target for the spike protein of the SARS-CoV-2 virus. SLC6A19 has been proposed as a molecular target for the treatment of metabolic disorders resembling gastric surgery bypass. Inhibition of SLC6A15 appears to have a promising outcome in the treatment of psychiatric disorders. SLC6A19 and SLC6A20 have been suggested as potential targets in the treatment of COVID-19. In this review, we gathered recent advances on orphan transporters, their structure, functions, related disorders, and diseases, and in particular their relevance as therapeutic targets. SIGNIFICANCE STATEMENT: The following review systematizes current knowledge about the SLC6A15-SLCA20 neutral amino acid transporter subfamily and their therapeutic relevance in the treatment of different diseases.
Collapse
Affiliation(s)
- Jędrzej Kukułowicz
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Pietrzak-Lichwa
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Klimończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Nathalie Idlin
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
5
|
Alwindi M, Bizanti A. Vesicular monoamine transporter (VMAT) regional expression and roles in pathological conditions. Heliyon 2023; 9:e22413. [PMID: 38034713 PMCID: PMC10687066 DOI: 10.1016/j.heliyon.2023.e22413] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 09/28/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023] Open
Abstract
Vesicular monoamine transporters (VMATs) are key regulators of neurotransmitter release responsible for controlling numerous physiological, cognitive, emotional, and behavioral functions. They represent important therapeutic targets for numerous pathological conditions. There are two isoforms of VMAT transporter proteins that function as secondary active transporters into the vesicle for storage and release via exocytosis: VMAT1 (SLC18A1) and VMAT2 (SLC18A2) which differ in their function, quantity, and regional expression. VMAT2 has gained considerable interest as a therapeutic target and diagnostic marker. Inhibitors of VMAT2 have been used as an effective therapy for a range of pathological conditions. Additionally, the functionality and phenotypic classification of classical and nonclassical catecholaminergic neurons are identified by the presence of VMAT2 in catecholaminergic neurons. Dysregulation of VMAT2 is also implicated in many neuropsychiatric diseases. Despite the complex role of VMAT2, many aspects of its function remain unclear. Therefore, our aim is to expand our knowledge of the role of VMAT with a special focus on VMAT2 in different systems and cellular pathways which may potentially facilitate development of novel, more specific therapeutic targets. The current review provides a summary demonstrating the mechanism of action of VMAT, its functional role, and its contribution to disease progression and utilization as therapeutic targets.
Collapse
Affiliation(s)
- Malik Alwindi
- St George's University Hospital, London SW17 0QT, United Kingdom
| | - Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
6
|
Zhou H, Yao J, Zhao Z, Lu J. Synthesis and preliminary evaluation of benzylaminoimidazoline derivatives as novel norepinephrine transporter ligands. Chem Biol Drug Des 2023; 102:738-748. [PMID: 37328929 DOI: 10.1111/cbdd.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/15/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
A series of benzylaminoimidazoline derivatives was synthesized and evaluated for norepinephrine transporter (NET) targeting. Among them, N-(3-iodobenzyl)-4,5-dihydro-1H-imidazol-2-amine (Compound 9) displayed the highest affinity for NET (IC50 = 5.65 ± 0.97 μM). The corresponding radiotracer [125 I]9 was further prepared by copper-mediated radioiodination and evaluated both in vitro and in vivo. The cellular uptake results suggested that [125 I]9 was specifically taken up by the NET-expressing SK-N-SH cell line. Biodistribution studies showed that [125 I]9 accumulated in the heart (5.54 ± 1.24 %ID/g at 5 min p.i. and 0.79 ± 0.08 %ID/g at 2 h p.i.) and adrenal gland (14.83 ± 3.47 %ID/g at 5 min p.i. and 3.87 ± 0.24 %ID/g at 2 h p.i.). The uptake in the heart and adrenal gland could be significantly inhibited by preinjection of desipramine (DMI). These results indicated that the benzylaminoimidazoline derivatives retained affinity for NET, which could provide structure-activity relationship data for further studies.
Collapse
Affiliation(s)
- Hang Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Jingjing Yao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Zuoquan Zhao
- Department of Nuclear Medicine, Cardiovascular Institute and FuWai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| |
Collapse
|
7
|
Vilca S, Wahlestedt C, Izenwasser S, Gainetdinov RR, Pardo M. Dopamine Transporter Knockout Rats Display Epigenetic Alterations in Response to Cocaine Exposure. Biomolecules 2023; 13:1107. [PMID: 37509143 PMCID: PMC10377455 DOI: 10.3390/biom13071107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: There is an urgent need for effective treatments for cocaine use disorder (CUD), and new pharmacological approaches targeting epigenetic mechanisms appear to be promising options for the treatment of this disease. Dopamine Transporter (DAT) transgenic rats recently have been proposed as a new animal model for studying susceptibility to CUD. (2) Methods: DAT transgenic rats were treated chronically with cocaine (10 mg/kg) for 8 days, and the expression of epigenetic modulators, Lysine Demethylase 6B (KDM6B) and Bromodomain-containing protein 4 (BRD4), was examined in the prefrontal cortex (PFC). (3) Results: We show that only full knockout (KO) of DAT impacts basal levels of KDM6B in females. Additionally, cocaine altered the expression of both epigenetic markers in a sex- and genotype-dependent manner. In response to chronic cocaine, KDM6B expression was decreased in male rats with partial DAT mutation (HET), while no changes were observed in wild-type (WT) or KO rats. Indeed, while HET male rats have reduced KDM6B and BRD4 expression, HET female rats showed increased KDM6B and BRD4 expression levels, highlighting the impact of sex on epigenetic mechanisms in response to cocaine. Finally, both male and female KO rats showed increased expression of BRD4, but only KO females exhibited significantly increased KDM6B expression in response to cocaine. Additionally, the magnitude of these effects was bigger in females when compared to males for both epigenetic enzymes. (4) Conclusions: This preliminary study provides additional support that targeting KDM6B and/or BRD4 may potentially be therapeutic in treating addiction-related behaviors in a sex-dependent manner.
Collapse
Affiliation(s)
- Samara Vilca
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.V.); (C.W.); (S.I.)
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Claes Wahlestedt
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.V.); (C.W.); (S.I.)
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sari Izenwasser
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.V.); (C.W.); (S.I.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia;
| | - Marta Pardo
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
8
|
Silva HNPD, Almeida APG, Souza CDF, Mancera JM, Martos-Sitcha JA, Martínez-Rodríguez G, Baldisserotto B. Stress response of Rhamdia quelen to the interaction stocking density - Feeding regimen. Gen Comp Endocrinol 2023; 335:114228. [PMID: 36781023 DOI: 10.1016/j.ygcen.2023.114228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
This study aimed to verify the effect of different feeding and stocking conditions during 14 days on the gene expression of several hormones and enzymes related to the stress cascade and metabolic parameters in silver catfish Rhamdia quelen under the following experimental conditions: 1) fed at low stocking density (2.5 kg m-3, LSD-F); 2) fed at high stocking density (32 kg m-3, HSD-F); 3) food-deprived at LSD (LSD-FD); and 4) food-deprived at HSD (HSD-FD). Fish from LSD-F and HSD-F groups were fed daily (1 % of their body mass), while fish from food-deprived groups (LSD-FD and HSD-FD) were not fed during the experimental time. Plasma metabolic parameters (glucose, lactate, triglycerides, and proteins) and hepatosomatic index (HSI) were evaluated. In addition, mRNA expression of genes related to the stress axis (crh, pomca, pomcb, nr3c2, star, hsd11b2 and hsd20b), heat shock protein family (hsp90 and hspa12a), sodium-dependent noradrenaline transporter (slc6a2), and growth axis (gh and igf1) were also assessed. Specific growth rate and HSI decreased in food-deprived fish regardless of stocking density. The HSD-FD group showed weight loss compared to the HSD-F, LSD-F, and LSD-FD groups. Plasma glucose and triglycerides were reduced in food-deprived groups, while lactate and protein levels did not change. The expression of key players of the stress response (crh, pomca, pomcb, hsd11b2, nr3c2, and hsp90b) and growth (gh and igf1) pathways were differently regulated depending on the experimental condition, whereas no statistical difference between treatments was found for hsd20b, scl6a2, hspa12a, and star mRNAs expression. This study suggests that LSD acts as a stressor affecting negatively the physiological status of fed fish, as demonstrated by the reduction in growth rates, altered metabolic orchestration, and a higher crh mRNA expression. In addition, food deprivation also increased mRNA expression of other assessed genes (nr3c2, hsp90b, pomca, and pomcb) in fish from the HSD group, indicating higher responsiveness to stress in this stocking density when combined with food deprivation.
Collapse
Affiliation(s)
| | - Ana Paula G Almeida
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Carine de F Souza
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Juan Miguel Mancera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - Juan Antonio Martos-Sitcha
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (CSIC), Puerto Real, Cádiz, Spain
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
9
|
Nepal B, Das S, Reith ME, Kortagere S. Overview of the structure and function of the dopamine transporter and its protein interactions. Front Physiol 2023; 14:1150355. [PMID: 36935752 PMCID: PMC10020207 DOI: 10.3389/fphys.2023.1150355] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The dopamine transporter (DAT) plays an integral role in dopamine neurotransmission through the clearance of dopamine from the extracellular space. Dysregulation of DAT is central to the pathophysiology of numerous neuropsychiatric disorders and as such is an attractive therapeutic target. DAT belongs to the solute carrier family 6 (SLC6) class of Na+/Cl- dependent transporters that move various cargo into neurons against their concentration gradient. This review focuses on DAT (SCL6A3 protein) while extending the narrative to the closely related transporters for serotonin and norepinephrine where needed for comparison or functional relevance. Cloning and site-directed mutagenesis experiments provided early structural knowledge of DAT but our contemporary understanding was achieved through a combination of crystallization of the related bacterial transporter LeuT, homology modeling, and subsequently the crystallization of drosophila DAT. These seminal findings enabled a better understanding of the conformational states involved in the transport of substrate, subsequently aiding state-specific drug design. Post-translational modifications to DAT such as phosphorylation, palmitoylation, ubiquitination also influence the plasma membrane localization and kinetics. Substrates and drugs can interact with multiple sites within DAT including the primary S1 and S2 sites involved in dopamine binding and novel allosteric sites. Major research has centered around the question what determines the substrate and inhibitor selectivity of DAT in comparison to serotonin and norepinephrine transporters. DAT has been implicated in many neurological disorders and may play a role in the pathology of HIV and Parkinson's disease via direct physical interaction with HIV-1 Tat and α-synuclein proteins respectively.
Collapse
Affiliation(s)
- Binod Nepal
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Sanjay Das
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Maarten E. Reith
- Department of Psychiatry, New York University School of Medicine, New York City, NY, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- *Correspondence: Sandhya Kortagere,
| |
Collapse
|
10
|
De Gregorio R, Subah G, Chan JC, Speranza L, Zhang X, Ramakrishnan A, Shen L, Maze I, Stanton PK, Sze JY. Sex-biased effects on hippocampal circuit development by perinatal SERT expression in CA3 pyramidal neurons. Development 2022; 149:dev200549. [PMID: 36178075 PMCID: PMC10655925 DOI: 10.1242/dev.200549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022]
Abstract
Neurodevelopmental disorders ranging from autism to intellectual disability display sex-biased prevalence and phenotypical presentations. Despite increasing knowledge about temporospatial cortical map development and genetic variants linked to neurodevelopmental disorders, when and how sex-biased neural circuit derailment may arise in diseased brain remain unknown. Here, we identify in mice that serotonin uptake transporter (SERT) in non-serotonergic neurons - hippocampal and prefrontal pyramidal neurons - confers sex-biased effects specifically during neural circuit development. A set of gradient-patterned CA3 pyramidal neurons transiently express SERT to clear extracellular serotonin, coinciding with hippocampal synaptic circuit establishment. Ablating pyramidal neuron SERT (SERTPyramidΔ) alters dendritic spine developmental trajectory in the hippocampus, and precipitates sex-biased impairments in long-term activity-dependent hippocampal synaptic plasticity and cognitive behaviors. Transcriptomic analyses identify sex-biased alterations in gene sets associated with autism, dendritic spine structure, synaptic function and male-specific enrichment of dysregulated genes in glial cells in early postnatal SERTPyramidΔ hippocampus. Our data suggest that SERT function in these pyramidal neurons underscores a temporal- and brain region-specific regulation of normal sex-dimorphic circuit development and a source for sex-biased vulnerability to cognitive and behavioral impairments. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Roberto De Gregorio
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Galadu Subah
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Jennifer C. Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Luisa Speranza
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaolei Zhang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Patric K. Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Ji Y. Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
11
|
Landoni M, Dalla Muta A, Di Tella S, Ciuffo G, Di Blasio P, Ionio C. Parenting and the Serotonin Transporter Gene (5HTTLPR), Is There an Association? A Systematic Review of the Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4052. [PMID: 35409736 PMCID: PMC8997909 DOI: 10.3390/ijerph19074052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023]
Abstract
The current systematic review examines whether there is an association between the genetic 5-HTTPLR polymorphism and parenting, and the mechanisms by which this association operates. The literature was searched in various databases such as PubMed, Scopus, and ScienceDirect. In line with our inclusion criteria, nine articles were eligible out of 22. Most of the studies analysed in this review found an association between 5HTTLPR and parenting. Four studies found a direct association between 5-HTTLPR and parenting with conflicting findings: two studies found that mothers carrying the short variant were more sensitive to their infants, while two studies found that parents carrying the S allele were less sensitive. In addition, several studies found strong interaction between genetic and environmental factors, such as childhood stress and disruptive child behaviour, quality of early care experiences, poor parenting environment, and quality of the environment. Only one study found an association between children's 5HTTLPR and parenting. Parenting can be described as a highly complex construct influenced by multiple factors, including the environment, as well as parent and child characteristics. According to the studies, maternal 5-HTTLPR polymorphism is most likely to be associated with sensitive parenting.
Collapse
Affiliation(s)
- Marta Landoni
- CRIdee, Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (G.C.); (P.D.B.); (C.I.)
- Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (A.D.M.); (S.D.T.)
| | - Alice Dalla Muta
- Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (A.D.M.); (S.D.T.)
| | - Sonia Di Tella
- Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (A.D.M.); (S.D.T.)
| | - Giulia Ciuffo
- CRIdee, Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (G.C.); (P.D.B.); (C.I.)
| | - Paola Di Blasio
- CRIdee, Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (G.C.); (P.D.B.); (C.I.)
- Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (A.D.M.); (S.D.T.)
| | - Chiara Ionio
- CRIdee, Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (G.C.); (P.D.B.); (C.I.)
- Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (A.D.M.); (S.D.T.)
| |
Collapse
|
12
|
Post A, Kremer D, Swarte JC, Sokooti S, Vogelpohl FA, Groothof D, Kema I, Garcia E, Connelly MA, Wallimann T, Dullaart RP, Franssen CF, Bakker SJ. Plasma creatine concentration is associated with incident hypertension in a cohort enriched for the presence of high urinary albumin concentration: the Prevention of Renal and Vascular Endstage Disease study. J Hypertens 2022; 40:229-239. [PMID: 34371517 PMCID: PMC8728759 DOI: 10.1097/hjh.0000000000002996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE : Hypertension is a major risk factor for cardiovascular disease, kidney disease, and premature death. Increased levels of creatine kinase are associated with development of hypertension. However, it is unknown if creatine, a substrate of CK, is associated with the development of hypertension. We therefore, aimed to investigate the association between plasma creatine concentration and incident hypertension. METHODS We measured fasting plasma creatine concentrations by nuclear magnetic resonance spectroscopy in participants of the population-based PREVEND study. The study outcome was incident hypertension, defined as either a SBP of at least 140 mmHg, a DBP of at least 90 mmHg, or the new usage of antihypertensive drugs. Participants with hypertension at baseline were excluded. RESULTS We included 3135 participants (46% men) aged 49 ± 10 years. Mean plasma creatine concentrations were 36.2 ± 17.5 μmol/l, with higher concentrations in women than in men (42.2 ± 17.6 versus 29.2 ± 17.6 μmol/l; P < 0.001). During a median of 7.1 [interquartile range: 3.6-7.6] years of follow-up, 927 participants developed incident hypertension. Higher plasma creatine concentrations were associated with an increased risk of incident hypertension [HR per doubling of plasma creatine: 1.21 (95% confidence interval: 1.10-1.34); P < 0.001], which remained significant after adjustment for potential confounders. Sex-stratified analyses demonstrated higher plasma creatine that was independently associated with an increased risk of incident hypertension in men [hazard ratio: 1.26 (95% CI 1.11-1.44); P < 0.001], but not in women (hazard ratio: 1.13 (95% CI 0.96-1.33); P = 0.14]. Causal pathway analyses demonstrate that the association was not explained by sodium or protein intake. CONCLUSION Higher plasma creatine is associated with an increased risk of hypertension in men. Future studies are warranted to determine the underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ido.P. Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Erwin Garcia
- Laboratory Corporation of America Holdings (Labcorp), Morrisville, North Carolina, USA
| | - Margery A. Connelly
- Laboratory Corporation of America Holdings (Labcorp), Morrisville, North Carolina, USA
| | | | | | | | | |
Collapse
|
13
|
Piniella D, Martínez-Blanco E, Bartolomé-Martín D, Sanz-Martos AB, Zafra F. Identification by proximity labeling of novel lipidic and proteinaceous potential partners of the dopamine transporter. Cell Mol Life Sci 2021; 78:7733-7756. [PMID: 34709416 PMCID: PMC8629785 DOI: 10.1007/s00018-021-03998-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 12/05/2022]
Abstract
Dopamine (DA) transporters (DATs) are regulated by trafficking and modulatory processes that probably rely on stable and transient interactions with neighboring proteins and lipids. Using proximity-dependent biotin identification (BioID), we found novel potential partners for DAT, including several membrane proteins, such as the transmembrane chaperone 4F2hc, the proteolipid M6a and a potential membrane receptor for progesterone (PGRMC2). We also detected two cytoplasmic proteins: a component of the Cullin1-dependent ubiquitination machinery termed F-box/LRR-repeat protein 2 (FBXL2), and the enzyme inositol 5-phosphatase 2 (SHIP2). Immunoprecipitation (IP) and immunofluorescence studies confirmed either a physical association or a close spatial proximity between these proteins and DAT. M6a, SHIP2 and the Cullin1 system were shown to increase DAT activity in coexpression experiments, suggesting a functional role for their association. Deeper analysis revealed that M6a, which is enriched in neuronal protrusions (filopodia or dendritic spines), colocalized with DAT in these structures. In addition, the product of SHIP2 enzymatic activity (phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2]) was tightly associated with DAT, as shown by co-IP and by colocalization of mCherry-DAT with a specific biosensor for this phospholipid. PI(3,4)P2 strongly stimulated transport activity in electrophysiological recordings, and conversely, inhibition of SHIP2 reduced DA uptake in several experimental systems including striatal synaptosomes and the dopaminergic cell line SH-SY5Y. In summary, here we report several potential new partners for DAT and a novel regulatory lipid, which may represent new pharmacological targets for DAT, a pivotal protein in dopaminergic function of the brain.
Collapse
Affiliation(s)
- Dolores Piniella
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, 28049, Madrid, Spain
- IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Martínez-Blanco
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, 28049, Madrid, Spain
- IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - David Bartolomé-Martín
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, 28049, Madrid, Spain
- IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, Tenerife, Spain
| | - Ana B Sanz-Martos
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28925, Madrid, Spain
| | - Francisco Zafra
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, 28049, Madrid, Spain.
- IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
14
|
Tomlinson ID, Kovtun O, Torres R, Bellocchio LG, Josephs T, Rosenthal SJ. A Novel Biotinylated Homotryptamine Derivative for Quantum Dot Imaging of Serotonin Transporter in Live Cells. Front Cell Neurosci 2021; 15:667044. [PMID: 34867196 PMCID: PMC8637195 DOI: 10.3389/fncel.2021.667044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
The serotonin transporter (SERT) is the primary target for selective serotonin reuptake inhibitor (SSRI) antidepressants that are thought to exert their therapeutic effects by increasing the synaptic concentration of serotonin. Consequently, probes that can be utilized to study cellular trafficking of SERT are valuable research tools. We have developed a novel ligand (IDT785) that is composed of a SERT antagonist (a tetrahydro pyridyl indole derivative) conjugated to a biotinylated poly ethylene glycol (PEG) via a phenethyl linker. This compound was determined to be biologically active and inhibited SERT-mediated reuptake of IDT307 with the half-maximal inhibitory concentration of 7.2 ± 0.3 μM. We demonstrated that IDT785 enabled quantum dot (QD) labeling of membrane SERT in transfected HEK-293 cultures that could be blocked using the high affinity serotonin reuptake inhibitor paroxetine. Molecular docking studies suggested that IDT785 might be binding to the extracellular vestibule binding site rather than the orthosteric substrate binding site, which could be attributable to the hydrophilicity of the PEG chain and the increased loss of degrees of freedom that would be required to penetrate into the orthosteric binding site. Using IDT785, we were able to study the membrane localization and membrane dynamics of YFP-SERT heterologously expressed in HEK-293 cells and demonstrated that SERT expression was enriched in the membrane edge and in thin cellular protrusions.
Collapse
Affiliation(s)
- Ian D. Tomlinson
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Oleg Kovtun
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Ruben Torres
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States
| | | | - Travis Josephs
- Neuroscience Program, Vanderbilt University, Nashville, TN, United States
| | - Sandra J. Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
15
|
Roy PK, Rajesh Y, Mandal M. Therapeutic targeting of membrane-associated proteins in central nervous system tumors. Exp Cell Res 2021; 406:112760. [PMID: 34339674 DOI: 10.1016/j.yexcr.2021.112760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/28/2021] [Accepted: 07/28/2021] [Indexed: 12/09/2022]
Abstract
The activity of the most complex system, the central nervous system (CNS) is profoundly regulated by a huge number of membrane-associated proteins (MAP). A minor change stimulates immense chemical changes and the elicited response is organized by MAP, which acts as a receptor of that chemical or channel enabling the flow of ions. Slight changes in the activity or expression of these MAPs lead to severe consequences such as cognitive disorders, memory loss, or cancer. CNS tumors are heterogeneous in nature and hard-to-treat due to random mutations in MAPs; like as overexpression of EGFRvIII/TGFβR/VEGFR, change in adhesion molecules α5β3 integrin/SEMA3A, imbalance in ion channel proteins, etc. Extensive research is under process for developing new therapeutic approaches using these proteins such as targeted cytotoxic radiotherapy, drug-delivery, and prodrug activation, blocking of receptors like GluA1, developing viral vector against cell surface receptor. The combinatorial approach of these strategies along with the conventional one might be more potential. Henceforth, our review focuses on in-depth analysis regarding MAPs aiming for a better understanding for developing an efficient therapeutic approach for targeting CNS tumors.
Collapse
Affiliation(s)
- Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Yetirajam Rajesh
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India.
| |
Collapse
|
16
|
Castagna M, Cinquetti R, Verri T, Vacca F, Giovanola M, Barca A, Romanazzi T, Roseti C, Galli A, Bossi E. The Lepidopteran KAAT1 and CAATCH1: Orthologs to Understand Structure-Function Relationships in Mammalian SLC6 Transporters. Neurochem Res 2021; 47:111-126. [PMID: 34304372 PMCID: PMC8310414 DOI: 10.1007/s11064-021-03410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 04/18/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022]
Abstract
To the SLC6 family belong 20 human transporters that utilize the sodium electrochemical gradient to move biogenic amines, osmolytes, amino acids and related compounds into cells. They are classified into two functional groups, the Neurotransmitter transporters (NTT) and Nutrient amino acid transporters (NAT). Here we summarize how since their first cloning in 1998, the insect (Lepidopteran) Orthologs of the SLC6 family transporters have represented very important tools for investigating functional–structural relationships, mechanism of transport, ion and pH dependence and substate interaction of the mammalian (and human) counterparts.
Collapse
Affiliation(s)
- Michela Castagna
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste 2, 20134, Milan, Italy
| | - Raffaella Cinquetti
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, via Dunant 3, 21100, Varese, Italy
| | - Tiziano Verri
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100, Lecce, Italy
| | - Francesca Vacca
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, via Dunant 3, 21100, Varese, Italy
| | - Matteo Giovanola
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste 2, 20134, Milan, Italy
| | - Amilcare Barca
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100, Lecce, Italy
| | - Tiziana Romanazzi
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, via Dunant 3, 21100, Varese, Italy
| | - Cristina Roseti
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, via Dunant 3, 21100, Varese, Italy.,Research Centre for Neuroscience, University of Insubria, Varese, Italy
| | - Alessandra Galli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste 2, 20134, Milan, Italy
| | - Elena Bossi
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, via Dunant 3, 21100, Varese, Italy. .,Research Centre for Neuroscience, University of Insubria, Varese, Italy.
| |
Collapse
|
17
|
Kappa Opioid Receptor Mediated Differential Regulation of Serotonin and Dopamine Transporters in Mood and Substance Use Disorder. Handb Exp Pharmacol 2021; 271:97-112. [PMID: 34136961 DOI: 10.1007/164_2021_499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dynorphin (DYN) is an endogenous neurosecretory peptide which exerts its activity by binding to the family of G protein-coupled receptors, namely the kappa opioid receptor (KOR). Opioids are associated with pain, analgesia, and drug abuse, which play a central role in mood disorders with monoamine neurotransmitter interactions. Growing evidence demonstrates the cellular signaling cascades linked to KOR-mediated monoamine transporters regulation in cell models and native brain tissues. This chapter will review DYN/KOR role in mood and addiction in relevance to dopaminergic and serotonergic neurotransmissions. Also, we discuss the recent findings on KOR-mediated differential regulation of serotonin and dopamine transporters (SERT and DAT). These findings led to a better understanding of the role of DYN/KOR system in aminergic neurotransmission via its modulatory effect on both amine release and clearance. Detailed knowledge of these processes at the molecular level enables designing novel pharmacological reagents to target transporter motifs to treat mood and addiction and reduce unwanted side effects such as aversion, dysphoria, sedation, and psychomimesis.
Collapse
|
18
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
19
|
Zhao X, Yao H, Li X. Unearthing of Key Genes Driving the Pathogenesis of Alzheimer's Disease via Bioinformatics. Front Genet 2021; 12:641100. [PMID: 33936168 PMCID: PMC8085575 DOI: 10.3389/fgene.2021.641100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/15/2021] [Indexed: 01/23/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with unelucidated molecular pathogenesis. Herein, we aimed to identify potential hub genes governing the pathogenesis of AD. The AD datasets of GSE118553 and GSE131617 were collected from the NCBI GEO database. The weighted gene coexpression network analysis (WGCNA), differential gene expression analysis, and functional enrichment analysis were performed to reveal the hub genes and verify their role in AD. Hub genes were validated by machine learning algorithms. We identified modules and their corresponding hub genes from the temporal cortex (TC), frontal cortex (FC), entorhinal cortex (EC), and cerebellum (CE). We obtained 33, 42, 42, and 41 hub genes in modules associated with AD in TC, FC, EC, and CE tissues, respectively. Significant differences were recorded in the expression levels of hub genes between AD and the control group in the TC and EC tissues (P < 0.05). The differences in the expressions of FCGRT, SLC1A3, PTN, PTPRZ1, and PON2 in the FC and CE tissues among the AD and control groups were significant (P < 0.05). The expression levels of PLXNB1, GRAMD3, and GJA1 were statistically significant between the Braak NFT stages of AD. Overall, our study uncovered genes that may be involved in AD pathogenesis and revealed their potential for the development of AD biomarkers and appropriate AD therapeutics targets.
Collapse
Affiliation(s)
- Xingxing Zhao
- Department of Neurology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, China.,Department of Cardiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongmei Yao
- Department of Cardiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinyi Li
- Department of Neurology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
20
|
Meinke C, Quinlan MA, Paffenroth KC, Harrison FE, Fenollar-Ferrer C, Katamish RM, Stillman I, Ramamoorthy S, Blakely RD. Serotonin Transporter Ala276 Mouse: Novel Model to Assess the Neurochemical and Behavioral Impact of Thr276 Phosphorylation In Vivo. Neurochem Res 2021; 47:37-60. [PMID: 33830406 DOI: 10.1007/s11064-021-03299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/21/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022]
Abstract
The serotonin (5-HT) transporter (SERT) is a key regulator of 5-HT signaling and is a major target for antidepressants and psychostimulants. Human SERT coding variants have been identified in subjects with obsessive-compulsive disorder (OCD) and autism spectrum disorder (ASD) that impact transporter phosphorylation, cell surface trafficking and/or conformational dynamics. Prior to an initial description of a novel mouse line expressing the non-phosphorylatable SERT substitution Thr276Ala, we review efforts made to elucidate the structure and conformational dynamics of SERT with a focus on research implicating phosphorylation at Thr276 as a determinant of SERT conformational dynamics. Using the high-resolution structure of human SERT in inward- and outward-open conformations, we explore the conformation dependence of SERT Thr276 exposure, with results suggesting that phosphorylation is likely restricted to an inward-open conformation, consistent with prior biochemical studies. Assessment of genotypes from SERT/Ala276 heterozygous matings revealed a deviation from Mendelian expectations, with reduced numbers of Ala276 offspring, though no genotype differences were seen in growth or physical appearance. Similarly, no genotype differences were evident in midbrain or hippocampal 5-HT levels, midbrain and hippocampal SERT mRNA or midbrain protein levels, nor in midbrain synaptosomal 5-HT uptake kinetics. Behaviorally, SERT Ala276 homozygotes appeared normal in measures of anxiety and antidepressant-sensitive stress coping behavior. However, these mice displayed sex-dependent alterations in repetitive and social interactions, consistent with circuit-dependent requirements for Thr276 phosphorylation underlying these behaviors. Our findings indicate the utility of SERT Ala276 mice in evaluation of developmental, functional and behavioral consequences of regulatory SERT phosphorylation in vivo.
Collapse
Affiliation(s)
- Carina Meinke
- International Max Planck Research School for Brain and Behavior, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.,Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Meagan A Quinlan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | | | - Fiona E Harrison
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Cristina Fenollar-Ferrer
- Laboratories of Molecular Genetics and Molecular Biology, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Rania M Katamish
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Isabel Stillman
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | | | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA. .,Florida Atlantic University Brain Institute, Rm 109, MC-17, 5353 Parkside Dr, Jupiter, FL, 35348, USA.
| |
Collapse
|
21
|
Post A, Groothof D, Schutten JC, Flores‐Guerrero JL, Swarte JC, Douwes RM, Kema IP, de Boer RA, Garcia E, Connelly MA, Wallimann T, Dullaart RPF, Franssen CFM, Bakker SJL. Plasma creatine and incident type 2 diabetes in a general population-based cohort: The PREVEND study. Clin Endocrinol (Oxf) 2021; 94:563-574. [PMID: 33348429 PMCID: PMC8048485 DOI: 10.1111/cen.14396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Type 2 diabetes is associated with both impaired insulin action at target tissues and impaired insulin secretion in pancreatic beta cells. Mitochondrial dysfunction may play a role in both insulin resistance and impaired insulin secretion. Plasma creatine has been proposed as a potential marker for mitochondrial dysfunction. We aimed to investigate the association between plasma creatine and incident type 2 diabetes. METHODS We measured fasting plasma creatine concentrations by nuclear magnetic resonance spectroscopy in participants of the general population-based PREVEND study. The study outcome was incident type 2 diabetes, defined as a fasting plasma glucose ≥7.0 mmol/L (126 mg/dl); a random sample plasma glucose ≥11.1 mmol/L (200 mg/dl); self-report of a physician diagnosis or the use of glucose-lowering medications based on a central pharmacy registration. Associations of plasma creatine with type 2 diabetes were quantified using Cox proportional hazards models and were adjusted for potential confounders. RESULTS We included 4735 participants aged 52 ± 11 years, of whom 49% were male. Mean plasma creatine concentrations were 36.7 ± 17.6 µmol/L, with lower concentrations in males than in females (30.4 ± 15.1 µmol/L vs. 42.7 ± 17.7 µmol/L; p for difference <.001). During 7.3 [6.2-7.7] years of follow-up, 235 (5.4%) participants developed type 2 diabetes. Higher plasma creatine concentrations were associated with an increased risk of incident type 2 diabetes (HR per SD change: 1.27 [95% CI: 1.11-1.44]; p < .001), independent of potential confounders. This association was strongly modified by sex (p interaction <.001). Higher plasma creatine was associated with an increased risk of incident type 2 diabetes in males (HR: 1.40 [1.17-1.67]; p < .001), but not in females (HR: 1.10 [0.90-1.34]; p = .37). CONCLUSION Fasting plasma creatine concentrations are lower in males than in females. Higher plasma creatine is associated with an increased risk of type 2 diabetes in males.
Collapse
Affiliation(s)
- Adrian Post
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Dion Groothof
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Joëlle C. Schutten
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Jose L. Flores‐Guerrero
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - J. Casper Swarte
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Rianne M. Douwes
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Ido P. Kema
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Rudolf A. de Boer
- Department of CardiologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Erwin Garcia
- Laboratory Corporation of America Holdings (LabCorp)MorrisvilleNCUSA
| | - Marge A. Connelly
- Laboratory Corporation of America Holdings (LabCorp)MorrisvilleNCUSA
| | | | - Robin P. F. Dullaart
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Casper F. M. Franssen
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Stephan J. L. Bakker
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
22
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
23
|
Association of norepinephrine transporter methylation with in vivo NET expression and hyperactivity-impulsivity symptoms in ADHD measured with PET. Mol Psychiatry 2021; 26:1009-1018. [PMID: 31383926 PMCID: PMC7910214 DOI: 10.1038/s41380-019-0461-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 01/29/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with a robust genetic influence. The norepinephrine transporter (NET) is of particular interest as it is one of the main targets in treatment of the disorder. As ADHD is a complex and polygenetic condition, the possible regulation by epigenetic processes has received increased attention. We sought to determine possible differences in NET promoter DNA methylation between patients with ADHD and healthy controls. DNA methylation levels in the promoter region of the NET were determined in 23 adult patients with ADHD and 23 healthy controls. A subgroup of 18 patients with ADHD and 18 healthy controls underwent positron emission tomography (PET) with the radioligand (S,S)-[18F]FMeNER-D2 to quantify the NET in several brain areas in vivo. Analyses revealed significant differences in NET methylation levels at several cytosine-phosphate-guanine (CpG) sites between groups. A defined segment of the NET promoter ("region 1") was hypermethylated in patients in comparison with controls. In ADHD patients, a negative correlation between methylation of a CpG site in this region and NET distribution in the thalamus, locus coeruleus, and the raphe nuclei was detected. Furthermore, methylation of several sites in region 1 was negatively associated with the severity of hyperactivity-impulsivity symptoms. Our results point to an epigenetic dysregulation in ADHD, possibly due to a compensatory mechanisms or additional factors involved in transcriptional processing.
Collapse
|
24
|
Bhat S, El-Kasaby A, Freissmuth M, Sucic S. Functional and Biochemical Consequences of Disease Variants in Neurotransmitter Transporters: A Special Emphasis on Folding and Trafficking Deficits. Pharmacol Ther 2020; 222:107785. [PMID: 33310157 PMCID: PMC7612411 DOI: 10.1016/j.pharmthera.2020.107785] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023]
Abstract
Neurotransmitters, such as γ-aminobutyric acid, glutamate, acetyl choline, glycine and the monoamines, facilitate the crosstalk within the central nervous system. The designated neurotransmitter transporters (NTTs) both release and take up neurotransmitters to and from the synaptic cleft. NTT dysfunction can lead to severe pathophysiological consequences, e.g. epilepsy, intellectual disability, or Parkinson’s disease. Genetic point mutations in NTTs have recently been associated with the onset of various neurological disorders. Some of these mutations trigger folding defects in the NTT proteins. Correct folding is a prerequisite for the export of NTTs from the endoplasmic reticulum (ER) and the subsequent trafficking to their pertinent site of action, typically at the plasma membrane. Recent studies have uncovered some of the key features in the molecular machinery responsible for transporter protein folding, e.g., the role of heat shock proteins in fine-tuning the ER quality control mechanisms in cells. The therapeutic significance of understanding these events is apparent from the rising number of reports, which directly link different pathological conditions to NTT misfolding. For instance, folding-deficient variants of the human transporters for dopamine or GABA lead to infantile parkinsonism/dystonia and epilepsy, respectively. From a therapeutic point of view, some folding-deficient NTTs are amenable to functional rescue by small molecules, known as chemical and pharmacological chaperones.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
25
|
Ragu Varman D, Jayanthi LD, Ramamoorthy S. Glycogen synthase kinase-3ß supports serotonin transporter function and trafficking in a phosphorylation-dependent manner. J Neurochem 2020; 156:445-464. [PMID: 32797733 DOI: 10.1111/jnc.15152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/23/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Serotonin (5-HT) transporter (SERT) plays a crucial role in serotonergic transmission in the central nervous system, and any aberration causes serious mental illnesses. Nevertheless, the cellular mechanisms that regulate SERT function and trafficking are not entirely understood. Growing evidence suggests that several protein kinases act as modulators. Here, we delineate the molecular mechanisms by which glycogen synthase kinase-3ß (GSK3ß) regulates SERT. When mouse striatal synaptosomes were treated with the GSK3α/ß inhibitor CHIR99021, we observed a significant increase in SERT function, Vmax , surface expression with a reduction in 5-HT Km and SERT phosphorylation. To further study how the SERT molecule is affected by GSK3α/ß, we used HEK-293 cells as a heterologous expression system. As in striatal synaptosomes, CHIR99021 treatment of cells expressing wild-type hSERT (hSERT-WT) resulted in a time and dose-dependent elevation of hSERT function with a concomitant increase in the Vmax and surface transporters because of reduced internalization and enhanced membrane insertion; silencing GSK3α/ß in these cells with siRNA also similarly affected hSERT. Converting putative GSK3α/ß phosphorylation site serine at position 48 to alanine in hSERT (hSERT-S48A) completely abrogated the effects of both the inhibitor CHIR99021 and GSK3α/ß siRNA. Substantiating these findings, over-expression of constitutively active GSK3ß with hSERT-WT, but not with hSERT-S48A, reduced SERT function, Vmax , surface density, and enhanced transporter phosphorylation. Both hSERT-WT and hSERT-S48A were inhibited similarly by PKC activation or by inhibition of Akt, CaMKII, p38 MAPK, or Src kinase. These findings provide new evidence that GSK3ß supports basal SERT function and trafficking via serine-48 phosphorylation.
Collapse
Affiliation(s)
- Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Lankupalle D Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
26
|
Systematic assessment of mechanistic data for FDA-certified food colors and neurodevelopmental processes. Food Chem Toxicol 2020; 140:111310. [DOI: 10.1016/j.fct.2020.111310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 11/23/2022]
|
27
|
Carbone C, Brancato A, Adinolfi A, Lo Russo SLM, Alleva E, Cannizzaro C, Adriani W. Motor Transitions' Peculiarity of Heterozygous DAT Rats When Offspring of an Unconventional KOxWT Mating. Neuroscience 2020; 433:108-120. [PMID: 32171819 DOI: 10.1016/j.neuroscience.2020.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/23/2022]
Abstract
Causal factors of psychiatric diseases are unclear, due to gene × environment interactions. Evaluation of consequences, after a dopamine-transporter (DAT) gene knock-out (DAT-KO), has enhanced our understanding into the pathological dynamics of several brain disorders, such as Attention-Deficit/Hyperactivity and Bipolar-Affective disorders. Recently, our attention has shifted to DAT hypo-functional (heterozygous, HET) rodents: HET dams display less maternal care and HET females display marked hypo-locomotion if cared by HET dams (Mariano et al., 2019). We assessed phenotypes of male DAT-heterozygous rats as a function of their parents: we compared "maternal" origin (MAT-HET, obtained by breeding KO-male rats with WT-female dams) to "mixed" origin (MIX-HET, obtained by classical breeding, both heterozygous parents) of the allele. MAT-HET subjects had significantly longer rhythms of daily locomotor activity than MIX-HET and WT-control subjects. Furthermore, acute methylphenidate (MPH: 0, 1, 2 mg/kg) revealed elevated threshold for locomotor stimulation in MAT-HETs, with no response to the lower dose. Finally, by Porsolt-Test, MAT-HETs showed enhanced escape-seeking (diving) with more transitions towards behavioral despair (floating). When comparing both MAT- and MIX-HET to WT-control rats, decreased levels of DAT and HDAC4 were evident in the ventral-striatum; moreover, with respect to MIX-HET subjects, MAT-HET ones displayed increased DAT density in dorsal-striatum. MAT-HET rats displayed region-specific changes in DAT expression, compared to "classical" MIX-HET subjects: greater DAT availability may elevate threshold for dopamine action. Further behavioral and epigenetic characterizations of MAT-HETs, together with deeper characterization of maternal roles, could help to explore parent-of-origin mechanisms for such a peculiar phenotype.
Collapse
Affiliation(s)
- Cristiana Carbone
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Brancato
- Dept Sciences of Health Promotion & Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Annalisa Adinolfi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Enrico Alleva
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Cannizzaro
- Dept Sciences of Health Promotion & Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Walter Adriani
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
28
|
Annamalai B, Ragu Varman D, Horton RE, Daws LC, Jayanthi LD, Ramamoorthy S. Histamine Receptors Regulate the Activity, Surface Expression, and Phosphorylation of Serotonin Transporters. ACS Chem Neurosci 2020; 11:466-476. [PMID: 31916747 DOI: 10.1021/acschemneuro.9b00664] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Reuptake and clearance of released serotonin (5-HT) are critical in serotonergic neurotransmission. Serotonin transporter (SERT) is mainly responsible for clearing the extracellular 5-HT. Controlled trafficking, phosphorylation, and protein stability have been attributed to robust SERT activity. H3 histamine receptors (H3Rs) act in conjunction and regulate 5-HT release. H3Rs are expressed in the nervous system and located at the serotonergic terminals, where they act as heteroreceptors. Although histaminergic and serotonergic neurotransmissions are thought to be two separate events, whether H3Rs influence SERT in the CNS to control 5-HT reuptake has never been addressed. With a priori knowledge gained from our studies, we explored the possibility of using rat hippocampal synaptosomal preparations. We found that treatment with H3R/H4R-agonists immepip and (R)-(-)-α-methyl-histamine indeed resulted in a time- and concentration-dependent decrease in 5-HT transport. On the other hand, treatment with H3R/H4R-inverse agonist thioperamide caused a moderate increase in 5-HT uptake while blocking the inhibitory effect of H3R/H4R agonists. When investigated further, immepip treatment reduced the level of SERT on the plasma membrane and its phosphorylation. Likewise, CaMKII inhibitor KN93 or calcineurin inhibitor cyclosporine A also inhibited SERT function; however, an additive effect with immepip was not seen. High-speed in vivo chronoamperometry demonstrated that immepip delayed 5-HT clearance while thioperamide accelerated 5-HT clearance from the extracellular space. Immepip selectively inhibited SERT activity in the hippocampus and cortex but not in the striatum, midbrain, and brain stem. Thus, we report here a novel mechanism of regulating SERT activity by H3R-mediated CaMKII/calcineurin pathway in a brain-region-specific manner and perhaps synaptic 5-HT in the CNS that controls 5-HT clearance.
Collapse
Affiliation(s)
- Balasubramaniam Annamalai
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Rebecca E. Horton
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Lynette C. Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Lankupalle D. Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
29
|
Zhang H, Miao J, Li F, Xue W, Tang K, Zhao X, Jing X, Zhang J, Huang C, Hou N, Han J. Norepinephrine transporter promotes the invasion of human colon cancer cells. Oncol Lett 2019; 19:824-832. [PMID: 31897198 PMCID: PMC6924147 DOI: 10.3892/ol.2019.11146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 08/29/2019] [Indexed: 01/29/2023] Open
Abstract
Epidemiological studies suggested the use of antidepressants to be associated with decreased risk of colorectal cancer (CRC). However, the underlying mechanism through which this decreased risk occurs remains elusive. The norepinephrine transporter (NET) is a target of antidepressants that maintains noradrenergic transmission homeostasis; however, little is known about its function in human CRC cells. The present study, using public datasets and immunohistochemistry approaches, revealed that NET was highly expressed in human CRC tissues with metastasis and in human colon cancer cells. Furthermore, knockdown of NET inhibited the invasive capability of human colon cancer cells. Additionally, epithelial (E)-cadherin expression was increased and Notch1 signaling was inhibited in NET-depleted colon cancer cells. These findings suggest that NET is highly expressed in human colon cancer, which is associated with the invasion of human colon cancer cells by influencing cell-cell adhesion through the Notch1-E-cadherin pathway. Thus, the present study revealed a novel function for NET and its downstream effectors in colon cancer cells, which will be valuable for future studies in a clinical setting.
Collapse
Affiliation(s)
- Huahua Zhang
- Medical Research and Experimental Center, Medical College, Yan'an University, Yan'an, Shaanxi 716000, P.R. China.,Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Jiyu Miao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Fang Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Wanjuan Xue
- Medical Research and Experimental Center, Medical College, Yan'an University, Yan'an, Shaanxi 716000, P.R. China.,Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Kaijie Tang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoge Zhao
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Xintao Jing
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Zhang
- Medical Research and Experimental Center, Medical College, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Ni Hou
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Jiming Han
- Medical Research and Experimental Center, Medical College, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| |
Collapse
|
30
|
Garibsingh RAA, Schlessinger A. Advances and Challenges in Rational Drug Design for SLCs. Trends Pharmacol Sci 2019; 40:790-800. [PMID: 31519459 DOI: 10.1016/j.tips.2019.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 01/25/2023]
Abstract
There are over 420 human solute carrier (SLC) transporters from 65 families that are expressed ubiquitously in the body. The SLCs mediate the movement of ions, drugs, and metabolites across membranes and their dysfunction has been associated with a variety of diseases, such as diabetes, cancer, and central nervous system (CNS) disorders. Thus, SLCs are emerging as important targets for therapeutic intervention. Recent technological advances in experimental and computational biology allow better characterization of SLC pharmacology. Here we describe recent approaches to modulate SLC transporter function, with an emphasis on the use of computational approaches and computer-aided drug design (CADD) to study nutrient transporters. Finally, we discuss future perspectives in the rational design of SLC drugs.
Collapse
Affiliation(s)
- Rachel-Ann A Garibsingh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
31
|
Guilherme JPLF, Bigliassi M, Lancha Junior AH. Association study of SLC6A2 gene Thr99Ile variant (rs1805065) with athletic status in the Brazilian population. Gene 2019; 707:53-57. [PMID: 31075414 DOI: 10.1016/j.gene.2019.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Genetic variants in monoamine neurotransmitter genes have been recurrently associated with panic disorder, addiction and mood disorders. Recent evidence also indicates that norepinephrine neurotransmission can influence a series of psychophysical and psychobiological parameters related to athletic performance, and the presence of variants in the SLC6A2 (solute carrier family 6 member 2) gene, which encodes the norepinephrine transporter, can be detrimental to an adequate noradrenergic signaling. Accordingly, the objective of the present study was to explore the SLC6A2 Thr99Ile variant (rs1805065) in a cohort composed of highly-trained individuals and non-trained individuals. A total of 1556 Brazilians: 926 non-athletes and 630 athletes (322 endurance athletes and 308 power athletes) were compared in this case-control association study. The Thr99Ile variant showed only two genotypes (C/C or C/T), and a low minor allele frequency of ≈1%. However, none of the power athletes had the mutant T-allele (i.e., the C/T genotype), which may be related to decreased norepinephrine transporter activity. The genotype distribution and allele frequency observed in power athletes were significantly different when compared to non-athletes or endurance athletes. Therefore, the presence of the T-allele may decrease the chance of belonging to the group of athletes involved in explosive physical tasks. These results still need to be replicated in independent cohorts. However, it appears reasonable to assume that there is an association between the SLC6A2 gene variant and power athletic status.
Collapse
Affiliation(s)
- João Paulo L F Guilherme
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil; Endurance Performance Research Group, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
| | - Marcelo Bigliassi
- Endurance Performance Research Group, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Antonio H Lancha Junior
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Identification and functional characterization of solute carrier family 6 genes in Ciona savignyi. Gene 2019; 705:142-148. [PMID: 31026570 DOI: 10.1016/j.gene.2019.04.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/10/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022]
Abstract
The solute carrier 6 (SLC6) gene family, functioning as neurotransmitter transporters, plays the crucial roles in neurotransmission, cellular and organismal homeostasis. In this study, we found an expansion of SLC6 family gene in the genome of chordate invertebrate Ciona savignyi. A total of 40 candidate genes including 29 complete and 11 putative genes were identified as SLC6 family gene homologs. Phylogenetic analysis revealed that most of these Ciona SLC6 genes were highly conserved with the vertebrate ones, although gene duplication and gene losses did exist. Four genes were selected from SLC6 subfamilies to be further investigated for their functional characteristics on cell growth and migration through overexpression approach in cultured cell lines. The results showed both SLC6A7 and SLC6A17 from amino acid transporters AA1 and AA2 sub-families, respectively, significantly suppressed the cell proliferation and migration. While SLC6A1 and SLC6A4, which were classified into GABA and monoamine transporters, respectively, did not affect the cell proliferation and migration in HEK293T, HeLa, and MCF7 cells. The whole set of C. savignyi SLC6 genes identified in this study provides an important genomic resource for future biochemical, physiological, and phylogenetic studies on SLC6 gene family. Our experimental data demonstrated that Ciona amino acid transporters, such as SLC6A7 and SLC6A17, were essential for cell physiology and behaviors, indicating their crucially potential roles in the control of cell proliferation and migration during ascidian embryogenesis.
Collapse
|
33
|
Thal LB, Tomlinson ID, Quinlan MA, Kovtun O, Blakely RD, Rosenthal SJ. Single Quantum Dot Imaging Reveals PKCβ-Dependent Alterations in Membrane Diffusion and Clustering of an Attention-Deficit Hyperactivity Disorder/Autism/Bipolar Disorder-Associated Dopamine Transporter Variant. ACS Chem Neurosci 2019; 10:460-471. [PMID: 30153408 PMCID: PMC6411462 DOI: 10.1021/acschemneuro.8b00350] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The dopamine transporter (DAT) is a transmembrane protein that terminates dopamine signaling in the brain by driving rapid dopamine reuptake into presynaptic nerve terminals. Several lines of evidence indicate that DAT dysfunction is linked to neuropsychiatric disorders such as attention-deficit/hyperactivity disorder (ADHD), bipolar disorder (BPD), and autism spectrum disorder (ASD). Indeed, individuals with these disorders have been found to express the rare, functional DAT coding variant Val559, which confers anomalous dopamine efflux (ADE) in vitro and in vivo. To elucidate the impact of the DAT Val559 variant on membrane diffusion dynamics, we implemented our antagonist-conjugated quantum dot (QD) labeling approach to monitor the lateral mobility of single particle-labeled transporters in transfected HEK-293 and SK-N-MC cells. Our results demonstrate significantly higher diffusion coefficients of DAT Val559 compared to those of DAT Ala559, effects likely determined by elevated N-terminal transporter phosphorylation. We also provide pharmacological evidence that PKCβ-mediated signaling supports enhanced DAT Val559 membrane diffusion rates. Additionally, our results are complimented with diffusion rates of phosphomimicked and phosphorylation-occluded DAT variants. Furthermore, we show DAT Val559 has a lower propensity for membrane clustering, which may be caused by a mutation-derived shift out of membrane microdomains leading to faster lateral membrane diffusion rates. These findings further demonstrate a functional impact of DAT Val559 and suggest that changes in transporter localization and lateral mobility may sustain ADE and contribute to alterations in dopamine signaling underlying multiple neuropsychiatric disorders.
Collapse
|
34
|
Hökfelt T, Barde S, Xu ZQD, Kuteeva E, Rüegg J, Le Maitre E, Risling M, Kehr J, Ihnatko R, Theodorsson E, Palkovits M, Deakin W, Bagdy G, Juhasz G, Prud’homme HJ, Mechawar N, Diaz-Heijtz R, Ögren SO. Neuropeptide and Small Transmitter Coexistence: Fundamental Studies and Relevance to Mental Illness. Front Neural Circuits 2018; 12:106. [PMID: 30627087 PMCID: PMC6309708 DOI: 10.3389/fncir.2018.00106] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Neuropeptides are auxiliary messenger molecules that always co-exist in nerve cells with one or more small molecule (classic) neurotransmitters. Neuropeptides act both as transmitters and trophic factors, and play a role particularly when the nervous system is challenged, as by injury, pain or stress. Here neuropeptides and coexistence in mammals are reviewed, but with special focus on the 29/30 amino acid galanin and its three receptors GalR1, -R2 and -R3. In particular, galanin's role as a co-transmitter in both rodent and human noradrenergic locus coeruleus (LC) neurons is addressed. Extensive experimental animal data strongly suggest a role for the galanin system in depression-like behavior. The translational potential of these results was tested by studying the galanin system in postmortem human brains, first in normal brains, and then in a comparison of five regions of brains obtained from depressed people who committed suicide, and from matched controls. The distribution of galanin and the four galanin system transcripts in the normal human brain was determined, and selective and parallel changes in levels of transcripts and DNA methylation for galanin and its three receptors were assessed in depressed patients who committed suicide: upregulation of transcripts, e.g., for galanin and GalR3 in LC, paralleled by a decrease in DNA methylation, suggesting involvement of epigenetic mechanisms. It is hypothesized that, when exposed to severe stress, the noradrenergic LC neurons fire in bursts and release galanin from their soma/dendrites. Galanin then acts on somato-dendritic, inhibitory galanin autoreceptors, opening potassium channels and inhibiting firing. The purpose of these autoreceptors is to act as a 'brake' to prevent overexcitation, a brake that is also part of resilience to stress that protects against depression. Depression then arises when the inhibition is too strong and long lasting - a maladaption, allostatic load, leading to depletion of NA levels in the forebrain. It is suggested that disinhibition by a galanin antagonist may have antidepressant activity by restoring forebrain NA levels. A role of galanin in depression is also supported by a recent candidate gene study, showing that variants in genes for galanin and its three receptors confer increased risk of depression and anxiety in people who experienced childhood adversity or recent negative life events. In summary, galanin, a neuropeptide coexisting in LC neurons, may participate in the mechanism underlying resilience against a serious and common disorder, MDD. Existing and further results may lead to an increased understanding of how this illness develops, which in turn could provide a basis for its treatment.
Collapse
Affiliation(s)
- Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Zhi-Qing David Xu
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Eugenia Kuteeva
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Joelle Rüegg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- The Center for Molecular Medicine, Stockholm, Sweden
- Swedish Toxicology Sciences Research Center, Swetox, Södertälje, Sweden
| | - Erwan Le Maitre
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Kehr
- Pronexus Analytical AB, Solna, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Ihnatko
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Miklos Palkovits
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - William Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- NAP 2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | | | - Naguib Mechawar
- Douglas Hospital Research Centre, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
Abramyan AM, Slack RD, Meena S, Davis BA, Newman AH, Singh SK, Shi L. Computation-guided analysis of paroxetine binding to hSERT reveals functionally important structural elements and dynamics. Neuropharmacology 2018; 161:107411. [PMID: 30391505 DOI: 10.1016/j.neuropharm.2018.10.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/03/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
The serotonin transporter (SERT) is one of the primary targets for medications to treat neuropsychiatric disorders and functions by exploiting pre-existing ion gradients of Na+, Cl-, and K+ to translocate serotonin from the synaptic cleft into the presynaptic neuron. Although recent hSERT crystal structures represent a milestone for structure-function analyses of mammalian neurotransmitter:sodium symporters, they are all derived from thermostabilized but transport-deficient constructs. Two of these structures are in complex with paroxetine, the most potent selective serotonin reuptake inhibitor known. In this study, by carrying out and analyzing the results of extensive and comparative molecular dynamics simulations while also re-evaluating the transport and binding properties of the thermostabilized constructs, we identified functionally important structural elements that are perturbed by these mutations, revealed unexpected dynamics in the central primary binding site of SERT, and uncovered a conceivable ambiguity in paroxetine's binding orientation. We propose that the favored entropy contribution plays a significant role in paroxetine's extraordinarily high affinity for SERT. Our findings lay the foundation for future mechanistic studies and rational design of high-affinity SERT inhibitors. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Ara M Abramyan
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, United States
| | - Rachel D Slack
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, United States
| | - Sitaram Meena
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, United States
| | - Bruce A Davis
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, United States
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, United States.
| | - Satinder K Singh
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, United States.
| | - Lei Shi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, United States.
| |
Collapse
|
36
|
Pan P, Lawson DO, Dudin A, Vasquez OE, Sokolowski MB, Fleming AS, McGowan PO. Both maternal care received and genotype influence stress-related phenotype in female rats. Dev Psychobiol 2018; 60:889-902. [DOI: 10.1002/dev.21770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/11/2018] [Accepted: 07/05/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Pauline Pan
- Department of Biological Sciences; University of Toronto Scarborough; Toronto Ontario Canada
- Department of Psychology; University of Toronto; Toronto Ontario Canada
- Department of Cell and Systems Biology; University of Toronto; Toronto Ontario Canada
| | - Daeria O. Lawson
- Department of Psychology; University of Toronto; Toronto Ontario Canada
| | - Aya Dudin
- Department of Psychology; University of Toronto; Toronto Ontario Canada
| | - Oscar E. Vasquez
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto Ontario Canada
| | - Marla B. Sokolowski
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto Ontario Canada
| | - Alison S. Fleming
- Department of Psychology; University of Toronto; Toronto Ontario Canada
| | - Patrick O. McGowan
- Department of Biological Sciences; University of Toronto Scarborough; Toronto Ontario Canada
- Department of Psychology; University of Toronto; Toronto Ontario Canada
- Department of Cell and Systems Biology; University of Toronto; Toronto Ontario Canada
- Department of Physiology, Faculty of Medicine; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
37
|
Structural basis for recognition of diverse antidepressants by the human serotonin transporter. Nat Struct Mol Biol 2018; 25:170-175. [PMID: 29379174 DOI: 10.1038/s41594-018-0026-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022]
Abstract
Selective serotonin reuptake inhibitors are clinically prescribed antidepressants that act by increasing the local concentrations of neurotransmitters at synapses and in extracellular spaces via blockade of the serotonin transporter. Here we report X-ray structures of engineered thermostable variants of the human serotonin transporter bound to the antidepressants sertraline, fluvoxamine, and paroxetine. The drugs prevent serotonin binding by occupying the central substrate-binding site and stabilizing the transporter in an outward-open conformation. These structures explain how residues within the central site orchestrate binding of chemically diverse inhibitors and mediate transporter drug selectivity.
Collapse
|
38
|
Gerring ZF, McRae AF, Montgomery GW, Nyholt DR. Genome-wide DNA methylation profiling in whole blood reveals epigenetic signatures associated with migraine. BMC Genomics 2018; 19:69. [PMID: 29357833 PMCID: PMC5778740 DOI: 10.1186/s12864-018-4450-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 01/14/2018] [Indexed: 01/07/2023] Open
Abstract
Background Migraine is a common heritable neurovascular disorder typically characterised by episodic attacks of severe pulsating headache and nausea, often accompanied by visual, auditory or other sensory symptoms. Although genome-wide association studies have identified over 40 single nucleotide polymorphisms associated with migraine, there remains uncertainty about the casual genes involved in disease pathogenesis and how their function is regulated. Results We performed an epigenome-wide association study, quantifying genome-wide patterns of DNA methylation in 67 migraine cases and 67 controls with a matching age and sex distribution. Association analyses between migraine and methylation probe expression, after adjustment for cell type proportions, indicated an excess of small P values, but there was no significant single-probe association after correction for multiple testing (P < 1.09 × 10− 7). However, utilising a 1 kb sliding window approach to combine adjacent migraine-methylation association P values, we identified 62 independent differentially methylated regions (DMRs) underlying migraine (false discovery rate < 0.05). Migraine association signals were subtle but consistent in effect direction across the length of each DMR. Subsequent analyses showed that the migraine-associated DMRs were enriched in regulatory elements of the genome and were in close proximity to genes involved in solute transportation and haemostasis. Conclusions This study represents the first genome-wide analysis of DNA methylation in migraine. We have identified DNA methylation in the whole blood of subjects associated with migraine, highlighting novel loci that provide insight into the biological pathways and mechanisms underlying migraine pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12864-018-4450-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zachary F Gerring
- Statistical and Genomic Epidemiology Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,The Centre for Neurogenetics and Statistical Genomics, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Dale R Nyholt
- Statistical and Genomic Epidemiology Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
39
|
Oreland L, Lagravinese G, Toffoletto S, Nilsson KW, Harro J, Robert Cloninger C, Comasco E. Personality as an intermediate phenotype for genetic dissection of alcohol use disorder. J Neural Transm (Vienna) 2018; 125:107-130. [PMID: 28054193 PMCID: PMC5754455 DOI: 10.1007/s00702-016-1672-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/23/2016] [Indexed: 01/16/2023]
Abstract
Genetic and environmental interactive influences on predisposition to develop alcohol use disorder (AUD) account for the high heterogeneity among AUD patients and make research on the risk and resiliency factors complicated. Several attempts have been made to identify the genetic basis of AUD; however, only few genetic polymorphisms have consistently been associated with AUD. Intermediate phenotypes are expected to be in-between proxies of basic neuronal biological processes and nosological symptoms of AUD. Personality is likely to be a top candidate intermediate phenotype for the dissection of the genetic underpinnings of different subtypes of AUD. To date, 38 studies have investigated personality traits, commonly assessed by the Cloninger's Tridimensional Personality Questionnaire (TPQ) or Temperament and Character Inventory (TCI), in relation to polymorphisms of candidate genes of neurotransmitter systems in alcohol-dependent patients. Particular attention has been given to the functional polymorphism of the serotonin transporter gene (5-HTTLPR), however, leading to contradictory results, whereas results with polymorphisms in other candidate monoaminergic genes (e.g., tryptophan hydroxylase, serotonin receptors, monoamine oxidases, dopamine receptors and transporter) are sparse. Only one genome-wide association study has been performed so far and identified the ABLIM1 gene of relevance for novelty seeking, harm avoidance and reward dependence in alcohol-dependent patients. Studies investigating genetic factors together with personality could help to define more homogenous subgroups of AUD patients and facilitate treatment strategies. This review also urges the scientific community to combine genetic data with psychobiological and environmental data to further dissect the link between personality and AUD.
Collapse
Affiliation(s)
- Lars Oreland
- Department of Neuroscience, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Gianvito Lagravinese
- Department of Neuroscience, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Simone Toffoletto
- Department of Neuroscience, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Kent W Nilsson
- Centre for Clinical Research, Uppsala University, Västmanland County Counci, Västerås, Sweden
| | - Jaanus Harro
- Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
- Psychiatry Clinic, North Estonia Medical Centre, Tallinn, Estonia
| | - C Robert Cloninger
- Department of Psychiatry, School of Medicine, Washington University, St. Louis, MO, USA
| | - Erika Comasco
- Department of Neuroscience, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden.
| |
Collapse
|
40
|
Krout D, Pramod AB, Dahal RA, Tomlinson MJ, Sharma B, Foster JD, Zou MF, Boatang C, Newman AH, Lever JR, Vaughan RA, Henry LK. Inhibitor mechanisms in the S1 binding site of the dopamine transporter defined by multi-site molecular tethering of photoactive cocaine analogs. Biochem Pharmacol 2017; 142:204-215. [PMID: 28734777 DOI: 10.1016/j.bcp.2017.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Dopamine transporter (DAT) blockers like cocaine and many other abused and therapeutic drugs bind and stabilize an inactive form of the transporter inhibiting reuptake of extracellular dopamine (DA). The resulting increases in DA lead to the ability of these drugs to induce psychomotor alterations and addiction, but paradoxical findings in animal models indicate that not all DAT antagonists induce cocaine-like behavioral outcomes. How this occurs is not known, but one possibility is that uptake inhibitors may bind at multiple locations or in different poses to stabilize distinct conformational transporter states associated with differential neurochemical endpoints. Understanding the molecular mechanisms governing the pharmacological inhibition of DAT is therefore key for understanding the requisite interactions for behavioral modulation and addiction. Previously, we leveraged complementary computational docking, mutagenesis, peptide mapping, and substituted cysteine accessibility strategies to identify the specific adduction site and binding pose for the crosslinkable, photoactive cocaine analog, RTI 82, which contains a photoactive azide attached at the 2β position of the tropane pharmacophore. Here, we utilize similar methodology with a different cocaine analog N-[4-(4-azido-3-I-iodophenyl)-butyl]-2-carbomethoxy-3-(4-chlorophenyl)tropane, MFZ 2-24, where the photoactive azide is attached to the tropane nitrogen. In contrast to RTI 82, which crosslinked into residue Phe319 of transmembrane domain (TM) 6, our findings show that MFZ 2-24 adducts to Leu80 in TM1 with modeling and biochemical data indicating that MFZ 2-24, like RTI 82, occupies the central S1 binding pocket with the (+)-charged tropane ring nitrogen coordinating with the (-)-charged carboxyl side chain of Asp79. The superimposition of the tropane ring in the three-dimensional binding poses of these two distinct ligands provides strong experimental evidence for cocaine binding to DAT in the S1 site and the importance of the tropane moiety in competitive mechanisms of DA uptake inhibition. These findings set a structure-function baseline for comparison of typical and atypical DAT inhibitors and how their interactions with DAT could lead to the loss of cocaine-like behaviors.
Collapse
Affiliation(s)
- Danielle Krout
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Grand Forks, ND 58202, USA
| | - Akula Bala Pramod
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Grand Forks, ND 58202, USA
| | - Rejwi Acharya Dahal
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Grand Forks, ND 58202, USA
| | - Michael J Tomlinson
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Grand Forks, ND 58202, USA
| | - Babita Sharma
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Grand Forks, ND 58202, USA
| | - James D Foster
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Grand Forks, ND 58202, USA
| | - Mu-Fa Zou
- Medicinal Chemistry Section, National Institute on Drug Abuse - Intramural Research Program, Baltimore, MD 21224, USA
| | - Comfort Boatang
- Medicinal Chemistry Section, National Institute on Drug Abuse - Intramural Research Program, Baltimore, MD 21224, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse - Intramural Research Program, Baltimore, MD 21224, USA
| | - John R Lever
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Department of Radiology and Radiopharmaceutical Sciences Institute, University of Missouri, Columbia, MO 65211, USA
| | - Roxanne A Vaughan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Grand Forks, ND 58202, USA.
| | - L Keith Henry
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Grand Forks, ND 58202, USA.
| |
Collapse
|
41
|
Foster JD, Vaughan RA. Phosphorylation mechanisms in dopamine transporter regulation. J Chem Neuroanat 2017; 83-84:10-18. [PMID: 27836487 PMCID: PMC6705611 DOI: 10.1016/j.jchemneu.2016.10.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/26/2016] [Accepted: 10/29/2016] [Indexed: 12/17/2022]
Abstract
The dopamine transporter (DAT) is a plasma membrane phosphoprotein that actively translocates extracellular dopamine (DA) into presynaptic neurons. The transporter is the primary mechanism for control of DA levels and subsequent neurotransmission, and is the target for abused and therapeutic drugs that exert their effects by suppressing reuptake. The transport capacity of DAT is acutely regulated by signaling systems and drug exposure, providing neurons the ability to fine-tune DA clearance in response to specific conditions. Kinase pathways play major roles in these mechanisms, and this review summarizes the current status of DAT phosphorylation characteristics and the evidence linking transporter phosphorylation to control of reuptake and other functions. Greater understanding of these processes may aid in elucidation of their possible contributions to DA disease states and suggest specific phosphorylation sites as targets for therapeutic manipulation of reuptake.
Collapse
Affiliation(s)
- James D Foster
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks ND 58202 United States
| | - Roxanne A Vaughan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks ND 58202 United States.
| |
Collapse
|
42
|
Challasivakanaka S, Zhen J, Smith ME, Reith MEA, Foster JD, Vaughan RA. Dopamine transporter phosphorylation site threonine 53 is stimulated by amphetamines and regulates dopamine transport, efflux, and cocaine analog binding. J Biol Chem 2017; 292:19066-19075. [PMID: 28939767 DOI: 10.1074/jbc.m117.787002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/29/2017] [Indexed: 11/06/2022] Open
Abstract
The dopamine transporter (DAT) controls the spatial and temporal dynamics of dopamine neurotransmission through reuptake of extracellular transmitter and is a target for addictive compounds such as cocaine, amphetamine (AMPH), and methamphetamine (METH). Reuptake is regulated by kinase pathways and drug exposure, allowing for fine-tuning of clearance in response to specific conditions, and here we examine the impact of transporter ligands on DAT residue Thr-53, a proline-directed phosphorylation site previously implicated in AMPH-stimulated efflux mechanisms. Our findings show that Thr-53 phosphorylation is stimulated in a transporter-dependent manner by AMPH and METH in model cells and rat striatal synaptosomes, and in striatum of rats given subcutaneous injection of METH. Rotating disc electrode voltammetry revealed that initial rates of uptake and AMPH-induced efflux were elevated in phosphorylation-null T53A DAT relative to WT and charge-substituted T53D DATs, consistent with functions related to charge or polarity. These effects occurred without alterations of surface transporter levels, and mutants also showed reduced cocaine analog binding affinity that was not rescued by Zn2+ Together these findings support a role for Thr-53 phosphorylation in regulation of transporter kinetic properties that could impact DAT responses to amphetamines and cocaine.
Collapse
Affiliation(s)
- Sathya Challasivakanaka
- From the Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201 and
| | | | - Margaret E Smith
- From the Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201 and
| | - Maarten E A Reith
- the Departments of Psychiatry and.,Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - James D Foster
- From the Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201 and
| | - Roxanne A Vaughan
- From the Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201 and
| |
Collapse
|
43
|
Methylation Status of the Serotonin Transporter Promoter CpG Island Is Associated With Major Depressive Disorder in Chinese Han Population: A Case-Control Study. J Nerv Ment Dis 2017; 205:641-646. [PMID: 27668354 DOI: 10.1097/nmd.0000000000000600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study was aimed to investigate the relationship between the methylation status of serotonin transporter (5-HTT) and major depressive disorder (MDD) in Chinese Han population. A total of 96 patients with MDD and 55 healthy volunteers were recruited, and the methylation index (MtI) at six positions in the cytosine-phosphate-guanosine island of 5-HTT gene was measured for each subject using bisulfite pyrosequencing. MtIs at positions 5 and 6 were higher in patients with MDD than those in controls. According to the multivariable logistic regression analysis, MtIs at positions 4 and 5 were significantly associated with MDD. Besides, depression education was an independent risk factor, whereas higher educational levels were protective factors for MDD. In addition, positions 1 and 4 were negatively correlated with weight and diurnal variation. Therefore, 5-HTT methylation might be closely related with MDD in Chinese Han population because of the correlation with diurnal variation and weight.
Collapse
|
44
|
Reduced Slc6a15 in Nucleus Accumbens D2-Neurons Underlies Stress Susceptibility. J Neurosci 2017; 37:6527-6538. [PMID: 28576941 DOI: 10.1523/jneurosci.3250-16.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 04/18/2017] [Accepted: 05/19/2017] [Indexed: 11/21/2022] Open
Abstract
Previous research demonstrates that Slc6a15, a neutral amino acid transporter, is associated with depression susceptibility. However, no study examined Slc6a15 in the ventral striatum [nucleus accumbens (NAc)] in depression. Given our previous characterization of Slc6a15 as a striatal dopamine receptor 2 (D2)-neuron-enriched gene, we examined the role of Slc6a15 in NAc D2-neurons in mediating susceptibility to stress in male mice. First, we showed that Slc6a15 mRNA was reduced in NAc of mice susceptible to chronic social defeat stress (CSDS), a paradigm that produces behavioral and molecular adaptations that resemble clinical depression. Consistent with our preclinical data, we observed Slc6a15 mRNA reduction in NAc of individuals with major depressive disorder (MDD). The Slc6a15 reduction in NAc occurred selectively in D2-neurons. Next, we used Cre-inducible viruses combined with D2-Cre mice to reduce or overexpress Slc6a15 in NAc D2-neurons. Slc6a15 reduction in D2-neurons caused enhanced susceptibility to a subthreshold social defeat stress (SSDS) as observed by reduced social interaction, while a reduction in social interaction following CSDS was not observed when Slc6a15 expression in D2-neurons was restored. Finally, since both D2-medium spiny neurons (MSNs) and D2-expressing choline acetyltransferase (ChAT) interneurons express Slc6a15, we examined Slc6a15 protein in these interneurons after CSDS. Slc6a15 protein was unaltered in ChAT interneurons. Consistent with this, reducing Slc5a15 selectively in NAc D2-MSNs, using A2A-Cre mice that express Cre selectively in D2-MSNs, caused enhanced susceptibility to SSDS. Collectively, our data demonstrate that reduced Slc6a15 in NAc occurs in MDD individuals and that Slc6a15 reduction in NAc D2-neurons underlies stress susceptibility.SIGNIFICANCE STATEMENT Our study demonstrates a role for reduced Slc6a15, a neutral amino acid transporter, in nucleus accumbens (NAc) in depression and stress susceptibility. The reduction of Slc6a15 occurs selectively in the NAc D2-neurons. Genetic reduction of Slc6a15 induces susceptibility to a subthreshold stress, while genetic overexpression in D2-neurons prevents social avoidance after chronic social defeat stress.
Collapse
|
45
|
Kim WT, Lee SR, Roh YG, Kim SI, Choi YH, Mun MH, Jeong MS, Koh SS, Leem SH. Characterization of VNTRs Within the Entire Region of SLC6A3 and Its Association with Hypertension. DNA Cell Biol 2017; 36:227-236. [PMID: 28055236 DOI: 10.1089/dna.2016.3448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The dopamine transporter SLC6A3 (DAT1) mediates uptake of dopamine into presynaptic terminals. In addition, in previous reports, hypertensive rats were associated with DAT gene, but the genetic association with SLC6A3 and hypertension is still unknown. We examined the distribution of variable number of tandem repeats (VNTRs) and conducted polymorphic analysis of the entire region of SLC6A3. Ten VNTR regions (MS1-10) were revealed throughout the intronic and UTRs; seven VNTR regions were newly isolated and three VNTRs were previously reported. Four VNTR regions (SLC6A3-MS1, -MS4, -MS8 [rs3836790], and -MS9 [rs28363170]) showed polymorphism and these loci were found to be transmitted through meiosis following Mendelian inheritance. These VNTR polymorphisms may be useful markers for paternity mapping and DNA fingerprinting. Furthermore, we also conducted a case-control study between the controls and essential hypertensive cases. Analysis of the genotypes of SLC6A3-MS8 (rs3836790) revealed that having an 8/6-repeat allele, which was only detected in hypertensive cases, was associated with hypertension (p < 0.05). Additional significant association was identified between the short 7-repeat allele of SLC6A3-MS9 (rs28363170) and the occurrence of hypertension (odds ratio 2.02; p < 0.05). These results revealed the genetic association between SLC6A3 and hypertension, and the specific VNTR alleles of SLC6A3 may be a risk factor for hypertension.
Collapse
Affiliation(s)
- Won-Tae Kim
- 1 Department of Biological Science, Dong-A University , Busan, Korea
| | - Se-Ra Lee
- 1 Department of Biological Science, Dong-A University , Busan, Korea
| | - Yun-Gil Roh
- 1 Department of Biological Science, Dong-A University , Busan, Korea
| | - Seung Il Kim
- 2 Division of Life Science Team, Korea Basic Science Institute , Daejeon, Korea
| | - Yung Hyun Choi
- 3 Department of Biochemistry, College of Oriental Medicine, Anti-Aging Research Center, Dong-eui University , Busan, Korea
| | - Mi-Hye Mun
- 1 Department of Biological Science, Dong-A University , Busan, Korea
| | - Mi-So Jeong
- 1 Department of Biological Science, Dong-A University , Busan, Korea
| | - Sang Seok Koh
- 1 Department of Biological Science, Dong-A University , Busan, Korea
| | - Sun-Hee Leem
- 1 Department of Biological Science, Dong-A University , Busan, Korea
| |
Collapse
|
46
|
Coleman JA, Green EM, Gouaux E. Thermostabilization, Expression, Purification, and Crystallization of the Human Serotonin Transporter Bound to S-citalopram. J Vis Exp 2016. [PMID: 27929454 PMCID: PMC5226304 DOI: 10.3791/54792] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The serotonin transporter is a sodium and chloride-coupled transporter that "pumps" extracellular serotonin into cells. S-citalopram is a drug used to treat depression and anxiety by binding to the serotonin transporter with high-affinity, blocking serotonin reuptake. Here we report an efficient procedure and a set of tools to stabilize, express, purify, and crystallize serotonin transporter-antibody complexes bound to S-citalopram and other antidepressants. Mutations which stabilize the serotonin transporter were identified using an S-citalopram binding assay. Serotonin transporter expressed in baculovirus-transduced HEK293S GnTI- cells, was reconstituted into proteoliposomes and used to raise high-affinity antibodies. We have developed a strategy to discover antibodies that are useful for structural studies. A straightforward approach for the expression of antibody fragments in Sf9 cells has also been established. Transporter-antibody complexes purified using this procedure are well-behaved and readily crystallize, producing complexes with S-citalopram that diffract X-rays to 3-4 Å resolution. The strategies developed here can be utilized to determine the structure of other challenging membrane proteins.
Collapse
Affiliation(s)
| | - Evan M Green
- Graduate Group in Biophysics, University of California, San Francisco
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University; Howard Hughes Medical Institute, Oregon Health & Science University;
| |
Collapse
|
47
|
Bermingham DP, Blakely RD. Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters. Pharmacol Rev 2016; 68:888-953. [PMID: 27591044 PMCID: PMC5050440 DOI: 10.1124/pr.115.012260] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Modulation of neurotransmission by the monoamines dopamine (DA), norepinephrine (NE), and serotonin (5-HT) is critical for normal nervous system function. Precise temporal and spatial control of this signaling in mediated in large part by the actions of monoamine transporters (DAT, NET, and SERT, respectively). These transporters act to recapture their respective neurotransmitters after release, and disruption of clearance and reuptake has significant effects on physiology and behavior and has been linked to a number of neuropsychiatric disorders. To ensure adequate and dynamic control of these transporters, multiple modes of control have evolved to regulate their activity and trafficking. Central to many of these modes of control are the actions of protein kinases, whose actions can be direct or indirectly mediated by kinase-modulated protein interactions. Here, we summarize the current state of our understanding of how protein kinases regulate monoamine transporters through changes in activity, trafficking, phosphorylation state, and interacting partners. We highlight genetic, biochemical, and pharmacological evidence for kinase-linked control of DAT, NET, and SERT and, where applicable, provide evidence for endogenous activators of these pathways. We hope our discussion can lead to a more nuanced and integrated understanding of how neurotransmitter transporters are controlled and may contribute to disorders that feature perturbed monoamine signaling, with an ultimate goal of developing better therapeutic strategies.
Collapse
Affiliation(s)
- Daniel P Bermingham
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| | - Randy D Blakely
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| |
Collapse
|
48
|
The developmental effects of pentachlorophenol on zebrafish embryos during segmentation: A systematic view. Sci Rep 2016; 6:25929. [PMID: 27181905 PMCID: PMC4867433 DOI: 10.1038/srep25929] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/25/2016] [Indexed: 11/26/2022] Open
Abstract
Pentachlorophenol (PCP) is a typical toxicant and prevailing pollutant whose toxicity has been broadly investigated. However, previous studies did not specifically investigate the underlying mechanisms of its developmental toxicity. Here, we chose zebrafish embryos as the model, exposed them to 2 different concentrations of PCP, and sequenced their entire transcriptomes at 10 and 24 hours post-fertilization (hpf). The sequencing analysis revealed that high concentrations of PCP elicited systematic responses at both time points. By combining the enrichment terms with single genes, the results were further analyzed using three categories: metabolism, transporters, and organogenesis. Hyperactive glycolysis was the most outstanding feature of the transcriptome at 10 hpf. The entire system seemed to be hypoxic, although hypoxia-inducible factor-1α (HIF1α) may have been suppressed by the upregulation of prolyl hydroxylase domain enzymes (PHDs). At 24 hpf, PCP primarily affected somitogenesis and lens formation probably resulting from the disruption of embryonic body plan at earlier stages. The proposed underlying toxicological mechanism of PCP was based on the crosstalk between each clue. Our study attempted to describe the developmental toxicity of environmental pollutants from a systematic view. Meanwhile, some features of gene expression profiling could serve as markers of human health or ecological risk.
Collapse
|
49
|
Grouleff J, Søndergaard S, Koldsø H, Schiøtt B. Properties of an inward-facing state of LeuT: conformational stability and substrate release. Biophys J 2016; 108:1390-1399. [PMID: 25809252 DOI: 10.1016/j.bpj.2015.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 01/12/2023] Open
Abstract
The leucine transporter (LeuT) is a bacterial homolog of the human monoamine transporters, which are important pharmaceutical targets. There are no high-resolution structures of the human transporters available; however, LeuT has been crystallized in several different conformational states. Recently, an inward-facing conformation of LeuT was solved revealing an unexpectedly large movement of transmembrane helix 1a (TM1a). We have performed molecular dynamics simulations of the mutated and wild-type transporter, with and without the cocrystallized Fab antibody fragment, to investigate the properties of this inward-facing conformation in relation to transport by LeuT within the membrane environment. In all of the simulations, local conformational changes with respect to the crystal structure are consistently observed, especially in TM1a. Umbrella sampling revealed a soft potential for TM1a tilting. Furthermore, simulations of inward-facing LeuT with Na(+) ions and substrate bound suggest that one of the Na(+) ion binding sites is fully disrupted. Release of alanine and the second Na(+) ion is also observed, giving insight into the final stage of the translocation process in atomistic detail.
Collapse
Affiliation(s)
- Julie Grouleff
- Center for Insoluble Protein Structures and Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Siri Søndergaard
- Center for Insoluble Protein Structures and Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Heidi Koldsø
- Center for Insoluble Protein Structures and Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Birgit Schiøtt
- Center for Insoluble Protein Structures and Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
50
|
Coleman JA, Green EM, Gouaux E. X-ray structures and mechanism of the human serotonin transporter. Nature 2016; 532:334-9. [PMID: 27049939 PMCID: PMC4898786 DOI: 10.1038/nature17629] [Citation(s) in RCA: 462] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/29/2016] [Indexed: 12/19/2022]
Abstract
The serotonin transporter (SERT) terminates serotonergic signaling through the sodium and chloride dependent reuptake of neurotransmitter into presynaptic neurons. SERT is a target for antidepressant and psychostimulant drugs, which block reuptake and prolong neurotransmitter signaling. Here we report x-ray crystallographic structures of human SERT at 3.15 Å resolution bound to the antidepressants (S)-citalopram or paroxetine. Antidepressants lock SERT in an outward-open conformation by lodging in the central binding site, located between transmembrane helices 1, 3, 6, 8, and 10, directly blocking serotonin binding. We further identify the location of an allosteric site in the complex as residing at the periphery of the extracellular vestibule, interposed between extracellular loops 4 and 6 and TMs 1, 6, 10, and 11. Occupancy of the allosteric site sterically hinders ligand unbinding from the central site, providing an explanation for the action of (S)-citalopram as an allosteric ligand. These structures define the mechanism of antidepressant action in SERT and provide blueprints for future drug design.
Collapse
Affiliation(s)
- Jonathan A Coleman
- Vollum Institute, Oregon Health &Science University, Portland, Oregon 97239, USA
| | - Evan M Green
- Vollum Institute, Oregon Health &Science University, Portland, Oregon 97239, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health &Science University, Portland, Oregon 97239, USA.,Howard Hughes Medical Institute, Oregon Health &Science University, Portland, Oregon 97239, USA
| |
Collapse
|