1
|
Dang L, Li D, Mu Q, Zhang N, Li C, Wang M, Tian H, Jha R, Li C. Youth-derived Lactobacillus rhamnosus with prebiotic xylo-oligosaccharide exhibits anti-hyperlipidemic effects as a novel synbiotic. Food Res Int 2024; 195:114976. [PMID: 39277213 DOI: 10.1016/j.foodres.2024.114976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Changes in dietary patterns and living habits have led to an increasing number of individuals with elevated cholesterol levels. Excessive consumption of high-cholesterol foods can disrupt the body's lipid metabolism. Numerous studies have firmly established the cholesterol-lowering effects of probiotics and prebiotics, with evidence showing that the synergistic use of synbiotics is functionally more potent than using probiotics or prebiotics alone. Currently, the screening strategy involves screening prebiotics for synbiotic development with probiotics as the core. However, in comparison to probiotics, there are fewer types of prebiotics available, leading to limited resources. Consequently, the combinations of synbiotics obtained are restricted, and probiotics and prebiotics are only relatively suitable. Therefore, in this study, a novel synbiotic screening strategy with prebiotics as the core was developed. The synbiotic combination of Lactobacillus rhamnosus S_82 and xylo-oligosaccharides was screened from the intestinal tract of young people through five generations of xylo-oligosaccharides. Subsequently, the cholesterol-lowering ability of the medium was simulated, and the two carbon sources of glucose and xylo-oligosaccharides were screened out. The results showed that synbiotics may participate in cholesterol-lowering regulation by down-regulating the expression of NPC1L1 gene, down-regulating ACAT2 and increasing the expression of ABCG8 gene in vitro through cell adsorption and cell absorption in vitro, and regulating the intestinal microbiota. Synbiotics hold promise as potential candidates for the prevention of hypercholesterolemia in humans and animals, and this study providing a theoretical foundation for the development of new synbiotic products.
Collapse
Affiliation(s)
- Luyao Dang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Dongyao Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Qingqing Mu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Na Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; College of Biochemistry and Environmental Engineering, Baoding University, Baoding, Hebei 071000, China
| | - Chenwei Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Miaoshu Wang
- New Hope Tensun (Hebei) Dairy Co., Ltd, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China
| | - Hongtao Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China.
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu 96822, United States.
| | - Chen Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China.
| |
Collapse
|
2
|
Jin Y, Kozan D, Young ED, Hensley MR, Shen MC, Wen J, Moll T, Anderson JL, Kozan H, Rawls JF, Farber SA. A high-cholesterol zebrafish diet promotes hypercholesterolemia and fasting-associated liver steatosis. J Lipid Res 2024; 65:100637. [PMID: 39218217 DOI: 10.1016/j.jlr.2024.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Zebrafish are an ideal model organism to study lipid metabolism and to elucidate the molecular underpinnings of human lipid-associated disorders. Unlike murine models, to which various standardized high lipid diets such as a high-cholesterol diet (HCD) are available, there has yet to be a uniformly adopted zebrafish HCD protocol. In this study, we have developed an improved HCD protocol and thoroughly tested its impact on zebrafish lipid deposition and lipoprotein regulation in a dose- and time-dependent manner. The diet stability, reproducibility, and fish palatability were also validated. Fish fed HCD developed hypercholesterolemia as indicated by significantly elevated ApoB-containing lipoproteins (ApoB-LPs) and increased plasma levels of cholesterol and cholesterol esters. Feeding of the HCD to larvae for 8 days produced hepatic steatosis that became more stable and sever after 1 day of fasting and was associated with an opaque liver phenotype (dark under transmitted light). Unlike larvae, adult fish fed HCD for 14 days followed by a 3-day fast did not develop a stable fatty liver phenotype, though the fish had higher ApoB-LP levels in plasma and an upregulated lipogenesis gene fasn in adipose tissue. In conclusion, our HCD zebrafish protocol represents an effective and reliable approach for studying the temporal characteristics of the physiological and biochemical responses to high levels of dietary cholesterol and provides insights into the mechanisms that may underlie fatty liver disease.
Collapse
Affiliation(s)
- Yang Jin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Darby Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Eric D Young
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Division of Gastrointestinal and Liver Pathology, Department of Pathology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Monica R Hensley
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Meng-Chieh Shen
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Jia Wen
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Tabea Moll
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer L Anderson
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Hannah Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Steven A Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Kim JW, Kim YJ. Cholesin and GPR146 in Modulating Cholesterol Biosynthesis. Pharmacology 2024; 109:305-311. [PMID: 39008961 DOI: 10.1159/000540351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Cholesterol homeostasis in the human body is a crucial process that involves a delicate balance between dietary cholesterol absorption in the intestine and de novo cholesterol synthesis in the liver. Both pathways contribute significantly to the overall pool of cholesterol in the body, influencing plasma cholesterol levels and impacting cardiovascular health. Elevated absorption of cholesterol in the intestines has a suppressive impact on the synthesis of cholesterol in the liver, serving to preserve cholesterol balance. Nonetheless, the precise mechanisms driving this phenomenon remain largely unclear. SUMMARY This review aimed to discuss the previously unrecognized role of cholesin and GPR146 in the regulation of cholesterol biosynthesis, providing a novel conceptual framework for understanding cholesterol homeostasis. KEY MESSAGES The discovery of cholesin, a novel protein implicated in the regulation of cholesterol homeostasis, represents a significant advancement in our understanding of cholesterol biosynthesis and its associated pathways. The cholesin-GPR146 axis could have profound implications across various therapeutic areas concerning abnormal cholesterol metabolism, offering new hope for patients and improving overall healthcare outcomes.
Collapse
Affiliation(s)
- Jong-Won Kim
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yu Ji Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical School, Jeonbuk National University, Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| |
Collapse
|
4
|
Zhang L, Shi Y, Liang B, Li X. An overview of the cholesterol metabolism and its proinflammatory role in the development of MASLD. Hepatol Commun 2024; 8:e0434. [PMID: 38696365 PMCID: PMC11068152 DOI: 10.1097/hc9.0000000000000434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 05/04/2024] Open
Abstract
Cholesterol is an essential lipid molecule in mammalian cells. It is not only involved in the formation of cell membranes but also serves as a raw material for the synthesis of bile acids, vitamin D, and steroid hormones. Additionally, it acts as a covalent modifier of proteins and plays a crucial role in numerous life processes. Generally, the metabolic processes of cholesterol absorption, synthesis, conversion, and efflux are strictly regulated. Excessive accumulation of cholesterol in the body is a risk factor for metabolic diseases such as cardiovascular disease, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD). In this review, we first provide an overview of the discovery of cholesterol and the fundamental process of cholesterol metabolism. We then summarize the relationship between dietary cholesterol intake and the risk of developing MASLD, and also the animal models of MASLD specifically established with a cholesterol-containing diet. In the end, the role of cholesterol-induced inflammation in the initiation and development of MASLD is discussed.
Collapse
Affiliation(s)
- Linqiang Zhang
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yongqiong Shi
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Bin Liang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Xi Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Yadav N, Paul AT. Pancreatic lipase and its related proteins: where are we now? Drug Discov Today 2024; 29:103855. [PMID: 38081381 DOI: 10.1016/j.drudis.2023.103855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Obesity is a disease of epidemic proportions, with a worrisome upward trend. The high consumption of lipids, a major energy source, leads to obesity because of their high calorific value. Pancreatic lipase (PTL), produced by pancreatic acinar cells, hydrolyzes 50-70% of triacylglycerol (TAG) from food. PTL-related protein 1 (PLRP1) and 2 (PLRP2) are also produced by these cells. In vertebrates, PLRP1 has relatively less lipolytic activity, whereas PLRP2 has an essential role in lipid digestion, especially in infants. In this review, we summarize the structure and function of PTL, PLRP1, and PLRP2, and the metabolic fate of PTL inhibitors. We also discuss the current status of clinical trials on orlistat and its combinations for obesity treatment.
Collapse
Affiliation(s)
- Nisha Yadav
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Atish T Paul
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
6
|
Engin AB, Engin A. The Checkpoints of Intestinal Fat Absorption in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:73-95. [PMID: 39287849 DOI: 10.1007/978-3-031-63657-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In this chapter, intestinal lipid transport, which plays a central role in fat homeostasis and the development of obesity in addition to the mechanisms of fatty acids and monoacylglycerol absorption in the intestinal lumen and reassembly of these within the enterocyte was described. A part of the resynthesized triglycerides (triacylglycerols; TAG) is repackaged in the intestine to form the hydrophobic core of chylomicrons (CMs). These are delivered as metabolic fuels, essential fatty acids, and other lipid-soluble nutrients, from enterocytes to the peripheral tissues following detachment from the endoplasmic reticulum membrane. Moreover, the attitudes of multiple receptor functions in dietary lipid uptake, synthesis, and transport are highlighted. Additionally, intestinal fatty acid binding proteins (FABPs), which increase the cytosolic flux of fatty acids via intermembrane transfer in enterocytes, and the functions of checkpoints for receptor-mediated fatty acid signaling are debated. The importance of the balance between storage and secretion of dietary fat by enterocytes in determining the physiological fate of dietary fat, including regulation of blood lipid concentrations and energy balance, is mentioned. Consequently, promising checkpoints regarding how intestinal fat processing affects lipid homeostatic mechanisms and lipid stores in the body and the prevention of obesity-lipotoxicity due to excessive intestinal lipid absorption are evaluated. In this context, dietary TAG digestion, pharmacological inhibition of TAG hydrolysis, the regulation of long-chain fatty acid uptake traffic into adipocytes, intracellular TAG resynthesis, the enlargement of cytoplasmic lipid droplets in enterocytes and constitutional alteration of their proteome, CD36-mediated conversion of diet-derived fatty acid into cellular lipid messengers and their functions are discussed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
7
|
Liu W, Tu Z, Liu J, Wu T, Li D, Zhang N, Cui Y. Therapeutic effect of yinchenhao decoction on cholelithiasis via mucin in the gallbladder and intestine. Fitoterapia 2024; 172:105746. [PMID: 37967772 DOI: 10.1016/j.fitote.2023.105746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
Cholelithiasis is a common and frequently occurring disease worldwide that belongs to the category of jaundice in traditional Chinese medicine. Yinchenhao decoction (YD) consists of Artemisia capillaris Thunb., Gardenia jasminoides J.Ellis, and Rheum palmatum L., and is traditionally used to treat jaundice, which has a significant therapeutic effect on cholelithiasis. Our study aimed to investigate the pathological mechanism of cholelithiasis and the therapeutic mechanism of YD via mucin in the gallbladder and intestine. YD was prepared and analyzed using HPLC. The supersaturation stability experiment was designed by the solvent-shift method. The cell transport experiment was conducted by coculture monolayers. The animal experiment was performed using a cholelithiasis model with a high-cholesterol diet. The related indicators were detected by automatic biochemical analyzer, PCR, western blot, or ELISA. Statistics were analyzed using χ2-tests and t-tests. As the results, in cholelithiasis, MUC5AC highly expressed in the gallbladder shortened cholesterol supersaturation and promoted cholesterol crystallization via the inflammatory cytokine signaling pathway; MUC2 highly expressed in the small intestine prolonged cholesterol supersaturation and promoted cholesterol absorption via the inflammatory cytokine signaling pathway. YD inhibited mucin expression in the gallbladder and intestine in a concentration-dependent manner for cholelithiasis treatment by inhibiting the inflammatory cytokine signaling pathway, which was attributed to the active components, including chlorogenic acid, geniposide, and rhein.
Collapse
Affiliation(s)
- Weijun Liu
- Tianjin NanKai Hospital, Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China.
| | - Zhengwei Tu
- Tianjin NanKai Hospital, Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Jinjin Liu
- Tianjin NanKai Hospital, Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Teng Wu
- Tianjin NanKai Hospital, Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Donghua Li
- Tianjin NanKai Hospital, Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Nan Zhang
- Tianjin NanKai Hospital, Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China.
| | - Yunfeng Cui
- Tianjin NanKai Hospital, Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China.
| |
Collapse
|
8
|
Deng C, Pan J, Zhu H, Chen ZY. Effect of Gut Microbiota on Blood Cholesterol: A Review on Mechanisms. Foods 2023; 12:4308. [PMID: 38231771 DOI: 10.3390/foods12234308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
The gut microbiota serves as a pivotal mediator between diet and human health. Emerging evidence has shown that the gut microbiota may play an important role in cholesterol metabolism. In this review, we delve into five possible mechanisms by which the gut microbiota may influence cholesterol metabolism: (1) the gut microbiota changes the ratio of free bile acids to conjugated bile acids, with the former being eliminated into feces and the latter being reabsorbed back into the liver; (2) the gut microbiota can ferment dietary fiber to produce short-chain fatty acids (SCFAs) which are absorbed and reach the liver where SCFAs inhibit cholesterol synthesis; (3) the gut microbiota can regulate the expression of some genes related to cholesterol metabolism through their metabolites; (4) the gut microbiota can convert cholesterol to coprostanol, with the latter having a very low absorption rate; and (5) the gut microbiota could reduce blood cholesterol by inhibiting the production of lipopolysaccharides (LPS), which increases cholesterol synthesis and raises blood cholesterol. In addition, this review will explore the natural constituents in foods with potential roles in cholesterol regulation, mainly through their interactions with the gut microbiota. These include polysaccharides, polyphenolic entities, polyunsaturated fatty acids, phytosterols, and dicaffeoylquinic acid. These findings will provide a scientific foundation for targeting hypercholesterolemia and cardiovascular diseases through the modulation of the gut microbiota.
Collapse
Affiliation(s)
- Chuanling Deng
- School of Food Science and Engineering/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528011, China
| | - Jingjin Pan
- School of Food Science and Engineering/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528011, China
| | - Hanyue Zhu
- School of Food Science and Engineering/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528011, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
9
|
He Z, Zhang Z, Xu P, Dirsch VM, Wang L, Wang K. Laminarin Reduces Cholesterol Uptake and NPC1L1 Protein Expression in High-Fat Diet (HFD)-Fed Mice. Mar Drugs 2023; 21:624. [PMID: 38132943 PMCID: PMC10744832 DOI: 10.3390/md21120624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Aberrantly high dietary cholesterol intake and intestinal cholesterol uptake lead to dyslipidemia, one of the risk factors for cardiovascular diseases (CVDs). Based on previous studies, laminarin, a polysaccharide found in brown algae, has hypolipidemic activity, but its underlying mechanism has not been elucidated. In this study, we investigated the effect of laminarin on intestinal cholesterol uptake in vitro, as well as the lipid and morphological parameters in an in vivo model of high-fat diet (HFD)-fed mice, and addressed the question of whether Niemann-Pick C1-like 1 protein (NPC1L1), a key transporter mediating dietary cholesterol uptake, is involved in the mechanistic action of laminarin. In in vitro studies, BODIPY-cholesterol-labeled Caco-2 cells were examined using confocal microscopy and a fluorescence reader. The results demonstrated that laminarin inhibited cholesterol uptake into Caco-2 cells in a concentration-dependent manner (EC50 = 20.69 μM). In HFD-fed C57BL/6J mice, laminarin significantly reduced the serum levels of total cholesterol (TC), total triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C). It also decreased hepatic levels of TC, TG, and total bile acids (TBA) while promoting the excretion of fecal cholesterol. Furthermore, laminarin significantly reduced local villous damage in the jejunum of HFD mice. Mechanistic studies revealed that laminarin significantly downregulated NPC1L1 protein expression in the jejunum of HFD-fed mice. The siRNA-mediated knockdown of NPC1L1 attenuated the laminarin-mediated inhibition of cholesterol uptake in Caco-2 cells. This study suggests that laminarin significantly improves dyslipidemia in HFD-fed mice, likely by reducing cholesterol uptake through a mechanism that involves the downregulation of NPC1L1 expression.
Collapse
Affiliation(s)
- Zhuoqian He
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China; (Z.H.); (P.X.); (K.W.)
| | - Zhongyin Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China;
| | - Pengfei Xu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China; (Z.H.); (P.X.); (K.W.)
| | - Verena M. Dirsch
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria;
| | - Limei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China; (Z.H.); (P.X.); (K.W.)
- Institute of Innovative Drugs, Qingdao University, Qingdao 266071, China
| | - Kewei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China; (Z.H.); (P.X.); (K.W.)
- Institute of Innovative Drugs, Qingdao University, Qingdao 266071, China
| |
Collapse
|
10
|
Liu Y, Xiao H, Wang Z, Pan Q, Zhao X, Lu B. Interactions between dietary cholesterol and intestinal flora and their effects on host health. Crit Rev Food Sci Nutr 2023:1-13. [PMID: 37947307 DOI: 10.1080/10408398.2023.2276883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The interactions between dietary cholesterol and intestinal microbiota strongly affect host health. In recent years, relevant studies have greatly advanced this field and need to be summarized to deepen the understanding of dietary cholesterol-intestinal microbiota interactions and their effects on host health. This review covers the most recent frontiers on the effects of dietary cholesterol on the intestinal microbiota and its metabolites, the metabolism of cholesterol by the intestinal microbiota, and the effects of the interactions on host health. Several animal-feeding studies reported that dietary cholesterol altered different intestinal microbiota in the body, while mainly causing alterations in intestinal microbial metabolites such as bile acids, short-chain fatty acids, and tryptophan derivatives. Alterations in these metabolites may be a novel mechanism mediating cholesterol-related diseases. The cholesterol microbial metabolite, coprostanol, has a low absorption rate and is excreted in the feces. Thus, microbial conversion of cholesterol-to-coprostanol may be an important way of cholesterol-lowering by the organism. Cholesterol-3-sulfate is a recently discovered microbial metabolite of cholesterol, mainly metabolized by Bacteroides containing the Bt_0416 gene. Its effects on host health have been preliminarily characterized and are mainly related to immune modulation and repair of the intestinal epithelium.
Collapse
Affiliation(s)
- Yan Liu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Zhangtie Wang
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Qiannan Pan
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xi Zhao
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
11
|
Jin Y, Kozan D, Anderson JL, Hensley M, Shen MC, Wen J, Moll T, Kozan H, Rawls JF, Farber SA. A high-cholesterol zebrafish diet promotes hypercholesterolemia and fasting-associated liver triglycerides accumulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565134. [PMID: 37961364 PMCID: PMC10635069 DOI: 10.1101/2023.11.01.565134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Zebrafish are an ideal model organism to study lipid metabolism and to elucidate the molecular underpinnings of human lipid-associated disorders. In this study, we provide an improved protocol to assay the impact of a high-cholesterol diet (HCD) on zebrafish lipid deposition and lipoprotein regulation. Fish fed HCD developed hypercholesterolemia as indicated by significantly elevated ApoB-containing lipoproteins (ApoB-LP) and increased plasma levels of cholesterol and cholesterol esters. Feeding of the HCD to larvae (8 days followed by a 1 day fast) and adult female fish (2 weeks, followed by 3 days of fasting) was also associated with a fatty liver phenotype that presented as severe hepatic steatosis. The HCD feeding paradigm doubled the levels of liver triacylglycerol (TG), which was striking because our HCD was only supplemented with cholesterol. The accumulated liver TG was unlikely due to increased de novo lipogenesis or inhibited β-oxidation since no differentially expressed genes in these pathways were found between the livers of fish fed the HCD versus control diets. However, fasted HCD fish had significantly increased lipogenesis gene fasn in adipose tissue and higher free fatty acids (FFA) in plasma. This suggested that elevated dietary cholesterol resulted in lipid accumulation in adipocytes, which supplied more FFA during fasting, promoting hepatic steatosis. In conclusion, our HCD zebrafish protocol represents an effective and reliable approach for studying the temporal characteristics of the physiological and biochemical responses to high levels of dietary cholesterol and provides insights into the mechanisms that may underlie fatty liver disease.
Collapse
Affiliation(s)
- Yang Jin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Darby Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Jennifer L Anderson
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Monica Hensley
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Meng-Chieh Shen
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Jia Wen
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, United States
| | - Tabea Moll
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Hannah Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, United States
| | - Steven A. Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
12
|
Wang M, Yu M, Amrouche AT, Jie F, Ji S, Lu B. Human intestinal Caco-2 cell model to evaluate the absorption of 7-ketophytosterols and their effects on cholesterol transport. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
13
|
Song R, Hu M, Qin X, Qiu L, Wang P, Zhang X, Liu R, Wang X. The Roles of Lipid Metabolism in the Pathogenesis of Chronic Diseases in the Elderly. Nutrients 2023; 15:3433. [PMID: 37571370 PMCID: PMC10420821 DOI: 10.3390/nu15153433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Lipid metabolism plays crucial roles in cellular processes such as hormone synthesis, energy production, and fat storage. Older adults are at risk of the dysregulation of lipid metabolism, which is associated with progressive declines in the physiological function of various organs. With advancing age, digestion and absorption commonly change, thereby resulting in decreased nutrient uptake. However, in the elderly population, the accumulation of excess fat becomes more pronounced due to a decline in the body's capacity to utilize lipids effectively. This is characterized by enhanced adipocyte synthesis and reduced breakdown, along with diminished peripheral tissue utilization capacity. Excessive lipid accumulation in the body, which manifests as hyperlipidemia and accumulated visceral fat, is linked to several chronic lipid-related diseases, including cardiovascular disease, type 2 diabetes, obesity, and nonalcoholic fatty liver disease. This review provides a summary of the altered lipid metabolism during aging, including lipid digestion, absorption, anabolism, and catabolism, as well as their associations with age-related chronic diseases, which aids in developing nutritional interventions for older adults to prevent or alleviate age-related chronic diseases.
Collapse
Affiliation(s)
- Rui Song
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.S.); (M.H.); (X.Q.); (L.Q.)
| | - Mengxiao Hu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.S.); (M.H.); (X.Q.); (L.Q.)
| | - Xiyu Qin
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.S.); (M.H.); (X.Q.); (L.Q.)
| | - Lili Qiu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.S.); (M.H.); (X.Q.); (L.Q.)
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (X.Z.); (R.L.)
| | - Xiaoxu Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (X.Z.); (R.L.)
| | - Rong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (X.Z.); (R.L.)
| | - Xiaoyu Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.S.); (M.H.); (X.Q.); (L.Q.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (X.Z.); (R.L.)
| |
Collapse
|
14
|
Ribeiro RM, Vasconcelos SC, Lima PLGDSB, Coelho EF, Oliveira AMN, Gomes EDABM, Mota LDA, Radtke LS, Carvalho MDS, Araújo DABS, Pinheiro MSN, Gama VCDV, Júnior RMM, Braga Neto P, Nóbrega PR. Pathophysiology and Treatment of Lipid Abnormalities in Cerebrotendinous Xanthomatosis: An Integrative Review. Brain Sci 2023; 13:979. [PMID: 37508912 PMCID: PMC10377253 DOI: 10.3390/brainsci13070979] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Cerebrotendinous xanthomatosis (CTX) is an autosomal recessive disorder caused by pathogenic variants in CYP27A1, leading to a deficiency in sterol 27-hydroxylase. This defect results in the accumulation of cholestanol and bile alcohols in various tissues, including the brain, tendons and peripheral nerves. We conducted this review to evaluate lipid profile abnormalities in patients with CTX. A search was conducted in PubMed, Embase and the Virtual Health Library in January 2023 to evaluate studies reporting the lipid profiles of CTX patients, including the levels of cholestanol, cholesterol and other lipids. Elevated levels of cholestanol were consistently observed. Most patients presented normal or low serum cholesterol levels. A decrease in chenodeoxycholic acid (CDCA) leads to increased synthesis of cholesterol metabolites, such as bile alcohols 23S-pentol and 25-tetrol 3-glucuronide, which may serve as surrogate follow-up markers in patients with CTX. Lipid abnormalities in CTX have clinical implications. Cholestanol deposition in tissues contributes to clinical manifestations, including neurological symptoms and tendon xanthomas. Dyslipidemia and abnormal cholesterol metabolism may also contribute to the increased risk of atherosclerosis and cardiovascular complications observed in some CTX patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lucas Soares Radtke
- Faculty of Medicine, Federal University of Ceara, Fortaleza 60430-372, Brazil
| | | | | | | | | | | | - Pedro Braga Neto
- Division of Neurology, Department of Clinical Medicine, Federal University of Ceara, Fortaleza 60430-372, Brazil
| | - Paulo Ribeiro Nóbrega
- Division of Neurology, Department of Clinical Medicine, Federal University of Ceara, Fortaleza 60430-372, Brazil
| |
Collapse
|
15
|
Barkas F, Bathrellou E, Nomikos T, Panagiotakos D, Liberopoulos E, Kontogianni MD. Plant Sterols and Plant Stanols in Cholesterol Management and Cardiovascular Prevention. Nutrients 2023; 15:2845. [PMID: 37447172 DOI: 10.3390/nu15132845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains the major mortality cause in developed countries with hypercholesterolaemia being one of the primary modifiable causes. Lifestyle intervention constitutes the first step in cholesterol management and includes dietary modifications along with the use of functional foods and supplements. Functional foods enriched with plant sterols/stanols have become the most widely used nonprescription cholesterol-lowering approach, despite the lack of randomized trials investigating their long-term safety and cardiovascular efficacy. The cholesterol-lowering effect of plant-sterol supplementation is well-established and a potential beneficial impact on other lipoproteins and glucose homeostasis has been described. Nevertheless, experimental and human observational studies investigating the association of phytosterol supplementation or circulating plant sterols with various markers of atherosclerosis and ASCVD events have demonstrated controversial results. Compelling evidence from recent genetic studies have also linked elevated plasma concentrations of circulating plant sterols with ASCVD presence, thus raising concerns about the safety of phytosterol supplementation. Thus, the aim of this review is to provide up-to-date data on the effect of plant sterols/stanols on lipid-modification and cardiovascular outcomes, as well as to discuss any safety issues and practical concerns.
Collapse
Affiliation(s)
- Fotios Barkas
- Department of Hygiene & Epidemiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Eirini Bathrellou
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Kallithea, Greece
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Kallithea, Greece
| | - Demosthenes Panagiotakos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Kallithea, Greece
| | - Evangelos Liberopoulos
- 1st Propaedeutic Department of Medicine, General Hospital of Atherns 'Laiko', School of Medicine, National and Kapodistrιan University of Athens, 11527 Athens, Greece
| | - Meropi D Kontogianni
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Kallithea, Greece
| |
Collapse
|
16
|
Teng MS, Yeh KH, Hsu LA, Chou HH, Er LK, Wu S, Ko YL. Differential Effects of ABCG5/G8 Gene Region Variants on Lipid Profile, Blood Pressure Status, and Gallstone Disease History in Taiwan. Genes (Basel) 2023; 14:genes14030754. [PMID: 36981027 PMCID: PMC10047937 DOI: 10.3390/genes14030754] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
ABCG5 and ABCG8 are two key adenosine triphosphate-binding cassette (ABC) proteins that regulate whole-body sterol trafficking. This study aimed to elucidate the association between ABCG5/G8 gene region variants and lipid profile, cardiometabolic traits, and gallstone disease history in Taiwan. A total of 1494 Taiwan Biobank participants with whole-genome sequencing data and 117,679 participants with Axiom Genome-Wide CHB Array data were enrolled for analysis. Using genotype-phenotype and stepwise linear regression analyses, we found independent associations of four Asian-specific ABCG5 variants, rs119480069, rs199984328, rs560839317, and rs748096191, with total, low-density lipoprotein (LDL), and non-high-density lipoprotein (HDL) cholesterol levels (all p ≤ 0.0002). Four other variants, which were in nearly complete linkage disequilibrium, exhibited genome-wide significant associations with gallstone disease history, and the ABCG8 rs11887534 variant showed a trend of superiority for gallstone disease history in a nested logistic regression model (p = 0.074). Through regional association analysis of various other cardiometabolic traits, two variants of the PLEKHH2, approximately 50 kb from the ABCG5/G8 region, exhibited significant associations with blood pressure status (p < 10-6). In conclusion, differential effects of ABCG5/G8 region variants were noted for lipid profile, blood pressure status, and gallstone disease history in Taiwan. These results indicate the crucial role of individualized assessment of ABCG5/G8 variants for different cardiometabolic phenotypes.
Collapse
Affiliation(s)
- Ming-Sheng Teng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Kuan-Hung Yeh
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Lung-An Hsu
- The First Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Hsin-Hua Chou
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Leay-Kiaw Er
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- The Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Semon Wu
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan
| | - Yu-Lin Ko
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
17
|
Effects of Biliary Phospholipids on Cholesterol Crystallization and Growth in Gallstone Formation. Adv Ther 2023; 40:743-768. [PMID: 36602656 DOI: 10.1007/s12325-022-02407-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
The prevalence of cholesterol gallstone disease is increasing, primarily due to the global epidemic of obesity associated with insulin resistance, and this trend leads to a considerable healthcare, financial, and social burden worldwide. Although phospholipids play an essential role in maintaining cholesterol solubility in bile through both mixed micelles and vesicles, little attention has been paid to the impact of biliary phospholipids on the pathogenesis of cholesterol gallstone formation. A reduction or deficiency of biliary phospholipids results in a distinctly abnormal metastable physical-chemical state of bile predisposing to supersaturation with cholesterol. Changes in biliary phospholipid concentrations influence cholesterol crystallization by yielding both liquid crystalline and "anhydrous" crystalline metastable intermediates, evolving into classical parallelogram-shaped cholesterol monohydrate crystals in supersaturated bile. As a result, five distinct crystallization pathways, A-E, have been defined, mainly based on the prime habits of liquid and solid crystals in the physiological or pathophysiological cholesterol saturation of gallbladder and hepatic bile. This review concisely summarizes the chemical structures and physical-chemical properties of biliary phospholipids and their physiological functions in bile formation and cholesterol solubility in bile, as well as comprehensively discusses the latest advances in the role of biliary phospholipids in cholesterol crystallization and growth in gallstone formation, largely based on the findings from clinical and animal studies and in vitro experiments. The insights gleaned from uncovering the cholelithogenic mechanisms are expected to form a fundamental framework for investigating the hitherto elusive events in the earliest stage of cholesterol nucleation and crystallization. This may help to identify better measures for early diagnosis and prevention in susceptible subjects and effective treatment of patients with gallstones.
Collapse
|
18
|
Ceglia S, Berthelette A, Howley K, Li Y, Mortzfeld B, Bhattarai SK, Yiew NKH, Xu Y, Brink R, Cyster JG, Hooper LV, Randolph GJ, Bucci V, Reboldi A. An epithelial cell-derived metabolite tunes immunoglobulin A secretion by gut-resident plasma cells. Nat Immunol 2023; 24:531-544. [PMID: 36658240 PMCID: PMC10243503 DOI: 10.1038/s41590-022-01413-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 12/14/2022] [Indexed: 01/21/2023]
Abstract
Immunoglobulin A (IgA) secretion by plasma cells, terminally differentiated B cells residing in the intestinal lamina propria, assures microbiome homeostasis and protects the host against enteric infections. Exposure to diet-derived and commensal-derived signals provides immune cells with organizing cues that instruct their effector function and dynamically shape intestinal immune responses at the mucosal barrier. Recent data have described metabolic and microbial inputs controlling T cell and innate lymphoid cell activation in the gut; however, whether IgA-secreting lamina propria plasma cells are tuned by local stimuli is completely unknown. Although antibody secretion is considered to be imprinted during B cell differentiation and therefore largely unaffected by environmental changes, a rapid modulation of IgA levels in response to intestinal fluctuations might be beneficial to the host. In the present study, we showed that dietary cholesterol absorption and commensal recognition by duodenal intestinal epithelial cells lead to the production of oxysterols, evolutionarily conserved lipids with immunomodulatory functions. Using conditional cholesterol 25-hydroxylase deleter mouse line we demonstrated that 7α,25-dihydroxycholesterol from epithelial cells is critical to restrain IgA secretion against commensal- and pathogen-derived antigens in the gut. Intestinal plasma cells sense oxysterols via the chemoattractant receptor GPR183 and couple their tissue positioning with IgA secretion. Our findings revealed a new mechanism linking dietary cholesterol and humoral immune responses centered around plasma cell localization for efficient mucosal protection.
Collapse
Affiliation(s)
- Simona Ceglia
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alyssa Berthelette
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kelsey Howley
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Yun Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benedikt Mortzfeld
- Department of Microbiology and Physiological systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shakti K Bhattarai
- Department of Microbiology and Physiological systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Nicole K H Yiew
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO, USA
| | - Ying Xu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Lora V Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO, USA
| | - Vanni Bucci
- Department of Microbiology and Physiological systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
19
|
He Y, Liu N, Ji Y, Tso P, Wu Z. Weaning Stress in Piglets Alters the Expression of Intestinal Proteins Involved in Fat Absorption. J Nutr 2022; 152:2387-2395. [PMID: 36774105 DOI: 10.1093/jn/nxac177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/06/2022] [Accepted: 08/09/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In vivo data on intestinal fat absorption in weanling piglets are scarce. OBJECTIVES This study aimed to investigate the effect of weaning stress on intestinal fat absorption. METHODS Eighteen 7-d-old sow-reared piglets (Duroc-Landrace-Yorkshire) were assigned to 3 groups (n = 6/group, 3 males and 3 females per group). Piglets were nursed by sows until 24 d of age (suckling piglets, S), or weaned at 21 d of age to a corn-soybean meal-based diet until 24 d (3 d postweaning, W3) or 28 d (7 d postweaning, W7) of age, respectively. Duodenum, jejunum, and ileum were collected to determine intestinal morphology and abundance of proteins related to fat absorption. RESULTS Compared with the S group, the W3 group had lower villus height (17-34%) and villus height to crypt depth ratio (13-53%), as well as 1-1.45 times greater crypt depth; these values were 1.18-1.31, 0.69-1.15, and 1.47-1.87 times greater in the W7 group than in the W3 group, respectively. Compared with the S group, weaning stress for both W3 and W7 groups reduced intestinal alkaline phosphatase activity (26-73%), serum lipids (26-54%), and abundances of proteins related to fatty acid transport [fatty acid transport protein 4 (FATP4) and intestinal fatty acid-binding protein (I-FABP)] and chylomicron assembly [microsomal triglyceride transfer protein (MTTP), apolipoprotein A-IV (APOA4), B (APOB), and A-I (APOA1)] in the duodenum and ileum (10-55%), as well as in the jejunum (25-85%). All these indexes did not differ between W3 and W7 groups. Compared with the S group, the W3 group had lower mRNA abundances of duodenal APOA4 and APOA1 (25-50%), as well as jejunal FATP4, IFABP, MTTP, APOA4, and APOA1 (35-50%); these values were 5-15% and 10-37% lower in the W7 group than in the W3 group, respectively. CONCLUSIONS Weaning stress in piglets attenuates the expression of intestinal proteins related to fatty acid transport (FATP4 and I-FABP) and chylomicron synthesis (APOA4).
Collapse
Affiliation(s)
- Yu He
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.
| |
Collapse
|
20
|
Huynh QS, Elangovan S, Holsinger RMD. Non-Pharmacological Therapeutic Options for the Treatment of Alzheimer's Disease. Int J Mol Sci 2022; 23:11037. [PMID: 36232336 PMCID: PMC9570337 DOI: 10.3390/ijms231911037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease is a growing global crisis in need of urgent diagnostic and therapeutic strategies. The current treatment strategy mostly involves immunotherapeutic medications that have had little success in halting disease progress. Hypotheses for pathogenesis and development of AD have been expanded to implicate both organ systems as well as cellular reactions. Non-pharmacologic interventions ranging from minimally to deeply invasive have attempted to address these diverse contributors to AD. In this review, we aim to delineate mechanisms underlying such interventions while attempting to provide explanatory links between the observed differences in disease states and postulated metabolic or structural mechanisms of change. The techniques discussed are not an exhaustive list of non-pharmacological interventions against AD but provide a foundation to facilitate a deeper understanding of the area of study.
Collapse
Affiliation(s)
- Quy-Susan Huynh
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shalini Elangovan
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
21
|
Current Options and Future Perspectives in the Treatment of Dyslipidemia. J Clin Med 2022; 11:jcm11164716. [PMID: 36012957 PMCID: PMC9410330 DOI: 10.3390/jcm11164716] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 12/22/2022] Open
Abstract
Low-density lipoprotein cholesterol (LDL-C) plays a crucial role in the development of atherosclerosis. Statin therapy is the standard treatment for lowering LDL-C in primary and secondary prevention. However, some patients do not reach optimal LDL-C target levels or do not tolerate statins, especially when taking high doses long-term. Combining statins with different therapeutic approaches and testing other new drugs is the future key to reducing the burden of cardiovascular disease (CVD). Recently, several new cholesterol-lowering drugs have been developed and approved; others are promising results, enriching the pharmacological armamentarium beyond statins. Triglycerides also play an important role in the development of CVD; new therapeutic approaches are also very promising for their treatment. Familial hypercholesterolemia (FH) can lead to CVD early in life. These patients respond poorly to conventional therapies. Recently, however, new and promising pharmacological strategies have become available. This narrative review provides an overview of the new drugs for the treatment of dyslipidemia, their current status, ongoing clinical or preclinical trials, and their prospects. We also discuss the new alternative therapies for the treatment of dyslipidemia and their relevance to practice.
Collapse
|
22
|
Xiao X, Luo Y, Peng D. Updated Understanding of the Crosstalk Between Glucose/Insulin and Cholesterol Metabolism. Front Cardiovasc Med 2022; 9:879355. [PMID: 35571202 PMCID: PMC9098828 DOI: 10.3389/fcvm.2022.879355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
Glucose and cholesterol engage in almost all human physiological activities. As the primary energy substance, glucose can be assimilated and converted into diverse essential substances, including cholesterol. Cholesterol is mainly derived from de novo biosynthesis and the intestinal absorption of diets. It is evidenced that glucose/insulin promotes cholesterol biosynthesis and uptake, which have been targeted by several drugs for lipid-lowering, e.g., bempedoic acid, statins, ezetimibe, and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. Inversely, these lipid-lowering drugs may also interfere with glucose metabolism. This review would briefly summarize the mechanisms of glucose/insulin-stimulated cholesterol biosynthesis and uptake, and discuss the effect and mechanisms of lipid-lowering drugs and genetic mutations on glucose homeostasis, aiming to help better understand the intricate relationship between glucose and cholesterol metabolism.
Collapse
|
23
|
Górniak A, Złocińska A, Trojan M, Pęcak A, Karolewicz B. Preformulation Studies of Ezetimibe-Simvastatin Solid Dispersions in the Development of Fixed-Dose Combinations. Pharmaceutics 2022; 14:pharmaceutics14050912. [PMID: 35631498 PMCID: PMC9147300 DOI: 10.3390/pharmaceutics14050912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Two active pharmaceutical ingredients (APIs) with limited solubility, simvastatin and ezetimibe, prepared as a drug-drug solid dispersion (SD) was evaluated for physicochemical, microstructural, and aqueous dissolution properties. The simvastatin-ezetimibe SD was prepared using the co-grinding method in a wide range of weight fractions and differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD) were used to perform the phase composition analysis. DSC studies confirmed that simvastatin and ezetimibe form a simple eutectic phase equilibrium diagram. Analysis of Fourier transform infrared spectroscopy (FTIR) studies excluded strong interactions between the APIs. Our investigations have revealed that all studied dispersions are characterized by substantially improved ezetimibe dissolution regardless of simvastatin content, and are best when the composition oscillates near the eutectic point. Data obtained in our studies provide an opportunity for the development of well-formulated, ezetimibe-simvastatin fixed-dose combinations (for hypercholesterolemia treatment) with reduced ezetimibe dosages based on its dissolution improvement.
Collapse
Affiliation(s)
- Agata Górniak
- Laboratory of Elemental Analysis and Structural Research, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.Z.); (M.T.); (A.P.)
- Correspondence: ; Tel.: +48-717840670
| | - Adrianna Złocińska
- Laboratory of Elemental Analysis and Structural Research, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.Z.); (M.T.); (A.P.)
| | - Mateusz Trojan
- Laboratory of Elemental Analysis and Structural Research, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.Z.); (M.T.); (A.P.)
| | - Adrianna Pęcak
- Laboratory of Elemental Analysis and Structural Research, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.Z.); (M.T.); (A.P.)
| | - Bożena Karolewicz
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
24
|
Miedes D, Makran M, Barberá R, Cilla A, Alegría A, Garcia-Llatas G. Elderly gastrointestinal conditions increase sterol bioaccessibility in a plant sterol-enriched beverage: adaptation of the INFOGEST method. Food Funct 2022; 13:4478-4485. [PMID: 35343977 DOI: 10.1039/d1fo04375g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Elderly people suffer from a higher cardiovascular risk. Thus, the fortification of foods with plant sterols (PSs), which have a cholesterol-lowering function, could be of great interest for this target group. To date, no studies have analyzed how the gastrointestinal conditions of the elderly affect PS bioaccessibility. Therefore, this study evaluated the impact of the adaptation of the gastric phase alone and in combination with the intestinal phase on sterol bioaccessibility. For this purpose, the standardized INFOGEST 2.0 method previously adapted for sterol bioaccessibility evaluation in healthy adults was applied to PS-enriched milk-based fruit beverages, examining changes in enzyme activity, incubation time, agitation and pH, based on elderly physiology. The results suggest that the specific gastrointestinal conditions of the elderly could increase absorption of PSs, since their bioaccessibility (%) in a PS-enriched milk-based fruit beverage was significantly increased compared with that in adults (14.95 ± 0.33 vs. 7.96 ± 0.26), also indicating that these conditions increase the bioaccessibility of the beverage's own cholesterol (61.25 ± 2.91 vs. 20.86 ± 2.79). These data support the recommendation of foods of this type for the elderly who can benefit from the increase in bioaccessibility of PSs to have an improved potential cholesterol lowering effect, thus decreasing their risk of cardiovascular disease. However, the performance of subsequent in vivo tests to confirm these results is necessary.
Collapse
Affiliation(s)
- Diego Miedes
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - Mussa Makran
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - Reyes Barberá
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - Guadalupe Garcia-Llatas
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
25
|
Genetic variation and intestinal cholesterol absorption in humans: A systematic review and a gene network analysis. Prog Lipid Res 2022; 86:101164. [PMID: 35390434 DOI: 10.1016/j.plipres.2022.101164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/18/2022] [Accepted: 03/31/2022] [Indexed: 11/21/2022]
Abstract
Intestinal cholesterol absorption varies widely between individuals, which may translate into differences in responsiveness to cholesterol-lowering drugs or diets. Therefore, understanding the importance of genetic variation on cholesterol absorption rates and the complex intestinal cholesterol network is important. Based on a systematic review, genetic variants in seven genes (ABCG5, ABCG8, ABO, APOE, MTTP, NPC1L1, and LDLR) were identified that were associated with intestinal cholesterol absorption. No clear associations were found for variants in APOA4, APOB, CETP, CYP7A1, HMGCR, SCARB1, SLCO1B1, and SREBF1. The seven genes were used to construct an intestinal cholesterol absorption network. Finally, a network with fifteen additional genes (APOA1, APOA4, APOB, APOC2, APOC3, CETP, HSPG2, LCAT, LDLRAP1, LIPC, LRP1, OLR1, P4HB, SAR1B, and SDC1) was generated. The constructed network shows that cholesterol absorption is complex. Further studies are needed to validate and improve this network, which may ultimately lead to a better understanding of the wide inter-individual variability in intestinal cholesterol absorption and the development of personalized interventions.
Collapse
|
26
|
Hazra R, Roy D. Monosaccharide induced temporal delay in cholesterol self-aggregation. J Biomol Struct Dyn 2022; 41:3205-3217. [PMID: 35254222 DOI: 10.1080/07391102.2022.2048076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Self-assembly of cholesterol (CHL) is infamous for its diverse deleterious effects on human health. Clinical research over several decades indicates that a diet rich in CHL typically leads to arterial plaques, cataracts and gall stones among others. Carbohydrates like the β-glucans efficiently lower serum CHL, possibly by inhibiting CHL absorption in the digestive tract. Using molecular dynamics simulations, we explore how β-D-glucose (BGLC), the building block of β-glucans, interferes with CHL aggregation. BGLC slows down CHL diffusion and disrupts the formation of the robust hydrophobic CHL assembly. Estimation of the translational entropy of the CHL molecules shows the extent of retardation induced by BGLC. Coordination numbers obtained from the adjacency matrix and collective variable analysis of the packing of the CHL molecules in presence of BGLC show the time evolution of CHL aggregation. In presence of BGLC, small isolated CHL islands form, consolidate and disintegrate over time as compared to the blank CHL system. The predominance of smaller CHL clusters is an effect of the significant retardation of the translational motion of CHL molecules induced by BGLC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rituparna Hazra
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Durba Roy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| |
Collapse
|
27
|
Human Placental Intracellular Cholesterol Transport: A Focus on Lysosomal and Mitochondrial Dysfunction and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11030500. [PMID: 35326150 PMCID: PMC8944475 DOI: 10.3390/antiox11030500] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
The placenta participates in cholesterol biosynthesis and metabolism and regulates exchange between the maternal and fetal compartments. The fetus has high cholesterol requirements, and it is taken up and synthesized at elevated rates during pregnancy. In placental cells, the major source of cholesterol is the internalization of lipoprotein particles from maternal circulation by mechanisms that are not fully understood. As in hepatocytes, syncytiotrophoblast uptake of lipoprotein cholesterol involves lipoprotein receptors such as low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SR-BI). Efflux outside the cells requires proteins such as the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. However, mechanisms associated with intracellular traffic of cholesterol in syncytiotrophoblasts are mostly unknown. In hepatocytes, uptaken cholesterol is transported to acidic late endosomes (LE) and lysosomes (LY). Proteins such as Niemann–Pick type C 1 (NPC1), NPC2, and StAR related lipid transfer domain containing 3 (STARD3) are required for cholesterol exit from the LE/LY. These proteins transfer cholesterol from the lumen of the LE/LY into the LE/LY-limiting membrane and then export it to the endoplasmic reticulum, mitochondria, or plasma membrane. Although the production, metabolism, and transport of cholesterol in placental cells are well explored, there is little information on the role of proteins related to intracellular cholesterol traffic in placental cells during physiological or pathological pregnancies. Such studies would be relevant for understanding fetal and placental cholesterol management. Oxidative stress, induced by generating excess reactive oxygen species (ROS), plays a critical role in regulating various cellular and biological functions and has emerged as a critical common mechanism after lysosomal and mitochondrial dysfunction. This review discusses the role of cholesterol, lysosomal and mitochondrial dysfunction, and ROS in the development and progression of hypercholesterolemic pregnancies.
Collapse
|
28
|
She J, Gu T, Pang X, Liu Y, Tang L, Zhou X. Natural Products Targeting Liver X Receptors or Farnesoid X Receptor. Front Pharmacol 2022; 12:772435. [PMID: 35069197 PMCID: PMC8766425 DOI: 10.3389/fphar.2021.772435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Nuclear receptors (NRs) are a superfamily of transcription factors induced by ligands and also function as integrators of hormonal and nutritional signals. Among NRs, the liver X receptors (LXRs) and farnesoid X receptor (FXR) have been of significance as targets for the treatment of metabolic syndrome-related diseases. In recent years, natural products targeting LXRs and FXR have received remarkable interests as a valuable source of novel ligands encompassing diverse chemical structures and bioactive properties. This review aims to survey natural products, originating from terrestrial plants and microorganisms, marine organisms, and marine-derived microorganisms, which could influence LXRs and FXR. In the recent two decades (2000-2020), 261 natural products were discovered from natural resources such as LXRs/FXR modulators, 109 agonists and 38 antagonists targeting LXRs, and 72 agonists and 55 antagonists targeting FXR. The docking evaluation of desired natural products targeted LXRs/FXR is finally discussed. This comprehensive overview will provide a reference for future study of novel LXRs and FXR agonists and antagonists to target human diseases, and attract an increasing number of professional scholars majoring in pharmacy and biology with more in-depth discussion.
Collapse
Affiliation(s)
- Jianglian She
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tanwei Gu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Lan Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
29
|
Yu M, Tang J, Huang Y, Guo C, Du P, Li N, Quan Q. HOXA10 Regulates the Synthesis of Cholesterol in Endometrial Stromal Cells. Front Endocrinol (Lausanne) 2022; 13:852671. [PMID: 35546998 PMCID: PMC9084188 DOI: 10.3389/fendo.2022.852671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The expression of homeobox A10 (HOXA10) in endometrial stromal cells is regulated by steroid hormones, especially by estrogen. As a precursor molecule of estrogen, abnormal cholesterol metabolism is significantly positively correlated with endometriosis. The purpose of this study was to explore the regulation of HOXA10 on cholesterol synthesis in endometrial stromal cells. METHOD mRNA expression data of eutopic endometrial stromal cell (ESC) and ovarian endometriotic cysts stromal cell (OESC) were download from the Gene Expression Omnibus (GEO) databases. Overexpression and silence of HOXA10 were conducted in cultured ESC and subjected to mRNA sequencing. The differentially expressed genes (DEGs) were selected by analyzing the sequencing data. Weighted gene co-expression network analysis (WGCNA) was applied to identify the key genes associated with HOXA10. The methylation rate of HOXA10 CpGs and the correlation between HOXA10 expression and the methylation in eutopic endometrial tissue (EU) and ovarian cyst (OC) were analyzed. RESULTS HOXA10 in ESC was significantly higher expressed than that in OESC. Six key genes (HMGCR, MSMO1, ACAT2, HMGCS1, EBP, and SQLE), which were regulated by HOXA10, were identified from the salmon4 module by WGCNA. All these key genes were enriched in cholesterol synthesis. Moreover, the expression of HOXA10 was negatively related to its CpGs methylation rate. CONCLUSION In this study, six key genes that were regulated by HOXA10 were selected, and all of them were enriched in cholesterol synthesis. This finding provided a new insight into the metabolic mechanism of cholesterol in ESC. It also provided a potential treatment strategy for cholesterol metabolism maladjustment in patients with ovarian endometriosis.
Collapse
Affiliation(s)
- Meixing Yu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jia Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Yanqing Huang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chenbing Guo
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Peng Du
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ning Li
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qingli Quan
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
- *Correspondence: Qingli Quan,
| |
Collapse
|
30
|
Yu WQ, Yin F, Shen N, Lin P, Xia B, Li YJ, Guo SD. Polysaccharide CM1 from Cordyceps militaris hinders adipocyte differentiation and alleviates hyperlipidemia in LDLR (+/-) hamsters. Lipids Health Dis 2021; 20:178. [PMID: 34895241 PMCID: PMC8667404 DOI: 10.1186/s12944-021-01606-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background Cordyceps militaris is cultured widely as an edible mushroom and accumulating evidence in mice have demonstrated that the polysaccharides of Cordyceps species have lipid-lowering effects. However, lipid metabolism in mice is significantly different from that in humans, making a full understanding of the mechanisms at play critical. Methods After 5 months, the hamsters were weighed and sampled under anesthesia after overnight fasting. The lipid-lowering effect and mechanisms of the polysaccharide CM1 was investigated by cellular and molecular technologies. Furthermore, the effect of the polysaccharide CM1 (100 μg/mL) on inhibiting adipocyte differentiation was investigated in vitro. Results CM1, a polysaccharide from C. militaris, significantly decreased plasma total cholesterol, triglyceride and epididymal fat index in LDLR(+/−) hamsters, which have a human-like lipid profile. After 5 months’ administration, CM1 decreased the plasma level of apolipoprotein B48, modulated the expression of key genes and proteins in liver, small intestine, and epididymal fat. CM1 also inhibited preadipocyte differentiation in 3T3-L1 cells by downregulating the key genes involved in lipid droplet formation. Conclusions The polysaccharide CM1 lowers lipid and adipocyte differentiation by several pathways, and it has potential applications for hyperlipidemia prevention. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01606-6.
Collapse
Affiliation(s)
- Wen-Qian Yu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China
| | - Fan Yin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China
| | - Nuo Shen
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China
| | - Ping Lin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China
| | - Bin Xia
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China
| | - Yan-Jie Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China.
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China.
| |
Collapse
|
31
|
Sun P, Zhao L, Zhang N, Zhou J, Zhang L, Wu W, Ji B, Zhou F. Bioactivity of Dietary Polyphenols: The Role in LDL-C Lowering. Foods 2021; 10:2666. [PMID: 34828946 PMCID: PMC8617782 DOI: 10.3390/foods10112666] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases are the leading causes of the death around the world. An elevation of the low-density lipoprotein cholesterol (LDL-C) level is one of the most important risk factors for cardiovascular diseases. To achieve optimal plasma LDL-C levels, clinal therapies were investigated which targeted different metabolism pathways. However, some therapies also caused various adverse effects. Thus, there is a need for new treatment options and/or combination therapies to inhibit the LDL-C level. Dietary polyphenols have received much attention in the prevention of cardiovascular diseases due to their potential LDL-C lowering effects. However, the effectiveness and potential mechanisms of polyphenols in lowering LDL-C is not comprehensively summarized. This review focused on dietary polyphenols that could reduce LDL-C and their mechanisms of action. This review also discussed the limitations and suggestions regarding previous studies.
Collapse
Affiliation(s)
- Peng Sun
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Liebing Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Wei Wu
- College of Engineering, China Agricultural University, Beijing 100083, China;
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| |
Collapse
|
32
|
Liu M, Shen L, Yang Q, Nauli AM, Bingamon M, Wang DQH, Ulrich-Lai YM, Tso P. Sexual dimorphism in intestinal absorption and lymphatic transport of dietary lipids. J Physiol 2021; 599:5015-5030. [PMID: 34648185 PMCID: PMC8595769 DOI: 10.1113/jp281621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Although the basic process of intestinal lipid absorption and transport is understood, many critical aspects remain unclear. One question in particular is whether intestinal lipid absorption and transport differ between the sexes. Using a well-established lymph fistula model, we found that intact female mice exhibited lower lymphatic output of triacylglycerol (TAG) than male mice. Further analysis revealed that the female mice segregated into two groups: the high group having similar lymphatic TAG transport to the males, and the low group having significantly less lymphatic output, implying the impact of cyclical variation of ovarian hormonal levels. These led us to examine whether oestradiol (E2) and progesterone (P) affect intestinal absorption and lymphatic transport of dietary lipids. In ovariectomized (OVX) rats, E2 treatment significantly reduced [3 H]-TAG lymphatic output through reducing TAG transport; and P treatment decreased [14 C]cholesterol (Chol) lymphatic output by inhibiting Chol absorption, compared to vehicle treatment. Gene expression data suggested that E2 enhances vascular endothelial growth factor-A (VEGF-A) signalling to reduce the permeability of lacteals, leading to reduced CM transport through the lymphatic system. Interestingly, E2 treatment also increased lymphatic output of apolipoprotein A-I (apoA-I), but not apoB-48 and apoA-IV, in the OVX rats. Collectively, these data suggested that ovarian hormone-induced reductions of intestinal lipid absorption and lymphatic transport, as well as increased lymphatic output of apoA-I, may contribute to a beneficial protection from atherosclerosis in females. KEY POINTS: Significant differences in intestinal lipid absorption and lymphatic transport were found between female and male animals. Oestrogen treatment significantly reduced [3 H]triacylglycerol (TAG) lymphatic output through suppressing TAG transport in ovariectomized (OVX) rats, and this effect is associated with enhanced vegfa gene expression in the intestine. Progesterone treatment significantly decreased the output of [14 C]cholesterol in lymph by inhibiting cholesterol absorption in the OVX rats. Oestrogen treatment also increased lymphatic output of apolipoprotein A-I (apoA-I) in the OVX rats, which may contribute to the reduced risk of atherosclerosis in females.
Collapse
Affiliation(s)
- Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Ling Shen
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Qing Yang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Andromeda M. Nauli
- Department of Pharmaceutical Sciences, College of Pharmacy, Marshall B. Ketchum University, Fullerton, CA 92831, USA
| | - Madison Bingamon
- Northern Kentucky University, Louie B Nunn Dr, Highland Heights, KY 41099, USA
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yvonne M. Ulrich-Lai
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| |
Collapse
|
33
|
Škara L, Huđek Turković A, Pezelj I, Vrtarić A, Sinčić N, Krušlin B, Ulamec M. Prostate Cancer-Focus on Cholesterol. Cancers (Basel) 2021; 13:4696. [PMID: 34572923 PMCID: PMC8469848 DOI: 10.3390/cancers13184696] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PC) is the most common malignancy in men. Common characteristic involved in PC pathogenesis are disturbed lipid metabolism and abnormal cholesterol accumulation. Cholesterol can be further utilized for membrane or hormone synthesis while cholesterol biosynthesis intermediates are important for oncogene membrane anchoring, nucleotide synthesis and mitochondrial electron transport. Since cholesterol and its biosynthesis intermediates influence numerous cellular processes, in this review we have described cholesterol homeostasis in a normal cell. Additionally, we have illustrated how commonly deregulated signaling pathways in PC (PI3K/AKT/MTOR, MAPK, AR and p53) are linked with cholesterol homeostasis regulation.
Collapse
Affiliation(s)
- Lucija Škara
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Group for Research on Epigenetic Biomarkers (Epimark), School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ana Huđek Turković
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ivan Pezelj
- Department of Urology, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Alen Vrtarić
- Department of Clinical Chemistry, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Nino Sinčić
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Group for Research on Epigenetic Biomarkers (Epimark), School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Božo Krušlin
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Monika Ulamec
- Group for Research on Epigenetic Biomarkers (Epimark), School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
34
|
Rutin and Quercetin Decrease Cholesterol in HepG2 Cells but Not Plasma Cholesterol in Hamsters by Oral Administration. Molecules 2021; 26:molecules26123766. [PMID: 34205604 PMCID: PMC8234066 DOI: 10.3390/molecules26123766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/18/2022] Open
Abstract
Rutin (R) and quercetin (Q) are two widespread dietary flavonoids. Previous studies regarding the plasma cholesterol-lowering activity of R and Q generated inconsistent results. The present study was therefore carried out to investigate the effects of R and Q on cholesterol metabolism in both HepG2 cells and hypercholesterolemia hamsters. Results from HepG2 cell experiments demonstrate that both R and Q decreased cholesterol at doses of 5 and 10 µM. R and Q up-regulated both the mRNA and protein expression of sterol regulatory element binding protein 2 (SREBP2), low-density lipoprotein receptor (LDLR), and liver X receptor alpha (LXRα). The immunofluorescence study revealed that R and Q increased the LDLR expression, while only Q improved LDL-C uptake in HepG2 cells. Results from hypercholesterolemia hamsters fed diets containing R (5.5 g/kg diet) and Q (2.5 g/kg diet) for 8 weeks demonstrate that both R and Q had no effect on plasma total cholesterol. In the liver, only Q reduced cholesterol significantly. The discrepancy between the in vitro and in vivo studies was probably due to a poor bioavailability of flavonoids in the intestine. It was therefore concluded that R and Q were effective in reducing cholesterol in HepG2 cells in vitro, whereas in vivo, the oral administration of the two flavonoids had little effect on plasma cholesterol in hamsters.
Collapse
|
35
|
Recent Molecular Mechanisms and Beneficial Effects of Phytochemicals and Plant-Based Whole Foods in Reducing LDL-C and Preventing Cardiovascular Disease. Antioxidants (Basel) 2021; 10:antiox10050784. [PMID: 34063371 PMCID: PMC8157003 DOI: 10.3390/antiox10050784] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal lipid metabolism leads to the development of hyperlipidemia, a common cause of multiple chronic disorders, including cardiovascular disease (CVD), obesity, diabetes, and cerebrovascular disease. Low-density lipoprotein cholesterol (LDL-C) currently remains the primary target for treatment of hyperlipidemia. Despite the advancement of treatment and prevention of hyperlipidemia, medications used to manage hyperlipidemia are limited to allopathic drugs, which present certain limitations and adverse effects. Increasing evidence indicates that utilization of phytochemicals and plant-based whole foods is an alternative and promising strategy to prevent hyperlipidemia and CVD. The current review focuses on phytochemicals and their pharmacological mode of actions for the regulation of LDL-C and prevention of CVD. The important molecular mechanisms illustrated in detail in this review include elevation of reverse cholesterol transport, inhibition of intestinal cholesterol absorption, acceleration of cholesterol excretion in the liver, and reduction of cholesterol synthesis. Moreover, the beneficial effects of plant-based whole foods, such as fresh fruits, vegetables, dried nuts, flax seeds, whole grains, peas, beans, vegan diets, and dietary fibers in LDL-C reduction and cardiovascular health are summarized. This review concludes that phytochemicals and plant-based whole foods can reduce LDL-C levels and lower the risk for CVD.
Collapse
|
36
|
Ticho AL, Calzadilla N, Malhotra P, Lee H, Anbazhagan AN, Saksena S, Dudeja PK, Lee D, Gill RK, Alrefai WA. NPC1L1-dependent transport of 27-alkyne cholesterol in intestinal epithelial cells. Am J Physiol Cell Physiol 2021; 320:C916-C925. [PMID: 33760662 PMCID: PMC8163569 DOI: 10.1152/ajpcell.00062.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
Niemann-Pick C1 Like-1 (NPC1L1) mediates the uptake of micellar cholesterol by intestinal epithelial cells and is the molecular target of the cholesterol-lowering drug ezetimibe (EZE). The detailed mechanisms responsible for intracellular shuttling of micellar cholesterol are not fully understood due to the lack of a suitable NPC1L1 substrate that can be traced by fluorescence imaging and biochemical methods. 27-Alkyne cholesterol has been previously shown to serve as a substrate for different cellular processes similar to native cholesterol. However, it is not known whether alkyne cholesterol is absorbed via an NPC1L1-dependent pathway. We aimed to determine whether alkyne cholesterol is a substrate for NPC1L1 in intestinal cells. Human intestinal epithelial Caco2 cells were incubated with micelles containing alkyne cholesterol in the presence or absence of EZE. Small intestinal closed loops in C57BL/6J mice were injected with micelles containing alkyne cholesterol with or without EZE. Alkyne cholesterol esterification in Caco2 cells was significantly inhibited by EZE and by inhibitor of clathrin-mediated endocytosis Pitstop 2. The esterification was similarly reduced by inhibitors of the acyl-CoA cholesterol acyltransferase (ACAT). Alkyne cholesterol efficiently labeled the apical membrane of Caco2 cells and the amount retained on the membrane was significantly increased by EZE as judged by accessibility to exogenous cholesterol oxidase. In mouse small intestine, the presence of EZE reduced total alkyne cholesterol uptake by ∼75%. These data show that alkyne cholesterol acts as a substrate for NPC1L1 and may serve as a nonradioactive tracer to measure cholesterol absorption in both in vitro and in vivo models.
Collapse
Affiliation(s)
- Alexander L Ticho
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Nathan Calzadilla
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Department of Bioengineering, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Hyunjin Lee
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois
| | | | - Seema Saksena
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- The Jesse Brown VA Medical Center, Chicago, Illinois
| | - Pradeep K Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- The Jesse Brown VA Medical Center, Chicago, Illinois
| | - Daesung Lee
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Ravinder K Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Waddah A Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- The Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
37
|
Polyphenol-Rich Black Elderberry Extract Stimulates Transintestinal Cholesterol Excretion. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypercholesterolemia is the primary risk factor for cardiovascular disease (CVD). Recent studies reported that the stimulation of transintestinal cholesterol excretion (TICE), a nonbiliary cholesterol excretion, can be a strategy for preventing CVD. Black elderberry (Sambucus nigra) has been reported to reduce the risk of CVD via its antioxidant, anti-inflammatory, and hypocholesterolemic effects. However, little is known about the role of black elderberry in intestinal cholesterol metabolism despite its well-known effects on cholesterol homeostasis regulation. To investigate the effects of polyphenol-rich black elderberry extract (BEE) on intestinal cholesterol metabolism, we measured the expression of genes involved in cholesterol biosynthesis and flux in Caco-2 cells. BEE significantly decreased the messenger RNA (mRNA) and protein levels of genes for cholesterol absorption, such as Niemann–Pick C1 Like 1 and ATP-binding cassette transporter A1 (ABCA1). In contrast, there was marked induction of low-density lipoprotein receptor, ABCG5/G8, and ABCB1 in BEE-treated Caco-2 cells. Furthermore, BEE decreased the expression of genes for lipogenesis and altered the mRNA levels of sirtuins. All of the genes altered by BEE were in the direction of flux cholesterol from the basolateral to apical side of enterocytes, indicating stimulation of TICE. These results support the hypocholesterolemic effects of BEE for the prevention of CVD.
Collapse
|
38
|
Caponio GR, Wang DQH, Di Ciaula A, De Angelis M, Portincasa P. Regulation of Cholesterol Metabolism by Bioactive Components of Soy Proteins: Novel Translational Evidence. Int J Mol Sci 2020; 22:ijms22010227. [PMID: 33379362 PMCID: PMC7794713 DOI: 10.3390/ijms22010227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Hypercholesterolemia represents one key pathophysiological factor predisposing to increasing risk of developing cardiovascular disease worldwide. Controlling plasma cholesterol levels and other metabolic risk factors is of paramount importance to prevent the overall burden of disease emerging from cardiovascular-disease-related morbidity and mortality. Dietary cholesterol undergoes micellization and absorption in the small intestine, transport via blood, and uptake in the liver. An important amount of cholesterol originates from hepatic synthesis, and is secreted by the liver into bile together with bile acids (BA) and phospholipids, with all forming micelles and vesicles. In clinical medicine, dietary recommendations play a key role together with pharmacological interventions to counteract the adverse effects of chronic hypercholesterolemia. Bioactive compounds may also be part of initial dietary plans. Specifically, soybean contains proteins and peptides with biological activity on plasma cholesterol levels and this property makes soy proteins a functional food. Here, we discuss how soy proteins modulate lipid metabolism and reduce plasma cholesterol concentrations in humans, with potential outcomes in improving metabolic- and dyslipidemia-related conditions.
Collapse
Affiliation(s)
- Giusy Rita Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy;
- Division of Internal Medicine Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Agostino Di Ciaula
- Division of Internal Medicine Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy;
- Correspondence: (M.D.A.); (P.P.); Tel.: +39-080-5442949 (M.D.A.); +39-080-5478893 (P.P.)
| | - Piero Portincasa
- Division of Internal Medicine Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy;
- Correspondence: (M.D.A.); (P.P.); Tel.: +39-080-5442949 (M.D.A.); +39-080-5478893 (P.P.)
| |
Collapse
|
39
|
Wang HH, Portincasa P, Liu M, Tso P, Wang DQH. An Update on the Lithogenic Mechanisms of Cholecystokinin a Receptor (CCKAR), an Important Gallstone Gene for Lith13. Genes (Basel) 2020; 11:E1438. [PMID: 33260332 PMCID: PMC7761502 DOI: 10.3390/genes11121438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/15/2022] Open
Abstract
The cholecystokinin A receptor (CCKAR) is expressed predominantly in the gallbladder and small intestine in the digestive system, where it is responsible for CCK's regulation of gallbladder and small intestinal motility. The effect of CCKAR on small intestinal transit is a physiological response for regulating intestinal cholesterol absorption. The Cckar gene has been identified to be an important gallstone gene, Lith13, in inbred mice by a powerful quantitative trait locus analysis. Knockout of the Cckar gene in mice enhances cholesterol cholelithogenesis by impairing gallbladder contraction and emptying, promoting cholesterol crystallization and crystal growth, and increasing intestinal cholesterol absorption. Clinical and epidemiological studies have demonstrated that several variants in the CCKAR gene are associated with increased prevalence of cholesterol cholelithiasis in humans. Dysfunctional gallbladder emptying in response to exogenously administered CCK-8 is often found in patients with cholesterol gallstones, and patients with pigment gallstones display an intermediate degree of gallbladder motility defect. Gallbladder hypomotility is also revealed in some subjects without gallstones under several conditions: pregnancy, total parenteral nutrition, celiac disease, oral contraceptives and conjugated estrogens, obesity, diabetes, the metabolic syndrome, and administration of CCKAR antagonists. The physical-chemical, genetic, and molecular studies of Lith13 show that dysfunctional CCKAR enhances susceptibility to cholesterol gallstones through two primary mechanisms: impaired gallbladder emptying is a key risk factor for the development of gallbladder hypomotility, biliary sludge (the precursor of gallstones), and microlithiasis, as well as delayed small intestinal transit augments cholesterol absorption as a major source for the hepatic hypersecretion of biliary cholesterol and for the accumulation of excess cholesterol in the gallbladder wall that further worsens impaired gallbladder motor function. If these two defects in the gallbladder and small intestine could be prevented by the potent CCKAR agonists, the risk of developing cholesterol gallstones could be dramatically reduced.
Collapse
Affiliation(s)
- Helen H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica “A. Murri”, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy;
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (M.L.); (P.T.)
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (M.L.); (P.T.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
40
|
Feltrin S, Ravera F, Traversone N, Ferrando L, Bedognetti D, Ballestrero A, Zoppoli G. Sterol synthesis pathway inhibition as a target for cancer treatment. Cancer Lett 2020; 493:19-30. [DOI: 10.1016/j.canlet.2020.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022]
|
41
|
Desmarchelier C, Wolff E, Defoort C, Nowicki M, Morange P, Alessi M, Valéro R, Nicolay A, Lairon D, Borel P. A Combination of Single Nucleotide Polymorphisms is Associated with the Interindividual Variability of Cholesterol Bioavailability in Healthy Adult Males. Mol Nutr Food Res 2020; 64:e2000480. [DOI: 10.1002/mnfr.202000480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/04/2020] [Indexed: 01/05/2023]
Affiliation(s)
| | - Estelle Wolff
- Aix‐Marseille University, INRAE, INSERM, C2VN 13005 Marseille France
| | - Catherine Defoort
- Aix‐Marseille University, INRAE, INSERM, C2VN 13005 Marseille France
| | - Marion Nowicki
- Aix‐Marseille University, INRAE, INSERM, C2VN 13005 Marseille France
| | | | | | - René Valéro
- Aix‐Marseille University, INRAE, INSERM, C2VN 13005 Marseille France
- APHM, CHU Conception Department of Nutrition Metabolic Diseases and Endocrinology 13005 Marseille France
| | - Alain Nicolay
- Aix‐Marseille University, INRAE, INSERM, C2VN 13005 Marseille France
| | - Denis Lairon
- Aix‐Marseille University, INRAE, INSERM, C2VN 13005 Marseille France
| | - Patrick Borel
- Aix‐Marseille University, INRAE, INSERM, C2VN 13005 Marseille France
| |
Collapse
|
42
|
Malhotra P, Gill RK, Saksena S, Alrefai WA. Disturbances in Cholesterol Homeostasis and Non-alcoholic Fatty Liver Diseases. Front Med (Lausanne) 2020; 7:467. [PMID: 32984364 PMCID: PMC7492531 DOI: 10.3389/fmed.2020.00467] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health problem associated with obesity and other features of the metabolic syndrome including insulin resistance and dyslipidemia. The accumulation of lipids in hepatocytes causes liver damage and triggers inflammation, fibrosis, and cirrhosis. Beside fatty acids and triglycerides, evidence showed an increased accumulation of free cholesterol in the liver with subsequent toxic effects contributing to liver damage. The maintenance of cholesterol homeostasis in the body requires a balance between several pathways responsible for cholesterol synthesis, transport and conversion into bile acids. Intestinal absorption is also one of the major determinants of cholesterol homeostasis. The nature of changes in cholesterol homeostasis associated with NAFLD has been a subject of extensive investigations. In this article, we will attempt to provide a brief overview of the current knowledge about the disturbances in cholesterol metabolism associated with NAFLD and discuss how certain molecular targets of these pathways could be exploited for the treatment of this multifactorial disease.
Collapse
Affiliation(s)
- Pooja Malhotra
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ravinder K Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.,Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Waddah A Alrefai
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.,Jesse Brown VA Medical Center, Chicago, IL, United States
| |
Collapse
|
43
|
Tavares TB, Santos IB, de Bem GF, Ognibene DT, da Rocha APM, de Moura RS, Resende ADC, Daleprane JB, da Costa CA. Therapeutic effects of açaí seed extract on hepatic steatosis in high-fat diet-induced obesity in male mice: a comparative effect with rosuvastatin. J Pharm Pharmacol 2020; 72:1921-1932. [PMID: 32856322 DOI: 10.1111/jphp.13356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Obesity is considered a risk factor for the development of non-alcoholic fatty liver disease (NAFLD). The hydroalcoholic extract obtained from the açai seed (ASE), rich in proanthocyanidins, has been shown a potential body weight regulator with antioxidant properties. This study aimed to investigate the therapeutic effect of ASE in obesity-associated NAFLD and compare it with Rosuvastatin. METHODS Male C57BL/6 mice received a high-fat diet or standard diet for 12 weeks. The treatments with ASE (300 mg/kg per day) or rosuvastatin (20 mg/kg per day) began in the eighth week until the 12th week. KEY FINDINGS Our data show that the treatments with ASE and rosuvastatin reduced body weight and hyperglycaemia, improved lipid profile and attenuated hepatic steatosis in HFD mice. ASE and Rosuvastatin reduced HMGCoA-Reductase and SREBP-1C and increased ABGC8 and pAMPK expressions in the liver. Additionally, ASE, but not Rosuvastatin, reduced NPC1L1 and increased ABCG5 and PPAR-α expressions. ASE and rosuvastatin increased SIRT-1 expression and antioxidant defence, although only ASE was able to decrease the oxidative damage in hepatic tissue. CONCLUSIONS The therapeutic effect of ASE was similar to that of rosuvastatin in reducing dyslipidemia and hepatic steatosis but was better in reducing oxidative damage and hyperglycaemia.
Collapse
Affiliation(s)
- Thamires Barros Tavares
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Izabelle Barcellos Santos
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Graziele Freitas de Bem
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Dayane Teixeira Ognibene
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Roberto Soares de Moura
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Angela de Castro Resende
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Cristiane Aguiar da Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Bleve A, Durante B, Sica A, Consonni FM. Lipid Metabolism and Cancer Immunotherapy: Immunosuppressive Myeloid Cells at the Crossroad. Int J Mol Sci 2020; 21:ijms21165845. [PMID: 32823961 PMCID: PMC7461616 DOI: 10.3390/ijms21165845] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer progression generates a chronic inflammatory state that dramatically influences hematopoiesis, originating different subsets of immune cells that can exert pro- or anti-tumor roles. Commitment towards one of these opposing phenotypes is driven by inflammatory and metabolic stimuli derived from the tumor-microenvironment (TME). Current immunotherapy protocols are based on the reprogramming of both specific and innate immune responses, in order to boost the intrinsic anti-tumoral activity of both compartments. Growing pre-clinical and clinical evidence highlights the key role of metabolism as a major influence on both immune and clinical responses of cancer patients. Indeed, nutrient competition (i.e., amino acids, glucose, fatty acids) between proliferating cancer cells and immune cells, together with inflammatory mediators, drastically affect the functionality of innate and adaptive immune cells, as well as their functional cross-talk. This review discusses new advances on the complex interplay between cancer-related inflammation, myeloid cell differentiation and lipid metabolism, highlighting the therapeutic potential of metabolic interventions as modulators of anticancer immune responses and catalysts of anticancer immunotherapy.
Collapse
Affiliation(s)
- Augusto Bleve
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Largo Donegani, 2-28100 Novara, Italy; (A.B.); (B.D.); (F.M.C.)
| | - Barbara Durante
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Largo Donegani, 2-28100 Novara, Italy; (A.B.); (B.D.); (F.M.C.)
| | - Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Largo Donegani, 2-28100 Novara, Italy; (A.B.); (B.D.); (F.M.C.)
- Humanitas Clinical and Research Center–IRCCS–, via Manzoni 56, Rozzano, 20089 Milan, Italy
- Correspondence: ; Tel.: +39-(0)-321-375881; Fax: +39-(0)-321-375821
| | - Francesca Maria Consonni
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Largo Donegani, 2-28100 Novara, Italy; (A.B.); (B.D.); (F.M.C.)
| |
Collapse
|
45
|
Xia B, Lin P, Ji Y, Yin J, Wang J, Yang X, Li T, Yang Z, Li F, Guo S. Ezetimibe promotes CYP7A1 and modulates PPARs as a compensatory mechanism in LDL receptor-deficient hamsters. Lipids Health Dis 2020; 19:24. [PMID: 32035489 PMCID: PMC7007651 DOI: 10.1186/s12944-020-1202-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022] Open
Abstract
Background The LDL-C lowering effect of ezetimibe has been attributed primarily to increased catabolism of LDL-C via up-regulation of LDL receptor (LDLR) and decreased cholesterol absorption. Recently, ezetimibe has been demonstrated to have reverse cholesterol transport (RCT) promoting effects in mice, hamsters and humans. However, the underlying mechanisms are still not clear. The aim of this study is to investigate whether ezetimibe improves RCT-related protein expression in LDLR−/− hamsters. Methods A high-fat diet was used to induce a human-like hyperlipidemia in LDLR−/− hamsters. Lipid profiles were assayed by commercially available kits, and the effects of ezetimibe on lipid metabolism-related protein expression were carried out via western blot. Results Our data demonstrated that ezetimibe administration significantly reduced plasma total cholesterol (~ 51.6% reduction, P < 0.01) and triglyceride (from ~ 884.1 mg/dL to ~ 277.3 mg/dL) levels in LDLR−/− hamsters fed a high-fat diet. Ezetimibe administration (25 mg/kg/d) significantly promoted the protein expression of cholesterol 7 alpha-hydroxylase A1 (CYP7A1), LXRβ and peroxisome proliferator-activated receptor (PPAR) γ; and down-regulated the protein expression of PPARα and PPARβ. However, it showed no significant effect on sterol regulatory element-binding protein (SREBP)-1c, SREBP-2, proprotein convertase subtilisin/kexin type 9 (PCSK9), Niemann-Pick C1-like 1 (NPC1L1), and ATP-biding cassette (ABC) G5/G8. Conclusion Ezetimibe may accelerate the transformation from cholesterol to bile acid via promoting CYP7A1 and thereby enhance RCT. As a compensatory mechanism of TG lowering, ezetimibe promoted the protein expression of PPARγ and decreased PPARα and β. These results are helpful in explaining the lipid-lowering effects of ezetimibe and the potential compensatory mechanisms.
Collapse
Affiliation(s)
- Bin Xia
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China
| | - Ping Lin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China
| | - Yubin Ji
- College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Jiayu Yin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China.,College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Jin Wang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China
| | - Xiaoqian Yang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China.,College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Ting Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China.,College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Zixun Yang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China.,College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Fahui Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China.
| | - Shoudong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China. .,College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China.
| |
Collapse
|
46
|
Wang HH, Liu M, Portincasa P, Wang DQH. Recent Advances in the Critical Role of the Sterol Efflux Transporters ABCG5/G8 in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:105-136. [PMID: 32705597 PMCID: PMC8118135 DOI: 10.1007/978-981-15-6082-8_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is characterized by lipid accumulation, inflammatory response, cell death, and fibrosis in the arterial wall and is the leading cause of morbidity and mortality worldwide. Cholesterol gallstone disease is caused by complex genetic and environmental factors and is one of the most prevalent and costly digestive diseases in the USA and Europe. Although sitosterolemia is a rare inherited lipid storage disease, its genetic studies led to identification of the sterol efflux transporters ABCG5/G8 that are located on chromosome 2p21 in humans and chromosome 17 in mice. Human and animal studies have clearly demonstrated that ABCG5/G8 play a critical role in regulating hepatic secretion and intestinal absorption of cholesterol and plant sterols. Sitosterolemia is caused by a mutation in either the ABCG5 or the ABCG8 gene alone, but not in both simultaneously. Polymorphisms in the ABCG5/G8 genes are associated with abnormal plasma cholesterol metabolism and may play a key role in the genetic determination of plasma cholesterol concentrations. Moreover, ABCG5/G8 is a new gallstone gene, LITH9. Gallstone-associated variants in ABCG5/G8 are involved in the pathogenesis of cholesterol gallstones in European, Asian, and South American populations. In this chapter, we summarize the latest advances in the critical role of the sterol efflux transporters ABCG5/G8 in regulating hepatic secretion of biliary cholesterol, intestinal absorption of cholesterol and plant sterols, the classical reverse cholesterol transport, and the newly established transintestinal cholesterol excretion, as well as in the pathogenesis and pathophysiology of ABCG5/G8-related metabolic diseases such as sitosterolemia, cardiovascular disease, and cholesterol gallstone disease.
Collapse
Affiliation(s)
- Helen H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri", University of Bari Medical School, Bari, Italy
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
47
|
Abstract
The causal relation between elevated levels of LDL-C and cardiovascular disease has been largely established by experimental and clinical studies. Thus, the reduction of LDL-C levels is a major target for the prevention of cardiovascular disease. In the last decades, statins have been used as the main therapeutic approach to lower plasma cholesterol levels; however, the presence of residual lipid-related cardiovascular risk despite maximal statin therapy raised the need to develop additional lipid-lowering drugs to be used in combination with or in alternative to statins in patients intolerant to the treatment. Several new drugs have been approved which have mechanisms of action different from statins or impact on different lipoprotein classes.
Collapse
|
48
|
Lopez AM, Ramirez CM, Taylor AM, Jones RD, Repa JJ, Turley SD. Ontogenesis and Modulation of Intestinal Unesterified Cholesterol Sequestration in a Mouse Model of Niemann-Pick C1 Disease. Dig Dis Sci 2020; 65:158-167. [PMID: 31312996 DOI: 10.1007/s10620-019-05736-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/11/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Mutations in the NPC1 gene result in sequestration of unesterified cholesterol (UC) and glycosphingolipids in most tissues leading to multi-organ disease, especially in the brain, liver, lungs, and spleen. Various data from NPC1-deficient mice suggest the small intestine (SI) is comparatively less affected, even in late stage disease. METHODS Using the Npc1nih mouse model, we measured SI weights and total cholesterol (TC) levels in Npc1-/- versus Npc1+/+ mice as a function of age, and then after prolonged ezetimibe-induced inhibition of cholesterol absorption. Next, we determined intestinal levels of UC and esterified cholesterol (EC), and cholesterol synthesis rates in Npc1-/- and Npc1+/+ mice, with and without the cholesterol-esterifying enzyme SOAT2, following a once-only subcutaneous injection with 2-hydroxypropyl-β-cyclodextrin (2HPβCD). RESULTS By ~ 42 days of age, intestinal TC levels averaged ~ 2.1-fold more (mostly UC) in the Npc1-/- versus Npc1+/+ mice with no further increase thereafter. Chronic ezetimibe treatment lowered intestinal TC levels in the Npc1-/- mice by only ~ 16%. In Npc1-/- mice given 2HPβCD 24 h earlier, UC levels fell, EC levels increased (although less so in mice lacking SOAT2), and cholesterol synthesis was suppressed equally in the Npc1-/-:Soat2+/+ and Npc1-/-:Soat2-/- mice. CONCLUSIONS The low and static levels of intestinal UC sequestration in Npc1-/- mice likely reflect the continual sloughing of cells from the mucosa. This sequestration is blunted by about the same extent following a single acute treatment with 2HPβCD as it is by a prolonged ezetimibe-induced block of cholesterol absorption.
Collapse
MESH Headings
- 2-Hydroxypropyl-beta-cyclodextrin/pharmacology
- Animals
- Cholesterol/metabolism
- Disease Models, Animal
- Ezetimibe/pharmacology
- Female
- Intestinal Absorption/drug effects
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/metabolism
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Intracellular Signaling Peptides and Proteins/deficiency
- Intracellular Signaling Peptides and Proteins/genetics
- Male
- Mice, 129 Strain
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Niemann-Pick C1 Protein
- Niemann-Pick Disease, Type C/drug therapy
- Niemann-Pick Disease, Type C/genetics
- Niemann-Pick Disease, Type C/metabolism
- Sterol O-Acyltransferase/genetics
- Sterol O-Acyltransferase/metabolism
- Sterol O-Acyltransferase 2
Collapse
Affiliation(s)
- Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Charina M Ramirez
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Anna M Taylor
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Ryan D Jones
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Department of Pathology, Northwestern University, Chicago, IL, 60611, USA
| | - Joyce J Repa
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
| |
Collapse
|
49
|
Cedó L, Farràs M, Lee-Rueckert M, Escolà-Gil JC. Molecular Insights into the Mechanisms Underlying the Cholesterol- Lowering Effects of Phytosterols. Curr Med Chem 2019; 26:6704-6723. [DOI: 10.2174/0929867326666190822154701] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 01/18/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022]
Abstract
Dietary phytosterols, which comprise plant sterols and stanols, reduce plasma Low-Density Lipoprotein-Cholesterol (LDL-C) levels when given 2 g/day. Since this dose has not been reported to cause health-related side effects in long-term human studies, food products containing these plant compounds are used as potential therapeutic dietary options to reduce LDL-C and cardiovascular disease risk. Several mechanisms have been proposed to explain the cholesterol-lowering action of phytosterols. They may compete with dietary and biliary cholesterol for micellar solubilization in the intestinal lumen, impairing intestinal cholesterol absorption. Recent evidence indicates that phytosterols may also regulate other pathways. Impaired intestinal cholesterol absorption is usually associated with reduced cholesterol transport to the liver, which may reduce the incorporation of cholesterol into Very-Low- Density Lipoprotein (VLDL) particles, thereby lowering the rate of VLDL assembly and secretion. Impaired liver VLDL production may reduce the rate of LDL production. On the other hand, significant evidence supports a role for plant sterols in the Transintestinal Cholesterol Excretion (TICE) pathway, although the exact mechanisms by which they promote the flow of cholesterol from the blood to enterocytes and the intestinal lumen remains unknown. Dietary phytosterols may also alter the conversion of bile acids into secondary bile acids, and may lower the bile acid hydrophobic/hydrophilic ratio, thereby reducing intestinal cholesterol absorption. This article reviews the progress to date in research on the molecular mechanisms underlying the cholesterol-lowering effects of phytosterols.
Collapse
Affiliation(s)
- Lídia Cedó
- Institut d'Investigacions Biomediques (IIB) Sant Pau, Barcelona, Spain
| | - Marta Farràs
- Integrative Systems Medicine and Digestive Disease Division, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | | | | |
Collapse
|
50
|
Villa-Rodriguez JA, Kerimi A, Tumova S, Williamson G. Inhibition of intestinal glucose transport by polyphenols: a mechanism for indirect attenuation of cholesterol absorption? Food Funct 2019; 10:3127-3134. [PMID: 31140506 DOI: 10.1039/c9fo00810a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cholesterol uptake and chylomicron synthesis are promoted by increasing glucose concentrations in both healthy and diabetic individuals during the postprandial phase. The goal of this study was to test whether acute inhibition of glucose uptake could impact cholesterol absorption in differentiated human intestinal Caco-2 cells. As expected, high glucose upregulated intestinal cholesterol metabolism promoting its uptake and incorporation in lipoproteins. This was accompanied by an increase in the gene expression of Niemann-Pick C1 Like 1 and proprotein convertase subtillisin/kexin type 9. Cholesterol uptake was attenuated by acute inhibition of glucose absorption by cytochalasin B, by a chamomile extract and by one of its main constituent polyphenols, apigenin 7-O-glucoside; however, chylomicron secretion was only reduced by the chamomile extract. These data support a potential indirect role for bioactives in modulating intestinal lipid pathways through effects on intestinal glucose uptake. This working hypothesis warrants further testing in an in vivo setting such as in hypercholesterolaemic or prediabetic individuals.
Collapse
|