1
|
Patel A. Aflatoxin removal and biotransformation aptitude of food grade bacteria from milk and milk products- at a glance. Toxicon 2024; 249:108084. [PMID: 39216796 DOI: 10.1016/j.toxicon.2024.108084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Microorganisms are the only entities in the biosphere with an incomparable ability to employ diverse organic and inorganic compounds for growth and convert it to simple form that is no longer harmful to human health and environment. Food grade microorganisms such as lactic acid bacteria, bifidobacteria, propionibacteria as well as several yeast species are associated with food fermentation processes as well as have gained probiotic status owing to their noteworthy offerings in health stimulation as a natural gut microbiota in animals and humans. However, as biological agents little is known about their application for bioremediation and biotransformation aptitude. In context to this, aflatoxin M1 is a class of mycotoxins often associated with milk through consumption of fungus contaminated feed & fodders by cattle and well documented for their adverse health effects. Therefore, current review summarizes significance of aflatoxins present in milk and dairy products in human life, their source, types & health implications; food grade bacteria including probiotic strains and their mechanism of action involved in the removal of aflatoxin; and last section discusses the outcome of major studies showing aflatoxin reduction potential of food grade bacteria in milk and milk based products.
Collapse
Affiliation(s)
- Ami Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy and Food Technology-MIDFT, Mehsana, 384002, Gujarat state, India.
| |
Collapse
|
2
|
Cao LQ, Xie Y, Fleishman JS, Liu X, Chen ZS. Hepatocellular carcinoma and lipid metabolism: Novel targets and therapeutic strategies. Cancer Lett 2024; 597:217061. [PMID: 38876384 DOI: 10.1016/j.canlet.2024.217061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Hepatocellular carcinoma (HCC) is an increasingly prevalent disease that is associated with high and continually rising mortality rates. Lipid metabolism holds a crucial role in the pathogenesis of HCC, in which abnormalities pertaining to the delicate balance of lipid synthesis, breakdown, and storage, predispose for the pathogenesis of the nonalcoholic fatty liver disease (NAFLD), a disease precursor to HCC. If caught early enough, HCC treatment may be curative. In later stages, treatment is only halting the inevitable outcome of death, boldly prompting for novel drug discovery to provide a fighting chance for this patient population. In this review, we begin by providing a summary of current local and systemic treatments against HCC. From such we discuss hepatic lipid metabolism and highlight novel targets that are ripe for anti-cancer drug discovery. Lastly, we provide a targeted summary of current known risk factors for HCC pathogenesis, providing key insights that will be essential for rationalizing future development of anti-HCC therapeutics.
Collapse
Affiliation(s)
- Lu-Qi Cao
- Institute for Biotechnology, St. John's University, New York, NY, 11439, USA; College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Yuhao Xie
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Xuan Liu
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518034, China.
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John's University, New York, NY, 11439, USA; College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA.
| |
Collapse
|
3
|
Soman SS, Samad SA, Venugopalan P, Kumawat N, Kumar S. Microfluidic paper analytic device (μPAD) technology for food safety applications. BIOMICROFLUIDICS 2024; 18:031501. [PMID: 38706979 PMCID: PMC11068414 DOI: 10.1063/5.0192295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Foodborne pathogens, food adulterants, allergens, and toxic chemicals in food can cause major health hazards to humans and animals. Stringent quality control measures at all stages of food processing are required to ensure food safety. There is, therefore, a global need for affordable, reliable, and rapid tests that can be conducted at different process steps and processing sites, spanning the range from the sourcing of food to the end-product acquired by the consumer. Current laboratory-based food quality control tests are well established, but many are not suitable for rapid on-site investigations and are costly. Microfluidic paper analytical devices (μPADs) are a fast-growing field in medical diagnostics that can fill these gaps. In this review, we describe the latest developments in the applications of microfluidic paper analytic device (μPAD) technology in the food safety sector. State-of-the-art μPAD designs and fabrication methods, microfluidic assay principles, and various types of μPAD devices with food-specific applications are discussed. We have identified the prominent research and development trends and future directions for maximizing the value of microfluidic technology in the food sector and have highlighted key areas for improvement. We conclude that the μPAD technology is promising in food safety applications by using novel materials and improved methods to enhance the sensitivity and specificity of the assays, with low cost.
Collapse
Affiliation(s)
- Soja Saghar Soman
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, UAE
| | - Shafeek Abdul Samad
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, UAE
| | | | - Nityanand Kumawat
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, UAE
| | | |
Collapse
|
4
|
Maroui MA, Odongo GA, Mundo L, Manara F, Mure F, Fusil F, Jay A, Gheit T, Michailidis TM, Ferrara D, Leoncini L, Murray P, Manet E, Ohlmann T, De Boevre M, De Saeger S, Cosset FL, Lazzi S, Accardi R, Herceg Z, Gruffat H, Khoueiry R. Aflatoxin B1 and Epstein-Barr virus-induced CCL22 expression stimulates B cell infection. Proc Natl Acad Sci U S A 2024; 121:e2314426121. [PMID: 38574017 PMCID: PMC11032484 DOI: 10.1073/pnas.2314426121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024] Open
Abstract
Epstein-Barr Virus (EBV) infects more than 90% of the adult population worldwide. EBV infection is associated with Burkitt lymphoma (BL) though alone is not sufficient to induce carcinogenesis implying the involvement of co-factors. BL is endemic in African regions faced with mycotoxins exposure. Exposure to mycotoxins and oncogenic viruses has been shown to increase cancer risks partly through the deregulation of the immune response. A recent transcriptome profiling of B cells exposed to aflatoxin B1 (AFB1) revealed an upregulation of the Chemokine ligand 22 (CCL22) expression although the underlying mechanisms were not investigated. Here, we tested whether mycotoxins and EBV exposure may together contribute to endemic BL (eBL) carcinogenesis via immunomodulatory mechanisms involving CCL22. Our results revealed that B cells exposure to AFB1 and EBV synergistically stimulated CCL22 secretion via the activation of Nuclear Factor-kappa B pathway. By expressing EBV latent genes in B cells, we revealed that elevated levels of CCL22 result not only from the expression of the latent membrane protein LMP1 as previously reported but also from the expression of other viral latent genes. Importantly, CCL22 overexpression resulting from AFB1-exposure in vitro increased EBV infection through the activation of phosphoinositide-3-kinase pathway. Moreover, inhibiting CCL22 in vitro and in humanized mice in vivo limited EBV infection and decreased viral genes expression, supporting the notion that CCL22 overexpression plays an important role in B cell infection. These findings unravel new mechanisms that may underpin eBL development and identify novel pathways that can be targeted in drug development.
Collapse
Affiliation(s)
- Mohamed Ali Maroui
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Grace Akinyi Odongo
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Lucia Mundo
- Limerick Digital Cancer Research Centre, Health Research Institute, Bernal Institute and School of Medicine, University of Limerick, LimerickV94 T9PX, Ireland
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena53100, Italy
| | - Francesca Manara
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Fabrice Mure
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Floriane Fusil
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Antonin Jay
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Tarik Gheit
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Thanos M. Michailidis
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent9000, Belgium
| | - Domenico Ferrara
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena53100, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena53100, Italy
| | - Paul Murray
- Limerick Digital Cancer Research Centre, Health Research Institute, Bernal Institute and School of Medicine, University of Limerick, LimerickV94 T9PX, Ireland
| | - Evelyne Manet
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Théophile Ohlmann
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent9000, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent9000, Belgium
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Gauteng2028, South Africa
| | - François-Loïc Cosset
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Stefano Lazzi
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena53100, Italy
| | - Rosita Accardi
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Henri Gruffat
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Rita Khoueiry
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| |
Collapse
|
5
|
Jacobson T, Bae Y, Kler JS, Iyer R, Zhang R, Montgomery ND, Nunes D, Pleil JD, Funk WE. Advancing Global Health Surveillance of Mycotoxin Exposures using Minimally Invasive Sampling Techniques: A State-of-the-Science Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3580-3594. [PMID: 38354120 PMCID: PMC10903514 DOI: 10.1021/acs.est.3c04981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Mycotoxins are a heterogeneous group of toxins produced by fungi that can grow in staple crops (e.g., maize, cereals), resulting in health risks due to widespread exposure from human consumption and inhalation. Dried blood spot (DBS), dried serum spot (DSS), and volumetric tip microsampling (VTS) assays were developed and validated for several important mycotoxins. This review summarizes studies that have developed these assays to monitor mycotoxin exposures in human biological samples and highlights future directions to facilitate minimally invasive sampling techniques as global public health tools. A systematic search of PubMed (MEDLINE), Embase (Elsevier), and CINAHL (EBSCO) was conducted. Key assay performance metrics were extracted to provide a critical review of the available methods. This search identified 11 published reports related to measuring mycotoxins (ochratoxins, aflatoxins, and fumonisins) using DBS/DSS and VTS assays. Multimycotoxin assays adapted for DBS/DSS and VTS have undergone sufficient laboratory validation for applications in large-scale population health and human biomonitoring studies. Future work should expand the number of mycotoxins that can be measured in multimycotoxin assays, continue to improve multimycotoxin assay sensitivities of several biomarkers with low detection rates, and validate multimycotoxin assays across diverse populations with varying exposure levels. Validated low-cost and ultrasensitive minimally invasive sampling methods should be deployed in human biomonitoring and public health surveillance studies to guide policy interventions to reduce inequities in global mycotoxin exposures.
Collapse
Affiliation(s)
- Tyler
A. Jacobson
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Yeunook Bae
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Jasdeep S. Kler
- University
of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Ramsunder Iyer
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Runze Zhang
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Nathan D. Montgomery
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Denise Nunes
- Galter
Health Sciences Library, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Joachim D. Pleil
- Department
of Environmental Sciences and Engineering, Gillings School of Public
Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - William E. Funk
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| |
Collapse
|
6
|
Garsow AV, Torres OR, Matute JA, Voss DM, Miyagusuku-Cruzado G, Giusti MM, Kowalcyk BB. Dietary, socioeconomic, and maize handling practices associated with aflatoxin and fumonisin exposure among women tortilla makers in 5 departments in Guatemala. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0001623. [PMID: 38324582 PMCID: PMC10849247 DOI: 10.1371/journal.pgph.0001623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 12/06/2023] [Indexed: 02/09/2024]
Abstract
Previous research has demonstrated human exposure to mycotoxins among Guatemalans, with high levels of mycotoxins being found in blood and urine samples as well as in maize for human consumption. Mishandling of crops such as maize during pre- and post-harvest has been associated with mycotoxin contamination. The overarching goal of this study was to identify risk factors for aflatoxin and fumonisin exposure in Guatemala. A cross-sectional survey of 141 women tortilla makers was conducted in the departments of Guatemala, Sololá, Suchitepéquez, Izabal, and Zacapa in February 2022. Maize and tortilla samples were collected and analyzed for aflatoxin B1 (AFB1) and fumonisin B1, B2, and B3 contamination (FB1, FB2, FB3). Urine samples were collected and analyzed for urinary FB1 (uFB1) contamination. A questionnaire was administered to collect data on sociodemographic characteristics, dietary intake of maize-based foods the week prior to the study, and maize handling practices. Descriptive statistics were used to describe common maize handling practices. A univariable analysis was conducted to identify predictors of low/high AFB1, total fumonisins, and uFB1. Multivariable logistic regression was used to calculate adjusted odds ratios (ORs) and 95% confidence intervals (CIs). During tortilla processing, a reduction in the AFB1 and total fumonisin levels was observed. The presence of AFB1 in maize was associated with department and mean total fumonisin level in maize (OR: 1.705, 95% CI: 1.113-2.613). The department where the tortilleria was located was significantly associated with the presence of fumonisins in tortillas. Increased consumption of Tortrix was significantly associated with the presence of FB1 in urine (OR: 1.652, 95% CI: 1.072-2.546). Results of this study can be used in the development and implementation of supply chain management practices that mitigate mycotoxin production, reduce food waste and economic loss, and promote food security.
Collapse
Affiliation(s)
- Ariel V. Garsow
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, United States of America
- Center for Foodborne Illness Research and Prevention, The Ohio State University, Columbus, Ohio, United States of America
| | - Olga R. Torres
- Laboratorio Diagnóstico Molecular, Guatemala City, Guatemala
- Centro De Investigación en Nutrición y Salud, Guatemala City, Guatemala
| | - Jorge A. Matute
- Laboratorio Diagnóstico Molecular, Guatemala City, Guatemala
- Centro De Investigación en Nutrición y Salud, Guatemala City, Guatemala
| | - Danielle M. Voss
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, United States of America
| | - Gonzalo Miyagusuku-Cruzado
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, United States of America
| | - M. Monica Giusti
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, United States of America
| | - Barbara B. Kowalcyk
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, United States of America
- Center for Foodborne Illness Research and Prevention, The Ohio State University, Columbus, Ohio, United States of America
- Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
7
|
Olarotimi OJ, Gbore FA, Adu OA, Oloruntola OD, Jimoh OA. Ameliorative effects of Sida acuta and vitamin C on serum DNA damage, pro-inflammatory and anti-inflammatory cytokines in roosters fed aflatoxin B 1 contaminated diets. Toxicon 2023; 236:107330. [PMID: 37944826 DOI: 10.1016/j.toxicon.2023.107330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
The ameliorative effects of Sida acuta leaf meal (SALM) and vitamin C on the serum pro-inflammatory and anti-inflammatory cytokines as well as DNA damage of cocks fed aflatoxin B1 (AFB1) contaminated diets were examined. The experiment was a completely randomized design with a total of 250 sexually mature Isa White cocks aged 24 weeks, randomly allotted into five experimental diets; each diet contained 5 replicates with 10 roosters. The diets were A (control/basal diet), B (A + 1 mg/kg AFB1), C (B + 200 mg/kg vitamin C), D (B + 2.5 g/kg SALM) and E (B + 5.0 g/kg SALM). Fresh and clean water was also provided for the whole experimental period of twelve weeks. Inclusion of 1 mg/kg AFB1 without vitamin C or SALM increased TNF-α and IL-1β as well as 8-OHdG and NF-κB in the serum significantly (P < 0.05) among the cocks on diet B. However, the fortification of AFB1 contaminated diets with vitamin C and SALM depressed serum TNF-α, IL-1β, 8-OHdG and NF-κB concentrations of the cocks significantly (P < 0.05). Conversely, serum IL-4 and IL-10 in birds given 1 mg/kg AFB1 without vitamin C or SALM decreased significantly (P < 0.05) in comparison with the roosters on the control. However, improvements (P < 0.05) in IL-4 and IL-10 concentrations with corresponding reduction (P < 0.05) in TNF-α, IL-1β, 8-OHdG and NF-κB concentrations were recorded among cocks fed Diets C, D and E, respectively. Therefore, dietary addition of SALM at the level used in this study was beneficial and has comparable effects with inorganic antioxidant (C vitamin) by significantly reducing the inflammatory cytokines and oxidative damage biomarkers as well as enhancing the anti-inflammatory cytokines thereby promoting the health status of the cocks fed AFB1 contaminated ration.
Collapse
Affiliation(s)
- Olumuyiwa Joseph Olarotimi
- Department of Animal Science, Faculty of Agriculture, Adekunle Ajasin University, P.M.B. 001, Akungba-Akoko, Nigeria.
| | - Francis Ayodeji Gbore
- Department of Animal Science, Faculty of Agriculture, Adekunle Ajasin University, P.M.B. 001, Akungba-Akoko, Nigeria
| | - Olufemi Adesanya Adu
- Department of Animal Production and Health, School of Agriculture and Agricultural Technology, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Olugbenga David Oloruntola
- Department of Animal Science, Faculty of Agriculture, Adekunle Ajasin University, P.M.B. 001, Akungba-Akoko, Nigeria
| | - Olatunji Abubakar Jimoh
- Department of Agricultural Technology, The Federal Polytechnic Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
8
|
He Z, Chen Z, Mo Y, Lu X, Luo Y, Lin S, Zhong Y, Deng J, Zheng S, Xia L, Wu H, Routledge MN, Hong Y, Xian X, Yang X, Gong Y. Assessment of the Adverse Health Effects of Aflatoxin Exposure from Unpackaged Peanut Oil in Guangdong, China. Toxins (Basel) 2023; 15:646. [PMID: 37999509 PMCID: PMC10675126 DOI: 10.3390/toxins15110646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Aflatoxins are liver carcinogens and are common contaminants in unpackaged peanut (UPP) oil. However, the health risks associated with consuming aflatoxins in UPP oil remain unclear. In this study, aflatoxin contamination in 143 UPP oil samples from Guangdong Province were assessed via liquid chromatography-tandem mass spectrometry (LC-MS). We also recruited 168 human subjects, who consumed this oil, to measure their liver functions and lipid metabolism status. Aflatoxin B1 (AFB1) was detected in 79.72% of the UPP oil samples, with levels ranging from 0.02 to 174.13 μg/kg. The average daily human intake of AFB1 from UPP oil was 3.14 ng/kg·bw/day; therefore, the incidence of liver cancer, caused by intake of 1 ng/kg·bw/day AFB1, was estimated to be 5.32 cases out of every 100,000 persons per year. Meanwhile, Hepatitis B virus (HBV) infection and AFB1 exposure exerted a synergistic effect to cause liver dysfunction. In addition, the triglycerides (TG) abnormal rate was statistically significant when using AFB1 to estimate daily intake (EDI) quartile spacing grouping (p = 0.011). In conclusion, high aflatoxin exposure may exacerbate the harmful effects of HBV infection on liver function. Contamination of UPP oil with aflatoxins in Guangdong urgently requires more attention, and public health management of the consumer population is urgently required.
Collapse
Affiliation(s)
- Zhini He
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China (Y.H.)
| | - Zihui Chen
- Institute of Public Health, Guangzhou 510060, China
| | - Yunying Mo
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China (Y.H.)
| | - Xiaodan Lu
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China (Y.H.)
| | - Yanheng Luo
- Zhaoqing Center for Disease Control and Prevention, Zhaoqing 526060, China
| | - Shaoliang Lin
- Zhaoqing Center for Disease Control and Prevention, Zhaoqing 526060, China
| | - Yanxu Zhong
- Food Safety Monitoring and Evaluation Department, Guangxi Zhuang Autonomous Region Centre for Disease Control and Prevention, Nanning 530028, China
| | - Junfeng Deng
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China (Y.H.)
| | - Shixiong Zheng
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China (Y.H.)
| | - Lei Xia
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Hang Wu
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Michael N. Routledge
- Leicester Medical School, University of Leicester, Leicester LE1 7RH, UK
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ye Hong
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China (Y.H.)
| | - Xiaoyu Xian
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China (Y.H.)
| | - Xingfen Yang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China (Y.H.)
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
9
|
Penagos-Tabares F, Mahmood M, Khan MZU, Talha HMA, Sajid M, Rafique K, Naveed S, Faas J, Artavia JI, Sulyok M, Müller A, Krska R, Zebeli Q. Co-occurrence of mycotoxins and other fungal metabolites in total mixed rations of cows from dairy farms in Punjab, Pakistan. Mycotoxin Res 2023; 39:421-436. [PMID: 37665547 PMCID: PMC10635927 DOI: 10.1007/s12550-023-00502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
After India and the USA, Pakistan is the third country leading in global dairy production, a sector of very high socioeconomic relevance in Asia. Mycotoxins can affect animal health, reproduction and productivity. This study analysed a broad range of co-occurring mycotoxins and fungal secondary metabolites derived from Alternaria, Aspergillus, Fusarium, Penicillium and other fungal species. To complete this, a validated multi-metabolite liquid chromatography/electrospray ionization-tandem mass spectrometric (LC/ESI-MS/MS) method was employed, detecting 96 of > 500 tested secondary fungal metabolites. This first preliminary study demonstrated that total mixed rations (TMRs) (n = 30) from big commercial dairy cattle farms (> 200 lactating cows) in Punjab, Pakistan, presented ubiquitous contamination with mixtures of mycotoxins. The mean of mycotoxins per sample was 14, ranging from 11 to 20 mycotoxins among all TMR samples. Metabolites derived from other fungi and Fusarium spp. showed the highest levels, frequency and diversity among the detected fungal compounds. Among the most prevalent mycotoxins were Fusarium toxins like fumonisins B1 (FB1) (93%), B2 (FB2) (100%) and B3 (FB3) (77%) and others. Aflatoxin B1 (AFB1) was evidenced in 40% of the samples, and 7% exceeded the EU maximum limit for feeding dairy cattle (5 µg/kg at 88% dry matter). No other mycotoxin exceeds the EU guidance values (GVs). Additionally, we found that dietary ingredients like corn grain, soybean meal and canola meal were related to increased contamination of some mycotoxins (like FB1, FB2 and FB3) in TMR from the province of Punjab, Pakistan. Among typical forage sources, the content of maize silage was ubiquitous. Individually, the detected mycotoxins represented relatively low levels. However, under a realistic scenario, long-term exposure to multiple mycotoxins and other fungal secondary metabolites can exert unpredictable effects on animal health, reproduction and productivity. Except for ergot alkaloids (73%), all the groups of metabolites (i.e. derived from Alternaria spp., Aspergillus spp., Fusarium spp., Penicillium spp. and other fungi) occurred in 100% of the TMR samples. At individual levels, no other mycotoxins than AFB1 represented a considerable risk; however, the high levels of co-occurrence with several mycotoxins/metabolites suggest that long-term exposure should be considered because of their potential toxicological interactions (additive or synergistic effects).
Collapse
Affiliation(s)
- Felipe Penagos-Tabares
- Unit of Nutritional Physiology, Institute of Physiology, Pathophysiology, and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
- Department for Farm Animals and Veterinary Public Health, Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, 3430, Tulln, Austria.
| | - Mubarik Mahmood
- Department of Animal Sciences, University of Veterinary and Animal Sciences, Lahore, Subcampus Jhang, 12 km Chiniot Road, Jhang, 35200, Pakistan
| | - Muhammad Zafar Ullah Khan
- Agri-Food Research & Sustainable Solutions (ARASS), Private Limited F-1, IBL Market, Ghouri Block, Bahria Town, Lahore, 54000, Pakistan
| | - Hafiz Muhammad Amjad Talha
- Department of Animal Sciences, University of Veterinary and Animal Sciences, Lahore, Subcampus Jhang, 12 km Chiniot Road, Jhang, 35200, Pakistan
| | - Muhammad Sajid
- Department of Animal Sciences, University of Veterinary and Animal Sciences, Lahore, Subcampus Jhang, 12 km Chiniot Road, Jhang, 35200, Pakistan
| | - Kanwal Rafique
- Department of Animal Sciences, University of Veterinary and Animal Sciences, Lahore, Subcampus Jhang, 12 km Chiniot Road, Jhang, 35200, Pakistan
| | - Saima Naveed
- Department of Animal Nutrition, Ravi Campus, Pattoki, University of Veterinary and Animal Sciences, Lahore, 55300, Pakistan
| | - Johannes Faas
- DSM-BIOMIN Research Center, Technopark 1, 3430, Tulln an der Donau, Austria
| | | | - Michael Sulyok
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria
| | - Anneliese Müller
- DSM-BIOMIN Research Center, Technopark 1, 3430, Tulln an der Donau, Austria
| | - Rudolf Krska
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Qendrim Zebeli
- Department for Farm Animals and Veterinary Public Health, Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| |
Collapse
|
10
|
Xing H, Jiang X, Yang C, Tan B, Hu J, Zhang M. High expression of RPL27A predicts poor prognosis in patients with hepatocellular carcinoma. World J Surg Oncol 2023; 21:209. [PMID: 37474947 PMCID: PMC10360225 DOI: 10.1186/s12957-023-03102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common cancers in the digestive system with rapid progression and poor prognosis. Recent studies have shown that RPL27A could be used as a biomarker for a variety of cancers, but its role in HCC is not clear. METHOD We analyzed the expression of RPL27A in the pan-cancer analysis and analyzed the relationship between the expression of RPL27A and the clinical features and prognosis of patients with HCC. We evaluated the expression difference of RPL27A in HCC tissues and paired normal adjacent tissues using immunohistochemistry. Furthermore, we analyzed the co-expression genes of RPL27A and used them to explore the possible mechanism of RPL27A and screen hub genes effecting HCC. In addition, we studied the role of RPL27A in immune infiltration and mutation. RESULTS We found that the expression level of RPL27A increased in a variety of cancers, including HCC. In HCC patients, the high expression of RPL27A was related to progression and poor prognosis as an independent predictor. We also constructed a protein interaction network through co-expression gene analysis of RPL27A and screened 9 hub genes. Enrichment analysis showed that co-expression genes were associated with ribosome pathway, viral replication, nuclear-transcribed mRNA catabolic process, and nonsense-mediated decay. We found that the expression level of RPL27A was closely related to TP53 mutation and immune infiltration in HCC. CONCLUSION RPL27A might become a biomarker in the diagnosis, treatment, and follow-up of patients with HCC.
Collapse
Affiliation(s)
- Huiwu Xing
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400010, China
| | - Xiangqi Jiang
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400010, China
| | - Chenyu Yang
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400010, China
| | - Bingqian Tan
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400010, China
| | - Jiqiang Hu
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400010, China
| | - Mingman Zhang
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400010, China.
| |
Collapse
|
11
|
Cadenillas LF, Hernandez C, Bailly S, Billerach G, Durrieu V, Bailly JD. Role of Polyphenols from the Aqueous Extract of Aloysia citrodora in the Inhibition of Aflatoxin B1 Synthesis in Aspergillus flavus. Molecules 2023; 28:5123. [PMID: 37446789 DOI: 10.3390/molecules28135123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin considered a potent carcinogen for humans that contaminates a wide range of crops. Various strategies have been established to reduce or block the synthesis of AFB1 in food and feed. The use of aqueous extracts derived from plants with high antioxidant activity has been a subject of study in recent years due to their efficacy in inhibiting AFB1. In this study, we assessed the effect of Aloysia citrodora aqueous extract on Aspergillus flavus growth and on AFB1 production. A bio-guided fractionation followed by High Performance Liquid Chromatography (HPLC) and Mass spectrometry analysis of the active fraction were applied to identify the candidate molecules responsible for the dose-effect inhibition of AFB1 synthesis. Our results revealed that polyphenols are the molecules implicated in AFB1 inhibition, achieving almost a total inhibition of the toxin production (99%). We identified luteolin-7-diglucuronide as one of the main constituents in A. citrodora extract, and demonstrated that it is able to inhibit, by itself, AFB1 production by 57%. This is the first study demonstrating the anti-Aflatoxin B1 effect of this molecule, while other polyphenols surely intervene in A. citrodora anti-AFB1 activity.
Collapse
Affiliation(s)
- Laura F Cadenillas
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France
| | - Christopher Hernandez
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France
| | | | - Guillaume Billerach
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France
- UMR 1208 IATE Ingénierie des Agropolymères et Technologies Émergentes, INRAE, Institut Agro, Université de Montpellier, 2 Place Viala, 34060 Montpellier, France
| | - Vanessa Durrieu
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France
| | - Jean-Denis Bailly
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France
- École Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, CEDEX, 31076 Toulouse, France
| |
Collapse
|
12
|
Rovetto EI, Luz C, La Spada F, Meca G, Riolo M, Cacciola SO. Diversity of Mycotoxins and Other Secondary Metabolites Recovered from Blood Oranges Infected by Colletotrichum, Alternaria, and Penicillium Species. Toxins (Basel) 2023; 15:407. [PMID: 37505676 PMCID: PMC10467077 DOI: 10.3390/toxins15070407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
This study identified secondary metabolites produced by Alternaria alternata, Colletotrichum gloeosporioides, and Penicillium digitatum in fruits of two blood orange cultivars before harvest. Analysis was performed by UHPLC-Q-TOF-MS. Three types of fruits were selected, asymptomatic, symptomatic showing necrotic lesions caused by hail, and mummified. Extracts from peel and juice were analyzed separately. Penicillium digitatum was the prevalent species recovered from mummified and hail-injured fruits. Among 47 secondary metabolites identified, 16, 18, and 13 were of A. alternata, C. gloeosporioides, and P. digitatum, respectively. Consistently with isolations, indicating the presence of these fungi also in asymptomatic fruits, the metabolic profiles of the peel of hail-injured and asymptomatic fruits did not differ substantially. Major differences were found in the profiles of juice from hail-injured and mummified fruits, such as a significant higher presence of 5,4-dihydroxy-3,7,8-trimethoxy-6C-methylflavone and Atrovenetin, particularly in the juice of mummified fruits of the Tarocco Lempso cultivar. Moreover, the mycotoxins patulin and Rubratoxin B were detected exclusively in mummified fruits. Patulin was detected in both the juice and peel, with a higher relative abundance in the juice, while Rubratoxin B was detected only in the juice. These findings provide basic information for evaluating and preventing the risk of contamination by mycotoxins in the citrus fresh fruit supply chain and juice industry.
Collapse
Affiliation(s)
- Ermes Ivan Rovetto
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (E.I.R.); (F.L.S.)
| | - Carlos Luz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, 460100 València, Spain; (C.L.); (G.M.)
| | - Federico La Spada
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (E.I.R.); (F.L.S.)
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, 460100 València, Spain; (C.L.); (G.M.)
| | - Mario Riolo
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (E.I.R.); (F.L.S.)
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, 460100 València, Spain; (C.L.); (G.M.)
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (E.I.R.); (F.L.S.)
| |
Collapse
|
13
|
Tong Y, Tonui P, Orang'o O, Zhang J, Maina T, Muthoka K, Groopman J, Smith J, Madeen E, Ermel A, Loehrer P, Brown DR. Association of plasma aflatoxin with persistent detection of oncogenic human papillomaviruses in cervical samples from Kenyan women enrolled in a longitudinal study. BMC Infect Dis 2023; 23:377. [PMID: 37280534 DOI: 10.1186/s12879-023-08323-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Cervical cancer is caused by oncogenic human papillomaviruses (HR-HPV) and is common among Kenyan women. Identification of factors that increase HR-HPV persistence is critically important. Kenyan women exposed to aflatoxin have an increased risk of HR-HPV detection in cervical specimens. This analysis was performed to examine associations between aflatoxin and HR-HPV persistence. METHODS Kenyan women were enrolled in a prospective study. The analytical cohort for this analysis included 67 HIV-uninfected women (mean age 34 years) who completed at least two of three annual study visits and had an available blood sample. Plasma aflatoxin was detected using ultra-high pressure liquid chromatography (UHPLC)-isotope dilution mass spectrometry. Annual cervical swabs were tested for HPV (Roche Linear Array). Ordinal logistic regression models were fitted to examine associations of aflatoxin and HPV persistence. RESULTS Aflatoxin was detected in 59.7% of women and was associated with higher risk of persistent detection of any HPV type (OR = 3.03, 95%CI = 1.08-8.55, P = 0.036), HR-HPV types (OR = 3.63, 95%CI = 1.30-10.13, P = 0.014), and HR-HPV types not included in the 9-valent HPV vaccine (OR = 4.46, 95%CI = 1.13-17.58, P = 0.032). CONCLUSIONS Aflatoxin detection was associated with increased risk of HR-HPV persistence in Kenyan women. Further studies, including mechanistic studies are needed to determine if aflatoxin synergistically interacts with HR-HPV to increase cervical cancer risk.
Collapse
Affiliation(s)
- Yan Tong
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine and Fairbanks School of Public Health, Indianapolis, IN, 46204, USA
| | - Philip Tonui
- Department of Reproductive Health, Moi University, Eldoret, Kenya
| | - Omenge Orang'o
- Department of Reproductive Health, Moi University, Eldoret, Kenya
| | - Jianjun Zhang
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, Indianapolis, IN, 46204, USA
| | - Titus Maina
- Department of Molecular Biology, Maseno University, Maseno, Kenya
| | - Kapten Muthoka
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - John Groopman
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Joshua Smith
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Erin Madeen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Aaron Ermel
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46204, USA
| | - Patrick Loehrer
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46204, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46204, USA
| | - Darron R Brown
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46204, USA.
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46204, USA.
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46204, USA.
| |
Collapse
|
14
|
Jaćević V, Dumanović J, Alomar SY, Resanović R, Milovanović Z, Nepovimova E, Wu Q, Franca TCC, Wu W, Kuča K. Research update on aflatoxins toxicity, metabolism, distribution, and detection: A concise overview. Toxicology 2023; 492:153549. [PMID: 37209941 DOI: 10.1016/j.tox.2023.153549] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Serious health risks associated with the consumption of food products contaminated with aflatoxins (AFs) are worldwide recognized and depend predominantly on consumed AF concentration by diet. A low concentration of aflatoxins in cereals and related food commodities is unavoidable, especially in subtropic and tropic regions. Accordingly, risk assessment guidelines established by regulatory bodies in different countries help in the prevention of aflatoxin intoxication and the protection of public health. By assessing the maximal levels of aflatoxins in food products which are a potential risk to human health, it's possible to establish appropriate risk management strategies. Regarding, a few factors are crucial for making a rational risk management decision, such as toxicological profile, adequate information concerning the exposure duration, availability of routine and some novel analytical techniques, socioeconomic factors, food intake patterns, and maximal allowed levels of each aflatoxin in different food products which may be varied between countries.
Collapse
Affiliation(s)
- Vesna Jaćević
- Department for Experimental Pharmacology and Toxicology, National Poison Control Centre, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic.
| | - Jelena Dumanović
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia
| | - Suliman Y Alomar
- King Saud University, College of Science, Zoology Department, Riyadh, 11451, Saudi Arabia
| | - Radmila Resanović
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - Zoran Milovanović
- Special Police Unit, Ministry of Interior, Trebevićka 12/A, 11 030 Belgrade, Serbia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, 1 Nanhuan Road, 434023 Jingzhou, Hubei, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Tanos Celmar Costa Franca
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense, Military Institute of Engineering, Praça General Tibúrcio 80, Rio de Janeiro, RJ 22290-270, Brazil; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Kamil Kuča
- Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| |
Collapse
|
15
|
Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E, Kamath PS. Global burden of Liver Disease: 2023 Update. J Hepatol 2023:S0168-8278(23)00194-0. [PMID: 36990226 DOI: 10.1016/j.jhep.2023.03.017] [Citation(s) in RCA: 353] [Impact Index Per Article: 353.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
Liver disease accounts for 2 million deaths and is responsible for 4% of all deaths (1 out of every 25 deaths worldwide); approximately 2/3 of all liver related deaths occur in men. Deaths are largely attributable to complications of cirrhosis and hepatocellular carcinoma, with acute hepatitis accounting for a smaller proportion of deaths. The most common causes of cirrhosis worldwide are related to viral hepatitis, alcohol, and nonalcoholic fatty liver disease (NAFLD). Hepatotropic viruses are the etiological factor in most cases of acute hepatitis, but drug-induced liver injury increasingly accounts for a significant proportion of cases. This iteration of the global burden of liver disease is an update of the 2019 version and focuses mainly on areas where significant new information is available like alcohol-associated liver disease, NAFLD, viral hepatitis, and HCC. We also devote a separate section to the burden of liver disease in Africa, an area of the world typically neglected in such documents.
Collapse
Affiliation(s)
- Harshad Devarbhavi
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, India
| | - Sumeet K Asrani
- Baylor University Medical Center, Baylor Scott and White, Dallas, TX, United States.
| | - Juan Pablo Arab
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, Ontario, Canada; Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Yvonne Ayerki Nartey
- Department of Internal Medicine, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Elisa Pose
- Liver Unit, Hospital Clinic of Barcelona. Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)
| | - Patrick S Kamath
- Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
16
|
Ribeiro GO, Rodrigues LDAP, dos Santos TBS, Alves JPS, Oliveira RS, Nery TBR, Barbosa JDV, Soares MBP. Innovations and developments in single cell protein: Bibliometric review and patents analysis. Front Microbiol 2023; 13:1093464. [PMID: 36741879 PMCID: PMC9897208 DOI: 10.3389/fmicb.2022.1093464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Background Global demand for food products derived from alternative proteins and produced through sustainable technological routes is increasing. Evaluation of research progress, main trends and developments in the field are valuable to identify evolutionary nuances. Methods In this study, a bibliometric analysis and search of patents on alternative proteins from fermentation processes was carried out using the Web of Science and Derwent World Patents Index™ databases, using the keywords and Boolean operators "fermentation" AND "single cell protein" OR "single-cell protein." The dataset was processed and graphics generated using the bibliometric software VOSviewer and OriginPro 8.1. Results The analysis performed recovered a total of 360 articles, of which 271 were research articles, 49 literature review articles and 40 publications distributed in different categories, such as reprint, proceedings paper, meeting abstract among others. In addition, 397 patents related to the field were identified, with China being the country with the largest number of publications and patents deposits. While this topic is largely interdisciplinary, the majority of work is in the area of Biotechnology Applied Microbiology, which boasts the largest number of publications. The area with the most patent filings is the food sector, with particular emphasis on the fields of biochemistry, beverages, microbiology, enzymology and genetic engineering. Among these patents, 110 are active, with industries or companies being the largest depositors. Keyword analysis revealed that the area of study involving single cell protein has included investigation into types of microorganisms, fermentation, and substrates (showing a strong trend in the use of agro-industrial by-products) as well as optimization of production processes. Conclusion This bibliometric analysis provided important information, challenges, and trends on this relevant subject.
Collapse
Affiliation(s)
- Gislane Oliveira Ribeiro
- Biotechnology Laboratory, Alternative Protein Competence Center, University Center SENAI CIMATEC, Salvador, Brazil
| | - Leticia de Alencar Pereira Rodrigues
- Biotechnology Laboratory, Alternative Protein Competence Center, University Center SENAI CIMATEC, Salvador, Brazil,SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil,*Correspondence: Leticia de Alencar Pereira Rodrigues, ✉
| | | | - João Pedro Santos Alves
- Biotechnology Laboratory, Alternative Protein Competence Center, University Center SENAI CIMATEC, Salvador, Brazil
| | - Roseane Santos Oliveira
- Biotechnology Laboratory, Alternative Protein Competence Center, University Center SENAI CIMATEC, Salvador, Brazil
| | - Tatiana Barreto Rocha Nery
- Biotechnology Laboratory, Alternative Protein Competence Center, University Center SENAI CIMATEC, Salvador, Brazil
| | - Josiane Dantas Viana Barbosa
- Biotechnology Laboratory, Alternative Protein Competence Center, University Center SENAI CIMATEC, Salvador, Brazil,SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil
| | - Milena Botelho Pereira Soares
- Biotechnology Laboratory, Alternative Protein Competence Center, University Center SENAI CIMATEC, Salvador, Brazil,SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil,Gonçalo Moniz Institute, FIOCRUZ, Salvador, Bahia, Brazil,Milena Botelho Pereira Soares,
| |
Collapse
|
17
|
Assessment of Maize Hybrids Resistance to Aspergillus Ear Rot and Aflatoxin Production in Environmental Conditions in Serbia. Toxins (Basel) 2022; 14:toxins14120887. [PMID: 36548784 PMCID: PMC9781229 DOI: 10.3390/toxins14120887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Aflatoxin, a naturally occurring toxin produced by the fungus Aspergillus flavus, is the most economically important mycotoxin in the world, with harmful effects on human and animal health. Preventive measures such as irrigation and planting dates can minimize aflatoxin contamination most years. However, no control strategy is completely effective when environmental conditions are extremely favorable for growth of the fungus. The most effective control method is growing maize hybrids with genetic resistance to aflatoxin contamination. The aim of this research was to evaluate the sensitivity of different maize hybrids to A. flavus infection and aflatoxin accumulation. Twenty commercial maize hybrids were evaluated in field trials with artificial inoculations using the colonized toothpicks method. The mycotoxin production potential of A. flavus isolates was confirmed by cluster amplification patterns (CAPs) analysis. The results of this research indicated the existence of significant differences in maize hybrids susceptibility to Aspergillus ear rot and aflatoxin B1 accumulation. No hybrid included in this research showed complete resistance in all conditions, but some hybrids showed partial resistance. Different hybrids also responded differently depending on the sowing date. This research showed that infection intensity is not always consistent with aflatoxin levels, and therefore visual evaluation is not enough to assess maize safety.
Collapse
|
18
|
Cai DM, Mei FB, Zhang CJ, An SC, Lv RB, Ren GH, Xiao CC, Long L, Huang TR, Deng W. The Abnormal Proliferation of Hepatocytes is Associated with MC-LR and C-Terminal Truncated HBX Synergistic Disturbance of the Redox Balance. J Hepatocell Carcinoma 2022; 9:1229-1246. [PMID: 36505941 PMCID: PMC9733568 DOI: 10.2147/jhc.s389574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 12/11/2022] Open
Abstract
Background Microcystin-LR (MC-LR) and hepatitis B virus (HBV) are associated with hepatocellular carcinoma (HCC). However, the concentrations of MC-LR in drinking water and the synergistic effect of MC-LR and HBV on hepatocellular carcinogenesis through their disturbance of redox balance have not been fully elucidated. Methods We measured the MC-LR concentrations in 168 drinking water samples of areas with a high incidence of HCC. The relationships between MC-LR and both redox status and liver diseases in 177 local residents were analyzed. The hepatoma cell line HepG2 transfected with C-terminal truncated hepatitis B virus X gene (Ct-HBX) were treated with MC-LR. Reactive oxygen species (ROS), superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA) were measured. Cell proliferation, migration, invasion, and apoptosis were assessed with cell activity assays, scratch and transwell assays, and flow cytometry, respectively. The mRNA and protein expression-related redox status genes were analyzed with qPCR and Western blotting. Results The average concentration of MC-LR in well water, river water and reservoir water were 57.55 ng/L, 76.74 ng/L and 132.86 ng/L respectively, and the differences were statistically significant (P < 0.05). The MC-LR levels in drinking water were correlated with liver health status, including hepatitis, clonorchiasis, glutamic pyruvic transaminase abnormalities and hepatitis B surface antigen carriage (all P values < 0.05). The serum MDA increased in subjects who drank reservoir water and were infected with HBV (P < 0.05). In the cell experiment, ROS increased when Ct-HBX-transfected HepG2 cells were treated with MC-LR, followed by a decrease in SOD and GSH and an increase in MDA. MC-LR combined with Ct-HBX promoted the proliferation, migration and invasion of HepG2 cells, upregulated the mRNA and protein expression of MAOA gene, and downregulated UCP2 and GPX1 genes. Conclusion MC-LR and HBV may synergistically affect redox status and play an important role in hepatocarcinoma genesis.
Collapse
Affiliation(s)
- Dong-Mei Cai
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Fan-Biao Mei
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Chao-Jun Zhang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - San-Chun An
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Rui-Bo Lv
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Guan-Hua Ren
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Chan-Chan Xiao
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Long Long
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China,Guangxi Cancer Molecular Medicine Engineering Research Center, Nanning, Guangxi, 530021, People’s Republic of China
| | - Tian-Ren Huang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China,Guangxi Cancer Molecular Medicine Engineering Research Center, Nanning, Guangxi, 530021, People’s Republic of China
| | - Wei Deng
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China,Guangxi Cancer Molecular Medicine Engineering Research Center, Nanning, Guangxi, 530021, People’s Republic of China,Correspondence: Wei Deng; Tianren Huang, Department of Experimental Research, Guangxi Medical University Cancer Hospital, No. 71, Hedi Road, Nanning, Guangxi, 530021, People’s Republic of China, Email ;
| |
Collapse
|
19
|
Sabbioni G, Castaño A, Esteban López M, Göen T, Mol H, Riou M, Tagne-Fotso R. Literature review and evaluation of biomarkers, matrices and analytical methods for chemicals selected in the research program Human Biomonitoring for the European Union (HBM4EU). ENVIRONMENT INTERNATIONAL 2022; 169:107458. [PMID: 36179646 DOI: 10.1016/j.envint.2022.107458] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Humans are potentially exposed to a large amount of chemicals present in the environment and in the workplace. In the European Human Biomonitoring initiative (Human Biomonitoring for the European Union = HBM4EU), acrylamide, mycotoxins (aflatoxin B1, deoxynivalenol, fumonisin B1), diisocyanates (4,4'-methylenediphenyl diisocyanate, 2,4- and 2,6-toluene diisocyanate), and pyrethroids were included among the prioritized chemicals of concern for human health. For the present literature review, the analytical methods used in worldwide biomonitoring studies for these compounds were collected and presented in comprehensive tables, including the following parameter: determined biomarker, matrix, sample amount, work-up procedure, available laboratory quality assurance and quality assessment information, analytical techniques, and limit of detection. Based on the data presented in these tables, the most suitable methods were recommended. According to the paradigm of biomonitoring, the information about two different biomarkers of exposure was evaluated: a) internal dose = parent compounds and metabolites in urine and blood; and b) the biologically effective = dose measured as blood protein adducts. Urine was the preferred matrix used for deoxynivalenol, fumonisin B1, and pyrethroids (biomarkers of internal dose). Markers of the biological effective dose were determined as hemoglobin adducts for diisocyanates and acrylamide, and as serum-albumin-adducts of aflatoxin B1 and diisocyanates. The analyses and quantitation of the protein adducts in blood or the metabolites in urine were mostly performed with LC-MS/MS or GC-MS in the presence of isotope-labeled internal standards. This review also addresses the critical aspects of the application, use and selection of biomarkers. For future biomonitoring studies, a more comprehensive approach is discussed to broaden the selection of compounds.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Università della Svizzera Italiana (USI), Research and Transfer Service, Lugano, Switzerland; Institute of Environmental and Occupational Toxicology, Airolo, Switzerland; Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany.
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain.
| | - Marta Esteban López
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain.
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg (IPASUM), Erlangen, Germany.
| | - Hans Mol
- Wageningen Food Safety Research, Part of Wageningen University & Research, Wageningen, the Netherlands.
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé publique France, The National Public Health Agency, Saint-Maurice, France.
| | - Romuald Tagne-Fotso
- Department of Environmental and Occupational Health, Santé publique France, The National Public Health Agency, Saint-Maurice, France.
| |
Collapse
|
20
|
Rasouli H, Nayeri FD, Khodarahmi R. May phytophenolics alleviate aflatoxins-induced health challenges? A holistic insight on current landscape and future prospects. Front Nutr 2022; 9:981984. [PMID: 36386916 PMCID: PMC9649842 DOI: 10.3389/fnut.2022.981984] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
The future GCC-connected environmental risk factors expedited the progression of nCDs. Indeed, the emergence of AFs is becoming a global food security concern. AFs are lethal carcinogenic mycotoxins, causing damage to the liver, kidney, and gastrointestinal organs. Long-term exposure to AFs leads to liver cancer. Almost a variety of food commodities, crops, spices, herbaceous materials, nuts, and processed foods can be contaminated with AFs. In this regard, the primary sections of this review aim to cover influencing factors in the occurrence of AFs, the role of AFs in progression of nCDs, links between GCC/nCDs and exposure to AFs, frequency of AFs-based academic investigations, and world distribution of AFs. Next, the current trends in the application of PPs to alleviate AFs toxicity are discussed. Nearly, more than 20,000 published records indexed in scientific databases have been screened to find recent trends on AFs and application of PPs in AFs therapy. Accordingly, shifts in world climate, improper infrastructures for production/storage of food commodities, inconsistency of global polices on AFs permissible concentration in food/feed, and lack of the public awareness are accounting for a considerable proportion of AFs damages. AFs exhibited their toxic effects by triggering the progression of inflammation and oxidative/nitrosative stress, in turn, leading to the onset of nCDs. PPs could decrease AFs-associated oxidative stress, genotoxic, mutagenic, and carcinogenic effects by improving cellular antioxidant balance, regulation of signaling pathways, alleviating inflammatory responses, and modification of gene expression profile in a dose/time-reliant fashion. The administration of PPs alone displayed lower biological properties compared to co-treatment of these metabolites with AFs. This issue might highlight the therapeutic application of PPs than their preventative content. Flavonoids such as quercetin and oxidized tea phenolics, curcumin and resveratrol were the most studied anti-AFs PPs. Our literature review clearly disclosed that considering PPs in antioxidant therapies to alleviate complications of AFs requires improvement in their bioavailability, pharmacokinetics, tissue clearance, and off-target mode of action. Due to the emergencies in the elimination of AFs in food/feedstuffs, further large-scale clinical assessment of PPs to decrease the consequences of AFs is highly required.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Dehghan Nayeri
- Department of Biotechnology, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
21
|
Dietary Exposure to Aflatoxins in Some Randomly Selected Foods and Cancer Risk Estimations of Cereals Consumed on a Ghanaian Market. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5770836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aflatoxins have gained so much reputation among all mycotoxins due to their notoriety in causing countless adverse health effects on humans as well as animals. It continues to be a major concern in food safety globally. In this study, total and constitutive aflatoxins levels as well as the carcinogenic risks posed by 110 food and feed samples (55 cereals, 20 nuts and oils, 18 animal feed, and 18 fruits and vegetables) collected from the Ho Central market in the Volta region, Ghana, were assessed. Using high-performance liquid chromatography connected to a fluorescent detector (HPLC-FLD), levels of total aflatoxins (AFtotal) and aflatoxins constituents, namely, AFB1, AFB2, AFG1, and AFG2, were analyzed. By using the model prescribed by Joint FAO/WHO Expert Committee on Food Additives (JECFA), the risks posed by the food and feed samples were determined. The degrees of toxicity were in the ranges of 0.78–234.73 μg/kg, 0.47–21.6 μg/kg, 1.01–13.75 μg/kg, and 0.66–5.51 μg/kg, respectively, for AFB1, AFB2, AFG1, and AFG2. Out of the samples analyzed for AFtotal, about 51 (46.4%) exceeded the limits of GSA and were in the range 10.63 ± 1.20–236.28 ± 4.2 μg/kg. While for EFSA, 71 (64.54%) exceeded and ranged between 4.72 ± 0.28 and 236.28 ± 4.2 μg/kg. Furthermore, estimated daily intake (EDI) of 27.10–283.70 ng/kg·bw/day, margin of exposure (MOE) of 1.409–14.76, average potency of 0–0.00396 ng aflatoxins/kg·bw/day, and cancer risks with a range of 0.107–1.122 cases/100,000 person/yr were observed. Taken together, it could be concluded that consuming cereals pose adverse effects on human health regardless of the age of the consumer.
Collapse
|
22
|
Urinary Aflatoxin M1 Concentration and Its Determinants in School-Age Children in Southern Ethiopia. Nutrients 2022; 14:nu14132580. [PMID: 35807760 PMCID: PMC9268381 DOI: 10.3390/nu14132580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 12/14/2022] Open
Abstract
Aflatoxins are mycotoxins that can contaminate grains, legumes, and oil seeds. These toxic compounds are an especially serious problem in tropical and sub-tropical climates. The objective of this study was to raise awareness of aflatoxin exposure among primary school children in Shebedino woreda, southern Ethiopia, by measuring urinary aflatoxin M1 (AFM1). The study employed a cross-sectional design and systematic random sampling of children from eight schools in the district. The mean ± SD age of the children was 9.0 ± 1.8 years. Most (84.6%) households were food insecure with 17.9% severely food insecure. Urinary AFM1 was detected in more than 93% of the children. The median [IQR] concentration of AFM1/Creat was 480 [203, 1085] pg/mg. Based on a multiple regression analysis: DDS, consumption of haricot bean or milk, source of drinking water, maternal education, and household food insecurity access scale scores were significantly associated with urinary AFM1/Creat. In conclusion, a high prevalence of urinary AFM1 was observed in this study. However, the relation between AFM1 and dietary intake was analyzed based on self-reported dietary data; hence, all of the staple foods as well as animal feeds in the study area should be assessed for aflatoxin contamination.
Collapse
|
23
|
Saha Turna N, Havelaar A, Adesogan A, Wu F. Aflatoxin M1 in milk does not contribute substantially to global liver cancer incidence. Am J Clin Nutr 2022; 115:1473-1480. [PMID: 35470382 DOI: 10.1093/ajcn/nqac033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND For 60 y, it has been known that aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus fungi in certain food and feed crops, causes hepatocellular carcinoma (liver cancer; HCC) in humans. The annual global burden of AFB1-related HCC has been estimated. However, much less is known about the potential carcinogenic impact of a metabolite of AFB1 called aflatoxin M1 (AFM1), which is secreted in milk when dairy animals consume AFB1-contaminated feed. The cancer risk of AFM1 to humans from milk consumption has not yet been evaluated. OBJECTIVES We sought to estimate the global risk of AFM1-related liver cancer through liquid milk consumption, accounting for possible synergies between AFM1 and chronic infection with hepatitis B virus (HBV) in increasing cancer risk. METHODS We conducted a quantitative cancer risk assessment by analyzing extensive datasets of national population sizes, dairy consumption patterns, AFM1 concentrations in milk in 40 nations, and chronic HBV prevalence. Two separate cancer risk assessments were conducted: assuming a possible synergy between AFM1 and HBV in increasing cancer risk in a manner similar to that of AFB1 and HBV, and assuming no such synergy. RESULTS If there is no synergy between AFM1 and HBV, AFM1 may contribute ∼0.001% of total annual HCC cases globally. If there is synergy between AFM1 and HBV infection, AFM1 may contribute ∼0.003% of all HCC cases worldwide. In each case, the total expected AFM1-attributable cancer cases are ∼13-32 worldwide. CONCLUSION AFM1 exposure through liquid milk consumption does not substantially increase liver cancer risk in humans. Policymakers should consider this low risk against the nutritional benefits of milk consumption, particularly to children, in a current global situation of milk being discarded because of AFM1 concentrations exceeding regulatory standards.
Collapse
Affiliation(s)
- Nikita Saha Turna
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI, USA.,British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Arie Havelaar
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.,Food Systems Institute, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Adegbola Adesogan
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.,Food Systems Institute, University of Florida, Gainesville, FL, USA
| | - Felicia Wu
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI, USA.,Department of Agricultural, Food, and Resource Economics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
24
|
Abstract
The evolutionary history of hepatobiliary cancers is embedded in their genomes. By analysing their catalogue of somatic mutations and the DNA sequence context in which they occur, it is possible to infer the mechanisms underpinning tumorigenesis. These mutational signatures reflect the exogenous and endogenous origins of genetic damage as well as the capacity of hepatobiliary cells to repair and replicate DNA. Genomic analysis of thousands of patients with hepatobiliary cancers has highlighted the diversity of mutagenic processes active in these malignancies, highlighting a prominent source of the inter-cancer-type, inter-patient, intertumour and intratumoural heterogeneity that is observed clinically. However, a substantial proportion of mutational signatures detected in hepatocellular carcinoma and biliary tract cancer remain of unknown cause, emphasizing the important contribution of processes yet to be identified. Exploiting mutational signatures to retrospectively understand hepatobiliary carcinogenesis could advance preventative management of these aggressive tumours as well as potentially predict treatment response and guide the development of therapies targeting tumour evolution.
Collapse
|
25
|
Meijer N, Nijssen R, Bosch M, Boers E, van der Fels-Klerx HJ. Aflatoxin B1 Metabolism of Reared Alphitobius diaperinus in Different Life-Stages. INSECTS 2022; 13:insects13040357. [PMID: 35447799 PMCID: PMC9025786 DOI: 10.3390/insects13040357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023]
Abstract
The presence of carcinogenic aflatoxins in food and feed is a major issue. In prior studies, aflatoxin B1 (AfB1) and known primary metabolites were absent from Lesser Mealworm (LMW, Alphitobius diaperinus) reared on contaminated diets. LMW is a promising alternative protein source. The objectives of this stu\dy were to determine whether LMW can be reared on AfB1-contaminated feed in each life-stage, and to gather more insight into potential metabolites formed. Results suggested no adverse effects in terms of survival/growth when three stages of LMW (larvae, pre-pupae, beetles) were exposed to feed containing AfB1 concentrations of 200 and 600 µg/kg for 48 h. Insect and frass samples were analyzed by LC-MS/MS and high-resolution MS to, respectively, quantify concentrations of AfB1 and its major metabolites, and determine secondary metabolites. No AfB1 or major metabolites were quantified in the insect samples. Mass balance calculations showed that up to 40% of spiked AfB1 could be recovered in the frass, in the form of AfB1, aflatoxicol and AfM1. HRMS results suggested the presence of additional metabolites in the frass, but, due to lack of commercially available reference standards for these compounds, exact identification and quantification was not possible. More research is needed to verify the absence of toxicity.
Collapse
Affiliation(s)
- Nathan Meijer
- Wageningen Food Safety Research (WFSR), P.O. Box 230, 6700 AE Wageningen, The Netherlands; (R.N.); (E.B.); (H.J.v.d.F.-K.)
- Correspondence:
| | - Rosalie Nijssen
- Wageningen Food Safety Research (WFSR), P.O. Box 230, 6700 AE Wageningen, The Netherlands; (R.N.); (E.B.); (H.J.v.d.F.-K.)
| | - Marlou Bosch
- Ynsect NL Nutrition & Health B.V., Harderwijkerweg 141B, 3852 AB Ermelo, The Netherlands;
| | - Ed Boers
- Wageningen Food Safety Research (WFSR), P.O. Box 230, 6700 AE Wageningen, The Netherlands; (R.N.); (E.B.); (H.J.v.d.F.-K.)
| | - H. J. van der Fels-Klerx
- Wageningen Food Safety Research (WFSR), P.O. Box 230, 6700 AE Wageningen, The Netherlands; (R.N.); (E.B.); (H.J.v.d.F.-K.)
| |
Collapse
|
26
|
Saha Turna N, Wu F. Estimation of Tolerable Daily Intake (TDI) for Immunological Effects of Aflatoxin. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2022; 42:431-438. [PMID: 34147038 DOI: 10.1111/risa.13770] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/05/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Aflatoxins are toxic chemicals produced by the fungi Aspergillus flavus and Aspergillus parasiticus. In warm climates, these fungi frequently contaminate crops such as maize, peanuts, tree nuts, and sunflower seeds. In many tropical and subtropical regions of the world, populations are coexposed to dietary aflatoxin and multiple infectious pathogens in food, water, and the environment. There is increasing evidence that aflatoxin compromises the immune system, which could increase infectious disease risk in vulnerable populations. Our aim was to conduct a dose-response assessment on a noncarcinogenic endpoint of aflatoxin: immunotoxicological effects. We sought to determine a noncarcinogenic tolerable daily intake (TDI) of aflatoxin, based on the existing data surrounding aflatoxin and biomarkers of immune suppression. To conduct the dose response assessment, mammalian studies were assessed for appropriateness of doses (relevant to potential human exposures) as well as goodness of data, and two appropriate mouse studies that examined decreases in leukocyte counts were selected to generate dose response curves. From these, we determined benchmark dose lower confidence limits (BMDL) as points of departure to estimate a range of TDIs for aflatoxin-related immune impairment: 0.017-0.082 μg/kg bw/day. As aflatoxin is a genotoxic carcinogen, and regulations concerning its presence in food have largely focused on its carcinogenic effects, international risk assessment bodies such as the Joint Expert Committee on Food Additives (JECFA) have never established a TDI for aflatoxin. Our work highlights the importance of the noncarcinogenic effects of aflatoxin that may have broader public health impacts, to inform regulatory standard-setting.
Collapse
Affiliation(s)
- Nikita Saha Turna
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, USA
| | - Felicia Wu
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, USA
- Department of Agricultural, Food, and Resource Economics, Michigan State University, East Lansing, USA
| |
Collapse
|
27
|
Burden of Disease Associated with Dietary Exposure to Aflatoxins in China in 2020. Nutrients 2022; 14:nu14051027. [PMID: 35268003 PMCID: PMC8912679 DOI: 10.3390/nu14051027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/03/2023] Open
Abstract
Aflatoxins (AFTs), as a group 1 carcinogen, could lead to hepatocellular carcinoma (HCC). Dietary intake is the primary way of AFT exposure in humans. However, the contribution of foodborne AFT intake to the HCC burden remains unknown in recent years in China. Hence, the present study was conducted to estimate the burden of HCC attributed to foodborne AFT exposure by using disability-adjusted life years (DALYs). The risk assessment was used to estimate the incidence of HCC related to AFT exposure. Concentrations of AFTs in peanuts, peanut oil, corn, and corn products were retrieved from literature published between 2010 and 2020 in China. Corresponding daily food consumption data were obtained from two nationwide Chinese surveys. A direct approach was used to calculate DALY and DALY rates to quantify the HCC burden attributed to dietary AFT exposure. The total amount of AFT intake through peanut, peanut oil, corn, and corn products was 4.018 ng/kg bw/day resulting in 0.125 extra HCC cases per year/100,000 persons, corresponding to a DALY number and DALY rate of 21,625.08 and 1.53 per 100,000 population, respectively. Regionally, DALYs were high in Guangxi and Guangdong provinces, corresponding to 5948 and 5595 DALYs. A total of 1.5 DALYs/100,000 were lost due to the AFT exposure. DALYs per 100,000 population were higher in several coastal areas. Though the disease burden of HCC caused by dietary AFTs was low in the Chinese population, a high health risk was found in the residents of some areas with high AFT exposure. AFTs are still a health challenge for the Chinese people.
Collapse
|
28
|
Awuchi CG, Ondari EN, Nwozo S, Odongo GA, Eseoghene IJ, Twinomuhwezi H, Ogbonna CU, Upadhyay AK, Adeleye AO, Okpala COR. Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins (Basel) 2022; 14:toxins14030167. [PMID: 35324664 PMCID: PMC8949390 DOI: 10.3390/toxins14030167] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
Mycotoxins are well established toxic metabolic entities produced when fungi invade agricultural/farm produce, and this happens especially when the conditions are favourable. Exposure to mycotoxins can directly take place via the consumption of infected foods and feeds; humans can also be indirectly exposed from consuming animals fed with infected feeds. Among the hundreds of mycotoxins known to humans, around a handful have drawn the most concern because of their occurrence in food and severe effects on human health. The increasing public health importance of mycotoxins across human and livestock environments mandates the continued review of the relevant literature, especially with regard to understanding their toxicological mechanisms. In particular, our analysis of recently conducted reviews showed that the toxicological mechanisms of mycotoxins deserve additional attention to help provide enhanced understanding regarding this subject matter. For this reason, this current work reviewed the mycotoxins’ toxicological mechanisms involving humans, livestock, and their associated health concerns. In particular, we have deepened our understanding about how the mycotoxins’ toxicological mechanisms impact on the human cellular genome. Along with the significance of mycotoxin toxicities and their toxicological mechanisms, there are associated health concerns arising from exposures to these toxins, including DNA damage, kidney damage, DNA/RNA mutations, growth impairment in children, gene modifications, and immune impairment. More needs to be done to enhance the understanding regards the mechanisms underscoring the environmental implications of mycotoxins, which can be actualized via risk assessment studies into the conditions/factors facilitating mycotoxins’ toxicities.
Collapse
Affiliation(s)
- Chinaza Godseill Awuchi
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
- Correspondence: (C.G.A.); (C.O.R.O.)
| | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | - Sarah Nwozo
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | - Grace Akinyi Odongo
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | - Ifie Josiah Eseoghene
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | | | - Chukwuka U. Ogbonna
- Department of Biochemistry, Federal University of Agriculture, P.M.B. 2240, Abeokuta 110124, Ogun State, Nigeria;
| | - Anjani K. Upadhyay
- Heredity Healthcare & Lifesciences, 206-KIIT TBI, Patia, Bhubaneswar 751024, Odisha, India;
| | - Ademiku O. Adeleye
- Faith Heroic Generation, No. 36 Temidire Street, Azure 340251, Ondo State, Nigeria;
| | - Charles Odilichukwu R. Okpala
- Department of Functional Foods Product Development, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
- Correspondence: (C.G.A.); (C.O.R.O.)
| |
Collapse
|
29
|
Lactic Acid Bacteria from African Fermented Cereal-Based Products: Potential Biological Control Agents for Mycotoxins in Kenya. J Toxicol 2022; 2022:2397767. [PMID: 35242183 PMCID: PMC8888082 DOI: 10.1155/2022/2397767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/29/2022] [Indexed: 12/26/2022] Open
Abstract
Cereals play an important role in global food security. Data from the UN Food and Agriculture Organization projects increased consumption of cereals from 2.6 billion tonnes in 2017 to approximately 2.9 billion tonnes by 2027. However, cereals are prone to contamination by toxigenic fungi, which lead to mycotoxicosis. The current methods for mycotoxin control involve the use of chemical preservatives. However, there are concerns about the use of chemicals in food preservation due to their effects on the health, nutritional quality, and organoleptic properties of food. Therefore, alternative methods are needed that are affordable and simple to use. The fermentation technique is based on the use of microorganisms mainly to impart desirable sensory properties and shelf-life extension. The lactic acid bacteria (LAB) are generally regarded as safe (GRAS) due to their long history of application in food fermentation systems and ability to produce antimicrobial compounds (hydroxyl fatty acids, organic acids, phenyllactic acid, hydrogen peroxide, bacteriocins, and carbon dioxide) with a broad range of antifungal activity. Hence, LAB can inhibit the growth of mycotoxin-producing fungi, thereby preventing the production of mycotoxins. Fermentation is also an efficient technique for improving nutrient bioavailability and other functional properties of cereal-based products. This review seeks to provide evidence of the potential of LAB from African fermented cereal-based products as potential biological agents against mycotoxin-producing fungi.
Collapse
|
30
|
Chen Y. Recent progress in fluorescent aptasensors for the detection of aflatoxin B1 in food. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:86-96. [PMID: 34897320 DOI: 10.1039/d1ay01714d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aflatoxin B1 pollution is one of the most critical issues of food safety and has been categorized as a group I carcinogen by the International Agency for Research on Cancer. Aflatoxin B1 exists in various foods and feedstuff products and can be produced and contaminate food products in all processes, including growth, harvest, storage, or processing. Therefore, it is of great value for detecting and on-site monitoring aflatoxin B1. Aptamers are short single-stranded DNA or RNA obtained from the nucleic acid molecular library through SELEX. With advantages of high specificity, large affinity, and easy modification, aptasensors have become popular in a wide range of promising applications. This review focuses on recent advances on fluorescent aptamer sensors for the detection of aflatoxin B1, including their design strategies, working mechanisms, and applications to on-site detection. Finally, the current challenges and prospects are discussed.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
31
|
Khasbage SBD, Bhowate RR, Khatib N. Risk of liver disease in areca nut habitual: A systematic review. J Oral Maxillofac Pathol 2022; 26:128-129. [PMID: 35571298 PMCID: PMC9106242 DOI: 10.4103/jomfp.jomfp_345_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/31/2021] [Accepted: 01/24/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Areca nut (AN) is one of the addictive substances known to cause deleterious effects on oral cavity as well as on various body organs including liver. But, scanty information is available reporting the adverse effects of AN chewing on the liver. Aim: To study the risk of liver disease in AN habitual based on the relevant published data. Methods: The literature search was performed by an electronic search of the PubMed/Medline, Scopus and Google Scholar databases using proper MESH headings and retrieved the articles published from 1998 to 2021. The eligibility criteria included: Human studies, AN habitual as study participants, use of controls and articles published in English. Data were extracted regarding characteristics of studies, characteristics of AN exposure, effect estimate and outcome of the studies. Results: Total 253 articles were identified from various databases and 15 studies were selected that met the inclusion criteria. Among these, thirteen studies showed an association between AN habit and attenuation of risk of liver disease as determined by relative risk/odds ratio/hazard ratio. Eleven studies described additive effect of AN and HBsAg and/or Anti hepatitis C virus status on development of liver disease. However, two of the studies showed opposite results. The heterogeneity in the study designs, exposure characteristics, outcomes and confounders precluded further meta-analysis. Conclusion: The association between AN chewing and an increased risk of developing liver disease is noted which necessitates the need for AN cessation campaign.
Collapse
Affiliation(s)
- Suwarna B Dangore Khasbage
- Oral Medicine and Radiology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences (Deemed to be University), Sawangi (M), Maharashtra, India
| | - Rahul R Bhowate
- Oral Medicine and Radiology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences (Deemed to be University), Sawangi (M), Maharashtra, India
| | - Nazli Khatib
- Human Physiology, JNMC, Wardha, Maharashtra, India
| |
Collapse
|
32
|
Khatib SA, Wang XW. Causes and functional intricacies of inter- and intratumor heterogeneity of primary liver cancers. Adv Cancer Res 2022; 156:75-102. [DOI: 10.1016/bs.acr.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Yang L, Wang Z. Advances in the Total Synthesis of Aflatoxins. Front Chem 2021; 9:779765. [PMID: 34917589 PMCID: PMC8669307 DOI: 10.3389/fchem.2021.779765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Aflatoxins, which are produced by Aspergillus flavus, Aspergillus nomius, and Aspergillus parasiticus, are a group of pentacyclic natural products with difuran and coumarin skeletons. They mainly include aflatoxin B1, B2, G1, G2, M1, and M2. Biologically, aflatoxins are of concern to human health as they can be present as contaminants in food products. The unique skeletons of aflatoxins and their risk to human health have led to the publication of nine remarkable total syntheses (including three asymmetric syntheses) and ten formal total syntheses (including four asymmetric formal syntheses) of aflatoxins in the past 55 years. To better understand the mechanism of the biological activity of aflatoxins and their presence in samples from the food industry, this review summarizes progress in the total synthesis of aflatoxins.
Collapse
Affiliation(s)
- Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, China
| | - Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
34
|
Abstract
Chemicals are measured regularly in air, food, the environment, and the workplace. Biomonitoring of chemicals in biological fluids is a tool to determine the individual exposure. Blood protein adducts of xenobiotics are a marker of both exposure and the biologically effective dose. Urinary metabolites and blood metabolites are short term exposure markers. Stable hemoglobin adducts are exposure markers of up to 120 days. Blood protein adducts are formed with many xenobiotics at different sites of the blood proteins. Newer methods apply the techniques developed in the field of proteomics. Larger adducted peptides with 20 amino acids are used for quantitation. Unfortunately, at present the methods do not reach the limits of detection obtained with the methods looking at single amino acid adducts or at chemically cleaved adducts. Therefore, to progress in the field new approaches are needed.
Collapse
|
35
|
Abdul Hakeem D, Su S, Mo Z, Wen H. Upconversion luminescent nanomaterials: A promising new platform for food safety analysis. Crit Rev Food Sci Nutr 2021; 62:8866-8907. [PMID: 34159870 DOI: 10.1080/10408398.2021.1937039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Foodborne diseases have become a significant threat to public health worldwide. Development of analytical techniques that enable fast and accurate detection of foodborne pathogens is significant for food science and safety research. Assays based on lanthanide (Ln) ion-doped upconversion nanoparticles (UCNPs) show up as a cutting edge platform in biomedical fields because of the superior physicochemical features of UCNPs, including negligible autofluorescence, large signal-to-noise ratio, minimum photodamage to biological samples, high penetration depth, and attractive optical and chemical features. In recent decades, this novel and promising technology has been gradually introduced to food safety research. Herein, we have reviewed the recent progress of Ln3+-doped UCNPs in food safety research with emphasis on the following aspects: 1) the upconversion mechanism and detection principles; 2) the history of UCNPs development in analytical chemistry; 3) the in-depth state-of-the-art synthesis strategies, including synthesis protocols for UCNPs, luminescence, structure, morphology, and surface engineering; 4) applications of UCNPs in foodborne pathogens detection, including mycotoxins, heavy metal ions, pesticide residue, antibiotics, estrogen residue, and pathogenic bacteria; and 5) the challenging and future perspectives of using UCNPs in food safety research. Considering the diversity and complexity of the foodborne harmful substances, developing novel detections and quantification techniques and the rigorous investigations about the effect of the harmful substances on human health should be accelerated.
Collapse
Affiliation(s)
- Deshmukh Abdul Hakeem
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Shaoshan Su
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Zhurong Mo
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Hongli Wen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
36
|
Hernandez C, Cadenillas L, Maghubi AE, Caceres I, Durrieu V, Mathieu C, Bailly JD. Mimosa tenuiflora Aqueous Extract: Role of Condensed Tannins in Anti-Aflatoxin B1 Activity in Aspergillus flavus. Toxins (Basel) 2021; 13:toxins13060391. [PMID: 34072350 PMCID: PMC8228179 DOI: 10.3390/toxins13060391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a potent carcinogenic mycotoxin that contaminates numerous crops pre- and post-harvest. To protect foods and feeds from such toxins without resorting to pesticides, the use of plant extracts has been increasingly studied. The most interesting candidate plants are those with strong antioxidative activity because oxidation reactions may interfere with AFB1 production. The present study investigates how an aqueous extract of Mimosa tenuiflora bark affects both the growth of Aspergillus flavus and AFB1 production. The results reveal a dose-dependent inhibition of toxin synthesis with no impact on fungal growth. AFB1 inhibition is related to a down-modulation of the cluster genes of the biosynthetic pathway and especially to the two internal regulators aflR and aflS. Its strong anti-oxidative activity also allows the aqueous extract to modulate the expression of genes involved in fungal oxidative-stress response, such as msnA, mtfA, atfA, or sod1. Finally, a bio-guided fractionation of the aqueous extract demonstrates that condensed tannins play a major role in the anti-aflatoxin activity of Mimosa tenuiflora bark.
Collapse
Affiliation(s)
- Christopher Hernandez
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 313000 Toulouse, France; (C.H.); (L.C.); (A.E.M.); (I.C.)
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, 4 Allée Emile Monso, 31030 Toulouse, France; (V.D.); (C.M.)
| | - Laura Cadenillas
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 313000 Toulouse, France; (C.H.); (L.C.); (A.E.M.); (I.C.)
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, 4 Allée Emile Monso, 31030 Toulouse, France; (V.D.); (C.M.)
| | - Anwar El Maghubi
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 313000 Toulouse, France; (C.H.); (L.C.); (A.E.M.); (I.C.)
| | - Isaura Caceres
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 313000 Toulouse, France; (C.H.); (L.C.); (A.E.M.); (I.C.)
| | - Vanessa Durrieu
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, 4 Allée Emile Monso, 31030 Toulouse, France; (V.D.); (C.M.)
| | - Céline Mathieu
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, 4 Allée Emile Monso, 31030 Toulouse, France; (V.D.); (C.M.)
- Centre d’Application et de Traitement des Agro-Ressources (CATAR), INPT, Toulouse, 4 Allée Emile Monso, 31030 Toulouse, France
| | - Jean-Denis Bailly
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 313000 Toulouse, France; (C.H.); (L.C.); (A.E.M.); (I.C.)
- Correspondence: ; Tel.: +33-56-1193-229
| |
Collapse
|
37
|
Wang S, Yang X, Liu F, Wang X, Zhang X, He K, Wang H. Comprehensive Metabolomic Analysis Reveals Dynamic Metabolic Reprogramming in Hep3B Cells with Aflatoxin B1 Exposure. Toxins (Basel) 2021; 13:toxins13060384. [PMID: 34072178 PMCID: PMC8229485 DOI: 10.3390/toxins13060384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/23/2022] Open
Abstract
Hepatitis B virus (HBV) infection and aflatoxin B1 (AFB1) exposure have been recognized as independent risk factors for the occurrence and development of hepatocellular carcinoma (HCC), but their combined impacts and the potential metabolic mechanisms remain poorly characterized. Here, a comprehensive non-targeted metabolomic study was performed following AFB1 exposed to Hep3B cells at two different doses: 16 μM and 32 μM. The metabolites were identified and quantified by an ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)-based strategy. A total of 2679 metabolites were identified, and 392 differential metabolites were quantified among three groups. Pathway analysis indicated that dynamic metabolic reprogramming was induced by AFB1 and various pathways changed significantly, including purine and pyrimidine metabolism, hexosamine pathway and sialylation, fatty acid synthesis and oxidation, glycerophospholipid metabolism, tricarboxylic acid (TCA) cycle, glycolysis, and amino acid metabolism. To the best of our knowledge, the alteration of purine and pyrimidine metabolism and decrease of hexosamine pathways and sialylation with AFB1 exposure have not been reported. The results indicated that our metabolomic strategy is powerful to investigate the metabolome change of any stimulates due to its high sensitivity, high resolution, rapid separation, and good metabolome coverage. Besides, these findings provide an overview of the metabolic mechanisms of the AFB1 combined with HBV and new insight into the toxicological mechanism of AFB1. Thus, targeting these metabolic pathways may be an approach to prevent carcinogen-induced cancer, and these findings may provide potential drug targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | | | | | - Kun He
- Correspondence: (K.H.); (H.W.); Tel.: +86-10-6693-0306 (K.H.); +86-10-6693-0342 (H.W.); Fax: +86-10-6818-6281 (K.H. & H.W.)
| | - Hongxia Wang
- Correspondence: (K.H.); (H.W.); Tel.: +86-10-6693-0306 (K.H.); +86-10-6693-0342 (H.W.); Fax: +86-10-6818-6281 (K.H. & H.W.)
| |
Collapse
|
38
|
Mirzaei R, Afaghi A, Babakhani S, Sohrabi MR, Hosseini-Fard SR, Babolhavaeji K, Khani Ali Akbari S, Yousefimashouf R, Karampoor S. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed Pharmacother 2021; 139:111619. [PMID: 33906079 DOI: 10.1016/j.biopha.2021.111619] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Following cancer, cells in a particular tissue can no longer respond to the factors involved in controlling cell survival, differentiation, proliferation, and death. In recent years, it has been indicated that alterations in the gut microbiota components, intestinal epithelium, and host immune system are associated with cancer incidence. Also, it has been demonstrated that the short-chain fatty acids (SCFAs) generated by gut microbiota are vitally crucial in cell homeostasis as they contribute to the modulation of histone deacetylases (HDACs), resulting effected cell attachment, immune cell immigration, cytokine production, chemotaxis, and the programmed cell death. Therefore, the manipulation of SCFA levels in the intestinal tract by alterations in the microbiota structure can be potentially taken into consideration for cancer treatment/prevention. In the current study, we will explain the most recent findings on the detrimental or protective roles of SFCA (particularly butyrate, propionate, and acetate) in several cancers, including bladder, colon, breast, stomach, liver, lung, pancreas, and prostate cancers.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Azam Afaghi
- Department of Biology, Sofian Branch, Islamic Azad University, Sofian, Iran
| | - Sajad Babakhani
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Reza Sohrabi
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiandokht Babolhavaeji
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shabnam Khani Ali Akbari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
|
40
|
Hepatocellular Carcinoma in India. Indian J Surg 2021. [DOI: 10.1007/s12262-021-02762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Akello J, Ortega-Beltran A, Katati B, Atehnkeng J, Augusto J, Mwila CM, Mahuku G, Chikoye D, Bandyopadhyay R. Prevalence of Aflatoxin- and Fumonisin-Producing Fungi Associated with Cereal Crops Grown in Zimbabwe and Their Associated Risks in a Climate Change Scenario. Foods 2021; 10:foods10020287. [PMID: 33572636 PMCID: PMC7912306 DOI: 10.3390/foods10020287] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
In most sub-Saharan African countries, staple cereal grains harbor many fungi and some produce mycotoxins that negatively impact health and trade. Maize and three small grain cereals (sorghum, pearl millet, and finger millet) produced by smallholder farmers in Zimbabwe during 2016 and 2017 were examined for fungal community structure, and total aflatoxin (AF) and fumonisin (FM) content. A total of 800 maize and 180 small grain samples were collected at harvest and during storage from four agroecological zones. Fusarium spp. dominated the fungi associated with maize. Across crops, Aspergillusflavus constituted the main Aspergillus spp. Small grain cereals were less susceptible to both AF and FM. AF (52%) and FM (89%) prevalence was higher in maize than in small grains (13-25% for AF and 0-32% for FM). Less than 2% of small grain samples exceeded the EU regulatory limit for AF (4 µg/kg), while <10% exceeded the EU regulatory limit for FM (1000 µg/kg). For maize, 28% and 54% of samples exceeded AF and FM Codex guidance limits, respectively. Higher AF contamination occurred in the drier and hotter areas while more FM occurred in the wetter year. AF exposure risk assessment revealed that small grain consumption posed low health risks (≤0.02 liver cancer cases/100,000 persons/year) while maize consumption potentially caused higher liver cancer rates of up to 9.2 cases/100,000 persons/year depending on the locality. Additionally, FM hazard quotients from maize consumption among children and adults were high in both years, but more so in a wet year than a dry year. Adoption of AF and FM management practices throughout the maize value chain coupled with policies supporting dietary diversification are needed to protect maize consumers in Zimbabwe from AF- and FM-associated health effects. The higher risk of health burden from diseases associated with elevated concentration of mycotoxins in preferred maize during climate change events can be relieved by increased consumption of small grains.
Collapse
Affiliation(s)
- Juliet Akello
- International Institute of Tropical Agriculture (IITA), Plot 1458B, Ngwerere Road, Chelston, Lusaka P.O. Box. 310142, Zambia; (J.A.); (C.M.M.); (D.C.)
| | | | - Bwalya Katati
- National Institute for Scientific and Industrial Research, KK Airport Road, Lusaka P.O. Box. 310158, Zambia;
| | - Joseph Atehnkeng
- IITA Malawi, Chitedze Research Station, Lilongwe P.O. Box. 30258, Malawi;
| | - Joao Augusto
- IITA Mozambique, Av. FPLM, Nampula P.O. Box. 709, Mozambique;
| | - Chama M. Mwila
- International Institute of Tropical Agriculture (IITA), Plot 1458B, Ngwerere Road, Chelston, Lusaka P.O. Box. 310142, Zambia; (J.A.); (C.M.M.); (D.C.)
| | - George Mahuku
- IITA Tanzania, Dar es Salaam P.O. Box. 34441, Tanzania;
| | - David Chikoye
- International Institute of Tropical Agriculture (IITA), Plot 1458B, Ngwerere Road, Chelston, Lusaka P.O. Box. 310142, Zambia; (J.A.); (C.M.M.); (D.C.)
| | - Ranajit Bandyopadhyay
- IITA Nigeria, Oyo Road, Ibadan P.M.B. 5320, Nigeria;
- Correspondence: ; Tel.: +234-806-868-1854
| |
Collapse
|
42
|
Kortei NK, Annan T, Akonor PT, Richard SA, Annan HA, Kwagyan MW, Ayim-Akonor M, Akpaloo PG. Aflatoxins in randomly selected groundnuts ( Arachis hypogaea) and its products from some local markets across Ghana: Human risk assessment and monitoring. Toxicol Rep 2021; 8:186-195. [PMID: 33489778 PMCID: PMC7806514 DOI: 10.1016/j.toxrep.2021.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/01/2023] Open
Abstract
A random assessment and human risk analysis were conducted on 80 groundnut pastes and raw groundnuts from some local markets across the different agroecological zones of Ghana. Total aflatoxins (AFtotal) and aflatoxins (AFB1, AFB2, AFG1, and AFG2) were analyzed using the High-Performance Liquid Chromatography (HPLC) method. Out of 80 samples investigated, 49 (61.25 %) tested positive for AFB1 and ranged from 0.38 ± 0.04-230.21 ± 22.14 μg/kg. The same proportion was recorded for total aflatoxins (AFtotal) and ranged between 0.38 ± 0.02-270.51 ± 23.14 μg/kg. Limits of AFB1 and total aflatoxins (AFtotal) for the Ghana Standards Authority (GSA) (5 and 10 μg/kg) and the European Food Safety Authority (EFSA) (2 and 4 μg/kg), were used as checks. A total of 33 (41.25 %) samples were above the limits for both. Risk assessments recorded for Estimated Daily Intake (EDI), Margin of Exposure (MOE), potency, cancer risk, and population risks ranged 0.087-0.380 μg/Kg.bw/day, 1052.630-4597.700, 0-0.00396 ng Aflatoxins kg-1bwday-1 and, 1.5 × 10-3 - 7.9 × 10-4 respectively for total aflatoxins. While for aflatoxins B1 (AFB1), ranges of values of 0.068-0.300 μg/Kg.bw/day, 1333.33-5882.35, 0-0.00396 ng aflatoxins kg/bw/day and, 1.19 × 10-3 - 6.34 × 10-4 corresponded for Estimated Daily Intake (EDI), Margin of Exposure (MOE), potency, cancer risk, and population risk respectively. There were risks of adverse health effects involved in the consumption of groundnuts for all age groups investigated since MOE values were all below 10,000.
Collapse
Affiliation(s)
- Nii Korley Kortei
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Theophilus Annan
- Food Microbiology Division, Council for Scientific and Industrial Research- Food Research Institute, P. O. Box M20, Accra, Ghana
| | - Papa Toah Akonor
- Food Processing and Engineering Division, Council for Scientific and Industrial Research- Food Research Institute, P. O. Box M20, Accra, Ghana
| | - Seidu A Richard
- Department of Medicine, Princefield University, P.O. Box MA 128, Ho, Ghana
| | - Helen Ama Annan
- Food Microbiology Division, Council for Scientific and Industrial Research- Food Research Institute, P. O. Box M20, Accra, Ghana
| | - Michael Wiafe- Kwagyan
- Department of Plant and Environmental Biology, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 55, Legon, Ghana
| | - Matilda Ayim-Akonor
- Animal Health and Food Safety Division, CSIR- Animal Research Institute, P.O. Box AH20, Achimota, Ghana
| | - Princess Golda Akpaloo
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| |
Collapse
|
43
|
Sabir S, Rehman K, Fiayyaz F, Kamal S, Akash MSH. Role of Aflatoxins as EDCs in Metabolic Disorders. EMERGING CONTAMINANTS AND ASSOCIATED TREATMENT TECHNOLOGIES 2021. [DOI: 10.1007/978-3-030-45923-9_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Spatial analysis of dietary exposure of aflatoxins in peanuts and peanut oil in different areas of China. Food Res Int 2020; 140:109899. [PMID: 33648201 DOI: 10.1016/j.foodres.2020.109899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/29/2022]
Abstract
Peanuts in China are heavily contaminated with aflatoxin, which pose a threaten to human health. To compare the dietary exposure risk of aflatoxins (AFT) in peanuts and peanut oil in different areas of China, the spatial distribution of AFT contamination levels in peanuts and peanut oil from different areas was analyzed. The dietary exposure was calculated by simple distributed risk assessment method before characterizing the health risk using both the margin of exposure (MOE) approach proposed by the European Food Safety Authority (EFSA) and the quantitative liver cancer risk approach proposed by the Joint Food and Agricultural Organization/World Health Organization (FAO/WHO) Expert Committee on Food Additives (JECFA). The results showed that the AFT content in peanuts and peanut oil was high with agglomeration in several provinces of East and South China under a subtropical temperate monsoon climate, and the AFT contamination in peanut oil was more substantial than peanuts. On average, the estimated dietary exposure to AFT from the total of peanuts and peanut oil for Chinese general population ranged from 1.776 to 1.940 ng/kg bw/day (LB-UB), from which the MOE values of 88-96 (UB-LB) and liver cancer risk of 0.055-0.060 cases/100,000 persons/year (LB-UB) were calculated. As for different areas in China, the mean AFT exposure ranged between 0.000 and 17.270 ng/kg bw/day. Moreover, the corresponding health risk was estimated at 10-868759 MOE values and 0.000-0.851 liver cancer cases/100,000 persons/year. Guangdong, Fujian and Jiangxi provinces were at a higher risk rank. The liver cancer risk of AFT exposure from peanuts and peanut oil was far below all-cause liver cancer incidence (18.0 cases/100,000 persons/year) in China, but several areas with relatively high risk should be of concern. Compared with other age groups, children aged 2-6 years should be paid more attention because they have the highest AFT exposure level.
Collapse
|
45
|
Ali N, Manirujjaman M, Rana S, Degen GH. Determination of aflatoxin M 1 and deoxynivalenol biomarkers in infants and children urines from Bangladesh. Arch Toxicol 2020; 94:3775-3786. [PMID: 32880717 PMCID: PMC7603468 DOI: 10.1007/s00204-020-02857-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/14/2020] [Indexed: 12/25/2022]
Abstract
The mycotoxins aflatoxin B1 (AFB1) and deoxynivalenol (DON) are found worldwide in crops and dietary staples. The prevalence and levels of these contaminants can vary greatly, and data in Bangladeshi food commodities are scarce. To characterize human exposure, we have conducted biomonitoring, analyzing AFM1 (a metabolite of AFB1) and DON levels in urines of adult cohorts in Bangladesh. Yet, AFM1 and DON occurrence has not been studied in the very young population of this country. Thus, the same methods, HPLC-FD for AFM1 and LC-MS/MS for DON analysis, were now applied to determine these biomarkers in urines of infants (n = 49) and young children (n = 105) in Rajshahi and Dhaka district. Overall, AFM1 and DON detection frequency was 43.5% and 33.4%, with 34.7% and 11.5% in infant and 47.6% and 39.4% in children urines, respectively. The mean AFM1 levels in all infants (9.1 ± 14.3, max 55.6 pg/mL) and children (8.8 ± 12.9, max 75.3 pg/mL) were not significantly different. The AFM1 mean level was slightly higher in Dhaka (9.4 ± 12.4) compared to Rajshahi (8.5 ± 13.9 pg/mL) district. The average DON level was about 2-fold higher in infant (3.8 ± 2.9, max 6.8 ng/mL) than children urines (1.6 ± 1.8, max 8.6 ng/mL), and higher in Rajshahi (2.1 ± 2.3 ng/mL) than Dhaka (1.4 ± 1.6 ng/mL) district. The biomarker-based estimated average daily DON intake (29.6 ± 108.3 ng/kg bw in infants and 36.4 ± 81.8 ng/kg bw in children) or the maximum exposure (560 ng/kg bw) do not exceed the current maximum provisional tolerable daily intake value of 1 µg/kg bw for DON, although DON exposure in infants and children is higher than that of Bangladeshi adults. The AFM1 urine levels in young children are somewhat lower than those found previously in adult cohorts in Bangladesh, but the frequent detection of this biomarker for AFB1 exposure raises further concerns, also for this vulnerable part of the population. Therefore, continuous surveillance for aflatoxins in Bangladeshi food commodities is clearly required, first to identify major sources of intake and then to reduce exposure.
Collapse
Affiliation(s)
- Nurshad Ali
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - M. Manirujjaman
- Department of Biochemistry, Gonoshasthaya Samaj Vittik Medical College, Gono University, Savar, Dhaka, 1344 Bangladesh
| | - Sohel Rana
- Department of Veterinary and Animal Science, Rajshahi University, Rajshahi, 6205 Bangladesh
| | - Gisela H. Degen
- Leibniz-Research Centre for Working Environment and Human Factors (IfADo) at the TU Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| |
Collapse
|
46
|
Pan L, Chang P, Jin J, Yang Q, Xing F. Dimethylformamide Inhibits Fungal Growth and Aflatoxin B 1 Biosynthesis in Aspergillus flavus by Down-Regulating Glucose Metabolism and Amino Acid Biosynthesis. Toxins (Basel) 2020; 12:toxins12110683. [PMID: 33138160 PMCID: PMC7692752 DOI: 10.3390/toxins12110683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Aflatoxins (AFs) are secondary metabolites produced by plant fungal pathogens infecting crops with strong carcinogenic and mutagenic properties. Dimethylformamide (DMF) is an excellent solvent widely used in biology, medicine and other fields. However, the effect and mechanism of DMF as a common organic solvent against fungal growth and AFs production are not clear. Here, we discovered that DMF had obvious inhibitory effect against A. flavus, as well as displayed complete strong capacity to combat AFs production. Hereafter, the inhibition mechanism of DMF act on AFs production was revealed by the transcriptional expression analysis of genes referred to AFs biosynthesis. With 1% DMF treatment, two positive regulatory genes of AFs biosynthetic pathway aflS and aflR were down-regulated, leading to the suppression of the structural genes in AFs cluster like aflW, aflP. These changes may be due to the suppression of VeA and the subsequent up-regulation of FluG. Exposure to DMF caused the damage of cell wall and the dysfunction of mitochondria. In particular, it is worth noting that most amino acid biosynthesis and glucose metabolism pathway were down-regulated by 1% DMF using Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Taken together, these RNA-Seq data strongly suggest that DMF inhibits fungal growth and aflatoxin B1 (AFB1) production by A. flavus via the synergistic interference of glucose metabolism, amino acid biosynthesis and oxidative phosphorylation.
Collapse
Affiliation(s)
- Lin Pan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (L.P.); (J.J.)
| | - Peng Chang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (P.C.); (Q.Y.)
| | - Jing Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (L.P.); (J.J.)
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (P.C.); (Q.Y.)
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (L.P.); (J.J.)
- Correspondence: ; Tel.: +86-10-6281-1868
| |
Collapse
|
47
|
Cuevas-González PF, González-Córdova AF, Vallejo-Cordoba B, Aguilar-Toalá JE, Hall FG, Urbizo-Reyes UC, Liceaga AM, Hernandez-Mendoza A, García HS. Protective role of lactic acid bacteria and yeasts as dietary carcinogen-binding agents - a review. Crit Rev Food Sci Nutr 2020; 62:160-180. [PMID: 32901514 DOI: 10.1080/10408398.2020.1813685] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The importance of food contaminants in the link between diet and cancer has been widely demonstrated. Therefore, different physical and chemical strategies for the control of human exposure to such dietary carcinogens has been explored; however, most of these strategies are complex, costly, and have low efficiency which limited their applications. Hence, microbiological methods have been receiving more attention. Recent in vitro and in vivo studies have indicated that lactic acid bacteria (LAB) and yeast may act as dietary carcinogen-binding agents. This review describes the promising protective role of strains belonging mainly to the Lactobacillus, Bifidobacterium and Saccharomyces genera by acting as dietary carcinogen-binding agents. This property suggests that these microorganisms may have a protective role by reducing the bioaccessibility of dietary carcinogens, thereby decreasing their toxic effects. The mechanisms by which the binding process takes place have not been completely elucidated; thus, the possible underlying mechanisms and factors influencing carcinogens-binding will be addressed.
Collapse
Affiliation(s)
- P F Cuevas-González
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Mexico
| | - A F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Mexico
| | - B Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Mexico
| | - J E Aguilar-Toalá
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Mexico
| | - F G Hall
- Department of Food Science, Purdue University, West Lafayette, Indiana, United States
| | - U C Urbizo-Reyes
- Department of Food Science, Purdue University, West Lafayette, Indiana, United States
| | - A M Liceaga
- Department of Food Science, Purdue University, West Lafayette, Indiana, United States
| | - A Hernandez-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Mexico
| | - H S García
- Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, UNIDA, Veracruz, Mexico
| |
Collapse
|
48
|
Karamkhani M, Asilian-Mahabadi H, Daraei B, Seidkhani-Nahal A, Noori-Zadeh A. Liver and kidney serum profile abnormalities in workers exposed to aflatoxin B1 in urban solid waste management centers. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:472. [PMID: 32607657 DOI: 10.1007/s10661-020-08422-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Many workers are exposed to health problems arising from molds, fungi, and their toxins during waste processing. Aflatoxin B1 (AFB1) level in airborne and settled dust, aflatoxin B1-albumin (AFB1-Alb) adduct in serum, liver and kidney biochemical tests, and body redox change of workers in municipal dry waste-processing sites were investigated. The surface, personal, and area air dust and the blood of workers' samples were collected from the plastic and bread waste-sorting sections in three recycling municipal dry waste sites. Digestion (only for serum samples), passed through SPE cartridge, elution, and collection with methanol, immune-affinity column clean-up, and HPLC system equipped with post-column derivatization method and fluorescence detection were performed for determination of AFB1 and AFB1-Alb levels in the samples. The mean level of dust and AFB1 in the personal and area air, and in the settled dust and the AFB1-Alb in the serum of workers in the bread waste sorting, was higher than plastic waste-sorting samples, in all of the sites. The differences in the biochemical profiles of subjects exposed to aflatoxin B1 as compared to the control group especially in liver and kidney function parameters as well as antioxidant factors of the serum were significant. The workers in handling of municipal waste may be exposed to potentially hazardous levels of aflatoxin B1. The adverse effects of AFB1 on the kidney and liver may be caused by changes in the redox system.
Collapse
Affiliation(s)
- Morvarid Karamkhani
- Department of Occupational Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, P.O. Box. 14115-331, Iran
| | - Hassan Asilian-Mahabadi
- Department of Occupational Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, P.O. Box. 14115-331, Iran.
| | - Bahram Daraei
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box. 6153- 14155, Velenjak St., Shahid Chamran Highway, Tehran, Iran.
| | - Ali Seidkhani-Nahal
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Noori-Zadeh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
49
|
Kaiser N, Douches D, Dhingra A, Glenn KC, Herzig PR, Stowe EC, Swarup S. The role of conventional plant breeding in ensuring safe levels of naturally occurring toxins in food crops. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Mosallaie F, Jooyandeh H, Hojjati M, Fazlara A. Biological reduction of aflatoxin B1 in yogurt by probiotic strains of Lactobacillus acidophilus and Lactobacillus rhamnosus. Food Sci Biotechnol 2020; 29:793-803. [PMID: 32523789 PMCID: PMC7256161 DOI: 10.1007/s10068-019-00722-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 01/13/2023] Open
Abstract
The present study was conducted to investigate the ability of two probiotic strains, L. acidophilus PTCC 1643 and L. rhamnosus PTCC 1637, to bind aflatoxin B1 (AFB1, 20 ng/ml) in comparison with yogurt starter cultures, at equal bacterial count (~ 109 LogCFU/ml) during a 21-day storage period at 4 °C. All assessed treatments exhibited high percentages of AFB1-binding, ranged from 64.56 to 96.58%. However, the ability of probiotic bacteria was statistically higher than yogurt starter cultures. Aflatoxin binding ability of the selected lactic acid bacteria was dependent on both time and bacteria species. The highest and the lowest percentages of AFB1-removal was observed at 11th day of cold storage by L. rhamnosus (96.58 ± 3.97%) and at the first day of storage for yogurt starter cultures (64.56 ± 5.32%), respectively. The stability of bacterial cells-AFB1 complex was remarkable, since only 0.84-26.75% of bounded AFB1 was released from bacterial cells after 3 times washing during the storage period.
Collapse
Affiliation(s)
- Fatemeh Mosallaie
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Khuzestan Iran
| | - Hossein Jooyandeh
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Khuzestan Iran
| | - Mohammad Hojjati
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Khuzestan Iran
| | - Ali Fazlara
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|