1
|
Li Y, Thamizhchelvan AM, Ma H, Padelford J, Zhang Z, Wu T, Gu Q, Wang Z, Mao H. A Subtype Specific Probe for Targeted Magnetic Resonance Imaging of M2 Tumor-Associated Macrophages in Brain Tumors. Acta Biomater 2025:S1742-7061(25)00003-0. [PMID: 39805525 DOI: 10.1016/j.actbio.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/15/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Pro-tumoral M2 tumor-associated macrophages (TAMs) play a critical role in the tumor immune microenvironment (TIME), making them an important therapeutic target for cancer treatment. Approaches for imaging and monitoring M2 TAMs, as well as tracking their changes in response to tumor progression or treatment are highly sought-after but remain underdeveloped. Here, we report an M2-targeted magnetic resonance imaging (MRI) probe based on sub-5 nm ultrafine iron oxide nanoparticles (uIONP), featuring an anti-biofouling coating to prevent non-specific macrophage uptake and an M2-specific peptide ligand (M2pep) for active targeting of M2 TAMs. The targeting specificity of M2pep-uIONP was validated in vitro, using M0, M1, and M2 macrophages, and in vivo, using an orthotopic patient-tissue-derived xenograft (PDX) mouse model of glioblastoma (GBM). MRI of the mice revealed hypointense contrast in T2-weighted images of intracranial tumors 24 hours after receiving intravenous (i.v.) injection of M2pep-uIONP. In contrast, no noticeable change in contrast was observed in mice receiving scrambled-sequence M2pep-conjugated uIONP (scM2pep-uIONP) or the commercially available iron oxide nanoparticle formulation, Ferumoxytol. Measurement of nanoparticle-induced T2 value changes in tumors showed 38%, 9%, and 2% decrease for M2pep-uIONP, scM2pep-uIONP, and Ferumoxytol, respectively. Moreover, M2pep-uIONP exhibited 88.7-fold higher intra-tumoral accumulation compared to co-injected Ferumoxytol at 24 hours post-injection. Immunofluorescence-stained tumor sections showed that CD68+/CD163+ M2 TAMs were highly co-localized with Cy7-M2pep-uIONP, but not with Cy7-scM2pep-uIONP and Cy7-Ferumoxytol. Flow cytometry analysis revealed 26 ± 10% of M2 TAMs were targeted by M2pep-uIONP, which was significantly higher than Ferumoxytol (16 ± 1%) and scM2pep-uIONP (13 ± 4%) with the same dosage (20 mg Fe/kg). These findings demonstrate that M2pep-uIONP functions as a ligand-mediated MRI probe for targeted imaging of M2 TAMs in GBM, with potential applications for imaging of M2 TAM in other cancer types. STATEMENT OF SIGNIFICANCE: Targeting the pro-tumoral M2 subtype of tumor-associated macrophages (TAMs) to modulate the tumor immune microenvironment (TIME) is an emerging strategy for developing novel cancer therapies and enhancing the efficacy of existing treatments. In this study, we have developed a magnetic resonance imaging (MRI) probe using sub-5 nm ultrafine iron oxide nanoparticles (uIONP), which are coated with an anti-biofouling polymer and conjugated to an M2-specific peptide ligand (M2pep). Our results demonstrate that M2pep-uIONP exhibits an 88.7-fold higher accumulation in intracranial tumors in an orthotopic patient-derived xenograft (PDX) model of glioblastoma compared to the commercial iron oxide nanoparticle, Ferumoxytol. This enhanced accumulation enables M2pep-uIONP to induce significant MRI contrast, providing a non-invasive imaging tool to visualize M2 TAMs and monitor changes in the TIME of brain tumors and potentially other cancers.
Collapse
Affiliation(s)
- Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America; 5M Biomed, LLC, Atlanta, Georgia 30303, United States of America
| | - Anbu Mozhi Thamizhchelvan
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America
| | - Hedi Ma
- 5M Biomed, LLC, Atlanta, Georgia 30303, United States of America
| | | | - Zhaobin Zhang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America
| | - Tianhe Wu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America
| | - Quanquan Gu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America
| | - Zi Wang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America.
| |
Collapse
|
2
|
Xie M, Meng F, Wang P, Díaz-García AM, Parkhats M, Santos-Oliveira R, Asim MH, Bostan N, Gu H, Yang L, Li Q, Yang Z, Lai H, Cai Y. Surface Engineering of Magnetic Iron Oxide Nanoparticles for Breast Cancer Diagnostics and Drug Delivery. Int J Nanomedicine 2024; 19:8437-8461. [PMID: 39170101 PMCID: PMC11338174 DOI: 10.2147/ijn.s477652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Data published in 2020 by the International Agency for Research on Cancer (IARC) of the World Health Organization show that breast cancer (BC) has become the most common cancer globally, affecting more than 2 million women each year. The complex tumor microenvironment, drug resistance, metastasis, and poor prognosis constitute the primary challenges in the current diagnosis and treatment of BC. Magnetic iron oxide nanoparticles (MIONPs) have emerged as a promising nanoplatform for diagnostic tumor imaging as well as therapeutic drug-targeted delivery due to their unique physicochemical properties. The extensive surface engineering has given rise to multifunctionalized MIONPs. In this review, the latest advancements in surface modification strategies of MIONPs over the past five years are summarized and categorized as constrast agents and drug delivery platforms. Additionally, the remaining challenges and future prospects of MIONPs-based targeted delivery are discussed.
Collapse
Affiliation(s)
- Mengjie Xie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Laboratory of Traditional Chinese Medicine Informatization / International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528400, People’s Republic of China
| | - Panpan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | | | - Marina Parkhats
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, 220072, Belarus
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, RJ, 21941906, Brazil
| | | | - Nazish Bostan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Honghui Gu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Lina Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Qi Li
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Zhenjiang Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Haibiao Lai
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528400, People’s Republic of China
| | - Yu Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Laboratory of Traditional Chinese Medicine Informatization / International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| |
Collapse
|
3
|
Si G, Du Y, Tang P, Ma G, Jia Z, Zhou X, Mu D, Shen Y, Lu Y, Mao Y, Chen C, Li Y, Gu N. Unveiling the next generation of MRI contrast agents: current insights and perspectives on ferumoxytol-enhanced MRI. Natl Sci Rev 2024; 11:nwae057. [PMID: 38577664 PMCID: PMC10989670 DOI: 10.1093/nsr/nwae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 04/06/2024] Open
Abstract
Contrast-enhanced magnetic resonance imaging (CE-MRI) is a pivotal tool for global disease diagnosis and management. Since its clinical availability in 2009, the off-label use of ferumoxytol for ferumoxytol-enhanced MRI (FE-MRI) has significantly reshaped CE-MRI practices. Unlike MRI that is enhanced by gadolinium-based contrast agents, FE-MRI offers advantages such as reduced contrast agent dosage, extended imaging windows, no nephrotoxicity, higher MRI time efficiency and the capability for molecular imaging. As a leading superparamagnetic iron oxide contrast agent, ferumoxytol is heralded as the next generation of contrast agents. This review delineates the pivotal clinical applications and inherent technical superiority of FE-MRI, providing an avant-garde medical-engineering interdisciplinary lens, thus bridging the gap between clinical demands and engineering innovations. Concurrently, we spotlight the emerging imaging themes and new technical breakthroughs. Lastly, we share our own insights on the potential trajectory of FE-MRI, shedding light on its future within the medical imaging realm.
Collapse
Affiliation(s)
- Guangxiang Si
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Yue Du
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, China
| | - Peng Tang
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, China
| | - Gao Ma
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhaochen Jia
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai 200126, China
| | - Dan Mu
- Department of Radiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yan Shen
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, China
| | - Yi Lu
- School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
| | - Yu Mao
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Chuan Chen
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Yan Li
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Ning Gu
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
4
|
Roudi R, Pisani L, Pisani F, Kiru L, Daldrup-Link HE. Novel Clinically Translatable Iron Oxide Nanoparticle for Monitoring Anti-CD47 Cancer Immunotherapy. Invest Radiol 2024; 59:391-403. [PMID: 37812494 PMCID: PMC10997482 DOI: 10.1097/rli.0000000000001030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
OBJECTIVES A novel clinically translatable iron oxide nanoparticle (IOP) is currently being tested in phase 2 clinical trials as a magnetic resonance imaging (MRI) contrast agent for hepatocellular carcinoma diagnosis. The purpose of our study is to evaluate if this IOP can detect activation of tumor-associated macrophages (TAMs) due to CD47 mAb-targeted immunotherapy in 2 mouse models of osteosarcoma. MATERIALS AND METHODS The toxicity, biodistribution, and pharmacokinetics of IOP were evaluated in 77 female and 77 male rats. Then, 24 female BALB/c mice with intratibial murine K7M2 tumors and 24 female NOD scid gamma mice with intratibial human 143B osteosarcoma xenografts were treated with either CD47 mAb (n = 12) or control antibody (n = 12). In each treatment group, 6 mice underwent MRI scans before and after intravenous infusion of either IOP or ferumoxytol (30 mg Fe/kg). Tumor T2* values and TAM markers F4/80, CD80, CD206, and Prussian blue staining were compared between different experimental groups using exact 2-sided Wilcoxon rank sum tests. RESULTS Biodistribution and safety evaluations of IOP were favorable for doses of less than 50 mg Fe/kg body weight in female and male rats. Both IOP and ferumoxytol caused negative enhancement (darkening) of the tumor tissue. Both murine and human osteosarcoma tumors treated with CD47 mAb demonstrated significantly shortened T2* relaxation times after infusion of IOP or ferumoxytol compared with controls (all P 's < 0.05). Higher levels of F4/80 + CD80 + were found in murine and human osteosarcomas treated with CD47 mAb compared with sham-treated controls (all P 's < 0.05). In addition, murine CD47 mAb-treated tumors after infusion of either IOP or ferumoxytol showed significantly higher numbers of Prussian blue-positive cells compared with controls ( P < 0.05). There was no significant difference of F4/80 + CD206 + cells among any of the groups (all P 's > 0.05). CONCLUSIONS Iron oxide nanoparticle-enhanced MRI can be used to diagnose CD47 mAb-mediated TAM-activation in osteosarcomas.
Collapse
Affiliation(s)
- Raheleh Roudi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Pisani
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Fabrizio Pisani
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Louise Kiru
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Heike E. Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Hematology/Oncology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
Lapusan R, Borlan R, Focsan M. Advancing MRI with magnetic nanoparticles: a comprehensive review of translational research and clinical trials. NANOSCALE ADVANCES 2024; 6:2234-2259. [PMID: 38694462 PMCID: PMC11059564 DOI: 10.1039/d3na01064c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/01/2024] [Indexed: 05/04/2024]
Abstract
The nexus of advanced technology and medical therapeutics has ushered in a transformative epoch in contemporary medicine. Within this arena, Magnetic Resonance Imaging (MRI) emerges as a paramount tool, intertwining the advancements of technology with the art of healing. MRI's pivotal role is evident in its broad applicability, spanning from neurological diseases, soft-tissue and tumour characterization, to many more applications. Though already foundational, aspirations remain to further enhance MRI's capabilities. A significant avenue under exploration is the incorporation of innovative nanotechnological contrast agents. Forefront among these are Superparamagnetic Iron Oxide Nanoparticles (SPIONs), recognized for their adaptability and safety profile. SPION's intrinsic malleability allows them to be tailored for improved biocompatibility, while their functionality is further broadened when equipped with specific targeting molecules. Yet, the path to optimization is not devoid of challenges, from renal clearance concerns to potential side effects stemming from iron overload. This review endeavors to map the intricate journey of SPIONs as MRI contrast agents, offering a chronological perspective of their evolution and deployment. We provide an in-depth current outline of the most representative and impactful pre-clinical and clinical studies centered on the integration of SPIONs in MRI, tracing their trajectory from foundational research to contemporary applications.
Collapse
Affiliation(s)
- Radu Lapusan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University Cluj-Napoca Romania
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University Cluj-Napoca Romania
| | - Raluca Borlan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University Cluj-Napoca Romania
| | - Monica Focsan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University Cluj-Napoca Romania
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University Cluj-Napoca Romania
| |
Collapse
|
6
|
Huang S, Zhang P, Yin N, Xu Z, Liu X, Wu A, Zhang X, Li Z, Zhang Z, Zhong T, Liu L, Shi Y, Dong J. Glioblastoma stem cell-derived exosomal miR-374b-3p promotes tumor angiogenesis and progression through inducing M2 macrophages polarization. iScience 2024; 27:109270. [PMID: 38487014 PMCID: PMC10937837 DOI: 10.1016/j.isci.2024.109270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Glioblastoma stem cells (GSCs) reside in hypoxic periarteriolar niches of glioblastoma micro-environment, however, the crosstalk of GSCs with macrophages on regulating tumor angiogenesis and progression are not fully elucidated. GSCs-derived exosomes (GSCs-exos) are essential mediators during tumor immune-microenvironment remodeling initiated by GSCs, resulting in M2 polarization of tumor-associated macrophages (TAMs) as we reported previously. Our data disclosed aberrant upregulation of miR-374b-3p in both clinical glioblastoma specimens and human cell lines of GSCs. MiR-374b-3p level was high in GSCs-exos and can be internalized by macrophages. Mechanistically, GSCs exosomal miR-374b-3p induced M2 polarization of macrophages by downregulating phosphatase and tensin expression, thereby promoting migration and tube formation of vascular endothelial cells after coculture with M2 macrophages. Cumulatively, these data indicated that GSCs exosomal miR-374b-3p can enhance tumor angiogenesis by inducing M2 polarization of macrophages, as well as promote malignant progression of glioblastoma. Targeting exosomal miR-374b-3p may serve as a potential target against glioblastoma.
Collapse
Affiliation(s)
- Shilu Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Peng Zhang
- Department of Neurosurgery, Rugao People’s Hospital, RuGao 226500, China
| | - Nanheng Yin
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zhipeng Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xinglei Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Anyi Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xiaopei Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zengyang Li
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zhicheng Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Tao Zhong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Liang Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Shi
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
7
|
Petronek MS, Teferi N, Lee CY, Magnotta VA, Allen BG. MRI Detection and Therapeutic Enhancement of Ferumoxytol Internalization in Glioblastoma Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:189. [PMID: 38251153 PMCID: PMC10821426 DOI: 10.3390/nano14020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Recently, the FDA-approved iron oxide nanoparticle, ferumoxytol, has been found to enhance the efficacy of pharmacological ascorbate (AscH-) in treating glioblastoma, as AscH- reduces the Fe3+ sites in the nanoparticle core. Given the iron oxidation state specificity of T2* relaxation mapping, this study aims to investigate the ability of T2* relaxation to monitor the reduction of ferumoxytol by AscH- with respect to its in vitro therapeutic enhancement. This study employed an in vitro glioblastoma MRI model system to investigate the chemical interaction of ferumoxytol with T2* mapping. Lipofectamine was utilized to facilitate ferumoxytol internalization and assess intracellular versus extracellular chemistry. In vitro T2* mapping successfully detected an AscH--mediated reduction of ferumoxytol (25.6 ms versus 2.8 ms for FMX alone). The T2* relaxation technique identified the release of Fe2+ from ferumoxytol by AscH- in glioblastoma cells. However, the high iron content of ferumoxytol limited T2* ability to differentiate between the external and internal reduction of ferumoxytol by AscH- (ΔT2* = +839% for external FMX and +1112% for internal FMX reduction). Notably, the internalization of ferumoxytol significantly enhances its ability to promote AscH- toxicity (dose enhancement ratio for extracellular FMX = 1.16 versus 1.54 for intracellular FMX). These data provide valuable insights into the MR-based nanotheranostic application of ferumoxytol and AscH- therapy for glioblastoma management. Future developmental efforts, such as FMX surface modifications, may be warranted to enhance this approach further.
Collapse
Affiliation(s)
- Michael S. Petronek
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Nahom Teferi
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA;
| | - Chu-Yu Lee
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA (V.A.M.)
| | - Vincent A. Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA (V.A.M.)
| | - Bryan G. Allen
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Dong W, Wang N, Qi Z. Advances in the application of neuroinflammatory molecular imaging in brain malignancies. Front Immunol 2023; 14:1211900. [PMID: 37533851 PMCID: PMC10390727 DOI: 10.3389/fimmu.2023.1211900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023] Open
Abstract
The prevalence of brain cancer has been increasing in recent decades, posing significant healthcare challenges. The introduction of immunotherapies has brought forth notable diagnostic imaging challenges for brain tumors. The tumor microenvironment undergoes substantial changes in induced immunosuppression and immune responses following the development of primary brain tumor and brain metastasis, affecting the progression and metastasis of brain tumors. Consequently, effective and accurate neuroimaging techniques are necessary for clinical practice and monitoring. However, patients with brain tumors might experience radiation-induced necrosis or other neuroinflammation. Currently, positron emission tomography and various magnetic resonance imaging techniques play a crucial role in diagnosing and evaluating brain tumors. Nevertheless, differentiating between brain tumors and necrotic lesions or inflamed tissues remains a significant challenge in the clinical diagnosis of the advancements in immunotherapeutics and precision oncology have underscored the importance of clinically applicable imaging measures for diagnosing and monitoring neuroinflammation. This review summarizes recent advances in neuroimaging methods aimed at enhancing the specificity of brain tumor diagnosis and evaluating inflamed lesions.
Collapse
Affiliation(s)
- Wenxia Dong
- Department of Radiology, The First People’s Hospital of Linping District, Hangzhou, China
| | - Ning Wang
- Department of Medical Imaging, Jining Third People’s Hospital, Jining, Shandong, China
| | - Zhe Qi
- Department of Radiology, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
9
|
Jaju A, Li Y, Dahmoush H, Gottardo NG, Laughlin S, Mirsky D, Panigrahy A, Sabin ND, Shaw D, Storm PB, Poussaint TY, Patay Z, Bhatia A. Imaging of pediatric brain tumors: A COG Diagnostic Imaging Committee/SPR Oncology Committee/ASPNR White Paper. Pediatr Blood Cancer 2023; 70 Suppl 4:e30147. [PMID: 36519599 PMCID: PMC10466217 DOI: 10.1002/pbc.30147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/16/2022]
Abstract
Tumors of the central nervous system are the most common solid malignancies in children and the most common cause of pediatric cancer-related mortality. Imaging plays a central role in diagnosis, staging, treatment planning, and response assessment of pediatric brain tumors. However, the substantial variability in brain tumor imaging protocols across institutions leads to variability in patient risk stratification and treatment decisions, and complicates comparisons of clinical trial results. This White Paper provides consensus-based imaging recommendations for evaluating pediatric patients with primary brain tumors. The proposed brain magnetic resonance imaging protocol recommendations balance advancements in imaging techniques with the practicality of deployment across most imaging centers.
Collapse
Affiliation(s)
- Alok Jaju
- Department of Medical Imaging, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Yi Li
- UCSF Department of Radiology and Biomedical Imaging, San Francisco, California, USA
| | - Hisham Dahmoush
- Department of Radiology, Lucile Packard Children's Hospital at Stanford, Palo Alto, California, USA
| | - Nicholas G Gottardo
- Department of Paediatric and Adolescent Oncology and Haematology, Perth Children's Hospital, Brain Tumour Research Programme, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Suzanne Laughlin
- Department of Diagnostic Imaging, The Hospital for Sick Children and Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - David Mirsky
- Department of Radiology, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Ashok Panigrahy
- Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Noah D Sabin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Dennis Shaw
- Department of Radiology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Phillip B Storm
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tina Young Poussaint
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zoltan Patay
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Aashim Bhatia
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Xia W, Singh N, Goel S, Shi S. Molecular Imaging of Innate Immunity and Immunotherapy. Adv Drug Deliv Rev 2023; 198:114865. [PMID: 37182699 DOI: 10.1016/j.addr.2023.114865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
The innate immune system plays a key role as the first line of defense in various human diseases including cancer, cardiovascular and inflammatory diseases. In contrast to tissue biopsies and blood biopsies, in vivo imaging of the innate immune system can provide whole body measurements of immune cell location and function and changes in response to disease progression and therapy. Rationally developed molecular imaging strategies can be used in evaluating the status and spatio-temporal distributions of the innate immune cells in near real-time, mapping the biodistribution of novel innate immunotherapies, monitoring their efficacy and potential toxicities, and eventually for stratifying patients that are likely to benefit from these immunotherapies. In this review, we will highlight the current state-of-the-art in noninvasive imaging techniques for preclinical imaging of the innate immune system particularly focusing on cell trafficking, biodistribution, as well as pharmacokinetics and dynamics of promising immunotherapies in cancer and other diseases; discuss the unmet needs and current challenges in integrating imaging modalities and immunology and suggest potential solutions to overcome these barriers.
Collapse
Affiliation(s)
- Wenxi Xia
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States
| | - Neetu Singh
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States
| | - Shreya Goel
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States; Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112, United States
| | - Sixiang Shi
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States; Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
11
|
Buck J, Perez‐Balderas F, Zarghami N, Johanssen V, Khrapitchev AA, Larkin JR, Sibson NR. Imaging angiogenesis in an intracerebrally induced model of brain macrometastasis using α v β 3 -targeted iron oxide microparticles. NMR IN BIOMEDICINE 2023; 36:e4948. [PMID: 37038086 PMCID: PMC10909432 DOI: 10.1002/nbm.4948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Brain metastasis is responsible for a large proportion of cancer mortality, and there are currently no effective treatments. Moreover, the impact of treatments, particularly antiangiogenic therapeutics, is difficult to ascertain using current magnetic resonance imaging (MRI) methods. Imaging of the angiogenic vasculature has been successfully carried out in solid tumours using microparticles of iron oxide (MPIO) conjugated to a Arg-Gly-Asp peptide (RGD) targeting integrin αv β3 . The aim of this study was to determine whether RGD-MPIO could be used to identify angiogenic blood vessels in brain metastases in vivo. A mouse model of intracerebrally implanted brain macrometastasis was established through intracerebral injection of 4T1-GFP cells. T2 *-weighted imaging was used to visualise MPIO-induced hypointense voxels in vivo, and Prussian blue staining was used to visualise MPIO and endogenous iron histologically ex vivo. The RGD-MPIO showed target-specific binding in vivo, but the sensitivity of the agent for visualising angiogenic vessels per se was reduced by the presence of endogenous iron-laden macrophages in larger metastases, resulting in pre-existing hypointense areas within the tumour. Further, our data suggest that peptide-targeted MPIO, but not antibody-targeted MPIO, are taken up by perivascular macrophages within the macrometastatic microenvironment, resulting in additional nonspecific contrast. While pre-MPIO imaging will circumvent the issues surrounding pre-existing hypointensities and enable detection of specific contrast, our preliminary findings suggest that the use of antibodies rather than peptides as the targeting ligand may represent a preferable route forward for new angiogenesis-targeted molecular MRI agents.
Collapse
Affiliation(s)
- Jessica Buck
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Francisco Perez‐Balderas
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Niloufar Zarghami
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Vanessa Johanssen
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Alexandre A. Khrapitchev
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - James R. Larkin
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Nicola R. Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| |
Collapse
|
12
|
Adams LC, Jayapal P, Ramasamy SK, Morakote W, Yeom K, Baratto L, Daldrup-Link HE. Ferumoxytol-Enhanced MRI in Children and Young Adults: State of the Art. AJR Am J Roentgenol 2023; 220:590-603. [PMID: 36197052 PMCID: PMC10038879 DOI: 10.2214/ajr.22.28453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ferumoxytol is an ultrasmall iron oxide nanoparticle that was originally approved by the FDA in 2009 for IV treatment of iron deficiency in adults with chronic kidney disease. Subsequently, its off-label use as an MRI contrast agent increased in clinical practice, particularly in pediatric patients in North America. Unlike conventional MRI contrast agents that are based on the rare earth metal gadolinium (gadolinium-based contrast agents), ferumoxytol is biodegradable and carries no potential risk of nephrogenic systemic fibrosis. At FDA-approved doses, ferumoxytol shows no long-term tissue retention in patients with intact iron metabolism. Ferumoxytol provides unique MRI properties, including long-lasting vascular retention (facilitating high-quality vascular imaging) and retention in reticuloendothelial system tissues, thereby supporting a variety of applications beyond those possible with gadolinium-based contrast agents (GBCAs). This Clinical Perspective describes clinical and early translational applications of ferumoxytol-enhanced MRI in children and young adults through off-label use in a variety of settings, including vascular, cardiac, and cancer imaging, drawing on the institutional experience of the authors. In addition, we describe current advances in pre-clinical and clinical research using ferumoxytol in cellular and molecular imaging as well as the use of ferumoxytol as a novel potential cancer therapeutic agent.
Collapse
Affiliation(s)
- Lisa C. Adams
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Lucile Packard Children’s Hospital, Stanford University, 725 Welch Road, Room 1665, Stanford, CA, 94305-5614, USA
| | - Praveen Jayapal
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Lucile Packard Children’s Hospital, Stanford University, 725 Welch Road, Room 1665, Stanford, CA, 94305-5614, USA
| | - Shakthi Kumaran Ramasamy
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Lucile Packard Children’s Hospital, Stanford University, 725 Welch Road, Room 1665, Stanford, CA, 94305-5614, USA
| | - Wipawee Morakote
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Lucile Packard Children’s Hospital, Stanford University, 725 Welch Road, Room 1665, Stanford, CA, 94305-5614, USA
| | - Kristen Yeom
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Lucile Packard Children’s Hospital, Stanford University, 725 Welch Road, Room 1665, Stanford, CA, 94305-5614, USA
| | - Lucia Baratto
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Lucile Packard Children’s Hospital, Stanford University, 725 Welch Road, Room 1665, Stanford, CA, 94305-5614, USA
| | - Heike E. Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Lucile Packard Children’s Hospital, Stanford University, 725 Welch Road, Room 1665, Stanford, CA, 94305-5614, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Cancer Imaging and Early Detection Program, Stanford Cancer Institute, Stanford, CA, USA
| |
Collapse
|
13
|
Peehl DM, Badea CT, Chenevert TL, Daldrup-Link HE, Ding L, Dobrolecki LE, Houghton AM, Kinahan PE, Kurhanewicz J, Lewis MT, Li S, Luker GD, Ma CX, Manning HC, Mowery YM, O’Dwyer PJ, Pautler RG, Rosen MA, Roudi R, Ross BD, Shoghi KI, Sriram R, Talpaz M, Wahl RL, Zhou R. Animal Models and Their Role in Imaging-Assisted Co-Clinical Trials. Tomography 2023; 9:657-680. [PMID: 36961012 PMCID: PMC10037611 DOI: 10.3390/tomography9020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
The availability of high-fidelity animal models for oncology research has grown enormously in recent years, enabling preclinical studies relevant to prevention, diagnosis, and treatment of cancer to be undertaken. This has led to increased opportunities to conduct co-clinical trials, which are studies on patients that are carried out parallel to or sequentially with animal models of cancer that mirror the biology of the patients' tumors. Patient-derived xenografts (PDX) and genetically engineered mouse models (GEMM) are considered to be the models that best represent human disease and have high translational value. Notably, one element of co-clinical trials that still needs significant optimization is quantitative imaging. The National Cancer Institute has organized a Co-Clinical Imaging Resource Program (CIRP) network to establish best practices for co-clinical imaging and to optimize translational quantitative imaging methodologies. This overview describes the ten co-clinical trials of investigators from eleven institutions who are currently supported by the CIRP initiative and are members of the Animal Models and Co-clinical Trials (AMCT) Working Group. Each team describes their corresponding clinical trial, type of cancer targeted, rationale for choice of animal models, therapy, and imaging modalities. The strengths and weaknesses of the co-clinical trial design and the challenges encountered are considered. The rich research resources generated by the members of the AMCT Working Group will benefit the broad research community and improve the quality and translational impact of imaging in co-clinical trials.
Collapse
Affiliation(s)
- Donna M. Peehl
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA; (J.K.); (R.S.)
| | - Cristian T. Badea
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Thomas L. Chenevert
- Department of Radiology and the Center for Molecular Imaging, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; (T.L.C.); (G.D.L.); (B.D.R.)
| | - Heike E. Daldrup-Link
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA 94305, USA; (H.E.D.-L.); (R.R.)
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (L.D.); (S.L.); (C.X.M.)
| | - Lacey E. Dobrolecki
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA;
| | | | - Paul E. Kinahan
- Department of Radiology, University of Washington, Seattle, WA 98105, USA;
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA; (J.K.); (R.S.)
| | - Michael T. Lewis
- Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Shunqiang Li
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (L.D.); (S.L.); (C.X.M.)
| | - Gary D. Luker
- Department of Radiology and the Center for Molecular Imaging, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; (T.L.C.); (G.D.L.); (B.D.R.)
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Cynthia X. Ma
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (L.D.); (S.L.); (C.X.M.)
| | - H. Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yvonne M. Mowery
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27708, USA;
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27708, USA
| | - Peter J. O’Dwyer
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.J.O.); (M.A.R.); (R.Z.)
| | - Robia G. Pautler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Mark A. Rosen
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.J.O.); (M.A.R.); (R.Z.)
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA 94305, USA; (H.E.D.-L.); (R.R.)
| | - Brian D. Ross
- Department of Radiology and the Center for Molecular Imaging, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; (T.L.C.); (G.D.L.); (B.D.R.)
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Kooresh I. Shoghi
- Mallinckrodt Institute of Radiology (MIR), Washington University School of Medicine, St. Louis, MO 63110, USA; (K.I.S.); (R.L.W.)
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA; (J.K.); (R.S.)
| | - Moshe Talpaz
- Division of Hematology/Oncology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA;
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Richard L. Wahl
- Mallinckrodt Institute of Radiology (MIR), Washington University School of Medicine, St. Louis, MO 63110, USA; (K.I.S.); (R.L.W.)
| | - Rong Zhou
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.J.O.); (M.A.R.); (R.Z.)
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Huang CH, Chang E, Zheng L, Raj JGJ, Wu W, Pisani LJ, Daldrup-Link HE. Tumor protease-activated theranostic nanoparticles for MRI-guided glioblastoma therapy. Theranostics 2023; 13:1745-1758. [PMID: 37064879 PMCID: PMC10091873 DOI: 10.7150/thno.79342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/28/2023] [Indexed: 04/18/2023] Open
Abstract
Rationale: As a cancer, Glioblastoma (GBM) is a highly lethal and difficult-to-treat. With the aim of improving therapies to GBM, we developed novel and target-specific theranostic nanoparticles (TNPs) that can be selectively cleaved by cathepsin B (Cat B) to release the potent toxin monomethyl auristatin E (MMAE). Methods: We synthesized TNPs composed of a ferumoxytol-based nanoparticle carrier and a peptide prodrug with a Cat-B-responsive linker and the tubulin inhibitor MMAE. We hypothesized that intratumoral Cat B can cleave our TNPs and release MMAE to kill GBM cells. The ferumoxytol core enables in vivo drug tracking with magnetic resonance imaging (MRI). We incubated U87-MG GBM cells with TNPs or ferumoxytol and evaluated the TNP content in the cells with transmission electron microscopy and Prussian blue staining. In addition, we stereotaxically implanted 6- to 8-week-old nude mice with U87-MG with U87-MG GBM cells that express a fusion protein of Green Fluorescence Protein and firefly Luciferase (U87-MG/GFP-fLuc). We then treated the animals with an intravenous dose of TNPs (25 mg/kg of ferumoxytol, 0.3 mg/kg of MMAE) or control. We also evaluated the combination of TNP treatment with radiation therapy. We performed MRI before and after TNP injection. We compared the results for tumor and normal brain tissue between the TNP and control groups. We also monitored tumor growth for a period of 21 days. Results: We successfully synthesized TNPs with a hydrodynamic size of 41 ± 5 nm and a zeta potential of 6 ± 3 mV. TNP-treated cells demonstrated a significantly higher iron content than ferumoxytol-treated cells (98 ± 1% vs. 3 ± 1% of cells were iron-positive, respectively). We also found significantly fewer live attached cells in the TNP-treated group (3.8 ± 2.0 px2) than in the ferumoxytol-treated group (80.0 ± 14.5 px2, p < 0001). In vivo MRI studies demonstrated a decline in the tumor signal after TNP (T2= 28 ms) but not control (T2= 32 ms) injections. When TNP injection was combined with radiation therapy, the tumor signals dropped further (T2 = 24 ms). The combination therapy of radiation therapy and TNPs extended the median survival from 14.5 days for the control group to 45 days for the combination therapy group. Conclusion: The new cleavable TNPs reported in this work accumulate in GBM, cause tumor cell death, and have synergistic effects with radiation therapy.
Collapse
Affiliation(s)
- Ching-Hsin Huang
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, CA, U.S.A
| | - Edwin Chang
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, CA, U.S.A
- Stanford Center for Innovation in In vivo Imaging (SCi 3 ) at Porter, Canary Center for Cancer Early Detection, Stanford University, CA, U.S.A
| | - Li Zheng
- Sarafan Chemistry, Engineering & Medicine for Human Health (Chem-H), Stanford University, Stanford, CA, U.S.A
| | - Joe Gerald Jesu Raj
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, CA, U.S.A
| | - Wei Wu
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, CA, U.S.A
| | - Laura J. Pisani
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, CA, U.S.A
- Stanford Center for Innovation in In vivo Imaging (SCi 3 ) at Clark, James H. Clark Center, Stanford University, CA, U.S.A
| | - Heike E. Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, CA, U.S.A
| |
Collapse
|
15
|
Daldrup-Link HE. Pretherapy Ferumoxytol-enhanced MRI for Metastatic Breast Cancer: A New Approach for Predicting Tumor Delivery of Macromolecular Therapeutics? Radiol Imaging Cancer 2023; 5:e220183. [PMID: 36734849 PMCID: PMC10077083 DOI: 10.1148/rycan.220183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
|
16
|
Ravi H, Arias-Lorza AM, Costello JR, Han HS, Jeong DK, Klinz SG, Sachdev JC, Korn RL, Raghunand N. Pretherapy Ferumoxytol-enhanced MRI to Predict Response to Liposomal Irinotecan in Metastatic Breast Cancer. Radiol Imaging Cancer 2023; 5:e220022. [PMID: 36734848 PMCID: PMC10077095 DOI: 10.1148/rycan.220022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Purpose To investigate ferumoxytol (FMX)-enhanced MRI as a pretreatment predictor of response to liposomal irinotecan (nal-IRI) for thoracoabdominal and brain metastases in women with metastatic breast cancer (mBC). Materials and Methods In this phase 1 expansion trial (ClinicalTrials.gov identifier, NCT01770353; 27 participants), 49 thoracoabdominal (19 participants; mean age, 48 years ± 11 [SD]) and 19 brain (seven participants; mean age, 54 years ± 8) metastases were analyzed on MR images acquired before, 1-4 hours after, and 16-24 hours after FMX administration. In thoracoabdominal metastases, tumor transverse relaxation rate (R*2) was normalized to the mean R*2 in the spleen (rR*2), and the tumor histogram metric rR*2,N, representing the average of rR*2 in voxels above the nth percentile, was computed. In brain metastases, a novel compartmentation index was derived by applying the MRI signal equation to phantom-calibrated coregistered FMX-enhanced MRI brain scans acquired before, 1-4 hours after, and 16-24 hours after FMX administration. The fraction of voxels with an FMX compartmentation index greater than 1 was computed over the whole tumor (FCIGT1) and from voxels above the 90th percentile R*2 (FCIGT1 R*2,90). Results rR*2,90 computed from pretherapy MRI performed 16-24 hours after FMX administration, without reference to calibration phantoms, predicted response to nal-IRI in thoracoabdominal metastases (accuracy, 74%). rR*2,90 performance was robust to the inclusion of some peritumoral tissue within the tumor region of interest. FCIGT1 R*2,90 provided 79% accuracy on cross-validation in prediction of response in brain metastases. Conclusion This first in-human study focused on mBC suggests that FMX-enhanced MRI biologic markers can be useful for pretherapy prediction of response to nal-IRI in patients with mBC. Keywords: MRI Contrast Agent, MRI, Breast, Head/Neck, Tumor Response, Experimental Investigations, Brain/Brain Stem Clinical trial registration no. NCT01770353 Supplemental material is available for this article. © RSNA, 2023 See also commentary by Daldrup-Link in this issue.
Collapse
Affiliation(s)
- Harshan Ravi
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - Andres M Arias-Lorza
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - James R Costello
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - Hyo Sook Han
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - Daniel K Jeong
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - Stephan G Klinz
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - Jasgit C Sachdev
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - Ronald L Korn
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| | - Natarajan Raghunand
- From the Departments of Cancer Physiology (H.R., A.M.A.L., N.R.), Radiology (J.R.C., D.K.J.), and Breast Oncology (H.S.H.), Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612; Ipsen Bioscience, Cambridge, Mass (S.G.K.); HonorHealth Research Institute, Scottsdale, Ariz (J.C.S.); Imaging Endpoints Core Laboratory, Scottsdale, Ariz (R.L.K.); and Department of Oncologic Sciences, University of South Florida, Tampa, Fla (N.R.)
| |
Collapse
|
17
|
Stoller J, Kersch CN, Muldoon LL, Ambady P, Harrington CA, Fu R, Raslan AM, Dogan A, Neuwelt EA, Barajas RF. Deciphering spatially distinct immune microenvironments in glioblastoma using ferumoxytol and gadolinium-enhanced and FLAIR hyperintense MRI phenotypes. Neurooncol Adv 2023; 5:vdad148. [PMID: 38077209 PMCID: PMC10699850 DOI: 10.1093/noajnl/vdad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024] Open
Abstract
Background MRI with gadolinium (Gd)-contrast agents is used to assess glioblastoma treatment response but does not specifically reveal heterogeneous biology or immune microenvironmental composition. Ferumoxytol (Fe) contrast is an iron nanoparticle that localizes glioblastoma macrophages and microglia. Therefore, we hypothesized that the use of Fe contrast improves upon standard Gd-based T1-weighted and T2/FLAIR analysis by specifically delineating immune processes. Methods In this, HIPAA-compliant institutional review board-approved prospective study, stereotactic biopsy samples were acquired from patients with treatment-naïve and recurrent glioblastoma based on MR imaging phenotypes; Gd and Fe T1 enhancement (Gd+, Fe+) or not (Gd-, Fe-), as well as T2-Flair hyperintensity (FLAIR+, FLAIR-). Analysis of genetic expression was performed with RNA microarrays. Imaging and genomic expression patterns were compared using false discovery rate statistics. Results MR imaging phenotypes defined a variety of immune pathways and Hallmark gene sets. Gene set enrichment analysis demonstrated that Gd+, Fe+, and FLAIR+ features were individually correlated with the same 7 immune process gene sets. Fe+ tissue showed the greatest degree of immune Hallmark gene sets compared to Gd+ or Flair+ tissues and had statistically elevated M2 polarized macrophages, among others. Importantly, the FLAIR+ Gd+ and Fe- imaging phenotypes did not demonstrate expression of immune Hallmark gene sets. Conclusions Our study demonstrates the potential of Fe and Gd-enhanced MRI phenotypes to reveal spatially distinct immune processes within glioblastoma. Fe improves upon the standard of care Gd enhancement by specifically localizing glioblastoma-associated inflammatory processes, providing valuable insights into tumor biology.
Collapse
Affiliation(s)
- Jared Stoller
- Department of Diagnostic Radiology, Oregon Health and Science University, Portland, Oregon, USA
| | - Cymon N Kersch
- Department of Radiation Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Leslie L Muldoon
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA
| | - Prakash Ambady
- Department of Oncology, Providence Hospital, Portland, Oregon, USA
| | - Christina A Harrington
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Rongwei Fu
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, Oregon, USA
| | - Ahmed M Raslan
- Department of Neurosurgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Aclan Dogan
- Department of Neurosurgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Edward A Neuwelt
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA
- Department of Neurosurgery, Oregon Health and Science University, Portland, Oregon, USA
- Department of Veterans Affairs Medical Center, Portland, Oregon, USA
| | - Ramon F Barajas
- Department of Diagnostic Radiology, Oregon Health and Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
18
|
Wiart M, Tavakoli C, Hubert V, Hristovska I, Dumot C, Parola S, Lerouge F, Chauveau F, Canet-Soulas E, Pascual O, Cormode DP, Brun E, Elleaume H. Use of metal-based contrast agents for in vivo MR and CT imaging of phagocytic cells in neurological pathologies. J Neurosci Methods 2023; 383:109729. [PMID: 36272462 DOI: 10.1016/j.jneumeth.2022.109729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022]
Abstract
The activation of phagocytic cells is a hallmark of many neurological diseases. Imaging them in their 3-dimensional cerebral environment over time is crucial to better understand their role in disease pathogenesis and to monitor their potential therapeutic effects. Phagocytic cells have the ability to internalize metal-based contrast agents both in vitro and in vivo and can thus be tracked by magnetic resonance imaging (MRI) or computed tomography (CT). In this review article, we summarize the different labelling strategies, contrast agents, and in vivo imaging modalities that can be used to monitor cells with phagocytic activity in the central nervous system using MRI and CT, with a focus on clinical applications. Metal-based nanoparticle contrast agents such as gadolinium, gold and iron are ideal candidates for these applications as they have favourable magnetic and/or radiopaque properties and can be fine-tuned for optimal uptake by phagocytic cells. However, they also come with downsides due to their potential toxicity, especially in the brain where they might accumulate. We therefore conclude our review by discussing the pitfalls, safety and potential for clinical translation of these metal-based neuroimaging techniques. Early results in patients with neuropathologies such as multiple sclerosis, stroke, trauma, cerebral aneurysm and glioblastoma are promising. If the challenges represented by safety issues are overcome, phagocytic cells imaging will be a very valuable tool for studying and understanding the inflammatory response and evaluating treatments that aim at mitigating this response in patients with neurological diseases.
Collapse
Affiliation(s)
- Marlène Wiart
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France; CNRS, Lyon, France.
| | - Clément Tavakoli
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France; Univ. Grenoble Alpes, INSERM UA7 STROBE, 38000 Grenoble, France
| | - Violaine Hubert
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | | | - Chloé Dumot
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France; Hospices Civils de Lyon, Lyon, France
| | - Stéphane Parola
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, 69364 Lyon, France
| | - Frédéric Lerouge
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, 69364 Lyon, France
| | - Fabien Chauveau
- CNRS, Lyon, France; Univ. Lyon, Lyon Neurosciences Research Center, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | - Emmanuelle Canet-Soulas
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | | | - David P Cormode
- Department of Radiology, University of Pennsylvania, Pennsylvania, United States
| | - Emmanuel Brun
- Univ. Grenoble Alpes, INSERM UA7 STROBE, 38000 Grenoble, France
| | - Hélène Elleaume
- Univ. Grenoble Alpes, INSERM UA7 STROBE, 38000 Grenoble, France
| |
Collapse
|
19
|
Pallares RM, Mottaghy FM, Schulz V, Kiessling F, Lammers T. Nanoparticle Diagnostics and Theranostics in the Clinic. J Nucl Med 2022; 63:1802-1808. [PMID: 36302654 PMCID: PMC9730918 DOI: 10.2967/jnumed.122.263895] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/19/2022] [Indexed: 01/11/2023] Open
Abstract
Nanoparticles possess unique features that may be useful for disease diagnosis and therapy. Preclinically, many different nanodiagnostics have been explored, but only a few have made it to the market. We here provide an overview of nanoparticle-based imaging agents currently used and evaluated in the clinic and discuss preclinical progress and translational avenues for the use of nanoparticles for diagnostic and theranostic applications.
Collapse
Affiliation(s)
- Roger M. Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany;,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands; and
| | - Volkmar Schulz
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany;,Physics Institute III B, RWTH Aachen University, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
20
|
Jordan KR, Wyatt CR, Fallon ME, Woltjer R, Neuwelt EA, Cheng Q, Gailani D, Lorentz C, Tucker EI, McCarty OJ, Hinds MT, Nguyen KP. Pharmacological reduction of coagulation factor XI reduces macrophage accumulation and accelerates deep vein thrombosis resolution in a mouse model of venous thrombosis. J Thromb Haemost 2022; 20:2035-2045. [PMID: 35638310 PMCID: PMC9580566 DOI: 10.1111/jth.15777] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/10/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Deep vein thrombosis (DVT) and post-thrombotic syndrome (PTS) remain highly prevalent despite modern medical therapy. Contact activation is a promising target for safe antithrombotic anticoagulation. The anti-factor XI (FXI) monoclonal antibody 14E11 reduces circulating levels of FXI without compromising hemostasis. The human recombinant analog, AB023, is in clinical development. The role of FXI in mediation of inflammation during DVT resolution is unknown. OBJECTIVES Investigate the effects of pharmacological targeting of FXI with 14E11 in an experimental model of venous thrombosis. METHODS Adult wild-type CD1 mice were treated with subcutaneous anti-FXI antibody (14E11, 5 mg/kg) versus saline prior to undergoing surgical constriction of the inferior vena cava (IVC). Mice were evaluated at various time points to assess thrombus weight and volume, as well as histology analysis, ferumoxytol enhanced magnetic resonance imaging (Fe-MRI), and whole blood flow cytometry. RESULTS 14E11-treated mice had reduced thrombus weights and volumes after IVC constriction on day 7 compared to saline-treated mice. 14E11 treatment reduced circulating monocytes by flow cytometry and macrophage content within thrombi as evaluated by histologic staining and Fe-MRI. Collagen deposition was increased at day 3 while CD31 and smooth muscle cell actin expression was increased at day 7 in the thrombi of 14E11-treated mice compared to saline-treated mice. CONCLUSION Pharmacologic targeting of FXI enhances the early stages of experimental venous thrombus resolution in wild-type CD1 mice, and may be of interest for future clinical evaluation of the antibody in DVT and PTS.
Collapse
Affiliation(s)
- Kelley R. Jordan
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Cory R. Wyatt
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Meghan E. Fallon
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Randy Woltjer
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, USA
| | - Edward A. Neuwelt
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Quifang Cheng
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - David Gailani
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Christina Lorentz
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Aronora Inc., Portland, OR, USA
| | - Erik I. Tucker
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Aronora Inc., Portland, OR, USA
| | - Owen J.T. McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Monica T. Hinds
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Khanh P. Nguyen
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- VA Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
21
|
Abstract
MRI is a widely available clinical tool for cancer diagnosis and treatment monitoring. MRI provides excellent soft tissue imaging, using a wide range of contrast mechanisms, and can non-invasively detect tissue metabolites. These approaches can be used to distinguish cancer from normal tissues, to stratify tumor aggressiveness, and to identify changes within both the tumor and its microenvironment in response to therapy. In this review, the role of MRI in immunotherapy monitoring will be discussed and how it could be utilized in the future to address some of the unique clinical questions that arise from immunotherapy. For example, MRI could play a role in identifying pseudoprogression, mixed response, T cell infiltration, cell tracking, and some of the characteristic immune-related adverse events associated with these agents. The factors to be considered when developing MRI imaging biomarkers for immunotherapy will be reviewed. Finally, the advantages and limitations of each approach will be discussed, as well as the challenges for future clinical translation into routine clinical care. Given the increasing use of immunotherapy in a wide range of cancers and the ability of MRI to detect the microstructural and functional changes associated with successful response to immunotherapy, the technique has great potential for more widespread and routine use in the future for these applications.
Collapse
Affiliation(s)
- Doreen Lau
- Centre for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Pippa G Corrie
- Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|
22
|
Deng H, Li Xu, Ju J, Mo X, Ge G, Zhu X. Multifunctional nanoprobes for macrophage imaging. Biomaterials 2022; 290:121824. [PMID: 36209580 DOI: 10.1016/j.biomaterials.2022.121824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/28/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022]
|
23
|
Faiz K, Lam FC, Chen J, Kasper EM, Salehi F. The Emerging Applications of Nanotechnology in Neuroimaging: A Comprehensive Review. Front Bioeng Biotechnol 2022; 10:855195. [PMID: 35875504 PMCID: PMC9297121 DOI: 10.3389/fbioe.2022.855195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/06/2022] [Indexed: 11/19/2022] Open
Abstract
Neuroimaging modalities such as computer tomography and magnetic resonance imaging have greatly improved in their ability to achieve higher spatial resolution of neurovascular and soft tissue neuroanatomy, allowing for increased accuracy in the diagnosis of neurological conditions. However, the use of conventional contrast agents that have short tissue retention time and associated renal toxicities, or expensive radioisotope tracers that are not widely available, continue to limit the sensitivity of these imaging modalities. Nanoparticles can potentially address these shortcomings by enhancing tissue retention and improving signal intensity in the brain and neural axis. In this review, we discuss the use of different types of nanotechnology to improve the detection, diagnosis, and treatment of a wide range of neurological diseases.
Collapse
Affiliation(s)
- Khunza Faiz
- Department of Radiology, McMaster University Faculty of Health Sciences, Hamilton, ON, Canada
| | - Fred C. Lam
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, United States
- Division of Neurosurgery, Saint Elizabeth Medical Center, Brighton, MA, United States
- *Correspondence: Fred C. Lam, ; Ekkehard M. Kasper, ; Fateme Salehi,
| | - Jay Chen
- Department of Radiology, McMaster University Faculty of Health Sciences, Hamilton, ON, Canada
| | - Ekkehard M. Kasper
- Division of Neurosurgery, Saint Elizabeth Medical Center, Brighton, MA, United States
- *Correspondence: Fred C. Lam, ; Ekkehard M. Kasper, ; Fateme Salehi,
| | - Fateme Salehi
- Department of Radiology, McMaster University Faculty of Health Sciences, Hamilton, ON, Canada
- *Correspondence: Fred C. Lam, ; Ekkehard M. Kasper, ; Fateme Salehi,
| |
Collapse
|
24
|
Li Y, Xie M, Jones JB, Zhang Z, Wang Z, Dang T, Wang X, Lipowska M, Mao H. Targeted Delivery of DNA Topoisomerase Inhibitor SN38 to Intracranial Tumors of Glioblastoma Using Sub-5 Ultrafine Iron Oxide Nanoparticles. Adv Healthc Mater 2022; 11:e2102816. [PMID: 35481625 DOI: 10.1002/adhm.202102816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/07/2022] [Indexed: 11/09/2022]
Abstract
Effectively delivering therapeutics for treating brain tumors is hindered by the physical and biological barriers in the brain. Even with the compromised blood-brain barrier and highly angiogenic blood-tumor barrier seen in glioblastoma (GBM), most drugs, including nanomaterial-based formulations, hardly reach intracranial tumors. This work investigates sub-5 nm ultrafine iron oxide nanoparticles (uIONP) with 3.5 nm core diameter as a carrier for delivering DNA topoisomerase inhibitor 7-ethyl-10-hydroxyl camptothecin (SN38) to treat GBM. Given a higher surface-to-volume ratio, uIONP shows one- or three-folds higher SN38 loading efficiency (48.3 ± 6.1%, mg/mg Fe) than those with core sizes of 10 or 20 nm. SN38 encapsulated in the coating polymer exhibits pH sensitive release with <10% over 48 h at pH 7.4, but 86% at pH 5, thus being protected from converting to inactive glucuronide by UDP-glucuronosyltransferase 1A1. Conjugating αv β3 -integrin-targeted cyclo(Arg-Gly-Asp-D-Phe-Cys) (RGD) as ligands, RGD-uIONP/SN38 demonstrates targeted cytotoxicity to αv β3 -integrin-overexpressed U87MG GBM cells with a half-maximal inhibitory concentration (IC50 ) of 30.9 ± 2.2 nm. The efficacy study using an orthotopic mouse model of GBM reveals tumor-specific delivery of 11.5% injected RGD-uIONP/SN38 (10 mg Fe kg-1 ), significantly prolonging the survival in mice by 41%, comparing to those treated with SN38 alone (p < 0.001).
Collapse
Affiliation(s)
- Yuancheng Li
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
- 5M Biomed, LLC Atlanta GA 30303 USA
| | - Manman Xie
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
| | - Joshua B. Jones
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
| | - Zhaobin Zhang
- Department of Neurosurgery Emory University Atlanta GA 30329 USA
| | - Zi Wang
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
| | - Tu Dang
- Division of Research Philadelphia College of Osteopathic Medicine – Georgia Campus Suwanee GA 30024 USA
| | - Xinyu Wang
- Department of Pharmaceutical Sciences Philadelphia College of Osteopathic Medicine – Georgia Campus Suwanee GA 30024 USA
| | - Malgorzata Lipowska
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
| |
Collapse
|
25
|
Ng TSC, Allen HH, Rashidian M, Miller MA. Probing immune infiltration dynamics in cancer by in vivo imaging. Curr Opin Chem Biol 2022; 67:102117. [PMID: 35219177 PMCID: PMC9118268 DOI: 10.1016/j.cbpa.2022.102117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022]
Abstract
Cancer immunotherapies typically aim to stimulate the accumulation and activity of cytotoxic T-cells or pro-inflammatory antigen-presenting cells, reduce immunosuppressive myeloid cells or regulatory T-cells, or elicit some combination of effects thereof. Notwithstanding the encouraging results, immunotherapies such as PD-1/PD-L1-targeted immune checkpoint blockade act heterogeneously across individual patients. It remains challenging to predict and monitor individual responses, especially across multiple sites of metastasis or sites of potential toxicity. To address this need, in vivo imaging of both adaptive and innate immune cell populations has emerged as a tool to quantify spatial leukocyte accumulation in tumors non-invasively. Here we review recent progress in the translational development of probes for in vivo leukocyte imaging, focusing on complementary perspectives provided by imaging of T-cells, phagocytic macrophages, and their responses to therapy.
Collapse
Affiliation(s)
- Thomas S C Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge St, Boston, MA 02114, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA 02114, United States
| | - Harris H Allen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA 02115, United States
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA 02115, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, United States
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge St, Boston, MA 02114, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA 02114, United States.
| |
Collapse
|
26
|
Daldrup-Link HE, Theruvath AJ, Rashidi A, Iv M, Majzner RG, Spunt SL, Goodman S, Moseley M. How to stop using gadolinium chelates for magnetic resonance imaging: clinical-translational experiences with ferumoxytol. Pediatr Radiol 2022; 52:354-366. [PMID: 34046709 PMCID: PMC8626538 DOI: 10.1007/s00247-021-05098-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
Gadolinium chelates have been used as standard contrast agents for clinical MRI for several decades. However, several investigators recently reported that rare Earth metals such as gadolinium are deposited in the brain for months or years. This is particularly concerning for children, whose developing brain is more vulnerable to exogenous toxins compared to adults. Therefore, a search is under way for alternative MR imaging biomarkers. The United States Food and Drug Administration (FDA)-approved iron supplement ferumoxytol can solve this unmet clinical need: ferumoxytol consists of iron oxide nanoparticles that can be detected with MRI and provide significant T1- and T2-signal enhancement of vessels and soft tissues. Several investigators including our research group have started to use ferumoxytol off-label as a new contrast agent for MRI. This article reviews the existing literature on the biodistribution of ferumoxytol in children and compares the diagnostic accuracy of ferumoxytol- and gadolinium-chelate-enhanced MRI. Iron oxide nanoparticles represent a promising new class of contrast agents for pediatric MRI that can be metabolized and are not deposited in the brain.
Collapse
Affiliation(s)
- Heike E. Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University
- Department of Pediatrics, Division of Hematology/Oncology, Stanford University
| | - Ashok J. Theruvath
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University
| | - Ali Rashidi
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University
| | - Michael Iv
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University
| | - Robbie G. Majzner
- Department of Pediatrics, Division of Hematology/Oncology, Stanford University
| | - Sheri L. Spunt
- Department of Pediatrics, Division of Hematology/Oncology, Stanford University
| | | | - Michael Moseley
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University
| |
Collapse
|
27
|
MR susceptibility imaging for detection of tumor-associated macrophages in glioblastoma. J Neurooncol 2022; 156:645-653. [PMID: 35043276 DOI: 10.1007/s11060-022-03947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE Tumor-associated macrophages (TAMs) are a key component of glioblastoma (GBM) microenvironment. Considering the differential role of different TAM phenotypes in iron metabolism with the M1 phenotype storing intracellular iron, and M2 phenotype releasing iron in the tumor microenvironment, we investigated MRI to quantify iron as an imaging biomarker for TAMs in GBM patients. METHODS 21 adult patients with GBM underwent a 3D single echo gradient echo MRI sequence and quantitative susceptibility maps were generated. In 3 subjects, ex vivo imaging of surgical specimens was performed on a 9.4 Tesla MRI using 3D multi-echo GRE scans, and R2* (1/T2*) maps were generated. Each specimen was stained with hematoxylin and eosin, as well as CD68, CD86, CD206, and L-Ferritin. RESULTS Significant positive correlation was observed between mean susceptibility for the tumor enhancing zone and the L-ferritin positivity percent (r = 0.56, p = 0.018) and the combination of tumor's enhancing zone and necrotic core and the L-Ferritin positivity percent (r = 0.72; p = 0.001). The mean susceptibility significantly correlated with positivity percent for CD68 (ρ = 0.52, p = 0.034) and CD86 (r = 0.7 p = 0.001), but not for CD206 (ρ = 0.09; p = 0.7). There was a positive correlation between mean R2* values and CD68 positive cell counts (r = 0.6, p = 0.016). Similarly, mean R2* values significantly correlated with CD86 (r = 0.54, p = 0.03) but not with CD206 (r = 0.15, p = 0.5). CONCLUSIONS This study demonstrated the potential of MR quantitative susceptibility mapping as a non-invasive method for in vivo TAM quantification and phenotyping. Validation of these findings with large multicenter studies is needed.
Collapse
|
28
|
Huang Y, Hsu JC, Koo H, Cormode DP. Repurposing ferumoxytol: Diagnostic and therapeutic applications of an FDA-approved nanoparticle. Am J Cancer Res 2022; 12:796-816. [PMID: 34976214 PMCID: PMC8692919 DOI: 10.7150/thno.67375] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Ferumoxytol is an intravenous iron oxide nanoparticle formulation that has been approved by the U.S. Food and Drug Administration (FDA) for treating anemia in patients with chronic kidney disease. In recent years, ferumoxytol has also been demonstrated to have potential for many additional biomedical applications due to its excellent inherent physical properties, such as superparamagnetism, biocatalytic activity, and immunomodulatory behavior. With good safety and clearance profiles, ferumoxytol has been extensively utilized in both preclinical and clinical studies. Here, we first introduce the medical needs and the value of current iron oxide nanoparticle formulations in the market. We then focus on ferumoxytol nanoparticles and their physicochemical, diagnostic, and therapeutic properties. We include examples describing their use in various biomedical applications, including magnetic resonance imaging (MRI), multimodality imaging, iron deficiency treatment, immunotherapy, microbial biofilm treatment and drug delivery. Finally, we provide a brief conclusion and offer our perspectives on the current limitations and emerging applications of ferumoxytol in biomedicine. Overall, this review provides a comprehensive summary of the developments of ferumoxytol as an agent with diagnostic, therapeutic, and theranostic functionalities.
Collapse
|
29
|
Feng Q, Xu X, Wei C, Li Y, Wang M, Lv C, Wu J, Dai Y, Han Y, Lesniak MS, Fan H, Zhang L, Cheng Y. The Dynamic Interactions between Nanoparticles and Macrophages Impact Their Fate in Brain Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103600. [PMID: 34643042 DOI: 10.1002/smll.202103600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Functional nanomaterials such as iron oxide nanoparticles have been extensively explored for the diagnosis and treatment of central nervous system diseases. However, an insufficient understanding of the comprehensive nanomaterial-biological interactions in the brain hinders the nanomaterials from meeting the medical requirements for translational research. Here, FDA-approved ferumoxytol, an iron oxide nanoparticle, is chosen as the model nanomaterial for a systematic study of the dynamic interactions between ferumoxytol and immune cells, including microglia and macrophages, in the brain tumors. Strikingly, up to 90% of intratumorally injected ferumoxytol nanoparticles are recognized and phagocytized by tumor-associated microglia and macrophages. The dynamic trafficking progress of ferumoxytol in microglia and macrophages, including scavenger receptor-mediated endocytosis, lysosomal internalization, and extracellular vesicle-dominated excretion, is further studied. Importantly, the results demonstrate that extracellular vesicle-encapsulated nanoparticles could be gradually eliminated from the brain along with cerebrospinal fluid circulation over 21 days. Moreover, ferumoxytol exhibits no obvious long-term neurological toxicity after its injection. The study suggests that the dynamic biointeractions of nanoparticles with immune cells in the brain exert a key rate-limiting impact on the efficiency of targeting tumor cells and their in vivo fate and thus provide a deeper understanding of the nanomaterials in the brain for clinical applications.
Collapse
Affiliation(s)
- Qishuai Feng
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Collaborative Innovation Center for Brain Science, Tongji University, 1800 Yuntai Road, Shanghai, 200123, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200092, China
| | - Xianyun Xu
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, 349 Hangzhou Road, Shanghai, 200090, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Department of Pediatric Surgery, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, 1 Yixueyuan Road, Ganzhou, Jiangxi, 341000, China
| | - Chen Wei
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Collaborative Innovation Center for Brain Science, Tongji University, 1800 Yuntai Road, Shanghai, 200123, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200092, China
| | - Yingze Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Collaborative Innovation Center for Brain Science, Tongji University, 1800 Yuntai Road, Shanghai, 200123, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200092, China
| | - Min Wang
- Shanghai Key Lab of Tuberculofsis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Cheng Lv
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Collaborative Innovation Center for Brain Science, Tongji University, 1800 Yuntai Road, Shanghai, 200123, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200092, China
| | - Jiaojiao Wu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Collaborative Innovation Center for Brain Science, Tongji University, 1800 Yuntai Road, Shanghai, 200123, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200092, China
| | - Yalei Dai
- Shanghai Key Lab of Tuberculofsis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Yu Han
- Feinberg School of Medicine, Northwestern University, 676 North Saint Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - Maciej S Lesniak
- Feinberg School of Medicine, Northwestern University, 676 North Saint Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - Haiming Fan
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Ling Zhang
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, 349 Hangzhou Road, Shanghai, 200090, China
| | - Yu Cheng
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Collaborative Innovation Center for Brain Science, Tongji University, 1800 Yuntai Road, Shanghai, 200123, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200092, China
| |
Collapse
|
30
|
Joshi B, Joshi A. Polymeric magnetic nanoparticles: a multitargeting approach for brain tumour therapy and imaging. Drug Deliv Transl Res 2021; 12:1588-1604. [PMID: 34537930 DOI: 10.1007/s13346-021-01063-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 11/29/2022]
Abstract
The most challenging task in targeting the brain is trespassing the blood-brain barrier (BBB) which restricts the movement of about 98% small molecules. Targeting the central nervous system using magnetic nanoparticles may deliver the drug to the target site along with a contrast imaging property. The use of magnetic nanoparticles can become non-invasive drug targeting and a bio-imaging method for brain cancer. The strategy to apply polymeric nanoparticles as a carrier of magnetic iron oxide nanoparticles can be a promising tool as a multitherapeutic drug delivery approach involving delivery of chemotherapeutic drugs with a magnetic targeting approach, imaging, and hyperthermia. This review will highlight the existing difficulties/barriers in crossing the BBB, types of magnetic materials, polymeric carriers for functionalization of magnetic nanoparticles, and targeting strategies as therapeutic and imaging modalities. Utilization of polymeric magnetic nanoparticles as an efficient targeting platform for better drug delivery and imaging for brain cancer and future prospects are also discussed. Polymeric magnetic nanoparticles as a drug delivery and bio-imaging vehicle for brain cancer.
Collapse
Affiliation(s)
- Bhavana Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Room No. POD1A-710, Khandwa Road, Simrol campus, 453552, Madhya Pradesh, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Room No. POD1A-710, Khandwa Road, Simrol campus, 453552, Madhya Pradesh, India.
| |
Collapse
|
31
|
Collettini F, Brangsch J, Reimann C, Chapiro J, Savic LJ, Buchholz R, Keller S, Hamm B, Goldberg SN, Makowski MR. Hepatic Radiofrequency Ablation: Monitoring of Ablation-Induced Macrophage Recruitment in the Periablational Rim Using SPION-Enhanced Macrophage-Specific Magnetic Resonance Imaging. Invest Radiol 2021; 56:591-598. [PMID: 33787536 DOI: 10.1097/rli.0000000000000777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Macrophages accumulating in the periablational rim play a pivotal role in initiating and sustaining the perifocal inflammatory reaction, which has been shown to be at least 1 of the mechanisms responsible for the systemic pro-oncogenic effects of focal hepatic radiofrequency ablation (RFA). Herein, we tested the hypothesis to use superparamagnetic iron oxide nanoparticle (SPION)-enhanced magnetic resonance imaging (MRI) for noninvasive quantification of iron-loaded macrophages in the periablational rim of VX2 tumor-bearing rabbits. MATERIALS AND METHODS Twelve VX2 tumor-bearing rabbits underwent MRI immediately after and up to 3 weeks after focal hepatic RFA. For noninvasive quantification of macrophage accumulation in the periablational rim, animals were scanned before and 24 hours after SPION injection. T2*-weighted images were analyzed and correlated with histopathological and immunohistochemical findings. Furthermore, correlations with quantitative measurements (ICP-MS [inductively coupled plasma-mass spectrometry] and LA-ICP-MS [laser ablation-ICP-MS]) were performed. RESULTS SPION-enhanced T2*-weighted MRI scans displayed a progressive increase in the areas of signal intensity (SI) loss within the periablational rim peaking 3 weeks after RFA. Accordingly, quantitative analysis of SI changes demonstrated a significant decline in the relative SI ratio reflecting a growing accumulation of iron-loaded macrophages in the rim. Histological analyses confirmed a progressive accumulation of iron-loaded macrophages in the periablational rim. The ICP-MS and LA-ICP-MS confirmed a progressive increase of iron concentration in the periablational rim. CONCLUSIONS SPION-enhanced MRI enables noninvasive monitoring and quantification of ablation-induced macrophage recruitment in the periablational rim. Given the close interplay between ablation-induced perifocal inflammation and potential unwanted tumorigenic effects of RFA, SPION-enhanced MRI may serve as a valuable tool to guide and modulate adjuvant therapies after hepatic RFA.
Collapse
Affiliation(s)
| | | | | | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT
| | - Lynn Jeanette Savic
- From the Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
| | - Rebecca Buchholz
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sarah Keller
- From the Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
| | - Bernd Hamm
- From the Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
| | - S Nahum Goldberg
- Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | |
Collapse
|
32
|
Canese R, Vurro F, Marzola P. Iron Oxide Nanoparticles as Theranostic Agents in Cancer Immunotherapy. NANOMATERIALS 2021; 11:nano11081950. [PMID: 34443781 PMCID: PMC8399455 DOI: 10.3390/nano11081950] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
Starting from the mid-1990s, several iron oxide nanoparticles (NPs) were developed as MRI contrast agents. Since their sizes fall in the tenths of a nanometer range, after i.v. injection these NPs are preferentially captured by the reticuloendothelial system of the liver. They have therefore been proposed as liver-specific contrast agents. Even though their unfavorable cost/benefit ratio has led to their withdrawal from the market, innovative applications have recently prompted a renewal of interest in these NPs. One important and innovative application is as diagnostic agents in cancer immunotherapy, thanks to their ability to track tumor-associated macrophages (TAMs) in vivo. It is worth noting that iron oxide NPs may also have a therapeutic role, given their ability to alter macrophage polarization. This review is devoted to the most recent advances in applications of iron oxide NPs in tumor diagnosis and therapy. The intrinsic therapeutic effect of these NPs on tumor growth, their capability to alter macrophage polarization and their diagnostic potential are examined. Innovative strategies for NP-based drug delivery in tumors (e.g., magnetic resonance targeting) will also be described. Finally, the review looks at their role as tracers for innovative, and very promising, imaging techniques (magnetic particle imaging-MPI).
Collapse
Affiliation(s)
- Rossella Canese
- MRI Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
- Correspondence: (R.C.); (P.M.)
| | - Federica Vurro
- Department of Computer Science, University of Verona, 37134 Verona, Italy;
| | - Pasquina Marzola
- Department of Computer Science, University of Verona, 37134 Verona, Italy;
- Correspondence: (R.C.); (P.M.)
| |
Collapse
|
33
|
Sillerud LO, Neuwelt AJ, Staquicini FI, Arap W, Pasqualini R. Repurposing Ferumoxytol as a Breast Cancer-Associated Macrophage Tracer with Five-Dimensional Quantitative [Fe]MRI of SPION Dynamics. Cancers (Basel) 2021; 13:cancers13153802. [PMID: 34359704 PMCID: PMC8345165 DOI: 10.3390/cancers13153802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary With the incorporation of immune-modulating therapies into the standard management of triple-negative breast cancer, there is increased interest in the non-invasive imaging of the tumor immune microenvironment. Ferumoxytol is FDA-approved as an iron replacement therapy for iron-deficiency anemia and is also a superparamagnetic iron oxide nanoparticle (SPION) resulting in negative enhancement on T2-weighted MR imaging. It has previously been established that ferumoxytol is taken up by macrophages. In the current study, we used ferumoxytol-contrasted MRI to quantitatively image the iron concentration, and, by extension, the tumor-associated macrophage infiltration within the tumor microenvironment of a highly inflammatory model of triple-negative breast cancer. Abstract Tumor-associated macrophages (TAMs) in breast cancer regulate inflammation, immunosuppression, angiogenesis, and metastasis. However, TAM imaging remains a clinical challenge. Ferumoxytol has long been an FDA-approved superparamagnetic iron oxide nanoparticle (SPION) preparation used as an intravenous (IV) treatment for iron-deficiency anemia. Given its high transverse relaxivity, ferumoxytol produces a negative image contrast upon cellular uptake in T2-weighted magnetic resonance imaging (MRI) studies. Here we evaluated ferumoxytol as a contrast agent to image/quantify TAMs in an aggressive mouse model of breast cancer: We developed [Fe]MRI to measure the 5-dimensional function c(x,y,z,t), where c is the concentration of nanoparticle iron and {x,y,z,t} is the 4-dimensional set of tumor space-time coordinates. Ferumoxytol SPIONs are readily phagocytosed (~104/cell) by the F4/80+CD11b+ TAMs within breast tumors. Quantitative [Fe]MRIs served to determine both the spatial and the temporal distribution of the SPION iron, and hence to measure [Fe] = c(x,y,z,t), a surrogate for TAM density. In single-dose pharmacokinetic studies, after an IV dose of 5 mg/Kg iron, [Fe]MRI measurements showed that c(x,y,z,t) within breast tumors peaked around [Fe] = 70 μM at 42 h post-administration, and decayed below the [Fe]MRI detection limit (~2 μM) by day 7. There was no SPION uptake in control organs (muscle and adipose tissue). Optical microscopy of tissue sections confirmed that F4/80+CD11b+ TAMs infiltrated the tumors and accumulated SPION iron. Our methodology and findings have translational applications for breast cancer patients.
Collapse
Affiliation(s)
- Laurel O. Sillerud
- Department of Neurology, UNM BRaIN Center, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
- Correspondence: (L.O.S.); (R.P.)
| | - Alexander J. Neuwelt
- Division of Hematology, Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA;
- Department of Medical Oncology, Veterans Affairs Medical Center, Richmond, VA 23249, USA
| | - Fernanda I. Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA; (F.I.S.); (W.A.)
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA; (F.I.S.); (W.A.)
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA; (F.I.S.); (W.A.)
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Correspondence: (L.O.S.); (R.P.)
| |
Collapse
|
34
|
MRI and PET of Brain Tumor Neuroinflammation in the Era of Immunotherapy, From the AJR Special Series on Inflammation. AJR Am J Roentgenol 2021; 218:582-596. [PMID: 34259035 DOI: 10.2214/ajr.21.26159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
With the emergence of immune-modulating therapies, brain tumors present significant diagnostic imaging challenges. These challenges include planning personalized treatment and adjudicating accurate monitoring approaches and therapeutically specific response criteria. This has been due, in part, to the reliance on nonspecific imaging metrics, such as gadolinium-contrast-enhanced MRI or FDG PET, and rapidly evolving biologic understanding of neuroinflammation. The importance of the tumor-immune interaction and ability to therapeutically augment inflammation to improve clinical outcomes necessitates that the radiologist develop a working knowledge of the immune system and its role in clinical neuroimaging. In this article, we review relevant biologic concepts of the tumor microenvironment of primary and metastatic brain tumors, these tumors' interactions with the immune system, and MRI and PET methods for imaging inflammatory elements associated with these malignancies. Recognizing the growing fields of immunotherapeutics and precision oncology, we highlight clinically translatable imaging metrics for the diagnosis and monitoring of brain tumor neuroinflammation. Practical guidance is provided for implementing iron nanoparticle imaging, including imaging indications, protocol, interpretation, and pitfalls. A comprehensive understanding of the inflammatory mechanisms within brain tumors and their imaging features will facilitate the development of innovative non-invasive prognostic and predictive imaging strategies for precision oncology.
Collapse
|
35
|
Nguyen SM, Wiepz GJ, Schotzko M, Simmons HA, Mejia A, Ludwig KD, Zhu A, Brunner K, Hernando D, Reeder SB, Wieben O, Johnson K, Shah D, Golos TG. Impact of ferumoxytol magnetic resonance imaging on the rhesus macaque maternal-fetal interface†. Biol Reprod 2021; 102:434-444. [PMID: 31511859 DOI: 10.1093/biolre/ioz181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/05/2019] [Accepted: 09/03/2019] [Indexed: 01/26/2023] Open
Abstract
Ferumoxytol is a superparamagnetic iron oxide nanoparticle used off-label as an intravascular magnetic resonance imaging (MRI) contrast agent. Additionally, ferumoxytol-uptake by macrophages facilitates detection of inflammatory sites by MRI through ferumoxytol-induced image contrast changes. Therefore, ferumoxytol-enhanced MRI holds great potential for assessing vascular function and inflammatory response, critical to determine placental health in pregnancy. This study sought to assess the fetoplacental unit and selected maternal tissues, pregnancy outcomes, and fetal well-being after ferumoxytol administration. In initial developmental studies, seven pregnant rhesus macaques were imaged with or without ferumoxytol administration. Pregnancies went to term with vaginal delivery and infants showed normal growth rates compared to control animals born the same year that did not undergo MRI. To determine the impact of ferumoxytol on the maternal-fetal interface (MFI), fetal well-being, and pregnancy outcome, four pregnant rhesus macaques at ~100 gestational day underwent MRI before and after ferumoxytol administration. Collection of the fetoplacental unit and selected maternal tissues was performed 2-3 days following ferumoxytol administration. A control group that did not receive ferumoxytol or MRI was used for comparison. Iron levels in fetal and MFI tissues did not differ between groups, and there was no significant difference in tissue histopathology with or without exposure to ferumoxytol, and no effect on placental hormone secretion. Together, these results suggest that the use of ferumoxytol and MRI in pregnant rhesus macaques does not negatively impact the MFI and can be a valuable experimental tool in research with this important animal model.
Collapse
Affiliation(s)
- Sydney M Nguyen
- Wisconsin National Primate Research Center (WNPRC), Madison, Wisconsin, USA.,Obstetrics & Gynecology, University of Wisconsin Madison School of Medicine, Madison, Wisconsin, USA
| | - Gregory J Wiepz
- Wisconsin National Primate Research Center (WNPRC), Madison, Wisconsin, USA
| | - Michele Schotzko
- Wisconsin National Primate Research Center (WNPRC), Madison, Wisconsin, USA
| | - Heather A Simmons
- Wisconsin National Primate Research Center (WNPRC), Madison, Wisconsin, USA
| | - Andres Mejia
- Wisconsin National Primate Research Center (WNPRC), Madison, Wisconsin, USA
| | - Kai D Ludwig
- Medical Physics, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Ante Zhu
- Biomedical Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA.,Radiology, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Kevin Brunner
- Wisconsin National Primate Research Center (WNPRC), Madison, Wisconsin, USA.,Emergency Medicine, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Diego Hernando
- Medical Physics, University of Wisconsin Madison, Madison, Wisconsin, USA.,Radiology, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Scott B Reeder
- Medical Physics, University of Wisconsin Madison, Madison, Wisconsin, USA.,Biomedical Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA.,Radiology, University of Wisconsin Madison, Madison, Wisconsin, USA.,Emergency Medicine, University of Wisconsin Madison, Madison, Wisconsin, USA.,Medicine, University of Wisconsin Madison, Madison, Wisconsin, USA, and
| | - Oliver Wieben
- Medical Physics, University of Wisconsin Madison, Madison, Wisconsin, USA.,Radiology, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Kevin Johnson
- Medical Physics, University of Wisconsin Madison, Madison, Wisconsin, USA.,Radiology, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Dinesh Shah
- Obstetrics & Gynecology, University of Wisconsin Madison School of Medicine, Madison, Wisconsin, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center (WNPRC), Madison, Wisconsin, USA.,Obstetrics & Gynecology, University of Wisconsin Madison School of Medicine, Madison, Wisconsin, USA.,Comparative Biosciences, University of Wisconsin Madison, Madison, Wisconsin, USA
| |
Collapse
|
36
|
Zhou Q, van den Berg NS, Rosenthal EL, Iv M, Zhang M, Vega Leonel JCM, Walters S, Nishio N, Granucci M, Raymundo R, Yi G, Vogel H, Cayrol R, Lee YJ, Lu G, Hom M, Kang W, Hayden Gephart M, Recht L, Nagpal S, Thomas R, Patel C, Grant GA, Li G. EGFR-targeted intraoperative fluorescence imaging detects high-grade glioma with panitumumab-IRDye800 in a phase 1 clinical trial. Theranostics 2021; 11:7130-7143. [PMID: 34158840 PMCID: PMC8210618 DOI: 10.7150/thno.60582] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Rationale: First-line therapy for high-grade gliomas (HGGs) includes maximal safe surgical resection. The extent of resection predicts overall survival, but current neuroimaging approaches lack tumor specificity. The epidermal growth factor receptor (EGFR) is a highly expressed HGG biomarker. We evaluated the safety and feasibility of an anti-EGFR antibody, panitumuab-IRDye800, at subtherapeutic doses as an imaging agent for HGG. Methods: Eleven patients with contrast-enhancing HGGs were systemically infused with panitumumab-IRDye800 at a low (50 mg) or high (100 mg) dose 1-5 days before surgery. Near-infrared fluorescence imaging was performed intraoperatively and ex vivo, to identify the optimal tumor-to-background ratio by comparing mean fluorescence intensities of tumor and histologically uninvolved tissue. Fluorescence was correlated with preoperative T1 contrast, tumor size, EGFR expression and other biomarkers. Results: No adverse events were attributed to panitumumab-IRDye800. Tumor fragments as small as 5 mg could be detected ex vivo and detection threshold was dose dependent. In tissue sections, panitumumab-IRDye800 was highly sensitive (95%) and specific (96%) for pathology confirmed tumor containing tissue. Cellular delivery of panitumumab-IRDye800 was correlated to EGFR overexpression and compromised blood-brain barrier in HGG, while normal brain tissue showed minimal fluorescence. Intraoperative fluorescence improved optical contrast in tumor tissue within and beyond the T1 contrast-enhancing margin, with contrast-to-noise ratios of 9.5 ± 2.1 and 3.6 ± 1.1, respectively. Conclusions: Panitumumab-IRDye800 provided excellent tumor contrast and was safe at both doses. Smaller fragments of tumor could be detected at the 100 mg dose and thus more suitable for intraoperative imaging.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nynke S. van den Berg
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Eben L. Rosenthal
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Center, Stanford University, Stanford, CA, USA
| | - Michael Iv
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Zhang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Shannon Walters
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Naoki Nishio
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Monica Granucci
- Cancer Clinical Trials Office, Stanford University School of Medicine, Stanford, CA, USA
| | - Roan Raymundo
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Clinical Trials Office, Stanford University School of Medicine, Stanford, CA, USA
| | - Grace Yi
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Clinical Trials Office, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannes Vogel
- Department of Neuropathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Romain Cayrol
- Department of Neuropathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu-Jin Lee
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Guolan Lu
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Marisa Hom
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Wenying Kang
- Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Larry Recht
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Seema Nagpal
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Reena Thomas
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chirag Patel
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gerald A. Grant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Gordon Li
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
37
|
Hah YS, Koo KC. Immunology and Immunotherapeutic Approaches for Advanced Renal Cell Carcinoma: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22094452. [PMID: 33923219 PMCID: PMC8123195 DOI: 10.3390/ijms22094452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/25/2022] Open
Abstract
Renal cell carcinoma (RCC) is a malignant tumor associated with various tumor microenvironments (TMEs). The immune system is activated by the development of cancer and drives T cell anti-tumor response. CD8 T cells are known to improve clinical outcomes and sensitivity to immunotherapy, and play a crucial role against tumors. In contrast, tumor-associated macrophages (TAMs) suppress immunity against malignancy and lead to tumor progression. TAMs are promoted from damaged TMEs and mount proinflammatory responses to pathogens. Initial immunotherapy consists of interferon-α and interleukin-2. However, response to such therapy is unclear in most patients, and it is associated with high levels of toxicity. Immune checkpoint inhibitors (ICIs), which up-regulate immune responses by blocking the programed cell death protein 1 (PD-1) receptor, the ligand of PD-1, or cytotoxic T-lymphocyte-associated protein 4 T cells, have led to a new era of immunotherapy. Furthermore, combination strategies with ICIs have proven effective through several randomized controlled trials. We expect the next generation of immunotherapy to lead to better outcomes based on ongoing trials and inspire new therapeutic strategies.
Collapse
Affiliation(s)
- Yoon-Soo Hah
- Department of Urology, Catholic University of Daegu School of Medicine, Daegu 42472, Korea;
| | - Kyo-Chul Koo
- Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Korea
- Correspondence: ; Tel.: +82-2-2019-3470
| |
Collapse
|
38
|
Abstract
Magnetic resonance (MR) imaging is a crucial tool for evaluation of the skull base, enabling characterization of complex anatomy by utilizing multiple image contrasts. Recent technical MR advances have greatly enhanced radiologists' capability to diagnose skull base pathology and help direct management. In this paper, we will summarize cutting-edge clinical and emerging research MR techniques for the skull base, including high-resolution, phase-contrast, diffusion, perfusion, vascular, zero echo-time, elastography, spectroscopy, chemical exchange saturation transfer, PET/MR, ultra-high-field, and 3D visualization. For each imaging technique, we provide a high-level summary of underlying technical principles accompanied by relevant literature review and clinical imaging examples.
Collapse
Affiliation(s)
- Claudia F Kirsch
- Division Chief, Neuroradiology, Professor of Neuroradiology and Otolaryngology, Department of Radiology, Northwell Health, Zucker Hofstra School of Medicine at Northwell, North Shore University Hospital, Manhasset, NY
| | - Mai-Lan Ho
- Associate Professor of Radiology, Director of Research, Department of Radiology, Director, Advanced Neuroimaging Core, Chair, Asian Pacific American Network, Secretary, Association for Staff and Faculty Women, Nationwide Children's Hospital and The Ohio State University, Columbus, OH; Division Chief, Neuroradiology, Professor of Neuroradiology and Otolaryngology, Department of Radiology, Northwell Health, Zucker Hofstra School of Medicine at Northwell, North Shore University Hospital, Manhasset, NY.
| |
Collapse
|
39
|
Zhang Q, Dai X, Zhang H, Zeng Y, Luo K, Li W. Recent advances in development of nanomedicines for multiple sclerosis diagnosis. Biomed Mater 2021; 16:024101. [PMID: 33472182 DOI: 10.1088/1748-605x/abddf4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease with a high morbidity and disease burden. It is characterized by the loss of the myelin sheath, resulting in the disruption of neuron electrical signal transmissions and sensory and motor ability deficits. The diagnosis of MS is crucial to its management, but the diagnostic sensitivity and specificity are always a challenge. To overcome this challenge, nanomedicines have recently been employed to aid the diagnosis of MS with an improved diagnostic efficacy. Advances in nanomedicine-based contrast agents in magnetic resonance imaging scanning of MS lesions, and nanomedicine-derived sensors for detecting biomarkers in the cerebrospinal fluid biopsy, or analyzing the composition of exhaled breath gas, have demonstrated the potential of using nanomedicines in the accurate diagnosis of MS. This review aims to provide an overview of recent advances in the application of nanomedicines for the diagnosis of MS and concludes with perspectives of using nanomedicines for the development of safe and effective MS diagnostic nanotools.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Radiology, Department of Postgraduate Students, and Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China. West China School of Medicine, Sichuan University, Chengdu 610041, People's Republic of China. These authors contributed equally to this work
| | | | | | | | | | | |
Collapse
|
40
|
Arlauckas S, Oh N, Li R, Weissleder R, Miller MA. Macrophage imaging and subset analysis using single-cell RNA sequencing. Nanotheranostics 2021; 5:36-56. [PMID: 33391974 PMCID: PMC7738942 DOI: 10.7150/ntno.50185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages have been associated with drug response and resistance in diverse settings, thus raising the possibility of using macrophage imaging as a companion diagnostic to inform personalized patient treatment strategies. Nanoparticle-based contrast agents are especially promising because they efficiently deliver fluorescent, magnetic, and/or radionuclide labels by leveraging the intrinsic capacity of macrophages to accumulate nanomaterials in their role as professional phagocytes. Unfortunately, current clinical imaging modalities are limited in their ability to quantify broad molecular programs that may explain (a) which particular cell subsets a given imaging agent is actually labeling, and (b) what mechanistic role those cells play in promoting drug response or resistance. Highly multiplexed single-cell approaches including single-cell RNA sequencing (scRNAseq) have emerged as resources to help answer these questions. In this review, we query recently published scRNAseq datasets to support companion macrophage imaging, with particular focus on using dextran-based nanoparticles to predict the action of anti-cancer nanotherapies and monoclonal antibodies.
Collapse
Affiliation(s)
- Sean Arlauckas
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Nuri Oh
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
41
|
Abstract
Magnetic resonance imaging (MRI) has been the cornerstone of imaging of brain tumors in the past 4 decades. Conventional MRI remains the workhorse for neuro-oncologic imaging, not only for basic information such as location, extent, and navigation but also able to provide information regarding proliferation and infiltration, angiogenesis, hemorrhage, and more. More sophisticated MRI sequences have extended the ability to assess and quantify these features; for example, permeability and perfusion acquisitions can assess blood-brain barrier disruption and angiogenesis, diffusion techniques can assess cellularity and infiltration, and spectroscopy can address metabolism. Techniques such as fMRI and diffusion fiber tracking can be helpful in diagnostic planning for resection and radiation therapy, and more sophisticated iterations of these techniques can extend our understanding of neurocognitive effects of these tumors and associated treatment responses and effects. More recently, MRI has been used to go beyond such morphological, physiological, and functional characteristics to assess the tumor microenvironment. The current review highlights multiple recent and emerging approaches in MRI to characterize the tumor microenvironment.
Collapse
|
42
|
Iv M, Ng NN, Nair S, Zhang Y, Lavezo J, Cheshier SH, Holdsworth SJ, Moseley ME, Rosenberg J, Grant GA, Yeom KW. Brain Iron Assessment after Ferumoxytol-enhanced MRI in Children and Young Adults with Arteriovenous Malformations: A Case-Control Study. Radiology 2020; 297:438-446. [PMID: 32930651 DOI: 10.1148/radiol.2020200378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Iron oxide nanoparticles are an alternative contrast agent for MRI. Gadolinium deposition has raised safety concerns, but it is unknown whether ferumoxytol administration also deposits in the brain. Purpose To investigate whether there are signal intensity changes in the brain at multiecho gradient imaging following ferumoxytol exposure in children and young adults. Materials and Methods This retrospective case-control study included children and young adults, matched for age and sex, with brain arteriovenous malformations who received at least one dose of ferumoxytol from January 2014 to January 2018. In participants who underwent at least two brain MRI examinations (subgroup), the first and last available examinations were analyzed. Regions of interests were placed around deep gray structures on quantitative susceptibility mapping and R2* images. Mean susceptibility and R2* values of regions of interests were recorded. Measurements were assessed by linear regression analyses: a between-group comparison of ferumoxytol-exposed and unexposed participants and a within-group (subgroup) comparison before and after exposure. Results Seventeen participants (mean age ± standard deviation, 13 years ± 5; nine male) were in the ferumoxytol-exposed (case) group, 21 (mean age, 14 years ± 5; 11 male) were in the control group, and nine (mean age, 12 years ± 6; four male) were in the subgroup. The mean number of ferumoxytol administrations was 2 ± 1 (range, one to four). Mean susceptibility (in parts per million [ppm]) and R2* (in inverse seconds [sec-1]) values of the dentate (case participants: 0.06 ppm ± 0.04 and 23.87 sec-1 ± 4.13; control participants: 0.02 ppm ± 0.03 and 21.7 sec-1 ± 5.26), substantia nigrae (case participants: 0.08 ppm ± 0.06 and 27.46 sec-1 ± 5.58; control participants: 0.04 ppm ± 0.05 and 24.96 sec-1 ± 5.3), globus pallidi (case participants: 0.14 ppm ± 0.05 and 30.75 sec-1 ± 5.14; control participants: 0.08 ppm ± 0.07 and 28.82 sec-1 ± 6.62), putamina (case participants: 0.03 ppm ± 0.02 and 20.63 sec-1 ± 2.44; control participants: 0.02 ppm ± 0.02 and 19.65 sec-1 ± 3.6), caudate (case participants: -0.1 ppm ± 0.04 and 18.21 sec-1 ± 3.1; control participants: -0.06 ppm ± 0.05 and 18.83 sec-1 ± 3.32), and thalami (case participants: 0 ppm ± 0.03 and 16.49 sec-1 ± 3.6; control participants: 0.02 ppm ± 0.02 and 18.38 sec-1 ± 2.09) did not differ between groups (susceptibility, P = .21; R2*, P = .24). For the subgroup, the mean interval between the first and last ferumoxytol administration was 14 months ± 8 (range, 1-25 months). Mean susceptibility and R2* values of the dentate (first MRI: 0.06 ppm ± 0.05 and 25.78 sec-1 ± 5.9; last MRI: 0.06 ppm ± 0.02 and 25.55 sec-1 ± 4.71), substantia nigrae (first MRI: 0.06 ppm ± 0.06 and 28.26 sec-1 ± 9.56; last MRI: 0.07 ppm ± 0.06 and 25.65 sec-1 ± 6.37), globus pallidi (first MRI: 0.13 ppm ± 0.07 and 27.53 sec-1 ± 8.88; last MRI: 0.14 ppm ± 0.06 and 29.78 sec-1 ± 6.54), putamina (first MRI: 0.03 ppm ± 0.03 and 19.78 sec-1 ± 3.51; last MRI: 0.03 ppm ± 0.02 and 19.73 sec-1 ± 3.01), caudate (first MRI: -0.09 ppm ± 0.05 and 21.38 sec-1 ± 4.72; last MRI: -0.1 ppm ± 0.05 and 18.75 sec-1 ± 2.68), and thalami (first MRI: 0.01 ppm ± 0.02 and 17.65 sec-1 ± 5.16; last MRI: 0 ppm ± 0.02 and 15.32 sec-1 ± 2.49) did not differ between the first and last MRI examinations (susceptibility, P = .95; R2*, P = .54). Conclusion No overall significant differences were found in susceptibility and R2* values of deep gray structures to suggest retained iron in the brain between ferumoxytol-exposed and unexposed children and young adults with arteriovenous malformations and in those exposed to ferumoxytol over time. © RSNA, 2020.
Collapse
Affiliation(s)
- Michael Iv
- From the Department of Radiology, Division of Neuroimaging and Neurointervention (M.I.), Department of Pathology (J.L.), Department of Radiology, Lucas Center (S.J.H., M.E.M., J.R.), and Department of Neurosurgery, Division of Pediatric Neurosurgery (G.A.G.), Stanford University, Stanford, Calif; Department of Radiology, Pediatric MRI and CT, Division of Pediatric Radiology, Lucile Packard Children's Hospital, Stanford University, 725 Welch Rd, Room G516, Palo Alto, CA 94304 (M.I., N.N.N., S.N., Y.Z., K.W.Y.); and Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT (S.H.C.). From the 2018 RSNA Annual Meeting
| | - Nathan N Ng
- From the Department of Radiology, Division of Neuroimaging and Neurointervention (M.I.), Department of Pathology (J.L.), Department of Radiology, Lucas Center (S.J.H., M.E.M., J.R.), and Department of Neurosurgery, Division of Pediatric Neurosurgery (G.A.G.), Stanford University, Stanford, Calif; Department of Radiology, Pediatric MRI and CT, Division of Pediatric Radiology, Lucile Packard Children's Hospital, Stanford University, 725 Welch Rd, Room G516, Palo Alto, CA 94304 (M.I., N.N.N., S.N., Y.Z., K.W.Y.); and Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT (S.H.C.). From the 2018 RSNA Annual Meeting
| | - Sid Nair
- From the Department of Radiology, Division of Neuroimaging and Neurointervention (M.I.), Department of Pathology (J.L.), Department of Radiology, Lucas Center (S.J.H., M.E.M., J.R.), and Department of Neurosurgery, Division of Pediatric Neurosurgery (G.A.G.), Stanford University, Stanford, Calif; Department of Radiology, Pediatric MRI and CT, Division of Pediatric Radiology, Lucile Packard Children's Hospital, Stanford University, 725 Welch Rd, Room G516, Palo Alto, CA 94304 (M.I., N.N.N., S.N., Y.Z., K.W.Y.); and Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT (S.H.C.). From the 2018 RSNA Annual Meeting
| | - Yi Zhang
- From the Department of Radiology, Division of Neuroimaging and Neurointervention (M.I.), Department of Pathology (J.L.), Department of Radiology, Lucas Center (S.J.H., M.E.M., J.R.), and Department of Neurosurgery, Division of Pediatric Neurosurgery (G.A.G.), Stanford University, Stanford, Calif; Department of Radiology, Pediatric MRI and CT, Division of Pediatric Radiology, Lucile Packard Children's Hospital, Stanford University, 725 Welch Rd, Room G516, Palo Alto, CA 94304 (M.I., N.N.N., S.N., Y.Z., K.W.Y.); and Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT (S.H.C.). From the 2018 RSNA Annual Meeting
| | - Jonathan Lavezo
- From the Department of Radiology, Division of Neuroimaging and Neurointervention (M.I.), Department of Pathology (J.L.), Department of Radiology, Lucas Center (S.J.H., M.E.M., J.R.), and Department of Neurosurgery, Division of Pediatric Neurosurgery (G.A.G.), Stanford University, Stanford, Calif; Department of Radiology, Pediatric MRI and CT, Division of Pediatric Radiology, Lucile Packard Children's Hospital, Stanford University, 725 Welch Rd, Room G516, Palo Alto, CA 94304 (M.I., N.N.N., S.N., Y.Z., K.W.Y.); and Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT (S.H.C.). From the 2018 RSNA Annual Meeting
| | - Samuel H Cheshier
- From the Department of Radiology, Division of Neuroimaging and Neurointervention (M.I.), Department of Pathology (J.L.), Department of Radiology, Lucas Center (S.J.H., M.E.M., J.R.), and Department of Neurosurgery, Division of Pediatric Neurosurgery (G.A.G.), Stanford University, Stanford, Calif; Department of Radiology, Pediatric MRI and CT, Division of Pediatric Radiology, Lucile Packard Children's Hospital, Stanford University, 725 Welch Rd, Room G516, Palo Alto, CA 94304 (M.I., N.N.N., S.N., Y.Z., K.W.Y.); and Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT (S.H.C.). From the 2018 RSNA Annual Meeting
| | - Samantha J Holdsworth
- From the Department of Radiology, Division of Neuroimaging and Neurointervention (M.I.), Department of Pathology (J.L.), Department of Radiology, Lucas Center (S.J.H., M.E.M., J.R.), and Department of Neurosurgery, Division of Pediatric Neurosurgery (G.A.G.), Stanford University, Stanford, Calif; Department of Radiology, Pediatric MRI and CT, Division of Pediatric Radiology, Lucile Packard Children's Hospital, Stanford University, 725 Welch Rd, Room G516, Palo Alto, CA 94304 (M.I., N.N.N., S.N., Y.Z., K.W.Y.); and Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT (S.H.C.). From the 2018 RSNA Annual Meeting
| | - Michael E Moseley
- From the Department of Radiology, Division of Neuroimaging and Neurointervention (M.I.), Department of Pathology (J.L.), Department of Radiology, Lucas Center (S.J.H., M.E.M., J.R.), and Department of Neurosurgery, Division of Pediatric Neurosurgery (G.A.G.), Stanford University, Stanford, Calif; Department of Radiology, Pediatric MRI and CT, Division of Pediatric Radiology, Lucile Packard Children's Hospital, Stanford University, 725 Welch Rd, Room G516, Palo Alto, CA 94304 (M.I., N.N.N., S.N., Y.Z., K.W.Y.); and Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT (S.H.C.). From the 2018 RSNA Annual Meeting
| | - Jarrett Rosenberg
- From the Department of Radiology, Division of Neuroimaging and Neurointervention (M.I.), Department of Pathology (J.L.), Department of Radiology, Lucas Center (S.J.H., M.E.M., J.R.), and Department of Neurosurgery, Division of Pediatric Neurosurgery (G.A.G.), Stanford University, Stanford, Calif; Department of Radiology, Pediatric MRI and CT, Division of Pediatric Radiology, Lucile Packard Children's Hospital, Stanford University, 725 Welch Rd, Room G516, Palo Alto, CA 94304 (M.I., N.N.N., S.N., Y.Z., K.W.Y.); and Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT (S.H.C.). From the 2018 RSNA Annual Meeting
| | - Gerald A Grant
- From the Department of Radiology, Division of Neuroimaging and Neurointervention (M.I.), Department of Pathology (J.L.), Department of Radiology, Lucas Center (S.J.H., M.E.M., J.R.), and Department of Neurosurgery, Division of Pediatric Neurosurgery (G.A.G.), Stanford University, Stanford, Calif; Department of Radiology, Pediatric MRI and CT, Division of Pediatric Radiology, Lucile Packard Children's Hospital, Stanford University, 725 Welch Rd, Room G516, Palo Alto, CA 94304 (M.I., N.N.N., S.N., Y.Z., K.W.Y.); and Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT (S.H.C.). From the 2018 RSNA Annual Meeting
| | - Kristen W Yeom
- From the Department of Radiology, Division of Neuroimaging and Neurointervention (M.I.), Department of Pathology (J.L.), Department of Radiology, Lucas Center (S.J.H., M.E.M., J.R.), and Department of Neurosurgery, Division of Pediatric Neurosurgery (G.A.G.), Stanford University, Stanford, Calif; Department of Radiology, Pediatric MRI and CT, Division of Pediatric Radiology, Lucile Packard Children's Hospital, Stanford University, 725 Welch Rd, Room G516, Palo Alto, CA 94304 (M.I., N.N.N., S.N., Y.Z., K.W.Y.); and Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT (S.H.C.). From the 2018 RSNA Annual Meeting
| |
Collapse
|
43
|
Savic LJ, Doemel LA, Schobert IT, Montgomery RR, Joshi N, Walsh JJ, Santana J, Pekurovsky V, Zhang X, Lin M, Adam L, Boustani A, Duncan J, Leng L, Bucala RJ, Goldberg SN, Hyder F, Coman D, Chapiro J. Molecular MRI of the Immuno-Metabolic Interplay in a Rabbit Liver Tumor Model: A Biomarker for Resistance Mechanisms in Tumor-targeted Therapy? Radiology 2020; 296:575-583. [PMID: 32633675 DOI: 10.1148/radiol.2020200373] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background The immuno-metabolic interplay has gained interest for determining and targeting immunosuppressive tumor micro-environments that remain a barrier to current immuno-oncologic therapies in hepatocellular carcinoma. Purpose To develop molecular MRI tools to reveal resistance mechanisms to immuno-oncologic therapies caused by the immuno-metabolic interplay in a translational liver cancer model. Materials and Methods A total of 21 VX2 liver tumor-bearing New Zealand white rabbits were used between October 2018 and February 2020. Rabbits were divided into three groups. Group A (n = 3) underwent intra-arterial infusion of gadolinium 160 (160Gd)-labeled anti-human leukocyte antigen-DR isotope (HLA-DR) antibodies to detect antigen-presenting immune cells. Group B (n = 3) received rhodamine-conjugated superparamagnetic iron oxide nanoparticles (SPIONs) intravenously to detect macrophages. These six rabbits underwent 3-T MRI, including T1- and T2-weighted imaging, before and 24 hours after contrast material administration. Group C (n = 15) underwent extracellular pH mapping with use of MR spectroscopy. Of those 15 rabbits, six underwent conventional transarterial chemoembolization (TACE), four underwent conventional TACE with extracellular pH-buffering bicarbonate, and five served as untreated controls. MRI signal intensity distribution was validated by using immunohistochemistry staining of HLA-DR and CD11b, Prussian blue iron staining, fluorescence microscopy of rhodamine, and imaging mass cytometry (IMC) of gadolinium. Statistical analysis included Mann-Whitney U and Kruskal-Wallis tests. Results T1-weighted MRI with 160Gd-labeled antibodies revealed localized peritumoral ring enhancement, which corresponded to gadolinium distribution detected with IMC. T2-weighted MRI with SPIONs showed curvilinear signal intensity representing selective peritumoral deposition in macrophages. Extracellular pH-specific MR spectroscopy of untreated liver tumors showed acidosis (mean extracellular pH, 6.78 ± 0.09) compared with liver parenchyma (mean extracellular pH, 7.18 ± 0.03) (P = .008) and peritumoral immune cell exclusion. Normalization of tumor extracellular pH (mean, 6.96 ± 0.05; P = .02) using bicarbonate during TACE increased peri- and intratumoral immune cell infiltration (P = .002). Conclusion MRI in a rabbit liver tumor model was used to visualize resistance mechanisms mediated by the immuno-metabolic interplay that inform susceptibility and response to immuno-oncologic therapies, providing a therapeutic strategy to restore immune permissiveness in liver cancer. © RSNA, 2020 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Lynn Jeanette Savic
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Luzie A Doemel
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Isabel Theresa Schobert
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Ruth Rebecca Montgomery
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Nikhil Joshi
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - John James Walsh
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Jessica Santana
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Vasily Pekurovsky
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Xuchen Zhang
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - MingDe Lin
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Lucas Adam
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Annemarie Boustani
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - James Duncan
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Lin Leng
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Richard John Bucala
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - S Nahum Goldberg
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Fahmeed Hyder
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Daniel Coman
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Julius Chapiro
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| |
Collapse
|
44
|
Barajas RF, Schwartz D, McConnell HL, Kersch CN, Li X, Hamilton BE, Starkey J, Pettersson DR, Nickerson JP, Pollock JM, Fu RF, Horvath A, Szidonya L, Varallyay CG, Jaboin JJ, Raslan AM, Dogan A, Cetas JS, Ciporen J, Han SJ, Ambady P, Muldoon LL, Woltjer R, Rooney WD, Neuwelt EA. Distinguishing Extravascular from Intravascular Ferumoxytol Pools within the Brain: Proof of Concept in Patients with Treated Glioblastoma. AJNR Am J Neuroradiol 2020; 41:1193-1200. [PMID: 32527840 DOI: 10.3174/ajnr.a6600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Glioblastoma-associated macrophages are a major constituent of the immune response to therapy and are known to engulf the iron-based MR imaging contrast agent, ferumoxytol. Current ferumoxytol MR imaging techniques for localizing macrophages are confounded by contaminating intravascular signal. The aim of this study was to assess the utility of a newly developed MR imaging technique, segregation and extravascular localization of ferumoxytol imaging, for differentiating extravascular-from-intravascular ferumoxytol contrast signal at a delayed 24-hour imaging time point. MATERIALS AND METHODS Twenty-three patients with suspected post-chemoradiotherapy glioblastoma progression underwent ferumoxytol-enhanced SWI. Segregation and extravascular localization of ferumoxytol imaging maps were generated as the voxelwise difference of the delayed (24 hours) from the early (immediately after administration) time point SWI maps. Continuous segregation and extravascular localization of ferumoxytol imaging map values were separated into positive and negative components. Image-guided biologic correlation was performed. RESULTS Negative segregation and extravascular localization of ferumoxytol imaging values correlated with early and delayed time point SWI values, demonstrating that intravascular signal detected in the early time point persists into the delayed time point. Positive segregation and extravascular localization of ferumoxytol imaging values correlated only with delayed time point SWI values, suggesting successful detection of the newly developed extravascular signal. CONCLUSIONS Segregation and extravascular localization of ferumoxytol MR imaging improves on current techniques by eliminating intrinsic tissue and intravascular ferumoxytol signal and may inform glioblastoma outcomes by serving as a more specific metric of macrophage content compared with uncorrected T1 and SWI techniques.
Collapse
Affiliation(s)
- R F Barajas
- From the Departments of Radiology (R.F.B. Jr, D.S., B.E.H., J.S., D.R.P., J.P.N., J.M.P., L.S., C.G.V.)
- Advanced Imaging Research Center (R.F.B. Jr, D.S., X.L., A.H., W.D.R.)
- Knight Cancer Institute Translational Oncology Research Program (R.F.B. Jr)
| | - D Schwartz
- From the Departments of Radiology (R.F.B. Jr, D.S., B.E.H., J.S., D.R.P., J.P.N., J.M.P., L.S., C.G.V.)
- Advanced Imaging Research Center (R.F.B. Jr, D.S., X.L., A.H., W.D.R.)
| | - H L McConnell
- Departments of Neurology (H.L.M., C.N.K., L.S., C.G.V., P.A., L.L.M., E.A.N.)
- Blood-Brain Barrier Program (H.L.M., C.N.K., L.S., C.G.V., P.A., L.L.M., E.A.N.), Oregon Health & Science University, Portland, Oregon
| | - C N Kersch
- Departments of Neurology (H.L.M., C.N.K., L.S., C.G.V., P.A., L.L.M., E.A.N.)
- Blood-Brain Barrier Program (H.L.M., C.N.K., L.S., C.G.V., P.A., L.L.M., E.A.N.), Oregon Health & Science University, Portland, Oregon
| | - X Li
- Advanced Imaging Research Center (R.F.B. Jr, D.S., X.L., A.H., W.D.R.)
| | - B E Hamilton
- From the Departments of Radiology (R.F.B. Jr, D.S., B.E.H., J.S., D.R.P., J.P.N., J.M.P., L.S., C.G.V.)
| | - J Starkey
- From the Departments of Radiology (R.F.B. Jr, D.S., B.E.H., J.S., D.R.P., J.P.N., J.M.P., L.S., C.G.V.)
| | - D R Pettersson
- From the Departments of Radiology (R.F.B. Jr, D.S., B.E.H., J.S., D.R.P., J.P.N., J.M.P., L.S., C.G.V.)
| | - J P Nickerson
- From the Departments of Radiology (R.F.B. Jr, D.S., B.E.H., J.S., D.R.P., J.P.N., J.M.P., L.S., C.G.V.)
| | - J M Pollock
- From the Departments of Radiology (R.F.B. Jr, D.S., B.E.H., J.S., D.R.P., J.P.N., J.M.P., L.S., C.G.V.)
| | - R F Fu
- Medical Informatics and Clinical Epidemiology (R.F.F.)
| | - A Horvath
- Advanced Imaging Research Center (R.F.B. Jr, D.S., X.L., A.H., W.D.R.)
| | - L Szidonya
- From the Departments of Radiology (R.F.B. Jr, D.S., B.E.H., J.S., D.R.P., J.P.N., J.M.P., L.S., C.G.V.)
- Departments of Neurology (H.L.M., C.N.K., L.S., C.G.V., P.A., L.L.M., E.A.N.)
- Blood-Brain Barrier Program (H.L.M., C.N.K., L.S., C.G.V., P.A., L.L.M., E.A.N.), Oregon Health & Science University, Portland, Oregon
- Department of Diagnostic Radiology (L.S.), Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - C G Varallyay
- From the Departments of Radiology (R.F.B. Jr, D.S., B.E.H., J.S., D.R.P., J.P.N., J.M.P., L.S., C.G.V.)
- Departments of Neurology (H.L.M., C.N.K., L.S., C.G.V., P.A., L.L.M., E.A.N.)
- Blood-Brain Barrier Program (H.L.M., C.N.K., L.S., C.G.V., P.A., L.L.M., E.A.N.), Oregon Health & Science University, Portland, Oregon
| | | | - A M Raslan
- Neurological Surgery (A.M.R., A.D., J.S.C., J.C., S.J.H., E.A.N.)
| | - A Dogan
- Neurological Surgery (A.M.R., A.D., J.S.C., J.C., S.J.H., E.A.N.)
| | - J S Cetas
- Neurological Surgery (A.M.R., A.D., J.S.C., J.C., S.J.H., E.A.N.)
| | - J Ciporen
- Neurological Surgery (A.M.R., A.D., J.S.C., J.C., S.J.H., E.A.N.)
| | - S J Han
- Neurological Surgery (A.M.R., A.D., J.S.C., J.C., S.J.H., E.A.N.)
| | - P Ambady
- Departments of Neurology (H.L.M., C.N.K., L.S., C.G.V., P.A., L.L.M., E.A.N.)
- Blood-Brain Barrier Program (H.L.M., C.N.K., L.S., C.G.V., P.A., L.L.M., E.A.N.), Oregon Health & Science University, Portland, Oregon
| | - L L Muldoon
- Departments of Neurology (H.L.M., C.N.K., L.S., C.G.V., P.A., L.L.M., E.A.N.)
- Blood-Brain Barrier Program (H.L.M., C.N.K., L.S., C.G.V., P.A., L.L.M., E.A.N.), Oregon Health & Science University, Portland, Oregon
| | | | - W D Rooney
- Advanced Imaging Research Center (R.F.B. Jr, D.S., X.L., A.H., W.D.R.)
| | - E A Neuwelt
- Departments of Neurology (H.L.M., C.N.K., L.S., C.G.V., P.A., L.L.M., E.A.N.)
- Neurological Surgery (A.M.R., A.D., J.S.C., J.C., S.J.H., E.A.N.)
- Blood-Brain Barrier Program (H.L.M., C.N.K., L.S., C.G.V., P.A., L.L.M., E.A.N.), Oregon Health & Science University, Portland, Oregon
- Portland Veterans Affairs Medical Center (E.A.N.), Portland, Oregon
| |
Collapse
|
45
|
Theruvath AJ, Aghighi M, Iv M, Nejadnik H, Lavezo J, Pisani LJ, Daldrup-Link HE. Brain iron deposition after Ferumoxytol-enhanced MRI: A study of Porcine Brains. Nanotheranostics 2020; 4:195-200. [PMID: 32637297 PMCID: PMC7332795 DOI: 10.7150/ntno.46356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/31/2020] [Indexed: 12/14/2022] Open
Abstract
Recent evidence of gadolinium deposition in the brain has raised safety concerns. Iron oxide nanoparticles are re-emerging as promising alternative MR contrast agents, because the iron core can be metabolized. However, long-term follow up studies of the brain after intravenous iron oxide administration have not been reported thus far. In this study, we investigated, if intravenously administered ferumoxytol nanoparticles are deposited in porcine brains. Methods: In an animal care and use committee-approved prospective case-control study, ten Göttingen minipigs received either intravenous ferumoxytol injections at a dose of 5 mg Fe/kg (n=4) or remained untreated (n=6). Nine to twelve months later, pigs were sacrificed and the brains of all pigs underwent ex vivo MRI at 7T with T2 and T2*-weighted sequences. MRI scans were evaluated by measuring R2* values (R2*=1000/T2*) of the bilateral caudate nucleus, lentiform nucleus, thalamus, dentate nucleus, and choroid plexus. Pig brains were sectioned and stained with Prussian blue and evaluated for iron deposition using a semiquantitative scoring system. Data of ferumoxytol exposed and unexposed groups were compared with an unpaired t-test and a Mann-Whitney U test. Results: T2 and T2* signal of the different brain regions was not visually different between ferumoxytol exposed and unexposed controls. There were no significant differences in R2* values of the different brain regions in the ferumoxytol exposed group compared to controls (p>0.05). Prussian blue stains of the same brain regions, scored according to a semiquantitative score, were not significantly different either between the ferumoxytol exposed group and unexposed controls (p>0.05). Conclusions: Our study shows that intravenous ferumoxytol doses of 5-10 mg Fe/kg do not lead to iron deposition in the brain of pigs. We suggest iron oxide nanoparticles as a promising alternative for gadolinium-enhanced MRI.
Collapse
Affiliation(s)
- Ashok Joseph Theruvath
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, CA, USA.,Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Maryam Aghighi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, CA, USA
| | - Michael Iv
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, CA, USA
| | - Hossein Nejadnik
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, CA, USA
| | - Jonathan Lavezo
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Laura Jean Pisani
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, CA, USA
| | | |
Collapse
|
46
|
Nie Y, Rui Y, Miao C, Li Q, Hu F, Gu H. A stable USPIO capable for MR lymphography with ultra-low effective dosage. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102233. [PMID: 32522710 DOI: 10.1016/j.nano.2020.102233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 02/01/2023]
Abstract
Ultra-small superparamagnetic iron oxide (USPIO) nanoparticles appear to be promising tools for MR lymphography due to their unique magnetic properties. In clinical diagnosis, the effectiveness of USPIO will greatly affect the clinician's judgment to the enhanced MR images. In this study, we evaluated the effectiveness of CS015, a PAA-coated USPIO, with subcutaneous and intravenous administration. It appeared that subcutaneously injected particles had much higher efficiency to reach lymph nodes, and even worked at a very small dose 0.075 μmol/kg. Further, we compared CS015 with ferumoxytol and ferumoxtran-10 in MR lymphography and found that CS015 had the best performance. And the lymph node metastases in New Zealand rabbits were successfully detected using CS015 with one single dose. These merits of CS015 make it a promising MR lymphography contrast agent with potential applications in cancer therapy.
Collapse
Affiliation(s)
- Ying Nie
- Nano Biomedical Research Center, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanpeng Rui
- Department of Radiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chongchong Miao
- Nano Biomedical Research Center, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Qinshan Li
- So-Fe Biomedicine, Xuhui District, Shanghai, China
| | - Fenglin Hu
- Nano Biomedical Research Center, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Hongchen Gu
- Nano Biomedical Research Center, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
47
|
Kamesh Iyer S, Moon BF, Josselyn N, Ruparel K, Roalf D, Song JW, Guiry S, Ware JB, Kurtz RM, Chawla S, Nabavizadeh SA, Witschey WR. Data-Driven Quantitative Susceptibility Mapping Using Loss Adaptive Dipole Inversion (LADI). J Magn Reson Imaging 2020; 52:823-835. [PMID: 32128914 DOI: 10.1002/jmri.27103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) uses prior information to reconstruct maps, but prior information may not show pathology and introduce inconsistencies with susceptibility maps, degrade image quality and inadvertently smoothing image features. PURPOSE To develop a local field data-driven QSM reconstruction that does not depend on spatial edge prior information. STUDY TYPE Retrospective. SUBJECTS, ANIMAL MODELS A dataset from 2016 ISMRM QSM Challenge, 11 patients with glioblastoma, a patient with microbleeds and porcine heart. SEQUENCE/FIELD STRENGTH 3D gradient echo sequence on 3T and 7T scanners. ASSESSMENT Accuracy was compared to Calculation of Susceptibility through Multiple Orientation Sampling (COSMOS), and several published techniques using region of interest (ROI) measurements, root-mean-squared error (RMSE), structural similarity index metric (SSIM), and high-frequency error norm (HFEN). Numerical ranking and semiquantitative image grading was performed by three expert observers to assess overall image quality (IQ) and image sharpness (IS). STATISTICAL TESTS Bland-Altman, Friedman test, and Conover multiple comparisons. RESULTS Loss adaptive dipole inversion (LADI) (β = 0.82, R2 = 0.96), morphology-enabled dipole inversion (MEDI) (β = 0.91, R2 = 0.97), and fast nonlinear susceptibility inversion (FANSI) (β = 0.81, R2 = 0.98) had excellent correlation with COSMOS and no bias was detected (bias = 0.006 ± 0.014, P < 0.05). In glioblastoma patients, LADI showed consistently better performance (IQGrade = 2.6 ± 0.4, ISGrade = 2.6 ± 0.3, IQRank = 3.5 ± 0.4, ISRank = 3.9 ± 0.2) compared with MEDI (IQGrade = 2.1 ± 0.3, ISGrade = 2 ± 0.5, IQRank = 2.4 ± 0.5, ISRank = 2.8 ± 0.2) and FANSI (IQGrade = 2.2 ± 0.5, ISGrade = 2 ± 0.4, IQRank = 2.8 ± 0.3, ISRank = 2.1 ± 0.2). Dark artifact visible near the infarcted region in MEDI (InfMEDI = -0.27 ± 0.06 ppm) was better mitigated by FANSI (InfFANSI-TGV = -0.17 ± 0.05 ppm) and LADI (InfLADI = -0.18 ± 0.05 ppm). CONCLUSION For neuroimaging applications, LADI preserved image sharpness and fine features in glioblastoma and microbleed patients. LADI performed better at mitigating artifacts in cardiac QSM. EVIDENCE LEVEL 4 TECHNICAL EFFICACY STAGE: 1 J. Magn. Reson. Imaging 2020;52:823-835.
Collapse
Affiliation(s)
- Srikant Kamesh Iyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brianna F Moon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicholas Josselyn
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kosha Ruparel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jae W Song
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samantha Guiry
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeffrey B Ware
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert M Kurtz
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - S Ali Nabavizadeh
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Walter R Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
48
|
Feng AY, Ho AL, Kim LH, Sussman ES, Pendharkar AV, Iv M, Yeom KW, Halpern CH, Grant GA. Utilization of Novel High-Resolution, MRI-Based Vascular Imaging Modality for Preoperative Stereoelectroencephalography Planning in Children: A Technical Note. Stereotact Funct Neurosurg 2020; 98:1-7. [PMID: 32062664 DOI: 10.1159/000503693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/25/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Stereoelectroencephalography (SEEG) is a powerful intracranial diagnostic tool that requires accurate imaging for proper electrode trajectory planning to ensure efficacy and maximize patient safety. Computed tomography (CT) angiography and digital subtraction angiography are commonly used, but recent developments in magnetic resonance angiography allow for high-resolution vascular visualization without added risks of radiation. We report on the accuracy of electrode placement under robotic assistance planning utilizing a novel high-resolution magnetic resonance imaging (MRI)-based imaging modality. METHODS Sixteen pediatric patients between February 2014 and October 2017 underwent SEEG exploration for epileptogenic zone localization. A gadolinium-enhanced 3D T1-weighted spoiled gradient recalled echo sequence with minimum echo time and repetition time was applied for background parenchymal suppression and vascular enhancement. Electrode placement accuracy was determined by analyzing postoperative CT scans laid over preoperative virtual electrode trajectory paths. Entry point, target point, and closest vessel intersection were measured. RESULTS For any intersection along the trajectory path, 57 intersected vessels were measured. The mean diameter of an intersected vessel was 1.0343 ± 0.1721 mm, and 21.05% of intersections involved superficial vessels. There were 157 overall intersection + near-miss events. The mean diameter for an involved vessel was 1.0236 ± 0.0928 mm, and superficial vessels were involved in 20.13%. Looking only at final electrode target, 3 intersection events were observed. The mean diameter of an intersected vessel was 1.0125 ± 0.2227 mm. For intersection + near-miss events, 24 were measured. An involved vessel's mean diameter was 1.1028 ± 0.2634 mm. For non-entry point intersections, 45 intersected vessels were measured. The mean diameter for intersected vessels was 0.9526 ± 0.0689 mm. For non-entry point intersections + near misses, 126 events were observed. The mean diameter for involved vessels was 0.9826 ± 0.1008 mm. CONCLUSION We believe this novel sequence allows better identification of superficial and deeper subcortical vessels compared to conventional T1-weighted gadolinium-enhanced MRI.
Collapse
Affiliation(s)
- Austin Y Feng
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Allen L Ho
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Lily H Kim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Eric S Sussman
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Arjun V Pendharkar
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Iv
- Department of Radiology, Stanford University Medical Center, Stanford, California, USA
| | - Kristen W Yeom
- Department of Radiology, Pediatric Radiology, Lucile Packard Children's Hospital at Stanford, Stanford, California, USA
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Gerald A Grant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA, .,Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital Stanford, Stanford, California, USA,
| |
Collapse
|
49
|
In vivo assessment of tumour associated macrophages in murine melanoma obtained by low-field relaxometry in the presence of iron oxide particles. Biomaterials 2020; 236:119805. [PMID: 32028168 DOI: 10.1016/j.biomaterials.2020.119805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/27/2019] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
Abstract
Tumour-associated macrophages (TAM) are forced by cancer cells to adopt an anti-inflammatory phenotype and secrete factors to promote tumour invasion thus being responsible for poor patient outcome. The aim of this study is to develop a clinically applicable, non-invasive method to obtain a quantitative TAM detection in tumour tissue. The method is based on longitudinal proton relaxation rate (R1) measurements at low field (0.01-1 MHz) to assess the localization of ferumoxytol (clinical approved iron oxide particles) in TAM present in melanoma tumours, where R1 = 1/T1. R1 at low magnetic fields appears highly dependent on the intra or extra cellular localization of the nanoparticles thus allowing an unambiguous TAM quantification. R1 profiles were acquired on a Fast Field-Cycling relaxometer equipped with a 40 mm wide bore magnet and an 11 mm solenoid detection coil placed around the anatomical region of interest. The R1 values measured 3 h and 24 h after the injection were significantly different. At 24 h R1 exhibited a behavior similar to "in vitro" ferumoxytol-labelled J774A.1 macrophages whereas at 3 h, when the ferumoxytol distribution was extracellular, R1 exhibited higher values similar to that of free ferumoxytol in solution. This finding clearly indicated the intracellular localization of ferumoxytol at 24 h, as confirmed by histological analysis (Pearls and CD68 assays). This information could be hardly achievable from measurements at a single magnetic field and opens new horizons for cell tracking applications using FFC-MRI.
Collapse
|
50
|
Israel LL, Galstyan A, Holler E, Ljubimova JY. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. J Control Release 2020; 320:45-62. [PMID: 31923537 DOI: 10.1016/j.jconrel.2020.01.009] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
Magnetic nanoparticles in general, and iron oxide nanoparticles in particular, have been studied extensively during the past 20 years for numerous biomedical applications. The main applications of these nanoparticles are in magnetic resonance imaging (MRI), magnetic targeting, gene and drug delivery, magnetic hyperthermia for tumor treatment, and manipulation of the immune system by macrophage polarization for cancer treatment. Recently, considerable attention has been paid to magnetic particle imaging (MPI) because of its better sensitivity compared to MRI. In recent years, MRI and MPI have been combined as a dual or multimodal imaging method to enhance the signal in the brain for the early detection and treatment of brain pathologies. Because magnetic and iron oxide nanoparticles are so diverse and can be used in multiple applications such as imaging or therapy, they have attractive features for brain delivery. However, the greatest limitations for the use of MRI/MPI for imaging and treatment are in brain delivery, with one of these limitations being the brain-blood barrier (BBB). This review addresses the current status, chemical compositions, advantages and disadvantages, toxicity and most importantly the future directions for the delivery of iron oxide based substances across the blood-brain barrier for targeting, imaging and therapy of primary and metastatic tumors of the brain.
Collapse
Affiliation(s)
- Liron L Israel
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Anna Galstyan
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Eggehard Holler
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Julia Y Ljubimova
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA.
| |
Collapse
|