1
|
Beck L, Kirkham MN, Shin M, Bikman BT, Reynolds PR, Arroyo JA. Impact of Secondhand Smoke and E-Cigarette Exposure on Placental Apoptotic and Growth-Regulatory Proteins in Mouse Pregnancy. Cells 2025; 14:453. [PMID: 40136702 PMCID: PMC11941361 DOI: 10.3390/cells14060453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Apoptosis is critical in placental development, and its dysregulation is linked to pregnancy complications such as intrauterine growth restriction (IUGR) and preeclampsia (PE). Environmental exposures, particularly secondhand smoke (SHS) and e-cigarettes (eCigs), may contribute to placental dysfunction through apoptotic pathways. This study examined the effects of SHS and eCig exposure on placental apoptosis and growth-regulatory proteins in a murine model. C57BL/6 pregnant mice were exposed to SHS or eCigs at two critical gestational time points: early trophoblast invasion (E12.5 to E18.5) and established invasion (E14.5 to E18.5). Placental tissues were collected and analyzed for pro-apoptotic and anti-apoptotic markers, heat shock proteins, insulin-like growth factor-binding proteins (IGFBPs), and growth regulators. SHS exposure increased pro-apoptotic markers (BAD, Fas/FasL) and decreased mitochondrial function markers (cytochrome c), indicating compromised cellular survival. Both SHS and eCig exposure reduced anti-apoptotic markers (BCL-2, HSP27, survivin) and growth regulators (IGF-1, IGFBPs). SHS and eCig exposure create a pro-apoptotic environment in the placenta, potentially impairing fetal development through altered apoptotic and growth-regulatory pathways. These findings underscore the risks of environmental exposures during pregnancy, highlighting the need for strategies to minimize maternal exposure to SHS and eCigs.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan A. Arroyo
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
2
|
Bralewska M, Pietrucha T, Sakowicz A. The Role of Catestatin in Preeclampsia. Int J Mol Sci 2024; 25:2461. [PMID: 38473713 DOI: 10.3390/ijms25052461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Preeclampsia (PE) is a unique pregnancy disorder affecting women across the world. It is characterized by the new onset of hypertension with coexisting end-organ damage. Although the disease has been known for centuries, its exact pathophysiology and, most importantly, its prevention remain elusive. The basis of its associated molecular changes has been attributed to the placenta and the hormones regulating its function. One such hormone is chromogranin A (CgA). In the placenta, CgA is cleaved to form a variety of biologically active peptides, including catestatin (CST), known inter alia for its vasodilatory effects. Recent studies indicate that the CST protein level is diminished both in patients with hypertension and those with PE. Therefore, the aim of the present paper is to review the most recent and most relevant in vitro, in vivo, and clinical studies to provide an overview of the proposed impact of CST on the molecular processes of PE and to consider the possibilities for future experiments in this area.
Collapse
Affiliation(s)
- Michalina Bralewska
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Tadeusz Pietrucha
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
3
|
Abstract
During placentation, villous cytotrophoblast (CTB) stem cells proliferate and fuse, giving rise to the multinucleated syncytiotrophoblast (STB), which represents the terminally differentiated villous layer as well as the maternal-fetal interface. The syncytiotrophoblast is at the forefront of nutrient, gas, and waste exchange while also harboring essential endocrine functions to support pregnancy and fetal development. Considering that mitochondrial dynamics and respiration have been implicated in stem cell fate decisions of several cell types and that the placenta is a mitochondria-rich organ, we will highlight the role of mitochondria in facilitating trophoblast differentiation and maintaining trophoblast function. We discuss both the process of syncytialization and the distinct metabolic characteristics associated with CTB and STB sub-lineages prior to and during syncytialization. As mitochondrial respiration is tightly coupled to redox homeostasis, we emphasize the adaptations of mitochondrial respiration to the hypoxic placental environment. Furthermore, we highlight the critical role of mitochondria in conferring the steroidogenic potential of the STB following differentiation. Ultimately, mitochondrial function and morphological changes centrally regulate respiration and influence trophoblast fate decisions through the production of reactive oxygen species (ROS), whose levels modulate the transcriptional activation or suppression of pluripotency or commitment genes.
Collapse
Affiliation(s)
- Tina Podinić
- Department of Pediatrics and Graduate Program in Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Andie MacAndrew
- Department of Pediatrics and Graduate Program in Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Sandeep Raha
- Department of Pediatrics and Graduate Program in Medical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
4
|
Sengul M, Karadas B, Acar-Sahan S, Simsek F, Horoz E, Özok IC, Temiz T. Functional and Histological Changes in Umbilical Artery and Myometrium Isolated from IUGR Complicated Pregnancies. Fetal Pediatr Pathol 2023; 42:845-859. [PMID: 37578058 DOI: 10.1080/15513815.2023.2245892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
Objective: To investigate the relaxation responses mediated by L-type Ca2+ channels and big-conductance Ca2+-activated K+ (BKCa) channels and histological changes in the human umbilical artery (HUA) and myometrium smooth muscle isolated from pregnancies complicated with intrauterine growth restriction (IUGR).Methods: The muscle reactivity and the histology of the smooth muscle of the HUA and myometrium retrieved from 14 women with IUGR and 14 controls were investigated by the isolated tissue bath and immunohistochemical method.Results: In HUA, the maximum relaxation responses and pD2 values of nifedipine and NS11021 (BKCa channel opener) were significantly increased and significant histopathological changes are observed in the IUGR group.Conclusions: The pathogenesis of IUGR might be associated with the impairment in the functional responses of L-type Ca2+ channels and BKCa channels in HUA smooth muscle. The increased staining of myometrium and UC with HIF-1α in IUGR may indicate apoptosis, histological damage, and impaired fetal growth.
Collapse
Affiliation(s)
- Mustafa Sengul
- Department of Obstetrics and Gynecology Izmir, Izmir Katip Celebi University Faculty of Medicine, Turkey
| | - Baris Karadas
- Department of Pharmacology Izmir, Izmir Katip Celebi University Faculty of Medicine, Turkey
| | - Selin Acar-Sahan
- Department of Pharmacology Izmir, Izmir Katip Celebi University Faculty of Medicine, Turkey
| | - Fatma Simsek
- Department of Histology and Embryology Izmir, Izmir Katip Celebi University Faculty of Medicine, Turkey
| | - Ersan Horoz
- Department of Pharmacology Izmir, Izmir Katip Celebi University Faculty of Medicine, Turkey
| | - Işık Cem Özok
- Department of Pharmacology Izmir, Izmir Katip Celebi University Faculty of Medicine, Turkey
| | - Tijen Temiz
- Department of Pharmacology Izmir, Izmir Katip Celebi University Faculty of Medicine, Turkey
| |
Collapse
|
5
|
Kou J, Yuan E, Yan G. Association between HIF-1α, BNIP3, and autophagy in the chorionic villi of missed abortion. J Obstet Gynaecol Res 2023. [PMID: 37150840 DOI: 10.1111/jog.15667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
AIM To investigate the expression of autophagy mediated by the hypoxia-inducible factor 1α (HIF-1α)/BNIP3 signaling pathway in villus tissues of missed abortion and HTR-8/SVneo cells and to elucidate the association of HIF-1α and BNIP3 in autophagy of missed abortion. METHODS Villus tissues from 30 healthy women with induced abortion and 35 patients with missed abortion were collected, and HTR-8/SVneo cells were cultured under hypoxia and transfected with HIF-1α-siRNA. Real-time polymerase chain reaction was utilized to measure the mRNA levels of HIF-1α and BNIP3; Western blotting was performed to determine the protein levels of HIF-1α, BNIP3, LC3 II/I, and Beclin 1 in villus tissues and HTR-8/SVneo cells. Cellular invasion activity was detected by transwell matrigel assay. The level of autophagy was confirmed by transmission electron microscopy of autophagosome formation. RESULTS The mRNA levels of HIF-1α and BNIP3 were significantly lower in the missed abortion villi than in the induced abortion samples. The protein levels of HIF-1α, BNIP3, Beclin 1, and LC3II/I were significantly decreased in villus tissues from missed abortion, and autophagosomes were significantly decreased in villus tissues from missed abortion. Under hypoxia, the mRNA expression of HIF-1α and BNIP3 was inhibited after silencing HIF-1α by RNAi, while the protein expression of HIF-1α, BNIP3, Beclin1, and LC3II/I was significantly downregulated. The number of invading cells was significantly decreased, and autophagosomes were significantly decreased after silencing HIF-1α by RNAi in HTR-8/SVneo cells. CONCLUSIONS Autophagy mediated by the HIF-1α/BNIP3 signaling pathway in villous trophoblast cells may be associated with the progression and development of missed abortion.
Collapse
Affiliation(s)
- Junna Kou
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enwu Yuan
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guangwei Yan
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Effects of TP53 Mutations and miRs on Immune Responses in the Tumor Microenvironment Important in Pancreatic Cancer Progression. Cells 2022; 11:cells11142155. [PMID: 35883598 PMCID: PMC9318640 DOI: 10.3390/cells11142155] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Approximately 90% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). PDAC is the fourth leading cause of cancer death world-wide. Therapies for PDAC are largely ineffective due to the dense desmoplastic tumor microenvironment which prevents chemotherapeutic drugs and small molecule inhibitors from exerting effective anti-cancer effects. In this review, we will discuss the roles of TP53 and miRs on the PDAC tumor microenvironment and how loss of the normal functions of TP53 promote tumor progression. The TP53 gene is mutated in approximately 50% of pancreatic cancers. Often, these TP53 mutations are point mutations which confer additional functions for the TP53 proteins. These are called gain of function (GOF) mutations (mut). Another class of TP53 mutations are deletions which result in loss of the TP53 protein; these are referred to TP53-null mutations. We have organized this review into various components/properties of the PDAC microenvironment and how they may be altered in the presence of mutant TP53 and loss of certain miR expression.
Collapse
|
7
|
Tocotrienol in Pre-Eclampsia Prevention: A Mechanistic Analysis in Relation to the Pathophysiological Framework. Cells 2022; 11:cells11040614. [PMID: 35203265 PMCID: PMC8870475 DOI: 10.3390/cells11040614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/23/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
The pathophysiology of pre-eclampsia involves two major pathways, namely systemic oxidative stress and subsequent generalised inflammatory response, which eventually culminates in endothelial cell injury and the syndrome of pre-eclampsia with multi-organ dysfunction. Aspirin has been used to reduce the risk of pre-eclampsia, but it only possesses anti-inflammatory properties without any antioxidant effect. Hence, it can only partially alleviate the problem. Tocotrienols are a unique form of vitamin E with strong antioxidant and anti-inflammatory properties that can be exploited as a preventive agent for pre-eclampsia. Many preclinical models showed that tocotrienol can also prevent hypertension and ischaemic/reperfusion injury, which are the two main features in pre-eclampsia. This review explores the mechanism of action of tocotrienol in relation to the pathophysiology of pre-eclampsia. In conclusion, the study provides sufficient justification for the establishment of a large clinical trial to thoroughly assess the capability of tocotrienol in preventing pre-eclampsia.
Collapse
|
8
|
Assessing hypoxic damage to placental trophoblasts by measuring membrane viscosity of extracellular vesicles. Placenta 2022; 121:14-22. [PMID: 35245720 PMCID: PMC9010367 DOI: 10.1016/j.placenta.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/06/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION As highly sophisticated intercellular communication vehicles in biological systems, extracellular vesicles (EVs) have been investigated as both promising liquid biopsy-based disease biomarkers and drug delivery carriers. Despite tremendous progress in understanding their biological and physiological functions, mechanical characterization of these nanoscale entities remains challenging due to the limited availability of proper techniques. Especially, whether damage to parental cells can be reflected by the mechanical properties of their EVs remains unknown. METHODS In this study, we characterized membrane viscosities of different types of EVs collected from primary human trophoblasts (PHTs), including apoptotic bodies, microvesicles and small extracellular vesicles, using fluorescence lifetime imaging microscopy (FLIM). The biochemical origin of EV membrane viscosity was examined by analyzing their phospholipid composition, using mass spectrometry. RESULTS We found that different EV types derived from the same cell type exhibit different membrane viscosities. The measured membrane viscosity values are well supported by the lipidomic analysis of the phospholipid compositions. We further demonstrate that the membrane viscosity of microvesicles can faithfully reveal hypoxic injury of the human trophoblasts. More specifically, the membrane of PHT microvesicles released under hypoxic condition is less viscous than its counterpart under standard culture condition, which is supported by the reduction in the phosphatidylethanolamine-to-phosphatidylcholine ratio in PHT microvesicles. DISCUSSION Our study suggests that biophysical properties of released trophoblastic microvesicles can reflect cell health. Characterizing EV's membrane viscosity may pave the way for the development of new EV-based clinical applications.
Collapse
|
9
|
Functional Analysis of p21 Cip1/CDKN1A and Its Family Members in Trophoblastic Cells of the Placenta and Its Roles in Preeclampsia. Cells 2021; 10:cells10092214. [PMID: 34571867 PMCID: PMC8465116 DOI: 10.3390/cells10092214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022] Open
Abstract
Preeclampsia (PE), a gestational hypertensive disease originating from the placenta, is characterized by an imbalance of various cellular processes. The cell cycle regulator p21Cip1/CDKN1A (p21) and its family members p27 and p57 regulate signaling pathways fundamental to placental development. The aim of the present study was to enlighten the individual roles of these cell cycle regulators in placental development and their molecular involvement in the pathogenesis of PE. The expression and localization of p21, phospho-p21 (Thr-145), p27, and p57 was immunohistochemically analyzed in placental tissues from patients with early-onset PE, early-onset PE complicated by the HELLP (hemolysis, elevated liver enzymes and low platelet count) syndrome as well as late-onset PE compared to their corresponding control tissues from well-matched women undergoing caesarean sections. The gene level was evaluated using real-time quantitative PCR. We demonstrate that the delivery mode strongly influenced placental gene expression, especially for CDKN1A (p21) and CDKN1B (p27), which were significantly upregulated in response to labor. Cell cycle regulators were highly expressed in first trimester placentas and impacted by hypoxic conditions. In support of these observations, p21 protein was abundant in trophoblast organoids and hypoxia reduced its gene expression. Microarray analysis of the trophoblastic BeWo cell line depleted of p21 revealed various interesting candidate genes and signaling pathways for the fusion process. The level of p21 was reduced in fusing cytotrophoblasts in early-onset PE placentas and depletion of p21 led to reduced expression of fusion-related genes such as syncytin-2 and human chorionic gonadotropin (β-hCG), which adversely affected the fusion capability of trophoblastic cells. These data highlight that cell cycle regulators are important for the development of the placenta. Interfering with p21 influences multiple pathways related to the pathogenesis of PE.
Collapse
|
10
|
Lamptey J, Li F, Adu-Gyamfi EA, Chen XM, Czika A, Otoo A, Liu TH, Wang YX, Ding YB. Downregulation of fascin in the first trimester placental villi is associated with early recurrent miscarriage. Exp Cell Res 2021; 403:112597. [PMID: 33862100 DOI: 10.1016/j.yexcr.2021.112597] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 12/17/2022]
Abstract
Inadequate trophoblast proliferation, shallow invasion and exaggerated rate of trophoblast apoptosis are implicated in early recurrent miscarriage (ERM). However, the mechanistic bases of this association have not been fully established. We aimed at investigating the involvement of fascin, an actin-bundling protein, in trophoblast activities and ERM. We found that fascin was downregulated in the cytotrophoblasts (CTBs) and distal cytotrophoblasts (DCTs) of ERM placentae. Knockdown of fascin altered cellular and nucleolar morphology, and inhibited the proliferation but increased apoptosis of trophoblastic HTR8/SVneo cells. Furthermore, fascin knockdown decreased the expression of transcription factors such as Snail1/2, Twist and Zeb1/2, mesenchymal molecules such as Vimentin and N-cadherin, and the protein expression of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphorylates signal transducer and activator of transcript 3 (STAT3). Exposure of HTR-8/SVneo cells to hypoxia reoxygenation (H/R) decreased fascin expression to affect the cells' invasion. Our results indicate for the first time that the downregulation of fascin is involved in the pathogenesis of early recurrent miscarriage; and hence a potential therapeutic target against the disease.
Collapse
Affiliation(s)
- Jones Lamptey
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Fangfang Li
- The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Enoch Appiah Adu-Gyamfi
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xue-Mei Chen
- The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Armin Czika
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Antonia Otoo
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Tai-Hang Liu
- The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ying-Xiong Wang
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yu-Bin Ding
- The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
11
|
Zhang C, Liu J, Wang J, Zhang T, Xu D, Hu W, Feng Z. The Interplay Between Tumor Suppressor p53 and Hypoxia Signaling Pathways in Cancer. Front Cell Dev Biol 2021; 9:648808. [PMID: 33681231 PMCID: PMC7930565 DOI: 10.3389/fcell.2021.648808] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is a hallmark of solid tumors and plays a critical role in different steps of tumor progression, including proliferation, survival, angiogenesis, metastasis, metabolic reprogramming, and stemness of cancer cells. Activation of the hypoxia-inducible factor (HIF) signaling plays a critical role in regulating hypoxic responses in tumors. As a key tumor suppressor and transcription factor, p53 responds to a wide variety of stress signals, including hypoxia, and selectively transcribes its target genes to regulate various cellular responses to exert its function in tumor suppression. Studies have demonstrated a close but complex interplay between hypoxia and p53 signaling pathways. The p53 levels and activities can be regulated by the hypoxia and HIF signaling differently depending on the cell/tissue type and the severity and duration of hypoxia. On the other hand, p53 regulates the hypoxia and HIF signaling at multiple levels. Many tumor-associated mutant p53 proteins display gain-of-function (GOF) oncogenic activities to promote cancer progression. Emerging evidence has also shown that GOF mutant p53 can promote cancer progression through its interplay with the hypoxia and HIF signaling pathway. In this review, we summarize our current understanding of the interplay between the hypoxia and p53 signaling pathways, its impact upon cancer progression, and its potential application in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ, United States
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
12
|
Maternal and offspring high-fat diet leads to platelet hyperactivation in male mice offspring. Sci Rep 2021; 11:1473. [PMID: 33446734 PMCID: PMC7809045 DOI: 10.1038/s41598-020-80373-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 01/25/2023] Open
Abstract
Maternal over-nutrition increases the risk of diabetes and cardiovascular events in offspring. While prominent effects on cardiovascular health are observed, the impact on platelet physiology has not been studied. Here, we examined whether maternal high-fat diet (HF) ingestion affects the platelet function in lean and obese offspring. C57BL6/N mice dams were given a HF or control (C) diet for 8 weeks before and during pregnancy. Male and female offspring received C or HF diets for 26 weeks. Experimental groups were: C/C, dam and offspring fed standard laboratory diet; C/HF dam fed standard laboratory diet and offspring fed HF diet; HF/C and HF/HF. Phenotypic and metabolic tests were performed and blood collected for platelet studies. Compared to C/C, offspring HF groups were obese, with fat accumulation, hyperglycaemia and insulin resistance. Female offspring did not present platelet hyperactivity, hence we focused on male offspring. Platelets from HF/HF mice were larger, hyperactive and presented oxidative stress when compared to C/C. Maternal and offspring HF diet results in platelet hyperactivation in male mouse offspring, suggesting a novel ‘double-hit’ effect.
Collapse
|
13
|
Colson A, Sonveaux P, Debiève F, Sferruzzi-Perri AN. Adaptations of the human placenta to hypoxia: opportunities for interventions in fetal growth restriction. Hum Reprod Update 2020; 27:531-569. [PMID: 33377492 DOI: 10.1093/humupd/dmaa053] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The placenta is the functional interface between the mother and the fetus during pregnancy, and a critical determinant of fetal growth and life-long health. In the first trimester, it develops under a low-oxygen environment, which is essential for the conceptus who has little defense against reactive oxygen species produced during oxidative metabolism. However, failure of invasive trophoblasts to sufficiently remodel uterine arteries toward dilated vessels by the end of the first trimester can lead to reduced/intermittent blood flow, persistent hypoxia and oxidative stress in the placenta with consequences for fetal growth. Fetal growth restriction (FGR) is observed in ∼10% of pregnancies and is frequently seen in association with other pregnancy complications, such as preeclampsia (PE). FGR is one of the main challenges for obstetricians and pediatricians, as smaller fetuses have greater perinatal risks of morbidity and mortality and postnatal risks of neurodevelopmental and cardio-metabolic disorders. OBJECTIVE AND RATIONALE The aim of this review was to examine the importance of placental responses to changing oxygen environments during abnormal pregnancy in terms of cellular, molecular and functional changes in order to highlight new therapeutic pathways, and to pinpoint approaches aimed at enhancing oxygen supply and/or mitigating oxidative stress in the placenta as a mean of optimizing fetal growth. SEARCH METHODS An extensive online search of peer-reviewed articles using PubMed was performed with combinations of search terms including pregnancy, placenta, trophoblast, oxygen, hypoxia, high altitude, FGR and PE (last updated in May 2020). OUTCOMES Trophoblast differentiation and placental establishment are governed by oxygen availability/hypoxia in early pregnancy. The placental response to late gestational hypoxia includes changes in syncytialization, mitochondrial functions, endoplasmic reticulum stress, hormone production, nutrient handling and angiogenic factor secretion. The nature of these changes depends on the extent of hypoxia, with some responses appearing adaptive and others appearing detrimental to the placental support of fetal growth. Emerging approaches that aim to increase placental oxygen supply and/or reduce the impacts of excessive oxidative stress are promising for their potential to prevent/treat FGR. WIDER IMPLICATIONS There are many risks and challenges of intervening during pregnancy that must be considered. The establishment of human trophoblast stem cell lines and organoids will allow further mechanistic studies of the effects of hypoxia and may lead to advanced screening of drugs for use in pregnancies complicated by placental insufficiency/hypoxia. Since no treatments are currently available, a better understanding of placental adaptations to hypoxia would help to develop therapies or repurpose drugs to optimize placental function and fetal growth, with life-long benefits to human health.
Collapse
Affiliation(s)
- Arthur Colson
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Frédéric Debiève
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Hoch D, Novakovic B, Cvitic S, Saffery R, Desoye G, Majali-Martinez A. Sex matters: XIST and DDX3Y gene expression as a tool to determine fetal sex in human first trimester placenta. Placenta 2020; 97:68-70. [PMID: 32792067 DOI: 10.1016/j.placenta.2020.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022]
Abstract
Fetal sex influences placental function as well as maternal and fetal health, being an important factor to consider in pregnancy studies. However, fetal sex determination in the first trimester of pregnancy still faces some technical limitations. Here we describe an RT-qPCR technique to determine fetal sex based on X-inactive specific transcript (XIST) and DEAD-Box helicase 3 Y-linked (DDX3Y) gene expression. This method is straightforward, reliable, fast and applicable on both, placental tissue and primary cells.
Collapse
Affiliation(s)
- Denise Hoch
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, 8036, Austria.
| | - Boris Novakovic
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia.
| | - Silvija Cvitic
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, 8036, Austria; Department of Paediatrics and Adolescent Medicine, Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Medical University of Graz, Graz, 8036, Austria.
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia.
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, 8036, Austria.
| | | |
Collapse
|
15
|
Wilson JW, Shakir D, Batie M, Frost M, Rocha S. Oxygen-sensing mechanisms in cells. FEBS J 2020; 287:3888-3906. [PMID: 32446269 DOI: 10.1111/febs.15374] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
Abstract
The importance of oxygen for the survival of multicellular and aerobic organisms is well established and documented. Over the years, increased knowledge of its use for bioenergetics has placed oxygen at the centre of research on mitochondria and ATP-generating processes. Understanding the molecular mechanisms governing cellular oxygen sensing and response has allowed for the discovery of novel pathways oxygen is involved in, culminating with the award of the Nobel Prize for Medicine and Physiology in 2019 to the pioneers of this field, Greg Semenza, Peter Ratcliffe and William Kaelin. However, it is now beginning to be appreciated that oxygen can be a signalling molecule involved in a vast array of molecular processes, most of which impinge on gene expression control. This review will focus on the knowns and unknowns of oxygen as a signalling molecule, highlighting the role of 2-oxoglutarate-dependent dioxygenases as central players in the cellular response to deviations in oxygen tension.
Collapse
Affiliation(s)
- James W Wilson
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Dilem Shakir
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Michael Batie
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Mark Frost
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Sonia Rocha
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| |
Collapse
|
16
|
Madan E, Parker TM, Pelham CJ, Palma AM, Peixoto ML, Nagane M, Chandaria A, Tomás AR, Canas-Marques R, Henriques V, Galzerano A, Cabral-Teixeira J, Selvendiran K, Kuppusamy P, Carvalho C, Beltran A, Moreno E, Pati UK, Gogna R. HIF-transcribed p53 chaperones HIF-1α. Nucleic Acids Res 2019; 47:10212-10234. [PMID: 31538203 PMCID: PMC6821315 DOI: 10.1093/nar/gkz766] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/14/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic hypoxia is associated with a variety of physiological conditions such as rheumatoid arthritis, ischemia/reperfusion injury, stroke, diabetic vasculopathy, epilepsy and cancer. At the molecular level, hypoxia manifests its effects via activation of HIF-dependent transcription. On the other hand, an important transcription factor p53, which controls a myriad of biological functions, is rendered transcriptionally inactive under hypoxic conditions. p53 and HIF-1α are known to share a mysterious relationship and play an ambiguous role in the regulation of hypoxia-induced cellular changes. Here we demonstrate a novel pathway where HIF-1α transcriptionally upregulates both WT and MT p53 by binding to five response elements in p53 promoter. In hypoxic cells, this HIF-1α-induced p53 is transcriptionally inefficient but is abundantly available for protein-protein interactions. Further, both WT and MT p53 proteins bind and chaperone HIF-1α to stabilize its binding at its downstream DNA response elements. This p53-induced chaperoning of HIF-1α increases synthesis of HIF-regulated genes and thus the efficiency of hypoxia-induced molecular changes. This basic biology finding has important implications not only in the design of anti-cancer strategies but also for other physiological conditions where hypoxia results in disease manifestation.
Collapse
Affiliation(s)
- Esha Madan
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Taylor M Parker
- Department of Surgery, Simon Cancer Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher J Pelham
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63110, USA
| | - Antonio M Palma
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Maria L Peixoto
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Masaki Nagane
- Department of Biochemistry, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Aliya Chandaria
- Biosciences unit, College of Life and Environmental Sciences, University of Exeter, Stocker Road Exeter EX4 4QD, UK
| | - Ana R Tomás
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | | | | | | | | | - Karuppaiyah Selvendiran
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Periannan Kuppusamy
- Department of Radiology and Medicine, 601 Rubin Building, Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Carlos Carvalho
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Antonio Beltran
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Eduardo Moreno
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Uttam K Pati
- Transcription and Human Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajan Gogna
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|
17
|
Porcine Reproductive and Respiratory Syndrome Virus Activates Lipophagy To Facilitate Viral Replication through Downregulation of NDRG1 Expression. J Virol 2019; 93:JVI.00526-19. [PMID: 31189711 PMCID: PMC6694807 DOI: 10.1128/jvi.00526-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022] Open
Abstract
Autophagy maintains cellular homeostasis by degrading organelles, proteins, and lipids in lysosomes. Autophagy is involved in the innate and adaptive immune responses to a variety of pathogens. Some viruses can hijack host autophagy to enhance their replication. However, the role of autophagy in porcine reproductive and respiratory syndrome virus (PRRSV) infection is unclear. Here, we show that N-Myc downstream-regulated gene 1 (NDRG1) deficiency induced autophagy, which facilitated PRRSV replication by regulating lipid metabolism. NDRG1 mRNA is expressed ubiquitously in most porcine tissues and most strongly in white adipose tissue. PRRSV infection downregulated the expression of NDRG1 mRNA and protein, while NDRG1 deficiency contributed to PRRSV RNA replication and progeny virus assembly. NDRG1 deficiency reduced the number of intracellular lipid droplets (LDs), but the expression levels of key genes in lipogenesis and lipolysis were not altered. Our results also show that NDRG1 deficiency promoted autophagy and increased the subsequent yields of hydrolyzed free fatty acids (FFAs). The reduced LD numbers, increased FFA levels, and enhanced PRRSV replication were abrogated in the presence of an autophagy inhibitor. Overall, our findings suggest that NDRG1 plays a negative role in PRRSV replication by suppressing autophagy and LD degradation.IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV), an enveloped single-positive-stranded RNA virus, causes acute respiratory distress in piglets and reproductive failure in sows. It has led to tremendous economic losses in the swine industry worldwide since it was first documented in the late 1980s. Vaccination is currently the major strategy used to control the disease. However, conventional vaccines and other strategies do not provide satisfactory or sustainable prevention. Therefore, safe and effective strategies to control PRRSV are urgently required. The significance of our research is that we demonstrate a previously unreported relationship between PRRSV, NDRG1, and lipophagy in the context of viral infection. Furthermore, our data point to a new role for NDRG1 in autophagy and lipid metabolism. Thus, NDRG1 and lipophagy will have significant implications for understanding PRRSV pathogenesis for developing new therapeutics.
Collapse
|
18
|
Souza SSD, Silva GSD, Almeida-Val VMFD. Ecophysiology, genotoxicity, histopathology, and gene responses of naphthalene injected Colossoma macropomum (Cuvier, 1818) exposed to hypoxia. Genet Mol Biol 2019; 42:411-424. [PMID: 31259356 PMCID: PMC6726157 DOI: 10.1590/1678-4685-gmb-2018-0084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/01/2018] [Indexed: 11/29/2022] Open
Abstract
The present study aimed to evaluate the biological responses of Colossoma
macropomum to naphthalene injection and subsequent hypoxia
exposure, emphasizing the expression of the tumor suppressor gene
tp53. Tambaquis were intraperitoneally injected with
naphthalene (50 mg/kg) and, after 96 hours, the fish were transferred to
respirometry chambers and, submitted to progressive hypoxia for the
determination of critical PO2. In a subsequent experiment, the fish
received an intraperitoneal injection of naphthalene and were kept for 96 hours
under normoxia. Successively, fish were challenged with acute hypoxia
(PO2<PO2 crit) during 6 hours. We observed that the
PO2 crit was not affected by naphthalene injection. Moreover,
hematological parameters were modulated only in response to hypoxia. Fish with
naphthalene injection plus hypoxia exposure presented altered activity of the
GST and CAT enzymes. Exposure to naphthalene also resulted in DNA damages, which
was not influenced by hypoxia. Hypoxia accentuated the hepatic lesions caused by
naphthalene, as well as it also impaired the transcription of
tp53 in naphtalene injected fish, demonstrating the risks
of contaminating aquatic environments, especially environments where hypoxic
conditions are common and occur on a daily or on seasonal basis, as in the
Amazon basin.
Collapse
Affiliation(s)
- Samara Silva de Souza
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Research in the Amazon (INPA), Manaus, AM, Brazil
| | - Grazyelle Sebrenski da Silva
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Research in the Amazon (INPA), Manaus, AM, Brazil.,Institute of Biological Science (ICB), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | | |
Collapse
|
19
|
Strowitzki MJ, Cummins EP, Taylor CT. Protein Hydroxylation by Hypoxia-Inducible Factor (HIF) Hydroxylases: Unique or Ubiquitous? Cells 2019; 8:cells8050384. [PMID: 31035491 PMCID: PMC6562979 DOI: 10.3390/cells8050384] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
All metazoans that utilize molecular oxygen (O2) for metabolic purposes have the capacity to adapt to hypoxia, the condition that arises when O2 demand exceeds supply. This is mediated through activation of the hypoxia-inducible factor (HIF) pathway. At physiological oxygen levels (normoxia), HIF-prolyl hydroxylases (PHDs) hydroxylate proline residues on HIF-α subunits leading to their destabilization by promoting ubiquitination by the von-Hippel Lindau (VHL) ubiquitin ligase and subsequent proteasomal degradation. HIF-α transactivation is also repressed in an O2-dependent way due to asparaginyl hydroxylation by the factor-inhibiting HIF (FIH). In hypoxia, the O2-dependent hydroxylation of HIF-α subunits by PHDs and FIH is reduced, resulting in HIF-α accumulation, dimerization with HIF-β and migration into the nucleus to induce an adaptive transcriptional response. Although HIFs are the canonical substrates for PHD- and FIH-mediated protein hydroxylation, increasing evidence indicates that these hydroxylases may also have alternative targets. In addition to PHD-conferred alterations in protein stability, there is now evidence that hydroxylation can affect protein activity and protein/protein interactions for alternative substrates. PHDs can be pharmacologically inhibited by a new class of drugs termed prolyl hydroxylase inhibitors which have recently been approved for the treatment of anemia associated with chronic kidney disease. The identification of alternative targets of HIF hydroxylases is important in order to fully elucidate the pharmacology of hydroxylase inhibitors (PHI). Despite significant technical advances, screening, detection and verification of alternative functional targets for PHDs and FIH remain challenging. In this review, we discuss recently proposed non-HIF targets for PHDs and FIH and provide an overview of the techniques used to identify these.
Collapse
Affiliation(s)
- Moritz J Strowitzki
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Eoin P Cummins
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Cormac T Taylor
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
20
|
Sagrillo-Fagundes L, Bienvenue-Pariseault J, Legembre P, Vaillancourt C. An insight into the role of the death receptor CD95 throughout pregnancy: Guardian, facilitator, or foe. Birth Defects Res 2019; 111:197-211. [PMID: 30702213 DOI: 10.1002/bdr2.1470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/16/2019] [Indexed: 12/24/2022]
Abstract
The prototype death receptor CD95 (Fas) and its ligand, CD95L (FasL), have been thoroughly studied due to their role in immune homeostasis and elimination of infected and transformed cells. The fact that CD95 is present in female reproductive cells and modulated during embryogenesis and pregnancy has raised interest in its role in immune tolerance to the fetoplacental unit. CD95 has been shown to be critical for proper embryonic formation and survival. Moreover, altered expression of CD95 or its ligand causes autoimmunity and has also been directly involved in recurrent pregnancy losses and pregnancy disorders. The objective of this review is to summarize studies that evaluate the mechanisms involved in the activation of CD95 to provide an updated global view of its effect on the regulation of the maternal immune system. Modulation of the CD95 system components may be the immune basis of several common pregnancy disorders.
Collapse
Affiliation(s)
- Lucas Sagrillo-Fagundes
- Department of Environmental toxicology and Chemical Pharmacology, INRS - Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Laval, Quebec, Canada
| | - Josianne Bienvenue-Pariseault
- Department of Environmental toxicology and Chemical Pharmacology, INRS - Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Laval, Quebec, Canada
| | - Patrick Legembre
- Oncogenesis, Stress & Signaling Laboratory INSERM ERL440, Centre Eugène Marquis, Inserm U1242, Equipe Ligue Contre Le Cancer, Rennes, France
| | - Cathy Vaillancourt
- Department of Environmental toxicology and Chemical Pharmacology, INRS - Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Laval, Quebec, Canada
| |
Collapse
|
21
|
Rodriguez J, Herrero A, Li S, Rauch N, Quintanilla A, Wynne K, Krstic A, Acosta JC, Taylor C, Schlisio S, von Kriegsheim A. PHD3 Regulates p53 Protein Stability by Hydroxylating Proline 359. Cell Rep 2018; 24:1316-1329. [PMID: 30067985 PMCID: PMC6088137 DOI: 10.1016/j.celrep.2018.06.108] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 03/30/2018] [Accepted: 06/27/2018] [Indexed: 01/05/2023] Open
Abstract
Cellular p53 protein levels are regulated by a ubiquitination/de-ubiquitination cycle that can target the protein for proteasomal destruction. The ubiquitination reaction is catalyzed by a multitude of ligases, whereas the removal of ubiquitin chains is mediated by two deubiquitinating enzymes (DUBs), USP7 (HAUSP) and USP10. Here, we show that PHD3 hydroxylates p53 at proline 359, a residue that is in the p53-DUB binding domain. Hydroxylation of p53 upon proline 359 regulates its interaction with USP7 and USP10, and its inhibition decreases the association of p53 with USP7/USP10, increases p53 ubiquitination, and rapidly reduces p53 protein levels independently of mRNA expression. Our results show that p53 is a PHD3 substrate and that hydroxylation by PHD3 regulates p53 protein stability through modulation of ubiquitination.
Collapse
Affiliation(s)
- Javier Rodriguez
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland; Cancer Research UK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Ana Herrero
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Shuijie Li
- Ludwig Institute for Cancer Research Ltd., SE-17177 Stockholm, Sweden; Department of Microbiology and Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Nora Rauch
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Andrea Quintanilla
- Cancer Research UK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Kieran Wynne
- Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Aleksandar Krstic
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Juan Carlos Acosta
- Cancer Research UK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Cormac Taylor
- Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Susanne Schlisio
- Ludwig Institute for Cancer Research Ltd., SE-17177 Stockholm, Sweden; Department of Microbiology and Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Alex von Kriegsheim
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland; Cancer Research UK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|
22
|
Chen B, Longtine MS, Riley JK, Nelson DM. Antenatal pomegranate juice rescues hypoxia-induced fetal growth restriction in pregnant mice while reducing placental cell stress and apoptosis. Placenta 2018; 66:1-7. [PMID: 29884297 DOI: 10.1016/j.placenta.2018.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 02/05/2023]
Abstract
INTRODUCTION There is a need for prophylaxis to reduce placental-associated intrauterine growth restriction (IUGR). Pomegranate juice (PJ) is replete with phytochemicals having biological effects at non-pharmacological concentrations. We test the hypothesis that exposure of pregnant mice to hypoxia late in gestation induces cellular stress in the placenta, which can be ameliorated by antecedent maternal consumption of PJ. MATERIALS AND METHODS We exposed pregnant mice to 12% or 21% oxygen, with food ad libitum or restricted, and with consumption of PJ or glucose between 12.5 and 18.5 days post conception (dpc). We examined the outcomes of the nine groups (n = 10) at 18.5 dpc, quantifying fetal and placental weights and placental labyrinthine and junctional zone depths and areas. We assayed cellular stress by expression of Hsp90 and apoptosis by TUNEL staining and expression of cleaved caspase 3. RESULTS Maternal exposure to 12% oxygen or food restriction in 21% oxygen, induced IUGR, compared to control. The labyrinth to junctional zone ratio was lower in hypoxic ad libitum, compared to normoxic food-restricted, placentas. Antenatal PJ prior to and during hypoxic exposure significantly improved fetal growth, reduced Hsp90 expression, and limited apoptosis in the labyrinth, while enhancing junctional zone apoptosis. DISCUSSION Maternal exposure to hypoxia induces IUGR, cell stress, and apoptosis in mouse placentas. The labyrinth and junctional zone of the mouse placenta are differentially sensitive to FiO2 and to PJ. PJ offers benefits in the prophylaxis of IUGR in the mouse, but PJ effects on the junctional zone require further study.
Collapse
Affiliation(s)
- Baosheng Chen
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA; John T. Milliken Department of Medicine, Washington University School of Medicine (WUSOM), 660 S. Euclid Ave, Campus Box 8124, St. Louis, MO 63110, USA.
| | - Mark S Longtine
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joan K Riley
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - D Michael Nelson
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
23
|
Seno K, Tanikawa N, Takahashi H, Ohkuchi A, Suzuki H, Matsubara S, Iwata H, Kuwayama T, Shirasuna K. Oxygen concentration modulates cellular senescence and autophagy in human trophoblast cells. Am J Reprod Immunol 2018; 79:e12826. [PMID: 29446169 DOI: 10.1111/aji.12826] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/23/2018] [Indexed: 12/28/2022] Open
Abstract
PROBLEM We investigated the effect of oxygen concentrations on cellular senescence and autophagy and examined the role of autophagy in human trophoblast cells. METHOD OF STUDY Human first-trimester trophoblast cells (Sw.71) were incubated under 21%, 5%, or 1% O2 concentrations for 24 hours. We examined the extent of senescence caused using senescence-associated β-galactosidase (SA-β-Gal) and senescence-associated secretory phenotype (SASP) as markers. Moreover, we examined the role of autophagy in causing cellular senescence using an autophagy inhibitor (3-methyladenine, 3MA). RESULTS Physiological normoxia (5% O2 ) decreased SA-β-Gal-positive cells and SASP including interleukin-6 (IL-6) and IL-8 compared with cultured cells in 21% O2 . Pathophysiological hypoxia (1% O2 ) caused cytotoxicity, including extracellular release of ATP and lactate dehydrogenase, and decreased senescence phenotypes. 3MA-treated trophoblast cells significantly suppressed senescence markers (SA-β-Gal-positive cells and SASP secretion) in O2 -independent manner. CONCLUSION We conclude that O2 concentration modulates cellular senescence phenotypes regulating autophagy in the human trophoblast cells. Moreover, inhibiting autophagy suppresses cellular senescence, suggesting that autophagy contributes to oxygen stress-induced cellular senescence.
Collapse
Affiliation(s)
- Kotomi Seno
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Nao Tanikawa
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Hironori Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Akihide Ohkuchi
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hirotada Suzuki
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shigeki Matsubara
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hisataka Iwata
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Takehito Kuwayama
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Koumei Shirasuna
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| |
Collapse
|
24
|
Longtine MS, Cvitic S, Colvin BN, Chen B, Desoye G, Nelson DM. Calcitriol regulates immune genes CD14 and CD180 to modulate LPS responses in human trophoblasts. Reproduction 2017; 154:735-744. [DOI: 10.1530/rep-17-0183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/17/2017] [Accepted: 09/04/2017] [Indexed: 11/08/2022]
Abstract
We assessed the response of primary cultures of placental villous mononucleated trophoblasts and multinucleated syncytiotrophoblast to calcitriol, the most biologically active form of vitamin D. Whole-genome microarray data showed that calcitriol modulates the expression of many genes in trophoblasts within 6 hours of exposure and RT-qPCR revealed similar responses in cytotrophoblasts, syncytiotrophoblasts and villous explants. Both cytotrophoblasts and syncytiotrophoblasts expressed genes for the vitamin D receptor, for LRP2 and CUBN that mediate internalization of calcidiol, forCYP27B1that encodes the enzyme that converts calcidiol into active calcitriol, and forCYP24A1that encodes the enzyme that modifies calcitriol and calcidiol to inactive calcitetrol. Notably, we found an inverse effect of calcitriol on expression of CD14 and CD180/RP105, proteins that differentially regulate toll-like receptor 4-mediated immune responses. Supported by gene ontology analysis, we tested the hypothesis that CD14 and CD180 modulate the inflammatory response of syncytiotrophoblast to bacterial lipopolysaccharide (LPS). These cells showed a robust response to a wide range of LPS concentrations, with induction of active NF-κB and increased secretion of IL-6 and IL-8. SiRNA-mediated knockdown ofCD14reduced the secretion of IL-6 and IL-8 in response to LPS. Collectively, our data showed that calcitriol has a rapid and widespread effect on villous trophoblast gene expression in general, and a specific effect on the innate immune response by syncytiotrophoblast.
Collapse
|
25
|
Colvin BN, Longtine MS, Chen B, Costa ML, Nelson DM. Oleate attenuates palmitate-induced endoplasmic reticulum stress and apoptosis in placental trophoblasts. Reproduction 2017; 153:369-380. [PMID: 28159805 DOI: 10.1530/rep-16-0576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/02/2016] [Accepted: 01/03/2017] [Indexed: 12/24/2022]
Abstract
Pre-pregnancy obesity is increasingly common and predisposes pregnant women and offspring to gestational diabetes, pre-eclampsia, fetal growth abnormalities and stillbirth. Obese women exhibit elevated levels of the two most common dietary fatty acids, palmitate and oleate, and the maternal blood containing these nutrients bathes the surface of trophoblasts of placental villi in vivo We test the hypothesis that the composition and concentration of free fatty acids modulate viability and function of primary human villous trophoblasts in culture. We found that palmitate increases syncytiotrophoblast death, specifically by caspase-mediated apoptosis, whereas oleate does not cause enhanced cell death. Importantly, exposure to both fatty acids in equimolar amounts yielded no increase in death or apoptosis, suggesting that oleate can protect syncytiotrophoblasts from palmitate-induced death. We further found that palmitate, but not oleate or oleate with palmitate, increases endoplasmic reticulum (ER) stress, signaling through the unfolded protein response, and yielding CHOP-mediated induction of apoptosis. Finally, we show that oleate or oleate plus palmitate both lead to increased lipid droplets in syncytiotrophoblasts, whereas palmitate does not. The data show palmitate is toxic to human syncytiotrophoblasts, through the induction of ER stress and apoptosis mediated by CHOP, whereas oleate is not toxic, abrogates palmitate toxicity and induces fat accumulation. We speculate that our in vitro results offer pathways by which the metabolic milieu of the obese pregnant woman can yield villous trophoblast dysfunction and sub-optimal placental function.
Collapse
Affiliation(s)
| | - Mark S Longtine
- Department of Obstetrics and GynecologyWashington University School of Medicine, St Louis, Missouri, USA
| | - Baosheng Chen
- Department of Obstetrics and GynecologyWashington University School of Medicine, St Louis, Missouri, USA
| | - Maria Laura Costa
- Department of Obstetrics and GynecologyWashington University School of Medicine, St Louis, Missouri, USA.,Department of Obstetrics and GynecologyUniversidade Estadual de Campinas, Cidade Universitaria Zeferino Vaz, Campinas, Brazil
| | - D Michael Nelson
- Department of Obstetrics and GynecologyWashington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
26
|
Haidar M, Timmerman V. Autophagy as an Emerging Common Pathomechanism in Inherited Peripheral Neuropathies. Front Mol Neurosci 2017; 10:143. [PMID: 28553203 PMCID: PMC5425483 DOI: 10.3389/fnmol.2017.00143] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022] Open
Abstract
The inherited peripheral neuropathies (IPNs) comprise a growing list of genetically heterogeneous diseases. With mutations in more than 80 genes being reported to cause IPNs, a wide spectrum of functional consequences is expected to follow this genotypic diversity. Hence, the search for a common pathomechanism among the different phenotypes has become the holy grail of functional research into IPNs. During the last decade, studies on several affected genes have shown a direct and/or indirect correlation with autophagy. Autophagy, a cellular homeostatic process, is required for the removal of cell aggregates, long-lived proteins and dead organelles from the cell in double-membraned vesicles destined for the lysosomes. As an evolutionarily highly conserved process, autophagy is essential for the survival and proper functioning of the cell. Recently, neuronal cells have been shown to be particularly vulnerable to disruption of the autophagic pathway. Furthermore, autophagy has been shown to be affected in various common neurodegenerative diseases of both the central and the peripheral nervous system including Alzheimer's, Parkinson's, and Huntington's diseases. In this review we provide an overview of the genes involved in hereditary neuropathies which are linked to autophagy and we propose the disruption of the autophagic flux as an emerging common pathomechanism. We also shed light on the different steps of the autophagy pathway linked to these genes. Finally, we review the concept of autophagy being a therapeutic target in IPNs, and the possibilities and challenges of this pathway-specific targeting.
Collapse
Affiliation(s)
- Mansour Haidar
- Peripheral Neuropathy Research Group, Institute Born Bunge, University of AntwerpAntwerpen, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Institute Born Bunge, University of AntwerpAntwerpen, Belgium
| |
Collapse
|
27
|
GDM alters paracrine regulation of feto-placental angiogenesis via the trophoblast. J Transl Med 2017; 97:409-418. [PMID: 28112754 DOI: 10.1038/labinvest.2016.149] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 01/13/2023] Open
Abstract
Feto-placental angiogenesis and vascular development are tightly regulated by pro- and anti-angiogenic factors. Villous trophoblast may be a major source of these factors. It forms the classical placental barrier between mother and fetus, and is thus exposed to maternal influences as well. Metabolic and hormonal derangements in gestational diabetes mellitus (GDM) affect feto-placental angiogenesis and vascular growth. Here we hypothesized that GDM alters the trophoblast secretome, which will modulate the paracrine regulation of feto-placental angiogenesis. Primary term trophoblasts were isolated from normal (n=6) and GDM (n=6) pregnancies. Trophoblast conditioned medium (CM) was used to investigate paracrine effects of normal and GDM-exposed trophoblasts on feto-placental endothelial cells (fpECs; n=7), using functional assays for 2D network formation, wound healing, chemotaxis, and proliferation. Gene expression of 23 pro- and anti-angiogenic factors was analyzed. Four trophoblast-derived paracrine regulators of angiogenesis were specifically measured in CM. CM from GDM trophoblasts increased 2D network formation of fpEC by 2.4-fold (P<0.001), whereas wound healing was attenuated by 1.8-fold (P=0.02) and chemo-attraction to the CM was reduced by 33±9% (P=0.02). The effect of CM on proliferation was unchanged between normal and GDM trophoblasts. Expression analysis of pro- and anti-angiogenic molecules in normal and GDM trophoblasts revealed significant differences in ANGPT2, HGF, KISS1 and PLGF expression. Analysis of secreted proteins demonstrated reduced pigment epithelium derived factor and tumor necrosis factor-α secretion by GDM trophoblasts. GDM alters the balance of trophoblast derived, angiogenesis modulating paracrine factors. This may contribute to GDM-associated changes in placental angiogenesis and vascular structure.
Collapse
|
28
|
Loegl J, Nussbaumer E, Hiden U, Majali-Martinez A, Ghaffari-Tabrizi-Wizy N, Cvitic S, Lang I, Desoye G, Huppertz B. Pigment epithelium-derived factor (PEDF): a novel trophoblast-derived factor limiting feto-placental angiogenesis in late pregnancy. Angiogenesis 2016; 19:373-88. [PMID: 27278471 PMCID: PMC4930480 DOI: 10.1007/s10456-016-9513-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 05/13/2016] [Indexed: 12/24/2022]
Abstract
The rapidly expanding feto-placental vasculature needs tight control by paracrine and endocrine mechanisms. Here, we focused on paracrine influence by trophoblast, the placental epithelium. We aimed to identify differences in regulation of feto-placental angiogenesis in early versus late pregnancy. To this end, the effect of conditioned media (CM) from early and late pregnancy human trophoblast was tested on network formation, migration and proliferation of human feto-placental endothelial cells. Only CM of late pregnancy trophoblast reduced network formation and migration. Screening of trophoblast transcriptome for anti-angiogenic candidates identified pigment epithelium-derived factor (PEDF) with higher expression and protein secretion in late pregnancy trophoblast. Addition of a PEDF-neutralizing antibody restored the anti-angiogenic effect of CM from late pregnancy trophoblast. Notably, human recombinant PEDF reduced network formation only in combination with VEGF. Also in the CAM assay, the combination of PEDF with VEGF reduced branching of vessels below control levels. Analysis of phosphorylation of ERK1/2 and FAK, two key players in VEGF-induced proliferation and migration, revealed that PEDF altered VEGF signaling, while PEDF alone did not affect phosphorylation of ERK1/2 and FAK. These data suggest that the trophoblast-derived anti-angiogenic molecule PEDF is involved in restricting growth and expansion of the feto-placental endothelium predominantly in late pregnancy and targets to modulate the intracellular effect of VEGF.
Collapse
Affiliation(s)
- Jelena Loegl
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria.,Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Erika Nussbaumer
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria.
| | | | | | - Silvija Cvitic
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria.,Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Ingrid Lang
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Berthold Huppertz
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| |
Collapse
|
29
|
Koszałka P, Gołuńska M, Urban A, Stasiłojć G, Stanisławowski M, Majewski M, Składanowski AC, Bigda J. Specific Activation of A3, A2A and A1 Adenosine Receptors in CD73-Knockout Mice Affects B16F10 Melanoma Growth, Neovascularization, Angiogenesis and Macrophage Infiltration. PLoS One 2016; 11:e0151420. [PMID: 26964090 PMCID: PMC4786137 DOI: 10.1371/journal.pone.0151420] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/26/2016] [Indexed: 11/18/2022] Open
Abstract
CD73 (ecto-5'-nucleotidase), a cell surface enzyme hydrolyzing AMP to adenosine, was lately demonstrated to play a direct role in tumor progression including regulation of tumor vascularization. It was also shown to stimulate tumor macrophage infiltration. Interstitial adenosine, accumulating in solid tumors due to CD73 enzymatic activity, is recognized as a main mediator regulating the production of pro- and anti-angiogenic factors, but the engagement of specific adenosine receptors in tumor progression in vivo is still poorly researched. We have analyzed the role of high affinity adenosine receptors A1, A2A, and A3 in B16F10 melanoma progression using specific agonists (CCPA, CGS-21680 and IB-MECA, respectively). We limited endogenous extracellular adenosine background using CD73 knockout mice treated with CD73 chemical inhibitor, AOPCP (adenosine α,β-methylene 5’-diphosphate). Activation of any adenosine receptor significantly inhibited B16F10 melanoma growth but only at its early stage. At 14th day of growth, the decrease in tumor neovascularization and MAPK pathway activation induced by CD73 depletion was reversed by all agonists. Activation of A1AR primarily increased angiogenic activation measured by expression of VEGF-R2 on tumor blood vessels. However, mainly A3AR activation increased both the microvessel density and expression of pro-angiogenic factors. All agonists induced significant increase in macrophage tumor infiltration, with IB-MECA being most effective. This effect was accompanied by substantial changes in cytokines regulating macrophage polarization between pro-inflammatory and pro-angiogenic phenotype. Our results demonstrate an evidence that each of the analyzed receptors has a specific role in the stimulation of tumor angiogenesis and confirm significantly more multifaceted role of adenosine in its regulation than was already observed. They also reveal previously unexplored consequences to extracellular adenosine signaling depletion in recently proposed anti-CD73 cancer therapy.
Collapse
MESH Headings
- 5'-Nucleotidase/deficiency
- 5'-Nucleotidase/genetics
- Adenosine/metabolism
- Animals
- Cell Proliferation
- Extracellular Space/metabolism
- Gene Expression Regulation, Neoplastic
- Gene Knockout Techniques
- Macrophages/cytology
- Macrophages/immunology
- Male
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Mice
- Neovascularization, Pathologic
- Receptor, Adenosine A1/metabolism
- Receptor, Adenosine A2A/metabolism
- Receptor, Adenosine A3/metabolism
- Receptors, Purinergic P1/metabolism
- Signal Transduction
- Up-Regulation
Collapse
Affiliation(s)
- Patrycja Koszałka
- Laboratory of Cell Biology, Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Poland
- * E-mail:
| | - Monika Gołuńska
- Laboratory of Cell Biology, Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Poland
| | - Aleksandra Urban
- Laboratory of Cell Biology, Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Poland
| | - Grzegorz Stasiłojć
- Laboratory of Cell Biology, Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Poland
| | | | - Marceli Majewski
- Laboratory of Cell Biology, Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Poland
| | - Andrzej C. Składanowski
- Laboratory of Molecular Enzymology, Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Poland
| | - Jacek Bigda
- Laboratory of Cell Biology, Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Poland
| |
Collapse
|
30
|
Chen Q, Pang PC, Cohen ME, Longtine MS, Schust DJ, Haslam SM, Blois SM, Dell A, Clark GF. Evidence for Differential Glycosylation of Trophoblast Cell Types. Mol Cell Proteomics 2016; 15:1857-66. [PMID: 26929217 DOI: 10.1074/mcp.m115.055798] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 11/06/2022] Open
Abstract
Human placental villi are surfaced by the syncytiotrophoblast (STB), with a layer of cytotrophoblasts (CTB) positioned just beneath the STB. STB in normal term pregnancies is exposed to maternal immune cells in the placental intervillous space. Extravillous cytotrophoblasts (EVT) invade the decidua and spiral arteries, where they act in conjunction with natural killer (NK) cells to convert the spiral arteries into flaccid conduits for maternal blood that support a 3-4 fold increase in the rate of maternal blood flow into the placental intervillous space. The functional roles of these distinct trophoblast subtypes during pregnancy suggested that they could be differentially glycosylated. Glycomic analysis of these trophoblasts has revealed the expression of elevated levels of biantennary N-glycans in STB and CTB, with the majority of them bearing a bisecting GlcNAc. N-glycans terminated with polylactosamine extensions were also detected at low levels. A subset of the N-glycans linked to these trophoblasts were sialylated, primarily with terminal NeuAcα2-3Gal sequences. EVT were decorated with the same N-glycans as STB and CTB, except in different proportions. The level of bisecting type N-glycans was reduced, but the level of N-glycans decorated with polylactosamine sequences were substantially elevated compared with the other types of trophoblasts. The level of triantennary and tetraantennary N-glycans was also elevated in EVT. The sialylated N-glycans derived from EVT were completely susceptible to an α2-3 specific neuraminidase (sialidase S). The possibility exists that the N-glycans associated with these different trophoblast subpopulations could act as functional groups. These potential relationships will be considered.
Collapse
Affiliation(s)
- Qiushi Chen
- From the ‡Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Poh-Choo Pang
- From the ‡Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Marie E Cohen
- §Department of Gynaecology and Obstetrics, Faculty of Medicine, Geneva, Switzerland
| | - Mark S Longtine
- ¶Department of Obstetrics and Gynecology, Washington University, School of Medicine, St. Louis, Missouri 63110
| | - Danny J Schust
- ‖Division of Reproductive and Perinatal Research, Department of Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, Missouri 65212
| | - Stuart M Haslam
- From the ‡Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Sandra M Blois
- **Charité Center for Internal Medicine and Dermatology, Division of General Internal and Psychosomatic Medicine, Reproductive Medicine Research Group, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Dell
- From the ‡Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom;
| | - Gary F Clark
- ‖Division of Reproductive and Perinatal Research, Department of Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, Missouri 65212;
| |
Collapse
|
31
|
Wang Y, Chen B, Longtine MS, Nelson DM. Punicalagin promotes autophagy to protect primary human syncytiotrophoblasts from apoptosis. Reproduction 2016; 151:97-104. [PMID: 26659860 DOI: 10.1530/rep-15-0287] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Punicalagin is a prominent polyphenol in pomegranate juice that protects cultured syncytiotrophoblasts from stress-induced apoptosis. Here, we test the hypothesis that punicalagin has this effect by inhibiting the mTOR kinase pathway to enhance autophagic turnover and limit apoptosis in cultured primary human syncytiotrophoblasts. In syncytiotrophoblasts, starvation, rapamycin, or punicalagin all decreased the expression of phosphorylated ribosomal protein S6, a downstream target of the mTOR kinase, and of the autophagy markers, LC3-II and p62. In contrast, in the presence of bafilomycin, an inhibitor of late stages of autophagy and degradation in the autophagolysosome, syncytiotrophoblasts exposed to starvation, rapamycin, or punicalagin all showed increased levels of LC3-II and p62. The number of LC3-II punctae also increased in punicalagin-treated syncytiotrophoblasts exposed to chloroquine, another inhibitor of autophagic degradation, and punicalagin increased the number of lysosomes. The apoptosis-reducing effect of punicalagin was attenuated by inhibition of autophagy using bafilomycin or knockdown of the autophagy related gene, ATG16L1. Collectively, these data support the hypothesis that punicalagin modulates the crosstalk between autophagy and apoptosis to promote survival in cultured syncytiotrophoblasts.
Collapse
Affiliation(s)
- Ying Wang
- Department of Obstetrics and GynecologyWashington University School of Medicine, 4566 Scott Avenue, St Louis, Missouri 63110, USALaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China Department of Obstetrics and GynecologyWashington University School of Medicine, 4566 Scott Avenue, St Louis, Missouri 63110, USALaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| | - Baosheng Chen
- Department of Obstetrics and GynecologyWashington University School of Medicine, 4566 Scott Avenue, St Louis, Missouri 63110, USALaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| | - Mark S Longtine
- Department of Obstetrics and GynecologyWashington University School of Medicine, 4566 Scott Avenue, St Louis, Missouri 63110, USALaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| | - D Michael Nelson
- Department of Obstetrics and GynecologyWashington University School of Medicine, 4566 Scott Avenue, St Louis, Missouri 63110, USALaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| |
Collapse
|
32
|
CD73 on B16F10 melanoma cells in CD73-deficient mice promotes tumor growth, angiogenesis, neovascularization, macrophage infiltration and metastasis. Int J Biochem Cell Biol 2015; 69:1-10. [DOI: 10.1016/j.biocel.2015.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/20/2015] [Accepted: 10/07/2015] [Indexed: 11/21/2022]
|
33
|
Zhu L, Lv R, Kong L, Cheng H, Lan F, Li X. Genome-Wide Mapping of 5mC and 5hmC Identified Differentially Modified Genomic Regions in Late-Onset Severe Preeclampsia: A Pilot Study. PLoS One 2015. [PMID: 26214307 PMCID: PMC4516306 DOI: 10.1371/journal.pone.0134119] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Preeclampsia (PE) is a leading cause of perinatal morbidity and mortality. However, as a common form of PE, the etiology of late-onset PE is elusive. We analyzed 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) levels in the placentas of late-onset severe PE patients (n = 4) and normal controls (n = 4) using a (hydroxy)methylated DNA immunoprecipitation approach combined with deep sequencing ([h]MeDIP-seq), and the results were verified by (h)MeDIP-qPCR. The most significant differentially methylated regions (DMRs) were verified by MassARRAY EppiTYPER in an enlarged sample size (n = 20). Bioinformatics analysis identified 714 peaks of 5mC that were associated with 403 genes and 119 peaks of 5hmC that were associated with 61 genes, thus showing significant differences between the PE patients and the controls (>2-fold, p<0.05). Further, only one gene, PTPRN2, had both 5mC and 5hmC changes in patients. The ErbB signaling pathway was enriched in those 403 genes that had significantly different5mC level between the groups. This genome-wide mapping of 5mC and 5hmC in late-onset severe PE and normal controls demonstrates that both 5mC and 5hmC play epigenetic roles in the regulation of the disease, but work independently. We reveal the genome-wide mapping of DNA methylation and DNA hydroxymethylation in late-onset PE placentas for the first time, and the identified ErbB signaling pathway and the gene PTPRN2 may be relevant to the epigenetic pathogenesis of late-onset PE.
Collapse
Affiliation(s)
- Lisha Zhu
- Obstetrics Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China, 200011
| | - Ruitu Lv
- Key Laboratory of Epigenetics of Shanghai Ministry of Education, School of Basic Medicine and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Lingchun Kong
- Key Laboratory of Epigenetics of Shanghai Ministry of Education, School of Basic Medicine and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Haidong Cheng
- Obstetrics Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China, 200011
- * E-mail: (XTL); (FL); (HDC)
| | - Fei Lan
- Key Laboratory of Epigenetics of Shanghai Ministry of Education, School of Basic Medicine and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
- Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, Shanghai 201102, China
- * E-mail: (XTL); (FL); (HDC)
| | - Xiaotian Li
- Obstetrics Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China, 200011
- * E-mail: (XTL); (FL); (HDC)
| |
Collapse
|
34
|
Chen B, Zaveri PG, Longtine MS, Nelson DM. N-myc downstream-regulated gene 1 (NDRG1) mediates pomegranate juice protection from apoptosis in hypoxic BeWo cells but not in primary human trophoblasts. Placenta 2015; 36:847-53. [PMID: 26028238 DOI: 10.1016/j.placenta.2015.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/09/2015] [Accepted: 05/07/2015] [Indexed: 02/07/2023]
Abstract
INTRODUCTION N-Myc downstream-regulated gene 1 (NDRG1) expression is increased in placentas of human pregnancies with intrauterine growth restriction and in hypoxic cultured primary trophoblasts. We previously showed that elevated NDRG1 decreases trophoblast apoptosis induced by hypoxia. Separately, we found that pomegranate juice (PJ) decreases cell death induced by hypoxia in trophoblasts. Here, we test the hypothesis that PJ protects trophoblasts from hypoxia-induced apoptosis by modulating NDRG1 expression. METHODS Quantitative rtPCR was used to investigate the effects of PJ treatment on mRNA levels of 22 candidate genes involved in apoptosis, oxidative stress, and differentiation in trophoblasts. Western blotting and immunofluorescence were used to analyze NDRG1 protein levels. siRNA-mediated NDRG1 knockdown was used to investigate the role of NDRG1 in response to PJ in hypoxic BeWo choriocarcinoma cells and hypoxic cultured primary human trophoblasts. RESULTS The mRNA levels of eight genes were altered, with NDRG1 showing the largest response to PJ and thus, we pursued the role of NDRG1 here. PJ significantly increased NDRG1 protein expression in primary trophoblasts and in BeWo cells. Knockdown of NDRG1 in hypoxic BeWo cells in the presence of PJ yielded increased apoptosis. In contrast, knockdown of NDRG1 in hypoxic primary trophoblasts in the presence of PJ did not increase apoptosis. DISCUSSION We conclude that the PJ-mediated decrease in cell death in hypoxia is partially mediated by NDRG1 in BeWo cells but not in primary trophoblasts. The disparate effects of NDRG1 between BeWo cells and primary trophoblasts indicate caution is required when extrapolating from results obtained with cell lines to primary trophoblasts.
Collapse
Affiliation(s)
- B Chen
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA.
| | - P G Zaveri
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - M S Longtine
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - D M Nelson
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
35
|
Kawashima A, Koide K, Ventura W, Hori K, Takenaka S, Maruyama D, Matsuoka R, Ichizuka K, Sekizawa A. Effects of maternal smoking on the placental expression of genes related to angiogenesis and apoptosis during the first trimester. PLoS One 2014; 9:e106140. [PMID: 25165809 PMCID: PMC4148425 DOI: 10.1371/journal.pone.0106140] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 07/28/2014] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Maternal cigarette smoking is reportedly associated with miscarriage, fetal growth restriction and placental abruption, and is paradoxically associated with a decreased risk of developing preeclampsia. In the present study, we investigated the gene expression levels of villous tissues in early gestation. We compared the expression levels of the genes related to angiogenesis and apoptosis in the villous tissues obtained from smoking and non-smoking pregnant women. MATERIALS AND METHODS We collected villous tissue samples from 57 women requesting surgical termination due to non-medical reasons at 6-8 weeks of gestation. The maternal cigarette smoking status was evaluated by the level of serum cotinine and patients were divided into active smokers and non-smokers by the serum cotinine level. The placental levels of VEGFA, PGF, FLT1, HIF1A, TP53, BAX and BCL2 mRNA were quantified by real time PCR. RESULTS The gene expression level of PGF and HIF1A in the active smoker group was significantly higher than that in the non-smoker group. We did not observe any significant differences in the VEGFA or FLT1 expression between the groups. In active smoker group, the gene expression levels of TP53 and BAX were significantly higher than those in the non-smoker group. The ratio of BAX/BCL2 mRNA in the active smoker group was significantly higher than that in the non-smoker group. CONCLUSIONS Our findings revealed that smoking might affect the placenta during early pregnancy. Maternal cigarette smoking in early pregnancy may be associated with villus hypoxia, which may influence angiogenesis and apoptosis.
Collapse
Affiliation(s)
- Akihiro Kawashima
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
- * E-mail:
| | - Keiko Koide
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Walter Ventura
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Kyoko Hori
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Shin Takenaka
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Daisuke Maruyama
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Ryu Matsuoka
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Kiyotake Ichizuka
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Akihiko Sekizawa
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
36
|
Sharp AN, Heazell AEP, Baczyk D, Dunk CE, Lacey HA, Jones CJP, Perkins JE, Kingdom JCP, Baker PN, Crocker IP. Preeclampsia is associated with alterations in the p53-pathway in villous trophoblast. PLoS One 2014; 9:e87621. [PMID: 24498154 PMCID: PMC3907567 DOI: 10.1371/journal.pone.0087621] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/24/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Preeclampsia (PE) is characterized by exaggerated apoptosis of the villous trophoblast of placental villi. Since p53 is a critical regulator of apoptosis we hypothesized that excessive apoptosis in PE is mediated by abnormal expression of proteins participating in the p53 pathway and that modulation of the p53 pathway alters trophoblast apoptosis in vitro. METHODS Fresh placental villous tissue was collected from normal pregnancies and pregnancies complicated by PE; Western blotting and real-time PCR were performed on tissue lysate for protein and mRNA expression of p53 and downstream effector proteins, p21, Bax and caspases 3 and 8. To further assess the ability of p53 to modulate apoptosis within trophoblast, BeWo cells and placental villous tissue were exposed to the p53-activator, Nutlin-3, alone or in combination with the p53-inhibitor, Pifithrin-α (PFT-α). Equally, Mdm2 was knocked-down with siRNA. RESULTS Protein expression of p53, p21 and Bax was significantly increased in pregnancies complicated by PE. Conversely, Mdm2 protein levels were significantly depleted in PE; immunohistochemistry showed these changes to be confined to trophoblast. Reduction in the negative feedback of p53 by Mdm2, using siRNA and Nutlin-3, caused an imbalance between p53 and Mdm2 that triggered apoptosis in term villous explants. In the case of Nutlin, this was attenuated by Pifithrin-α. CONCLUSIONS These data illustrate the potential for an imbalance in p53 and Mdm2 expression to promote excessive apoptosis in villous trophoblast. The upstream regulation of p53 and Mdm2, with regard to exaggerated apoptosis and autophagy in PE, merits further investigation.
Collapse
Affiliation(s)
- Andrew N. Sharp
- Maternal & Fetal Health Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Alexander E. P. Heazell
- Maternal & Fetal Health Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Dora Baczyk
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Caroline E. Dunk
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Helen A. Lacey
- Maternal & Fetal Health Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | | | | | - John C. P. Kingdom
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Philip N. Baker
- Maternal & Fetal Health Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Ian P. Crocker
- Maternal & Fetal Health Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
37
|
Chen B, Longtine MS, Nelson DM. Punicalagin, a polyphenol in pomegranate juice, downregulates p53 and attenuates hypoxia-induced apoptosis in cultured human placental syncytiotrophoblasts. Am J Physiol Endocrinol Metab 2013; 305:E1274-80. [PMID: 24085032 PMCID: PMC3840214 DOI: 10.1152/ajpendo.00218.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress is associated with placental dysfunction and suboptimal pregnancy outcomes. Therapeutic interventions to limit placental injury from oxidative stress are lacking. Punicalagin is an ellagitannin and a potent antioxidant in pomegranate juice. We showed that both pomegranate juice and punicalagin decrease oxidative stress and apoptosis in cultured syncytiotrophoblasts. p53 is involved in the oxidative stress-induced apoptosis in trophoblasts. We now test the hypothesis that punicalagin limits trophoblast injury in vitro by regulating the levels of p53. We examined the expression of p53, mouse double minute 2 homolog, p21, hypoxia-inducible factor (HIF) α, and selected members of the B cell lymphoma 2 (BCL2) family of proteins in cultured syncytiotrophoblasts exposed to ≤1% oxygen in the absence or presence of punicalagin. We found that punicalagin attenuated hypoxia-induced apoptosis in syncytiotrophoblasts, as quantified by levels of cleaved poly-ADP ribose polymerase. This protective effect was in part mediated by reduced p53 activity shown by decreased expression of p21, lower HIF1α expression, and limited activity of caspases 9 and 3. There was no change in expression of proteins in the BCL2 family, which are also important in apoptosis. The data support a role for downregulation of p53 in the protection of human trophoblasts by punicalagin.
Collapse
Affiliation(s)
- Baosheng Chen
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | | | | |
Collapse
|
38
|
Cvitic S, Longtine MS, Hackl H, Wagner K, Nelson MD, Desoye G, Hiden U. The human placental sexome differs between trophoblast epithelium and villous vessel endothelium. PLoS One 2013; 8:e79233. [PMID: 24205377 PMCID: PMC3812163 DOI: 10.1371/journal.pone.0079233] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 09/23/2013] [Indexed: 12/18/2022] Open
Abstract
Molecular mechanisms underlying sexual dimorphism in mammals, fetal sex influences on intrauterine development, and the sex-biased susceptibility for selected diseases in adulthood are novel areas of current research. As importantly, two decades of multifaceted research has established that susceptibility to many adult disorders originates in utero, commonly secondary to the effects of placental dysfunction. We hypothesized that fetal sex influences gene expression and produces functional differences in human placentas. We thus extended previous studies on sexual dimorphism in mammals, which used RNA isolated from whole tissues, to investigate the effects of sex on four cell-phenotypes within a single key tissue, human placental villi. The cells studied included cytotrophoblasts, syncytiotrophoblast, arterial and venous endothelial cells. The cells were isolated from placentas of male or female fetuses and subjected to microarray analysis. We found that fetal sex differentially affected gene expression in a cell-phenotype dependent manner among all four cell-phenotypes. The markedly enriched pathways in males were identified to be signaling pathways for graft-versus-host disease as well as the immune and inflammatory systems that parallel the reported poorer outcome of male fetuses. Our study is the first to compare global gene expression by microarray analysis in purified, characterized, somatic cells from a single human tissue, i.e. placental villi. Importantly, our findings demonstrate that there are cell-phenotype specific, and tissue-specific, sex-biased responses in the human placenta, suggesting fetal sex should be considered as an independent variable in gene expression analysis of human placental villi.
Collapse
Affiliation(s)
- Silvija Cvitic
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Mark S. Longtine
- Department of Obstetrics and Gynecology, Washington University, St. Louis, Missouri, United States of America
| | - Hubert Hackl
- Division of Bioinformatics, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Karin Wagner
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Michael D. Nelson
- Department of Obstetrics and Gynecology, Washington University, St. Louis, Missouri, United States of America
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
39
|
Placental trophoblast cell differentiation: Physiological regulation and pathological relevance to preeclampsia. Mol Aspects Med 2013; 34:981-1023. [DOI: 10.1016/j.mam.2012.12.008] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/01/2012] [Accepted: 12/19/2012] [Indexed: 12/11/2022]
|
40
|
Whitehead CL, Walker SP, Lappas M, Tong S. Circulating RNA coding genes regulating apoptosis in maternal blood in severe early onset fetal growth restriction and pre-eclampsia. J Perinatol 2013; 33:600-4. [PMID: 23429544 DOI: 10.1038/jp.2013.16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/19/2012] [Accepted: 12/28/2012] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine whether the intrinsic apoptosis pathway is differentially expressed in placenta and maternal blood in severe preterm fetal growth restriction (FGR) and pre-eclampsia (PE), and to examine whether circulating RNA in maternal blood may be potential biomarkers. STUDY DESIGN Maternal blood samples and placental biopsies were collected from women with preterm: FGR (n=20), PE without FGR (n=8) and controls (n=20). Real-time PCR examined the expression of genes in the intrinsic apoptosis pathway in FGR and PE, stratified according to the severity of placental insufficiency. RESULT Severe preterm FGR, with or without PE, was associated with increased expression of BCL2, BCL-XL, BIM, BAD and Survivin in both the placenta and maternal blood (1.6 to 3.3-fold, P<0.05). In preterm PE, but not FGR, there was increased placental expression of BCL-XL and BCL2 (1.6 to 2.5-fold, P<0.05), but only BCL2 was significantly increased in the maternal blood (1.8-fold, P<0.05). Increased expression of genes of the intrinsic apoptosis pathway reflected the severity of FGR as determined by deteriorations in umbilical artery Doppler velocimetry. CONCLUSION In severe early onset FGR there was increased expression of genes regulating intrinsic apoptosis in both the placenta and maternal blood. Circulating RNA regulating placenta apoptosis may be used to develop noninvasive novel biomarkers for FGR.
Collapse
Affiliation(s)
- C L Whitehead
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, Heidelberg 3084, Victoria, Australia.
| | | | | | | |
Collapse
|
41
|
Staff AC, Benton SJ, von Dadelszen P, Roberts JM, Taylor RN, Powers RW, Charnock-Jones DS, Redman CWG. Redefining preeclampsia using placenta-derived biomarkers. Hypertension 2013; 61:932-42. [PMID: 23460278 DOI: 10.1161/hypertensionaha.111.00250] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
Yuen RKC, Chen B, Blair JD, Robinson WP, Nelson DM. Hypoxia alters the epigenetic profile in cultured human placental trophoblasts. Epigenetics 2013; 8:192-202. [PMID: 23314690 DOI: 10.4161/epi.23400] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mechanisms by which the placenta adapts to exogenous stimuli to create a stable and healthy environment for the growing fetus are not well known. Low oxygen tension influences placental function, and is associated with preeclampsia, a condition displaying altered development of placental trophoblast. We hypothesized that oxygen tension affects villous trophoblast by modulation of gene expression through DNA methylation. We used the Infinium HumanMethylation450 BeadChip array to compare the DNA methylation profile of primary cultures of human cytotrophoblasts and syncytiotrophoblasts under < 1%, 8% and 20% oxygen levels. We found no effect of oxygen tension on average DNA methylation for either cell phenotype, but a set of loci became hypermethylated in cytotrophoblasts exposed for 24 h to < 1% oxygen, as compared with those exposed to 8% or 20% oxygen. Hypermethylation with low oxygen tension was independently confirmed by bisulfite-pyrosequencing in a subset of functionally relevant genes including CD59, CFB, GRAM3 and ZNF217. Intriguingly, 70 out of the 147 CpGs that became hypermethylated in < 1% oxygen overlapped with CpG sites that became hypomethylated upon differentiation of cytotrophoblasts into syncytiotrophoblasts. Furthermore, the preponderance of altered sites was located at AP-1 binding sites. We suggest that AP-1 expression is triggered by hypoxia and interacts with DNA methyltransferases (DNMTs) to target methylation at specific sites in the genome, thus causing suppression of the associated genes that are responsible for differentiation of villous cytotrophoblast to syncytiotrophoblast.
Collapse
Affiliation(s)
- Ryan K C Yuen
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
43
|
Pericellular oxygen concentration of cultured primary human trophoblasts. Placenta 2012; 34:106-9. [PMID: 23211472 DOI: 10.1016/j.placenta.2012.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/07/2012] [Accepted: 11/15/2012] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Oxygen is pivotal in placental development and function. In vitro culture of human trophoblasts provides a useful model to study this phenomenon, but a hotly debated issue is whether or not the oxygen tension of the culture conditions mimics in vivo conditions. We tested the hypothesis that ambient oxygen tensions in culture reflect the pericellular oxygen levels. METHODS We used a microelectrode oxygen sensor to measure the concentration of dissolved oxygen in the culture medium equilibrated with 21%, 8% or <0.5% oxygen. RESULTS The concentration of oxygen in medium without cells resembled that in the ambient atmosphere. The oxygen concentration present in medium bathing trophoblasts was remarkably dependent on the depth within the medium where sampling occurred, and the oxygen concentration within the overlying atmosphere was not reflected in medium immediately adjacent to the cells. Indeed, the pericellular oxygen concentration was in a range that most would consider severe hypoxia, at ≤0.6% oxygen or about 4.6 mm Hg, when the overlying atmosphere was 21% oxygen. CONCLUSIONS We conclude that culture conditions of 21% oxygen are unable to replicate the pO(2) of 40-60 mm Hg commonly attributed to the maternal blood in the intervillous space in the second and third trimesters of pregnancy. We further surmise that oxygen atmospheres in culture conditions between 0.5% and 21% provide different oxygen fluxes in the immediate pericellular environment yet can still yield insights into the responses of human trophoblast to different oxygen conditions.
Collapse
|
44
|
Sermeus A, Genin M, Maincent A, Fransolet M, Notte A, Leclere L, Riquier H, Arnould T, Michiels C. Hypoxia-induced modulation of apoptosis and BCL-2 family proteins in different cancer cell types. PLoS One 2012; 7:e47519. [PMID: 23139748 PMCID: PMC3489905 DOI: 10.1371/journal.pone.0047519] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/12/2012] [Indexed: 12/26/2022] Open
Abstract
Hypoxia plays an important role in the resistance of tumour cells to chemotherapy. However, the exact mechanisms underlying this process are not well understood. Moreover, according to the cell lines, hypoxia differently influences cell death. The study of the effects of hypoxia on the apoptosis induced by 5 chemotherapeutic drugs in 7 cancer cell types showed that hypoxia generally inhibited the drug-induced apoptosis. In most cases, the effect of hypoxia was the same for all the drugs in one cell type. The expression profile of 93 genes involved in apoptosis as well as the protein level of BCL-2 family proteins were then investigated. In HepG2 cells that are strongly protected against cell death by hypoxia, hypoxia decreased the abundance of nearly all the pro-apoptotic BCL-2 family proteins while none of them are decreased in A549 cells that are not protected against cell death by hypoxia. In HepG2 cells, hypoxia decreased NOXA and BAD abundance and modified the electrophoretic mobility of BIMEL. BIM and NOXA are important mediators of etoposide-induced cell death in HepG2 cells and the hypoxia-induced modification of these proteins abundance or post-translational modifications partly account for chemoresistance. Finally, the modulation of the abundance and/or of the post-translational modifications of most proteins of the BCL-2 family by hypoxia involves p53-dependent and –independent pathways and is cell type-dependent. A better understanding of these cell-to-cell variations is crucial in order to overcome hypoxia-induced resistance and to ameliorate cancer therapy.
Collapse
Affiliation(s)
- Audrey Sermeus
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur – FUNDP, Belgium
| | - Marie Genin
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur – FUNDP, Belgium
| | - Amélie Maincent
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur – FUNDP, Belgium
| | - Maude Fransolet
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur – FUNDP, Belgium
| | - Annick Notte
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur – FUNDP, Belgium
| | - Lionel Leclere
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur – FUNDP, Belgium
| | - Hélène Riquier
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur – FUNDP, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur – FUNDP, Belgium
| | - Carine Michiels
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur – FUNDP, Belgium
- * E-mail:
| |
Collapse
|
45
|
Longtine MS, Barton A, Chen B, Nelson DM. Live-cell imaging shows apoptosis initiates locally and propagates as a wave throughout syncytiotrophoblasts in primary cultures of human placental villous trophoblasts. Placenta 2012; 33:971-6. [PMID: 23102999 DOI: 10.1016/j.placenta.2012.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/24/2012] [Accepted: 09/24/2012] [Indexed: 12/20/2022]
Abstract
Human placental villi are surfaced by the syncytiotrophoblast, a multinucleated, epithelial-cell layer that functions in maternal-fetal exchange. Mononucleated cytotrophoblasts are subjacent to the syncytiotrophoblast. Using confocal fluorescence microscopy of third-trimester villi, we previously found that cytotrophoblasts are often interdigitated into the syncytiotrophoblast, that cytotrophoblasts undergo caspase-mediated apoptosis, and that apoptosis is much lower, and perhaps completely inhibited, in intact syncytiotrophoblast lacking fibrin-type fibrinoid. Previous analysis of primary cultures of human trophoblasts also indicated lower levels of apoptosis in syncytiotrophoblast compared to cytotrophoblasts. Here, using confocal microscopy we find that cultured cytotrophoblasts and syncytiotrophoblasts display complex structural relationships, as in vivo, and that apoptosis of a cytotrophoblast or syncytiotrophoblast does not induce apoptosis of adjacent trophoblasts. Using live-cell imaging of mitochondrial depolarization and nuclear condensation in cultured syncytiotrophoblasts, we show apoptosis initiates in a localized region and propagates radially at ∼5 μm/min with no loss of velocity until the entire syncytium has undergone apoptosis. The rate of propagation is similar in cases of spontaneous apoptosis and in apoptosis that occurs in the presence of cobalt chloride or rotenone, two inducers of apoptosis. We suggest that inhibition of syncytiotrophoblast apoptosis in vivo is important to prevent widespread syncytiotrophoblast death, which would result in placental dysfunction and contribute to poor pregnancy outcomes.
Collapse
Affiliation(s)
- M S Longtine
- Department of Obstetrics and Gynecology, Washington University, School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
46
|
Chen B, Longtine MS, Nelson DM. Hypoxia induces autophagy in primary human trophoblasts. Endocrinology 2012; 153:4946-54. [PMID: 22878401 PMCID: PMC3512007 DOI: 10.1210/en.2012-1472] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/16/2012] [Indexed: 01/08/2023]
Abstract
Autophagy is a highly regulated and dynamic process that maintains cellular homeostasis and plays a prosurvival role in most cells. Although hypoxia has been shown to induce apoptosis in placental trophoblasts, the hypoxic effect on autophagy has not been studied. We hypothesized that autophagy plays a prosurvival role in the placental trophoblasts by antagonizing hypoxia-induced apoptosis. Our data show that the expression of Light chain 3-II (LC3-II), an autophagic marker and cleaved poly(ADP-ribose) polymerase, an apoptosis marker, are inversely related in cultured trophoblasts. Exposure to rapamycin or hypoxia inactivated mammalian target of rapamycin, as reflected by reduced phosphorylation of ribosomal protein S6, indicating that mammalian target of rapamycin regulates autophagy in cultured cytotrophoblasts. Bafilomycin prevented the degradation of cargo and increased LC3-II and p62 in cytotrophoblasts exposed to hypoxia, revealing enhanced autophagic flux. Importantly, bafilomycin enhanced expression of autophagy-related protein 7 (Atg7), parallel to the increased apoptosis measured by cleaved poly(ADP-ribose) polymerase. LY294002, a phosphatidylinositol 3-kinase inhibitor, increased apoptosis in the trophoblasts under hypoxia or standard conditions. Silencing of Atg7 decreased both apoptosis and LC3-II in the trophoblasts, suggesting a dual role of Atg7 in both autophagy and apoptosis. We conclude that there is a cross talk between autophagy and apoptosis in the placental trophoblasts; autophagy plays a prosurvival role and Atg7 has roles in both autophagy and apoptosis under hypoxia.
Collapse
Affiliation(s)
- Baosheng Chen
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
47
|
Chen B, Tuuli MG, Longtine MS, Shin JS, Lawrence R, Inder T, Michael Nelson D. Pomegranate juice and punicalagin attenuate oxidative stress and apoptosis in human placenta and in human placental trophoblasts. Am J Physiol Endocrinol Metab 2012; 302:E1142-52. [PMID: 22374759 PMCID: PMC3361977 DOI: 10.1152/ajpendo.00003.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human placenta is key to pregnancy outcome, and the elevated oxidative stress present in many complicated pregnancies contributes to placental dysfunction and suboptimal pregnancy outcomes. We tested the hypothesis that pomegranate juice, which is rich in polyphenolic antioxidants, limits placental trophoblast injury in vivo and in vitro. Pregnant women with singleton pregnancies were randomized at 35∼38 wk gestation to 8 oz/day of pomegranate juice or apple juice (placebo) until the time of delivery. Placental tissues from 12 patients (4 in the pomegranate group and 8 in the control group) were collected for analysis of oxidative stress. The preliminary in vivo results were extended to oxidative stress and cell death assays in vitro. Placental explants and cultured primary human trophoblasts were exposed to pomegranate juice or glucose (control) under defined oxygen tensions and chemical stimuli. We found decreased oxidative stress in term human placentas from women who labored after prenatal ingestion of pomegranate juice compared with apple juice as control. Moreover, pomegranate juice reduced in vitro oxidative stress, apoptosis, and global cell death in term villous explants and primary trophoblast cultures exposed to hypoxia, the hypoxia mimetic cobalt chloride, and the kinase inhibitor staurosporine. Punicalagin, but not ellagic acid, both prominent polyphenols in pomegranate juice, reduced oxidative stress and stimulus-induced apoptosis in cultured syncytiotrophoblasts. We conclude that pomegranate juice reduces placental oxidative stress in vivo and in vitro while limiting stimulus-induced death of human trophoblasts in culture. The polyphenol punicalagin mimics this protective effect. We speculate that antenatal intake of pomegranate may limit placental injury and thereby may confer protection to the exposed fetus.
Collapse
Affiliation(s)
- Baosheng Chen
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Longtine MS, Chen B, Odibo AO, Zhong Y, Nelson DM. Villous trophoblast apoptosis is elevated and restricted to cytotrophoblasts in pregnancies complicated by preeclampsia, IUGR, or preeclampsia with IUGR. Placenta 2012. [PMID: 22341340 DOI: 10.1016/j.placenta.2012.01.017.villous] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Human placental villi are surfaced by an outer multinucleated syncytiotrophoblast and underlying mononucleated cytotrophoblasts. Conflicting data have attributed one, or the other, of these villous trophoblast phenotypes to undergo enhanced apoptosis in complicated pregnancies, compared to term, normotensive pregnancies. We use high-resolution confocal microscopy after co-staining for E-cadherin, as a trophoblast plasma membrane marker, and for the cleavage products of cytokeratin 18 and PARP1, as markers for caspase-mediated apoptosis, to distinguish between apoptotic cytotrophoblasts and apoptosis within the syncytiotrophoblast. We test the hypothesis that increased caspase-mediated apoptosis occurs in villi of placentas derived from pregnancies complicated by preeclampsia, intrauterine growth restriction (IUGR), or both. We find significantly elevated apoptosis in villous cytotrophoblasts from women with preeclampsia and/or IUGR, compared to term, normotensive pregnancies. Apoptosis of cytotrophoblasts in villi from complicated pregnancies appears to progress similarly to what we found previously for apoptotic cytotrophoblasts in villi from in term, normotensive pregnancies. Notably, caspase-mediated apoptosis was not detectable in regions with intact syncytiotrophoblast, suggesting strong repression of apoptosis in this trophoblast phenotype in vivo. We suggest that the elevated apoptosis in cytotrophoblasts in preeclampsia contributes to the placental dysfunction characteristic of this disorder. We also propose that repression of apoptosis in the syncytiotrophoblast is important to prevent apoptosis sweeping throughout the syncytium, which would result in widespread death of this essential interface for maternal-fetal exchange.
Collapse
Affiliation(s)
- M S Longtine
- Department of Obstetrics and Gynecology, Washington University School of Medicine, Campus Box 8064, 4566 Scott Ave., St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
49
|
Villous trophoblast apoptosis is elevated and restricted to cytotrophoblasts in pregnancies complicated by preeclampsia, IUGR, or preeclampsia with IUGR. Placenta 2012; 33:352-9. [PMID: 22341340 DOI: 10.1016/j.placenta.2012.01.017] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/19/2012] [Accepted: 01/20/2012] [Indexed: 12/21/2022]
Abstract
Human placental villi are surfaced by an outer multinucleated syncytiotrophoblast and underlying mononucleated cytotrophoblasts. Conflicting data have attributed one, or the other, of these villous trophoblast phenotypes to undergo enhanced apoptosis in complicated pregnancies, compared to term, normotensive pregnancies. We use high-resolution confocal microscopy after co-staining for E-cadherin, as a trophoblast plasma membrane marker, and for the cleavage products of cytokeratin 18 and PARP1, as markers for caspase-mediated apoptosis, to distinguish between apoptotic cytotrophoblasts and apoptosis within the syncytiotrophoblast. We test the hypothesis that increased caspase-mediated apoptosis occurs in villi of placentas derived from pregnancies complicated by preeclampsia, intrauterine growth restriction (IUGR), or both. We find significantly elevated apoptosis in villous cytotrophoblasts from women with preeclampsia and/or IUGR, compared to term, normotensive pregnancies. Apoptosis of cytotrophoblasts in villi from complicated pregnancies appears to progress similarly to what we found previously for apoptotic cytotrophoblasts in villi from in term, normotensive pregnancies. Notably, caspase-mediated apoptosis was not detectable in regions with intact syncytiotrophoblast, suggesting strong repression of apoptosis in this trophoblast phenotype in vivo. We suggest that the elevated apoptosis in cytotrophoblasts in preeclampsia contributes to the placental dysfunction characteristic of this disorder. We also propose that repression of apoptosis in the syncytiotrophoblast is important to prevent apoptosis sweeping throughout the syncytium, which would result in widespread death of this essential interface for maternal-fetal exchange.
Collapse
|
50
|
Longtine MS, Chen B, Odibo AO, Zhong Y, Nelson DM. Caspase-mediated apoptosis of trophoblasts in term human placental villi is restricted to cytotrophoblasts and absent from the multinucleated syncytiotrophoblast. Reproduction 2011; 143:107-21. [PMID: 22046053 PMCID: PMC3631347 DOI: 10.1530/rep-11-0340] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human placental villi are surfaced by a multinucleated and terminally differentiated epithelium, the syncytiotrophoblast, with a subjacent layer of mononucleated cytotrophoblasts that can divide and fuse to replenish the syncytiotrophoblast. The objectives of this study were i) to develop an approach to definitively identify and distinguish cytotrophoblasts from the syncytiotrophoblast, ii) to unambiguously determine the relative susceptibility of villous cytotrophoblasts and syncytiotrophoblast to constitutive and stress-induced apoptosis mediated by caspases, and iii) to understand the progression of apoptosis in villous trophoblasts. Confocal microscopy with co-staining for E-cadherin and DNA allowed us to clearly distinguish the syncytiotrophoblast from cytotrophoblasts and identified that many cytotrophoblasts are deeply interdigitated into the syncytiotrophoblast. Staining for specific markers of caspase-mediated apoptosis indicate that apoptosis occurs readily in cytotrophoblasts but is remarkably inhibited in the syncytiotrophoblast. To determine if an apoptotic cell or cell fragment was from a cytotrophoblast or syncytiotrophoblast, we found co-staining with E-cadherin along with a marker for apoptosis was essential: in the absence of E-cadherin staining, apoptotic cytotrophoblasts would easily be mistaken as representing localized regions of apoptosis in the syncytiotrophoblast. Regions with perivillous fibrin-containing fibrinoid contain the remnants of trophoblast apoptosis, and we propose this apoptosis occurs only after physical isolation of a region of the syncytium from the main body of the syncytium. We propose models for the progression of apoptosis in villous cytotrophoblasts and for why caspase-mediated apoptosis does not occur within the syncytium of placental villi.
Collapse
Affiliation(s)
- Mark S Longtine
- Department of Obstetrics and Gynecology, School of Medicine, Washington University, 4566 Scott Avenue, St Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|