1
|
Song X, Chen Y, Chen X, Zhao X, Zou Y, Li L, Zhou X, Li M, Zhang D, Ye G, Jia R, Yin Z. Exosomes from tannic acid-stimulated macrophages accelerate wound healing through miR-221-3p mediated fibroblasts migration by targeting CDKN1b. Int J Biol Macromol 2023; 244:125088. [PMID: 37270133 DOI: 10.1016/j.ijbiomac.2023.125088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/06/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Tannic acid (TA) and its extraction were traditionally used for treatment of traumatic bleeding in China, and in the previous study we have demonstrated that TA could accelerate cutaneous wound healing in rats. We attempted to decipher the mechanism of TA in promoting wound healing. In this study, we found that TA could enhance the growth of macrophages and inhibit the release of inflammatory cytokines (IL-1β, IL-6, TNF-α, IL-8 and IL-10) through inhibition of NF-κB/JNK pathway. TA activated Erk1/2 pathway, leading to increased expressions of growth factors, bFGF and HGF. Scratch study revealed that TA did not directly regulate the migration function of fibroblasts, but could indirectly enhance fibroblasts migration by the supernatant of TA-treated macrophages. Transwell study further proved that TA stimulates macrophages to secrete exosomes enriched in miR-221-3p by activating the p53 signaling pathway, and the exosomes entered into the fibroblast cytoplasm and bound to 3'UTR of target gene CDKN1b which induced decreased expression level of CDKN1b, leading to promoting fibroblast migration. This study provided new insights into how TA accelerates wound healing in the inflammatory and proliferative phases of wound healing.
Collapse
Affiliation(s)
- Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaqin Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangxiu Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinghong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Zhou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyue Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dongmei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Renyong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
2
|
Kim M, Kim KY. Wound healing effects of Asparagus lucidus Lindl extract through the phosphorylation of ERK1/2. BMC Complement Med Ther 2023; 23:238. [PMID: 37454069 PMCID: PMC10349518 DOI: 10.1186/s12906-023-04066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Skin is the outermost part of the human body and is essential in maintaining body homeostasis. In the event of skin injury, rapid wound repair is crucial to protect the body. In this study, we investigated the wound-healing properties of Asparagus lucidus Lindl extract by promoting keratinocyte proliferation. METHODS To evaluate the effect of Asparagus lucidus Lindl extract on skin regeneration, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to measure keratinocyte proliferation, while an in vitro wound-healing assay was performed to evaluate wound closure through keratinocyte re-epithelialization. The intracellular mechanisms of the extract were studied using Western blot analysis to measure the phosphorylated forms of mitogen-activated protein kinases and protein kinase B. The mRNA expression of cell cycle-related genes was analyzed using quantitative real time-PCR analysis. A murine in vivo wound-healing assay was also conducted to observe the effect of the extract on wound closure. RESULTS Asparagus lucidus Lindl extract induced 131.15% keratinocyte proliferation compared to the control in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The in vitro wound-healing assay showed that the extract improved wound closure by 216.94% through keratinocyte re-epithelialization. Western blot analysis revealed that the phosphorylated form of extracellular signal-regulated kinase 1/2 was increased by extract treatment. Quantitative real time-PCR analysis showed a dose-dependent increase in the mRNA expression of c-fos, c-jun, and VEGF. The in vivo wound-healing assay showed a significant increase (22.13%) of wound closure compared to the control on day 5. CONCLUSION Asparagus lucidus Lindl extract promotes keratinocyte proliferation by activating the extracellular signal-regulated kinase 1/2 pathway and up-regulating the mRNA expression of c-fos, c-jun, and vascular endothelial growth factor.
Collapse
Affiliation(s)
- Minho Kim
- Graduate School of Biotechnology, Kyung Hee University, Seocheon, Giheung, Yongin-Si, Gyeonggi-do, 446-701, Korea
| | - Ki-Young Kim
- Graduate School of Biotechnology, Kyung Hee University, Seocheon, Giheung, Yongin-Si, Gyeonggi-do, 446-701, Korea.
- Department of Genetics and Biotechnology, College of Life Science, and Graduate School of Biotechnology, Kyung Hee University, Seocheon, Giheung, Yongin-si, Gyeonggi-do, 446-701, Korea.
| |
Collapse
|
3
|
Calabrese EJ, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Hormesis: Wound healing and keratinocytes. Pharmacol Res 2022; 183:106393. [PMID: 35961478 DOI: 10.1016/j.phrs.2022.106393] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022]
Abstract
Hormetic dose responses (i.e., a biphasic dose/concentration response characterized by a low dose stimulation and a high dose inhibition) are shown herein to be commonly reported in the dermal wound healing process, with the particular focus on cell viability, proliferation, and migration of human keratinocytes in in vitro studies. Hormetic responses are induced by a wide range of substances, including endogenous agents, numerous drug and nanoparticle preparations and especially plant derived extracts, including many well-known dietary supplements as well as physical stressor agents, such as low-level laser treatments. Detailed mechanistic studies have identified common signaling pathways and their cross-pathway communications that mediate the hormetic dose responses. These findings suggest that the concept of hormesis plays a fundamental role in wound healing, with important potential implications for agent screening and evaluation, as well as clinical strategies.
Collapse
Affiliation(s)
- Edward J Calabrese
- Professor of Toxicology; School of Public Health and Health Sciences, Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003 USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD); University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center; Hartford, CT, USA.
| | - Evgenios Agathokleous
- School of Applied Meteorology; Nanjing University of Information Science & Technology; Nanjing 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy.
| |
Collapse
|
4
|
Chang MC, Mahar R, McLeod MA, Giacalone AG, Huang X, Boothman DA, Merritt ME. Synergistic Effect of β-Lapachone and Aminooxyacetic Acid on Central Metabolism in Breast Cancer. Nutrients 2022; 14:3020. [PMID: 35893874 PMCID: PMC9331106 DOI: 10.3390/nu14153020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
The compound β-lapachone, a naturally derived naphthoquinone, has been utilized as a potent medicinal nutrient to improve health. Over the last twelve years, numerous reports have demonstrated distinct associations of β-lapachone and NAD(P)H: quinone oxidoreductase 1 (NQO1) protein in the amelioration of various diseases. Comprehensive research of NQO1 bioactivity has clearly confirmed the tumoricidal effects of β-lapachone action through NAD+-keresis, in which severe DNA damage from reactive oxygen species (ROS) production triggers a poly-ADP-ribose polymerase-I (PARP1) hyperactivation cascade, culminating in NAD+/ATP depletion. Here, we report a novel combination strategy with aminooxyacetic acid (AOA), an aspartate aminotransferase inhibitor that blocks the malate-aspartate shuttle (MAS) and synergistically enhances the efficacy of β-lapachone metabolic perturbation in NQO1+ breast cancer. We evaluated metabolic turnover in MDA-MB-231 NQO1+, MDA-MB-231 NQO1-, MDA-MB-468, and T47D cancer cells by measuring the isotopic labeling of metabolites from a [U-13C]glucose tracer. We show that β-lapachone treatment significantly hampers lactate secretion by ~85% in NQO1+ cells. Our data demonstrate that combinatorial treatment decreases citrate, glutamate, and succinate enrichment by ~14%, ~50%, and ~65%, respectively. Differences in citrate, glutamate, and succinate fractional enrichments indicate synergistic effects on central metabolism based on the coefficient of drug interaction. Metabolic modeling suggests that increased glutamine anaplerosis is protective in the case of MAS inhibition.
Collapse
Affiliation(s)
- Mario C. Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.C.C.); (R.M.); (M.A.M.); (A.G.G.)
| | - Rohit Mahar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.C.C.); (R.M.); (M.A.M.); (A.G.G.)
| | - Marc A. McLeod
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.C.C.); (R.M.); (M.A.M.); (A.G.G.)
| | - Anthony G. Giacalone
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.C.C.); (R.M.); (M.A.M.); (A.G.G.)
| | - Xiumei Huang
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - David A. Boothman
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Matthew E. Merritt
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.C.C.); (R.M.); (M.A.M.); (A.G.G.)
| |
Collapse
|
5
|
Lin SY, Syu JP, Lo YT, Chau YP, Don MJ, Shy HT, Lai SM, Kung HN. Mitochondrial activity is the key to the protective effect of β-Lapachone, a NAD + booster, in healthy cells against cisplatin cytotoxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154094. [PMID: 35447421 DOI: 10.1016/j.phymed.2022.154094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/05/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cisplatin (CDDP) is a first-line chemotherapeutic drug for treating various cancers. However, CDDP also damages normal cells and causes many side effects. Recently, CDDP has been demonstrated to kill cancer cells by targeting mitochondria. Protecting mitochondria might be a potential therapeutic strategy for CDDP-induced side effects. β-Lapachone (β-lap), a recognized NAD+ booster, has been reported to regulate mitochondrial activity. However, it remains unclear whether maintaining mitochondrial activity is the key factor in the protective effects of β-lap in CDDP-treated normal cells. PURPOSE In this study, the protective effects of β-lap on mitochondria against CDDP cytotoxicity in normal cells were evaluated. STUDY DESIGN In vitro cell models were used in this study, including 3T3 fibroblasts, human dermal fibroblasts, MCF-7 breast cancer cells, and MDA-MB-231 breast cancer cells. METHODS Cells were treated with CDDP and β-lap, and cell survival, NAD+, mitochondrial activity, autophagy, and ATP production were measured. Various inhibitors and siRNAs were used to confirm the key signal underlying the protective effects of β-lap. RESULTS The results demonstrated that β-lap significantly decreased CDDP cytotoxicity in normal fibroblasts. With various inhibitors and siRNAs, β-lap reduced CDDP-induced damage to normal fibroblasts by maintaining mitochondrial activity and increasing autophagy through the NQO1/NAD+/SIRT1 axis. Most importantly, the protective effects of β-lap in fibroblasts did not affect the therapeutic effects of CDDP in cancer cells. This study indicated that mitochondrial activity, energy production, and NQO1 levels might be crucial responses separating normal cells from cancer cells under exposure to CDDP and β-lap. CONCLUSION β-lap could be a good synergistic drug for reducing the side effects of CDDP without affecting the anticancer drug effect.
Collapse
Affiliation(s)
- Sheng-Yi Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Jhih-Pu Syu
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, Taipei 10051, Taiwan
| | - Yu-Ting Lo
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, Taipei 10051, Taiwan
| | - Yat-Pang Chau
- Department of Medicine, Mackay Medical College, Taipei, Taiwan
| | - Ming-Jaw Don
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Horng-Tzer Shy
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, Taipei 10051, Taiwan
| | - Shu-Mei Lai
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, Taipei 10051, Taiwan
| | - Hsiu-Ni Kung
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, Taipei 10051, Taiwan.
| |
Collapse
|
6
|
Choi SH, Won KJ, Lee R, Cho HS, Hwang SH, Nah SY. Wound Healing Effect of Gintonin Involves Lysophosphatidic Acid Receptor/Vascular Endothelial Growth Factor Signaling Pathway in Keratinocytes. Int J Mol Sci 2021; 22:10155. [PMID: 34576317 PMCID: PMC8467330 DOI: 10.3390/ijms221810155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022] Open
Abstract
Gintonin, a novel compound of ginseng, is a ligand of the lysophosphatidic acid (LPA) receptor. The in vitro and in vivo skin wound healing effects of gintonin remain unknown. Therefore, the objective of this study was to investigate the effects of gintonin on wound healing-linked responses, especially migration and proliferation, in skin keratinocytes HaCaT. In this study, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay, Boyden chamber migration assay, scratch wound healing assay, and Western blot assay were performed. A tail wound mouse model was used for the in vivo test. Gintonin increased proliferation, migration, and scratch closure in HaCaT cells. It also increased the release of vascular endothelial growth factor (VEGF) in HaCaT cells. However, these increases, induced by gintonin, were markedly blocked by treatment with Ki16425, an LPA inhibitor, PD98059, an ERK inhibitor, 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester), a calcium chelator, and U73122, a PLC inhibitor. The VEGF receptor inhibitor axitinib also attenuated gintonin-enhanced HaCaT cell proliferation. Gintonin increased the phosphorylation of AKT and ERK1/2 in HaCaT cells. In addition, gintonin improved tail wound healing in mice. These results indicate that gintonin may promote wound healing through LPA receptor activation and/or VEGF release-mediated downstream signaling pathways. Thus, gintonin could be a beneficial substance to facilitate skin wound healing.
Collapse
Affiliation(s)
- Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (S.-H.C.); (R.L.); (H.-S.C.)
| | - Kyung-Jong Won
- Department of Physiology and Medical Science, School of Medicine, Konkuk University, Seoul 05029, Korea;
| | - Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (S.-H.C.); (R.L.); (H.-S.C.)
| | - Han-Sung Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (S.-H.C.); (R.L.); (H.-S.C.)
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (S.-H.C.); (R.L.); (H.-S.C.)
| |
Collapse
|
7
|
Diaz-Rodriguez P, Mariño C, Vázquez JA, Caeiro-Rey JR, Landin M. Targeting joint inflammation for osteoarthritis management through stimulus-sensitive hyaluronic acid based intra-articular hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112254. [PMID: 34474816 DOI: 10.1016/j.msec.2021.112254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/19/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022]
Abstract
Numerous therapeutic strategies have been developed for osteoarthritis (OA) management, including intra-articular (IA) injections. The ideal IA formulation should control cartilage degradation and restore synovial fluid viscosity. To this end, we propose to combine thermo-sensitive polymers (poloxamers) with hyaluronic acid (HA) to develop suitable beta-lapachone (βLap) loaded IA formulations. The development of IA formulations with these components entails several difficulties: low βLap solubility, unknown βLap therapeutic dose and the bonded commitment of easy administration and viscosupplementation. An optimized formulation was designed using artificial intelligence tools based on the experimental results of a wide variety of hydrogels and its therapeutic capacity was evaluated on an ex vivo OA model. The formulation presented excellent rheological properties and significantly decreased the secretion of degradative (MMP13) and pro-inflammatory (CXCL8) molecules. Therefore, the developed formulation is a promising candidate for OA treatment restoring the synovial fluid rheological properties while decreasing inflammation and cartilage degradation.
Collapse
Affiliation(s)
- Patricia Diaz-Rodriguez
- R+D Pharma Group (GI-1645) Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Drug Delivery Systems Group, Department of Chemical Engineering and Pharmaceutical Technology, School of Pharmacy, Universidad de La Laguna, La Laguna, Spain.
| | - Cibrán Mariño
- R+D Pharma Group (GI-1645) Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Antonio Vázquez
- Group of Recycling and Valorisation of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), Vigo, Spain
| | - Jose Ramon Caeiro-Rey
- Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mariana Landin
- R+D Pharma Group (GI-1645) Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
8
|
Gomes CL, de Albuquerque Wanderley Sales V, Gomes de Melo C, Ferreira da Silva RM, Vicente Nishimura RH, Rolim LA, Rolim Neto PJ. Beta-lapachone: Natural occurrence, physicochemical properties, biological activities, toxicity and synthesis. PHYTOCHEMISTRY 2021; 186:112713. [PMID: 33667813 DOI: 10.1016/j.phytochem.2021.112713] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
β-Lapachone is an ortho-naphthoquinone originally isolated from the heartwood of Handroanthus impetiginosus and can be obtained through synthesis from lapachol, naphthoquinones, and other aromatic compounds. β-Lapachone is well known to inhibit topoisomerase I and to induce NAD(P)H: quinone oxidoreductase 1. Currently, phase II clinical trials are being conducted for the treatment of pancreatic cancer. In view of ever-increasing scientific interest in this naphthoquinone, herein, the authors present a review of the synthesis, physicochemical properties, biological activities, and toxicity of β-lapachone. This natural compound has shown activity against several types of malignant tumors, such as lung and pancreatic cancers and melanoma. Furthermore, this ortho-naphthoquinone has antifungal and antibacterial activities, underscoring its action against resistant microorganisms and providing anti-inflammatory, antiobesity, antioxidant, neuroprotective, nephroprotective, and wound-healing properties. β-Lapachone presents low toxicity, with no signs of toxicity against alveolar macrophages, dermal fibroblast cells, hepatocytes, or kidney cells.
Collapse
Affiliation(s)
- Camila Luiz Gomes
- Laboratório de Tecnologia Dos Medicamentos, Department of Pharmaceutical Sciences, Federal University of Pernambuco, 50670-901, Av. Professor Artur de Sá, S/n - Cidade Universitária, Recife, PE, Brazil
| | - Victor de Albuquerque Wanderley Sales
- Laboratório de Tecnologia Dos Medicamentos, Department of Pharmaceutical Sciences, Federal University of Pernambuco, 50670-901, Av. Professor Artur de Sá, S/n - Cidade Universitária, Recife, PE, Brazil
| | - Camila Gomes de Melo
- Laboratório de Tecnologia Dos Medicamentos, Department of Pharmaceutical Sciences, Federal University of Pernambuco, 50670-901, Av. Professor Artur de Sá, S/n - Cidade Universitária, Recife, PE, Brazil
| | - Rosali Maria Ferreira da Silva
- Laboratório de Tecnologia Dos Medicamentos, Department of Pharmaceutical Sciences, Federal University of Pernambuco, 50670-901, Av. Professor Artur de Sá, S/n - Cidade Universitária, Recife, PE, Brazil
| | - Rodolfo Hideki Vicente Nishimura
- Central de Análise de Fármacos, Medicamentos e Alimentos (CAFMA), Federal University of Vale Do São Francisco, 56304-205, Av. José de Sá Maniçoba, S/n - Centro, Petrolina, PE, Brazil
| | - Larissa Araújo Rolim
- Central de Análise de Fármacos, Medicamentos e Alimentos (CAFMA), Federal University of Vale Do São Francisco, 56304-205, Av. José de Sá Maniçoba, S/n - Centro, Petrolina, PE, Brazil
| | - Pedro José Rolim Neto
- Laboratório de Tecnologia Dos Medicamentos, Department of Pharmaceutical Sciences, Federal University of Pernambuco, 50670-901, Av. Professor Artur de Sá, S/n - Cidade Universitária, Recife, PE, Brazil.
| |
Collapse
|
9
|
El-Hawary SS, Taher MA, Amin E, Fekry AbouZid S, Mohammed R. Genus Tabebuia: A comprehensive review journey from past achievements to future perspectives. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
10
|
Foulkes MJ, Tolliday FH, Henry KM, Renshaw SA, Jones S. Evaluation of the anti-inflammatory effects of synthesised tanshinone I and isotanshinone I analogues in zebrafish. PLoS One 2020; 15:e0240231. [PMID: 33022012 PMCID: PMC7537861 DOI: 10.1371/journal.pone.0240231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/22/2020] [Indexed: 01/13/2023] Open
Abstract
During inflammation, dysregulated neutrophil behaviour can play a major role in a range of chronic inflammatory diseases, for many of which current treatments are generally ineffective. Recently, specific naturally occurring tanshinones have shown promising anti-inflammatory effects by targeting neutrophils in vivo, yet such tanshinones, and moreover, their isomeric isotanshinone counterparts, are still a largely underexplored class of compounds, both in terms of synthesis and biological effects. To explore the anti-inflammatory effects of isotanshinones, and the tanshinones more generally, a series of substituted tanshinone and isotanshinone analogues was synthesised, alongside other structurally similar molecules. Evaluation of these using a transgenic zebrafish model of neutrophilic inflammation revealed differential anti-inflammatory profiles in vivo, with a number of compounds exhibiting promising effects. Several compounds reduce initial neutrophil recruitment and/or promote resolution of neutrophilic inflammation, of which two also result in increased apoptosis of human neutrophils. In particular, the methoxy-substituted tanshinone 39 specifically accelerates resolution of inflammation without affecting the recruitment of neutrophils to inflammatory sites, making this a particularly attractive candidate for potential pro-resolution therapeutics, as well as a possible lead for future development of functionalised tanshinones as molecular tools and/or chemical probes. The structurally related β-lapachones promote neutrophil recruitment but do not affect resolution. We also observed notable differences in toxicity profiles between compound classes. Overall, we provide new insights into the in vivo anti-inflammatory activities of several novel tanshinones, isotanshinones, and structurally related compounds.
Collapse
Affiliation(s)
- Matthew J. Foulkes
- Department of Chemistry, The University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity & Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Faith H. Tolliday
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity & Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Katherine M. Henry
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity & Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity & Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Simon Jones
- Department of Chemistry, The University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Mokarizadeh N, Karimi P, Kazemzadeh H, Fathi Maroufi N, Sadigh-Eteghad S, Nikanfar S, Rashtchizadeh N. An evaluation on potential anti-inflammatory effects of β-lapachone. Int Immunopharmacol 2020; 87:106810. [DOI: 10.1016/j.intimp.2020.106810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 12/21/2022]
|
12
|
Ahmad F, Bibi S, Kang M, Anees M, Ansar M, Alam MR, Kim SY, Wahedi HM. Naphthoquinones from Handroanthus impetiginosus promote skin wound healing through Sirt3 regulation. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1139-1145. [PMID: 32963735 PMCID: PMC7491501 DOI: 10.22038/ijbms.2020.43706.10275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Objective(s): Lapachone is a natural naphthoquinone-derived compound found in Tabebuia avellanedae. It is well-known for its analgesic, anti-inflammatory, anti-microbial, diuretic, and anti-cancerous effects. However, the wound-healing effects of this compound are not known yet. The aim of this study was to investigate the wound healing activity of naphthoquinones (α-lapachone and β-lapachone) from Handroanthus impetiginosus. Materials and Methods: Expression of Sirt3, migration-related proteins (Rac1, Cdc42, α-Pak) and angiogenesis-related protein of vascular endothelial growth factor (VEGF) was monitored using western blot analysis. Blood vessel formation and tissue development were monitored by angiogenesis assay and hematoxylin & eosin (H & E) staining, respectively on mouse skin tissue samples. Both α-lapachone and β-lapachone increased Sirt3 expression in vivo, but only β-lapachone increased Sirt3 expression in vitro. Results: Both the compounds accelerated wound healing in cultured skin cells as well as mouse skin; however, β-lapachone was more effective at lower concentrations. Both of the compounds increased the expression of migration-related proteins both in vitro and in vivo. Similarly, α-lapachone and β-lapachone increased VEGF expression, tissue development and blood vessel formation in mouse skin. Conclusion: These findings indicated that α-lapachone and β-lapachone are novel Sirt3 activators, and Sirt3 has a role in wound healing. Thus, Sirt3 and its regulators come out as a novel target and potential drug candidates, respectively in the important field of cutaneous wound healing.
Collapse
Affiliation(s)
- Fayyaz Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Shaheen Bibi
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Mincheol Kang
- College of Pharmacy, Gachon University, 191 Hambakmaero, Incheon, South Korea
| | - Mariam Anees
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Muhammad Rizwan Alam
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, 191 Hambakmaero, Incheon, South Korea
| | - Hussain Mustatab Wahedi
- Department of Biological Sciences, National University of Medical Sciences, C/O Military Hospital, Mall Road Rawalpindi, Pakistan
| |
Collapse
|
13
|
Loiseau PM, Pomel S, Croft SL. Chitosan Contribution to Therapeutic and Vaccinal Approaches for the Control of Leishmaniasis. Molecules 2020; 25:E4123. [PMID: 32916994 PMCID: PMC7571104 DOI: 10.3390/molecules25184123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
The control of leishmaniases, a complex parasitic disease caused by the protozoan parasite Leishmania, requires continuous innovation at the therapeutic and vaccination levels. Chitosan is a biocompatible polymer administrable via different routes and possessing numerous qualities to be used in the antileishmanial strategies. This review presents recent progress in chitosan research for antileishmanial applications. First data on the mechanism of action of chitosan revealed an optimal in vitro intrinsic activity at acidic pH, high-molecular-weight chitosan being the most efficient form, with an uptake by pinocytosis and an accumulation in the parasitophorous vacuole of Leishmania-infected macrophages. In addition, the immunomodulatory effect of chitosan is an added value both for the treatment of leishmaniasis and the development of innovative vaccines. The advances in chitosan chemistry allows pharmacomodulation on amine groups opening various opportunities for new polymers of different size, and physico-chemical properties adapted to the chosen routes of administration. Different formulations have been studied in experimental leishmaniasis models to cure visceral and cutaneous leishmaniasis, and chitosan can act as a booster through drug combinations with classical drugs, such as amphotericin B. The various architectural possibilities given by chitosan chemistry and pharmaceutical technology pave the way for promising further developments.
Collapse
Affiliation(s)
- Philippe M. Loiseau
- Antiparasite Chemotherapy, CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France;
| | - Sébastien Pomel
- Antiparasite Chemotherapy, CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France;
| | - Simon L. Croft
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK;
| |
Collapse
|
14
|
Wu X, Kasselouri A, Vergnaud-Gauduchon J, Rosilio V. Assessment of various formulation approaches for the application of beta-lapachone in prostate cancer therapy. Int J Pharm 2020; 579:119168. [PMID: 32087264 DOI: 10.1016/j.ijpharm.2020.119168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/30/2023]
Abstract
Beta-lapachone (β-Lap) is an anticancer drug activated by the NAD(P)H:quinone oxidoreductase (NQO1), an enzyme over-expressed in a large variety of tumors. B-Lap is poorly soluble in water and in most biocompatible solvents. Micellar systems, liposomes and cyclodextrins (CDs) have been proposed for its solubilization. In this work, we analyzed the properties and in vitro efficacy of β-Lap loaded in polymer nanoparticles, liposome bilayers, complexed with sulfobutyl-ether (SBE)- and hydroxypropyl (HP)-β cyclodextrins, or double loaded in phospholipid vesicles. Nanoparticles led to the lowest drug loading. Encapsulation of [β-Lap:CD] complexes in vesicles made it possible to slightly increase the encapsulation rate of the drug in liposomes, however at the cost of poor encapsulation efficiency. Cytotoxicity tests generally showed a higher sensitivity of NIH 3T3 and PNT2 cells to the treatment compared to PC-3 cells, but also a slight resistance at high β-Lap concentrations. None of the studied β-Lap delivery systems showed significant enhanced cytotoxicity against PC-3 cells compared to the free drug. Cyclodextrins and double loaded vesicles, however, appeared more efficient drug delivery systems than liposomes and nanoparticles, combining both good solubilizing and cytotoxic properties. Ligand-functionalized double loaded liposomes might allow overcoming the lack of selectivity of the drug.
Collapse
Affiliation(s)
- Xiao Wu
- Université Paris-Saclay, CNRS, Institut Galien Paris Saclay, 92296 Châtenay-Malabry, France
| | - Athena Kasselouri
- Université Paris-Saclay, Lip(Sys)(2), Chimie Analytique Pharmaceutique, 92296 Châtenay-Malabry, France
| | | | - Véronique Rosilio
- Université Paris-Saclay, CNRS, Institut Galien Paris Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
15
|
A microfluidics-based wound-healing assay for studying the effects of shear stresses, wound widths, and chemicals on the wound-healing process. Sci Rep 2019; 9:20016. [PMID: 31882962 PMCID: PMC6934480 DOI: 10.1038/s41598-019-56753-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/30/2019] [Indexed: 01/22/2023] Open
Abstract
Collective cell migration plays important roles in various physiological processes. To investigate this collective cellular movement, various wound-healing assays have been developed. In these assays, a “wound” is created mechanically, chemically, optically, or electrically out of a cellular monolayer. Most of these assays are subject to drawbacks of run-to-run variations in wound size/shape and damages to cells/substrate. Moreover, in all these assays, cells are cultured in open, static (non-circulating) environments. In this study, we reported a microfluidics-based wound-healing assay by using the trypsin flow-focusing technique. Fibroblasts were first cultured inside this chip to a cellular monolayer. Then three parallel fluidic flows (containing normal medium and trypsin solution) were introduced into the channels, and cells exposed to protease trypsin were enzymatically detached from the surface. Wounds of three different widths were generated, and subsequent wound-healing processes were observed. This assay is capable of creating three or more wounds of different widths for investigating the effects of various physical and chemical stimuli on wound-healing speeds. The effects of shear stresses, wound widths, and β-lapachone (a wound healing-promoting chemical) on wound-healing speeds were studied. It was found that the wound-healing speed (total area healed per unit time) increased with increasing shear stress and wound width, but under a shear stress of 0.174 mPa the linear healing speed (percent area healed per unit time) was independent of the wound width. Also, the addition of β-lapachone up to 0.5 μM did not accelerate wound healing. This microfluidics-based assay can definitely help in understanding the mechanisms of the wound-healing process and developing new wound-healing therapies.
Collapse
|
16
|
Chen Y, Tian L, Yang F, Tong W, Jia R, Zou Y, Yin L, Li L, He C, Liang X, Ye G, Lv C, Song X, Yin Z. Tannic Acid Accelerates Cutaneous Wound Healing in Rats Via Activation of the ERK 1/2 Signaling Pathways. Adv Wound Care (New Rochelle) 2019; 8:341-354. [PMID: 31737421 DOI: 10.1089/wound.2018.0853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/23/2019] [Indexed: 02/06/2023] Open
Abstract
Objective: This study was aimed to evaluate the effect of tannic acid (TA), a natural plant polyphenol astringent, on wound healing in vitro and in vivo, and to elucidate the underlying molecular signaling pathway in the wound healing. Approach: Cutaneous skin wounds were created in rats and then treated until closure with purified TA, serum or tissue samples were collected to test the concentration of factors by enzyme-linked immunosorbent assay (ELISA), and the expression in gene or protein was measured by quantitative real-time polymerase chain reaction or Western blot. We explored the cell-/dose-specific responses of TA (0.1-0.4 μg/mL) on proliferation and gene and protein expression of fibroblast NIH 3T3 cells. Results: The wounds on rats treated by TA got healed faster than those in the untreated group. The histopathology study showed that TA accelerated re-epithelialization and increase in hair follicles could be detected. The levels of growth factors including basic fibroblast growth factor (bFGF), transforming growth factor-beta, and vascular endothelial growth factor in TA-treated groups were all increased, and the content of interleukin-1 (IL-1) and IL-6 was decreased significantly when compared with that of the untreated group. The NIH 3T3 cells grow faster in 6 h at concentration of 0.1 μg/mL, and the expression of bFGF in gene and protein was increased significantly in the 0.1 μg/mL TA group. Further study revealed that the protein levels of bFGF, extracellular signal regulated kinase (Erk) 1/2, and P-Erk 1/2 in Erk 1/2 pathway were increased after TA treatment. Innovation: The role of TA in wound healing efficacy is unclear; this study, therefore, assesses the effects of TA on wound healing in different periods and the underlying molecular mechanisms. Conclusion: These results suggested that TA could accelerate wound healing through modulation of inflammatory cytokines and growth factors and activate Erk 1/2 pathway. In conclusion, TA may be a potential agent in promoting wound healing.
Collapse
Affiliation(s)
- Yaqin Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lvbo Tian
- Sichuan International Travel Health Care Center, Chengdu, China
| | - Fengyu Yang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wenzhi Tong
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
17
|
Xue Y, Du M, Zhu MJ. Quercetin Prevents Escherichia coli O157:H7 Adhesion to Epithelial Cells via Suppressing Focal Adhesions. Front Microbiol 2019; 9:3278. [PMID: 30700983 PMCID: PMC6343519 DOI: 10.3389/fmicb.2018.03278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
The attachment of Escherichia coli O157:H7 to intestinal epithelial cells is indispensable for its pathogenesis. Besides translocated-intimin receptor (Tir), E. coli O157:H7 interacts with host cell surface receptors to promote intimate adhesion. This study showed that integrin β1 was increased in Caco-2 cells upon E. coli O157:H7 infection, while Caco-2 cells subjected to integrin β1 antibody blocking or CRISPR/Cas9 knockout had reduced bacterial attachment. Infection of E. coli O157:H7 inactivated focal adhesion kinase (FAK) and paxillin, increased focal adhesion (FA) and actin polymerization, and decreased cell migration in Caco-2 cells, which were rescued by integrin β1 antibody blocking or knockout. Pre-treatment with quercetin, known for its anti-oxidant and anti-inflammatory activity, reduced bacterial infection to Caco-2 cells, which might be partially via interfering integrin β1 and FAK association augmented by E. coli O157:H7. In addition, quercetin decreased FA formation induced by bacterial infection and recovered host cell motility. Taken together, data showed that E. coli O157:H7 interacts with integrin β1 to facilitate its adhesion to host cells. Quercetin inhibits bacterial infection possibly by blocking the interaction between E. coli O157:H7 and integrin β1. Collectively, these data indicate that quercetin provides an alternative antimicrobial to mitigate and control E. coli O157:H7 intestinal infection, and suggest potential broad benefits of quercetin and related polyphenols in fighting other enteric pathogen infections.
Collapse
Affiliation(s)
- Yansong Xue
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, United States
| |
Collapse
|
18
|
Cardoso SH, de Oliveira CR, Guimarães AS, Nascimento J, de Oliveira Dos Santos Carmo J, de Souza Ferro JN, de Carvalho Correia AC, Barreto E. Synthesis of newly functionalized 1,4-naphthoquinone derivatives and their effects on wound healing in alloxan-induced diabetic mice. Chem Biol Interact 2018; 291:55-64. [PMID: 29902415 DOI: 10.1016/j.cbi.2018.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/30/2018] [Accepted: 06/09/2018] [Indexed: 01/16/2023]
Abstract
Naphthoquinone derivatives have various pharmacological properties. Here, we describe the synthesis of new 1,4-naphthoquinone derivatives inspired by lawsone and β-lapachone and their effects on both migration of fibroblasts in vitro and dermal wound healing in diabetic mice. NMR and FTIR spectroscopy aided characterization of chemical composition and demonstrated the molecular variations after the synthesis of four different derivatives, namely 2-bromo-1,4-naphthoquinone (termed derivative S3), 2-N-phenylamino-1,4-naphthoquinone (derivative S5), 2-N-isonicotinoyl-hydrazide-1,4-naphthoquinone (derivative S6), and 1-N-isonicotinoyl-hydrazone-[2-hydroxy-3-(3-methyl-2-butenyl)]-1,4-naphthoquinone (derivative S7). Our results indicate that derivatives S3, S5, S6 and S7 were non-toxic to the 3T3 fibroblast cell line. In scratch assays, derivatives S3 and S6, but not S5 or S7, stimulated the migration of fibroblasts. Compared with untreated diabetic mice, S3, S6 and S7 treatments accelerated wound closure. However, derivative S3 was optimal for the stimulation of epithelization, thereby increasing the number of keratinocyte layers and blood vessels, and reducing diffuse cellular infiltration, compared to derivatives S6 and S7. Our results suggest that novel 1,4-naphthoquinone derivatives promote fibroblast migration and accelerate wound closure under diabetic conditions.
Collapse
Affiliation(s)
- Silvia Helena Cardoso
- Laboratory of Organic Synthesis and Medicinal Chemistry (LaSOM), Núcleo de Ciências Exatas (NCEx), Campus Arapiraca, Federal University of Alagoas, CEP 57.309-005, Arapiraca, Alagoas, Brazil.
| | - Cleidijane Rodrigues de Oliveira
- Laboratory of Organic Synthesis and Medicinal Chemistry (LaSOM), Núcleo de Ciências Exatas (NCEx), Campus Arapiraca, Federal University of Alagoas, CEP 57.309-005, Arapiraca, Alagoas, Brazil
| | - Ari Souza Guimarães
- Laboratory of Organic Synthesis and Medicinal Chemistry (LaSOM), Núcleo de Ciências Exatas (NCEx), Campus Arapiraca, Federal University of Alagoas, CEP 57.309-005, Arapiraca, Alagoas, Brazil
| | - Jadiely Nascimento
- Laboratory of Organic Synthesis and Medicinal Chemistry (LaSOM), Núcleo de Ciências Exatas (NCEx), Campus Arapiraca, Federal University of Alagoas, CEP 57.309-005, Arapiraca, Alagoas, Brazil
| | | | - Jamylle Nunes de Souza Ferro
- Laboratory of Cell Biology, Campus A.C. Simões, Federal University of Alagoas, CEP 57.072-970, Maceio, Alagoas, Brazil
| | | | - Emiliano Barreto
- Laboratory of Cell Biology, Campus A.C. Simões, Federal University of Alagoas, CEP 57.072-970, Maceio, Alagoas, Brazil.
| |
Collapse
|
19
|
Lee M, Ban JJ, Chung JY, Im W, Kim M. Amelioration of Huntington's disease phenotypes by Beta-Lapachone is associated with increases in Sirt1 expression, CREB phosphorylation and PGC-1α deacetylation. PLoS One 2018; 13:e0195968. [PMID: 29742127 PMCID: PMC5942716 DOI: 10.1371/journal.pone.0195968] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
Huntington’s disease (HD) is one of the most devastating genetic neurodegenerative disorders with no effective medical therapy. β-Lapachone (βL) is a natural compound obtained from the bark of the Lapacho tree and has been reported to have beneficial effects on various diseases. Sirt1 is a deacetylase of the sirtuin family and deacetylates proteins including the peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) which is associated with mitochondrial respiration and biogenesis. To examine the effectiveness of βL on HD, βL was orally applied to R6/2 HD mice and behavioral phenotypes associated with HD, such as impairment of rota-rod performance and increase of clasping behavior, as well as changes of Sirt1 expression, CREB phosphorylation and PGC-1α deacetylation were examined. Western blot results showed that Sirt1 and p-CREB levels were significantly increased in the brains of βL-treated R6/2 mice. An increase in deacetylation of PGC-1α, which is thought to increase its activity, was observed by oral administration of βL. In an in vitro HD model, βL treatment resulted in an attenuation of MitoSOX red fluorescence intensity, indicating an amelioration of mitochondrial reactive oxygen species by βL. Furthermore, improvements in the rota-rod performance and clasping score were observed in R6/2 HD mice after oral administration of βL compared to that of vehicle control-treated mice. Taken together, our data show that βL is a potential therapeutic candidate for the treatment of HD-associated phenotypes, and increases in Sirt1 level, CREB phosphorylation and PGC-103B1 deacetylation can be the possible underlying mechanism of the effects of βL.
Collapse
Affiliation(s)
- Mijung Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Jae-Jun Ban
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Jin-Young Chung
- Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Gangwon, South Korea
| | - Wooseok Im
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- * E-mail: (WI); (MK)
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul, South Korea
- * E-mail: (WI); (MK)
| |
Collapse
|
20
|
Lee HW, Seong SJ, Ohk B, Kang WY, Gwon MR, Kim BK, Kim HJ, Yoon YR. Pharmacokinetic and safety evaluation of MB12066, an NQO1 substrate. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2719-2725. [PMID: 29066863 PMCID: PMC5604554 DOI: 10.2147/dddt.s142339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective This study evaluated the pharmacokinetics (PKs) and safety of a newly developed β-lapachone (MB12066) tablet, a natural NAD(P)H:quinone oxidoreductase 1 (NQO1) substrate, in healthy male volunteers. Methods In a randomized, double-blind, multiple-dose, two-treatment study, 100 mg MB12066 or placebo was given twice daily for 8 days to groups of eight or three fasted healthy male subjects, respectively, followed by serial blood sampling. Plasma concentrations for β-lapachone were determined using liquid chromatography–tandem mass spectrometry. PK parameters were obtained with non-compartmental analysis. Tolerability was assessed based on physical examinations, vital signs, clinical laboratory tests, and electrocardiograms. Results Following a single 100 mg MB12066 oral dose, maximum plasma concentration (Cmax) of β-lapachone was 3.56±1.55 ng/mL, and the median (range) time to reach Cmax was 3 h (2–5 h). After the 8 days of 100 mg twice daily repeated dosing was completed, mean terminal half-life was determined to be 18.16±3.14 h, and the mean area under the plasma concentration vs time curve at steady state was 50.44±29.68 ng·h/mL. Accumulation index was 2.72±0.37. No serious adverse events (AEs) were reported, and all reported intensities of AEs were mild. Conclusion The results demonstrated that MB12066 was safe and well tolerated in healthy volunteers and that there were no serious AEs. Accumulation in plasma with twice-daily administration was associated with a 2.72 accumulation ratio.
Collapse
Affiliation(s)
- Hae Won Lee
- Clinical Trial Center, Kyungpook National University Hospital
| | - Sook Jin Seong
- Clinical Trial Center, Kyungpook National University Hospital
| | - Boram Ohk
- Clinical Trial Center, Kyungpook National University Hospital.,Department of Biomedical Science, BK21 Plus KNU Bio-Medical Convergence Program for Creative Talent, Kyungpook National University Graduate School
| | - Woo Youl Kang
- Clinical Trial Center, Kyungpook National University Hospital.,Department of Biomedical Science, BK21 Plus KNU Bio-Medical Convergence Program for Creative Talent, Kyungpook National University Graduate School
| | - Mi-Ri Gwon
- Clinical Trial Center, Kyungpook National University Hospital
| | - Bo Kyung Kim
- Clinical Trial Center, Kyungpook National University Hospital.,Department of Biomedical Science, BK21 Plus KNU Bio-Medical Convergence Program for Creative Talent, Kyungpook National University Graduate School
| | - Hyun-Ju Kim
- Cell and Matrix Research Institute, Daegu, Republic of Korea
| | - Young-Ran Yoon
- Clinical Trial Center, Kyungpook National University Hospital.,Department of Biomedical Science, BK21 Plus KNU Bio-Medical Convergence Program for Creative Talent, Kyungpook National University Graduate School
| |
Collapse
|
21
|
Boriollo MFG, Silva TA, Rodrigues-Netto MF, Silva JJ, Marques MB, Dias CTS, Höfling JF, Resck MCC, Oliveira NMS. Reduction of doxorubicin-induced genotoxicity by Handroanthus impetiginosus in mouse bone marrow revealed by micronucleus assay. BRAZ J BIOL 2017; 78:1-12. [PMID: 28699970 DOI: 10.1590/1519-6984.18515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 09/20/2016] [Indexed: 11/22/2022] Open
Abstract
Handroanthus impetiginosus has long been used in traditional medicine and various studies have determined the presence of bioactive chemical compounds and potential phytotherapeutics. In this study, the genotoxicity of the lyophilized tincture of H. impetiginosus bark (THI) was evaluated in mouse bone marrow using micronucleus assays. The interaction between THI and genotoxic effects induced by the chemotherapeutic agent, doxorubicin (DXR), was also analyzed. Experimental groups were evaluated 24 to 48 h after treatment with N-nitroso-N-ethylurea (NEU; 50 mg/kg), DXR (5 mg/kg), sodium chloride (NaCl; 150 mM), and THI (0.5-2 g/kg). Antigenotoxic assays were carried out using THI (0.5 g/kg) in combination with NEU or DXR. Analysis of the micronucleated polychromatic erythrocytes (MNPCEs) indicated no significant differences between treatment doses of THI (0.5-2 g/kg) and NaCl. Polychromatic erythrocyte (PCE) to normochromatic erythrocyte (NCE) ratios did not indicate any statistical differences between DXR and THI or NaCl, but there were differences between THI and NaCl. A significant reduction in MNPCEs and PCE/NCE ratios was observed when THI was administered in combination with DXR. This study suggested the absence of THI genotoxicity that was dose-, time-, and gender-independent and the presence of moderate systemic toxicity that was dose-independent, but time- and gender-dependent. The combination of THI and DXR also suggested antigenotoxic effects, indicating that THI reduced genotoxic effects induced by chemotherapeutic agents.
Collapse
Affiliation(s)
- M F G Boriollo
- Faculdade de Ciências Médicas, Universidade José do Rosário Vellano, Alfenas, MG, Brazil
| | - T A Silva
- Faculdade de Ciências Médicas, Universidade José do Rosário Vellano, Alfenas, MG, Brazil
| | - M F Rodrigues-Netto
- Faculdade de Ciências Médicas, Universidade José do Rosário Vellano, Alfenas, MG, Brazil
| | - J J Silva
- Faculdade de Ciências Médicas, Universidade José do Rosário Vellano, Alfenas, MG, Brazil
| | - M B Marques
- Faculdade de Ciências Médicas, Universidade José do Rosário Vellano, Alfenas, MG, Brazil
| | - C T S Dias
- Escola de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil
| | - J F Höfling
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brazil
| | - M C C Resck
- Faculdade de Ciências Médicas, Universidade José do Rosário Vellano, Alfenas, MG, Brazil
| | - N M S Oliveira
- Faculdade de Ciências Médicas, Universidade José do Rosário Vellano, Alfenas, MG, Brazil
| |
Collapse
|
22
|
Yang Y, Zhou X, Xu M, Piao J, Zhang Y, Lin Z, Chen L. β-lapachone suppresses tumour progression by inhibiting epithelial-to-mesenchymal transition in NQO1-positive breast cancers. Sci Rep 2017; 7:2681. [PMID: 28578385 PMCID: PMC5457413 DOI: 10.1038/s41598-017-02937-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/20/2017] [Indexed: 01/28/2023] Open
Abstract
NQO1 is a FAD-binding protein that can form homodimers and reduce quinones to hydroquinones, and a growing body of evidence currently suggests that NQO1 is dramatically elevated in solid cancers. Here, we demonstrated that NQO1 was elevated in breast cancer and that its expression level was positively correlated with invasion and reduced disease free survival (DFS) and overall survival (OS) rates. Next, we found that β-lapachone exerted significant anti-proliferation and anti-metastasis effects in breast cancer cell lines due to its effects on NQO1 expression. Moreover, we revealed that the anti-cancer effects of β-lapachone were mediated by the inactivation of the Akt/mTOR pathway. In conclusion, these results demonstrated that NQO1 could be a useful prognostic biomarker for patients with breast cancer, and its bioactivatable drug, β-lapachone represented a promising new development and an effective strategy for indicating the progression of NQO1-positive breast cancers.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
| | - Xianchun Zhou
- Department of Internal Medicine, Yanbian University Hospital, Yanji, 133000, China
| | - Ming Xu
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
| | - Junjie Piao
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China.,Department of Internal Medicine, Yanbian University Hospital, Yanji, 133000, China
| | - Yuan Zhang
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
| | - Zhenhua Lin
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China.
| | - Liyan Chen
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China.
| |
Collapse
|
23
|
Yang HL, Tsai YC, Korivi M, Chang CT, Hseu YC. Lucidone Promotes the Cutaneous Wound Healing Process via Activation of the PI 3 K/AKT, Wnt/β-catenin and NF-κB Signaling Pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:151-168. [DOI: 10.1016/j.bbamcr.2016.10.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 10/27/2016] [Accepted: 10/30/2016] [Indexed: 01/29/2023]
|
24
|
Kim AY, Jeong KH, Lee JH, Kang Y, Lee SH, Baik EJ. Glutamate dehydrogenase as a neuroprotective target against brain ischemia and reperfusion. Neuroscience 2016; 340:487-500. [PMID: 27845178 DOI: 10.1016/j.neuroscience.2016.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/02/2016] [Accepted: 11/06/2016] [Indexed: 01/13/2023]
Abstract
Deregulation of glutamate homeostasis is associated with degenerative neurological disorders. Glutamate dehydrogenase (GDH) is important for glutamate metabolism and plays a central role in expanding the pool of tricarboxylic acid (TCA) cycle intermediate alpha-ketoglutarate (α-KG), which improves overall bioenergetics. Under high energy demand, maintenance of ATP production results in functionally active mitochondria. Here, we tested whether the modulation of GDH activity can rescue ischemia/reperfusion-induced neuronal death in an in vivo mouse model of middle artery occlusion and an in vitro oxygen/glucose depletion model. Iodoacetate, an inhibitor of glycolysis, was also used in a model of energy failure, remarkably depleting ATP and α-KG. To stimulate GDH activity, the GDH activator 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid and potential activator beta-lapachone were used. The GDH activators restored α-KG and ATP levels in the injury models and provided potent neuroprotection. We also found that beta-lapachone increased glutamate utilization, accompanied by a reduction in extracellular glutamate. Thus, our hypothesis that mitochondrial GDH activators increase α-KG production as an alternative energy source for use in the TCA cycle under energy-depleted conditions was confirmed. Our results suggest that increasing GDH-mediated glutamate oxidation represents a new therapeutic intervention for neurodegenerative disorders, including stoke.
Collapse
Affiliation(s)
- A Young Kim
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Kyeong-Hoon Jeong
- Gachon University of Medicine and Science, Incheon 406-840, Republic of Korea
| | - Jae Ho Lee
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yup Kang
- Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Soo Hwan Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Eun Joo Baik
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Republic of Korea.
| |
Collapse
|
25
|
Extracellular HSP60 triggers tissue regeneration and wound healing by regulating inflammation and cell proliferation. NPJ Regen Med 2016; 1. [PMID: 28936359 PMCID: PMC5605149 DOI: 10.1038/npjregenmed.2016.13] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
After injury, zebrafish can restore many tissues that do not regenerate well in mammals, making it a useful vertebrate model for studying regenerative biology. We performed a systematic screen to identify genes essential for hair cell regeneration in zebrafish, and found that the heat shock protein Hspd1 (Hsp60) has a critical role in the regeneration of hair cells and amputated caudal fins. We showed HSP60-injected extracellularly promoted cell proliferation and regeneration in both hair cells and caudal fins. We showed that hspd1 mutant was deficient in leukocyte infiltration at the site of injury. Topical application of HSP60 in a diabetic mouse skin wound model dramatically accelerated wound healing compared with controls. Stimulation of human peripheral blood mononuclear cells with HSP60 triggered a specific induction of M2 phase CD163-positive monocytes. Our results demonstrate that the normally intracellular chaperonin HSP60 has an extracellular signalling function in injury inflammation and tissue regeneration, likely through promoting the M2 phase for macrophages.
Collapse
|
26
|
Abstract
Collective cell migration plays important roles in many physiological processes such as embryonic development, tissue repair, and angiogenesis. A "wound" occurs when epithelial cells are lost and/or damaged due to some external factors, and collective cell migration takes place in the following wound-healing process. To study this cellular behavior, various kinds of wound-healing assays are developed. In these assays, a "wound," or a "cell-free region," is created in a cell monolayer mechanically, chemically, optically, or electrically. These assays are useful tools in studying the effects of certain physical or chemical stimuli on the wound-healing process. Most of these methods have disadvantages such as creating wounds of different sizes or shapes, yielding batch-to-batch variation, and damaging the coating of the cell culture surface. In this study, we used ultraviolet (UV) lights to selectively kill cells and create a wound out of a cell monolayer. A comparison between the current assay and the traditional scratch assay was made, indicating that these two methods resulted in similar wound-healing rates. The advantages of this UV-created wound-healing assay include fast and easy procedure, high throughput, and no direct contact to cells.
Collapse
Affiliation(s)
- Shang-Ying Wu
- 1 Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yung-Shin Sun
- 2 Department of Physics, Fu-Jen Catholic University, New Taipei City Taiwan
| | - Kuan-Chen Cheng
- 3 Graduate Institute of Food Science Technology, National Taiwan University, Taipei, Taiwan
| | - Kai-Yin Lo
- 1 Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
27
|
Park SH, Jeong SH, Kim SW. β-Lapachone Regulates the Transforming Growth Factor-β–Smad Signaling Pathway Associated with Collagen Biosynthesis in Human Dermal Fibroblasts. Biol Pharm Bull 2016; 39:524-31. [DOI: 10.1248/bpb.b15-00730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Kim KH, Park SH, Adhikary P, Cho JH, Kang NG, Jeong SH. Stability of β-Lapachone upon Exposure to Various Stress Conditions: Resultant Efficacy and Cytotoxicity. Chem Pharm Bull (Tokyo) 2016; 64:381-9. [DOI: 10.1248/cpb.c15-00706] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ki Hyun Kim
- College of Pharmacy, Dongguk University-Seoul
| | | | | | | | | | | |
Collapse
|
29
|
Assessment of β-lapachone loaded in lecithin-chitosan nanoparticles for the topical treatment of cutaneous leishmaniasis in L. major infected BALB/c mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:2003-12. [DOI: 10.1016/j.nano.2015.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/22/2015] [Accepted: 07/17/2015] [Indexed: 12/23/2022]
|
30
|
Wu SY, Hou HS, Sun YS, Cheng JY, Lo KY. Correlation between cell migration and reactive oxygen species under electric field stimulation. BIOMICROFLUIDICS 2015; 9:054120. [PMID: 26487906 PMCID: PMC4600077 DOI: 10.1063/1.4932662] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/28/2015] [Indexed: 05/04/2023]
Abstract
Cell migration is an essential process involved in the development and maintenance of multicellular organisms. Electric fields (EFs) are one of the many physical and chemical factors known to affect cell migration, a phenomenon termed electrotaxis or galvanotaxis. In this paper, a microfluidics chip was developed to study the migration of cells under different electrical and chemical stimuli. This chip is capable of providing four different strengths of EFs in combination with two different chemicals via one simple set of agar salt bridges and Ag/AgCl electrodes. NIH 3T3 fibroblasts were seeded inside this chip to study their migration and reactive oxygen species (ROS) production in response to different EF strengths and the presence of β-lapachone. We found that both the EF and β-lapachone level increased the cell migration rate and the production of ROS in an EF-strength-dependent manner. A strong linear correlation between the cell migration rate and the amount of intracellular ROS suggests that ROS are an intermediate product by which EF and β-lapachone enhance cell migration. Moreover, an anti-oxidant, α-tocopherol, was found to quench the production of ROS, resulting in a decrease in the migration rate.
Collapse
Affiliation(s)
- Shang-Ying Wu
- Department of Agricultural Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | - Hsien-San Hou
- Research Center for Applied Sciences , Academia Sinica, Taipei 11529, Taiwan
| | - Yung-Shin Sun
- Department of Physics, Fu-Jen Catholic University , New Taipei City 24205, Taiwan
| | - Ji-Yen Cheng
- Research Center for Applied Sciences , Academia Sinica, Taipei 11529, Taiwan
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University , Taipei 10617, Taiwan
| |
Collapse
|
31
|
Jeon YJ, Bang W, Shin JC, Park SM, Cho JJ, Choi YH, Seo KS, Choi NJ, Shim JH, Chae JI. Downregulation of Sp1 is involved in β-lapachone-induced cell cycle arrest and apoptosis in oral squamous cell carcinoma. Int J Oncol 2015; 46:2606-12. [PMID: 25891355 DOI: 10.3892/ijo.2015.2972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/08/2015] [Indexed: 11/05/2022] Open
Abstract
β-lapachone (β-lap) is a naturally occurring quinone obtained from the bark of lapacho tree (Tabebuia avellanedae) with anti-proliferative properties against various cancers. The present study investigated the cell proliferation and apoptosis effect of β-lap on two oral squamous cell carcinoma lines (OSCCs). We carried out a series of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl-2H-tetrazolium (MTS) assays, 4',6-diamidino-2-phenylindole (DAPI) staining, cell cycle analysis, and western blot analysis to characterize β-lap and its underlying signaling pathway. We demonstrated that β-lap-treated cells significantly reduced cell proliferation but increased DNA condensation and increased sub-G1 population in OSCCs. Particularly, β-lap suppresses activation of transcription factor specificity protein 1 (Sp1) followed by apoptosis in a concentration-dependent manner in OSCCs. Furthermore, β-lap modulated protein expression levels of cell cycle regulatory proteins and apoptosis-related proteins that are known as Sp1 target genes, resulting in apoptosis. Our results collectively indicated that β-lap was able to modulate Sp1 transactivation and induce apoptosis through the regulation of cell cycle and apoptosis-related proteins. Therefore, β-lap may be used in cancer prevention and therapies to improve clinical outcome as an anticancer drug candidate.
Collapse
Affiliation(s)
- Young-Joo Jeon
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Woong Bang
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jae-Cheon Shin
- Pohang Center for Evaluation of Biomaterials, Pohang, Gyeongbuk 790‑834, Republic of Korea
| | - Seon-Min Park
- Pohang Center for Evaluation of Biomaterials, Pohang, Gyeongbuk 790‑834, Republic of Korea
| | - Jung-Jae Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-052, Republic of Korea
| | - Kang Seok Seo
- Department of Animal Science and Technology, Sunchon National University, Suncheon, Republic of Korea
| | - Nag-Jin Choi
- Department of Animal Science, College of Agricultural and Life Science, Chonbuk National University, Jeonju 651-756, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jung-Il Chae
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|
32
|
Melanogenesis inhibition of β-lapachone, a natural product from Tabebuia avellanedae, with effective in vivo lightening potency. Arch Dermatol Res 2015; 307:229-38. [DOI: 10.1007/s00403-015-1543-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/24/2014] [Accepted: 01/23/2015] [Indexed: 12/12/2022]
|
33
|
Jeon YJ, Bang W, Choi YH, Shim JH, Chae JI. Beta-Lapachone Suppresses Non-small Cell Lung Cancer Proliferation through the Regulation of Specificity Protein 1. Biol Pharm Bull 2015; 38:1302-8. [PMID: 26328485 DOI: 10.1248/bpb.b15-00159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, and non-small cell lung cancer (NSCLC) is the most common pathological type with a reported frequency of about 85% of all cases. Despite recent advances in therapeutic agents and targeted therapies, the prognosis for NSCLC remains poor, and therefore it is important to identify the biological targets of this complex disease since a blockade of such targets would affect multiple downstream signaling cascades. β-Lapachone (β-Lap) is an antiproliferative agent that selectively induces apoptosis-related cell death in a variety of human cancer cells. However, the mechanisms of its action require further investigation. In this study, we show that treatment with β-lap triggers apoptosis and cell-cycle arrest in two NSCLC cell lines: H1299 and NCI-H358. The transcription factor specificity protein 1 (Sp1) was markedly inhibited by β-lap in a dose- and time-dependent manner. Furthermore, β-lap modulated the protein expression levels of the Sp1 regulatory genes, including cell-cycle regulatory proteins and antiapoptotic proteins, resulting in apoptosis. Taken together, our results indicate that β-lap may be a potential antiproliferative agent candidate by inducing apoptotic cell death in NSCLC tissue through downregulation of Sp1.
Collapse
Affiliation(s)
- Young-Joo Jeon
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University
| | | | | | | | | |
Collapse
|
34
|
Ramos-Pérez C, Lorenzo-Castrillejo I, Quevedo O, García-Luis J, Matos-Perdomo E, Medina-Coello C, Estévez-Braun A, Machín F. Yeast cytotoxic sensitivity to the antitumour agent β-lapachone depends mainly on oxidative stress and is largely independent of microtubule- or topoisomerase-mediated DNA damage. Biochem Pharmacol 2014; 92:206-19. [DOI: 10.1016/j.bcp.2014.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/09/2014] [Accepted: 09/09/2014] [Indexed: 01/15/2023]
|
35
|
Abstract
Cutaneous wound healing assay is important to address many key questions including (1) migration ability of different cells; (2) communication between the different cell types such as keratinocytes, fibroblasts, and immune cells; (3) understanding the cell-autonomous and non-cell-autonomous function(s) of the different cells; and (4) gene regulation in healing processes. Wound healing studies can be used to test new treatment modalities, function of new drugs/compounds, and stem cell-based therapies on the different stages of healing and for accelerating wound healing in patients with compromised healing. In this chapter, we have described a simple step-by-step protocol to generate full-thickness cutaneous wounds in the dorsal skin of mice, followed by collecting the post-wounding biopsied materials on specific days for histological and immunohistochemical analyses and for RNA and protein extractions.
Collapse
Affiliation(s)
- Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 1601 SW Jefferson str, Corvallis, OR, 97331, USA,
| |
Collapse
|
36
|
Barui A, Mandal N, Majumder S, Das RK, Sengupta S, Banerjee P, Ray AK, RoyChaudhuri C, Chatterjee J. Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3418-25. [DOI: 10.1016/j.msec.2013.04.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/14/2013] [Accepted: 04/15/2013] [Indexed: 11/15/2022]
|
37
|
|
38
|
Lee S, Kim IS, Kwak TH, Yoo HH. Comparative metabolism study of β-lapachone in mouse, rat, dog, monkey, and human liver microsomes using liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 2013; 83:286-92. [PMID: 23777616 DOI: 10.1016/j.jpba.2013.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/28/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
β-Lapachone (3,4-dihydro-2,2-dimethyl-2H-naphthol[1,2-b]pyran-5,6-dione) is a natural compound extracted from the bark of the lapacho tree (Tabebuia avellanedae) and is undergoing phase II clinical trials as an antitumor drug candidate. The present study characterized in vitro metabolites of β-lapachone in mouse, rat, dog, monkey and human liver microsomes. β-Lapachone (10 μM) was incubated with mouse, rat, dog, monkey, and human liver microsomes in the presence of NADPH. The reaction mixtures were analyzed by LC/MS and the metabolites were identified based on their elemental composition and product ion spectra. A total of 6 metabolites (M1-M6) were detected in liver microsomes with a slight difference between species. M1 and M6 were identified as a decarbonated metabolite and a carboxylated metabolite, respectively; M2, M3, and M4 were identified as monohydroxylated metabolites; and M5 was identified as an O-methylated metabolite. M5, an O-methylated metabolite was found in rat and human liver microsomes, which is thought to be formed from a catechol intermediate by MB-COMT-mediated methylation and reported here for the first time.
Collapse
Affiliation(s)
- Sangkyu Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | |
Collapse
|
39
|
Sitônio MM, Carvalho Júnior CHRD, Campos IDA, Silva JBNF, Lima MDCAD, Góes AJS, Maia MBS, Rolim Neto PJ, Silva TG. Anti-inflammatory and anti-arthritic activities of 3,4-dihydro-2,2-dimethyl-2H-naphthol[1,2-b]pyran-5,6-dione (β-lapachone). Inflamm Res 2012; 62:107-13. [PMID: 23052183 DOI: 10.1007/s00011-012-0557-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 08/07/2012] [Accepted: 09/11/2012] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE AND DESIGN The purpose of this study was to evaluate the anti-inflammatory and anti-arthritic activities of 3,4-dihydro-2,2-dimethyl-2H-naphthol[1,2-b]pyran-5,6-dione (β-lapachone; β-lap) and to elucidate its probable mode of action. METHODS Carrageenan-induced paw edema, cell migration evaluation and production of pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-6 and nitric oxide were used for this study. Freund's complete adjuvant (FCA)-induced arthritis was used as a model of chronic inflammation. β-Lap was tested in doses of 40 and 60 mg/kg, orally. RESULTS In the paw edema test, the dose of 60 mg/kg gave a higher percentage inhibition of edema (49.3 %) than control. β-Lap inhibited neutrophil migration and reduced concentrations of TNF-α, IL-6 and NO in peritoneal exudates of animals with peritonitis. In the arthritis test, β-lap inhibited edema and NO production in the serum of treated animals. CONCLUSION Significant anti-inflammatory and anti-arthritic activities were observed in animals treated with β-lap. The effects of β-lap can be attributed in part to immunomodulation with reduction of pro-inflammatory cytokines and NO.
Collapse
Affiliation(s)
- Marília Maria Sitônio
- Department of Antibiotics, Federal University of Pernambuco, Rua Prof. Artur Sá, Cidade Universitária, Recife/PE, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pereira IT, Burci LM, da Silva LM, Baggio CH, Heller M, Micke GA, Pizzolatti MG, Marques MCA, Werner MFDP. Antiulcer effect of bark extract of Tabebuia avellanedae: activation of cell proliferation in gastric mucosa during the healing process. Phytother Res 2012; 27:1067-73. [PMID: 22969019 DOI: 10.1002/ptr.4835] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/16/2012] [Accepted: 08/03/2012] [Indexed: 12/13/2022]
Abstract
Tabebuia avellanedae (syn. Handroanthus impetiginosus) is popularly known as 'ipê-roxo' and has been used in folk medicine as anti-inflammatory and in the treatment of ulcers, bacterial and fungal infections. This study evaluated the gastric ulcer healing property of the ethanolic extract (EET) of barks from Tabebuia avellanedae and investigated the mechanisms that may underlie this effect. Rats were treated with EET (twice a day for 7 days) after induction of chronic gastric ulcers by 80% acetic acid. Following treatment, histological and immunohistochemical analysis were performed in gastric ulcer tissues. Oral administration of EET (100 and 300 mg/kg) significantly reduced the gastric lesion induced by acetic acid in 44 and 36%, respectively. Histopathological evaluation demonstrated a contraction of gastric ulcer size, increase of mucus layer (periodic acid-Schiff stained mucin-like glycoproteins) and cell proliferation (proliferating cell nuclear antigen immunohistochemistry) in animals treated with EET (100 and 300 mg/kg). The results demonstrate that EET significantly accelerates healing of acetic acid induced gastric ulcer in rats through increase of mucus content and cell proliferation, indicating a potential usefulness for treatment of peptic ulcer diseases.
Collapse
|
41
|
Sun YS, Peng SW, Cheng JY. In vitro electrical-stimulated wound-healing chip for studying electric field-assisted wound-healing process. BIOMICROFLUIDICS 2012; 6:34117. [PMID: 24009651 PMCID: PMC3448595 DOI: 10.1063/1.4750486] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/21/2012] [Indexed: 05/21/2023]
Abstract
The wound-healing assay is an easy and economical way to quantify cell migration under diverse stimuli. Traditional assays such as scratch assays and barrier assays are widely and commonly used, but neither of them can represent the complicated condition when a wound occurs. It has been suggested that wound-healing is related to electric fields, which were found to regulate wound re-epithelialization. As a wound occurs, the disruption of epithelial barrier short-circuits the trans-epithelial potential and then a lateral endogenous electric field is created. This field has been proved invitro as an important cue for guiding the migration of fibroblasts, macrophages, and keratinocytes, a phenomenon termed electrotaxis or galvanotaxis. In this paper, we report a microfluidic electrical-stimulated wound-healing chip (ESWHC) integrating electric field with a modified barrier assay. This chip was used to study the migration of fibroblasts under different conditions such as serum, electric field, and wound-healing-promoting drugs. We successfully demonstrate the feasibility of ESWHC to effectively and quantitatively study cell migration during wound-healing process, and therefore this chip could be useful in drug discovery and drug safety tests.
Collapse
Affiliation(s)
- Yung-Shin Sun
- Research Center for Applied Sciences, Academia Sinica, Taipei City 11529, Taiwan
| | | | | |
Collapse
|
42
|
Wu YT, Lin CY, Tsai MY, Chen YH, Lu YF, Huang CJ, Cheng CM, Hwang SPL. β-Lapachone induces heart morphogenetic and functional defects by promoting the death of erythrocytes and the endocardium in zebrafish embryos. J Biomed Sci 2011; 18:70. [PMID: 21936955 PMCID: PMC3197495 DOI: 10.1186/1423-0127-18-70] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/22/2011] [Indexed: 01/06/2023] Open
Abstract
Background β-Lapachone has antitumor and wound healing-promoting activities. To address the potential influences of various chemicals on heart development of zebrafish embryos, we previously treated zebrafish embryos with chemicals from a Sigma LOPAC1280™ library and found several chemicals including β-lapachone that affected heart morphogenesis. In this study, we further evaluated the effects of β-lapachone on zebrafish embryonic heart development. Methods Embryos were treated with β-lapachone or dimethyl sulfoxide (DMSO) at 24 or 48 hours post fertilization (hpf) for 4 h at 28°C. Heart looping and valve development was analyzed by whole-mount in situ hybridization and histological analysis. For fractional shortening and wall shear stress analyses, AB and Tg (gata1:DsRed) embryos were recorded for their heart pumping and blood cell circulations via time-lapse fluorescence microscopy. Dextran rhodamine dye injection into the tail reticular cells was used to analyze circulation. Reactive oxygen species (ROS) was analyzed by incubating embryos in 5-(and 6-)-chloromethyl-2',7'-dichloro-dihydrofluorescein diacetate (CM-H2DCFDA) and recorded using fluorescence microscopy. o-Dianisidine (ODA) staining and whole mount in situ hybridization were used to analyze erythrocytes. TUNEL assay was used to examine DNA fragmentation. Results We observed a linear arrangement of the ventricle and atrium, bradycardia arrhythmia, reduced fractional shortening, circulation with a few or no erythrocytes, and pericardial edema in β-lapachone-treated 52-hpf embryos. Abnormal expression patterns of cmlc2, nppa, BMP4, versican, and nfatc1, and histological analyses showed defects in heart-looping and valve development of β-lapachone-treated embryos. ROS production was observed in erythrocytes and DNA fragmentation was detected in both erythrocytes and endocardium of β-lapachone-treated embryos. Reduction in wall shear stress was uncovered in β-lapachone-treated embryos. Co-treatment with the NQO1 inhibitor, dicoumarol, or the calcium chelator, BAPTA-AM, rescued the erythrocyte-deficiency in circulation and heart-looping defect phenotypes in β-lapachone-treated embryos. These results suggest that the induction of apoptosis of endocardium and erythrocytes by β-lapachone is mediated through an NQO1- and calcium-dependent pathway. Conclusions The novel finding of this study is that β-lapachone affects heart morphogenesis and function through the induction of apoptosis of endocardium and erythrocytes. In addition, this study further demonstrates the importance of endocardium and hemodynamic forces on heart morphogenesis and contractile performance.
Collapse
Affiliation(s)
- Yi-Ting Wu
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|