1
|
Saito T, Ichimura Y, Oda M, Saitoh H. Preferential meropenem absorption activated by 1α,25-dihydroxyvitamin D 3 and shared with foscarnet, a phosphate transporter substrate, in the rat ileum. Drug Metab Pharmacokinet 2024; 55:100997. [PMID: 38367298 DOI: 10.1016/j.dmpk.2024.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/19/2024]
Abstract
Meropenem (MEPM) is used for the treatment of serious infectious diseases solely as. INJECTABLE: Therefore, the development of an oral formulation would expand its clinical utility. To this end, an exact understanding of the absorption characteristics of MEPM is essential. In this study, MEPM absorption in the rat small intestine was investigated using an in situ loop technique and an in vitro diffusion chamber method. The disappearance ratios of MEPM (0.1 mM) were in the order of ileum > duodenum > jejunum. The extensive MEPM disappearance in the ileum was significantly reduced in the presence of foscarnet, a Na+-dependent phosphate transporter (NaPi-T) substrate, whereas glycylsarcosine, thiamine, taurocholic acid, and biapenem had no effects. The mucosal-to-serosal (M-to-S) permeation of MEPM across the rat ileal segments was very small under normal experimental conditions. However, on addition of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) to the experimental medium, the M-to-S permeation of MEPM markedly increased, showing a more than 7-fold greater apparent permeation coefficient. The present results suggest that MEPM is preferentially absorbed in the rat ileum, sharing with foscarnet, and that 1,25(OH)2D3 potentially activates the absorption of MEPM there. A likely candidate for involvement in MEPM absorption was NaPi-T or a related transporter.
Collapse
Affiliation(s)
- Toshihide Saito
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari, Tobetsu, Hokkaido, 061-0293, Japan
| | - Yuichi Ichimura
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari, Tobetsu, Hokkaido, 061-0293, Japan
| | - Masako Oda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari, Tobetsu, Hokkaido, 061-0293, Japan
| | - Hiroshi Saitoh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari, Tobetsu, Hokkaido, 061-0293, Japan.
| |
Collapse
|
2
|
Nakai D, Miyake M. Intestinal Membrane Function in Inflammatory Bowel Disease. Pharmaceutics 2023; 16:29. [PMID: 38258040 PMCID: PMC10820082 DOI: 10.3390/pharmaceutics16010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Inflammatory bowel disease is a set of chronic inflammatory diseases that mainly develop in the gastrointestinal mucosa, including ulcerative colitis and Crohn's disease. Gastrointestinal membrane permeability is an important factor influencing the pharmacological effects of pharmaceuticals administered orally for treating inflammatory bowel disease and other diseases. Understanding the presence or absence of changes in pharmacokinetic properties under a disease state facilitates effective pharmacotherapy. In this paper, we reviewed the gastrointestinal membrane function in ulcerative colitis and Crohn's disease from the perspective of in vitro membrane permeability and electrophysiological parameters. Information on in vivo permeability in humans is summarized. We also overviewed the inflammatory bowel disease research using gut-on-a-chip, in which some advances have recently been achieved. It is expected that these findings will be exploited for the development of therapeutic drugs for inflammatory bowel disease and the optimization of treatment options and regimens.
Collapse
Affiliation(s)
- Daisuke Nakai
- Drug Metabolism & Pharmacokinetics Research Laboratory, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Masateru Miyake
- Pharmapack Co., Ltd., 1-27 Nakaokubo, Toyama 939-2243, Japan;
| |
Collapse
|
3
|
Donkers JM, van der Vaart JI, van de Steeg E. Gut-on-a-Chip Research for Drug Development: Implications of Chip Design on Preclinical Oral Bioavailability or Intestinal Disease Studies. Biomimetics (Basel) 2023; 8:226. [PMID: 37366821 PMCID: PMC10296225 DOI: 10.3390/biomimetics8020226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The gut plays a key role in drug absorption and metabolism of orally ingested drugs. Additionally, the characterization of intestinal disease processes is increasingly gaining more attention, as gut health is an important contributor to our overall health. The most recent innovation to study intestinal processes in vitro is the development of gut-on-a-chip (GOC) systems. Compared to conventional in vitro models, they offer more translational value, and many different GOC models have been presented over the past years. Herein, we reflect on the almost unlimited choices in designing and selecting a GOC for preclinical drug (or food) development research. Four components that largely influence the GOC design are highlighted, namely (1) the biological research questions, (2) chip fabrication and materials, (3) tissue engineering, and (4) the environmental and biochemical cues to add or measure in the GOC. Examples of GOC studies in the two major areas of preclinical intestinal research are presented: (1) intestinal absorption and metabolism to study the oral bioavailability of compounds, and (2) treatment-orientated research for intestinal diseases. The last section of this review presents an outlook on the limitations to overcome in order to accelerate preclinical GOC research.
Collapse
Affiliation(s)
- Joanne M. Donkers
- Department of Metabolic Health Research, TNO, Sylviusweg 71, 2333 BE Leiden, The Netherlands; (J.I.v.d.V.); (E.v.d.S.)
| | - Jamie I. van der Vaart
- Department of Metabolic Health Research, TNO, Sylviusweg 71, 2333 BE Leiden, The Netherlands; (J.I.v.d.V.); (E.v.d.S.)
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, TNO, Sylviusweg 71, 2333 BE Leiden, The Netherlands; (J.I.v.d.V.); (E.v.d.S.)
| |
Collapse
|
4
|
Molina SA, Maier-Begandt D, Isakson BE, Koval M. Electrophysiological Measurements of Isolated Blood Vessels. Bio Protoc 2022; 12:e4359. [PMID: 35434187 PMCID: PMC8983162 DOI: 10.21769/bioprotoc.4359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 11/12/2021] [Accepted: 02/07/2022] [Indexed: 10/07/2023] Open
Abstract
The lumen of blood vessels is covered by endothelial cells, which regulate their permeability to ions and solutes. Endothelial permeability depends on the vascular bed and cell phenotype, and is influenced by different disease states. Most characterization of endothelial permeability has been carried out using isolated cells in culture. While analysis of cultured cells is a valuable approach, it does not account for factors of the native cell environment. Building on Ussing chamber studies of intact tissue specimens, here we describe a method to measure the electrophysiological properties of intact arteriole and venule endothelia, including transendothelial electrical resistance (TEER) and ion permselectivity. As an example, vessels isolated from the mesentery were treated ex vivo, then mounted in a custom-made tissue cassette that enable their analysis by classical approaches with an Ussing chamber. This method enables a detailed analysis of electrophysiological vessel responses to stresses such as proinflammatory cytokines, in the context of an intact vessel. Graphic abstract.
Collapse
Affiliation(s)
- Samuel A Molina
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Daniela Maier-Begandt
- Robert M. Berne Cardiovascular Research Center, University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
- Walter Brendel Center of Experimental Medicine, University Hospital, and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Röhm K, Gonzalez-Uarquin F, Harmel RK, Nguyen Trung M, Diener M, Fiedler D, Huber K, Seifert J. Investigation of a potential electrogenic transport-system for myo-inositol in the small intestine of laying hens. Br Poult Sci 2021; 63:91-97. [PMID: 34297639 DOI: 10.1080/00071668.2021.1958301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. Myo-inositol (MI) is an essential metabolite for cell function in animals and humans. The aim of this study was to characterise the transport mechanism of MI in the small intestine of laying hens as there is a lack of knowledge about the MI uptake mechanisms. The hypothesised secondary active, cation coupled transport of MI was assessed by electrophysiological measurements with Ussing chambers, and was compared to the electrophysiology of glucose transport.2. Twenty-six laying hens were used. The potential ion-dependent transport was tested in tissue of the small intestine. Barrier function of the tissue was shown by determining the transepithelial resistance. During the experiments, mucosal and serosal buffers were sampled to measure time-dependent changes in MI concentrations. Samples from eight hens were further used for Western blot analyses of the jejunal apical membranes.3. Active MI transport, indicated by changes in the short circuit current after MI addition, could not be demonstrated in the Ussing chambers experiments. MI was further not detectable in the serosal buffer, nor in the lysates of mucosal tissue cytoplasm nor lipids. Thus, there was no evidence for a MI transport or absorption. However, Western blot analyses of the jejunal apical membrane revealed signals indicated the expression of the MI transport proteins SMIT-1 and SMIT-2.4. In conclusion, the MI transport process in the chicken intestine is more complex than it was presumed and is probably influenced by still unknown regulations or metabolic processes.
Collapse
Affiliation(s)
- K Röhm
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - F Gonzalez-Uarquin
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - R K Harmel
- Department of Chemical Biology I, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - M Nguyen Trung
- Department of Chemical Biology I, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - M Diener
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - D Fiedler
- Department of Chemical Biology I, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - K Huber
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - J Seifert
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
6
|
Wongdee K, Chanpaisaeng K, Teerapornpuntakit J, Charoenphandhu N. Intestinal Calcium Absorption. Compr Physiol 2021; 11:2047-2073. [PMID: 34058017 DOI: 10.1002/cphy.c200014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this article, we focus on mammalian calcium absorption across the intestinal epithelium in normal physiology. Intestinal calcium transport is essential for supplying calcium for metabolism and bone mineralization. Dietary calcium is transported across the mucosal epithelia via saturable transcellular and nonsaturable paracellular pathways, both of which are under the regulation of 1,25-dihydroxyvitamin D3 and several other endocrine and paracrine factors, such as parathyroid hormone, prolactin, 17β-estradiol, calcitonin, and fibroblast growth factor-23. Calcium absorption occurs in several segments of the small and large intestine with varying rates and capacities. Segmental heterogeneity also includes differential expression of calcium transporters/carriers (e.g., transient receptor potential cation channel and calbindin-D9k ) and the presence of favorable factors (e.g., pH, luminal contents, and gut motility). Other proteins and transporters (e.g., plasma membrane vitamin D receptor and voltage-dependent calcium channels), as well as vesicular calcium transport that probably contributes to intestinal calcium absorption, are also discussed. © 2021 American Physiological Society. Compr Physiol 11:1-27, 2021.
Collapse
Affiliation(s)
- Kannikar Wongdee
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand.,Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Krittikan Chanpaisaeng
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
7
|
Intestine-on-a-chip: Next level in vitro research model of the human intestine. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2020.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Xiao Y, Zhang K, Zhu SY, Deng XL, Chen XY, Fu NL, Chen J. Shenling Baizhu Powder () Ameliorates Pi (Spleen)-Deficiency-Induced Functional Diarrhea in Rats. Chin J Integr Med 2021; 27:206-211. [PMID: 32720115 DOI: 10.1007/s11655-020-3259-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To explore the mechanism of Pi (Spleen)-deficiency-induced functional diarrhea (FD) model rats treated by Shenling Baizhu Powder (, SBP). METHODS Thirty male Sprague-Dawley rats were randomly divided into 5 groups including control, model, low-, medium-, and high-dose SBP groups (SBPLDG, SBPMDG, SBPHDG), 6 rats in each group, respectively. Pi-deficiency-induced FD rats model was developed through Radix et Rhizoma Rhei gavage for 7 days. After modeling, the rats were treated with 3 doses of SBP [0.93, 1.86, and 3.72 g/(kg·d)], and the rats in the control and model groups were given pure water for 7 days. The diarrhea index was calculated. On the 7th and 14th days, the traveled distance of rat was measured by the open field test. Serum D-xylose content was determined by the phloroglucinol method and interleukin (IL)-10 and IL-17 levels were measured using an enzyme-linked immunosorbent assay kit. The content of Treg cells was determined by flow cytometry. RESULTS Compared with the control group, the diarrhea index and IL-17 level in the model group were significantly higher and the total exercise distance and D-xylose content significantly decreased (P>0.05). The expression of IL-10 in the SBPHDG group was significantly up-regulated, and serum D-xylose level and Treg cells increased significantly compared with the model group (P>0.05). CONCLUSION High-dose SBP exhibited ameliorating effects against Pi-deficiency induced FD, which might be attributed to its modulations on intestinal absorption function as well as adaptive immunity in mesenteric lymph nodes of rat.
Collapse
Affiliation(s)
- Yi Xiao
- Department of Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510062, China
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Kui Zhang
- Department of Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510062, China
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Si-Yu Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510062, China
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiang-Liang Deng
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao-Yin Chen
- School of Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Nan-Lin Fu
- Department of Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510062, China
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jia Chen
- Department of Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510062, China.
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Abdulnour-Nakhoul SM, Nakhoul NL. Ussing Chamber Methods to Study the Esophageal Epithelial Barrier. Methods Mol Biol 2021; 2367:215-233. [PMID: 32946026 DOI: 10.1007/7651_2020_324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Ussing chamber was developed in 1949 by Hans Ussing and quickly became a powerful tool to study ion and solute transport in epithelia. The chamber has two compartments strictly separating the apical and basolateral sides of the tissue under study. The two sides of the tissue are connected via electrodes to a modified electrometer/pulse generator that allows measurement of electrical parameters, namely, transepithelial voltage, current, and resistance. Simultaneously, permeability of the tissue to specific solutes or markers can be monitored by using tracers or isotopes to measure transport from one side of the tissue to the other. In this chapter, we will describe the use of the Ussing chamber to study the barrier properties of the mouse esophageal epithelium. We will also briefly describe the use of the modified Ussing chamber to simultaneously study transepithelial and cellular electrophysiology in the rabbit esophageal epithelium. Lastly, we will cover the use of the Ussing chamber to study bicarbonate secretion in the pig esophagus. These examples highlight the versatility of the Ussing chamber technique in investigating the physiology and pathophysiology of epithelia including human biopsies.
Collapse
Affiliation(s)
| | - Nazih L Nakhoul
- Departments of Medicine and Physiology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
10
|
Squillace O, Perrault T, Gorczynska M, Caruana A, Bajorek A, Brotons G. Design of tethered bilayer lipid membranes, using wet chemistry via aryldiazonium sulfonic acid spontaneous grafting on silicon and chrome. Colloids Surf B Biointerfaces 2021; 197:111427. [DOI: 10.1016/j.colsurfb.2020.111427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 01/27/2023]
|
11
|
The Impact of Age and Luminal Preservation on the Development of Intestinal Preservation Injury in Rats. Transplantation 2020; 104:e8-e15. [PMID: 31651796 DOI: 10.1097/tp.0000000000002999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Organs from older donors are believed to withstand ischemia worse than those from younger donors. The effect of age on the development of intestinal preservation injury (IPI) is unclear. METHODS We compared the development of IPI in intestines from young (3 mo), adult (14 mo), and old (20 mo) rat donors and assessed if luminal preservation (LP) is effective in delaying IPI. Small intestines were perfused with, and stored in, preservation solution (Custodiol) with or without LP solution (polyethylene glycol 3350). IPI was studied using histology (Chiu score, Alcian blue staining), Western blot, and electrophysiological assessment (Ussing chamber) at 4, 8, and 14 hours. RESULTS Intestines of old rats did not show major histological alterations, whereas their aortas and kidneys revealed typical age-related changes (arteriosclerosis and glomerulosclerosis). Intestines from old rats fared similarly to their younger counterparts at all time points regarding preservation injury and goblet cells count. Intestines undergoing LP showed fewer histological signs of damage and higher goblet cells count when compared with samples without LP, regardless of donor age. Ussing chamber experiments indicated a time-dependent deterioration of all parameters studied, which was delayed by the use of LP. CONCLUSIONS Older intestines did not convincingly demonstrate a faster IPI compared with intestines from adult and young donors. The small differences between the age groups were nullified by the use of LP. LP significantly delayed the IPI in all age groups and may allow for longer preservation periods without an increased risk of mucosal damage.
Collapse
|
12
|
Johnson AC, Louwies T, Ligon CO, Greenwood-Van Meerveld B. Enlightening the frontiers of neurogastroenterology through optogenetics. Am J Physiol Gastrointest Liver Physiol 2020; 319:G391-G399. [PMID: 32755304 PMCID: PMC7717115 DOI: 10.1152/ajpgi.00384.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neurogastroenterology refers to the study of the extrinsic and intrinsic nervous system circuits controlling the gastrointestinal (GI) tract. Over the past 5-10 yr there has been an explosion in novel methodologies, technologies and approaches that offer great promise to advance our understanding of the basic mechanisms underlying GI function in health and disease. This review focuses on the use of optogenetics combined with electrophysiology in the field of neurogastroenterology. We discuss how these technologies and tools are currently being used to explore the brain-gut axis and debate the future research potential and limitations of these techniques. Taken together, we consider that the use of these technologies will enable researchers to answer important questions in neurogastroenterology through fundamental research. The answers to those questions will shorten the path from basic discovery to new treatments for patient populations with disorders of the brain-gut axis affecting the GI tract such as irritable bowel syndrome (IBS), functional dyspepsia, achalasia, and delayed gastric emptying.
Collapse
Affiliation(s)
- Anthony C. Johnson
- 1Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma,2Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma,3Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tijs Louwies
- 1Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Casey O. Ligon
- 1Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Beverley Greenwood-Van Meerveld
- 1Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma,2Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma,4Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
13
|
van IJzendoorn SCD, Derkinderen P. The Intestinal Barrier in Parkinson's Disease: Current State of Knowledge. JOURNAL OF PARKINSONS DISEASE 2020; 9:S323-S329. [PMID: 31561386 PMCID: PMC6839484 DOI: 10.3233/jpd-191707] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The intestinal barrier, which primarily consists of epithelial cells stitched together with connecting proteins called tight junctions, plays a critical role in health and disease. It is in close contact with the gut microbiota on its luminal side and with the enteric neurons on the tissue side. Both microbiota and the enteric nervous system are regulatory housekeepers of the intestinal barrier. Therefore, the recently observed enteric neuropathology along with gut dysbiosis in Parkinson's disease have prompted research on intestinal permeability in this neurodegenerative disorder. In this mini-review we attempt to concisely summarize the current knowledge on intestinal barrier in Parkinson's disease. We envision future direction research that should be pursued in order to demonstrate its possible role in disease development and progression.
Collapse
Affiliation(s)
- Sven C D van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Pascal Derkinderen
- Inserm, U1235, Nantes, France.,University Nantes, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| |
Collapse
|
14
|
Jin Y, Blikslager AT. The Regulation of Intestinal Mucosal Barrier by Myosin Light Chain Kinase/Rho Kinases. Int J Mol Sci 2020; 21:ijms21103550. [PMID: 32443411 PMCID: PMC7278945 DOI: 10.3390/ijms21103550] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022] Open
Abstract
The intestinal epithelial apical junctional complex, which includes tight and adherens junctions, contributes to the intestinal barrier function via their role in regulating paracellular permeability. Myosin light chain II (MLC-2), has been shown to be a critical regulatory protein in altering paracellular permeability during gastrointestinal disorders. Previous studies have demonstrated that phosphorylation of MLC-2 is a biochemical marker for perijunctional actomyosin ring contraction, which increases paracellular permeability by regulating the apical junctional complex. The phosphorylation of MLC-2 is dominantly regulated by myosin light chain kinase- (MLCK-) and Rho-associated coiled-coil containing protein kinase- (ROCK-) mediated pathways. In this review, we aim to summarize the current state of knowledge regarding the role of MLCK- and ROCK-mediated pathways in the regulation of the intestinal barrier during normal homeostasis and digestive diseases. Additionally, we will also suggest potential therapeutic targeting of MLCK- and ROCK-associated pathways in gastrointestinal disorders that compromise the intestinal barrier.
Collapse
Affiliation(s)
- Younggeon Jin
- Department of Animal and Avian Sciences, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA;
| | - Anthony T. Blikslager
- Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Correspondence:
| |
Collapse
|
15
|
Buccigrossi V, Lo Vecchio A, Bruzzese E, Russo C, Marano A, Terranova S, Cioffi V, Guarino A. Potency of Oral Rehydration Solution in Inducing Fluid Absorption is Related to Glucose Concentration. Sci Rep 2020; 10:7803. [PMID: 32385331 PMCID: PMC7210290 DOI: 10.1038/s41598-020-64818-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/14/2020] [Indexed: 11/24/2022] Open
Abstract
Oral rehydration solutions (ORSs) is the key treatment of acute diarrhea in children, as it restores the electrolyte balance by stimulating the intestinal sodium/glucose transporter SGLT1 to induce fluid absorption. The World Health Organization (WHO) and The European Society for Paediatric Gastroenterology Hepatology and Nutrition (ESPGHAN) proposed ORSs with different chemical compositions. The main agent of childhood acute gastroenteritis is rotavirus (RV). We evaluate the effects of ORS with different concentration of glucose and sodium on RV induced secretion. Ussing chambers technique was used for electophysiology experiments to evaluate ion fluid flux. ESPGHAN ORS (sodium 60 mmol/L and glucose 111 mmol/L) induced a more potent proabsorptive effect in Caco-2 cells than WHO ORS, and this effect depended on the sodium/glucose ratio. Titration experiments showed that RV-induced fluid secretion can be reverted to a proabsorptive direction when sodium and glucose concentration fall in specific ranges, specifically 45–60 mEq/L and 80–110 mM respectively. The results were confirmed by testing commercial ORSs. These findings indicated that ORS proabsorptive potency depends on sodium and glucose concentrations. Optimal ORS composition should be tailored to reduce RV-induced ion secretion by also considering palatability. These in vitro data should be confirmed by clinical trials.
Collapse
Affiliation(s)
- Vittoria Buccigrossi
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Andrea Lo Vecchio
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Eugenia Bruzzese
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Carla Russo
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Antonella Marano
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Sara Terranova
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Valentina Cioffi
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Alfredo Guarino
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
16
|
Affiliation(s)
- Daniel Hollander
- Division of Digestive Diseases, Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90024, USA
| | - Jonathan D. Kaunitz
- Division of Digestive Diseases, Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90024, USA,Department of Surgery, UCLA School of Medicine, Los Angeles, CA 90024, USA,Gastroenterology Section, Medical Service, West Los Angeles VAMC, Los Angeles, CA 90073, USA
| |
Collapse
|
17
|
Le Gall M, Thenet S, Aguanno D, Jarry AC, Genser L, Ribeiro-Parenti L, Joly F, Ledoux S, Bado A, Le Beyec J. Intestinal plasticity in response to nutrition and gastrointestinal surgery. Nutr Rev 2020; 77:129-143. [PMID: 30517714 DOI: 10.1093/nutrit/nuy064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The plasticity of a material corresponds to its capacity to change its feature under the effect of an external action. Intestinal plasticity could be defined as the ability of the intestine to modify its size or thickness and intestinal cells to modulate their absorption and secretion functions in response to external or internal cues/signals. This review will focus on intestinal adaptation mechanisms in response to diet and nutritional status. These physiological mechanisms allow a fine and rapid adaptation of the gut to promote absorption of ingested food, but they can also lead to obesity in response to overnutrition. This plasticity could thus become a therapeutic target to treat not only undernutrition but also obesity. How the intestine adapts in response to 2 types of surgical remodeling of the digestive tract-extensive bowel resection leading to intestinal failure and surgical treatment of pathological obesity (ie, bariatric surgeries)-will also be reviewed.
Collapse
Affiliation(s)
- Maude Le Gall
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Sophie Thenet
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Doriane Aguanno
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Anne-Charlotte Jarry
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Laurent Genser
- Sorbonne Université, INSERM, Nutriomics Team, Paris, France, and the Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Hepato-Biliary and Pancreatic Surgery, Liver Transplantation, Paris, France
| | - Lara Ribeiro-Parenti
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of General and Digestive Surgery, University Hospital Bichat-Claude-Bernard, Paris, France
| | - Francisca Joly
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of Gastroenterology, Inflammatory Bowel Diseases, Nutritional Support and Intestinal Transplantation, Paris, France
| | - Séverine Ledoux
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Service des Explorations Fonctionnelles, Centre de référence de prise en charge de l'obésité, GHUPNVS, Hôpital Louis Mourier, Colombes, France
| | - André Bado
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Johanne Le Beyec
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière-Charles Foix, Biochimie Endocrinienne et Oncologique, Paris, France
| |
Collapse
|
18
|
Bahlouli W, Breton J, Lelouard M, L'Huillier C, Tirelle P, Salameh E, Amamou A, Atmani K, Goichon A, Bôle-Feysot C, Ducrotté P, Ribet D, Déchelotte P, Coëffier M. Stress-induced intestinal barrier dysfunction is exacerbated during diet-induced obesity. J Nutr Biochem 2020; 81:108382. [PMID: 32417626 DOI: 10.1016/j.jnutbio.2020.108382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/21/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023]
Abstract
Obesity and irritable bowel syndrome (IBS) are two major public health issues. Interestingly previous data report a marked increase of IBS prevalence in morbid obese subjects compared with non-obese subjects but underlying mechanisms remain unknown. Obesity and IBS share common intestinal pathophysiological mechanisms such as gut dysbiosis, intestinal hyperpermeability and low-grade inflammatory response. We thus aimed to evaluate the link between obesity and IBS using different animal models. Male C57Bl/6 mice received high fat diet (HFD) for 12 weeks and were then submitted to water avoidance stress (WAS). In response to WAS, HFD mice exhibited higher intestinal permeability and plasma corticosterone concentration than non-obese mice. We were not able to reproduce a similar response both in ob/ob mice and in leptin-treated non-obese mice. In addition, metformin, a hypoglycemic agent, limited fasting glycaemia both in unstressed and WAS diet-induced obese mice but only partially restored colonic permeability in unstressed HFD mice. Metformin failed to improve intestinal permeability in WAS HFD mice. Finally, cecal microbiota transplantation from HFD mice in antibiotics-treated recipient mice did not reproduce the effects observed in stressed HFD mice. In conclusion, stress induced a more marked intestinal barrier dysfunction in diet-induced obese mice compared with non-obese mice that seems to be independent of leptin, glycaemia and gut microbiota. These data should be further confirmed and the role of the dietary composition should be studied.
Collapse
Affiliation(s)
- Wafa Bahlouli
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Jonathan Breton
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Mauranne Lelouard
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Clément L'Huillier
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Pauline Tirelle
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Emmeline Salameh
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Asma Amamou
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Karim Atmani
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Alexis Goichon
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Christine Bôle-Feysot
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Philippe Ducrotté
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France; Department of Gastroenterology, Rouen University Hospital, 76183 Rouen, France
| | - David Ribet
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Pierre Déchelotte
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France; Department of Nutrition, Rouen University Hospital, 76183 Rouen, France
| | - Moïse Coëffier
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France; Department of Nutrition, Rouen University Hospital, 76183 Rouen, France.
| |
Collapse
|
19
|
Meijerink M, van den Broek TJ, Dulos R, Garthoff J, Knippels L, Knipping K, Harthoorn L, Houben G, Verschuren L, van Bilsen J. Network-Based Selection of Candidate Markers and Assays to Assess the Impact of Oral Immune Interventions on Gut Functions. Front Immunol 2019; 10:2672. [PMID: 31798593 PMCID: PMC6863931 DOI: 10.3389/fimmu.2019.02672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/29/2019] [Indexed: 12/05/2022] Open
Abstract
To assess the safety and efficacy of oral immune interventions, it is important and required by regulation to assess the impact of those interventions not only on the immune system, but also on other organs such as the gut as the porte d'entrée. Despite clear indications that the immune system interacts with several physiological functions of the gut, it is still unknown which pathways and molecules are crucial to assessing the impact of nutritional immune interventions on gut functioning. Here we used a network-based systems biology approach to clarify the molecular relationships between immune system and gut functioning and to identify crucial biomarkers to assess effects on gut functions upon nutritional immune interventions. First, the different gut functionalities were categorized based on literature and EFSA guidance documents. Moreover, an overview of the current assays and methods to measure gut function was generated. Secondly, gut-function related biological processes and adverse events were selected and subsequently linked to the physiological functions of the GI tract. Thirdly, database terms and annotations from the Gene ontology database and the Comparative Toxicogenomics Database (CTD) related to the previously selected gut-function related processes were selected. Next, database terms and annotations were used to identify the pathways and genes involved in those gut functionalities. In parallel, information from CTD was used to identify immune disease related genes. The resulting lists of both gut and immune function genes showed an overlap of 753 genes out of 1,296 gut-function related genes indicating the close gut-immune relationship. Using bioinformatics enrichment tools DAVID and Panther, the identified gut-immune markers were predicted to be involved in motility, barrier function, the digestion and absorption of vitamins and fat, regulation of the digestive system and gastric acid, and protection from injurious or allergenic material. Concluding, here we provide a promising systems biology approach to identify genes that help to clarify the relationships between immune system and gut functioning, with the aim to identify candidate biomarkers to monitor nutritional immune intervention assays for safety and efficacy in the general population. This knowledge helps to optimize future study designs to predict effects of nutritional immune intervention on gut functionalities.
Collapse
Affiliation(s)
| | | | | | | | - Léon Knippels
- Danone Nutricia Research, Utrecht, Netherlands.,Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Karen Knipping
- Danone Nutricia Research, Utrecht, Netherlands.,Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | | | | | | | | |
Collapse
|
20
|
Shimizu Y, Shirasago Y, Suzuki T, Hata T, Kondoh M, Hanada K, Yagi K, Fukasawa M. Characterization of monoclonal antibodies recognizing each extracellular loop domain of occludin. J Biochem 2019; 166:297-308. [PMID: 31077306 DOI: 10.1093/jb/mvz037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/29/2019] [Indexed: 01/13/2023] Open
Abstract
The tight junction protein occludin (OCLN) is a four-pass transmembrane protein with two extracellular loops (ELs), and also functions as a co-receptor for hepatitis C virus (HCV). Recently, we reported the establishment of monoclonal antibodies (mAbs) recognizing each intact EL domain of OCLN that can strongly prevent HCV infection in vitro and in vivo, and these mAbs were applicable for flow cytometric (FCM) analysis, immunocytochemistry (ICC) and cell-based enzyme-linked immunosorbent assay. In the present study, we further examined the application of these anti-OCLN mAbs and characterized their binding properties. All four mAbs were available for immunoprecipitation. The three first EL (EL1)-recognizing mAbs were applicable for immunoblotting, but the second EL (EL2)-recognizing one was not. Using site-directed mutagenesis, we also determined residues of OCLN critical for recognition by each mAb. Our findings showed that the small loop between two cysteines of the EL2 domain is essential for the binding to one EL2-recognizing mAb and that the recognition regions by three EL1-recognizing mAbs overlap, but are not the same sites of EL1. To obtain a deeper understanding of OCLN biology and its potential as a therapeutic target, specific mAbs to detect or target OCLN in intact cells should be powerful tools for future studies.
Collapse
Affiliation(s)
- Yoshimi Shimizu
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Department of Pharmaceutical Sciences, Teikyo Heisei University, Nakano-ku, Tokyo, Japan
| | - Yoshitaka Shirasago
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Takeru Suzuki
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Tomoyuki Hata
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
21
|
Camilleri M, Lyle BJ, Madsen KL, Sonnenburg J, Verbeke K, Wu GD. Role for diet in normal gut barrier function: developing guidance within the framework of food-labeling regulations. Am J Physiol Gastrointest Liver Physiol 2019; 317:G17-G39. [PMID: 31125257 PMCID: PMC6689735 DOI: 10.1152/ajpgi.00063.2019] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A reduction in intestinal barrier function is currently believed to play an important role in pathogenesis of many diseases, as it facilitates passage of injurious factors such as lipopolysaccharide, peptidoglycan, whole bacteria, and other toxins to traverse the barrier to damage the intestine or enter the portal circulation. Currently available evidence in animal models and in vitro systems has shown that certain dietary interventions can be used to reinforce the intestinal barrier to prevent the development of disease. The relevance of these studies to human health is unknown. Herein, we define the components of the intestinal barrier, review available modalities to assess its structure and function in humans, and review the available evidence in model systems or perturbations in humans that diet can be used to fortify intestinal barrier function. Acknowledging the technical challenges and the present gaps in knowledge, we provide a conceptual framework by which evidence could be developed to support the notion that diet can reinforce human intestinal barrier function to restore normal function and potentially reduce the risk for disease. Such evidence would provide information on the development of healthier diets and serve to provide a framework by which federal agencies such as the US Food and Drug Administration can evaluate evidence linking diet with normal human structure/function claims focused on reducing risk of disease in the general public.
Collapse
Affiliation(s)
- Michael Camilleri
- 1Clinical Enteric Neuroscience Translational and Epidemiological Research, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Barbara J. Lyle
- 2International Life Sciences Institute North America, Washington, DC,3School of Professional Studies, Northwestern University, Evanston, Illinois
| | - Karen L. Madsen
- 4Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Justin Sonnenburg
- 5Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| | - Kristin Verbeke
- 6Translational Research in Gastrointestinal Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Gary D. Wu
- 7Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Differential effects of Clostridium difficile toxins on ion secretion and cell integrity in human intestinal cells. Pediatr Res 2019; 85:1048-1054. [PMID: 30851723 DOI: 10.1038/s41390-019-0365-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/04/2019] [Accepted: 02/27/2019] [Indexed: 11/08/2022]
Abstract
BACKGROUND Toxin A (TcdA), toxin B (TcdB), and binary toxin (CDT) produced by Clostridium difficile (CD) are thought to play a key role in inducing diarrhea. The aim of this study was to investigate the individual and combined roles of CD toxins in inducing enterotoxic and cytotoxic effect. METHODS Ion secretion and epithelial damage were evaluated in the Ussing chambers as measure of enterotoxic or cytotoxic effect, respectively, in human-derived intestinal cells. RESULTS When added to the mucosal side of Caco-2 cells, TcdB, but not TcdA, induced ion secretion and its effects increased in the presence of TcdA. CDT also induced ion secretion when added to either the mucosal or serosal compartment. Serosal addition of TcdB induced epithelial damage consistent with its cytotoxic effect. However, mucosal addition of TcdB had similar effects, but only in the presence of TcdA. CDT induced epithelial damage when added to the serosal side of cell monolayers, and this was associated with a late onset but prolonged effect. All data were replicated using human colon biopsies. CONCLUSIONS These data indicate that CD, through the combined and direct activity of its three toxins, induces integrated and synergic enterotoxic and cytotoxic effects on the intestinal epithelium.
Collapse
|
23
|
Vergnolle N, Cirillo C. Neurons and Glia in the Enteric Nervous System and Epithelial Barrier Function. Physiology (Bethesda) 2019; 33:269-280. [PMID: 29897300 DOI: 10.1152/physiol.00009.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intestinal epithelial barrier is the largest exchange surface between the body and the external environment. Its functions are regulated by luminal, and also internal, components including the enteric nervous system. This review summarizes current knowledge about the role of the digestive "neuronal-glial-epithelial unit" on epithelial barrier function.
Collapse
Affiliation(s)
- Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse , France.,Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Carla Cirillo
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse , France.,Laboratory for Enteric Neuroscience, TARGID, University of Leuven , Leuven , Belgium
| |
Collapse
|
24
|
Lo Vecchio A, Buccigrossi V, Fedele MC, Guarino A. Acute Infectious Diarrhea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1125:109-120. [PMID: 30649712 DOI: 10.1007/5584_2018_320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acute infectious diarrhea (AID) is one of the most common diseases in pediatric age with relevant burden both in high- and in low-income countries.Thanks to their direct action on enterocyte functions and indirect actions on mucosal and systemic immune system and intestinal microenvironment, probiotics are an ideal intervention to manage AID in childhood. However, their efficacy is strictly related to strains and indications, and practitioners should take this information into account in clinical practice.This chapter summarizes the main mechanisms of action of probiotics in AID, with a focus on proof of efficacy supporting their use in prevention and treatment of infant AID.The use of selected strains in appropriate doses is strongly recommended by guidelines of AID, based on large and consistent proofs of efficacy and safety. At present, therapy with probiotics of AID is arguably the strongest indication for probiotics in medicine. Future research should investigate probiotic efficacy in at-risk populations and settings where the evidence is missing.Their role in prevention of AID is however questionable in healthy population, whereas it should be considered in at-risk population. Evidence for prevention of diarrhea in day-care centers and communities is lacking, but consistent evidence supports efficacy in prevention of hospital acquired diarrhea.Overall, AID is the most convincing area for probiotic use in children, and effective strains should be used early after onset of symptoms.
Collapse
Affiliation(s)
- Andrea Lo Vecchio
- Department of Translational Medical Sciences - Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Vittoria Buccigrossi
- Department of Translational Medical Sciences - Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Maria Cristina Fedele
- Department of Woman, Child and of General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alfredo Guarino
- Department of Translational Medical Sciences - Section of Pediatrics, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
25
|
Buckley A, Turner JR. Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029314. [PMID: 28507021 DOI: 10.1101/cshperspect.a029314] [Citation(s) in RCA: 439] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mucosal surfaces are lined by epithelial cells. In the intestine, the epithelium establishes a selectively permeable barrier that supports nutrient absorption and waste secretion while preventing intrusion by luminal materials. Intestinal epithelia therefore play a central role in regulating interactions between the mucosal immune system and luminal contents, which include dietary antigens, a diverse intestinal microbiome, and pathogens. The paracellular space is sealed by the tight junction, which is maintained by a complex network of protein interactions. Tight junction dysfunction has been linked to a variety of local and systemic diseases. Two molecularly and biophysically distinct pathways across the intestinal tight junction are selectively and differentially regulated by inflammatory stimuli. This review discusses the mechanisms underlying these events, their impact on disease, and the potential of using these as paradigms for development of tight junction-targeted therapeutic interventions.
Collapse
Affiliation(s)
- Aaron Buckley
- Departments of Pathology and Medicine (Gastroenterology), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Jerrold R Turner
- Departments of Pathology and Medicine (Gastroenterology), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
26
|
Hill DR, Huang S, Tsai YH, Spence JR, Young VB. Real-time Measurement of Epithelial Barrier Permeability in Human Intestinal Organoids. J Vis Exp 2017:56960. [PMID: 29286482 PMCID: PMC5755602 DOI: 10.3791/56960] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Advances in 3D culture of intestinal tissues obtained through biopsy or generated from pluripotent stem cells via directed differentiation, have resulted in sophisticated in vitro models of the intestinal mucosa. Leveraging these emerging model systems will require adaptation of tools and techniques developed for 2D culture systems and animals. Here, we describe a technique for measuring epithelial barrier permeability in human intestinal organoids in real-time. This is accomplished by microinjection of fluorescently-labeled dextran and imaging on an inverted microscope fitted with epifluorescent filters. Real-time measurement of the barrier permeability in intestinal organoids facilitates the generation of high-resolution temporal data in human intestinal epithelial tissue, although this technique can also be applied to fixed timepoint imaging approaches. This protocol is readily adaptable for the measurement of epithelial barrier permeability following exposure to pharmacologic agents, bacterial products or toxins, or live microorganisms. With minor modifications, this protocol can also serve as a general primer on microinjection of intestinal organoids and users may choose to supplement this protocol with additional or alternative downstream applications following microinjection.
Collapse
Affiliation(s)
- David R Hill
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan;
| | - Sha Huang
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan
| | - Jason R Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan; Department of Cell and Developmental Biology, University of Michigan
| | - Vincent B Young
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan; Department of Internal Medicine, Division of Infectious Disease, University of Michigan
| |
Collapse
|
27
|
Noben M, Vanhove W, Arnauts K, Santo Ramalho A, Van Assche G, Vermeire S, Verfaillie C, Ferrante M. Human intestinal epithelium in a dish: Current models for research into gastrointestinal pathophysiology. United European Gastroenterol J 2017; 5:1073-1081. [PMID: 29238585 PMCID: PMC5721984 DOI: 10.1177/2050640617722903] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/04/2017] [Indexed: 12/14/2022] Open
Abstract
Determining the exact pathogenesis of chronic gastrointestinal diseases remains difficult due to the complex in vivo environment. In this review we give an overview of the available epithelial cell culture systems developed to investigate pathophysiology of gastrointestinal diseases. Traditionally used two-dimensional (2D) immortalised (tumour) cell lines survive long-term, but are not genetically stable nor represent any human in particular. In contrast, primary cultures are patient unique, but short-lived. Three-dimensional (3D) organoid cultures resemble the crypt-villus domain and contain all cell lineages, are long-lived and genetically stable. Unfortunately, manipulation of the 3D organoid system is more challenging. Combining the 3D and 2D technologies may overcome limitations and offer the formation of monolayers on permeable membranes or flow-chambers. Determining the right model to use will depend on the pathology of interest and the focus of the research, defining which cell types need to be included in the model.
Collapse
Affiliation(s)
- Manuel Noben
- Department of Clinical and Experimental
Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven,
Leuven, Belgium
- Department of Development and Regeneration,
Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Wiebe Vanhove
- Department of Clinical and Experimental
Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven,
Leuven, Belgium
| | - Kaline Arnauts
- Department of Clinical and Experimental
Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven,
Leuven, Belgium
- Department of Development and Regeneration,
Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Anabela Santo Ramalho
- Department of Development and Regeneration,
Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Gert Van Assche
- Department of Clinical and Experimental
Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven,
Leuven, Belgium
- Department of Gastroenterology and Hepatology,
University Hospitals Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Clinical and Experimental
Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven,
Leuven, Belgium
- Department of Gastroenterology and Hepatology,
University Hospitals Leuven, Leuven, Belgium
| | - Catherine Verfaillie
- Department of Development and Regeneration,
Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Marc Ferrante
- Department of Clinical and Experimental
Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven,
Leuven, Belgium
- Department of Gastroenterology and Hepatology,
University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Lorentz CA, Liang Z, Meng M, Chen CW, Yoseph BP, Breed ER, Mittal R, Klingensmith NJ, Farris AB, Burd EM, Koval M, Ford ML, Coopersmith CM. Myosin light chain kinase knockout improves gut barrier function and confers a survival advantage in polymicrobial sepsis. Mol Med 2017; 23:155-165. [PMID: 28598488 DOI: 10.2119/molmed.2016.00256] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
Sepsis-induced intestinal hyperpermeability is mediated by disruption of the epithelial tight junction, which is closely associated with the peri-junctional actin-myosin ring. Myosin light chain kinase (MLCK) phosphorylates the myosin regulatory light chain, resulting in increased permeability. The purpose of this study was to determine whether genetic deletion of MLCK would alter gut barrier function and survival from sepsis. MLCK-/- and wild type (WT) mice were subjected to cecal ligation and puncture and assayed for both survival and mechanistic studies. Survival was significantly increased in MLCK-/- mice (95% vs. 24%, p<0.0001). Intestinal permeability increased in septic WT mice compared to unmanipulated mice. In contrast, permeability in septic MLCK-/- mice was similar to that seen in unmanipulated animals. Improved gut barrier function in MLCK-/- mice was associated with increases in the tight junction mediators ZO-1 and claudin 15 without alterations in claudin 1, 2, 3, 4, 5, 7, 8, 13, occludin or JAM-A. Other components of intestinal integrity (apoptosis, proliferation and villus length) were unaffected by MLCK deletion as were local peritoneal inflammation and distant lung injury. Systemic IL-10 was decreased greater than 10-fold in MLCK-/- mice; however, survival was similar between septic MLCK-/- mice given exogenous IL-10 or vehicle. These data demonstrate that deletion of MLCK improves survival following sepsis, associated with normalization of intestinal permeability and selected tight junction proteins.
Collapse
Affiliation(s)
- C Adam Lorentz
- Department of Urology, Emory University School of Medicine, Atlanta, GA
| | - Zhe Liang
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA
| | - Mei Meng
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated Shandong University, Jinan, China
| | - Ching-Wen Chen
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA
| | - Benyam P Yoseph
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA
| | - Elise R Breed
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA
| | - Rohit Mittal
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA
| | - Nathan J Klingensmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA
| | - Alton B Farris
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Eileen M Burd
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Michael Koval
- Department of Internal Medicine and Emory Alcohol and Lung Biology Center, Emory University School of Medicine, Atlanta, GA
| | - Mandy L Ford
- Department of Surgery and Emory Transplant Center, Emory University School of Medicine, Atlanta, GA
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
29
|
Friedl P, Mayor R. Tuning Collective Cell Migration by Cell-Cell Junction Regulation. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a029199. [PMID: 28096261 DOI: 10.1101/cshperspect.a029199] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Collective cell migration critically depends on cell-cell interactions coupled to a dynamic actin cytoskeleton. Important cell-cell adhesion receptor systems implicated in controlling collective movements include cadherins, immunoglobulin superfamily members (L1CAM, NCAM, ALCAM), Ephrin/Eph receptors, Slit/Robo, connexins and integrins, and an adaptive array of intracellular adapter and signaling proteins. Depending on molecular composition and signaling context, cell-cell junctions adapt their shape and stability, and this gradual junction plasticity enables different types of collective cell movements such as epithelial sheet and cluster migration, branching morphogenesis and sprouting, collective network migration, as well as coordinated individual-cell migration and streaming. Thereby, plasticity of cell-cell junction composition and turnover defines the type of collective movements in epithelial, mesenchymal, neuronal, and immune cells, and defines migration coordination, anchorage, and cell dissociation. We here review cell-cell adhesion systems and their functions in different types of collective cell migration as key regulators of collective plasticity.
Collapse
Affiliation(s)
- Peter Friedl
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen 6525GA, The Netherlands.,David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030.,Cancer Genomics Center, 3584 CG Utrecht, The Netherlands
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
30
|
Wells JM, Brummer RJ, Derrien M, MacDonald TT, Troost F, Cani PD, Theodorou V, Dekker J, Méheust A, de Vos WM, Mercenier A, Nauta A, Garcia-Rodenas CL. Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol 2017; 312:G171-G193. [PMID: 27908847 PMCID: PMC5440615 DOI: 10.1152/ajpgi.00048.2015] [Citation(s) in RCA: 388] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 11/09/2016] [Accepted: 11/19/2016] [Indexed: 02/07/2023]
Abstract
The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of secretory IgA (sIgA) and antimicrobial peptides and proteins. With the exception of sIgA, expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions through the production of short-chain fatty acids (SCFAs) and interactions with innate pattern recognition receptors in the mucosa, driving the steady-state expression of mucus and antimicrobial factors. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability, and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of a variety of gastrointestinal disorders. Additionally, gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-dependent and mast cell-independent mechanisms. The modulation of gut barrier function through nutritional interventions, including strategies to manipulate the microbiota, is considered a relevant target for novel therapeutic and preventive treatments against a range of diseases. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in intestinal diseases, but there remains a need to explore their use in assessing the effect of nutritional factors on gut barrier function. Future studies should aim to establish normal ranges of available biomarkers and their predictive value for gut health in human cohorts.
Collapse
Affiliation(s)
- Jerry M. Wells
- 1Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands;
| | - Robert J. Brummer
- 2Nutrition-Gut-Brain Interactions Research Centre, School of Medicine and Health, Örebro University, Örebro, Sweden;
| | - Muriel Derrien
- 3Centre Daniel Carasso, Danone Research, Palaiseau, France;
| | - Thomas T. MacDonald
- 4Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, United Kingdom;
| | - Freddy Troost
- 5Division of Gastroenterology-Hepatology, Department of Internal Medicine, University Hospital Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands;
| | - Patrice D. Cani
- 6Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life Sciences and BIOtechnology), Metabolism and Nutrition Research Group, Université Catholique de Louvain, Brussels, Belgium;
| | - Vassilia Theodorou
- 7Neuro-Gastroenterology and Nutrition Group, Institut National de la Recherche Agronomique, Toulouse, France;
| | - Jan Dekker
- 1Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands;
| | | | - Willem M. de Vos
- 9Laboratory of Microbiology, Wageningen UR, Wageningen, The Netherlands;
| | - Annick Mercenier
- 10Institute of Nutritional Science, Nestlé Research Center, Lausanne, Switzerland; and
| | - Arjen Nauta
- 11FrieslandCampina, Amersfoort, The Netherlands
| | | |
Collapse
|
31
|
Zihni C, Mills C, Matter K, Balda MS. Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol 2016; 17:564-80. [PMID: 27353478 DOI: 10.1038/nrm.2016.80] [Citation(s) in RCA: 925] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelia and endothelia separate different tissue compartments and protect multicellular organisms from the outside world. This requires the formation of tight junctions, selective gates that control paracellular diffusion of ions and solutes. Tight junctions also form the border between the apical and basolateral plasma-membrane domains and are linked to the machinery that controls apicobasal polarization. Additionally, signalling networks that guide diverse cell behaviours and functions are connected to tight junctions, transmitting information to and from the cytoskeleton, nucleus and different cell adhesion complexes. Recent advances have broadened our understanding of the molecular architecture and cellular functions of tight junctions.
Collapse
Affiliation(s)
- Ceniz Zihni
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Clare Mills
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Karl Matter
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Maria S Balda
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| |
Collapse
|