1
|
Cheung AC, Lorenzo Pisarello MJ, LaRusso NF. Pathobiology of biliary epithelia. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1220-1231. [PMID: 28716705 PMCID: PMC5777905 DOI: 10.1016/j.bbadis.2017.06.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022]
Abstract
Cholangiocytes are epithelial cells that line the intra- and extrahepatic biliary tree. They serve predominantly to mediate the content of luminal biliary fluid, which is controlled via numerous signaling pathways influenced by endogenous (e.g., bile acids, nucleotides, hormones, neurotransmitters) and exogenous (e.g., microbes/microbial products, drugs etc.) molecules. When injured, cholangiocytes undergo apoptosis/lysis, repair and proliferation. They also become senescent, a form of cell cycle arrest, which may prevent propagation of injury and/or malignant transformation. Senescent cholangiocytes can undergo further transformation to a senescence-associated secretory phenotype (SASP), where they begin secreting pro-inflammatory and pro-fibrotic signals that may contribute to disease initiation and progression. These and other concepts related to cholangiocyte pathobiology will be reviewed herein. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Angela C Cheung
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States
| | - Maria J Lorenzo Pisarello
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
2
|
Tabibian JH, Masyuk AI, Masyuk TV, O'Hara SP, LaRusso NF. Physiology of cholangiocytes. Compr Physiol 2013; 3:541-65. [PMID: 23720296 DOI: 10.1002/cphy.c120019] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cholangiocytes are epithelial cells that line the intra- and extrahepatic ducts of the biliary tree. The main physiologic function of cholangiocytes is modification of hepatocyte-derived bile, an intricate process regulated by hormones, peptides, nucleotides, neurotransmitters, and other molecules through intracellular signaling pathways and cascades. The mechanisms and regulation of bile modification are reviewed herein.
Collapse
|
3
|
Mitchell KAP. Isolation of primary cilia by shear force. CURRENT PROTOCOLS IN CELL BIOLOGY 2013; Chapter 3:3.42.1-3.42.9. [PMID: 23728745 DOI: 10.1002/0471143030.cb0342s59] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The cell's primary cilium is both a mechanical and chemical sensor involved in many signaling pathways. In order to ascertain protein enrichment in the primary cilium or study sub-ciliary localization of various proteins, it is advantageous to remove the primary cilium from the cell body. The protocol described here gives detailed instructions on purifying primary cilia by separating them from the cell body using shear force. This simple technique avoids using harsh purification conditions that may affect signaling proteins in the cilium or cause the ciliary membrane to disintegrate. In addition, as the cell body remains mostly intact, contamination of the isolated cilia by proteins from the cell body is minimized. This protocol is ideally suited for isolating cilia from renal cell lines, as primary cilia in these cells grow to greater lengths than in other cell types (up to 50-µm long in Xenopus A6 toad kidney cells as opposed to 1 to 5 µm in NIH3T3 fibroblast cells).
Collapse
|
4
|
Epidermal growth factor protects the apical junctional complexes from hydrogen peroxide in bile duct epithelium. J Transl Med 2011; 91:1396-409. [PMID: 21606925 PMCID: PMC3162098 DOI: 10.1038/labinvest.2011.73] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The tight junctions of bile duct epithelium form a barrier between the toxic bile and liver parenchyma. Disruption of tight junctions appears to have a crucial role in the pathogenesis of various liver diseases. In this study, we investigated the disruptive effect of hydrogen peroxide and the protective effect of epidermal growth factor (EGF) on the tight junctions and adherens junctions in the bile duct epithelium. Oxidative stress in NRC-1 and Mz-ChA-1 cell monolayers was induced by administration of hydrogen peroxide. Barrier function was evaluated by measuring electrical resistance and inulin permeability. Integrity of tight junctions, adherens junctions and the actin cytoskeleton was determined by imunofluorescence microscopy. Role of signaling molecules was determined by evaluating the effect of specific inhibitors. Hydrogen peroxide caused a rapid disruption of tight junctions and adherens junctions leading to barrier dysfunction without altering the cell viability. Hydrogen peroxide rapidly increased the levels of p-MLC (myosin light chain) and c-Src(pY418). ML-7 and PP2 (MLCK and Src kinase inhibitors) attenuated hydrogen peroxide-induced barrier dysfunction, tight junction disruption and reorganization of actin cytoskeleton. Pretreatment of cell monolayers with EGF ameliorated hydrogen peroxide-induced tight junction disruption and barrier dysfunction. The protective effect of EGF was abrogated by ET-18-OCH(3) and the Ro-32-0432 (PLCγ and PKC inhibitors). Hydrogen peroxide increased tyrosine phosphorylation of ZO-1, claudin-3, E-cadherin and β-catenin, and pretreatment of cells with EGF attenuated tyrosine phosphorylation of these proteins. These results demonstrate that hydrogen peroxide disrupts tight junctions, adherens junctions and the actin cytoskeleton by an MLCK and Src kinase-dependent mechanism in the bile duct epithelium. EGF prevents hydrogen peroxide-induced tight junction disruption by a PLCγ and PKC-dependent mechanism.
Collapse
|
5
|
Sathe MN, Woo K, Kresge C, Bugde A, Luby-Phelps K, Lewis MA, Feranchak AP. Regulation of purinergic signaling in biliary epithelial cells by exocytosis of SLC17A9-dependent ATP-enriched vesicles. J Biol Chem 2011; 286:25363-76. [PMID: 21613220 DOI: 10.1074/jbc.m111.232868] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
ATP in bile is a potent secretogogue, stimulating biliary epithelial cell (BEC) secretion through binding apical purinergic receptors. In response to mechanosensitive stimuli, BECs release ATP into bile, although the cellular basis of ATP release is unknown. The aims of this study in human and mouse BECs were to determine whether ATP release occurs via exocytosis of ATP-enriched vesicles and to elucidate the potential role of the vesicular nucleotide transporter SLC17A9 in purinergic signaling. Dynamic, multiscale, live cell imaging (confocal and total internal reflection fluorescence microscopy and a luminescence detection system with a high sensitivity charge-coupled device camera) was utilized to detect vesicular ATP release from cell populations, single cells, and the submembrane space of a single cell. In response to increases in cell volume, BECs release ATP, which was dependent on intact microtubules and vesicular trafficking pathways. ATP release occurred as stochastic point source bursts of luminescence consistent with exocytic events. Parallel studies identified ATP-enriched vesicles ranging in size from 0.4 to 1 μm that underwent fusion and release in response to increases in cell volume in a protein kinase C-dependent manner. Present in all models, SLC17A9 contributed to ATP vesicle formation and regulated ATP release. The findings are consistent with the existence of an SLC17A9-dependent ATP-enriched vesicular pool in biliary epithelium that undergoes regulated exocytosis to initiate purinergic signaling.
Collapse
Affiliation(s)
- Meghana N Sathe
- Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Woo K, Sathe M, Kresge C, Esser V, Ueno Y, Venter J, Glaser SS, Alpini G, Feranchak AP. Adenosine triphosphate release and purinergic (P2) receptor-mediated secretion in small and large mouse cholangiocytes. Hepatology 2010; 52:1819-28. [PMID: 20827720 PMCID: PMC2967625 DOI: 10.1002/hep.23883] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Adenosine triphosphate (ATP) is released from cholangiocytes into bile and is a potent secretogogue by increasing intracellular Ca²(+) and stimulating fluid and electrolyte secretion via binding purinergic (P2) receptors on the apical membrane. Although morphological differences exist between small and large cholangiocytes (lining small and large bile ducts, respectively), the role of P2 signaling has not been previously evaluated along the intrahepatic biliary epithelium. The aim of these studies therefore was to characterize ATP release and P2-signaling pathways in small (MSC) and large (MLC) mouse cholangiocytes. The findings reveal that both MSCs and MLCs express P2 receptors, including P2X4 and P2Y2. Exposure to extracellular nucleotides (ATP, uridine triphosphate, or 2',3'-O-[4-benzoyl-benzoyl]-ATP) caused a rapid increase in intracellular Ca²(+) concentration and in transepithelial secretion (I(sc)) in both cell types, which was inhibited by the Cl(-) channel blockers 5-nitro-2-(-3-phenylpropylamino)-benzoic acid (NPPB) or niflumic acid. In response to mechanical stimulation (flow/shear or cell swelling secondary to hypotonic exposure), both MSCs and MLCs exhibited a significant increase in the rate of exocytosis, which was paralleled by an increase in ATP release. Mechanosensitive ATP release was two-fold greater in MSCs compared to MLCs. ATP release was significantly inhibited by disruption of vesicular trafficking by monensin in both cell types. CONCLUSION These findings suggest the existence of a P2 signaling axis along intrahepatic biliary ducts with the "upstream" MSCs releasing ATP, which can serve as a paracrine signaling molecule to "downstream" MLCs stimulating Ca²(+)-dependent secretion. Additionally, in MSCs, which do not express the cystic fibrosis transmembrane conductance regulator, Ca²(+)-activated Cl(-) efflux in response to extracellular nucleotides represents the first secretory pathway clearly identified in these cholangiocytes derived from the small intrahepatic ducts.
Collapse
Affiliation(s)
- Kangmee Woo
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9063
| | - Meghana Sathe
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9063
| | - Charles Kresge
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9063
| | - Victoria Esser
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9063
| | | | - Julie Venter
- Research, Central Texas Veterans Health Care System, Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center College of Medicine, Temple, TX
| | - Shannon S. Glaser
- Research, Central Texas Veterans Health Care System, Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center College of Medicine, Temple, TX
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center College of Medicine, Temple, TX,Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center College of Medicine, Temple, TX
| | - Andrew P. Feranchak
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9063
| |
Collapse
|
7
|
Feranchak AP, Lewis MA, Kresge C, Sathe M, Bugde A, Luby-Phelps K, Antich PP, Fitz JG. Initiation of purinergic signaling by exocytosis of ATP-containing vesicles in liver epithelium. J Biol Chem 2010; 285:8138-47. [PMID: 20071341 DOI: 10.1074/jbc.m109.065482] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Extracellular ATP represents an important autocrine/paracrine signaling molecule within the liver. The mechanisms responsible for ATP release are unknown, and alternative pathways have been proposed, including either conductive ATP movement through channels or exocytosis of ATP-enriched vesicles, although direct evidence from liver cells has been lacking. Utilizing dynamic imaging modalities (confocal and total internal reflection fluorescence microscopy and luminescence detection utilizing a high sensitivity CCD camera) at different scales, including confluent cell populations, single cells, and the intracellular submembrane space, we have demonstrated in a model liver cell line that (i) ATP release is not uniform but reflects point source release by a defined subset of cells; (ii) ATP within cells is localized to discrete zones of high intensity that are approximately 1 mum in diameter, suggesting a vesicular localization; (iii) these vesicles originate from a bafilomycin A(1)-sensitive pool, are depleted by hypotonic exposure, and are not rapidly replenished from recycling of endocytic vesicles; and (iv) exocytosis of vesicles in response to cell volume changes depends upon a complex series of signaling events that requires intact microtubules as well as phosphoinositide 3-kinase and protein kinase C. Collectively, these findings are most consistent with an essential role for exocytosis in regulated release of ATP and initiation of purinergic signaling in liver cells.
Collapse
Affiliation(s)
- Andrew P Feranchak
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Mitchell KAP, Szabo G, Otero ADS. Methods for the isolation of sensory and primary cilia--an overview. Methods Cell Biol 2009; 94:87-101. [PMID: 20362086 DOI: 10.1016/s0091-679x(08)94004-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Detailed proteomic analyses of mammalian olfactory and rod photoreceptor sensory cilia are now available, providing an inventory of resident ciliary proteins and laying the foundation for future studies of developmental and spatiotemporal changes in the composition of sensory cilia. Cilia purification methods that were elaborated and perfected over several decades were essential for these advances. In contrast, the proteome of primary cilia is yet to be established, because purification procedures for this organelle have been developed only recently. In this chapter, we review current techniques for the purification of olfactory and photoreceptor cilia, and evaluate methods designed for the selective isolation of primary cilia.
Collapse
Affiliation(s)
- Kimberly A P Mitchell
- Department of Biology and Chemistry, Liberty University, Lynchburg, Virginia 24502, USA
| | | | | |
Collapse
|
9
|
Dolovcak S, Waldrop SL, Fitz JG, Kilic G. 5-Nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) stimulates cellular ATP release through exocytosis of ATP-enriched vesicles. J Biol Chem 2009; 284:33894-903. [PMID: 19808682 DOI: 10.1074/jbc.m109.046193] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells release ATP in response to physiologic stimuli. Extracellular ATP regulates a broad range of important cellular functions by activation of the purinergic receptors in the plasma membrane. The purpose of these studies was to assess the role of vesicular exocytosis in cellular ATP release. FM1-43 fluorescence was used to measure exocytosis and bioluminescence to measure ATP release in HTC rat hepatoma and Mz-Cha-1 human cholangiocarcinoma cells. Exposure to a Cl(-) channel inhibitor 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) (50-300 microM) stimulated a 5-100-fold increase in extracellular ATP levels within minutes of the exposure. This rapid response was not a result of changes in cell viability or Cl(-) channel activity. NPPB also potently stimulated ATP release in HEK293 cells and HEK293 cells expressing a rat P2X7 receptor indicating that P2X7 receptors are not involved in stimulation of ATP release by NPPB. In all cells studied, NPPB rapidly stimulated vesicular exocytosis that persisted many minutes after the exposure. The kinetics of NPPB-evoked exocytosis and ATP release were similar. Furthermore, the magnitudes of NPPB-evoked exocytosis and ATP release were correlated (correlation coefficient 0.77), indicating that NPPB may stimulate exocytosis of a pool of ATP-enriched vesicles. These findings provide further support for the concept that vesicular exocytosis plays an important role in cellular ATP release and suggest that NPPB can be used as a biochemical tool to specifically stimulate ATP release through exocytic mechanisms.
Collapse
Affiliation(s)
- Svjetlana Dolovcak
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9151, USA
| | | | | | | |
Collapse
|
10
|
Dutta AK, Woo K, Doctor RB, Fitz JG, Feranchak AP. Extracellular nucleotides stimulate Cl- currents in biliary epithelia through receptor-mediated IP3 and Ca2+ release. Am J Physiol Gastrointest Liver Physiol 2008; 295:G1004-15. [PMID: 18787062 PMCID: PMC2584822 DOI: 10.1152/ajpgi.90382.2008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular ATP regulates bile formation by binding to P2 receptors on cholangiocytes and stimulating transepithelial Cl(-) secretion. However, the specific signaling pathways linking receptor binding to Cl(-) channel activation are not known. Consequently, the aim of these studies in human Mz-Cha-1 biliary cells and normal rat cholangiocyte monolayers was to assess the intracellular pathways responsible for ATP-stimulated increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) and membrane Cl(-) permeability. Exposure of cells to ATP resulted in a rapid increase in [Ca(2+)](i) and activation of membrane Cl(-) currents; both responses were abolished by prior depletion of intracellular Ca(2+). ATP-stimulated Cl(-) currents demonstrated mild outward rectification, reversal at E(Cl(-)), and a single-channel conductance of approximately 17 pS, where E is the equilibrium potential. The conductance response to ATP was inhibited by the Cl(-) channel inhibitors NPPB and DIDS but not the CFTR inhibitor CFTR(inh)-172. Both ATP-stimulated increases in [Ca(2+)](i) and Cl(-) channel activity were inhibited by the P2Y receptor antagonist suramin. The PLC inhibitor U73122 and the inositol 1,4,5-triphosphate (IP3) receptor inhibitor 2-APB both blocked the ATP-stimulated increase in [Ca(2+)](i) and membrane Cl(-) currents. Intracellular dialysis with purified IP3 activated Cl(-) currents with identical properties to those activated by ATP. Exposure of normal rat cholangiocyte monolayers to ATP increased short-circuit currents (I(sc)), reflecting transepithelial secretion. The I(sc) was unaffected by CFTR(inh)-172 but was significantly inhibited by U73122 or 2-APB. In summary, these findings indicate that the apical P2Y-IP3 receptor signaling complex is a dominant pathway mediating biliary epithelial Cl(-) transport and, therefore, may represent a potential target for increasing secretion in the treatment of cholestatic liver disease.
Collapse
Affiliation(s)
- Amal K. Dutta
- Department of Pediatrics, and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and University of Colorado Health Sciences Center, Denver, Colorado
| | - Kangmee Woo
- Department of Pediatrics, and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and University of Colorado Health Sciences Center, Denver, Colorado
| | - R. Brian Doctor
- Department of Pediatrics, and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and University of Colorado Health Sciences Center, Denver, Colorado
| | - J. Gregory Fitz
- Department of Pediatrics, and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and University of Colorado Health Sciences Center, Denver, Colorado
| | - Andrew P. Feranchak
- Department of Pediatrics, and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and University of Colorado Health Sciences Center, Denver, Colorado
| |
Collapse
|
11
|
Woo K, Dutta AK, Patel V, Kresge C, Feranchak AP. Fluid flow induces mechanosensitive ATP release, calcium signalling and Cl- transport in biliary epithelial cells through a PKCzeta-dependent pathway. J Physiol 2008; 586:2779-98. [PMID: 18388137 DOI: 10.1113/jphysiol.2008.153015] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
ATP in bile is a potent secretogogue, stimulating cholangiocyte Cl- and fluid secretion via binding to membrane P2 receptors, though the physiological stimuli involved in biliary ATP release are unknown. The goal of the present studies was to determine the potential role of fluid flow in biliary ATP release and secretion. In both human Mz-Cha-1 biliary cells and normal rat cholangiocyte monolayers, exposure to flow increased relative ATP release which was proportional to the shear stress. In parallel studies, shear was associated with an increase in [Ca2+]i and membrane Cl- permeability, which were both dependent on extracellular ATP and P2 receptor stimulation. Flow-stimulated ATP release was dependent on [Ca2+]i, exhibited desensitization with repetitive stimulation, and was regulated by PKCzeta. In conclusion, both human and rat biliary cells exhibit flow-stimulated, PKCzeta-dependent, ATP release, increases in [Ca2+]i and Cl- secretion. The finding that fluid flow can regulate membrane transport suggests that mechanosensitive ATP release may be a key regulator of biliary secretion and an important target to modulate bile flow in the treatment of cholestatic liver diseases.
Collapse
Affiliation(s)
- Kangmee Woo
- UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9063, USA
| | | | | | | | | |
Collapse
|
12
|
Feranchak AP, Fitz JG. Thinking outside the cell: the role of extracellular adenosine triphosphate in bile formation. Gastroenterology 2007; 133:1726-8. [PMID: 17983816 DOI: 10.1053/j.gastro.2007.09.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
13
|
Kusel JR, Al-Adhami BH, Doenhoff MJ. The schistosome in the mammalian host: understanding the mechanisms of adaptation. Parasitology 2007; 134:1477-526. [PMID: 17572930 DOI: 10.1017/s0031182007002971] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SUMMARYIn this review, we envisage the host environment, not as a hostile one, since the schistosome thrives there, but as one in which the relationship between the two organisms consists of constant communication, through signalling mechanisms involving sense organs, surface glycocalyx, surface membrane and internal organs of the parasite, with host fluids and cells. The surface and secretions of the schistosome egg have very different properties from those of other parasite stages, but adapted for the dispersal of the eggs and for the preservation of host liver function. We draw from studies of mammalian cells and other organisms to indicate how further work might be carried out on the signalling function of the surface glycocalyx, the raft structure of the surface and existence of pores in the surface membrane, the repair of the surface membrane, the role of the membrane structure in ion channel function (including recent work on the actin cytoskeleton and calcium channels) and the possible role of P-glycoproteins in the adaptation of the parasite to its environment. We are speculative in some areas, such as the suggestions that variability in surface properties of schistosomes may relate to the existence of membrane rafts and that parasite communities may exhibit quorum sensing. This speculative approach is adopted with the hope that future work on the whole organisms and their interactions will be encouraged.
Collapse
Affiliation(s)
- J R Kusel
- Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | | | | |
Collapse
|
14
|
Amatore C, Arbault S, Lemaître F, Verchier Y. Comparison of apex and bottom secretion efficiency at chromaffin cells as measured by amperometry. Biophys Chem 2007; 127:165-71. [PMID: 17316959 DOI: 10.1016/j.bpc.2007.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 01/26/2007] [Accepted: 01/26/2007] [Indexed: 11/16/2022]
Abstract
In chromaffin cells, the exocytosis of neuromediators involves the fusion between a secretory vesicle and the cell membrane. Many techniques based on electrophysiology, electrochemistry and fluorescence microscopy allow the study of such a complex process at active zones of single immobilized cells. These techniques can provide an effective analysis either at the apex, either at the base of the cell adhering onto a substrate. For instance, patch-clamp (electrophysiology) and amperometry (electrochemistry) deal with detection at the exposed top of the cell, whereas evanescent field microscopy concerns mainly its bottom, i.e., the zone on which the cell rests onto the surface. However, in chromaffin cells, comparison between the two sets of methods remains to be established and whether apex fusion events are comparable or not to those observed at the base of the cell is an open question. In this work, we compare both active zones upon using the same measurement method, viz., by performing electrochemical detection at these both poles (top and bottom) of bovine chromaffin cells. This is performed upon using carbon fiber microelectrodes (apical analysis) and planar ITO transparent (basal analysis) electrodes, respectively. Our results indicate that the processes monitored at each pole differ though the same technique is used.
Collapse
Affiliation(s)
- Christian Amatore
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS-ENS-UPMC 8640 PASTEUR, 24 rue Lhomond, 75231 Paris cedex 05. France.
| | | | | | | |
Collapse
|
15
|
Tietz PS, McNiven MA, Splinter PL, Huang BQ, Larusso NF. Cytoskeletal and motor proteins facilitate trafficking of AQP1-containing vesicles in cholangiocytes. Biol Cell 2006; 98:43-52. [PMID: 16354161 DOI: 10.1042/bc20040089] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND INFORMATION We have previously showed that: (i) cholangiocytes contain AQP1 (aquaporin 1) water channels sequestered in intracellular vesicles; and (ii) upon stimulation with choleretic agonists such as secretin or dibutyryl-cAMP (dbcAMP), the AQP1 vesicles move via microtubules to the apical cholangiocyte membrane to facilitate osmotically driven, passive water movement (i.e. ductal bile secretion). The aim of the present study was to determine which proteins and mechanisms regulate AQP1 trafficking in cholangiocytes. RESULTS Using polarized cultured NMCs (normal mouse cholangiocytes) or NRCs (normal rat cholangiocytes) and affinity-purified antibodies, we performed immunofluorescent confocal microscopy on fixed cells or immunoblotting on cell lysates for actin, tubulin, kinesin and dynein, proteins known to regulate intracellular vesicle trafficking. By immunostaining, the appropriate orientation of the actin (i.e. sub-apical) and tubulin (i.e. generalized) cytoskeleton was apparent; kinesin and dynein displayed a homogeneous punctate distribution. Immunoblotting showed kinesin and dynein to be present in both cholangiocyte lysates and in isolated AQP1-containing vesicles. We utilized real-time fluorescence confocal microscopy of NMCs transfected with a GFP (green fluorescent protein)-AQP1 fusion construct in the presence and absence of dbcAMP. CONCLUSIONS Our results provide additional insights into the potential molecular mechanisms of ductal bile secretion.
Collapse
Affiliation(s)
- Pamela S Tietz
- Center for Basic Research in Digestive Diseases, Department of Internal Medicine, Mayo Medical School, Clinic and Foundation, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
16
|
Spirlì C, Fiorotto R, Song L, Santos-Sacchi J, Okolicsanyi L, Masier S, Rocchi L, Vairetti MP, De Bernard M, Melero S, Pozzan T, Strazzabosco M. Glibenclamide stimulates fluid secretion in rodent cholangiocytes through a cystic fibrosis transmembrane conductance regulator-independent mechanism. Gastroenterology 2005; 129:220-33. [PMID: 16012949 DOI: 10.1053/j.gastro.2005.03.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Progressive liver disease is a severe complication of cystic fibrosis, a genetic disease characterized by impaired epithelial adenosine 3',5'-cyclic monophosphate-dependent secretion caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). In the liver, CFTR is expressed in cholangiocytes and regulates the fluid and electrolyte content of the bile. Glibenclamide, a sulfonylurea and a known CFTR inhibitor, paradoxically stimulates cholangiocyte secretion. We studied the molecular mechanisms underlying this effect and whether glibenclamide could restore cholangiocyte secretion in cystic fibrosis. METHODS NRC-1 cells, freshly isolated rat cholangiocytes, isolated rat biliary ducts, and isolated biliary ducts from CFTR-defective mice (Cftr tm1Unc ) were used to study fluid secretion (by video-optical planimetry), glibenclamide-induced secretion (by high-performance liquid chromatography in cell culture medium), intracellular pH and intracellular Ca 2+ concentration transients [2'7'-bis(2-carboxyethyl)-5,6,carboxyfluorescein-acetoxymethylester and Fura-2 f-AM (5-Oxazolecarboxylic acid, 2-(6-(bis(2-((acetyloxy)methoxy)-2-oxoethyl)amino)-5-(2-(2-(bis(2-((acetyloxy)methoxy)-2-oxoethyl)amino)-5-methylphenoxy)ethoxy)-2-benzofuranyl)-, (acetyloxy)methyl ester) microfluorometry], gene expression (by reverse-transcription polymerase chain reaction), and changes in membrane capacitance (by patch-clamp experiments). RESULTS Stimulation of cholangiocyte secretion by glibenclamide and tolbutamide required Cl - and was mediated by the sulfonylurea receptor 2B. Glibenclamide-induced secretion was blocked by inhibitors of exocytosis (colchicine, wortmannin, LY294002, and N -ethylmaleimide) and by inhibitors of secretory granule acidification (vanadate, bafilomycin A1, and niflumic acid) but was Ca 2+ and depolarization independent; membrane capacitance measurements were consistent with stimulation of vesicular transport and fusion. Glibenclamide, unlike secretin and forskolin, was able to stimulate secretion in Cftr tm1Unc mice, thus indicating that this secretory mechanism was preserved. CONCLUSIONS The ability of glibenclamide to stimulate secretion in CFTR-defective mice makes sulfonylureas a model class of compounds to design drugs useful in the treatment of cystic fibrosis with liver impairment and possibly of other cholestatic diseases.
Collapse
Affiliation(s)
- Carlo Spirlì
- Department of Meidcal and Surgical Sciences, University of Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Keeton RA, Runge SW, Moran WM. Constitutive apical membrane recycling in Aplysia enterocytes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2004; 301:857-66. [PMID: 15673107 DOI: 10.1002/jez.a.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In Aplysia californica enterocytes, alanine-stimulated Na+ absorption increases both apical membrane exocytosis and fractional capacitance (fCa; a measure of relative apical membrane surface area). These increases are thought to reduce membrane tension during periods of nutrient absorption that cause the enterocytes to swell osmotically. In the absence of alanine, exocytosis and fCa are constant. These findings imply equal rates of constitutive endocytosis and exocytosis and constitutive recycling of the apical plasma membrane. Thus, the purpose of this study was to confirm and determine the relative extent of constitutive apical membrane recycling in Aplysia enterocytes. Biotinylated lectins are commonly used to label plasma membranes and to investigate plasma membrane recycling. Of fourteen biotinylated lectins tested, biotinylated wheat germ agglutinin (bWGA) bound preferentially to the enterocytes apical surface. Therefore, we used bWGA, avidin D (which binds tightly to biotin), and the UV fluorophore 7-amino-4-methylcoumarin-3-acetic acid (AMCA)-conjugated avidin D to assess the extent of constitutive apical membrane recycling. A temperature-dependent (20 vs. 4 degrees C) experimental protocol employed the use of two tissues from each of five snails and resulted in a approximately 60% difference in apical surface fluorescence intensity. Because the extent of membrane recycling is proportional to the difference in surface fluorescence intensity, this difference reveals a relatively high rate of constitutive apical membrane recycling in Aplysia enterocytes.
Collapse
Affiliation(s)
- Robert Aaron Keeton
- Department of Biology, University of Central Arkansas, Conway, Arkansas 72035-0001, USA
| | | | | |
Collapse
|
18
|
Feranchak AP, Doctor RB, Troetsch M, Brookman K, Johnson SM, Fitz JG. Calcium-dependent regulation of secretion in biliary epithelial cells: the role of apamin-sensitive SK channels. Gastroenterology 2004; 127:903-13. [PMID: 15362045 DOI: 10.1053/j.gastro.2004.06.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Increases in intracellular Ca 2+ are thought to complement cAMP in stimulating Cl - secretion in cholangiocytes, although the site(s) of action and channels involved are unknown. We have identified a Ca 2+ -activated K + channel (SK2) in biliary epithelium that is inhibited by apamin. The purpose of the present studies was to define the role of SK channels in Ca 2+ -dependent cholangiocyte secretion. METHODS Studies were performed in human Mz-Cha-1 cells and normal rat cholangiocytes (NRC). Currents were measured by whole-cell patch clamp technique and transepithelial secretion by Ussing chamber. RESULTS Ca 2+ -dependent stimuli, including purinergic receptor stimulation, ionomycin, and increases in cell volume, each activated K + -selective currents with a linear IV relation and time-dependent inactivation. Currents were Ca 2+ dependent and were inhibited by apamin and by Ba 2+. In intact liver, immunoflourescence with an antibody to SK2 showed a prominent signal in cholangiocyte plasma membrane. To evaluate the functional significance, NRC monolayers were mounted in a Ussing chamber, and the short-circuit current ( I sc ) was measured. Exposure to ionomycin caused an increase in I sc 2-fold greater than that induced by cAMP. Both the basal and ionomycin-induced I sc were inhibited by basolateral Ba 2+, and approximately 58% of the basolateral K + current was apamin sensitive. CONCLUSIONS These studies demonstrate that cholangiocytes exhibit robust Ca 2+ -stimulated secretion significantly greater in magnitude than that stimulated by cAMP. SK2 plays an important role in mediating the increase in transepithelial secretion due to increases in intracellular Ca 2+. SK2 channels, therefore, may represent a target for pharmacologic modulation of bile flow.
Collapse
Affiliation(s)
- Andrew P Feranchak
- University of Colorado Health Sciences Center, 4200 East 9th Avenue, Denver, Colorado 80262, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Gatof D, Kilic G, Fitz JG. Vesicular exocytosis contributes to volume-sensitive ATP release in biliary cells. Am J Physiol Gastrointest Liver Physiol 2004; 286:G538-46. [PMID: 14604861 DOI: 10.1152/ajpgi.00355.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular ATP is a potent autocrine/paracrine signal that regulates a broad range of liver functions through activation of purinergic receptors. In biliary epithelium, increases in cell volume stimulate ATP release through a phosphoinositide 3-kinase (PI3-kinase)-dependent mechanism. Because PI3-kinase also regulates vesicular exocytosis, the purpose of these studies was to determine whether volume-stimulated vesicular exocytosis contributes to cellular ATP release. In a human cholangiocarcinoma cell line, exocytosis was measured by using the plasma membrane marker FM1-43, whereas ATP release was assessed by using a luciferase-luciferin assay. Under basal conditions, cholangiocytes exhibited constitutive exocytosis at a rate of 1.6%/min, and low levels of extracellular ATP were detected at 48.2 arbitrary light units. Increases in cholangiocyte cell volume induced by hypotonic exposure resulted in a 10-fold increase in the rate of exocytosis and a robust 35-fold increase in ATP release. Both vesicular exocytosis and ATP release were proportional to cell volume, and both exhibited similar regulatory properties including: 1) dependence on intact PI3-kinase, 2) attenuation by inhibition of PKC, and 3) potentiation by activation of PKC before hypotonic exposure. These findings demonstrate that increases in cholangiocyte cell volume stimulate ATP release and vesicular exocytosis through similar regulatory paradigms. Functional interactions among cell volume, PKC, and PI3-kinase modulate exocytosis, thereby regulating ATP release and purinergic signaling in cholangiocytes. It is hypothesized that PKC is involved in the recruitment of a volume-sensitive vesicular pool to a readily releasable state.
Collapse
Affiliation(s)
- David Gatof
- Department of Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | |
Collapse
|
20
|
Rosen H, Glukhman V, Feldmann T, Fridman E, Lichtstein D. Cardiac steroids induce changes in recycling of the plasma membrane in human NT2 cells. Mol Biol Cell 2004; 15:1044-54. [PMID: 14718569 PMCID: PMC363072 DOI: 10.1091/mbc.e03-06-0391] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cardiac steroids (CSs) are specific inhibitors of Na+, K(+)-ATPase activity. Although the presence of CS-like compounds in animal tissues has been established, their physiological role is not evident. In the present study, treatment of human NT2 cells with physiological concentrations (nanomolar) of CSs caused the accumulation of large vesicles adjacent to the nucleus. Experiments using N-(3-triethylammonium propyl)-4-(dibutilamino)styryl-pyrodinum dibromide, transferrin, low-density lipoprotein, and selected anti-transferrin receptor and Rab protein antibodies revealed that CSs induced changes in endocytosis-dependent membrane traffic. Our data indicate that the CS-induced accumulation of cytoplasmic membrane components is a result of inhibited recycling within the late endocytic pathway. Furthermore, our results support the notion that the CS-induced changes in membrane traffic is mediated by the Na+, K(+)-ATPase. These phenomena were apparent in NT2 cells at nanomolar concentrations of CSs and were observed also in other human cell lines, pointing to the generality of this phenomenon. Based on these observations, we propose that the endogenous CS-like compounds are physiological regulators of recycling of endocytosed membrane proteins and cargo.
Collapse
Affiliation(s)
- Haim Rosen
- The Kuvin Center for the Study of Infectious and Tropical Diseases, Institute of Microbiology, Jerusalem, Israel.
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Keeton RA, Runge SW, Moran WM. Alanine-stimulated exocytosis in Aplysia enterocytes: effect of Na+ transport and requirement for actin filaments. J Comp Physiol B 2003; 174:129-38. [PMID: 14648099 DOI: 10.1007/s00360-003-0397-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2003] [Indexed: 10/26/2022]
Abstract
We used the Aplysia californica intestinal epithelium to investigate the effect of alanine-stimulated Na+ absorption on apical membrane exocytosis and whether stimulated exocytosis requires intact actin filaments. The fluid-phase marker fluorescein dextran was used to determine rates of apical membrane exocytosis. L-alanine significantly increased apical exocytosis by approximately 30% compared to controls, and there is a modest, positive correlation between alanine-stimulated exocytosis and short-circuit current (ISC). Thus, apical exocytosis is modulated to some extent by the magnitude of Na+ and alanine entry across the apical membrane. Apical exocytosis is also responsive to virtually any increase in Na+ and alanine entry because increments in alanine-stimulated ISC as small as 1 microA/cm2 stimulated exocytosis. We used D-alanine to determine which parameter (sensitivity to transport vs. magnitude of transport) was most important in activation of apical exocytosis. D-alanine-stimulated ISC was one-sixth that of L-alanine, but stimulated exocytosis was only 29% less than that of L-alanine. Therefore, the apical exocytic system is more responsive to small increases in transport than to the magnitude of transport. Latrunculin A (Lat-A) disrupts the actin cytoskeleton and reduced constitutive apical exocytosis by approximately 65% and completely abolished alanine-stimulated exocytosis. Hence, constitutive exocytosis and alanine-stimulated exocytosis require actin filaments for recruitment of vesicles to the apical membrane. During nutrient absorption, actin filament-regulated apical exocytosis may represent a negative feedback system that modulates apical membrane tension.
Collapse
Affiliation(s)
- R A Keeton
- Department of Biology, University of Central Arkansas, Conway, AR 72035-5003, USA
| | | | | |
Collapse
|
23
|
Ali MK, Bergson C. Elevated intracellular calcium triggers recruitment of the receptor cross-talk accessory protein calcyon to the plasma membrane. J Biol Chem 2003; 278:51654-63. [PMID: 14534309 DOI: 10.1074/jbc.m305803200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcyon is called a "cross-talk accessory protein" because the mechanism by which it enables the typically Gs-linked D1 dopamine receptor to stimulate intracellular calcium release depends on a priming step involving heterologous Gq-linked G-protein-coupled receptor activation. The details of how priming facilitates the D1R calcium response have yet to be precisely elucidated. The present work shows that calcyon is constitutively localized both in vesicular and plasma membrane compartments within HEK293 cells. In addition, surface biotinylation and luminescence assays revealed that priming stimulates a 2-fold increase in the levels of calcyon expressed on the cell surface and that subsequent D1R activation produces further accumulation of the protein in the plasma membrane. The effects of priming and D1R agonists were blocked by nocodazole implicating microtubules in the delivery of calcyon-containing vesicles to the cell surface. Accumulation of calcyon in the plasma membrane correlated well with increased intracellular calcium levels as thapsigargin mimicked, and 2-aminoethoxydiphenylborane abrogated, the effects of priming. KN-62, an inhibitor of calcium/calmodulin-dependent protein kinase II (CaMKII) also blocked the effects of priming and D1R agonists. Furthermore, expression of constitutively active forms of the kinase bypassed the requirement for priming indicating that CaMKII is a key effector in the Ca2+ and microtubule-dependent delivery of calcyon to the cell surface.
Collapse
Affiliation(s)
- Mohammad Kutub Ali
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | |
Collapse
|
24
|
Tietz P, LaRusso NF. Cholangiocyte biology. Curr Opin Gastroenterol 2003; 19:264-9. [PMID: 15703567 DOI: 10.1097/00001574-200305000-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Cholangiocytes are of considerable intrinsic biologic interest, particularly with regard to their roles in the transport of water, ions, and solutes, and to their heterogeneity and proliferative capacity. Cholangiocytes represent an important target of study in the cholangiopathies, a group of genetic developmental and acquired diseases of the liver. New biologic concepts continue to evolve through the use of experimental models (eg, knockout mice and selective gene silencing) and enhanced approaches to three-dimensional modeling and microscopy. The role of the cholangiocyte cytoskeleton in transport and intracellular trafficking has been recently recognized. These paradigms provide a framework for further understanding the mechanisms modulating normal cholangiocyte growth, transport, and signaling, and the abnormalities that result in disease.
Collapse
Affiliation(s)
- Pamela Tietz
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Medical School, and Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
25
|
Tietz PS, LaRusso NF. Focus on "Cholangiocytes exhibit dynamic, actin-dependent apical membrane turnover". Am J Physiol Cell Physiol 2002; 282:C982-3. [PMID: 11940512 DOI: 10.1152/ajpcell.00603.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|