1
|
Gupta A, Vejapi M, Knezevic NN. The role of nitric oxide and neuroendocrine system in pain generation. Mol Cell Endocrinol 2024; 591:112270. [PMID: 38750811 DOI: 10.1016/j.mce.2024.112270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Previous studies have indicated a complex interplay between the nitric oxide (NO) pain signaling pathways and hormonal signaling pathways in the body. This article delineates the role of nitric oxide signaling in neuropathic and inflammatory pain generation and subsequently discusses how the neuroendocrine system is involved in pain generation. Hormonal systems including the hypothalamic-pituitary axis (HPA) generation of cortisol, the renin-angiotensin-aldosterone system, calcitonin, melatonin, and sex hormones could potentially contribute to the generation of nitric oxide involved in the sensation of pain. Further research is necessary to clarify this relationship and may reveal therapeutic targets involving NO signaling that alleviate neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Aayush Gupta
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Rosalind Franklin University of Medicine and Science, USA
| | - Maja Vejapi
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Department of Anesthesiology, University of Illinois, Chicago, IL, USA; Department of Surgery, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
2
|
Pinsky AM, Gao X, Bains S, Kim CJ, Louradour J, Odening KE, Tester DJ, Giudicessi JR, Ackerman MJ. Injectable Contraceptive, Depo-Provera, Produces Erratic Beating Patterns in Patient-Specific Induced Pluripotent Stem Cell-derived Cardiomyocytes with Type 2 Long QT Syndrome. Heart Rhythm 2023; 20:910-917. [PMID: 36889623 DOI: 10.1016/j.hrthm.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Long QT syndrome type 2 (LQT2) is caused by pathogenic variants in KCNH2. LQT2 may manifest as QT prolongation on an ECG and present with arrhythmic syncope/seizures, sudden cardiac arrest/death. Oral progestin-based contraceptives may increase the risk of LQT2-triggered cardiac events in women. We previously reported on a LQT2 woman with recurrent cardiac events temporally related and attributed to the progestin-based contraceptive, medroxyprogesterone acetate ("Depo-Provera", Depo). OBJECTIVE To evaluate the arrhythmic-risk of Depo in a patient-specific induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) model of LQT2. METHODS An iPSC-CM line was generated from a 40-year-old female with p.G1006Afs*49-KCNH2. A CRISPR/Cas9 gene-edited/variant-corrected, isogenic control (IC) iPSC-CM line was generated. FluoVolt was used to measure the action potential duration (APD) following treatment with 10 μM Depo. Erratic beating patterns characterized as alternating spike amplitudes, alternans, or early after depolarization-like phenomena were assessed using multi-electrode array (MEA) following 10 μM Depo, 1 μM isoproterenol (ISO), or combined Depo + ISO treatment. RESULTS Depo treatment shortened the APD-90 of the G1006Afs*49 iPSC-CMs from 394±10 ms to 303±10 ms (p<0.0001). Combined Depo and ISO treatment increased the percent of electrodes displaying erratic beating in G1006Afs*49 iPSC-CMs [baseline 18±5% vs. Depo + ISO 54±5% (p<0.0001)] but not in IC iPSC-CMs [baseline 0±0% vs. Depo + ISO 10±3% (p=0.9659)]. CONCLUSION This cell study provides a potential mechanism for the patient's clinically documented Depo-associated episodes of recurrent ventricular fibrillation. This in-vitro data should prompt a large-scale clinical assessment of Depo's potential pro-arrhythmic effect in women with LQT2.
Collapse
Affiliation(s)
- Alexa M Pinsky
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
| | - Xiaozhi Gao
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
| | - Sahej Bains
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
| | - Cs John Kim
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
| | - Julien Louradour
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - David J Tester
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
| | - John R Giudicessi
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
| | - Michael J Ackerman
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN.
| |
Collapse
|
3
|
Munguia-Galaviz FJ, Miranda-Diaz AG, Cardenas-Sosa MA, Echavarria R. Sigma-1 Receptor Signaling: In Search of New Therapeutic Alternatives for Cardiovascular and Renal Diseases. Int J Mol Sci 2023; 24:ijms24031997. [PMID: 36768323 PMCID: PMC9916216 DOI: 10.3390/ijms24031997] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Cardiovascular and renal diseases are among the leading causes of death worldwide, and regardless of current efforts, there is a demanding need for therapeutic alternatives to reduce their progression to advanced stages. The stress caused by diseases leads to the activation of protective mechanisms in the cell, including chaperone proteins. The Sigma-1 receptor (Sig-1R) is a ligand-operated chaperone protein that modulates signal transduction during cellular stress processes. Sig-1R interacts with various ligands and proteins to elicit distinct cellular responses, thus, making it a potential target for pharmacological modulation. Furthermore, Sig-1R ligands activate signaling pathways that promote cardioprotection, ameliorate ischemic injury, and drive myofibroblast activation and fibrosis. The role of Sig-1R in diseases has also made it a point of interest in developing clinical trials for pain, neurodegeneration, ischemic stroke, depression in patients with heart failure, and COVID-19. Sig-1R ligands in preclinical models have significantly beneficial effects associated with improved cardiac function, ventricular remodeling, hypertrophy reduction, and, in the kidney, reduced ischemic damage. These basic discoveries could inform clinical trials for heart failure (HF), myocardial hypertrophy, acute kidney injury (AKI), and chronic kidney disease (CKD). Here, we review Sig-1R signaling pathways and the evidence of Sig-1R modulation in preclinical cardiac and renal injury models to support the potential therapeutic use of Sig-1R agonists and antagonists in these diseases.
Collapse
Affiliation(s)
- Francisco Javier Munguia-Galaviz
- Departamento de Fisiologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Division de Ciencias de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzman 49000, Jalisco, Mexico
| | - Alejandra Guillermina Miranda-Diaz
- Departamento de Fisiologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Miguel Alejandro Cardenas-Sosa
- Departamento de Fisiologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Raquel Echavarria
- CONACYT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico
- Correspondence:
| |
Collapse
|
4
|
Abstract
N,N-dimethyltryptamine (DMT) is a potent psychedelic naturally produced by many plants and animals, including humans. Whether or not DMT is significant to mammalian physiology, especially within the central nervous system, is a debate that started in the early 1960s and continues to this day. This review integrates historical and recent literature to clarify this issue, giving special attention to the most controversial subjects of DMT's biosynthesis, its storage in synaptic vesicles and the activation receptors like sigma-1. Less discussed topics, like DMT's metabolic regulation or the biased activation of serotonin receptors, are highlighted. We conclude that most of the arguments dismissing endogenous DMT's relevance are based on obsolete data or misleading assumptions. Data strongly suggest that DMT can be relevant as a neurotransmitter, neuromodulator, hormone and immunomodulator, as well as being important to pregnancy and development. Key experiments are addressed to definitely prove what specific roles DMT plays in mammalian physiology.
Collapse
Affiliation(s)
- Javier Hidalgo Jiménez
- ICEERS Foundation (International Center for Ethnobotanical Education, Research and Services), Barcelona, Spain
| | - José Carlos Bouso
- ICEERS Foundation (International Center for Ethnobotanical Education, Research and Services), Barcelona, Spain
| |
Collapse
|
5
|
Hornung RS, Raut NGR, Cantu DJ, Lockhart LM, Averitt DL. Sigma-1 receptors and progesterone metabolizing enzymes in nociceptive sensory neurons of the female rat trigeminal ganglia: A neural substrate for the antinociceptive actions of progesterone. Mol Pain 2022; 18:17448069211069255. [PMID: 35040378 PMCID: PMC8777333 DOI: 10.1177/17448069211069255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Orofacial pain disorders are predominately experienced by women. Progesterone, a major ovarian hormone, is neuroprotective and antinociceptive. We recently reported that progesterone attenuates estrogen-exacerbated orofacial pain behaviors, yet it remains unclear what anatomical substrate underlies progesterone's activity in the trigeminal system. Progesterone has been reported to exert protective effects through actions at intracellular progesterone receptors (iPR), membrane-progesterone receptors (mPR), or sigma 1 receptors (Sig-1R). Of these, the iPR and Sig-1R have been reported to have a role in pain. Progesterone can also have antinociceptive effects through its metabolite, allopregnanolone. Two enzymes, 5α-reductase and 3α-hydroxysteroid dehydrogenase (3α-HSD), are required for the metabolism of progesterone to allopregnanolone. Both progesterone and allopregnanolone rapidly attenuate pain sensitivity, implicating action of either progesterone at Sig-1R and/or conversion to allopregnanolone which targets GABAA receptors. In the present study, we investigated whether Sig-1 Rs are expressed in nociceptors within the trigeminal ganglia of cycling female rats and whether the two enzymes required for progesterone metabolism to allopregnanolone, 5α-reductase and 3α-hydroxysteroid dehydrogenase, are also present. Adult female rats from each stage of the estrous cycle were rapidly decapitated and the trigeminal ganglia collected. Trigeminal ganglia were processed by either fluorescent immunochemistry or western blotting to for visualization and quantification of Sig-1R, 5α-reductase, and 3α-hydroxysteroid dehydrogenase. Here we report that Sig-1Rs and both enzymes involved in progesterone metabolism are highly expressed in a variety of nociceptive sensory neuron populations in the female rat trigeminal ganglia at similar levels across the four stages of the estrous cycle. These data indicate that trigeminal sensory neurons are an anatomical substrate for the reported antinociceptive activity of progesterone via Sig-1R and/or conversion to allopregnanolone.
Collapse
Affiliation(s)
| | | | - Daisy J Cantu
- Division of Biology, School of the Sciences, Texas Woman’s
University, Denton, TX, USA
| | - Lauren M Lockhart
- Division of Biology, School of the Sciences, Texas Woman’s
University, Denton, TX, USA
| | - Dayna L Averitt
- Division of Biology, School of the Sciences, Texas Woman’s
University, Denton, TX, USA
| |
Collapse
|
6
|
Shah SB. COVID-19 and Progesterone: Part 1.SARS-CoV-2, Progesterone and its potential clinical use. ENDOCRINE AND METABOLIC SCIENCE 2021; 5:100109. [PMID: 34396353 PMCID: PMC8349425 DOI: 10.1016/j.endmts.2021.100109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/28/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) infection is a global medical challenge. Experience based medicines and therapies are being attempted and vaccines are being developed. SARS-CoV-2 exhibits varied patterns of infection and clinical presentations with varied disease outcomes. These attributes are strongly suggestive of some variables that differ among individuals and that affect the course of SARS-CoV-2 infection and symptoms of COVID-19 (Corona Virus Disease of 2019). Sex hormones vary with ageing, between the sexes, among individuals and populations. Sex hormones are known to play a role in immunity and infections. Progesterone is a critical host factor to promote faster recovery following Influenza A virus infection. Anti-inflammatory effects of progesterone are noted. In part 1 of the current study the regulatory role of progesterone for SARS-CoV-2 infection and COVID-19 is analyzed. The role of progesterone at different stages of the SARS CoV-2 infection is investigated with respect to two types of immunity status: immune regulation and immune dysregulation. Progesterone could have various alleviating impacts from SARS-CoV-2 entry till recovery: reversing of hypoxia, stabilizing of blood pressure, controlling thrombosis, balancing electrolytes, reducing the viral load, regulation of immune responses, damage repair, and clearance of debris among others. The present research adds to the available evidence by providing a comprehensive and thorough evaluation of the regulatory role of progesterone in SARS COV-2 infection, COVID-19 pathogenesis, and immune dysregulation. The available evidence has implications for upcoming studies about pathophysiology of COVID-19, as well as the roles of progesterone and other hormones in other infectious diseases.
Collapse
|
7
|
Aishwarya R, Abdullah CS, Morshed M, Remex NS, Bhuiyan MS. Sigmar1's Molecular, Cellular, and Biological Functions in Regulating Cellular Pathophysiology. Front Physiol 2021; 12:705575. [PMID: 34305655 PMCID: PMC8293995 DOI: 10.3389/fphys.2021.705575] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The Sigma 1 receptor (Sigmar1) is a ubiquitously expressed multifunctional inter-organelle signaling chaperone protein playing a diverse role in cellular survival. Recessive mutation in Sigmar1 have been identified as a causative gene for neuronal and neuromuscular disorder. Since the discovery over 40 years ago, Sigmar1 has been shown to contribute to numerous cellular functions, including ion channel regulation, protein quality control, endoplasmic reticulum-mitochondrial communication, lipid metabolism, mitochondrial function, autophagy activation, and involved in cellular survival. Alterations in Sigmar1’s subcellular localization, expression, and signaling has been implicated in the progression of a wide range of diseases, such as neurodegenerative diseases, ischemic brain injury, cardiovascular diseases, diabetic retinopathy, cancer, and drug addiction. The goal of this review is to summarize the current knowledge of Sigmar1 biology focusing the recent discoveries on Sigmar1’s molecular, cellular, pathophysiological, and biological functions.
Collapse
Affiliation(s)
- Richa Aishwarya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Md Shenuarin Bhuiyan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States.,Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| |
Collapse
|
8
|
De Nicola AF, Meyer M, Garay L, Kruse MS, Schumacher M, Guennoun R, Gonzalez Deniselle MC. Progesterone and Allopregnanolone Neuroprotective Effects in the Wobbler Mouse Model of Amyotrophic Lateral Sclerosis. Cell Mol Neurobiol 2021; 42:23-40. [PMID: 34138412 DOI: 10.1007/s10571-021-01118-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
Progesterone regulates a number of processes in neurons and glial cells not directly involved in reproduction or sex behavior. Several neuroprotective effects are better observed under pathological conditions, as shown in the Wobbler mouse model of amyotrophic laterals sclerosis (ALS). Wobbler mice are characterized by forelimb atrophy due to motoneuron degeneration in the spinal cord, and include microgliosis and astrogliosis. Here we summarized current evidence on progesterone reversal of Wobbler neuropathology. We demonstrated that progesterone decreased motoneuron vacuolization with preservation of mitochondrial respiratory complex I activity, decreased mitochondrial expression and activity of nitric oxide synthase, increased Mn-dependent superoxide dismutase, stimulated brain-derived neurotrophic factor, increased the cholinergic phenotype of motoneurons, and enhanced survival with a concomitant decrease of death-related pathways. Progesterone also showed differential effects on glial cells, including increased oligodendrocyte density and downregulation of astrogliosis and microgliosis. These changes associate with reduced anti-inflammatory markers. The enhanced neurochemical parameters were accompanied by longer survival and increased muscle strength in tests of motor behavior. Because progesterone is locally metabolized to allopregnanolone (ALLO) in nervous tissues, we also studied neuroprotection by this derivative. Treatment of Wobbler mice with ALLO decreased oxidative stress and glial pathology, increased motoneuron viability and clinical outcome in a progesterone-like manner, suggesting that ALLO could mediate some progesterone effects in the spinal cord. In conclusion, the beneficial effects observed in different parameters support the versatile properties of progesterone and ALLO in a mouse model of motoneuron degeneration. The studies foresee future therapeutic opportunities with neuroactive steroids for deadly diseases like ALS.
Collapse
Affiliation(s)
- Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina. .,Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425, Buenos Aires, Argentina.
| | - María Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Laura Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina.,Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425, Buenos Aires, Argentina
| | - Maria Sol Kruse
- Laboratory of Neurobiology, Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Michael Schumacher
- U1195 INSERM and University Paris Sud "Neuroprotective, Neuroregenerative and Remyelinating Small Molecules, 94276, Kremlin-Bicetre, France
| | - Rachida Guennoun
- U1195 INSERM and University Paris Sud "Neuroprotective, Neuroregenerative and Remyelinating Small Molecules, 94276, Kremlin-Bicetre, France
| | - Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina.,Department of Physiological Sciences, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425, Buenos Aires, Argentina
| |
Collapse
|
9
|
Abatematteo FS, Niso M, Contino M, Leopoldo M, Abate C. Multi-Target Directed Ligands (MTDLs) Binding the σ 1 Receptor as Promising Therapeutics: State of the Art and Perspectives. Int J Mol Sci 2021; 22:6359. [PMID: 34198620 PMCID: PMC8232171 DOI: 10.3390/ijms22126359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 11/18/2022] Open
Abstract
The sigma-1 (σ1) receptor is a 'pluripotent chaperone' protein mainly expressed at the mitochondria-endoplasmic reticulum membrane interfaces where it interacts with several client proteins. This feature renders the σ1 receptor an ideal target for the development of multifunctional ligands, whose benefits are now recognized because several pathologies are multifactorial. Indeed, the current therapeutic regimens are based on the administration of different classes of drugs in order to counteract the diverse unbalanced physiological pathways associated with the pathology. Thus, the multi-targeted directed ligand (MTDL) approach, with one molecule that exerts poly-pharmacological actions, may be a winning strategy that overcomes the pharmacokinetic issues linked to the administration of diverse drugs. This review aims to point out the progress in the development of MTDLs directed toward σ1 receptors for the treatment of central nervous system (CNS) and cancer diseases, with a focus on the perspectives that are proper for this strategy. The evidence that some drugs in clinical use unintentionally bind the σ1 protein (as off-target) provides a proof of concept of the potential of this strategy, and it strongly supports the promise that the σ1 receptor holds as a target to be hit in the context of MTDLs for the therapy of multifactorial pathologies.
Collapse
Affiliation(s)
| | | | | | | | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, 70125 Bari, Italy; (F.S.A.); (M.N.); (M.C.); (M.L.)
| |
Collapse
|
10
|
Brimson JM, Brimson S, Chomchoei C, Tencomnao T. Using sigma-ligands as part of a multi-receptor approach to target diseases of the brain. Expert Opin Ther Targets 2020; 24:1009-1028. [PMID: 32746649 DOI: 10.1080/14728222.2020.1805435] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The sigma receptors are found abundantly in the central nervous system and are targets for the treatment of various diseases, including Alzheimer's (AD), Parkinson's (PD), Huntington's disease (HD), depression, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). However, for many of these diseases, other receptors and targets have been the focus of the most, such as acetylcholine esterase inhibitors in Alzheimer's and dopamine replacement in Parkinson's. The currently available drugs for these diseases have limited success resulting in the requirement of an alternative approach to their treatment. AREAS COVERED In this review, we discuss the potential role of the sigma receptors and their ligands as part of a multi receptor approach in the treatment of the diseases mentioned above. The literature reviewed was obtained through searches in databases, including PubMed, Web of Science, Google Scholar, and Scopus. EXPERT OPINION Given sigma receptor agonists provide neuroprotection along with other benefits such as potentiating the effects of other receptors, further development of multi-receptor targeting ligands, and or the development of multi-drug combinations to target multiple receptors may prove beneficial in the future treatment of degenerative diseases of the CNS, especially when coupled with better diagnostic techniques.
Collapse
Affiliation(s)
- James Michael Brimson
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Chanichon Chomchoei
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Tewin Tencomnao
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| |
Collapse
|
11
|
Hornung RS, Benton WL, Tongkhuya S, Uphouse L, Kramer PR, Averitt DL. Progesterone and Allopregnanolone Rapidly Attenuate Estrogen-Associated Mechanical Allodynia in Rats with Persistent Temporomandibular Joint Inflammation. Front Integr Neurosci 2020; 14:26. [PMID: 32457584 PMCID: PMC7225267 DOI: 10.3389/fnint.2020.00026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/15/2020] [Indexed: 12/16/2022] Open
Abstract
Temporomandibular joint disorder (TMD) is associated with pain in the joint (temporomandibular joint, TMJ) and muscles involved in mastication. TMD pain dissipates following menopause but returns in some women undergoing estrogen replacement therapy. Progesterone has both anti-inflammatory and antinociceptive properties, while estrogen's effects on nociception are variable and highly dependent on both natural hormone fluctuations and estrogen dosage during pharmacological treatments, with high doses increasing pain. Allopregnanolone, a progesterone metabolite and positive allosteric modulator of the GABAA receptor, also has antinociceptive properties. While progesterone and allopregnanolone are antinociceptive, their effect on estrogen-exacerbated TMD pain has not been determined. We hypothesized that removing the source of endogenous ovarian hormones would reduce inflammatory allodynia in the TMJ of rats and both progesterone and allopregnanolone would attenuate the estrogen-provoked return of allodynia. Baseline mechanical sensitivity was measured in female Sprague-Dawley rats (150-175 g) using the von Frey filament method followed by a unilateral injection of complete Freund's adjuvant (CFA) into the TMJ. Mechanical allodynia was confirmed 24 h later; then rats were ovariectomized or received sham surgery. Two weeks later, allodynia was reassessed and rats received one of the following subcutaneous hormone treatments over 5 days: a daily pharmacological dose of estradiol benzoate (E2; 50 μg/kg), daily E2 and pharmacological to sub-physiological doses of progesterone (P4; 16 mg/kg, 16 μg/kg, or 16 ng/kg), E2 daily and interrupted P4 given every other day, daily P4, or daily vehicle control. A separate group of animals received allopregnanolone (0.16 mg/kg) instead of P4. Allodynia was reassessed 1 h following injections. Here, we report that CFA-evoked mechanical allodynia was attenuated following ovariectomy and daily high E2 treatment triggered the return of allodynia, which was rapidly attenuated when P4 was also administered either daily or every other day. Allopregnanolone treatment, whether daily or every other day, also attenuated estrogen-exacerbated allodynia within 1 h of treatment, but only on the first treatment day. These data indicate that when gonadal hormone levels have diminished, treatment with a lower dose of progesterone may be effective at rapidly reducing the estrogen-evoked recurrence of inflammatory mechanical allodynia in the TMJ.
Collapse
Affiliation(s)
- Rebecca S. Hornung
- Department of Biology, Texas Woman’s University, Denton, TX, United States
| | - William L. Benton
- Department of Biology, Texas Woman’s University, Denton, TX, United States
| | - Sirima Tongkhuya
- Department of Biology, Texas Woman’s University, Denton, TX, United States
| | - Lynda Uphouse
- Department of Biology, Texas Woman’s University, Denton, TX, United States
| | - Phillip R. Kramer
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Dayna Loyd Averitt
- Department of Biology, Texas Woman’s University, Denton, TX, United States
| |
Collapse
|
12
|
Lewis R, Li J, McCormick PJ, L-H Huang C, Jeevaratnam K. Is the sigma-1 receptor a potential pharmacological target for cardiac pathologies? A systematic review. IJC HEART & VASCULATURE 2019; 26:100449. [PMID: 31909177 PMCID: PMC6939113 DOI: 10.1016/j.ijcha.2019.100449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Sigma-1 receptors are ligand-regulated chaperone proteins, involved in several cellular mechanisms. The aim of this systematic review was to examine the effects that the sigma-1 receptor has on the cardiovascular system. The interaction targets and proposed mechanisms of action of sigma-1 receptors were explored, with the aim of determining if the sigma-1 receptor is a potential pharmacological target for cardiac pathologies. This systematic review was conducted according to the PRISMA guidelines and these were used to critically appraise eligible studies. Pubmed and Scopus were systematically searched for articles investigating sigma-1 receptors in the cardiovascular system. Papers identified by the search terms were then subject to analysis against pre-determined inclusion criteria. 23 manuscripts met the inclusion criteria and were included in this review. The experimental platforms, experimental techniques utilised and the results of the studies were summarised. The sigma-1 receptor is found to be implicated in cardioprotection, via various mechanisms including stimulating the Akt-eNOS pathway, and reduction of Ca2 + leakage into the cytosol via modulating certain calcium channels. Sigma-1 receptors are also found to modulate other cardiac ion channels including different subtypes of potassium and sodium channels and have been shown to modulate intracardiac neuron excitability. The sigma-1 receptor is a potential therapeutic target for treatment of cardiac pathologies, particularly cardiac hypertrophy. We therefore suggest investigating the cardioprotective mechanisms of sigma-1 receptor function, alongside proposed potential ligands that can stimulate these functions.
Collapse
Affiliation(s)
- Rebecca Lewis
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7AL, UK
| | - Jiaqi Li
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7AL, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Peter J McCormick
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Christopher L-H Huang
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7AL, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Kamalan Jeevaratnam
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7AL, UK
| |
Collapse
|
13
|
Stress, sex hormones, inflammation, and major depressive disorder: Extending Social Signal Transduction Theory of Depression to account for sex differences in mood disorders. Psychopharmacology (Berl) 2019; 236:3063-3079. [PMID: 31359117 PMCID: PMC6821593 DOI: 10.1007/s00213-019-05326-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 07/08/2019] [Indexed: 12/11/2022]
Abstract
Social Signal Transduction Theory of Depression is a biologically plausible, multi-level theory that describes neural, physiologic, molecular, and genomic mechanisms that link experiences of social-environmental adversity with internal biological processes that drive depression pathogenesis, maintenance, and recurrence. Central to this theory is the hypothesis that interpersonal stressors involving social threat (e.g., social conflict, evaluation, rejection, isolation, and exclusion) upregulate inflammatory processes that can induce several depressive symptoms, including sad mood, anhedonia, fatigue, psychomotor retardation, and social-behavioral withdrawal. The original article describing this formulation (Psychol Bull 140:774-815, 2014) addressed critical questions involving depression onset and recurrence, as well as why depression is strongly predicted by early life stress and comorbid with anxiety disorders and certain physical disease conditions, such as asthma, rheumatoid arthritis, chronic pain, and cardiovascular disease. Here, we extend the theory to help explain sex differences in depression prevalence, which is a defining feature of this disorder. Central to this extension is research demonstrating that ovarian hormone fluctuations modulate women's susceptibility to stress, brain structure and function, and inflammatory activity and reactivity. These effects are evident at multiple levels and are highly context-dependent, varying as a function of several factors including sex, age, reproductive state, endogenous versus exogenous hormones, and hormone administration mode and dose. Together, these effects help explain why women are at greater risk for developing inflammation-related depressed mood and other neuropsychiatric, neurodevelopmental, and neurodegenerative disorders during the reproductive years, especially for those already at heightened risk for depression or in the midst of a hormonal transition period.
Collapse
|
14
|
Aydar E, Palmer C. Effect of Sigma-1 Receptors on Voltage-Gated Sodium Ion Channels in Colon Cancer Cell Line SW620. Bioelectricity 2019; 1:158-168. [PMID: 34471818 DOI: 10.1089/bioe.2019.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Voltage-gated sodium channels (VGSCs) play pivotal roles in the metastatic process in several cancers, including breast and colon cancers. Sigma-1 receptors are known to interact and form complexes with a number of ion channels aiding the delivery of the channel protein to the plasma membrane. Drugs that bind the Sigma-1 receptor are hypothesized to affect this process and reduce the delivery of the channel protein to the plasma membrane, in turn reducing the metastatic potential of the cells. Methods: Human colon cancer cell line SW620 was utilized as a model to investigate the interaction between the neonatal VGSC (nNav1.5) and the Sigma-1 receptor. This was accomplished using drugs that bind the Sigma-1 receptor, Sigma-1 receptor silencing, and antibodies that bind and block the nNav1.5 channel. Results: Sigma-1 receptor drugs SKF10047 and dimethyl tryptamine were found to alter (reduce) the adhesion of these cells by 46-54% at a 20 μM drug concentration. In a similar manner, gene silencing of the Sigma-1 receptor had a similar effect in reducing the adhesion of these cells to collagen-coated plates by 30%. The Sigma-1 receptor was found to be in a complex with nNav1.5 in SW620 cells, and Sigma-1 drugs or gene silencing of the Sigma-1 receptor results in a reduction of the surface expression of nNav1.5 by ∼50%. Culture of SW620 cells under hypoxic conditions resulted in upregulation of the Sigma-1 receptor and nNav1.5. In addition, surface expression of nNav1.5 protein increased under hypoxic culture conditions and this was inhibited by the application of SKF10047. Conclusions: It is proposed that in colon cancer cells, upregulated Sigma-1 receptor expression in hypoxia led to increased nNav1.5 protein expression at the plasma membrane and resulted in the cells switching to a more invasive state.
Collapse
Affiliation(s)
- Ebru Aydar
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Christopher Palmer
- School of Health Sciences, London Metropolitan University, London, United Kingdom
| |
Collapse
|
15
|
Ryskamp DA, Korban S, Zhemkov V, Kraskovskaya N, Bezprozvanny I. Neuronal Sigma-1 Receptors: Signaling Functions and Protective Roles in Neurodegenerative Diseases. Front Neurosci 2019; 13:862. [PMID: 31551669 PMCID: PMC6736580 DOI: 10.3389/fnins.2019.00862] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Sigma-1 receptor (S1R) is a multi-functional, ligand-operated protein situated in endoplasmic reticulum (ER) membranes and changes in its function and/or expression have been associated with various neurological disorders including amyotrophic lateral sclerosis/frontotemporal dementia, Alzheimer's (AD) and Huntington's diseases (HD). S1R agonists are broadly neuroprotective and this is achieved through a diversity of S1R-mediated signaling functions that are generally pro-survival and anti-apoptotic; yet, relatively little is known regarding the exact mechanisms of receptor functioning at the molecular level. This review summarizes therapeutically relevant mechanisms by which S1R modulates neurophysiology and implements neuroprotective functions in neurodegenerative diseases. These mechanisms are diverse due to the fact that S1R can bind to and modulate a large range of client proteins, including many ion channels in both ER and plasma membranes. We summarize the effect of S1R on its interaction partners and consider some of the cell type- and disease-specific aspects of these actions. Besides direct protein interactions in the endoplasmic reticulum, S1R is likely to function at the cellular/interorganellar level by altering the activity of several plasmalemmal ion channels through control of trafficking, which may help to reduce excitotoxicity. Moreover, S1R is situated in lipid rafts where it binds cholesterol and regulates lipid and protein trafficking and calcium flux at the mitochondrial-associated membrane (MAM) domain. This may have important implications for MAM stability and function in neurodegenerative diseases as well as cellular bioenergetics. We also summarize the structural and biochemical features of S1R proposed to underlie its activity. In conclusion, S1R is incredibly versatile in its ability to foster neuronal homeostasis in the context of several neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniel A. Ryskamp
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Svetlana Korban
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - Vladimir Zhemkov
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Nina Kraskovskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, United States
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| |
Collapse
|
16
|
Abstract
More than four decades passed since sigma receptors were first mentioned. Since then, existence of at least two receptor subtypes and their tissue distributions have been proposed. Nowadays, it is clear, that sigma receptors are unique ubiquitous proteins with pluripotent function, which can interact with so many different classes of proteins. As the endoplasmic resident proteins, they work as molecular chaperones - accompany various proteins during their folding, ensure trafficking of the maturated proteins between cellular organelles and regulate their functions. In the heart, sigma receptor type 1 is more dominant. Cardiac sigma 1 receptors regulate response to endoplasmic reticulum stress, modulates calcium signaling in cardiomyocyte and can affect function of voltage-gated ion channels. They contributed in pathophysiology of cardiac hypertrophy, heart failure and many other cardiovascular disorders. Therefore, sigma receptors are potential novel targets for specific treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- T Stracina
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | | |
Collapse
|
17
|
Floresta G, Amata E, Barbaraci C, Gentile D, Turnaturi R, Marrazzo A, Rescifina A. A Structure- and Ligand-Based Virtual Screening of a Database of "Small" Marine Natural Products for the Identification of "Blue" Sigma-2 Receptor Ligands. Mar Drugs 2018; 16:md16100384. [PMID: 30322188 PMCID: PMC6212963 DOI: 10.3390/md16100384] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022] Open
Abstract
Sigma receptors are a fascinating receptor protein class whose ligands are actually under clinical evaluation for the modulation of opioid analgesia and their use as positron emission tomography radiotracers. In particular, peculiar biological and therapeutic functions are associated with the sigma-2 (σ2) receptor. The σ2 receptor ligands determine tumor cell death through apoptotic and non-apoptotic pathways, and the overexpression of σ2 receptors in several tumor cell lines has been well documented, with significantly higher levels in proliferating tumor cells compared to quiescent ones. This acknowledged feature has found practical application in the development of cancer cell tracers and for ligand-targeting therapy. In this context, the development of new ligands that target the σ2 receptors is beneficial for those diseases in which this protein is involved. In this paper, we conducted a search of new potential σ2 receptor ligands among a database of 1517 “small” marine natural products constructed by the union of the Seaweed Metabolite and the Chemical Entities of Biological Interest (ChEBI) Databases. The structures were passed through two filters that were constituted by our developed two-dimensional (2D) and three-dimensional Quantitative Structure-Activity Relationship (3D-QSAR) statistical models, and successively docked upon a σ2 receptor homology model that we built according to the FASTA sequence of the σ2/TMEM97 (SGMR2_HUMAN) receptor.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
- Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Emanuele Amata
- Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Carla Barbaraci
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Davide Gentile
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Rita Turnaturi
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| |
Collapse
|
18
|
Aguinaga D, Medrano M, Vega-Quiroga I, Gysling K, Canela EI, Navarro G, Franco R. Cocaine Effects on Dopaminergic Transmission Depend on a Balance between Sigma-1 and Sigma-2 Receptor Expression. Front Mol Neurosci 2018; 11:17. [PMID: 29483862 PMCID: PMC5816031 DOI: 10.3389/fnmol.2018.00017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
Sigma σ1 and σ2 receptors are targets of cocaine. Despite sharing a similar name, the two receptors are structurally unrelated and their physiological role is unknown. Cocaine increases the level of dopamine, a key neurotransmitter in CNS motor control and reward areas. While the drug also affects dopaminergic signaling by allosteric modulations exerted by σ1R interacting with dopamine D1 and D2 receptors, the potential regulation of dopaminergic transmission by σ2R is also unknown. We here demonstrate that σ2R may form heteroreceptor complexes with D1 but not with D2 receptors. Remarkably σ1, σ2, and D1 receptors may form heterotrimers with particular signaling properties. Determination of cAMP levels, MAP kinase activation and label-free assays demonstrate allosteric interactions within the trimer. Importantly, the presence of σ2R induces bias in signal transduction as σ2R ligands increase cAMP signaling whereas reduce MAP kinase activation. These effects, which are opposite to those exerted via σ1R, suggest that the D1 receptor-mediated signaling depends on the degree of trimer formation and the differential balance of sigma receptor and heteroreceptor expression in acute versus chronic cocaine consumption. Although the physiological role is unknown, the heteroreceptor complex formed by σ1, σ2, and D1 receptors arise as relevant to convey the cocaine actions on motor control and reward circuits and as a key factor in acquisition of the addictive habit.
Collapse
Affiliation(s)
- David Aguinaga
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Mireia Medrano
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Ignacio Vega-Quiroga
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enric I Canela
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Physiology, Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Franco
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Spinelli F, Haider A, Toscano A, Pati ML, Keller C, Berardi F, Colabufo NA, Abate C, Ametamey SM. Synthesis, radiolabelling, and evaluation of [ 11C]PB212 as a radioligand for imaging sigma-1 receptors using PET. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2018; 8:32-40. [PMID: 29531859 PMCID: PMC5840321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/20/2017] [Indexed: 03/17/2024]
Abstract
The Sigma-1 receptor (Sig-1R) has been described as a pluripotent modulator of distinct physiological functions and its involvement in various central and peripheral pathological disorders has been demonstrated. However, further investigations are required to understand the complex role of the Sig-1R as a molecular chaperon. A specific PET radioligand would provide a powerful tool in Sig-1R related studies. As part of our efforts to develop a Sig-1R PET radioligand that shows antagonistic properties, we investigated the suitability of 1-(4-(6-methoxynaphthalen-1-yl)butyl)-4-methylpiperidine (designated PB212) for imaging Sig-1R. PB212 is a Sig-1R antagonist and exhibits subnanomolar affinity (Ki = 0.030 nM) towards Sig-1R as well as good to excellent selectivity over Sig-2R. The radiolabelling of [11C]PB212 was accomplished by O-methylation of the phenolic precursor using [11C]MeI. In vitro autoradiography with [11C]PB212 on WT and Sig-1R KO mouse brain tissues revealed high non-specific binding, however using rat spleen tissues from CD1 mice and Wistar rats, high specific binding was observed. The spleen is known to have a high expression of Sig-1R. In vivo PET experiments in Wistar rats also showed high accumulation of [11C]PB212 in the spleen. Injection of Sig-1R binding compounds, haloperidol (1 mg/kg) or fluspidine (1 mg/kg) shortly before [11C]PB212 administration induced a drastic reduction of radiotracer accumulation, confirming the specificity of [11C]PB212 towards Sig-1R in the spleen. The results obtained herein indicate that although [11C]PB212 is not suitable for imaging Sig-1R in the brain, it is a promising candidate for the detection and quantification of Sig-1Rs in the periphery.
Collapse
Affiliation(s)
- Francesco Spinelli
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro70125, Bari, Italy
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, ETH ZurichCH-8093, Zurich, Switzerland
| | - Ahmed Haider
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, ETH ZurichCH-8093, Zurich, Switzerland
| | - Annamaria Toscano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro70125, Bari, Italy
| | - Maria Laura Pati
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro70125, Bari, Italy
| | - Claudia Keller
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, ETH ZurichCH-8093, Zurich, Switzerland
| | - Francesco Berardi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro70125, Bari, Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro70125, Bari, Italy
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro70125, Bari, Italy
| | - Simon M Ametamey
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, ETH ZurichCH-8093, Zurich, Switzerland
| |
Collapse
|
20
|
Loiseau C, Cayetanot F, Joubert F, Perrin-Terrin AS, Cardot P, Fiamma MN, Frugiere A, Straus C, Bodineau L. Current Perspectives for the use of Gonane Progesteronergic Drugs in the Treatment of Central Hypoventilation Syndromes. Curr Neuropharmacol 2018; 16:1433-1454. [PMID: 28721821 PMCID: PMC6295933 DOI: 10.2174/1570159x15666170719104605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/30/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Central alveolar hypoventilation syndromes (CHS) encompass neurorespiratory diseases resulting from congenital or acquired neurological disorders. Hypercapnia, acidosis, and hypoxemia resulting from CHS negatively affect physiological functions and can be lifethreatening. To date, the absence of pharmacological treatment implies that the patients must receive assisted ventilation throughout their lives. OBJECTIVE To highlight the relevance of determining conditions in which using gonane synthetic progestins could be of potential clinical interest for the treatment of CHS. METHODS The mechanisms by which gonanes modulate the respiratory drive were put into the context of those established for natural progesterone and other synthetic progestins. RESULTS The clinical benefits of synthetic progestins to treat respiratory diseases are mixed with either positive outcomes or no improvement. A benefit for CHS patients has only recently been proposed. We incidentally observed restoration of CO2 chemosensitivity, the functional deficit of this disease, in two adult CHS women by desogestrel, a gonane progestin, used for contraception. This effect was not observed by another group, studying a single patient. These contradictory findings are probably due to the complex nature of the action of desogestrel on breathing and led us to carry out mechanistic studies in rodents. Our results show that desogestrel influences the respiratory command by modulating the GABAA and NMDA signaling in the respiratory network, medullary serotoninergic systems, and supramedullary areas. CONCLUSION Gonanes show promise for improving ventilation of CHS patients, although the conditions of their use need to be better understood.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Laurence Bodineau
- Address correspondence to this author at the Sorbonne Universités, UPMC Univ. Paris 06, INSERM, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75013, Paris, France; Tel: 33 1 40 77 97 15; Fax: 33 1 40 77 97 89; E-mail:
| |
Collapse
|
21
|
Potential independent action of sigma receptor ligands through inhibition of the Kv2.1 channel. Oncotarget 2017; 8:59345-59358. [PMID: 28938641 PMCID: PMC5601737 DOI: 10.18632/oncotarget.19581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/16/2017] [Indexed: 12/14/2022] Open
Abstract
The sigma-1 receptor (σ1-R) and sigma-2 receptor (σ2-R) are potential drug targets for treatment of cancer, pain, depression, retinal degeneration and other neuronal diseases. Previous reports show that sigma-1 receptor modulates the activities of multiple channels. We are interested in possible sigma receptor modulation of Kv2.1, a K+ channel abundant in retinal photoreceptors. We tested the effect of established sigma receptor ligands on Kv2.1 channels which were stably expressed in HEK293 cells. Surprisingly, σ1-R antagonists inhibited Kv2.1 currents in both wild type and σ1-R knockout HEK293 cells that we engineered using the CRISPR/Cas9 technology. Moreover, PB28, a σ1-R antagonist and also σ2-R agonist, inhibited Kv2.1 in σ1-R knockout cells, but this action was not blocked by the σ2-R antagonists that did not have an effect on Kv2.1. We also observed inhibition of electroretinogram by PB28 in wild type as well as σ1-R knockout mice. Thus, the results in this study indicate that the Kv2.1-inhibiting function of the sigma ligands is not sigma receptor dependent, suggesting a direct effect of these ligands on the Kv2.1 channel.
Collapse
|
22
|
Merlos M, Burgueño J, Portillo-Salido E, Plata-Salamán CR, Vela JM. Pharmacological Modulation of the Sigma 1 Receptor and the Treatment of Pain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:85-107. [PMID: 28315267 DOI: 10.1007/978-3-319-50174-1_8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is a critical need for new analgesics acting through new mechanisms of action, which could increase the efficacy with respect to existing therapies and reduce their unwanted effects. Current preclinical evidence supports the modulatory role of sigma-1 receptors (σ1R) in nociception, mainly based on the pain-attenuated phenotype of σ1R knockout mice and on the antinociceptive effect exerted by σ1R antagonists on pains of different etiologies. σ1R is highly expressed in different pain areas of the CNS and the periphery (particularly dorsal root ganglia), and interacts and modulates the functionality of different receptors and ion channels . The antagonism of σ1R leads to decreased amplification of pain signaling within the spinal cord (central sensitization), but recent data also support a role at the periphery. σ1R antagonists have consistently demonstrated efficacy in neuropathic pain , but also in other types of pain including inflammatory, orofacial, visceral, and post-operative pain. Apart from acting alone, when combined with opioids, σ1R antagonists enhance opioid analgesia but not opioid-induced unwanted effects. Interestingly, unlike opioids, σ1R antagonists do not modify normal sensory mechanical and thermal sensitivity thresholds but they exert antihypersensitive effects in sensitizing conditions, enabling the reversal of nociceptive thresholds back to normal values. Accordingly, σ1R antagonists are not strictly analgesics; they are antiallodynic and antihyperalgesic drugs acting when the system is sensitized following prolonged noxious stimulation or persistent abnormal afferent input (e.g., secondary to nerve injury). These are distinctive features allowing σ1R antagonists to exert a modulatory effect specifically in pathophysiological conditions such as chronic pain .
Collapse
Affiliation(s)
- Manuel Merlos
- Drug Discovery and Preclinical Development, ESTEVE. Parc Científic de Barcelona, Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - Javier Burgueño
- Drug Discovery and Preclinical Development, ESTEVE. Parc Científic de Barcelona, Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - Enrique Portillo-Salido
- Drug Discovery and Preclinical Development, ESTEVE. Parc Científic de Barcelona, Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - Carlos Ramón Plata-Salamán
- Drug Discovery and Preclinical Development, ESTEVE. Parc Científic de Barcelona, Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - José Miguel Vela
- Drug Discovery and Preclinical Development, ESTEVE. Parc Científic de Barcelona, Baldiri Reixac 4-8, 08028, Barcelona, Spain.
| |
Collapse
|
23
|
Abstract
There is a critical need for new analgesics acting through new mechanisms of action, which could increase the efficacy respect to existing therapies and/or reduce their unwanted effects. Current preclinical evidence supports the modulatory role of the sigma-1 receptor (σ1R) in nociception, mainly based on the pain-attenuated phenotype of σ1R knockout mice and on the antinociceptive effect exerted by σ1R antagonists on pain of different etiology, very consistently in neuropathic pain, but also in nociceptive, inflammatory, and visceral pain. σ1R is highly expressed in different pain areas of the CNS and the periphery, particularly dorsal root ganglia (DRG), and interacts and modulates the functionality of different receptors and ion channels. Accordingly, antinociceptive effects of σ1R antagonists both acting alone and in combination with other analgesics have been reported at both central and peripheral sites. At the central level, behavioral, electrophysiological, neurochemical, and molecular findings support a role for σ1R antagonists in inhibiting augmented excitability secondary to sustained afferent input. Moreover, the involvement of σ1R in mechanisms regulating pain at the periphery has been recently confirmed. Unlike opioids, σ1R antagonists do not modify normal sensory mechanical and thermal sensitivity thresholds but they exert antihypersensitivity effects (antihyperalgesic and antiallodynic) in sensitizing conditions, enabling the reversal of nociceptive thresholds back to normal values. These are distinctive features allowing σ1R antagonists to exert a modulatory effect specifically in pathophysiological conditions such as chronic pain.
Collapse
Affiliation(s)
- Manuel Merlos
- Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain
| | - Luz Romero
- Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain
| | - Daniel Zamanillo
- Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain
| | | | - José Miguel Vela
- Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain.
- Parc Científic de Barcelona, Baldiri Reixac 4-8, 08028, Barcelona, Spain.
| |
Collapse
|
24
|
Zareba W. Should We Use Drugs to Decrease Drug-Induced QT Prolongation? JACC Clin Electrophysiol 2016; 2:775-776. [PMID: 29759758 DOI: 10.1016/j.jacep.2016.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Wojciech Zareba
- Heart Research Follow-up Program, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
25
|
Aydar E, Stratton D, Fraser SP, Djamgoz MBA, Palmer C. Sigma-1 receptors modulate neonatal Na v1.5 ion channels in breast cancer cell lines. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2016; 45:671-683. [PMID: 27160185 DOI: 10.1007/s00249-016-1135-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/05/2016] [Accepted: 04/20/2016] [Indexed: 01/07/2023]
Abstract
The main aim of this study was to investigate a possible functional connection between sigma-1 receptors and voltage-gated sodium channels (VGSCs) in human breast cancer cells. The hypothesis was that sigma-1 drugs could alter the metastatic properties of breast cancer cells via the VGSC. Evidence was found for expression of sigma-1 receptor and neonatal Nav1.5 (nNav1.5) expression in both MDA-MB-231 and MDA-MB-468 cells. Sigma-1 drugs (SKF10047 and dimethyltryptamine) did not affect cell proliferation or migration but significantly reduced adhesion to the substrate. Silencing sigma-1 receptor expression by siRNA similarly reduced the adhesion. Blocking nNav1.5 activity with a polyclonal antibody (NESOpAb) targeting an extracellular region of nNav1.5 also reduced the adhesion in both cell lines. Importantly, the results of combined treatments with NESOpAb and a sigma-1 drug or sigma-1 siRNA suggested that both treatments targeted the same mechanism. The possibility was tested, therefore, that the sigma-1 receptor and the nNav1.5 channel formed a physical, functional complex. This suggestion was supported by the results of co-immunoprecipitation experiments. Furthermore, application of sigma-1 drugs to the cells reduced the surface expression of nNav1.5 protein, which could explain how sigma-1 receptor activation could alter the metastatic behaviour of breast cancer cells. Overall, these results are consistent with the idea of a sigma-1 protein behaving like either a "chaperone" or a regulatory subunit associated with nNav1.5.
Collapse
Affiliation(s)
- Ebru Aydar
- Institute of Ophthalmology, University College London, 11/43 Bath Street, London, EC1V 9EL, UK
| | - Dan Stratton
- Faculty of Life Sciences, London Metropolitan University, London, N7 8DB, UK
| | - Scott P Fraser
- Neuroscience Solutions to Cancer Research Group, Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| | - Mustafa B A Djamgoz
- Neuroscience Solutions to Cancer Research Group, Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK
- Biotechnology Research Centre (BRC), Cyprus International University, Haspolat, Lefkosa, Cyprus
| | - Christopher Palmer
- Faculty of Life Sciences, London Metropolitan University, London, N7 8DB, UK.
| |
Collapse
|
26
|
Misra SK, Moitra P, Kondaiah P, Bhattacharya S. Co-liposomes having anisamide tagged lipid and cholesteryl tryptophan trigger enhanced gene transfection in sigma receptor positive cells. Colloids Surf B Biointerfaces 2016; 142:130-140. [DOI: 10.1016/j.colsurfb.2016.02.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/24/2016] [Accepted: 02/22/2016] [Indexed: 01/19/2023]
|
27
|
Su TP, Su TC, Nakamura Y, Tsai SY. The Sigma-1 Receptor as a Pluripotent Modulator in Living Systems. Trends Pharmacol Sci 2016; 37:262-278. [PMID: 26869505 PMCID: PMC4811735 DOI: 10.1016/j.tips.2016.01.003] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/03/2016] [Accepted: 01/05/2016] [Indexed: 01/21/2023]
Abstract
The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum (ER) protein that resides specifically in the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM), an interface between ER and mitochondria. In addition to being able to translocate to the plasma membrane (PM) to interact with ion channels and other receptors, Sig-1R also occurs at the nuclear envelope, where it recruits chromatin-remodeling factors to affect the transcription of genes. Sig-1Rs have also been reported to interact with other membranous or soluble proteins at other loci, including the cytosol, and to be involved in several central nervous system (CNS) diseases. Here, we propose that Sig-1R is a pluripotent modulator with resultant multiple functional manifestations in living systems.
Collapse
Affiliation(s)
- Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA.
| | - Tzu-Chieh Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Yoki Nakamura
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Shang-Yi Tsai
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| |
Collapse
|
28
|
Abate C, Riganti C, Pati ML, Ghigo D, Berardi F, Mavlyutov T, Guo LW, Ruoho A. Development of sigma-1 (σ1) receptor fluorescent ligands as versatile tools to study σ1 receptors. Eur J Med Chem 2016; 108:577-585. [PMID: 26717207 PMCID: PMC4755300 DOI: 10.1016/j.ejmech.2015.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 11/16/2022]
Abstract
Despite their controversial physiology, sigma-1 (σ1) receptors are intriguing targets for the development of therapeutic agents for central nervous system diseases. With the aim of providing versatile pharmacological tools to study σ1 receptors, we developed three σ1 fluorescent tracers by functionalizing three well characterized σ1 ligands with a fluorescent tag. A good compromise between σ1 binding affinity and fluorescent properties was reached, and the σ1 specific targeting of the novel tracers was demonstrated by confocal microscopy and flow cytometry. These novel ligands were also successfully used in competition binding studies by flow cytometry, showing their utility in nonradioactive binding assays as an alternative strategy to the more classical radioligand binding assays. To the best of our knowledge these are the first σ1 fluorescent ligands to be developed and successfully employed in living cells, representing promising tools to strengthen σ1 receptors related studies.
Collapse
Affiliation(s)
- Carmen Abate
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125, Bari, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126, Torino, Italy
| | - Maria Laura Pati
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125, Bari, Italy
| | - Dario Ghigo
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126, Torino, Italy
| | - Francesco Berardi
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125, Bari, Italy
| | - Timur Mavlyutov
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Arnold Ruoho
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| |
Collapse
|
29
|
Abstract
Sigma receptors, both Sigma-1(S1R) and Sigma-2 (S2R), are small molecule-regulated, primarily endoplasmic reticulum (ER) membrane-associated sites. A number of drugs bind to sigma receptors, including the antipsychotic haloperidol and (+)-pentazocine, an opioid analgesic. Sigma receptors are implicated in many central nervous system disorders, in particular Alzheimer's disease and conditions associated with motor control, such as Amyotrophic Lateral Sclerosis (ALS). Described in this unit are radioligand binding assays used for the pharmacological characterization of S1R and S2R. Methods detailed include a radioligand saturation binding assay for defining receptor densities and a competitive inhibition binding assay employing [³H]-(+)-pentazocine for identifying and characterizing novel ligands that interact with S1R. Procedures using [³H]-1,3-di(2-tolyl)guanidine ([³H]-DTG), a nonselective sigma receptor ligand, are described for conducting a saturation binding and competitive inhibition assays for the S2R site. These protocols are of value in drug discovery in identifying new sigma ligands and in the characterization of these receptors.
Collapse
Affiliation(s)
- Uyen B Chu
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53706
| | - Arnold E Ruoho
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53706
| |
Collapse
|
30
|
Shanmugam AK, Mysona BA, Wang J, Zhao J, Tawfik A, Sanders A, Markand S, Zorrilla E, Ganapathy V, Bollinger KE, Smith SB. Progesterone Receptor Membrane Component 1 (PGRMC1) Expression in Murine Retina. Curr Eye Res 2015; 41:1105-1112. [PMID: 26642738 DOI: 10.3109/02713683.2015.1085579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Sigma receptors 1 (σR1) and 2 (σR2) are thought to be two distinct proteins which share the ability to bind multiple ligands, several of which are common to both receptors. Whether σR1 and σR2 share overlapping biological functions is unknown. Recently, progesterone receptor membrane component 1 (PGRMC1) was shown to contain the putative σR2 binding site. PGRMC1 has not been studied in retina. We hypothesize that biological interactions between σR1 and PGRMC1 will be evidenced by compensatory upregulation of PGRMC1 in σR1-/- mice. METHODS Immunofluorescence, RT-PCR, and immunoblotting methods were used to analyze expression of PGRMC1 in wild-type mouse retina. Tissues from σR1-/- mice were used to investigate whether a biological interaction exists between σR1 and PGRMC1. RESULTS In the eye, PGRMC1 is expressed in corneal epithelium, lens, ciliary body epithelium, and retina. In retina, PGRMC1 is present in Müller cells and retinal pigment epithelium. This expression pattern is similar, but not identical to σR1. PGRMC1 protein levels in neural retina and eye cup from σR1-/- mice did not differ from wild-type mice. Nonocular tissues, lung, heart, and kidney showed similar Pgrmc1 gene expression in wild-type and σR1-/- mice. In contrast, liver, brain, and intestine showed increased Pgrmc1 gene expression in σR1-/- mice. CONCLUSION Despite potential biological overlap, deletion of σR1 did not result in a compensatory change in PGRMC1 protein levels in σR1-/- mouse retina. Increased Pgrmc1 gene expression in organs with high lipid content such as liver, brain, and intestine indicates a possible tissue-specific interaction between σR1 and PGRMC1. The current studies establish the presence of PGRMC1 in retina and lay the foundation for analysis of its biological function.
Collapse
Affiliation(s)
- Arul K Shanmugam
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA.,b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA
| | - Barbara A Mysona
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA.,b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA
| | - Jing Wang
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA.,b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA
| | - Jing Zhao
- b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA.,c Department of Ophthalmology , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA
| | - Amany Tawfik
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA.,b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA
| | - A Sanders
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA
| | - Shanu Markand
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA.,b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA
| | - Eric Zorrilla
- d Harold L. Dorris Neurological Research Institute , The Scripps Research Institute , La Jolla , CA , USA
| | - Vadivel Ganapathy
- b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA.,e Department of Cell Biology and Biochemistry , Texas Tech University Health Sciences Center , Lubbock , TX , USA
| | - Kathryn E Bollinger
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA.,b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA.,c Department of Ophthalmology , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA
| | - Sylvia B Smith
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA.,b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA.,c Department of Ophthalmology , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA
| |
Collapse
|
31
|
van Waarde A, Rybczynska AA, Ramakrishnan NK, Ishiwata K, Elsinga PH, Dierckx RAJO. Potential applications for sigma receptor ligands in cancer diagnosis and therapy. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:2703-14. [PMID: 25173780 DOI: 10.1016/j.bbamem.2014.08.022] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/04/2014] [Accepted: 08/19/2014] [Indexed: 01/03/2023]
Abstract
Sigma receptors (sigma-1 and sigma-2) represent two independent classes of proteins. Their endogenous ligands may include the hallucinogen N,N-dimethyltryptamine (DMT) and sphingolipid-derived amines which interact with sigma-1 receptors, besides steroid hormones (e.g., progesterone) which bind to both sigma receptor subpopulations. The sigma-1 receptor is a ligand-regulated molecular chaperone with various ion channels and G-protein-coupled membrane receptors as clients. The sigma-2 receptor was identified as the progesterone receptor membrane component 1 (PGRMC1). Although sigma receptors are over-expressed in tumors and up-regulated in rapidly dividing normal tissue, their ligands induce significant cell death only in tumor tissue. Sigma ligands may therefore be used to selectively eradicate tumors. Multiple mechanisms appear to underlie cell killing after administration of sigma ligands, and the signaling pathways are dependent both on the type of ligand and the type of tumor cell. Recent evidence suggests that the sigma-2 receptor is a potential tumor and serum biomarker for human lung cancer and an important target for inhibiting tumor invasion and cancer progression. Current radiochemical efforts are focused on the development of subtype-selective radioligands for positron emission tomography (PET) imaging. Right now, the mostpromising tracers are [18F]fluspidine and [18F]FTC-146 for sigma-1 receptors and [11C]RHM-1 and [18F]ISO-1 for the sigma-2 subtype. Nanoparticles coupled to sigma ligands have shown considerable potential for targeted delivery of antitumor drugs in animal models of cancer, but clinical studies exploring this strategy in cancer patients have not yet been reported. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Aren van Waarde
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Anna A Rybczynska
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nisha K Ramakrishnan
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Kiichi Ishiwata
- Tokyo Metropolitan Institute of Gerontology, Research Team for Neuroimaging, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo 173-0015, Japan
| | - Philip H Elsinga
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Rudi A J O Dierckx
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; University of Ghent, University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
32
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
33
|
Sigma-2 receptor binding is decreased in female, but not male, APP/PS1 mice. Biochem Biophys Res Commun 2015; 460:439-45. [PMID: 25796326 DOI: 10.1016/j.bbrc.2015.03.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/10/2015] [Indexed: 11/20/2022]
Abstract
The sigma-2 receptor is a steroid-binding membrane-associated receptor which has been implicated in cell survival. Sigma-2 has recently been shown to bind amyloid-β (Aβ) oligomers in Alzheimer's disease (AD) brain. Furthermore, blocking this interaction was shown to prevent or reverse the effects of Aβ to cause cognitive impairment in mouse models and synaptic loss in neuronal cultures. In the present work, the density of sigma-2 receptors was measured in a double transgenic mouse model of amyloid-β deposition (APP/PS1). Comparisons were made between males and females and between transgenic and wt animals. Sigma-2 receptor density was assessed by quantitative autoradiography performed on coronal brain slices using [(3)H]N-[4-(3,4-dihydro-6,7-dimethoxyisoquinolin-2(1H)-yl)butyl]-2-methoxy-5-methyl-benzamide ([(3)H]RHM-1), which has a 300-fold selectivity for the sigma-2 receptor over the sigma-1 receptor. The translocator protein of 18 kDa (TSPO) is expressed on activated microglia and is a marker for neuroinflammation. TSPO has been found to be upregulated in neurodegenerative disorders, including AD. Therefore, in parallel with the sigma-2 autoradiography experiments, we measured TSPO expression using the selective radioligand, [(3)H]PBR28. We also quantified Aβ plaque burden in the same animals using a monoclonal antibody raised against aggregated Aβ. Sigma-2 receptor density was significantly decreased in piriform and motor cortices as well as striata of 16-month old female, but not male, APP/PS1 mice as compared to their wt counterparts. [(3)H]PBR28 binding and immunostaining for Aβ plaques were significantly increased in piriform and motor cortices of both male and female transgenic mice. In striatum however, significant increases were observed only in females.
Collapse
|
34
|
Fytas C, Zoidis G, Tsotinis A, Fytas G, Khan MA, Akhtar S, Rahman KM, Thurston DE. Novel 1-(2-aryl-2-adamantyl)piperazine derivatives with antiproliferative activity. Eur J Med Chem 2015; 93:281-90. [PMID: 25703296 DOI: 10.1016/j.ejmech.2015.02.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 01/27/2015] [Accepted: 02/13/2015] [Indexed: 11/29/2022]
Abstract
Novel 1-(2-aryl-2-adamantyl)piperazine derivatives have been synthesized and evaluated in vitro for their antitumor properties against HeLa cervical carcinoma, MDA MB 231 breast cancer, MIA PaCa2 pancreatic cancer, and NCI H1975 non-small cell lung cancer. The parent piperazine 6 was found to exhibit a reasonable activity toward the HeLa and MDA MB 231 tumor cell lines (IC50= 9.2 and 8.4 μΜ, respectively). Concurrent benzene ring C4-fluorination and piperidine acetylation of the piperazino NH of compound 6 resulted in the most active compound 13 of the series in both of the above cell lines (IC50=8.4 and 6.8 μΜ, respectively). Noticeably, compounds 6 and 13 exhibited a significantly low cytotoxicity level over the normal human cells HUVEC (Human Umbilical Vein Endothelial Cells) and NHDF (Normal Human Dermal Fibroblasts).
Collapse
Affiliation(s)
- Christos Fytas
- School of Health Sciences, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Panepistimioupoli-Zografou, GR-15784 Athens, Greece
| | - Grigoris Zoidis
- School of Health Sciences, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Panepistimioupoli-Zografou, GR-15784 Athens, Greece
| | - Andrew Tsotinis
- School of Health Sciences, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Panepistimioupoli-Zografou, GR-15784 Athens, Greece
| | - George Fytas
- School of Health Sciences, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Panepistimioupoli-Zografou, GR-15784 Athens, Greece.
| | - Mohsin A Khan
- Institute of Pharmaceutical Sciences, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Samar Akhtar
- Institute of Pharmaceutical Sciences, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Khondaker M Rahman
- Institute of Pharmaceutical Sciences, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - David E Thurston
- Institute of Pharmaceutical Sciences, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| |
Collapse
|
35
|
Xu R, Lord SA, Peterson RM, Fergason-Cantrell EA, Lever JR, Lever SZ. Ether modifications to 1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazine (SA4503): effects on binding affinity and selectivity for sigma receptors and monoamine transporters. Bioorg Med Chem 2015; 23:222-30. [PMID: 25468036 PMCID: PMC4274187 DOI: 10.1016/j.bmc.2014.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/25/2014] [Accepted: 11/04/2014] [Indexed: 11/22/2022]
Abstract
Two series of novel ether analogs of the sigma (σ) receptor ligand 1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazine (SA4503) have been prepared. In one series, the alkyl portion of the 4-methoxy group was replaced with allyl, propyl, bromoethyl, benzyl, phenethyl, and phenylpropyl moieties. In the second series, the 3,4-dimethoxy was replaced with cyclic methylenedioxy, ethylenedioxy and propylenedioxy groups. These ligands, along with 4-O-des-methyl SA4503, were evaluated for σ1 and σ2 receptor affinity, and compared to SA4503 and several known ether analogs. SA4503 and a subset of ether analogs were also evaluated for dopamine transporter (DAT) and serotonin transporter (SERT) affinity. The highest σ1 receptor affinities, Ki values of 1.75-4.63 nM, were observed for 4-O-des-methyl SA4503, SA4503 and the methylenedioxy analog. As steric bulk increased, σ1 receptor affinity decreased, but only to a point. Allyl, propyl and bromoethyl substitutions gave σ1 receptor Ki values in the 20-30 nM range, while bulkier analogs having phenylalkyl, and Z- and E-iodoallyl, ether substitutions showed higher σ1 affinities, with Ki values in the 13-21 nM range. Most ligands studied exhibited comparable σ1 and σ2 affinities, resulting in little to no subtype selectivity. SA4503, the fluoroethyl analog and the methylenedioxy congener showed modest six- to fourteen-fold selectivity for σ1 sites. DAT and SERT interactions proved much more sensitive than σ receptor interactions to these structural modifications. For example, the benzyl congener (σ1Ki=20.8 nM; σ2Ki=16.4 nM) showed over 100-fold higher DAT affinity (Ki=121 nM) and 6-fold higher SERT affinity (Ki=128nM) than the parent SA4503 (DAT Ki=12650 nM; SERT Ki=760 nM). Thus, ether modifications to the SA4503 scaffold can provide polyfunctional ligands having a broader spectrum of possible pharmacological actions.
Collapse
Affiliation(s)
- Rong Xu
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Sarah A Lord
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Ryan M Peterson
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Emily A Fergason-Cantrell
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - John R Lever
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.
| | - Susan Z Lever
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA; Department of MU Research Reactor Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
36
|
Balasuriya D, D'Sa L, Talker R, Dupuis E, Maurin F, Martin P, Borgese F, Soriani O, Edwardson JM. A direct interaction between the sigma-1 receptor and the hERG voltage-gated K+ channel revealed by atomic force microscopy and homogeneous time-resolved fluorescence (HTRF®). J Biol Chem 2014; 289:32353-32363. [PMID: 25266722 PMCID: PMC4231707 DOI: 10.1074/jbc.m114.603506] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/17/2014] [Indexed: 01/29/2023] Open
Abstract
The sigma-1 receptor is an endoplasmic reticulum chaperone protein, widely expressed in central and peripheral tissues, which can translocate to the plasma membrane and modulate the function of various ion channels. The human ether-à-go-go-related gene encodes hERG, a cardiac voltage-gated K(+) channel that is abnormally expressed in many human cancers and is known to interact functionally with the sigma-1 receptor. Our aim was to investigate the nature of the interaction between the sigma-1 receptor and hERG. We show that the two proteins can be co-isolated from a detergent extract of stably transfected HEK-293 cells, consistent with a direct interaction between them. Atomic force microscopy imaging of the isolated protein confirmed the direct binding of the sigma-1 receptor to hERG monomers, dimers, and tetramers. hERG dimers and tetramers became both singly and doubly decorated by sigma-1 receptors; however, hERG monomers were only singly decorated. The distribution of angles between pairs of sigma-1 receptors bound to hERG tetramers had two peaks, at ∼90 and ∼180° in a ratio of ∼2:1, indicating that the sigma-1 receptor interacts with hERG with 4-fold symmetry. Homogeneous time-resolved fluorescence (HTRF®) allowed the detection of the interaction between the sigma-1 receptor and hERG within the plane of the plasma membrane. This interaction was resistant to sigma ligands, but was decreased in response to cholesterol depletion of the membrane. We suggest that the sigma-1 receptor may bind to hERG in the endoplasmic reticulum, aiding its assembly and trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Dilshan Balasuriya
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Lauren D'Sa
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Ronel Talker
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Elodie Dupuis
- CisBio Bioassays, Parc Marcel Boiteux BP 84175, 30200 Codolet, France, and
| | - Fabrice Maurin
- CisBio Bioassays, Parc Marcel Boiteux BP 84175, 30200 Codolet, France, and
| | - Patrick Martin
- Institut de Biologie de Valrose (iBV), CNRS UMR 7277, INSERM U1091 UNS, Faculté des Sciences, Université de Nice Sophia Antipolis, 06108 Nice Cedex 2, France
| | - Franck Borgese
- Institut de Biologie de Valrose (iBV), CNRS UMR 7277, INSERM U1091 UNS, Faculté des Sciences, Université de Nice Sophia Antipolis, 06108 Nice Cedex 2, France
| | - Olivier Soriani
- Institut de Biologie de Valrose (iBV), CNRS UMR 7277, INSERM U1091 UNS, Faculté des Sciences, Université de Nice Sophia Antipolis, 06108 Nice Cedex 2, France.
| | - J Michael Edwardson
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom,.
| |
Collapse
|
37
|
Peviani M, Salvaneschi E, Bontempi L, Petese A, Manzo A, Rossi D, Salmona M, Collina S, Bigini P, Curti D. Neuroprotective effects of the Sigma-1 receptor (S1R) agonist PRE-084, in a mouse model of motor neuron disease not linked to SOD1 mutation. Neurobiol Dis 2014; 62:218-32. [PMID: 24141020 DOI: 10.1016/j.nbd.2013.10.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/12/2013] [Accepted: 10/07/2013] [Indexed: 12/14/2022] Open
Abstract
The identification of novel molecular targets crucially involved in motor neuron degeneration/survival is a necessary step for the development of hopefully more effective therapeutic strategies for amyotrophic lateral sclerosis (ALS) patients. In this view, S1R, an endoplasmic reticulum (ER)-resident receptor with chaperone-like activity, has recently attracted great interest. S1R is involved in several processes leading to acute and chronic neurodegeneration, including ALS pathology. Treatment with the S1R agonist PRE-084 improves locomotor function and motor neuron survival in presymptomatic and early symptomatic mutant SOD1-G93A ALS mice. Here, we tested the efficacy of PRE-084 in a model of spontaneous motor neuron degeneration, the wobbler mouse (wr) as a proof of concept that S1R may be regarded as a key therapeutic target also for ALS cases not linked to SOD1 mutation. Increased staining for S1R was detectable in morphologically spared cervical spinal cord motor neurons of wr mice both at early (6th week) and late (12th week) phases of clinical progression. S1R signal was also detectable in hypertrophic astrocytes and reactive microglia of wr mice. Chronic treatment with PRE-084 (three times a week, for 8weeks), starting at symptom onset, significantly increased the levels of BDNF in the gray matter, improved motor neuron survival and ameliorated paw abnormality and grip strength performance. In addition, the treatment significantly reduced the number of reactive astrocytes whereas, that of CD11b+ microglial cells was increased. A deeper evaluation of microglial markers revealed significant increased number of cells positive for the pan-macrophage marker CD68 and of CD206+ cells, involved in tissue restoration, in the white matter of PRE-084-treated mice. The mRNA levels of TNF-α and IL-1β were not affected by PRE-084 treatment. Thus, our results support pharmacological manipulation of S1R as a promising strategy to cure ALS and point to increased availability of growth factors and modulation of astrocytosis and of macrophage/microglia as part of the mechanisms involved in S1R-mediated neuroprotection.
Collapse
Affiliation(s)
- Marco Peviani
- Department of Biology and Biotechnology "L. Spallanzani", Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Pavia, Italy
| | - Eleonora Salvaneschi
- Department of Biology and Biotechnology "L. Spallanzani", Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Pavia, Italy
| | - Leonardo Bontempi
- Department of Biology and Biotechnology "L. Spallanzani", Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Pavia, Italy
| | - Alessandro Petese
- Department of Biology and Biotechnology "L. Spallanzani", Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Pavia, Italy
| | - Antonio Manzo
- Rheumatology and Translational Immunology Research Laboratories (LaRIT), Division of Rheumatology, IRCCS Policlinico S. Matteo Foundation/University of Pavia, Italy
| | - Daniela Rossi
- Department of Drug Science, Laboratory of Medicinal Chemistry, University of Pavia, Pavia, Italy
| | - Mario Salmona
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Simona Collina
- Department of Drug Science, Laboratory of Medicinal Chemistry, University of Pavia, Pavia, Italy
| | - Paolo Bigini
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Daniela Curti
- Department of Biology and Biotechnology "L. Spallanzani", Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
38
|
Jeffrey M, Lang M, Gane J, Chow E, Wu C, Zhang L. Novel anticonvulsive effects of progesterone in a mouse model of hippocampal electrical kindling. Neuroscience 2013; 257:65-75. [PMID: 24215976 DOI: 10.1016/j.neuroscience.2013.10.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/07/2013] [Accepted: 10/30/2013] [Indexed: 12/28/2022]
Abstract
Progesterone is a known anticonvulsant, with its inhibitory effects generally attributed to its secondary metabolite, 5α,3α-tetrahydroprogesterone (THP), and THP's enhancement of GABAA receptor activity. Accumulating evidence, however, suggests that progesterone may have non-genomic actions independent of the GABAA receptor. In this study, we explored THP/GABAA-independent anticonvulsive actions of progesterone in a mouse model of hippocampal kindling and in mouse entorhinal slices in vitro. Specifically, we examined the effects of progesterone in kindled mice with or without pretreatments with finasteride, a 5α-reductase inhibitor known to block the metabolism of progesterone to THP. In addition, we examined the effects of progesterone on entorhinal epileptiform potentials in the presence of a GABAA receptor antagonist picrotoxin and finasteride. Adult male mice were kindled via a daily stimulation protocol. Electroencephalographic (EEG) discharges were recorded from the hippocampus or cortex to assess "focal" or "generalized" seizure activity. Kindled mice were treated with intra-peritoneal injections of progesterone (10, 35, 100 and 160mg/kg) with or without finasteride pretreatment (50 or 100mg/kg), THP (1, 3.5, 10 and 30mg/kg), midazolam (2mg/kg) and carbamazepine (50mg/kg). Entorhinal cortical slices were prepared from naïve young mice, and repetitive epileptiform potentials were induced by 4-aminopyridine (100μM), picrotoxin (100μM) and finasteride (1μM). Pretreatment with finasteride did not abolish the anticonvulsant effects of progesterone. In finasteride-pretreated mice, progesterone at 100 and 160mg/kg decreased cortical but not hippocampal afterdischarges (ADs). Carbamazepine mimicked the effects of progesterone with finasteride pretreatments in decreasing cortical discharges and motor seizures, whereas midazolam produced effects similar to progesterone alone or THP in decreasing hippocampal ADs and motor seizures. In brain slices, progesterone at 1μM inhibited entorhinal epileptiform potentials in the presence of picrotoxin and finasteride. We suggest that progesterone may have THP/GABAA-dependent and independent anticonvulsive actions in the hippocampal-kindled mouse model.
Collapse
Affiliation(s)
- M Jeffrey
- Department of Pharmacology and Toxicology, University of Toronto, Canada; Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Canada; University of Toronto Epilepsy Research Program, Canada
| | - M Lang
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Canada
| | - J Gane
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Canada
| | - E Chow
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Canada
| | - C Wu
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Canada; University of Toronto Epilepsy Research Program, Canada
| | - L Zhang
- Department of Medicine (Neurology), University of Toronto, Canada; Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Canada; University of Toronto Epilepsy Research Program, Canada.
| |
Collapse
|
39
|
Petersen SL, Intlekofer KA, Moura-Conlon PJ, Brewer DN, Del Pino Sans J, Lopez JA. Nonclassical progesterone signalling molecules in the nervous system. J Neuroendocrinol 2013; 25:991-1001. [PMID: 23763432 DOI: 10.1111/jne.12060] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/30/2013] [Accepted: 06/09/2013] [Indexed: 11/26/2022]
Abstract
Progesterone (P4) regulates a wide range of cognitive, neuroendocrine, neuroimmune and neuroprotective functions. Therefore, it is not surprising that this ovarian hormone acts through multiple receptors. Ever since the 1980s, studies investigating the neural effects of P4 have focused mainly on genomic and nongenomic actions of the classical progestin receptor (PGR). More recently, two groups of nonclassical P4 signalling molecules have been identified: (i) the class II progestin and adipoQ receptor (PAQR) family, which includes PAQR 5, 6, 7, 8 and 9, also called membrane progestin receptor α (mPRα; PAQR7), mPRβ (PAQR8), mPRγ (PAQR5), mPRδ (PAQR6) and mPRε (PAQR9), and (ii) the b5-like haeme/steroid-binding protein family, which includes progesterone receptor membrane component 1 (Pgrmc1), Pgrmc2, neudesin and neuferricin. In this review, we describe the structures, neuroanatomical localisation and signalling mechanisms of these molecules. We also discuss gonadotrophin-releasing hormone regulation as an example of a physiological function regulated by multiple progesterone receptors but through different mechanisms.
Collapse
Affiliation(s)
- S L Petersen
- Veterinary and Animal Sciences Department, University of Massachusetts Amherst, Amherst, MA, USA
| | | | | | | | | | | |
Collapse
|
40
|
Bali N, Morgan TE, Finch CE. Pgrmc1: new roles in the microglial mediation of progesterone-antagonism of estradiol-dependent neurite sprouting and in microglial activation. Front Neurosci 2013; 7:157. [PMID: 24027494 PMCID: PMC3759828 DOI: 10.3389/fnins.2013.00157] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/13/2013] [Indexed: 11/15/2022] Open
Abstract
Pgrmc1 (progesterone receptor membrane component 1) is a multifunctional 22 kDa protein with heme-binding and P450-activating capacity which was recognized under different names for roles in cell motility during neural development and in cancer, and apoptosis. Pgrmc1 expression in microglia was recently shown by the present authors to mediate estrogen-progesterone interactions during axonal sprouting and to mediate microglial activation itself. We also discuss other functions of Pgramc1 in the nervous system and its possible relationship to the 18 kDa sigma-2 receptor (S2R).
Collapse
Affiliation(s)
- N Bali
- Davis School of Gerontology, University of Southern California Los Angeles Los Angeles, CA, USA ; Dornsife College of Letters, Arts and Sciences, University of Southern California Los Angeles Los Angeles, CA, USA
| | | | | |
Collapse
|
41
|
Crottès D, Guizouarn H, Martin P, Borgese F, Soriani O. The sigma-1 receptor: a regulator of cancer cell electrical plasticity? Front Physiol 2013; 4:175. [PMID: 23882221 PMCID: PMC3712323 DOI: 10.3389/fphys.2013.00175] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/21/2013] [Indexed: 12/18/2022] Open
Abstract
Originally mistaken as an opioid receptor, the sigma-1 receptor (Sig1R) is a ubiquitous membrane protein that has been involved in many cellular processes. While the precise function of Sig1R has long remained mysterious, recent studies have shed light on its role and the molecular mechanisms triggered. Sig1R is in fact a stress-activated chaperone mainly associated with the ER-mitochondria interface that can regulate cell survival through the control of calcium homeostasis. Sig1R functionally regulates ion channels belonging to various molecular families and it has thus been involved in neuronal plasticity and central nervous system diseases. Interestingly, Sig1R is frequently expressed in tumors but its function in cancer has not been yet clarified. In this review, we discuss the current understanding of Sig1R. We suggest herein that Sig1R shapes cancer cell electrical signature upon environmental conditions. Thus, Sig1R may be used as a novel therapeutic target to specifically abrogate pro-invasive functions of ion channels in cancer tissue.
Collapse
Affiliation(s)
- David Crottès
- Université de Nice, UMR 7277 Nice, France ; Institut de Biologie de Valrose, CNRS UMR 7277, INSERM U1091, Université de Nice Nice, France
| | | | | | | | | |
Collapse
|
42
|
Bali N, Arimoto JM, Morgan TE, Finch CE. Progesterone antagonism of neurite outgrowth depends on microglial activation via Pgrmc1/S2R. Endocrinology 2013; 154:2468-80. [PMID: 23653459 PMCID: PMC3689281 DOI: 10.1210/en.2012-2109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuronal plasticity is regulated by the ovarian steroids estradiol (E2) and progesterone (P4) in many normal brain functions, as well as in acute response to injury and chronic neurodegenerative disease. In a female rat model of axotomy, the E2-dependent compensatory neuronal sprouting is antagonized by P4. To resolve complex glial-neuronal cell interactions, we used the "wounding-in-a-dish" model of neurons cocultured with astrocytes or mixed glia (microglia to astrocytes, 1:3). Although both astrocytes and mixed glia supported E2-enhanced neurite outgrowth, P4 antagonized E2-induced neurite outgrowth only with mixed glia, but not astrocytes alone. We now show that P4-E2 antagonism of neurite outgrowth is mediated by microglial expression of progesterone receptor (Pgr) membrane component 1 (Pgrmc1)/S2R, a putative nonclassical Pgr mediator with multiple functions. The P4-E2 antagonism of neurite outgrowth was restored by add-back of microglia to astrocyte-neuron cocultures. Because microglia do not express the classical Pgr, we examined the role of Pgrmc1, which is expressed in microglia in vitro and in vivo. Knockdown by siRNA-Pgrmc1 in microglia before add-back to astrocyte-neuron cocultures suppressed the P4-E2 antagonism of neurite outgrowth. Conditioned media from microglia restored the P4-E2 activity, but only if microglia were activated by lipopolysaccharide or by wounding. Moreover, the microglial activation was blocked by Pgmrc1-siRNA knockdown. These findings explain why nonwounded cultures without microglial activation lack P4 antagonism of E2-induced neurite outgrowth. We suggest that microglial activation may influence brain responses to exogenous P4, which is a prospective therapy in traumatic brain injury.
Collapse
Affiliation(s)
- N Bali
- Molecular Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|
43
|
Mach RH, Zeng C, Hawkins WG. The σ2 receptor: a novel protein for the imaging and treatment of cancer. J Med Chem 2013; 56:7137-60. [PMID: 23734634 DOI: 10.1021/jm301545c] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The σ2 receptor is an important target for the development of molecular probes in oncology because of its 10-fold higher density in proliferating tumor cells compared with that in quiescent tumor cells and because of the observation that σ2 receptor agonists are able to kill tumor cells via apoptotic and nonapoptotic mechanisms. Although recent evidence indicates that the σ2 receptor binding site is localized within the progesterone receptor membrane component 1 (PGRMC1), most information regarding this protein has been obtained using either radiolabeled or fluorescent receptor-based probes and from biochemical analysis of the effect of σ2 selective ligands on cells grown in culture. This article reviews the development of σ2 receptor ligands and presents an overview of how they have been used in vitro and in vivo to increase our understanding of the role of the σ2 receptor in cancer and proliferation.
Collapse
Affiliation(s)
- Robert H Mach
- Mallinckrodt Institute of Radiology and ‡Department of Surgery, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | | | | |
Collapse
|
44
|
Mavlyutov TA, Epstein ML, Verbny YI, Huerta MS, Zaitoun I, Ziskind-Conhaim L, Ruoho AE. Lack of sigma-1 receptor exacerbates ALS progression in mice. Neuroscience 2013; 240:129-34. [PMID: 23458708 PMCID: PMC3665351 DOI: 10.1016/j.neuroscience.2013.02.035] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 02/02/2013] [Accepted: 02/15/2013] [Indexed: 11/16/2022]
Abstract
The function of the sigma-1 receptor (S1R) has been implicated in modulating the activity of various ion channels. In the CNS S1R is enriched in cholinergic postsynaptic densities in spinal cord motoneurons (MNs). Mutations in S1R have been found in familial cases of amyotrophic lateral sclerosis (ALS). In this study we show that a knockout of S1R in the SOD1*G93A mouse model of ALS significantly reduces longevity (end stage). Electrophysiological experiments demonstrate that MN of mice lacking S1R exhibit increased excitability. Taken together the data suggest the S1R acts as a brake on excitability, an effect that might enhance longevity in an ALS mouse model.
Collapse
Affiliation(s)
- T A Mavlyutov
- Department of Neuroscience, University of Wisconsin, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Riganas S, Papanastasiou I, Foscolos GB, Tsotinis A, Serin G, Mirjolet JF, Dimas K, Kourafalos VN, Eleutheriades A, Moutsos VI, Khan H, Georgakopoulou S, Zaniou A, Prassa M, Theodoropoulou M, Mantelas A, Pondiki S, Vamvakides A. New Adamantane Phenylalkylamines with σ-Receptor Binding Affinity and Anticancer Activity, Associated with Putative Antagonism of Neuropathic Pain. J Med Chem 2012; 55:10241-61. [DOI: 10.1021/jm3013008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Stefanos Riganas
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15771
Athens, Greece
- Anavex Life Sciences, 27 Marathonos Avenue,
15351 Pallini, Athens, Greece
| | - Ioannis Papanastasiou
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15771
Athens, Greece
| | - George B. Foscolos
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15771
Athens, Greece
| | - Andrew Tsotinis
- Department of Pharmaceutical
Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15771
Athens, Greece
| | | | | | - Kostas Dimas
- Division of Pharmacology, Foundation for Biomedical Research of the Academy of Athens (FBRAA), 11527 Athens, Greece
| | | | | | | | - Humaira Khan
- Anavex Life Sciences, 27 Marathonos Avenue,
15351 Pallini, Athens, Greece
| | | | - Angeliki Zaniou
- Anavex Life Sciences, 27 Marathonos Avenue,
15351 Pallini, Athens, Greece
| | - Margarita Prassa
- Anavex Life Sciences, 27 Marathonos Avenue,
15351 Pallini, Athens, Greece
| | | | | | - Stavroula Pondiki
- Anavex Life Sciences, 27 Marathonos Avenue,
15351 Pallini, Athens, Greece
| | | |
Collapse
|
47
|
Gao XF, Yao JJ, He YL, Hu C, Mei YA. Sigma-1 receptor agonists directly inhibit Nav1.2/1.4 channels. PLoS One 2012; 7:e49384. [PMID: 23139844 PMCID: PMC3489664 DOI: 10.1371/journal.pone.0049384] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 10/09/2012] [Indexed: 12/19/2022] Open
Abstract
(+)-SKF 10047 (N-allyl-normetazocine) is a prototypic and specific sigma-1 receptor agonist that has been used extensively to study the function of sigma-1 receptors. (+)-SKF 10047 inhibits K(+), Na(+) and Ca2+ channels via sigma-1 receptor activation. We found that (+)-SKF 10047 inhibited Na(V)1.2 and Na(V)1.4 channels independently of sigma-1 receptor activation. (+)-SKF 10047 equally inhibited Na(V)1.2/1.4 channel currents in HEK293T cells with abundant sigma-1 receptor expression and in COS-7 cells, which barely express sigma-1 receptors. The sigma-1 receptor antagonists BD 1063,BD 1047 and NE-100 did not block the inhibitory effects of (+)-SKF-10047. Blocking of the PKA, PKC and G-protein pathways did not affect (+)-SKF 10047 inhibition of Na(V)1.2 channel currents. The sigma-1 receptor agonists Dextromethorphan (DM) and 1,3-di-o-tolyl-guanidine (DTG) also inhibited Na(V)1.2 currents through a sigma-1 receptor-independent pathway. The (+)-SKF 10047 inhibition of Na(V)1.2 currents was use- and frequency-dependent. Point mutations demonstrated the importance of Phe(1764) and Tyr(1771) in the IV-segment 6 domain of the Na(V)1.2 channel and Phe(1579) in the Na(V)1.4 channel for (+)-SKF 10047 inhibition. In conclusion, our results suggest that sigma-1 receptor agonists directly inhibit Na(V)1.2/1.4 channels and that these interactions should be given special attention for future sigma-1 receptor function studies.
Collapse
Affiliation(s)
- Xiao-Fei Gao
- School of Life Sciences, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Jin-Jing Yao
- School of Life Sciences, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yan-Lin He
- School of Life Sciences, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Changlong Hu
- School of Life Sciences, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yan-Ai Mei
- School of Life Sciences, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Balasuriya D, Stewart AP, Crottès D, Borgese F, Soriani O, Edwardson JM. The sigma-1 receptor binds to the Nav1.5 voltage-gated Na+ channel with 4-fold symmetry. J Biol Chem 2012; 287:37021-9. [PMID: 22952230 PMCID: PMC3481303 DOI: 10.1074/jbc.m112.382077] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/20/2012] [Indexed: 12/19/2022] Open
Abstract
The sigma-1 receptor (Sig1R) is up-regulated in many human tumors and plays a role in the control of cancer cell proliferation and invasiveness. At the molecular level, the Sig1R modulates the activity of various ion channels, apparently through a direct interaction. We have previously shown using atomic force microscopy imaging that the Sig1R binds to the trimeric acid-sensing ion channel 1A with 3-fold symmetry. Here, we investigated the interaction between the Sig1R and the Nav1.5 voltage-gated Na(+) channel, which has also been implicated in promoting the invasiveness of cancer cells. We show that the Sig1R and Nav1.5 can be co-isolated from co-transfected cells, consistent with an intimate association between the two proteins. Atomic force microscopy imaging of the co-isolated proteins revealed complexes in which Nav1.5 was decorated by Sig1Rs. Frequency distributions of angles between pairs of bound Sig1Rs had two peaks, at ∼90° and ∼180°, and the 90° peak was about twice the size of the 180° peak. These results demonstrate that the Sig1R binds to Nav1.5 with 4-fold symmetry. Hence, each set of six transmembrane regions in Nav1.5 likely constitutes a Sig1R binding site, suggesting that the Sig1R interacts with the transmembrane regions of its partners. Interestingly, two known Sig1R ligands, haloperidol and (+)-pentazocine, disrupted the Nav1.5/Sig1R interaction both in vitro and in living cells. Finally, we show that endogenously expressed Sig1R and Nav1.5 also functionally interact.
Collapse
Affiliation(s)
- Dilshan Balasuriya
- From the Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom and
| | - Andrew P. Stewart
- From the Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom and
| | - David Crottès
- Institut de Biologie de Valrose, CNRS UMR 7277, INSERM U1091 UNS, Faculté des Sciences, Université de Nice Sophia Antipolis, 06108 Nice Cedex 2, France
| | - Franck Borgese
- Institut de Biologie de Valrose, CNRS UMR 7277, INSERM U1091 UNS, Faculté des Sciences, Université de Nice Sophia Antipolis, 06108 Nice Cedex 2, France
| | - Olivier Soriani
- Institut de Biologie de Valrose, CNRS UMR 7277, INSERM U1091 UNS, Faculté des Sciences, Université de Nice Sophia Antipolis, 06108 Nice Cedex 2, France
| | - J. Michael Edwardson
- From the Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom and
| |
Collapse
|
49
|
Ahmed ISA, Chamberlain C, Craven RJ. S2RPgrmc1: the cytochrome-related sigma-2 receptor that regulates lipid and drug metabolism and hormone signaling. Expert Opin Drug Metab Toxicol 2012; 8:361-70. [DOI: 10.1517/17425255.2012.658367] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
50
|
Evidences for antinociceptive effect of 17-α-hydroxyprogesterone caproate in carpal tunnel syndrome. J Mol Neurosci 2011; 47:59-66. [PMID: 22113360 DOI: 10.1007/s12031-011-9679-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/10/2011] [Indexed: 10/15/2022]
Abstract
Growing evidence of neuroprotective and analgesic effects by progesterone (PROG) has been obtained in experimental animal models of neuropathy. In this paper, we report the results of the first experimental study to test the efficacy of PROG in a human neuropathy. The effects of a local administration of 17-alpha-hydroxyprogesterone caproate (17HPC) has been studied in patients with carpal tunnel syndrome (CTS) and compared with those of a local administration of corticosteroid (CS) in a analogous CTS group. Sixteen women affected by mild CTS were selected. Clinical, electrophysiological and ultrasonographic data of the median nerve were quantified at 0 (pre-injection), 1 and 6 months after CS or 17HPC injection. One month after injection, both 17HPC and CS groups exhibited similar reduction in pain scores, whereas only the 17HPC-treated group still manifested symptoms relief 6 months after. Only in CS-treated patients, improvement of the clinical data correlated with ultrasonographic and electrophysiological changes of the median nerve. The present study indicates that intra-carpal injection with a long-acting PROG derivative is effective for relief of symptoms in CTS. This effect is apparently mediated by a mechanism distinct from that of the CS.
Collapse
|