1
|
Ma R, Prigge AD, Ortiz Serrano TP, Cheng Y, Davis JM, Lou KF, Wood WA, Do HC, Ren Z, Fulcer MM, Lotesto MJ, Singer BD, Coates BM, Ridge KM. Vimentin modulates regulatory T cell receptor-ligand interactions at distal pole complex, leading to dysregulated host response to viral pneumonia. Cell Rep 2024; 43:115056. [PMID: 39645657 DOI: 10.1016/j.celrep.2024.115056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/04/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024] Open
Abstract
Forkhead box P3 (Foxp3)+ regulatory T cells (Tregs) resolve acute inflammation and repair the injured lung after viral pneumonia. Vimentin is a critical protein in the distal pole complex (DPC) of Tregs. This study reveals the inhibitory effect of vimentin on the suppressive and reparative capacity of Tregs. Treg-specific deletion of vimentin increases Helios+interleukin-18 receptor (IL-18R)+ Tregs, suppresses inflammatory immune cells, and enhances tissue repair, protecting Vimfl/flFoxp3YFP-cre mice from influenza-induced lung injury and mortality. Mechanistically, vimentin suppresses the induction of amphiregulin, an epidermal growth factor receptor (EGFR) ligand necessary for tissue repair, by sequestering IL-18R to the DPC and restricting receptor-ligand interactions. We propose that vimentin in the DPC of Tregs functions as a molecular switch, which could be targeted to regulate the immune response and enhance tissue repair in patients with severe viral pneumonia.
Collapse
Affiliation(s)
- Ruihua Ma
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Andrew D Prigge
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Tatiana P Ortiz Serrano
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yuan Cheng
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jennifer M Davis
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Karen F Lou
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Walter A Wood
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hanh Chi Do
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ziyou Ren
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - McKenzie M Fulcer
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mary J Lotesto
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bria M Coates
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
2
|
Sann S, Kleinewietfeld M, Cantaert T. Balancing functions of regulatory T cells in mosquito-borne viral infections. Emerg Microbes Infect 2024; 13:2304061. [PMID: 38192073 PMCID: PMC10812859 DOI: 10.1080/22221751.2024.2304061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/07/2024] [Indexed: 01/10/2024]
Abstract
Mosquito-borne viral infections are on the rise worldwide and can lead to severe symptoms such as haemorrhage, encephalitis, arthritis or microcephaly. A protective immune response following mosquito-borne viral infections requires the generation of a controlled and balanced immune response leading to viral clearance without immunopathology. Here, regulatory T cells play a central role in restoring immune homeostasis. In current review, we aim to provide an overview and summary of the phenotypes of FOXP3+ Tregs in various mosquito-borne arboviral disease, their association with disease severity and their functional characteristics. Furthermore, we discuss the role of cytokines and Tregs in the immunopathogenesis of mosquito-borne infections. Lastly, we discuss possible novel lines of research which could provide additional insight into the role of Tregs in mosquito-borne viral infections in order to develop novel therapeutic approaches or vaccination strategies.
Collapse
Affiliation(s)
- Sotheary Sann
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Markus Kleinewietfeld
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| |
Collapse
|
3
|
Doleski PH, Cabral FL, Jantsch MH, Ebone RS, Adefegha SA, Leal DBR, Schetinger MRC. Kinetic properties of E-NTPDase activity in lymphocytes isolated from bone marrow, thymus and mesenteric lymph nodes of Wistar rats. Mol Cell Biochem 2024; 479:2447-2458. [PMID: 37792238 DOI: 10.1007/s11010-023-04860-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023]
Abstract
Plasma membrane anchored nucleotidases (E-ATPDases), as the E-NTPDase family, could hydrolyze and regulate the pericellular levels of nucleotides in lymphocytes. Each immune organ has a different microenvironment and display lymphocytes with different functions and phenotypes. Considering the different functions of each resident subpopulations of lymphocytes, the E-ATPDases activities in bone marrow (BML), thymus (TL) and mesenteric lymph node (MLL) lymphocytes of Wistar rats were characterized. The hydrolysis of extracellular nucleotides (eATP and eADP) showed linearity in time of reaction between 0 and 120 min, and concentration of lymphocytes expressed in proteins between 1 and 6 μg protein in the reaction medium. The optimal activity was attained at 37 °C in a pH value of 8.0. The necessity of the cofactors Ca2+ and Mg2+ for the enzymatic activity was confirmed through a curve of concentration of 0-1000 µM in the reaction medium, with both cofactors showing similar effects in the enzymatic activity. The Chevillard plot revealed that the hydrolysis of eATP and eADP occurred at the same active site of the enzyme. The analyses of E-ATPDases inhibitor and enzyme specificity showed possible involvement of E-NTPDase isoforms - 1 and - 2 in the isolated cells. Furthermore, different kinetic behavior of the nucleotide hydrolysis in each resident subpopulation lymphocyte was observed in this study, as MLL showed the higher Vmax with the lowest km values, while TL had the lowest Vmax and high km values. The kinetic values for E-NTPDase activity of each immune tissue lymphocytes can be an important therapeutic target for numeral immune-related diseases.
Collapse
Affiliation(s)
- Pedro Henrique Doleski
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil.
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| | - Fernanda Licker Cabral
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Matheus Henrique Jantsch
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Renan Silva Ebone
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Stephen Adeniyi Adefegha
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Daniela Bitencourt Rosa Leal
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | |
Collapse
|
4
|
Zhang T, Fu W, Liu D, He Y, Wang J, Ma T. ADENOSINE INFLUENCES FOXP3 EXPRESSION OF T REGS VIA THE A2AR/CREB PATHWAY IN A MOUSE MODEL OF SEPSIS. Shock 2024; 61:924-933. [PMID: 38010286 DOI: 10.1097/shk.0000000000002281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
ABSTRACT The adenosine concentration and forkhead box protein (Foxp3) expression in T regulatory cells (T regs ) are increased during sepsis. However, the mechanism by which adenosine induces Foxp3 expression is incompletely understood. A cecal ligation and puncture (CLP) model was constructed using C57BL/J mice. The plasma adenosine concentration and Foxp3 expression in splenic T regs were increased consistently for 15 days after sepsis onset. Analysis of the mean fluorescence intensity of Foxp3 and adenosine concentration in the same mice revealed a linear correlation. In the CLP model, adenosine 2a receptor (A2aR) blockade inhibited Foxp3 expression in T regs . In vitro activation of A2aR promoted Foxp3 expression in T regs and facilitated secretion of extracellular vesicles. Transcriptome sequencing revealed that A2aR blockade led to changes in cyclic adenosine monophosphate response element-binding protein (CREB) transcription in T regs in our sepsis model. Use of adenosine or A2aR agonists promoted CREB expression, CREB phosphorylation at S133, T reg expression of Foxp3, and enhanced inhibition of proliferation of cluster of differentiation (CD)4+ lymphocytes. A2aR blockade or inhibition of CREB expression inhibited Foxp3 expression in T regs . In the CLP model, use of CREB inhibitors could inhibit Foxp3 expression and reduce the bacterial load. In summary, adenosine in sepsis promotes CREB phosphorylation via A2aR which, in turn, upregulates Foxp3 expression in T regs .
Collapse
Affiliation(s)
- Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | | | | | | | | | | |
Collapse
|
5
|
Chaptal MC, Maraninchi M, Musto G, Mancini J, Chtioui H, Dupont-Roussel J, Marlinge M, Fromonot J, Lalevee N, Mourre F, Beliard S, Guieu R, Valero R, Mottola G. Low Density Lipoprotein Cholesterol Decreases the Expression of Adenosine A 2A Receptor and Lipid Rafts-Protein Flotillin-1: Insights on Cardiovascular Risk of Hypercholesterolemia. Cells 2024; 13:488. [PMID: 38534331 PMCID: PMC10969546 DOI: 10.3390/cells13060488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
High blood levels of low-density lipoprotein (LDL)-cholesterol (LDL-C) are associated with atherosclerosis, mainly by promoting foam cell accumulation in vessels. As cholesterol is an essential component of cell plasma membranes and a regulator of several signaling pathways, LDL-C excess may have wider cardiovascular toxicity. We examined, in untreated hypercholesterolemia (HC) patients, selected regardless of the cause of LDL-C accumulation, and in healthy participants (HP), the expression of the adenosine A2A receptor (A2AR), an anti-inflammatory and vasodilatory protein with cholesterol-dependent modulation, and Flotillin-1, protein marker of cholesterol-enriched plasma membrane domains. Blood cardiovascular risk and inflammatory biomarkers were measured. A2AR and Flotillin-1 expression in peripheral blood mononuclear cells (PBMC) was lower in patients compared to HP and negatively correlated to LDL-C blood levels. No other differences were observed between the two groups apart from transferrin and ferritin concentrations. A2AR and Flotillin-1 proteins levels were positively correlated in the whole study population. Incubation of HP PBMCs with LDL-C caused a similar reduction in A2AR and Flotillin-1 expression. We suggest that LDL-C affects A2AR expression by impacting cholesterol-enriched membrane microdomains. Our results provide new insights into the molecular mechanisms underlying cholesterol toxicity, and may have important clinical implication for assessment and treatment of cardiovascular risk in HC.
Collapse
Affiliation(s)
- Marie-Charlotte Chaptal
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
| | - Marie Maraninchi
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
| | - Giorgia Musto
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Julien Mancini
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
| | - Hedi Chtioui
- Department of Nutrition, Metabolic Diseases and Endocrinology, Hospital La Conception, APHM, 13005 Marseille, France; (H.C.); (J.D.-R.)
| | - Janine Dupont-Roussel
- Department of Nutrition, Metabolic Diseases and Endocrinology, Hospital La Conception, APHM, 13005 Marseille, France; (H.C.); (J.D.-R.)
| | - Marion Marlinge
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
- Secteur de Biochimie, Biogenopôle, Hôpital de la Timone, APHM, 13005 Marseille, France
| | - Julien Fromonot
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
- Secteur de Biochimie, Biogenopôle, Hôpital de la Timone, APHM, 13005 Marseille, France
| | - Nathalie Lalevee
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
| | - Florian Mourre
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
- Department of Nutrition, Metabolic Diseases and Endocrinology, Hospital La Conception, APHM, 13005 Marseille, France; (H.C.); (J.D.-R.)
| | - Sophie Beliard
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
- Department of Nutrition, Metabolic Diseases and Endocrinology, Hospital La Conception, APHM, 13005 Marseille, France; (H.C.); (J.D.-R.)
| | - Régis Guieu
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
- Secteur de Biochimie, Biogenopôle, Hôpital de la Timone, APHM, 13005 Marseille, France
| | - René Valero
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
- Department of Nutrition, Metabolic Diseases and Endocrinology, Hospital La Conception, APHM, 13005 Marseille, France; (H.C.); (J.D.-R.)
| | - Giovanna Mottola
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix-Marseille Université, INSERM 1263, INRAE 1260, 13005 Marseille, France; (M.-C.C.); (M.M.); (G.M.); (J.M.); (J.F.); (N.L.); (F.M.); (S.B.); (R.G.); (R.V.)
- Secteur de Biochimie, Biogenopôle, Hôpital de la Timone, APHM, 13005 Marseille, France
| |
Collapse
|
6
|
Wang R, Liu Z, Wang T, Zhang J, Liu J, Zhou Q. Landscape of adenosine pathway and immune checkpoint dual blockade in NSCLC: progress in basic research and clinical application. Front Immunol 2024; 15:1320244. [PMID: 38348050 PMCID: PMC10859755 DOI: 10.3389/fimmu.2024.1320244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Lung cancer poses a global threat to human health, while common cancer treatments (chemotherapy and targeted therapies) have limited efficacy. Immunotherapy offers hope of sustained remission for many patients with lung cancer, but a significant proportion of patients fail to respond to treatment owing to immune resistance. There is extensive evidence to suggest the immunosuppressive microenvironment as the cause of this treatment failure. Numerous studies have suggested that the adenosine (ADO) pathway plays an important role in the formation of an immunosuppressive microenvironment and may be a key factor in the development of immune resistance in EGFR-mutant cell lung cancer. Inhibition of this pathway may therefore be a potential target to achieve effective reversal of ADO pathway-mediated immune resistance. Recently, an increasing number of clinical trials have begun to address the broad prospects of using the ADO pathway as an immunotherapeutic strategy. However, few researchers have summarized the theoretical basis and clinical rationale of the ADO pathway and immune checkpoint dual blockade in a systematic and detailed manner, particularly in lung cancer. As such, a timely review of the potential value of the ADO pathway in combination with immunotherapy strategies for lung cancer is warranted. This comprehensive review first describes the role of ADO in the formation of a lung tumor-induced immunosuppressive microenvironment, discusses the key mechanisms of ADO inhibitors in reversing lung immunosuppression, and highlights recent evidence from preclinical and clinical studies of ADO inhibitors combined with immune checkpoint blockers to improve the lung cancer immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Rulan Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenkun Liu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiabi Zhang
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States
| | - Jiewei Liu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Sperber HS, Raymond KA, Bouzidi MS, Ma T, Valdebenito S, Eugenin EA, Roan NR, Deeks SG, Winning S, Fandrey J, Schwarzer R, Pillai SK. The hypoxia-regulated ectonucleotidase CD73 is a host determinant of HIV latency. Cell Rep 2023; 42:113285. [PMID: 37910505 PMCID: PMC10838153 DOI: 10.1016/j.celrep.2023.113285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/04/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
Deciphering the mechanisms underlying viral persistence is critical to achieving a cure for human immunodeficiency virus (HIV) infection. Here, we implement a systems approach to discover molecular signatures of HIV latently infected CD4+ T cells, identifying the immunosuppressive, adenosine-producing ectonucleotidase CD73 as a key surface marker of latent cells. Hypoxic conditioning, reflecting the lymphoid tissue microenvironment, increases the frequency of CD73+ CD4+ T cells and promotes HIV latency. Transcriptomic profiles of CD73+ CD4+ T cells favor viral quiescence, immune evasion, and cell survival. CD73+ CD4+ T cells are capable of harboring a functional HIV reservoir and reinitiating productive infection ex vivo. CD73 or adenosine receptor blockade facilitates latent HIV reactivation in vitro, mechanistically linking adenosine signaling to viral quiescence. Finally, tissue imaging of lymph nodes from HIV-infected individuals on antiretroviral therapy reveals spatial association between CD73 expression and HIV persistence in vivo. Our findings warrant development of HIV-cure strategies targeting the hypoxia-CD73-adenosine axis.
Collapse
Affiliation(s)
- Hannah S Sperber
- Vitalant Research Institute, San Francisco, CA, USA; Free University of Berlin, Institute of Biochemistry, Berlin, Germany; University of California, San Francisco, San Francisco, CA, USA; University Hospital Essen, Institute for Translational HIV Research, Essen, Germany
| | - Kyle A Raymond
- Vitalant Research Institute, San Francisco, CA, USA; University of California, San Francisco, San Francisco, CA, USA
| | - Mohamed S Bouzidi
- Vitalant Research Institute, San Francisco, CA, USA; University of California, San Francisco, San Francisco, CA, USA
| | - Tongcui Ma
- University of California, San Francisco, San Francisco, CA, USA; Gladstone Institutes, San Francisco, CA, USA
| | | | | | - Nadia R Roan
- University of California, San Francisco, San Francisco, CA, USA; Gladstone Institutes, San Francisco, CA, USA
| | - Steven G Deeks
- University of California, San Francisco, San Francisco, CA, USA
| | - Sandra Winning
- University of Duisburg-Essen, Institute for Physiology, Essen, Germany
| | - Joachim Fandrey
- University of Duisburg-Essen, Institute for Physiology, Essen, Germany
| | - Roland Schwarzer
- University Hospital Essen, Institute for Translational HIV Research, Essen, Germany.
| | - Satish K Pillai
- Vitalant Research Institute, San Francisco, CA, USA; University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Chen L, Alabdullah M, Mahnke K. Adenosine, bridging chronic inflammation and tumor growth. Front Immunol 2023; 14:1258637. [PMID: 38022572 PMCID: PMC10643868 DOI: 10.3389/fimmu.2023.1258637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Adenosine (Ado) is a well-known immunosuppressive agent that may be released or generated extracellularly by cells, via degrading ATP by the sequential actions of the ectonucleotides CD39 and CD73. During inflammation Ado is produced by leukocytes and tissue cells by different means to initiate the healing phase. Ado downregulates the activation and the effector functions of different leukocyte (sub-) populations and stimulates proliferation of fibroblasts for re-establishment of intact tissues. Therefore, the anti-inflammatory actions of Ado are already intrinsically triggered during each episode of inflammation. These tissue-regenerating and inflammation-tempering purposes of Ado can become counterproductive. In chronic inflammation, it is possible that Ado-driven anti-inflammatory actions sustain the inflammation and prevent the final clearance of the tissues from possible pathogens. These chronic infections are characterized by increased tissue damage, remodeling and accumulating DNA damage, and are thus prone for tumor formation. Developing tumors may further enhance immunosuppressive actions by producing Ado by themselves, or by "hijacking" CD39+/CD73+ cells that had already developed during chronic inflammation. This review describes different and mostly convergent mechanisms of how Ado-induced immune suppression, initially induced in inflammation, can lead to tumor formation and outgrowth.
Collapse
Affiliation(s)
| | | | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| |
Collapse
|
9
|
Graziano V, Dannhorn A, Hulme H, Williamson K, Buckley H, Karim SA, Wilson M, Lee SY, Kaistha BP, Islam S, Thaventhiran JED, Richards FM, Goodwin R, Brais R, Morton JP, Dovedi SJ, Schuller AG, Eyles J, Jodrell DI. Defining the spatial distribution of extracellular adenosine revealed a myeloid-dependent immunosuppressive microenvironment in pancreatic ductal adenocarcinoma. J Immunother Cancer 2023; 11:e006457. [PMID: 37553182 PMCID: PMC10414095 DOI: 10.1136/jitc-2022-006457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND The prognosis for patients with pancreatic ductal adenocarcinoma (PDAC) remains extremely poor. It has been suggested that the adenosine pathway contributes to the ability of PDAC to evade the immune system and hence, its resistance to immuno-oncology therapies (IOT), by generating extracellular adenosine (eAdo). METHODS Using genetically engineered allograft models of PDAC in syngeneic mice with defined and different immune infiltration and response to IOT and autochthonous tumors in KPC mice we investigated the impact of the adenosine pathway on the PDAC tumor microenvironment (TME). Flow cytometry and imaging mass cytometry (IMC) were used to characterize the subpopulation frequency and spatial distribution of tumor-infiltrating immune cells. Mass spectrometry imaging (MSI) was used to visualize adenosine compartmentalization in the PDAC tumors. RNA sequencing was used to evaluate the influence of the adenosine pathway on the shaping of the immune milieu and correlate our findings to published data sets in human PDAC. RESULTS We demonstrated high expression of adenosine pathway components in tumor-infiltrating immune cells (particularly myeloid populations) in the murine models. MSI demonstrated that extracellular adenosine distribution is heterogeneous in tumors, with high concentrations in peri-necrotic, hypoxic regions, associated with rich myeloid infiltration, demonstrated using IMC. Protumorigenic M2 macrophages express high levels of the Adora2a receptor; particularly in the IOT resistant model. Blocking the in vivo formation and function of eAdo (Adoi), using a combination of anti-CD73 antibody and an Adora2a inhibitor slowed tumor growth and reduced metastatic burden. Additionally, blocking the adenosine pathway improved the efficacy of combinations of cytotoxic agents or immunotherapy. Adoi remodeled the TME, by reducing the infiltration of M2 macrophages and regulatory T cells. RNA sequencing analysis showed that genes related to immune modulation, hypoxia and tumor stroma were downregulated following Adoi and a specific adenosine signature derived from this is associated with a poorer prognosis in patients with PDAC. CONCLUSIONS The formation of eAdo promotes the development of the immunosuppressive TME in PDAC, contributing to its resistance to conventional and novel therapies. Therefore, inhibition of the adenosine pathway may represent a strategy to modulate the PDAC immune milieu and improve therapy response in patients with PDAC.
Collapse
Affiliation(s)
- Vincenzo Graziano
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Andreas Dannhorn
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences (CPSS), AstraZeneca R&D, Cambridge, UK
| | - Heather Hulme
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences (CPSS), AstraZeneca R&D, Cambridge, UK
| | - Kate Williamson
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Hannah Buckley
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Matthew Wilson
- Oncology R&D, Research and Early Development, AstraZeneca R&D, Cambridge, UK
| | - Sheng Y Lee
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Brajesh P Kaistha
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Sabita Islam
- Department of Oncology, University of Cambridge, Cambridge, UK
| | | | - Frances M Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Richard Goodwin
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences (CPSS), AstraZeneca R&D, Cambridge, UK
| | - Rebecca Brais
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Simon J Dovedi
- Oncology R&D, Research and Early Development, AstraZeneca R&D, Cambridge, UK
| | | | - Jim Eyles
- Oncology R&D, Research and Early Development, AstraZeneca R&D, Cambridge, UK
| | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Park JS, Perl A. Endosome Traffic Modulates Pro-Inflammatory Signal Transduction in CD4 + T Cells-Implications for the Pathogenesis of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:10749. [PMID: 37445926 DOI: 10.3390/ijms241310749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Endocytic recycling regulates the cell surface receptor composition of the plasma membrane. The surface expression levels of the T cell receptor (TCR), in concert with signal transducing co-receptors, regulate T cell responses, such as proliferation, differentiation, and cytokine production. Altered TCR expression contributes to pro-inflammatory skewing, which is a hallmark of autoimmune diseases, such as systemic lupus erythematosus (SLE), defined by a reduced function of regulatory T cells (Tregs) and the expansion of CD4+ helper T (Th) cells. The ensuing secretion of inflammatory cytokines, such as interferon-γ and interleukin (IL)-4, IL-17, IL-21, and IL-23, trigger autoantibody production and tissue infiltration by cells of the adaptive and innate immune system that induce organ damage. Endocytic recycling influences immunological synapse formation by CD4+ T lymphocytes, signal transduction from crosslinked surface receptors through recruitment of adaptor molecules, intracellular traffic of organelles, and the generation of metabolites to support growth, cytokine production, and epigenetic control of DNA replication and gene expression in the cell nucleus. This review will delineate checkpoints of endosome traffic that can be targeted for therapeutic interventions in autoimmune and other disease conditions.
Collapse
Affiliation(s)
- Joy S Park
- Department of Medicine, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Andras Perl
- Department of Medicine, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Microbiology and Immunology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
11
|
Li C, Zhang L, Jin Q, Jiang H, Wu C. CD39 (ENTPD1) in tumors: a potential therapeutic target and prognostic biomarker. Biomark Med 2023; 17:563-576. [PMID: 37713234 DOI: 10.2217/bmm-2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
As a regulator of the dynamic balance between immune-activated extracellular ATP and immunosuppressive adenosine, CD39 ectonucleotidase impairs the ability of immune cells to exert anticancer immunity and plays an important role in the immune escape of tumor cells within the tumor microenvironment. In addition, CD39 has been studied in cancer patients to evaluate the prognosis, the efficacy of immunotherapy (e.g., PD-1 blockade) and the prediction of recurrence. This article reviews the importance of CD39 in tumor immunology, summarizes the preclinical evidence on targeting CD39 to treat tumors and focuses on the potential of CD39 as a biomarker to evaluate the prognosis and the response to immune checkpoint inhibitors in tumors.
Collapse
Affiliation(s)
- Cuicui Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Litian Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Qiqi Jin
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Haoyun Jiang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Chongyang Wu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| |
Collapse
|
12
|
Spiers HVM, Stadler LKJ, Smith H, Kosmoliaptsis V. Extracellular Vesicles as Drug Delivery Systems in Organ Transplantation: The Next Frontier. Pharmaceutics 2023; 15:891. [PMID: 36986753 PMCID: PMC10052210 DOI: 10.3390/pharmaceutics15030891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Extracellular vesicles are lipid bilayer-delimited nanoparticles excreted into the extracellular space by all cells. They carry a cargo rich in proteins, lipids and DNA, as well as a full complement of RNA species, which they deliver to recipient cells to induce downstream signalling, and they play a key role in many physiological and pathological processes. There is evidence that native and hybrid EVs may be used as effective drug delivery systems, with their intrinsic ability to protect and deliver a functional cargo by utilising endogenous cellular mechanisms making them attractive as therapeutics. Organ transplantation is the gold standard for treatment for suitable patients with end-stage organ failure. However, significant challenges still remain in organ transplantation; prevention of graft rejection requires heavy immunosuppression and the lack of donor organs results in a failure to meet demand, as manifested by growing waiting lists. Pre-clinical studies have demonstrated the ability of EVs to prevent rejection in transplantation and mitigate ischemia reperfusion injury in several disease models. The findings of this work have made clinical translation of EVs possible, with several clinical trials actively recruiting patients. However, there is much to be uncovered, and it is essential to understand the mechanisms behind the therapeutic benefits of EVs. Machine perfusion of isolated organs provides an unparalleled platform for the investigation of EV biology and the testing of the pharmacokinetic and pharmacodynamic properties of EVs. This review classifies EVs and their biogenesis routes, and discusses the isolation and characterisation methods adopted by the international EV research community, before delving into what is known about EVs as drug delivery systems and why organ transplantation represents an ideal platform for their development as drug delivery systems.
Collapse
Affiliation(s)
- Harry V M Spiers
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Lukas K J Stadler
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Hugo Smith
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
13
|
Silva-Vilches C, Bolduan V, Alabdullah M, Steinbrink K, Probst HC, Enk A, Mahnke K. Topical Application of Adenosine A 2-Type Receptor Agonists Prevents Contact Hypersensitivity Reactions in Mice by Affecting Skin Dendritic Cells. J Invest Dermatol 2023; 143:408-418.e6. [PMID: 36174716 DOI: 10.1016/j.jid.2022.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 06/18/2022] [Accepted: 07/19/2022] [Indexed: 10/14/2022]
Abstract
Adenosine (Ado) produced by skin and skin migratory CD73+ dendritic cells is critically involved in tolerance to haptens. We therefore investigated the use of Ado receptor agonists for the treatment of contact hypersensitivity reactions. A2A- 4-[2-[[6-Amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino] ethyl]benzenepropanoic acid hydrochloride (CGS) and A2B- 2-[[6-Amino-3,5-dicyano-4-[4-[cyclopropylmethoxy]phenyl]-2-pyridinyl]thio]-acetamide (BAY) specific Ado receptor agonists were epicutaneously applied to the skin before sensitization and challenge with DNFB. Both agonists reduced ear swelling compared with solvent controls. This was accompanied by fewer activated T cells in the skin after the challenge and by higher numbers of T cells expressing anergic markers such as LAG-3, CD137, PD-1, CD272, and TIM-3 in the lymph nodes of CGS-treated groups. In ear tissue, Ado receptor agonist treatment reduced the production of proinflammatory cytokines and chemokines as well as the infiltration by neutrophils after sensitization. Moreover, reduced numbers of skin migratory dendritic cells producing less IL-12 and exhibiting lower expression of CD86 were recorded in lymph nodes after sensitization. In cocultures of skin migratory dendritic cells from CGS-treated mice with T cells, reduced proliferation of T cells and decreased secretion of proinflammatory cytokines compared with that of solvent controls were apparent. In conclusion, topical application of Ado receptor agonists to the skin prevents sensitization of T cells against haptens by reducing the migration and activation of skin migratory dendritic cells.
Collapse
Affiliation(s)
- Cinthia Silva-Vilches
- Department of Dermatology, University Hospital Heidelberg, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
| | - Vanessa Bolduan
- Department of Dermatology, University Hospital Heidelberg, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
| | - Mohamad Alabdullah
- Department of Dermatology, University Hospital Heidelberg, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University Hospital Münster, Westfälische Wilhelms-University Münster, Münster, Germany
| | | | - Alexander Enk
- Department of Dermatology, University Hospital Heidelberg, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
| | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Ruprecht Karls University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
14
|
Fernandez CA. Pharmacological strategies for mitigating anti-TNF biologic immunogenicity in rheumatoid arthritis patients. Curr Opin Pharmacol 2023; 68:102320. [PMID: 36580770 PMCID: PMC10540078 DOI: 10.1016/j.coph.2022.102320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 12/28/2022]
Abstract
Tumor necrosis factor alpha (TNFα) inhibitors are a mainstay of treatment for rheumatoid arthritis (RA) patients after failed responses to conventional disease-modifying antirheumatic drugs (DMARDs). Despite the clinical efficacy of TNFα inhibitors (TNFi), many RA patients experience TNFi treatment failure due to the development of anti-drug antibodies (ADAs) that can neutralize drug levels and lead to RA disease relapse. Methotrexate (MTX) therapy with concomitant TNFα inhibitors decreases the risk of TNFi immunogenicity, but additional and/or alternative strategies are needed to reduce MTX-associated toxicities and to further increase its potency for preventing TNFα inhibitor immunogenicity. In this review, we highlight the limitations of MTX for mitigating TNFα inhibitor immunogenicity, and we discuss potential alternative pharmacological targets for decreasing the risk of immunogenicity during TNFα inhibitor therapy based on the key kinases, second messengers, and shared signaling mechanisms of lymphocyte receptor signaling.
Collapse
Affiliation(s)
- Christian A Fernandez
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
15
|
Da M, Chen L, Enk A, Mahnke K. Tolerance to 2,4-Dinitrofluorobenzene‒Induced Contact Hypersensitivity Is Mediated by CD73-Expressing Tissue-homing Regulatory T Cells. J Invest Dermatol 2022; 143:1011-1022.e8. [PMID: 36539031 DOI: 10.1016/j.jid.2022.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Regulatory T cells (Tregs) express CD73, an ectonucleotidase that converts adenosine (Ado) monophosphate to Ado, which has been shown to suppress immune reactions. To investigate the role(s) of CD73+ Tregs during the induction of tolerance, we used a 2,4-dinitrofluorobenzene‒driven contact hypersensitivity model, in which tolerance can be induced by pretreating wild type mice with 2,4-dinitrothiocyanobenzene. CD73-deficient mice were unable to acquire tolerance. Likewise, transfer of CD73‒/‒ Tregs failed to suppress 2,4-dinitrofluorobenzene‒induced ear swelling in wild type mice, whereas transfer of wild type‒derived Tregs into CD73‒/‒ mice re-established tolerance. This indicates a crucial role of CD73+ Tregs for skin-induced tolerance. Furthermore, we found that 2,4-dinitrothiocyanobenzene induces more activated CD73+ tissue-homing Tregs (marked by Ki-67, CTLA4, CCR4, CD103, CCR6, and CD49b expression) in draining lymph nodes and blood, eventually accumulating in the skin. The application of anti-CD73 antibodies that block CD73-derived Ado production as well as the injection of Ado deaminase, which degrades Ado in tissues, abrogated tolerance induction. Thus, our data indicate that CD73+ Ado-producing Tregs are crucial for the regulation of contact hypersensitivity reactions and tolerance induction in the skin and that manipulating the function(s) of CD73 in tissues may offer a tool to influence autoimmunity and inflammation in vivo.
Collapse
Affiliation(s)
- Meihong Da
- Department of Dermatology, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Luxia Chen
- Department of Dermatology, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Alexander Enk
- Department of Dermatology, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.
| |
Collapse
|
16
|
Davern M, Donlon NE, O’Connell F, Gaughan C, O’Donovan C, McGrath J, Sheppard AD, Hayes C, King R, Temperley H, MacLean M, Bulter C, Bhardwaj A, Moore J, Donohoe C, Ravi N, Conroy MJ, Reynolds JV, Lysaght J. Nutrient deprivation and hypoxia alter T cell immune checkpoint expression: potential impact for immunotherapy. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04440-0. [DOI: 10.1007/s00432-022-04440-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/18/2022] [Indexed: 12/02/2022]
Abstract
Abstract
Aim
Use of immune checkpoint blockade to enhance T cell-mediated immunity within the hostile tumour microenvironment (TME) is an attractive approach in oesophageal adenocarcinoma (OAC). This study explored the effects of the hostile TME, including nutrient deprivation and hypoxia, on immune checkpoint (IC) expression and T cell phenotypes, and the potential use of nivolumab to enhance T cell function under such conditions.
Methods and Results
ICs were upregulated on stromal immune cells within the tumour including PD-L2, CTLA-4 and TIGIT. OAC patient-derived PBMCs co-cultured with OE33 OAC cells upregulated LAG-3 and downregulated the co-stimulatory marker CD27 on T cells, highlighting the direct immunosuppressive effects of tumour cells on T cells. Hypoxia and nutrient deprivation altered the secretome of OAC patient-derived PBMCs, which induced upregulation of PD-L1 and PD-L2 on OE33 OAC cells thus enhancing an immune-resistant phenotype. Importantly, culturing OAC patient-derived PBMCs under dual hypoxia and glucose deprivation, reflective of the conditions within the hostile TME, upregulated an array of ICs on the surface of T cells including PD-1, CTLA-4, A2aR, PD-L1 and PD-L2 and decreased expression of IFN-γ by T cells. Addition of nivolumab under these hostile conditions decreased the production of pro-tumorigenic cytokine IL-10.
Conclusion
Collectively, these findings highlight the immunosuppressive crosstalk between tumour cells and T cells within the OAC TME. The ability of nivolumab to suppress pro-tumorigenic T cell phenotypes within the hostile TME supports a rationale for the use of immune checkpoint blockade to promote anti-tumour immunity in OAC.
Graphical abstract
Study schematic: (A) IC expression profiles were assessed on CD45+ cells in peripheral whole blood and infiltrating tumour tissue from OAC patients in the treatment-naïve setting. (B) PBMCs were isolated from OAC patients and expanded ex vivo for 5 days using anti-CD3/28 + IL-2 T cell activation protocol and then co-cultured for 48 h with OE33 cells. T cell phenotypes were then assessed by flow cytometry. (C) PBMCs were isolated from OAC patients and expanded ex vivo for 5 days using anti-CD3/28 + IL-2 T cell activation protocol and then further cultured under conditions of nutrient deprivation or hypoxia for 48 h and T cell phenotypes were then assessed by flow cytometry. Key findings: (A) TIGIT, CTLA-4 and PD-L2 were upregulated on CD45+ immune cells and CTLA-4 expression on CD45+ cells correlated with a subsequent decreased response to neoadjuvant regimen. (B) Following a 48 h co-culture with OE33 cells, T cells upregulated LAG-3 and decreased CD27 co-stimulatory marker. (C) Nutrient deprivation and hypoxia upregulated a range of ICs on T cells and decreased IFN-γ production by T cells. Nivolumab decreased IL-10 production by T cells under nutrient deprivation-hypoxic conditions.
Collapse
|
17
|
Kim IS, Jo EK. Inosine: A bioactive metabolite with multimodal actions in human diseases. Front Pharmacol 2022; 13:1043970. [PMID: 36467085 PMCID: PMC9708727 DOI: 10.3389/fphar.2022.1043970] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 08/04/2023] Open
Abstract
The nucleoside inosine is an essential metabolite for purine biosynthesis and degradation; it also acts as a bioactive molecule that regulates RNA editing, metabolic enzyme activity, and signaling pathways. As a result, inosine is emerging as a highly versatile bioactive compound and second messenger of signal transduction in cells with diverse functional abilities in different pathological states. Gut microbiota remodeling is closely associated with human disease pathogenesis and responses to dietary and medical supplementation. Recent studies have revealed a critical link between inosine and gut microbiota impacting anti-tumor, anti-inflammatory, and antimicrobial responses in a context-dependent manner. In this review, we summarize the latest progress in our understanding of the mechanistic function of inosine, to unravel its immunomodulatory actions in pathological settings such as cancer, infection, inflammation, and cardiovascular and neurological diseases. We also highlight the role of gut microbiota in connection with inosine metabolism in different pathophysiological conditions. A more thorough understanding of the mechanistic roles of inosine and how it regulates disease pathologies will pave the way for future development of therapeutic and preventive modalities for various human diseases.
Collapse
Affiliation(s)
- In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Eun-Kyoung Jo
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| |
Collapse
|
18
|
Simões AP, Gonçalves FQ, Rial D, Ferreira SG, Lopes JP, Canas PM, Cunha RA. CD73-Mediated Formation of Extracellular Adenosine Is Responsible for Adenosine A 2A Receptor-Mediated Control of Fear Memory and Amygdala Plasticity. Int J Mol Sci 2022; 23:12826. [PMID: 36361618 PMCID: PMC9653840 DOI: 10.3390/ijms232112826] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 08/27/2023] Open
Abstract
Adenosine A2A receptors (A2AR) control fear memory and the underlying processes of synaptic plasticity in the amygdala. In other brain regions, A2AR activation is ensured by ATP-derived extracellular adenosine formed by ecto-5'-nucleotidase or CD73. We now tested whether CD73 is also responsible to provide for the activation of A2AR in controlling fear memory and amygdala long-term potentiation (LTP). The bilateral intracerebroventricular injection of the CD73 inhibitor αβ-methylene ADP (AOPCP, 1 nmol/ventricle/day) phenocopied the effect of the A2AR blockade by decreasing the expression of fear memory, an effect disappearing in CD73-knockout (KO) mice and in forebrain neuronal A2AR-KO mice. In the presence of PPADS (20 μM) to eliminate any modification of ATP/ADP-mediated P2 receptor effects, both AOPCP (100 μM) and the A2AR antagonist, SCH58261 (50 nM), decreased LTP magnitude in synapses of projection from the external capsula into the lateral amygdala, an effect eliminated in slices from both forebrain neuronal A2AR-KO mice and CD73-KO mice. These data indicate a key role of CD73 in the process of A2AR-mediated control of fear memory and underlying synaptic plasticity processes in the amygdala, paving the way to envisage CD73 as a new therapeutic target to interfere with abnormal fear-like emotional processing.
Collapse
Affiliation(s)
- Ana Patrícia Simões
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Francisco Q. Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Daniel Rial
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Samira G. Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - João Pedro Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paula M. Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rodrigo A. Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
19
|
Hamoud AR, Bach K, Kakrecha O, Henkel N, Wu X, McCullumsmith RE, O’Donovan SM. Adenosine, Schizophrenia and Cancer: Does the Purinergic System Offer a Pathway to Treatment? Int J Mol Sci 2022; 23:ijms231911835. [PMID: 36233136 PMCID: PMC9570456 DOI: 10.3390/ijms231911835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
For over a century, a complex relationship between schizophrenia diagnosis and development of many cancers has been observed. Findings from epidemiological studies are mixed, with reports of increased, reduced, or no difference in cancer incidence in schizophrenia patients. However, as risk factors for cancer, including elevated smoking rates and substance abuse, are commonly associated with this patient population, it is surprising that cancer incidence is not higher. Various factors may account for the proposed reduction in cancer incidence rates including pathophysiological changes associated with disease. Perturbations of the adenosine system are hypothesized to contribute to the neurobiology of schizophrenia. Conversely, hyperfunction of the adenosine system is found in the tumor microenvironment in cancer and targeting the adenosine system therapeutically is a promising area of research in this disease. We outline the current biochemical and pharmacological evidence for hypofunction of the adenosine system in schizophrenia, and the role of increased adenosine metabolism in the tumor microenvironment. In the context of the relatively limited literature on this patient population, we discuss whether hypofunction of this system in schizophrenia, may counteract the immunosuppressive role of adenosine in the tumor microenvironment. We also highlight the importance of studies examining the adenosine system in this subset of patients for the potential insight they may offer into these complex disorders.
Collapse
Affiliation(s)
- Abdul-Rizaq Hamoud
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Karen Bach
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Ojal Kakrecha
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Nicholas Henkel
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Xiaojun Wu
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
- Neurosciences Institute, ProMedica, Toledo, OH 43606, USA
| | - Sinead M. O’Donovan
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
- Correspondence:
| |
Collapse
|
20
|
Jiang ZF, Wu W, Hu HB, Li ZY, Zhong M, Zhang L. P2X7 receptor as the regulator of T-cell function in intestinal barrier disruption. World J Gastroenterol 2022; 28:5265-5279. [PMID: 36185635 PMCID: PMC9521516 DOI: 10.3748/wjg.v28.i36.5265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/20/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023] Open
Abstract
The intestinal mucosa is a highly compartmentalized structure that forms a direct barrier between the host intestine and the environment, and its dysfunction could result in a serious disease. As T cells, which are important components of the mucosal immune system, interact with gut microbiota and maintain intestinal homeostasis, they may be involved in the process of intestinal barrier dysfunction. P2X7 receptor (P2X7R), a member of the P2X receptors family, mediates the effects of extracellular adenosine triphosphate and is expressed by most innate or adaptive immune cells, including T cells. Current evidence has demonstrated that P2X7R is involved in inflammation and mediates the survival and differentiation of T lymphocytes, indicating its potential role in the regulation of T cell function. In this review, we summarize the available research about the regulatory role and mechanism of P2X7R on the intestinal mucosa-derived T cells in the setting of intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Zhi-Feng Jiang
- Center of Emergency & Intensive Care Unit, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Wei Wu
- Department of Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Han-Bing Hu
- Center of Emergency & Intensive Care Unit, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Zheng-Yang Li
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Lin Zhang
- Center of Emergency & Intensive Care Unit, Jinshan Hospital of Fudan University, Shanghai 201508, China
| |
Collapse
|
21
|
Bao X, Xie L. Targeting purinergic pathway to enhance radiotherapy-induced immunogenic cancer cell death. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:222. [PMID: 35836249 PMCID: PMC9284706 DOI: 10.1186/s13046-022-02430-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/02/2022] [Indexed: 01/09/2023]
Abstract
Emerging evidence has demonstrated that radiotherapy (RT) can not only cause direct damage to cancer cells but also lead to immunogenic cell death (ICD), which involves the activation of host antitumor immune response in tumor immune microenvironment (TIME). RT-induced ICD comprises the release of damage-associated molecular patterns (DAMPs) from dying cancer cells that result in the activation of tumor-specific immunity to elicit long-term antitumor efficacy in both original and abscopal tumor sites. Adenosine triphosphate (ATP), as an important DAMP released by irradiated cancer cells and an essential factor within purinergic pathway, can be further hydrolyzed to adenosine (ADO) by two key ectonucleotidases, CD39 and CD73, to further modulate the antitumor immunity in TIME through purinergic signaling via the interaction to its specific receptors such as adenosine 2A receptor (A2AR) and A2BR widely expressed on the surface of the components in TIME, including cancer cells and many immune effector cells. In this review, we first introduced key components in purinergic pathway including ATP, ADO, their receptors, and essential ectonucleotidases. Then we reviewed the regulation of ATP and ADO levels and their main mechanisms by which they promote tumor growth and broadly suppress antitumor immunity through inhibiting the pro-inflammatory response of dendritic cells, cytotoxic T lymphocytes, and natural killer cells, while improving the anti-inflammatory response of regulatory T cells, macrophages, and myeloid-derived suppressor cells in TIME, especially after irradiation. Finally, we presented an overview of dozens of promising therapeutics including pharmacological antagonists and specific antibodies targeting ADO receptors and ectonucleotidases CD39 or CD73 investigated in the clinic for cancer treatment, especially focusing on the preclinical studies and clinical trials being explored for blocking the purinergic signaling to enhance RT as a combination antitumor therapeutic strategy, which has a robust potential to be translated to the clinic in the future.
Collapse
Affiliation(s)
- Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, 2800 Gongwei Rd, Shanghai, China. .,Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China. .,Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Rd, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Antonioli L, Haskó G. May be adenosine an immuno-quorum-sensing signal? Purinergic Signal 2022; 18:205-209. [PMID: 35501535 PMCID: PMC9123119 DOI: 10.1007/s11302-022-09866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022] Open
Abstract
Quorum sensing indicates a communication process between bacteria based on a coordinate variation in gene expression aimed at coordinating a collective comportment related to the bacterial population density. Increasing pieces of evidence pointed out that a quorum-sensing system can be a regulatory program also used in the immune field to organize the density of the various immune cell populations and to calibrate their responses. In particular, such equilibrium is achieved by the ability of immune cells to perceive the density of their own populations or those of other cells in their environment, through the release of several mediators able to finely shape the cell density via coordinated changes in gene expression and protein signaling. In this regard, adenosine displays the typical characteristics of a mediator involved in the regulation of quorum sensing, thus suggesting a putative role of this nucleoside in shaping the balance between diverse immune cell populations.
Collapse
Affiliation(s)
- Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
23
|
Da M, Chen L, Enk A, Ring S, Mahnke K. The Multifaceted Actions of CD73 During Development and Suppressive Actions of Regulatory T Cells. Front Immunol 2022; 13:914799. [PMID: 35711418 PMCID: PMC9197450 DOI: 10.3389/fimmu.2022.914799] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Adenosine (Ado) has been shown to have immunosuppressive effects in a variety of diseases. It can either be released directly into the extracellular environment by cells, or it can be produced by degradation of ATP within the extracellular spaces. This extracellular pathway is facilitated by the concerted actions of the ectoenzymes CD39 and CD73. In a first step CD39 dephosphorylates ATP to ADP and AMP, respectively, and in a second step CD73 converts AMP to Ado. Thus, activity of CD73 on the cell surface of cells is the rate limiting step in the generation of extracellular Ado. Among T cells, CD73 is most abundantly expressed by regulatory T cells (Tregs) and is even upregulated after their activation. Functionally, the generation of Ado by CD73+ Tregs has been shown to play a role in immune suppression of dendritic cells, monocytes and T cells, and the defined expression of CD73 by Tregs in immunosuppressive environments, such as tumors, made CD73 a novel checkpoint inhibitor. Therefore, therapeutical intervention by anti-CD73 antibodies or by chemical inhibitors of the enzymatic function is currently under investigation in some preclinical animal models. In the following we summarize the expression pattern and the possible functions of CD73 in T cells and Tregs, and exemplify novel ways to manipulate CD73 functions in Tregs to stimulate anti-tumor immunity.
Collapse
|
24
|
The Effects of CD73 on Gastrointestinal Cancer Progression and Treatment. JOURNAL OF ONCOLOGY 2022; 2022:4330329. [PMID: 35620732 PMCID: PMC9130010 DOI: 10.1155/2022/4330329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022]
Abstract
Gastrointestinal (GI) cancer is a common and deadly malignant tumor. CD73, a cell-surface protein, acts as a switch of the adenosine-related signaling pathway that can cause significant immunosuppression. Recent evidence has emerged that CD73 is a promising immunotherapy target for regaining immune cell function and restraining tumorigenesis, and a growing stream of research indicates that combining immunotherapy with other therapies can effectively improve the prognosis and survival of GI cancer patients. Several immune checkpoint inhibitors have been approved for use in GI cancer recently; however, they have demonstrated limited efficacy. Solving the problem of immunosuppression in GI cancer is the key to developing an effective therapeutic option and the modulation of CD73 expression may provide an answer. In this review, we discuss current research on CD73 in gastric, liver, pancreatic, and colorectal cancer to evaluate its therapeutic potential as an immunotherapy target in GI cancers.
Collapse
|
25
|
Lu T, Zhang Z, Zhang J, Pan X, Zhu X, Wang X, Li Z, Ruan M, Li H, Chen W, Yan M. CD73 in small extracellular vesicles derived from HNSCC defines tumour-associated immunosuppression mediated by macrophages in the microenvironment. J Extracell Vesicles 2022; 11:e12218. [PMID: 35524455 PMCID: PMC9077142 DOI: 10.1002/jev2.12218] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
Research on tumour cell‐derived small extracellular vesicles (sEVs) that regulate tumour microenvironment (TME) has provided strategies for targeted therapy of head and neck squamous cell carcinoma (HNSCC). Herein, we demonstrated that sEVs derived from HNSCC cancer cells carried CD73 (sEVsCD73), which promoted malignant progression and mediated immune evasion. The sEVsCD73 phagocytosed by tumour‐associated macrophages (TAMs) in the TME induced immunosuppression. Higher CD73high TAMs infiltration levels in the HNSCC microenvironment were correlated with poorer prognosis, while sEVsCD73 activated the NF‐κB pathway in TAMs, thereby inhibiting immune function by increasing cytokines secretion such as IL‐6, IL‐10, TNF‐α, and TGF‐β1. The absence of sEVsCD73 enhanced the sensitivity of anti‐PD‐1 therapy through reversed immunosuppression. Moreover, circulating sEVsCD73 increased the risk of lymph node metastasis and worse prognosis. Taken together, our study suggests that sEVsCD73 derived from tumour cells contributes to immunosuppression and is a potential predictor of anti‐PD‐1 responses for immune checkpoint therapy in HNSCC.
Collapse
Affiliation(s)
- Tingwei Lu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhua Pan
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqin Zhu
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihui Li
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Ruan
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huasheng Li
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Yan
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Targeting nucleotide metabolism: a promising approach to enhance cancer immunotherapy. J Hematol Oncol 2022; 15:45. [PMID: 35477416 PMCID: PMC9044757 DOI: 10.1186/s13045-022-01263-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/18/2022] [Indexed: 12/12/2022] Open
Abstract
Targeting nucleotide metabolism can not only inhibit tumor initiation and progression but also exert serious side effects. With in-depth studies of nucleotide metabolism, our understanding of nucleotide metabolism in tumors has revealed their non-proliferative effects on immune escape, indicating the potential effectiveness of nucleotide antimetabolites for enhancing immunotherapy. A growing body of evidence now supports the concept that targeting nucleotide metabolism can increase the antitumor immune response by (1) activating host immune systems via maintaining the concentrations of several important metabolites, such as adenosine and ATP, (2) promoting immunogenicity caused by increased mutability and genomic instability by disrupting the purine and pyrimidine pool, and (3) releasing nucleoside analogs via microbes to regulate immunity. Therapeutic approaches targeting nucleotide metabolism combined with immunotherapy have achieved exciting success in preclinical animal models. Here, we review how dysregulated nucleotide metabolism can promote tumor growth and interact with the host immune system, and we provide future insights into targeting nucleotide metabolism for immunotherapeutic treatment of various malignancies.
Collapse
|
27
|
Saxena V, Piao W, Li L, Paluskievicz C, Xiong Y, Simon T, Lakhan R, Brinkman CC, Walden S, Hippen KL, WillsonShirkey M, Lee YS, Wagner C, Blazar BR, Bromberg JS. Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses. Cell Rep 2022; 39:110727. [PMID: 35443187 PMCID: PMC9093052 DOI: 10.1016/j.celrep.2022.110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 03/30/2022] [Indexed: 02/03/2023] Open
Abstract
Regulatory T cell (Treg) lymphatic migration is required for resolving inflammation and prolonging allograft survival. Focusing on Treg interactions with lymphatic endothelial cells (LECs), we dissect mechanisms and functional consequences of Treg transendothelial migration (TEM). Using three genetic mouse models of pancreatic islet transplantation, we show that Treg lymphotoxin (LT) αβ and LEC LTβ receptor (LTβR) signaling are required for efficient Treg migration and suppressive function to prolong allograft survival. Inhibition of LT signaling increases Treg conversion to Foxp3loCD25lo exTregs. In a transwell-based model of TEM across polarized LECs, non-migrated Tregs become exTregs. Such conversion is regulated by LTβR nuclear factor κB (NF-κB) signaling in LECs, which increases interleukin-6 (IL-6) production and drives exTreg conversion. Migrating Tregs are ectonucleotidase CD39hi and resist exTreg conversion in an adenosine-receptor-2A-dependent fashion. Human Tregs migrating across human LECs behave similarly. These molecular interactions can be targeted for therapeutic manipulation of immunity and suppression.
Collapse
Affiliation(s)
- Vikas Saxena
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wenji Piao
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lushen Li
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christina Paluskievicz
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yanbao Xiong
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas Simon
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ram Lakhan
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - C Colin Brinkman
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sarah Walden
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Keli L Hippen
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Marina WillsonShirkey
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Young S Lee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chelsea Wagner
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
28
|
Garavelli S, Prattichizzo F, Ceriello A, Galgani M, de Candia P. Type 1 Diabetes and Associated Cardiovascular Damage: Contribution of Extracellular Vesicles in Tissue Crosstalk. Antioxid Redox Signal 2022; 36:631-651. [PMID: 34407376 DOI: 10.1089/ars.2021.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Type 1 diabetes (T1D) is characterized by the autoimmune destruction of the insulin secreting β-cells, with consequent aberrant blood glucose levels. Hyperglycemia is the common denominator for most of the chronic diabetic vascular complications, which represent the main cause of life reduction in T1D patients. For this disease, three interlaced medical needs remain: understanding the underlying mechanisms involved in pancreatic β-cell loss; identifying biomarkers able to predict T1D progression and its related complications; recognizing novel therapeutic targets. Recent Advances: Extracellular vesicles (EVs), released by most cell types, were discovered to contain a plethora of different molecules (including microRNAs) with regulatory properties, which are emerging as mediators of cell-to-cell communication at the paracrine and endocrine level. Recent knowledge suggests that EVs may act as pathogenic factors, and be developed into disease biomarkers and therapeutic targets in the context of several human diseases. Critical Issues: EVs have been recently shown to sustain a dysregulated cellular crosstalk able to exacerbate the autoimmune response in the pancreatic islets of T1D; moreover, EVs were shown to be able to monitor and/or predict the progression of T1D and the insurgence of vasculopathies. Future Directions: More mechanistic studies are needed to investigate whether the dysregulation of EVs in T1D patients is solely reflecting the progression of diabetes and related complications, or EVs also directly participate in the disease process, thus pointing to a potential use of EVs as therapeutic targets/tools in T1D. Antioxid. Redox Signal. 36, 631-651.
Collapse
Affiliation(s)
- Silvia Garavelli
- Institute for Endocrinology and Experimental Oncology "G. Salvatore," Consiglio Nazionale delle Ricerche (C.N.R.), Naples, Italy
| | | | | | - Mario Galgani
- Institute for Endocrinology and Experimental Oncology "G. Salvatore," Consiglio Nazionale delle Ricerche (C.N.R.), Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II," Italy
| | | |
Collapse
|
29
|
Naqvi RA, Datta M, Khan SH, Naqvi AR. Regulatory roles of MicroRNA in shaping T cell function, differentiation and polarization. Semin Cell Dev Biol 2022; 124:34-47. [PMID: 34446356 PMCID: PMC11661912 DOI: 10.1016/j.semcdb.2021.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/09/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022]
Abstract
T lymphocytes are an integral component of adaptive immunity with pleotropic effector functions. Impairment of T cell activity is implicated in various immune pathologies including autoimmune diseases, AIDS, carcinogenesis, and periodontitis. Evidently, T cell differentiation and function are under robust regulation by various endogenous factors that orchestrate underlying molecular pathways. MicroRNAs (miRNA) are a class of noncoding, regulatory RNAs that post-transcriptionally control multiple mRNA targets by sequence-specific interaction. In this article, we will review the recent progress in our understanding of miRNA-gene networks that are uniquely required by specific T cell effector functions and provide miRNA-mediated mechanisms that govern the fate of T cells. A subset of miRNAs may act in a synergistic or antagonistic manner to exert functional suppression of genes and regulate pathways that control T cell activation and differentiation. Significance of T cell-specific miRNAs and their dysregulation in immune-mediated diseases is discussed. Exosome-mediated horizontal transfer of miRNAs from antigen presenting cells (APCs) to T cells and from one T cell to another T cell subset and their impact on recipient cell functions is summarized.
Collapse
Affiliation(s)
- Raza Ali Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago 60612, IL, USA.
| | - Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Samia Haseeb Khan
- Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano 399-4598, Japan
| | - Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago 60612, IL, USA.
| |
Collapse
|
30
|
Sailliet N, Ullah M, Dupuy A, Silva AKA, Gazeau F, Le Mai H, Brouard S. Extracellular Vesicles in Transplantation. Front Immunol 2022; 13:800018. [PMID: 35185891 PMCID: PMC8851566 DOI: 10.3389/fimmu.2022.800018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have been extensively studied in the last two decades. It is now well documented that they can actively participate in the activation or regulation of immune system functions through different mechanisms, the most studied of which include protein–protein interactions and miRNA transfers. The functional diversity of EV-secreting cells makes EVs potential targets for immunotherapies through immune cell-derived EV functions. They are also a potential source of biomarkers of graft rejection through donor cells or graft environment-derived EV content modification. This review focuses on preclinical studies that describe the role of EVs from different cell types in immune suppression and graft tolerance and on the search for biomarkers of rejection.
Collapse
Affiliation(s)
- Nicolas Sailliet
- Nantes Université, INSERM, Centeer for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Matti Ullah
- MSC-med, INSERM U7057, Universite de Paris, Paris, France
| | - Amandine Dupuy
- Nantes Université, INSERM, Centeer for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | | | | | - Hoa Le Mai
- Nantes Université, INSERM, Centeer for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Sophie Brouard
- Nantes Université, INSERM, Centeer for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.,Labex IGO, Nantes, France
| |
Collapse
|
31
|
Levack RC, Newell KL, Cabrera-Martinez B, Cox J, Perl A, Bastacky SI, Winslow GM. Adenosine receptor 2a agonists target mouse CD11c +T-bet + B cells in infection and autoimmunity. Nat Commun 2022; 13:452. [PMID: 35064115 PMCID: PMC8782827 DOI: 10.1038/s41467-022-28086-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
CD11c+T-bet+ B cells are recognized as an important component of humoral immunity and autoimmunity. These cells can be distinguished from other B cells by their higher expression of the adenosine receptor 2a. Here we address whether A2A receptor activation can affect CD11c+T-bet+ B cells. We show that administration of the A2A receptor agonist CGS-21680 depletes established CD11c+T-bet+ B cells in ehrlichial-infected mice, in a B cell-intrinsic manner. Agonist treatment similarly depletes CD11c+T-bet+ B cells and CD138+ B cells and reduces anti-nuclear antibodies in lupus-prone mice. Agonist treatment is also associated with reduced kidney pathology and lymphadenopathy. Moreover, A2A receptor stimulation depletes pathogenic lymphocytes and ameliorates disease even after disease onset, highlighting the therapeutic potential of this treatment. This study suggests that targeting the adenosine signaling pathway may provide a method for the treatment of lupus and other autoimmune diseases mediated by T-bet+ B cells.
Collapse
Affiliation(s)
- Russell C Levack
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY, 13210, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Krista L Newell
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY, 13210, USA
| | | | - Justin Cox
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Andras Perl
- Department of Medicine, Division of Rheumatology, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Sheldon I Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Gary M Winslow
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
32
|
Treg-associated monogenic autoimmune disorders and gut microbial dysbiosis. Pediatr Res 2022; 91:35-43. [PMID: 33731809 PMCID: PMC8446091 DOI: 10.1038/s41390-021-01445-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/24/2020] [Accepted: 12/05/2020] [Indexed: 01/31/2023]
Abstract
Primary immunodeficiency diseases (PIDs) caused by a single-gene defect generally are referred to as monogenic autoimmune disorders. For example, mutations in the transcription factor autoimmune regulator (AIRE) result in a condition called autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy; while mutations in forkhead box P3 lead to regulatory T cell (Treg)-deficiency-induced multiorgan inflammation, which in humans is called "immune dysregulation, polyendocrinopathy, enteropathy with X-linked inheritance" (or IPEX syndrome). Previous studies concluded that monogenic diseases are insensitive to commensal microbial regulation because they develop even in germ-free (GF) animals, a conclusion that has limited the number of studies determining the role of microbiota in monogenic PIDs. However, emerging evidence shows that although the onset of the disease is independent of the microbiota, several monogenic PIDs vary in severity in association with the microbiome. In this review, we focus on monogenic PIDs associated with Treg deficiency/dysfunction, summarizing the gut microbial dysbiosis that has been shown to be linked to these diseases. From limited studies, we have gleaned several mechanistic insights that may prove to be of therapeutic importance in the early stages of life. IMPACT: This review paper serves to refute the concept that monogenic PIDs are not linked to the microbiome. The onset of monogenic PIDs is independent of microbiota; single-gene mutations such as AIRE or Foxp3 that affect central or peripheral immune tolerance produce monogenic diseases even in a GF environment. However, the severity and outcome of PIDs are markedly impacted by the microbial composition. We suggest that future research for these conditions may focus on targeting the microbiome.
Collapse
|
33
|
Figueiredo C, Padilha C, Dorneles G, Peres A, Krüger K, Rosa Neto JC, Lira F. Type and Intensity as Key Variable of Exercise in Metainflammation diseases: A Review. Int J Sports Med 2021; 43:743-767. [PMID: 34902867 DOI: 10.1055/a-1720-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Monocyte and lymphocyte subpopulations exhibit functions that vary between the anti- and pro-inflammatory spectrum, such as classic CD16- and non-classical CD16+ monocytes, as well as T helper 2 lymphocytes (Th2), the Th1/Th17 lymphocytes ratio, and T regulatory lymphocytes (Treg). Metabolic disease-associated inflammation is accompanied by an imbalance in monocyte and lymphocyte phenotypes and functionality, as well as a stronger proportion of inflammatory subpopulations. These changes appear to be important for the development and progression of diseases like diabetes and cardiovascular disease. On the other hand, the regular practice of physical exercise is an important tool to restore the functionality of monocytes and lymphocytes, and to balance the subtypes ratio. However, key variables regarding exercise prescription, such as the type of exercise, intensity, and volume differentially impact on the acute and chronic immune response in individuals diagnosed with meta inflammation diseases. Here, we discuss the impact of different physical exercise protocols, acutely and chronically, on monocytes and lymphocytes of individuals with metabolic disease-associated inflammation. In this review, we focus on the best effects of different exercise protocols to dose the "exercise pill" in different inflammatory status.
Collapse
Affiliation(s)
- Caique Figueiredo
- Physical Education, Universidade Estadual Paulista Julio de Mesquita Filho - Campus de Presidente Prudente, Presidente Prudente, Brazil
| | - Camila Padilha
- Physical Education, Universidade Estadual de Londrina, Londrina, Brazil
| | - Gilson Dorneles
- Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Alessandra Peres
- Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Karsten Krüger
- Dept. of Sport Medicine, Institute of Sport Science, Giessen, Germany
| | | | - Fábio Lira
- Department of Physical Education, Unesp, Presidente Prudente, Brazil
| |
Collapse
|
34
|
Antonioli L, Pacher P, Haskó G. Adenosine and inflammation: it's time to (re)solve the problem. Trends Pharmacol Sci 2021; 43:43-55. [PMID: 34776241 DOI: 10.1016/j.tips.2021.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Resolution of inflammation requires proresolving molecular pathways triggered as part of the host response during the inflammatory phase. Adenosine and its receptors, which are collectively called the adenosine system, shape inflammatory cell activity during the active phase of inflammation, leading these immune cells toward a functional repolarization, thus contributing to the onset of resolution. Strategies based on the resolution of inflammation have shaped a new area of pharmacology referred to as 'resolution pharmacology' and in this regard, the adenosine system represents an interesting target to design novel pharmacological tools to 'resolve' the inflammatory process. In this review, we outline the role of the adenosine system in driving the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20892, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
35
|
Pasquini S, Contri C, Borea PA, Vincenzi F, Varani K. Adenosine and Inflammation: Here, There and Everywhere. Int J Mol Sci 2021; 22:7685. [PMID: 34299305 PMCID: PMC8304851 DOI: 10.3390/ijms22147685] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine is a ubiquitous endogenous modulator with the main function of maintaining cellular and tissue homeostasis in pathological and stress conditions. It exerts its effect through the interaction with four G protein-coupled receptor (GPCR) subtypes referred as A1, A2A, A2B, and A3 adenosine receptors (ARs), each of which has a unique pharmacological profile and tissue distribution. Adenosine is a potent modulator of inflammation, and for this reason the adenosinergic system represents an excellent pharmacological target for the myriad of diseases in which inflammation represents a cause, a pathogenetic mechanism, a consequence, a manifestation, or a protective factor. The omnipresence of ARs in every cell of the immune system as well as in almost all cells in the body represents both an opportunity and an obstacle to the clinical use of AR ligands. This review offers an overview of the cardinal role of adenosine in the modulation of inflammation, showing how the stimulation or blocking of its receptors or agents capable of regulating its extracellular concentration can represent promising therapeutic strategies for the treatment of chronic inflammatory pathologies, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Silvia Pasquini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.)
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.)
| | | | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.)
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.)
| |
Collapse
|
36
|
Glasner A, Plitas G. Tumor resident regulatory T cells. Semin Immunol 2021; 52:101476. [PMID: 33906820 DOI: 10.1016/j.smim.2021.101476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023]
Abstract
The immune system mediates powerful effector mechanisms to protect against a diversity of pathogens and equally as important regulatory functions, to limit collateral damage of inflammation, prevent misguided immune responses to "self", and promote tissue repair. Inadequate regulatory control can lead to a variety of inflammatory disorders including autoimmunity, metabolic syndrome, allergies, and progression of malignancies. Cancers evolve complex mechanisms to thwart immune eradication including coopting normal host regulatory processes. This is most evident in the analysis of tumor infiltrating lymphocytes (TILs), where a preponderance of immunosuppressive immune cells, such as regulatory T (Treg) cells are found. Treg cells express the X-chromosome linked transcription factor Foxp3 and play a crucial role in maintaining immune homeostasis by suppressing inflammatory responses in diverse biological settings. Treg cells in the tumor microenvironment promote tumor development and progression by dampening anti-tumor immune responses, directly supporting the survival of transformed cells through elaboration of growth factors, and interacting with accessory cells in tumors such as fibroblasts and endothelial cells. Current insights into the phenotype and function of tumor associated Treg cells have opened up opportunities for their selective targeting in cancer with the goal of alleviating their suppression of anti-tumor immune responses while maintaining overall immune homeostasis. Here, we review Treg cell biology in the context of the tumor microenvironment (TME), and the important role they play in cancer immunotherapy.
Collapse
Affiliation(s)
- Ariella Glasner
- Immunology Program and Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - George Plitas
- Immunology Program and Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
37
|
Zhu Y, Zhuang Z, Wu Q, Lin S, Zhao N, Zhang Q, Xie L, Yu S. CD39/CD73/A2a Adenosine Metabolic Pathway: Targets for Moxibustion in Treating DSS-Induced Ulcerative Colitis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:661-676. [PMID: 33683190 DOI: 10.1142/s0192415x21500300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ulcerative Colitis (UC) is a chronic inflammation disease, and the incidence of UC is increasing recently. Both clinical trials and animal experiments show that moxibustion is a complementary and alternative treatment for UC. Previous studies showed that moxibustion can improve UC by regulating the balance of Tregs and Th17 (Sun et al., 2017). Treg cells is one subset of CD4[Formula: see text] T cells that exert the immunosuppressive function. CD39 and CD73, expressed on the surface of Tregs, hydrolyze ATP to AMP and are further involved in the immunosuppressive function of Tregs. In this study, we investigated the effect of moxibustion on CD39[Formula: see text] Tregs and CD73[Formula: see text] Tregs in dextran sulfate sodium (DSS) induced UC mice. The A2a receptor (A2aR), one of the targets of adenosine, was also detected. The results showed that moxibustion could increase the expression of CD39, CD73, and A2aR in colonic tissue and improve the proportion of CD39[Formula: see text] Tregs and CD73[Formula: see text] Tregs in peripheral blood, inguinal draining lymph nodes and spleen in the UC model. Additionally, A2aR agonists enhanced the cell viability of colonic epithelial cells and inhibit the production of cytokines IL-6 and TNF-[Formula: see text] in vitro, which may further influence the pathway of ATP purine signal metabolism and alleviates the gut inflammation of UC mice. Taken together, this study provides supplemental evidence to reveal the immune related mechanism of moxibustion in the treatment of UC.
Collapse
Affiliation(s)
- Yuanbing Zhu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| | - Zhiqi Zhuang
- People's Hospital of Pengzhou, Pengzhou, Sichuan 611930, P. R. China
| | - Qiaofeng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China.,Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu 610075, China
| | - Sirui Lin
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| | - Na Zhao
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| | - Qun Zhang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| | - Lushuang Xie
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China.,College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| | - Shuguang Yu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| |
Collapse
|
38
|
Zimmermann H. Ectonucleoside triphosphate diphosphohydrolases and ecto-5'-nucleotidase in purinergic signaling: how the field developed and where we are now. Purinergic Signal 2021; 17:117-125. [PMID: 33336318 PMCID: PMC7954995 DOI: 10.1007/s11302-020-09755-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Geoffrey Burnstock will be remembered as the scientist who set up an entirely new field of intercellular communication, signaling via nucleotides. The signaling cascades involved in purinergic signaling include intracellular storage of nucleotides, nucleotide release, extracellular hydrolysis, and the effect of the released compounds or their hydrolysis products on target tissues via specific receptor systems. In this context ectonucleotidases play several roles. They inactivate released and physiologically active nucleotides, produce physiologically active hydrolysis products, and facilitate nucleoside recycling. This review briefly highlights the development of our knowledge of two types of enzymes involved in extracellular nucleotide hydrolysis and thus purinergic signaling, the ectonucleoside triphosphate diphosphohydrolases, and ecto-5'-nucleotidase.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Goethe University, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
39
|
Costa F, Marchica V, Storti P, Malavasi F, Giuliani N. PD-L1/PD-1 Axis in Multiple Myeloma Microenvironment and a Possible Link with CD38-Mediated Immune-Suppression. Cancers (Basel) 2021; 13:E164. [PMID: 33418913 PMCID: PMC7825118 DOI: 10.3390/cancers13020164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 12/20/2022] Open
Abstract
The emerging role of the PD-1/PD-L1 axis in MM immune-microenvironment has been highlighted by several studies. However, discordant data have been reported on PD-1/PD-L1 distribution within the bone marrow (BM) microenvironment of patients with monoclonal gammopathies. In addition, the efficacy of PD-1/PD-L1 blockade as a therapeutic strategy to reverse myeloma immune suppression and inhibit myeloma cell survival still remains unknown. Recent data suggest that, among the potential mechanisms behind the lack of responsiveness or resistance to anti-PD-L1/PD-1 antibodies, the CD38 metabolic pathways involving the immune-suppressive factor, adenosine, could play an important role. This review summarizes the available data on PD-1/PD-L1 expression in patients with MM, reporting the main mechanisms of regulation of PD-1/PD-L1 axis. The possible link between the CD38 and PD-1/PD-L1 pathways is also reported, highlighting the rationale for the potential use of a combined therapeutic approach with CD38 blocking agents and anti-PD-1/PD-L1 antibodies in order to improve their anti-tumoral effect in MM patients.
Collapse
Affiliation(s)
- Federica Costa
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (V.M.); (P.S.)
| | - Valentina Marchica
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (V.M.); (P.S.)
| | - Paola Storti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (V.M.); (P.S.)
| | - Fabio Malavasi
- Department of Medical Science, University of Turin and Fondazione Ricerca Molinette, 10123 Turin, Italy
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (V.M.); (P.S.)
- Hematology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy
| |
Collapse
|
40
|
Zimmermann H. History of ectonucleotidases and their role in purinergic signaling. Biochem Pharmacol 2020; 187:114322. [PMID: 33161020 DOI: 10.1016/j.bcp.2020.114322] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022]
Abstract
Ectonucleotidases are key for purinergic signaling. They control the duration of activity of purinergic receptor agonists. At the same time, they produce hydrolysis products as additional ligands of purinergic receptors. Due to the considerable diversity of enzymes, purinergic receptor ligands and purinergic receptors, deciphering the impact of extracellular purinergic receptor control has become a challenge. The first group of enzymes described were the alkaline phosphatases - at the time not as nucleotide-metabolizing but as nonspecific phosphatases. Enzymes now referred to as nucleoside triphosphate diphosphohydrolases and ecto-5'-nucleotidase were the first and only nucleotide-specific ectonucleotidases identified. And they were the first group of enzymes related to purinergic signaling. Additional research brought to light a surprising number of ectoenzymes with broad substrate specificity, which can also hydrolyze nucleotides. This short overview traces the development of the field and briefly highlights important results and benefits for therapies of human diseases achieved within nearly a century of investigations.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Goethe University, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
41
|
Song W, Tang Y, Wei L, Zhang C, Song D, Li X, Jiang S. Protective effect of CD73 inhibitor α, β-methylene ADP against amyloid-β-induced cognitive impairment by inhibiting adenosine production in hippocampus. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
42
|
Scholl JN, Dias CK, Muller L, Battastini AMO, Figueiró F. Extracellular vesicles in cancer progression: are they part of the problem or part of the solution? Nanomedicine (Lond) 2020; 15:2625-2641. [PMID: 33094653 DOI: 10.2217/nnm-2020-0256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are released especially by cancer cells. They modulate the tumor microenvironment by interacting with immune cells while carrying immunosuppressive or immunostimulatory molecules. In this review, we will explore some conflicting reports regarding the immunological outcomes of EVs in cancer progression, in which they might initiate an antitumor immune response or an immunosuppressive response. Concerning immunosuppression, the role of tumor-derived EVs' in the adenosinergic system is underexplored. The enhancement of adenosine (ADO) levels in the tumor microenvironment impairs T-cell function and cytokine release. However, some tumor-derived EVs may deliver immunostimulatory factors, promoting immunogenic activity, even with ADO production. The modulatory role of ADO over the tumor progression represents a piece in an intricate microenvironment with anti and pro tumoral seesaw-like mechanisms.
Collapse
Affiliation(s)
- Juliete Nathali Scholl
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Camila Kehl Dias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Laurent Muller
- Department of Otolaryngology, Head & Neck Surgery, University of Basel, Basel, 4031, Switzerland
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| |
Collapse
|
43
|
Allard B, Allard D, Buisseret L, Stagg J. The adenosine pathway in immuno-oncology. Nat Rev Clin Oncol 2020; 17:611-629. [PMID: 32514148 DOI: 10.1038/s41571-020-0382-2] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
Cancer immunotherapy based on immune-checkpoint inhibition or adoptive cell therapy has revolutionized cancer care. Nevertheless, a large proportion of patients do not benefit from such treatments. Over the past decade, remarkable progress has been made in the development of 'next-generation' therapeutics in immuno-oncology, with inhibitors of extracellular adenosine (eADO) signalling constituting an expanding class of agents. Induced by tissue hypoxia, inflammation, tissue repair and specific oncogenic pathways, the adenosinergic axis is a broadly immunosuppressive pathway that regulates both innate and adaptive immune responses. Inhibition of eADO-generating enzymes and/or eADO receptors can promote antitumour immunity through multiple mechanisms, including enhancement of T cell and natural killer cell function, suppression of the pro-tumourigenic effects of myeloid cells and other immunoregulatory cells, and promotion of antigen presentation. With several clinical trials currently evaluating inhibitors of the eADO pathway in patients with cancer, we herein review the pathophysiological function of eADO with a focus on effects on antitumour immunity. We also discuss the treatment opportunities, potential limitations and biomarker-based strategies related to adenosine-targeted therapy in oncology.
Collapse
Affiliation(s)
- Bertrand Allard
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - David Allard
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Laurence Buisseret
- Department of Medical Oncology, Institut Jules Bordet, Brussels, Belgium
| | - John Stagg
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
44
|
Magni G, Ceruti S. Adenosine Signaling in Autoimmune Disorders. Pharmaceuticals (Basel) 2020; 13:ph13090260. [PMID: 32971792 PMCID: PMC7558305 DOI: 10.3390/ph13090260] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
The molecular components of the purinergic system (i.e., receptors, metabolizing enzymes and membrane transporters) are widely expressed in the cells of the immune system. Additionally, high concentrations of adenosine are generated from the hydrolysis of ATP in any "danger" condition, when oxygen and energy availability dramatically drops. Therefore, adenosine acts as a retaliatory metabolite to counteract the nucleotide-mediated boost of the immune reaction. Based on this observation, it can be foreseen that the recruitment with selective agonists of the receptors involved in the immunomodulatory effect of adenosine might represent an innovative anti-inflammatory approach with potential exploitation in autoimmune disorders. Quite surprisingly, pro-inflammatory activity exerted by some adenosine receptors has been also identified, thus paving the way for the hypothesis that at least some autoimmune disorders may be caused by a derailment of adenosine signaling. In this review article, we provide a general overview of the roles played by adenosine on immune cells with a specific focus on the development of adenosine-based therapies for autoimmune disorders, as demonstrated by the exciting data from concluded and ongoing clinical trials.
Collapse
|
45
|
Wang P, Jia J, Zhang D. Purinergic signalling in liver diseases: Pathological functions and therapeutic opportunities. JHEP Rep 2020; 2:100165. [PMID: 33103092 PMCID: PMC7575885 DOI: 10.1016/j.jhepr.2020.100165] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/24/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular nucleotides, including ATP, are essential regulators of liver function and serve as danger signals that trigger inflammation upon injury. Ectonucleotidases, which are expressed by liver-resident cells and recruited immune cells sequentially hydrolyse nucleotides to adenosine. The nucleotide/nucleoside balance orchestrates liver homeostasis, tissue repair, and functional restoration by regulating the crosstalk between liver-resident cells and recruited immune cells. In this review, we discuss our current knowledge on the role of purinergic signals in liver homeostasis, restriction of inflammation, stimulation of liver regeneration, modulation of fibrogenesis, and regulation of carcinogenesis. Moreover, we discuss potential targeted therapeutic strategies for liver diseases based on purinergic signals involving blockade of nucleotide receptors, enhancement of ectonucleoside triphosphate diphosphohydrolase activity, and activation of adenosine receptors.
Collapse
Key Words
- A1, adenosine receptor A1
- A2A, adenosine receptor A2A
- A2B, adenosine receptor A2B
- A3, adenosine receptor A3
- AIH, autoimmune hepatitis
- ALT, alanine aminotransferase
- APAP, acetaminophen
- APCP, α,β-methylene ADP
- Adenosine receptors
- BDL, bile duct ligation
- CCl4, carbon tetrachloride
- CD73, ecto-5ʹ-nucleotidase
- ConA, concanavalin A
- DCs, dendritic cells
- DMN, dimethylnitrosamine
- Ecto-5ʹ-nucleotidase
- Ectonucleoside triphosphate diphosphohydrolases 1
- HCC, hepatocellular carcinoma
- HFD, high-fat diet
- HGF, hepatocyte growth factor
- HSCs, hepatic stellate cells
- IFN, interferon
- IL-, interleukin-
- IPC, ischaemic preconditioning
- IR, ischaemia-reperfusion
- Liver
- MAPK, mitogen-activating protein kinase
- MCDD, methionine- and choline-deficient diet
- MHC, major histocompatibility complex
- NAFLD, non-alcoholic fatty liver disease
- NK, natural killer
- NKT, natural killer T
- NTPDases, ectonucleoside triphosphate diphosphohydrolases
- Nucleotide receptors
- P1, purinergic type 1
- P2, purinergic type 2
- PBC, primary biliary cholangitis
- PH, partial hepatectomy
- PKA, protein kinase A
- PPADS, pyridoxal-phosphate-6-azophenyl-2′,4′-disulphonate
- Purinergic signals
- ROS, reactive oxygen species
- TAA, thioacetamide
- TNF, tumour necrosis factor
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
Collapse
Affiliation(s)
- Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| |
Collapse
|
46
|
The Adenosine System at the Crossroads of Intestinal Inflammation and Neoplasia. Int J Mol Sci 2020; 21:ijms21145089. [PMID: 32708507 PMCID: PMC7403993 DOI: 10.3390/ijms21145089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Adenosine is a purine nucleoside, resulting from the degradation of adenosine triphosphate (ATP). Under adverse conditions, including hypoxia, ischemia, inflammation, or cancer, the extracellular levels of adenosine increase significantly. Once released, adenosine activates cellular signaling pathways through the engagement of the four known G-protein-coupled receptors, adenosine A1 receptor subtype (A1), A2A, A2B, and A3. These receptors, expressed virtually on all immune cells, mitigate all aspects of immune/inflammatory responses. These immunosuppressive effects contribute to blunt the exuberant inflammatory responses, shielding cells, and tissues from an excessive immune response and immune-mediated damage. However, a prolonged persistence of increased adenosine concentrations can be deleterious, participating in the creation of an immunosuppressed niche, ideal for neoplasia onset and development. Based on this evidence, the present review has been conceived to provide a comprehensive and critical overview of the involvement of adenosine system in shaping the molecular mechanisms underlying the enteric chronic inflammation and in promoting the generation of an immunosuppressive niche useful for the colorectal tumorigenesis.
Collapse
|
47
|
Purinergic Signaling in the Hallmarks of Cancer. Cells 2020; 9:cells9071612. [PMID: 32635260 PMCID: PMC7407645 DOI: 10.3390/cells9071612] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a complex expression of an altered state of cellular differentiation associated with severe clinical repercussions. The effort to characterize this pathological entity to understand its underlying mechanisms and visualize potential therapeutic strategies has been constant. In this context, some cellular (enhanced duplication, immunological evasion), metabolic (aerobic glycolysis, failure in DNA repair mechanisms) and physiological (circadian disruption) parameters have been considered as cancer hallmarks. The list of these hallmarks has been growing in recent years, since it has been demonstrated that various physiological systems misfunction in well-characterized ways upon the onset and establishment of the carcinogenic process. This is the case with the purinergic system, a signaling pathway formed by nucleotides/nucleosides (mainly adenosine triphosphate (ATP), adenosine (ADO) and uridine triphosphate (UTP)) with their corresponding membrane receptors and defined transduction mechanisms. The dynamic equilibrium between ATP and ADO, which is accomplished by the presence and regulation of a set of ectonucleotidases, defines the pro-carcinogenic or anti-cancerous final outline in tumors and cancer cell lines. So far, the purinergic system has been recognized as a potential therapeutic target in cancerous and tumoral ailments.
Collapse
|
48
|
Jackson EK, Gillespie DG, Cheng D, Mi Z, Menshikova EV. Characterization of the N 6-etheno-bridge method to assess extracellular metabolism of adenine nucleotides: detection of a possible role for purine nucleoside phosphorylase in adenosine metabolism. Purinergic Signal 2020; 16:187-211. [PMID: 32367441 PMCID: PMC7367995 DOI: 10.1007/s11302-020-09699-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
The goal of this study was to determine the validity of using N6-etheno-bridged adenine nucleotides to evaluate ecto-nucleotidase activity. We observed that the metabolism of N6-etheno-ATP versus ATP was quantitatively similar when incubated with recombinant CD39, ENTPD2, ENTPD3, or ENPP-1, and the quantitative metabolism of N6-etheno-AMP versus AMP was similar when incubated with recombinant CD73. This suggests that ecto-nucleotidases process N6-etheno-bridged adenine nucleotides similarly to endogenous adenine nucleotides. Four cell types rapidly (t1/2, 0.21 to 0.66 h) metabolized N6-etheno-ATP. Applied N6-etheno-ATP was recovered in the medium as N6-etheno-ADP, N6-etheno-AMP, N6-etheno-adenosine, and surprisingly N6-etheno-adenine; intracellular N6-etheno compounds were undetectable. This suggests minimal cellular uptake, intracellular metabolism, or deamination of these compounds. N6-etheno-ATP, N6-etheno-ADP, N6-etheno-AMP, N6-etheno-adenosine, and N6-etheno-adenine had little affinity for recombinant A1, A2A, or A2B receptors, for a subset of P2X receptors (3H-α,β-methylene-ATP binding to rat bladder membranes), or for a subset of P2Y receptors (35S-ATP-αS binding to rat brain membranes), suggesting minimal pharmacological activity. N6-etheno-adenosine was partially converted to N6-etheno-adenine in four different cell types; this was blocked by purine nucleoside phosphorylase (PNPase) inhibition. Intravenous N6-etheno-ATP was quickly metabolized, with N6-etheno-adenine being the main product in naïve rats, but not in rats pretreated with a PNPase inhibitor. PNPase inhibition reduced the urinary excretion of endogenous adenine and attenuated the conversion of exogenous adenosine to adenine in the renal cortex. The N6-etheno-bridge method is a valid technique to assess extracellular metabolism of adenine nucleotides by ecto-nucleotidases. Also, rats express an enzyme with PNPase-like activity that metabolizes N6-etheno-adenosine to N6-etheno-adenine.
Collapse
Affiliation(s)
- Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| | - Delbert G. Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| | - Dongmei Cheng
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| | - Zaichuan Mi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| | - Elizabeth V. Menshikova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| |
Collapse
|
49
|
Graham JB, Swarts JL, Thomas S, Voss KM, Sekine A, Green R, Ireton RC, Gale M, Lund JM. Immune Correlates of Protection From West Nile Virus Neuroinvasion and Disease. J Infect Dis 2020; 219:1162-1171. [PMID: 30371803 DOI: 10.1093/infdis/jiy623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A challenge to the design of improved therapeutic agents and prevention strategies for neuroinvasive infection and associated disease is the lack of known natural immune correlates of protection. A relevant model to study such correlates is offered by the Collaborative Cross (CC), a panel of recombinant inbred mouse strains that exhibit a range of disease manifestations upon infection. METHODS We performed an extensive screen of CC-F1 lines infected with West Nile virus (WNV), including comprehensive immunophenotyping, to identify groups of lines that exhibited viral neuroinvasion or neuroinvasion with disease and lines that remained free of WNV neuroinvasion and disease. RESULTS Our data reveal that protection from neuroinvasion and disease is multifactorial and that several immune outcomes can contribute. Immune correlates identified include decreased suppressive activity of regulatory T cells at steady state, which correlates with peripheral restriction of the virus. Further, a rapid contraction of WNV-specific CD8+ T cells in the brain correlated with protection from disease. CONCLUSIONS These immune correlates of protection illustrate additional networks and pathways of the WNV immune response that cannot be observed in the C57BL/6 mouse model. Additionally, correlates of protection exhibited before infection, at baseline, provide insight into phenotypic differences in the human population that may predict clinical outcomes upon infection.
Collapse
Affiliation(s)
- Jessica B Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Jessica L Swarts
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Sunil Thomas
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine
| | - Kathleen M Voss
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine
| | - Aimee Sekine
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine
| | - Richard Green
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine
| | - Renee C Ireton
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Department of Global Health, School of Medicine and School of Public Health, University of Washington, Seattle, Washington
| |
Collapse
|
50
|
Paluskievicz CM, Cao X, Abdi R, Zheng P, Liu Y, Bromberg JS. T Regulatory Cells and Priming the Suppressive Tumor Microenvironment. Front Immunol 2019; 10:2453. [PMID: 31681327 PMCID: PMC6803384 DOI: 10.3389/fimmu.2019.02453] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
Treg play a central role in maintenance of self tolerance and homeostasis through suppression of self-reactive T cell populations. In addition to that role, Treg also survey cancers and suppress anti-tumor immune responses. Thus, understanding the unique attributes of Treg-tumor interactions may permit control of this pathologic suppression without interfering with homeostatic self-tolerance. This review will define the unique role of Treg in cancer growth, and the ways by which Treg inhibit a robust anti-tumor immune response. There will be specific focus placed on Treg homing to the tumor microenvironment (TME), TME formation of induced Treg (iTreg), mechanisms of suppression that underpin cancer immune escape, and trophic nonimmunologic effects of Treg on tumor cells.
Collapse
Affiliation(s)
| | - Xuefang Cao
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Reza Abdi
- Division of Renal Medicine, Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Pan Zheng
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Yang Liu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jonathan S. Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|