1
|
Miller CO, Gantert LT, Previs SF, Chen Y, Anderson KD, Thomas JM, Sanacora G, Uslaner JM, Rothman DL, Mason GF. A Novel Biomarker of Neuronal Glutamate Metabolism in Nonhuman Primates Using Localized 1H-Magnetic Resonance Spectroscopy: Development and Effects of BNC375, an α7 Nicotinic Acetylcholine Receptor Positive Allosteric Modulator. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:598-606. [PMID: 33309567 PMCID: PMC8005500 DOI: 10.1016/j.bpsc.2020.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 06/03/2023]
Abstract
BACKGROUND The development of treatments for cognitive deficits associated with central nervous system disorders is currently a significant medical need. Despite the great need for such therapeutics, a significant challenge in the drug development process is the paucity of robust biomarkers to assess target modulation and guide clinical decisions. We developed a novel, translatable biomarker of neuronal glutamate metabolism, the 13C-glutamate+glutamine (Glx) H3:H4 labeling ratio, in nonhuman primates using localized 1H-magnetic resonance spectroscopy combined with 13C-glucose infusions. METHODS We began with numerical simulations in an established model of brain glutamate metabolism, showing that the 13C-Glx H3:H4 ratio should be a sensitive biomarker of neuronal tricarboxylic acid cycle activity, a key measure of overall neuronal metabolism. We showed that this biomarker can be measured reliably using a standard 1H-magnetic resonance spectroscopy method (point-resolved spectroscopy sequence/echo time = 20 ms), obviating the need for specialized hardware and pulse sequences typically used with 13C-magnetic resonance spectroscopy, thus improving overall clinical translatability. Finally, we used this biomarker in 8 male rhesus macaques before and after administration of the compound BNC375, a positive allosteric modulator of the α7 nicotinic acetylcholine receptor that enhances glutamate signaling ex vivo and elicits procognitive effects in preclinical species. RESULTS The 13C-Glx H3:H4 ratios in the monkeys showed that BNC375 increases neuronal metabolism in nonhuman primates in vivo, detectable on an individual basis. CONCLUSIONS This study demonstrates that the ratio of 13C-Glx H3:H4 labeling is a biomarker that may provide an objective readout of compounds affecting glutamatergic neurotransmission and could improve decision making for the development of therapeutic agents.
Collapse
Affiliation(s)
- Corin O Miller
- Department of Translational Imaging Biomarkers, Merck & Co., Kenilworth, New Jersey.
| | - Liza T Gantert
- Department of Translational Imaging Biomarkers, Merck & Co., Kenilworth, New Jersey
| | | | - Ying Chen
- Department of Chemistry, Merck & Co., Kenilworth, New Jersey
| | - Kenneth D Anderson
- Department of Pharmacology, Pharmacokinetics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey
| | - Justina M Thomas
- Department of Pharmacology, Pharmacokinetics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Jason M Uslaner
- Department of Neuroscience, Merck & Co., Kenilworth, New Jersey
| | - Douglas L Rothman
- Department of Diagnostic Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut; Department of Biomedical Engineering Yale University School of Medicine, New Haven, Connecticut
| | - Graeme F Mason
- Department of Diagnostic Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
2
|
Ji X, Ferreira T, Friedman B, Liu R, Liechty H, Bas E, Chandrashekar J, Kleinfeld D. Brain microvasculature has a common topology with local differences in geometry that match metabolic load. Neuron 2021; 109:1168-1187.e13. [PMID: 33657412 PMCID: PMC8525211 DOI: 10.1016/j.neuron.2021.02.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/09/2020] [Accepted: 02/03/2021] [Indexed: 01/03/2023]
Abstract
The microvasculature underlies the supply networks that support neuronal activity within heterogeneous brain regions. What are common versus heterogeneous aspects of the connectivity, density, and orientation of capillary networks? To address this, we imaged, reconstructed, and analyzed the microvasculature connectome in whole adult mice brains with sub-micrometer resolution. Graph analysis revealed common network topology across the brain that leads to a shared structural robustness against the rarefaction of vessels. Geometrical analysis, based on anatomically accurate reconstructions, uncovered a scaling law that links length density, i.e., the length of vessel per volume, with tissue-to-vessel distances. We then derive a formula that connects regional differences in metabolism to differences in length density and, further, predicts a common value of maximum tissue oxygen tension across the brain. Last, the orientation of capillaries is weakly anisotropic with the exception of a few strongly anisotropic regions; this variation can impact the interpretation of fMRI data.
Collapse
Affiliation(s)
- Xiang Ji
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tiago Ferreira
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Beth Friedman
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rui Liu
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hannah Liechty
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Erhan Bas
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | | | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
4
|
Singh RM, Waqar T, Howarth FC, Adeghate E, Bidasee K, Singh J. Hyperglycemia-induced cardiac contractile dysfunction in the diabetic heart. Heart Fail Rev 2017; 23:37-54. [DOI: 10.1007/s10741-017-9663-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Abstract
Diabetes mellitus (DM) is a major metabolic disorder currently affecting over 250 million people globally. It costs the worldwide health services almost £800 billion annually to diagnose, treat and care for patients with diabetes. DM is predicted to rise to 350 million by 2030. If left unmanaged, DM can lead to numerous long-term complications including micro- and macro-angiopathy and heart failure (HF). Most diabetics usually die as a result of HF resulting from diabetes-induced coronary artery disease and cardiomyopathy. Coronary artery disease and cardiomyopathy are normally preceded by hyperglycaemia (HG). This review examines the structural changes, which occur within the myocardium and cardiomyocytes during exposure of the heart to diabetes-induced HG and HG-induced oxidative stress. HG and the resulting oxidative stress are associated with marked myocardial hypertrophy and fibrosis compared to control heart. At the ultrastructural level, cardiomyocytes subjected to chronic HG and subsequent oxidative stress display swollen mitochondria, reduced mitochondrial number and defective myofibrils and intercalated discs. Evidence from many studies shows that both type 1 and type 2 diabetes-induced HG can cause myocardial fibrosis, mitochondriopathy, myocyte hypertrophy and deranged myofibrils. All of these structural changes may eventually result in HF if left untreated.
Collapse
Affiliation(s)
- Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,
| | | |
Collapse
|
6
|
Dhalla NS, Takeda N, Rodriguez-Leyva D, Elimban V. Mechanisms of subcellular remodeling in heart failure due to diabetes. Heart Fail Rev 2014; 19:87-99. [PMID: 23436108 DOI: 10.1007/s10741-013-9385-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetic cardiomyopathy is not only associated with heart failure but there also occurs a loss of the positive inotropic effect of different agents. It is now becoming clear that cardiac dysfunction in chronic diabetes is intimately involved with Ca(2+)-handling abnormalities, metabolic defects and impaired sensitivity of myofibrils to Ca(2+) in cardiomyocytes. On the other hand, loss of the inotropic effect in diabetic myocardium is elicited by changes in signal transduction mechanisms involving hormone receptors and depressions in phosphorylation of various membrane proteins. Ca(2+)-handling abnormalities in the diabetic heart occur mainly due to defects in sarcolemmal Na(+)-K(+) ATPase, Na(+)-Ca(2+) exchange, Na(+)-H(+) exchange, Ca(2+)-channels and Ca(2+)-pump activities as well as changes in sarcoplasmic reticular Ca(2+)-uptake and Ca(2+)-release processes; these alterations may lead to the occurrence of intracellular Ca(2+) overload. Metabolic defects due to insulin deficiency or ineffectiveness as well as hormone imbalance in diabetes are primarily associated with a shift in substrate utilization and changes in the oxidation of fatty acids in cardiomyocytes. Mitochondria initially seem to play an adaptive role in serving as a Ca(2+) sink, but the excessive utilization of long-chain fatty acids for a prolonged period results in the generation of oxidative stress and impairment of their function in the diabetic heart. In view of the activation of sympathetic nervous system and renin-angiotensin system as well as platelet aggregation, endothelial dysfunction and generation of oxidative stress in diabetes and blockade of their effects have been shown to attenuate subcellular remodeling, metabolic derangements and signal transduction abnormalities in the diabetic heart. On the basis of these observations, it is suggested that oxidative stress and subcellular remodeling due to hormonal imbalance and metabolic defects play a critical role in the genesis of heart failure during the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Naranjan S Dhalla
- Department of Physiology, Faculty of Medicine, Institute of Cardiovascular Sciences, St. Boniface Hospital Research, University of Manitoba, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada,
| | | | | | | |
Collapse
|
7
|
Kim K, Shin DH, Lee YB, Park KH, Park HM, Shin DJ, Kim JS. Evolution of abnormal eye movements in Wernicke's encephalopathy: Correlation with serial MRI findings. J Neurol Sci 2012; 323:77-9. [DOI: 10.1016/j.jns.2012.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/10/2012] [Accepted: 08/17/2012] [Indexed: 11/28/2022]
|
8
|
Chattopadhyay S, John J. Aortic regurgitation and coronary microfistulae: double jeopardy causing myonecrosis. Cardiology 2011; 118:227-32. [PMID: 21701172 DOI: 10.1159/000328644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 04/06/2011] [Indexed: 11/19/2022]
Abstract
We describe a 3-case series of patients with a rare combination of mild-to-moderate aortic regurgitation and coronary microfistulae but nonobstructed epicardial coronary arteries who presented with symptoms of unstable angina and had confirmed myonecrosis. A plausible pathophysiological mechanism for this phenomenon and its clinical implication are discussed.
Collapse
|
9
|
|
10
|
XIIth international symposium on radiopharmaceutical chemistry: Abstracts and programme. J Labelled Comp Radiopharm 2010. [DOI: 10.1002/jlcr.2580400401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Marklund N, Sihver S, Hovda DA, Långström B, Watanabe Y, Ronquist G, Bergström M, Hillered L. Increased Cerebral Uptake of [18F]Fluoro-Deoxyglucose but not [1-14C]Glucose Early following Traumatic Brain Injury in Rats. J Neurotrauma 2009; 26:1281-93. [DOI: 10.1089/neu.2008.0827] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Niklas Marklund
- Department of Neuroscience, Unit of Neurosurgery, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Sven Sihver
- Department of Neuroscience, Unit of Pharmacology, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - David A. Hovda
- UCLA Brain Injury Research Center, Departments of Neurosurgery and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California–Los Angeles, Los Angeles, California
| | - Bengt Långström
- Department of Biochemistry and Organic Chemistry, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Yasuyoshi Watanabe
- Department of Neuroscience, Osaka Bioscience Institute, Osaka, Japan
- Department of Physiology, Osaka City University, Osaka, Japan
| | - Gunnar Ronquist
- Department of Medical Sciences, Biochemical Structure And Function, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Mats Bergström
- Department of Biochemistry and Organic Chemistry, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Lars Hillered
- Department of Neuroscience, Unit of Neurosurgery, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| |
Collapse
|
12
|
Maddika S, Elimban V, Chapman D, Dhalla NS. Role of oxidative stress in ischemia-reperfusion-induced alterations in myofibrillar ATPase activities and gene expression in the heart. Can J Physiol Pharmacol 2009; 87:120-9. [PMID: 19234575 DOI: 10.1139/y08-105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemia-reperfusion (IR) in the heart has been shown to produce myofibrillar remodeling and depress Ca2+ sensitivity of myofilaments; however, the mechanisms for these alterations are not clearly understood. In view of the role of oxidative stress in cardiac dysfunction due to IR, isolated rat hearts were subjected to global ischemia for 30 min followed by a 30-minute period of reperfusion. IR was found to induce cardiac dysfunction, as reflected by depressed LVDP, +dP/dt, and -dP/dt, and elevated LVEDP, and to reduce myofibrillar Ca2+-stimulated ATPase activity. These changes were simulated by perfusing the hearts with a mixture of xanthine plus xanthine oxidase, which is known to generate oxyradicals. The alterations in cardiac function and myofibrillar Ca2+-stimulated ATPase in IR hearts were attenuated by pretreatment with antioxidants (superoxide dismutase plus catalase, and N-acetylcysteine) and leupeptin, an inhibitor of Ca2+-dependent protease. The levels of mRNA for myosin heavy chain isoforms (alpha-MHC and beta-MHC) and myosin light chain (MLC1) were depressed in IR hearts. These changes in gene expression due to IR were prevented upon perfusing the hearts with superoxide plus catalase, with N-acetylcysteine, or with leupeptin. The results suggest that oxidative stress due to IR injury and associated proteolysis play an important role in inducing changes in myofibrillar Ca2+-stimulated ATPase activity and gene expression in the heart.
Collapse
Affiliation(s)
- Srilekha Maddika
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and Department of Physiology, Faculty of Medicine, University of Manitoba, 351 Tache Avenue, Winnipeg, MB R2H2A6, Canada
| | | | | | | |
Collapse
|
13
|
Machackova J, Barta J, Dhalla NS. Molecular defects in cardiac myofibrillar proteins due to thyroid hormone imbalance and diabetesThis paper is a part of a series in the Journal's "Made in Canada" section. The paper has undergone peer review. Can J Physiol Pharmacol 2005; 83:1071-91. [PMID: 16462907 DOI: 10.1139/y05-121] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The heart very often becomes a victim of endocrine abnormalities such as thyroid hormone imbalance and insulin deficiency, which are manifested in a broad spectrum of cardiac dysfunction from mildly compromised function to severe heart failure. These functional changes in the heart are largely independent of alterations in the coronary arteries and instead reside at the level of cardiomyocytes. The status of cardiac function reflects the net of underlying subcellular modifications induced by an increase or decrease in thyroid hormone and insulin plasma levels. Changes in the contractile and regulatory proteins constitute molecular and structural alterations in myofibrillar assembly, called myofibrillar remodeling. These alterations may be adaptive or maladaptive with respect to the functional and metabolic demands on the heart as a consequence of the altered endocrine status in the body. There is a substantial body of information to indicate alterations in myofibrillar proteins including actin, myosin, tropomyosin, troponin, titin, desmin, and myosin-binding protein C in conditions such as hyperthyroidism, hypothyroidism, and diabetes. The present article is focussed on discussion how myofibrillar proteins are altered in response to thyroid hormone imbalance and lack of insulin or its responsiveness, and how their structural and functional changes explain the contractile defects in the heart.
Collapse
Affiliation(s)
- Jarmila Machackova
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Avenue, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | | | | |
Collapse
|
14
|
Cruz NF, Lasater A, Zielke HR, Dienel GA. Activation of astrocytes in brain of conscious rats during acoustic stimulation: acetate utilization in working brain. J Neurochem 2005; 92:934-47. [PMID: 15686496 DOI: 10.1111/j.1471-4159.2004.02935.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To evaluate the response of astrocytes in the auditory pathway to increased neuronal signaling elicited by acoustic stimulation, conscious rats were presented with a unilateral broadband click stimulus and functional activation was assessed by quantitative autoradiography using three tracers to pulse label different metabolic pools in brain: [2-14C]acetate labels the 'small' (astrocytic) glutamate pool, [1-14C]hydroxybutyrate labels the 'large' glutamate pool, and [14C]deoxyglucose, reflects overall glucose utilization (CMR(glc)) in all brain cells. CMR(glc) rose during brain activation, and increased activity of the oxidative pathway in working astrocytes during acoustic stimulation was registered with [2-14C]acetate. In contrast, the stimulation-induced increase in metabolic activity was not reflected by greater trapping of products of [1-14C]hydroxybutyrate. The [2-14C]acetate uptake coefficient in the inferior colliculus and lateral lemniscus during acoustic stimulation was 15% and 18% (p < 0.01) higher in the activated compared to contralateral hemisphere, whereas CMR(glc) in these structures rose by 66% (p < 0.01) and 42% (p < 0.05), respectively. Calculated rates of brain utilization of blood-borne acetate (CMR(acetate)) are about 15-25% of total CMR(glc) in non-stimulated tissue and 10-20% of CMR(glc) in acoustically activated structures; they range from 28 to 115% of estimated rates of glucose oxidation in astrocytes. The rise in acetate utilization during acoustic stimulation is modest compared to total CMR(glc), but astrocytic oxidative metabolism of 'minor' substrates present in blood can make a significant contribution to the overall energetics of astrocytes and astrocyte-neuron interactions in working brain.
Collapse
Affiliation(s)
- Nancy F Cruz
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Neurovascular and neurometabolic coupling help the brain to maintain an appropriate energy flow to the neural tissue under conditions of increased neuronal activity. Both coupling phenomena provide us, in addition, with two macroscopically measurable parameters, blood flow and intermediate metabolite fluxes, that are used to dynamically image the functioning brain. The main energy substrate for the brain is glucose, which is metabolized by glycolysis and oxidative breakdown in both astrocytes and neurons. Neuronal activation triggers increased glucose consumption and glucose demand, with new glucose being brought in by stimulated blood flow and glucose transport over the blood-brain barrier. Glucose is shuttled over the barrier by the GLUT-1 transporter, which, like all transporter proteins, has a ceiling above which no further stimulation of the transport is possible. Blood-brain barrier glucose transport is generally accepted as a nonrate-limiting step but to prevent it from becoming rate-limiting under conditions of neuronal activation, it might be necessary for the transport parameters to be adapted to the increased glucose demand. It is proposed that the blood-brain barrier glucose transport parameters are dynamically adapted to the increased glucose needs of the neural tissue after activation according to a neurobarrier coupling scheme. This review presents neurobarrier coupling within the current knowledge on neurovascular and neurometabolic coupling, and considers arguments and evidence in support of this hypothesis.
Collapse
Affiliation(s)
- Luc Leybaert
- Department of Physiology and Pathophysiology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
16
|
Mason GF, Rothman DL. Basic principles of metabolic modeling of NMR (13)C isotopic turnover to determine rates of brain metabolism in vivo. Metab Eng 2004; 6:75-84. [PMID: 14734257 DOI: 10.1016/j.ymben.2003.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolic modeling is a necessary part of the analysis of isotopic labeling data that is being obtained in the brain and other organs. Here are explained the basic principles of metabolic modeling of isotopic labeling studies, particularly with regard to (13)C isotopic measurements performed in vivo. The basic elements needed to simulate isotopic flows are described, and how to combine them to perform modeling analyses is explained. Procedures to introduce and evaluate model constraints and simplifications are discussed. The basic principle of isotopomer analysis is explained, as are mechanics of least-squares fitting of simulations to data. Closely related to the fitting is the effect of data scatter, which is discussed in the context of the non-normal distributions of uncertainty that are often seen with (13)C labeling measurements in vivo. This article is meant to provide a general background for investigators to begin to apply metabolic modeling analysis to (13)C isotopic labeling studies performed in vivo.
Collapse
Affiliation(s)
- Graeme F Mason
- Department of Psychiatry, School of Medicine, Yale University, N-141 CAB-Magnetic Resonance Center, 300 Cedar Street, PO Box 208043, New Haven, CT 06520-8043, USA.
| | | |
Collapse
|
17
|
Dienel GA, Cruz NF. Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochem Int 2004; 45:321-51. [PMID: 15145548 DOI: 10.1016/j.neuint.2003.10.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Revised: 10/24/2003] [Accepted: 10/27/2003] [Indexed: 10/26/2022]
Abstract
Functional activation of astrocytic metabolism is believed, according to one hypothesis, to be closely linked to excitatory neurotransmission and to provide lactate as fuel for oxidative metabolism in neighboring neurons. However, review of emerging evidence suggests that the energetic demands of activated astrocytes are higher and more complex than recognized and much of the lactate presumably produced by astrocytes is not locally oxidized during activation. In vivo activation studies in normal subjects reveal that the rise in consumption of blood-borne glucose usually exceeds that of oxygen, especially in retina compared to brain. When the contribution of glycogen, the brain's major energy reserve located in astrocytes, is taken into account the magnitude of the carbohydrate-oxygen utilization mismatch increases further because the magnitude of glycogenolysis greatly exceeds the incremental increase in utilization of blood-borne glucose. Failure of local oxygen consumption to equal that of glucose plus glycogen in vivo is strong evidence against stoichiometric transfer of lactate from astrocytes to neighboring neurons for oxidation. Thus, astrocytes, not nearby neurons, use the glycogen for energy during physiological activation in normal brain. These findings plus apparent compartmentation of metabolism of glycogen and blood-borne glucose during activation lead to our working hypothesis that activated astrocytes have high energy demands in their fine perisynaptic processes (filopodia) that might be met by glycogenolysis and glycolysis coupled to rapid lactate clearance. Tissue culture studies do not consistently support the lactate shuttle hypothesis because key elements of the model, glutamate-induced increases in glucose utilization and lactate release, are not observed in many astrocyte preparations, suggesting differences in their oxidative capacities that have not been included in the model. In vivo nutritional interactions between working neurons and astrocytes are not as simple as implied by "sweet (glucose-glycogen) and sour (lactate) food for thought."
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, Slot 830, University of Arkansas for Medical Sciences, Room 715, Shorey Building, 4301 W. Markham Street, Little Rock, AR 72205, USA.
| | | |
Collapse
|
18
|
Véga C, Martiel JL, Drouhault D, Burckhart MF, Coles JA. Uptake of locally applied deoxyglucose, glucose and lactate by axons and Schwann cells of rat vagus nerve. J Physiol 2003; 546:551-64. [PMID: 12527741 PMCID: PMC2342518 DOI: 10.1113/jphysiol.2002.029751] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/30/2002] [Accepted: 10/24/2002] [Indexed: 12/31/2022] Open
Abstract
We asked whether, in a steady state, neurons and glial cells both take up glucose sufficient for their energy requirements, or whether glial cells take up a disproportionate amount and transfer metabolic substrate to neurons. A desheathed rat vagus nerve was held crossways in a laminar flow perfusion chamber and stimulated at 2 Hz. (14)C-labelled substrate was applied from a micropipette for 5 min over a < 0.6 mm band of the surface of the nerve. After 10-55 min incubation, the nerve was lyophilized and the longitudinal distribution of radioactivity measured. When the weakly metabolizable analogue of glucose, 2-deoxy-[U-(14)C]D-glucose (*DG), was applied, the profiles of the radioactivity broadened with time, reaching distances several times the mean length of the Schwann cells (0.32 mm; most of the Schwann cells are non-myelinating). The profiles were well fitted by curves calculated for diffusion in a single compartment, the mean diffusion coefficient being 463 +/- 34 microm(2) s(-1) (+/- S.E.M., n = 16). Applications of *DG were repeated in the presence of the gap junction blocker, carbenoxolone (100 microM). The profiles were now narrower and better fitted with two compartments. One compartment had a coefficient not significantly different from that in the absence of the gap junction blocker (axons), the other compartment had a coefficient of 204 +/- 24 microm(2) s(-1), n = 4. Addition of the gap junction blocker 18-alpha-glycyrrhetinic acid, or blocking electrical activity with TTX, also reduced longitudinal diffusion. Ascribing the compartment in which diffusion was reduced by these treatments to non-myelinating Schwann cells, we conclude that 78.0 +/- 3.6 % (n = 9) of the uptake of *DG was into Schwann cells. This suggests that there was transfer of metabolic substrate from Schwann cells to axons. Local application of [(14)C]glucose or [(14)C]lactate led to variable labelling along the length of the nerve, but with both substrates narrow peaks were often present at the application site; these were greatly reduced by subsequent treatment with amylase, a glycogen-degrading enzyme.
Collapse
Affiliation(s)
- Céline Véga
- INSERM U394, Institut François Magendie, Bordeaux, France
| | | | | | | | | |
Collapse
|
19
|
Dienel GA, Wang RY, Cruz NF. Generalized sensory stimulation of conscious rats increases labeling of oxidative pathways of glucose metabolism when the brain glucose-oxygen uptake ratio rises. J Cereb Blood Flow Metab 2002; 22:1490-502. [PMID: 12468893 DOI: 10.1097/01.wcb.0000034363.37277.89] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Interpretation of functional metabolic brain images requires understanding of metabolic shifts in working brain. Because the disproportionately higher uptake of glucose compared with oxygen ("aerobic glycolysis") during sensory stimulation is not fully explained by changes in levels of lactate or glycogen, metabolic labeling by [6-14C]glucose was used to evaluate utilization of glucose during brief brain activation. Increased labeling of tricarboxylic acid cycle-derived amino acids, mainly glutamate but also gamma-aminobutyric acid, reflects a rise in oxidative metabolism during aerobic glycolysis. The size of the glutamate, lactate, alanine, and aspartate pools changed during stimulation. Brain lactate was derived from blood-borne glucose and its specific activity was twice that of alanine, revealing pyruvate compartmentation. Glycogen labeling doubled during recovery compared with rest and activation; only 4% to 8% of the total 14C was recovered in lactate plus glycogen. Restoration of glycogen levels was slow, and diversion of glucose from oxidative pathways to restore its level could cause a prolonged reduction of the global O2/glucose uptake ratio. The rise in the brain glucose-oxygen uptake ratio during activation does not simply reflect an upward shift of glycolysis under aerobic conditions; instead, it involves altered fluxes into various (oxidative and biosynthetic) pathways with different time courses.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, Slot 500, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Shorey Building, Room 7S/15, Little Rock, AR 72205 U.S.A.
| | | | | |
Collapse
|
20
|
Misra T, Russell JC, Clark TA, Pierce GN. Mg2+-dependent ATPase activity in cardiac myofibrils from the insulin-resistant JCR:LA-cp rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 498:247-52. [PMID: 11900375 DOI: 10.1007/978-1-4615-1321-6_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
There is a great deal of information presently available documenting a cardiomyopathic condition in insulin-deficient models of diabetes. Less information is available documenting a similar status in non insulin-dependent models of diabetes. We have studied the functional integrity of the myofibrils isolated from hearts of JCR:LA rats. The JCR:LA rat is hyperinsulinemic, hyperlipidemic, glucose intolerant and obese. As such, it carries many of the characteristics found in humans with non insulin-dependent diabetes mellitus. These animals also have many indications of heart disease. However, it is not clear if the hearts suffer from vascular complications or are cardiomyopathic in nature. We examined Mg2+-dependent myofibrillar ATPase in hearts of JCR:LA-cp/cp rats and their corresponding control animals (+/?) and found no significant differences (P> 0.05). This is in striking contrast to the depression in this activity exhibited by cardiac myofibrils isolated from insulin-deficient models of diabetes. Our data demonstrate that myofibrillar functional integrity is normal in JCR:LA-cp rats and suggest that these hearts are not in a cardiomyopathic state. Insulin status may be critical in generating a cardiomyopathic condition in diabetes.
Collapse
Affiliation(s)
- T Misra
- Division of Stroke & Vascular Disease, St. Boniface General Hospital Research Centre, and the Department of Physiology, University of Manitoba
| | | | | | | |
Collapse
|
21
|
Pai R, Soreghan B, Szabo IL, Pavelka M, Baatar D, Tarnawski AS. Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med 2002; 8:289-93. [PMID: 11875501 DOI: 10.1038/nm0302-289] [Citation(s) in RCA: 638] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostaglandins (PGs), bioactive lipid molecules produced by cyclooxygenase enzymes (COX-1 and COX-2), have diverse biological activities, including growth-promoting actions on gastrointestinal mucosa. They are also implicated in the growth of colonic polyps and cancers. However, the precise mechanisms of these trophic actions of PGs remain unclear. As activation of the epidermal growth factor receptor (EGFR) triggers mitogenic signaling in gastrointestinal mucosa, and its expression is also upregulated in colonic cancers and most neoplasms, we investigated whether PGs transactivate EGFR. Here we provide evidence that prostaglandin E2 (PGE2) rapidly phosphorylates EGFR and triggers the extracellular signal-regulated kinase 2 (ERK2)--mitogenic signaling pathway in normal gastric epithelial (RGM1) and colon cancer (Caco-2, LoVo and HT-29) cell lines. Inactivation of EGFR kinase with selective inhibitors significantly reduces PGE2-induced ERK2 activation, c-fos mRNA expression and cell proliferation. Inhibition of matrix metalloproteinases (MMPs), transforming growth factor-alpha (TGF-alpha) or c-Src blocked PGE2-mediated EGFR transactivation and downstream signaling indicating that PGE2-induced EGFR transactivation involves signaling transduced via TGF-alpha, an EGFR ligand, likely released by c-Src-activated MMP(s). Our findings that PGE2 transactivates EGFR reveal a previously unknown mechanism by which PGE2 mediates trophic actions resulting in gastric and intestinal hypertrophy as well as growth of colonic polyps and cancers.
Collapse
Affiliation(s)
- Rama Pai
- Medical Service, Department of Veterans Affairs Medical Center, Long Beach, California, USA
| | | | | | | | | | | |
Collapse
|
22
|
Toyota E, Fujimoto K, Ogasawara Y, Kajita T, Shigeto F, Matsumoto T, Goto M, Kajiya F. Dynamic changes in three-dimensional architecture and vascular volume of transmural coronary microvasculature between diastolic- and systolic-arrested rat hearts. Circulation 2002; 105:621-6. [PMID: 11827929 DOI: 10.1161/hc0502.102964] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The phase difference of coronary arterial and venous flows indicates the importance of intramyocardial capacitance vessels in storing diastolic flow and in discharging volume in systole. However, the anatomic and functional characteristics of the capacitance vessels are unclear. We aimed to clarify those characteristics with their transmural difference by 3D visualization of transmural microvessels under diastole and systole. METHODS AND RESULTS We performed complete intracoronary filling of a contrast medium into Langendorff's Wistar rat hearts under (1) St Thomas-perfused diastolic arrest (D-mode) and (2) BaCl(2)-induced systolic arrest (S-mode). Precise transmural 3D architectures of capillaries and of pre- and post-capillary microvessels (ie, microvessels larger than capillaries) were visualized clearly with a confocal laser scanning microscope and x-ray microcomputed tomography (microCT), respectively. Vascular volume fraction (VF) and systolic-induced VF reduction rate from D- to S-mode were analyzed. The net capillary VF in D-mode (20.4 +/- 0.9%) was 10 times that of larger microvessels and was reduced in S-mode by 32% without capillary collapse. Systolic-induced VF reduction rate was smaller in capillaries than in larger microvessels (48%; P<0.05). The larger microvessel VF in D-mode (2.2 +/-0.2%) was reduced in S-mode, accompanied by complicated 3D deformation. CONCLUSIONS Capillaries were relatively resistant to the systolic extravascular compression compared with pre- and post-capillary microvessels, conveniently beneficial for the myocardial oxygen delivery throughout a cardiac cycle. Nevertheless, a larger change in the absolute volume of capillaries may function as effective capacitance. On one hand, the pre- and post-capillary microvessels showed a larger phasic change in resistance, which may function to maintain the capillary patency during systole.
Collapse
Affiliation(s)
- Eiji Toyota
- Department of Medical Engineering and Systems Cardiology, Kawasaki Medical School, Okayama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The dependence of brain function on blood glucose as a fuel does not exclude the possibility that lactate within the brain might be transferred between different cell types and serve as an energy source. It has been recently suggested that 1) about 85% of glucose consumption during brain activation is initiated by aerobic glycolysis in astrocytes, triggered by demand for glycolytically derived energy for Na+ -dependent accumulation of transmitter glutamate and its amidation to glutamine, and 2) the generated lactate is quantitatively transferred to neurons for oxidative degradation. However, astrocytic glutamate uptake can be fueled by either glycolytically or oxidatively derived energy, and the extent to which "metabolic trafficking" of lactate might occur during brain function is unknown. In this review, the potential for an astrocytic-neuronal lactate flux has been estimated by comparing rates of glucose utilization in brain and in cultured neurons and astrocytes with those for lactate release and uptake. Working brain tissue and isolated brain cells release large amounts of lactate. Cellular lactate uptake occurs by carrier-mediated facilitated diffusion and is normally limited by its dependence on metabolism of accumulated lactate to maintain a concentration gradient. The rate of this process is similar in cultured astrocytes and glutamatergic neurons, and, at physiologically occurring lactate concentrations, lactate uptake corresponds at most to 25% of the rate of glucose oxidation, which accordingly is the upper limit for "metabolic trafficking" of lactate. Because of a larger local release than uptake of lactate and the necessity for rapid lactate clearance to maintain the intracellular redox state to support lactate production in the presence of normal oxygen levels, brain activation in vivo is probably, in many cases, accompanied by a substantial overflow of glycolytically generated lactate, both to different brain areas and under some conditions (spreading depression, hyperammonemia) to circulating blood.
Collapse
Affiliation(s)
- G A Dienel
- Department of Neurology, Slot 500, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA.
| | | |
Collapse
|
24
|
McKenna MC, Hopkins IB, Carey A. Alpha-cyano-4-hydroxycinnamate decreases both glucose and lactate metabolism in neurons and astrocytes: implications for lactate as an energy substrate for neurons. J Neurosci Res 2001; 66:747-54. [PMID: 11746398 DOI: 10.1002/jnr.10084] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The rates of uptake and oxidation of [U-(14)C]lactate and [U-(14)C]glucose were determined in primary cultures of astrocytes and neurons from rat brain, in the presence and absence of the monocarboxylic acid transport inhibitor alpha-cyano-4-hydroxycinnamate (4-CIN). The rates of uptake for 1 mM lactate and glucose were 7.45 +/- 1.35 and 8.80 +/- 1.0 nmol/30 sec/mg protein in astrocytes and 2.36 +/- 0.19 and 1.93 +/- 0.16 nmol/30 sec/mg protein in neuron cultures, respectively. Lactate transport into both astrocytes and neurons was significantly decreased by 0.25-1.0 mM 4-CIN; however, glucose uptake was not affected. The rates of (14)CO(2) formation from 1 mM lactate and glucose were 12.49 +/- 0.77 and 3.42 +/- 0.67 nmol/hr/mg protein in astrocytes and 29.32 +/- 2.81 and 10.04 +/- 1.79 nmol/hr/mg protein in neurons, respectively. Incubation with 0.25 mM 4-CIN decreased the oxidation of lactate and glucose to 57.1% and 54.1% of control values in astrocytes and to 13.2% and 41.6% of the control rates in neurons, respectively. Preincubation with 4-CIN further decreased the oxidation of both glucose and lactate. Studies with glucose specifically labeled in the one and six positions demonstrated that 4-CIN decreased mitochondrial glucose oxidation but did not impair the metabolism of glucose via the pentose phosphate pathway in the cytosol. The lack of effect of 4-CIN on glutamate oxidation demonstrated that overall mitochondrial metabolism was not impaired. These findings suggest that the impaired neuronal function and tissue damage in the presence of 4-CIN observed in other studies may be due in part to decreased uptake of lactate; however, the effects of 4-CIN on mitochondrial transport would significantly decrease the oxidative metabolism of pyruvate derived from both glucose and lactate.
Collapse
Affiliation(s)
- M C McKenna
- Department of Pediatrics, University of Maryland School of Medicine, 10-035 BRB, 655 W. Baltimore Street, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
25
|
Kollman-Bauerly KA, Thomas DL, Adrian TE, Lien EL, Vanderhoof JA. The role of eicosanoids in the process of adaptation following massive bowel resection in the rat. JPEN J Parenter Enteral Nutr 2001; 25:275-81. [PMID: 11531219 DOI: 10.1177/0148607101025005275] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Long chain polyunsaturated fatty acids (LCPUFAs) such as arachidonic acid (AA) and eicosapentaenoic acid (EPA) stimulate intestinal adaptation. Prostaglandins also enhance intestinal adaptation. The purpose of this study was to determine by which eicosanoid pathway dietary arachidonic acid enhances intestinal adaptation. Cyclo-oxygenase or lipoxygenase were selectively inhibited to determine whether either of them enhanced or inhibited adaptation. METHODS Sixty Sprague-Dawley rats were divided into 2 groups, one receiving an 80% small bowel resection and the other receiving a sham operation. Rats were further divided into groups receiving either a placebo, a general lipoxygenase inhibitor (nordihydroguaiaretic acid [NDGA] at 40 mg/kg per day), or a cyclo-oxygenase-2 inhibitor (Etodolac at 3 mg/kg per day). Rats were pair-fed a diet containing 30% kcal from fat, primarily consisting of AA. RESULTS After 14 days, mucosal mass, protein, DNA, and disaccharidase activity were measured in the remaining small intestine. There was a significant decrease in ileal mucosal mass in rats receiving Etodolac and a significant increase in mucosal mass in the duodenum in rats receiving NDGA (both p < .001). Mucosal DNA, protein, and disaccharidase data showed similar trends. CONCLUSIONS These findings suggest that after small bowel resection, dietary arachidonic acid may facilitate the adaptation process by acting as a substrate for the synthesis of prostaglandins, and not through the derivatives of lipoxygenase such as leukotrienes or thromboxanes.
Collapse
Affiliation(s)
- K A Kollman-Bauerly
- Department of Pediatrics, University of Nebraska Medical Center/Creighton University, Omaha, USA
| | | | | | | | | |
Collapse
|
26
|
Yeung DK, Chan Y, Leung S, Poon PM, Pang C. Detection of an intense resonance at 2.4 ppm in 1H MR spectra of patients with severe late-delayed, radiation-induced brain injuries. Magn Reson Med 2001; 45:994-1000. [PMID: 11378876 DOI: 10.1002/mrm.1132] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proton MRS and MRI were used to monitor the progression of severe cerebral radiation injuries in 10 patients over a period of 18 months. An unknown resonance (Px) in the 2.37-2.40 ppm region was consistently detected in the affected temporal lobes of four patients. The detection of Px was only confined to spectra with lactate (Lac) and in patients with the highest severity grading of radiation injury. The incidence of Px in Lac-positive spectra was 42.8% (15/35) and in lesions with highest injury grading was 46.8% (15/32). Lesions with Px had significantly higher Lac/creatine (Cr) ratios and more extensive mass effect changes when compared to lesions without Px. The probable identity of Px was examined in the context of anaerobic glycolysis producing pyruvate (2.37 ppm) and the model of metabolic changes in brain abscess formation implicating succinate (2.40 ppm).
Collapse
Affiliation(s)
- D K Yeung
- Department of Clinical Oncology, Chinese University of Hong Kong, Hong Kong, China.
| | | | | | | | | |
Collapse
|
27
|
Chateil J, Biran M, Thiaudière E, Canioni P, Merle M. Metabolism of [1-(13)C)glucose and [2-(13)C]acetate in the hypoxic rat brain.. Neurochem Int 2001; 38:399-407. [PMID: 11222920 DOI: 10.1016/s0197-0186(00)00106-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of hypoxia on the metabolism of the central nervous system were investigated in rats submitted to a low oxygen atmosphere (8% O(2); 92% N(2)). [1-(13)C]glucose and [2-(13)C]acetate were used as substrates, this latter being preferentially metabolized by glial cells. After 1-h substrate infusion, the incorporation of 13C in brain metabolites was determined by NMR spectroscopy. Under hypoxia, an important hyperglycemia was noted. As a consequence, when using labeled glucose, the specific enrichment of brain glucose C1 was lower (48.2+/-5.1%) than under normoxia (66.9+/-2.5%). However, relative to this specific enrichment, the (13)C incorporation in amino acids was increased under hypoxia. This suggested primarily a decreased exchange between blood and brain lactate. The glutamate C2/C4 enrichment ratio was higher under hypoxia (0.62+/-0.01) than normoxia (0.51+/-0.06), indicating a lower glutamate turnover relative to the neuronal TCA cycle activity. The glutamine C2/C4 enrichment ratio was also higher under hypoxia (0.87+/-0.07 instead of 0.65+/-0.11), indicating a new balance in the contributions of different carbon sources at the acetyl-CoA level. When using [2-(13)C]acetate as substrate, no difference in glutamine enrichment appeared under hypoxia, whereas a significant decrease in glutamate, aspartate, alanine and lactate enrichments was noted. This indicated a lower trafficking between astrocytes and neurons and a reduced tricarboxylic acid cycle intermediate recycling of pyruvate.
Collapse
Affiliation(s)
- J Chateil
- Résonance Magnétique des Systèmes Biologiques, UMR 5536, Centre National de la Recherche Scientifique, Université Victor Ségalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | | | | | | | | |
Collapse
|
28
|
Ujino K, Teragaki M, Ota T, Muro T, Watanabe H, Yoshiyama M, Takeuchi K, Yoshikawa J. Novel method for assessing myocardial perfusion: visualization and measurement of intramyocardial coronary blood flow in the entire left ventricular wall using contrast enhanced, high frequency Doppler echocardiography. JAPANESE HEART JOURNAL 2001; 42:101-13. [PMID: 11324799 DOI: 10.1536/jhj.42.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using a high frequency ultrasonic transducer, intramyocardial coronary blood flow (IM-CBF) can be visualized and evaluated during hemodynamic changes in the anterior wall and septum of the left ventricle (LV). We tested the hypothesis that detection and quantitative measurement of IM-CBF of entire LV segments are feasible using a high frequency ultrasonic transducer in conjunction with intravenous contrast injection in vivo. A 3 - 8 MHz transducer was used to image and measure IM-CBF in 10 anesthetized dogs. We obtained a color Doppler image of IM-CBF in the LV short-axis view after intravenous Levovist injection (25 mg/ml). The IM-CBF velocity was recorded using spectral Doppler in the antero-septal and infero-posterior wall of closed chest dogs and in the entire LV after opening the chest. A significant increase in IM-CBF velocity was observed in all LV regions after adenosine 5'- triphosphate (ATP) administration. After Levovist(TM) injection, the visualization of IM-CBF was improved and the spectral Doppler pattern of coronary flow velocity was clarified compared to baseline. IM-CBF was assessed in the antero-septal region of the LV before and after left anterior descending coronary artery occlusion. A high frequency ultrasonic transducer in conjunction with intravenous contrast injection improved IM-CBF visualization, enabling quantitative evaluation of the intramyocardial coronary circulation in the entire LV after coronary occlusion and hyperemia. This study may represent a step towards noninvasive assessment of myocardial perfusion before and after coronary reperfusion.
Collapse
Affiliation(s)
- K Ujino
- First Department of Internal Medicine, Osaka City University Medical School, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Multiple mechanisms contribute to the selective brain lesions observed in WKS and experimental thiamine deficiency. Recent evidence of early microglial activation and increased free radical production suggest that oxidative stress processes play an important early role in the brain damage associated with thiamine deficiency.
Collapse
Affiliation(s)
- K Todd
- Neuroscience Research Unit, Centre Hospitalier de l'Université de Montréal, Québec, Canada.
| | | |
Collapse
|
30
|
Fillenz M, Lowry JP, Boutelle MG, Fray AE. The role of astrocytes and noradrenaline in neuronal glucose metabolism. ACTA PHYSIOLOGICA SCANDINAVICA 1999; 167:275-84. [PMID: 10632627 DOI: 10.1046/j.1365-201x.1999.00578.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the classical model the energy requirements during neuronal activation are provided by the delivery of additional glucose directly into the extracellular compartment that results from the increase in local cerebral blood flow (rCBF). The present review proposes that astrocytes play a key role in the response to neuronal activation. Arginine for the synthesis of NO, which has a major role in the increase in rCBF, is released from astrocytes in response to stimulation of astrocytic glutamate receptors. The increased delivery of glucose by the blood stream enters astrocytes, where some of it is converted to glycogen. During neuronal activation there is a decrease in extracellular glucose owing to increased utilization followed by a delayed increase; this results from stimulation of astrocytic beta-adrenergic receptors, which leads to a breakdown of glycogen and the export of glucose.
Collapse
Affiliation(s)
- M Fillenz
- University Laboratory of Physiology, Parks Road, Oxford, UK
| | | | | | | |
Collapse
|
31
|
Mason GF, Pan JW, Chu WJ, Newcomer BR, Zhang Y, Orr R, Hetherington HP. Measurement of the tricarboxylic acid cycle rate in human grey and white matter in vivo by 1H-[13C] magnetic resonance spectroscopy at 4.1T. J Cereb Blood Flow Metab 1999; 19:1179-88. [PMID: 10566964 DOI: 10.1097/00004647-199911000-00002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
13C isotopic labeling data were obtained by 1H-observed/13C-edited magnetic resonance spectroscopy in the human brain in vivo and analyzed using a mathematical model to determine metabolic rates in human grey matter and white matter. 22.5-cc and 56-cc voxels were examined for grey matter and white matter, respectively. When partial volume effects were ignored, the measured tricarboxylic acid cycle rate was 0.72+/-0.22 (mean +/- SD) and 0.29+/-0.09 micromol min(-1) g(-1) (mean +/- SD) in voxels of approximately 70% grey and approximately 70% white matter, respectively. After correction for partial volume effects using a model with two tissue compartments, the tricarboxylic acid cycle rate in pure grey matter was higher (0.80+/-0.10 mol min(-1) g(-1); mean +/- SD) and in white matter was significantly lower (0.17+/-0.01 micromol min(-1) g(-1); mean +/- SD). In 1H-observed/13C-edited magnetic resonance spectroscopy labeling studies, the larger concentrations of labeled metabolites and faster metabolic rates in grey matter biased the measurements heavily toward grey matter, with labeling time courses in 70% grey matter appearing nearly identical to labeling in pure grey matter.
Collapse
Affiliation(s)
- G F Mason
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Rothman DL, Sibson NR, Hyder F, Shen J, Behar KL, Shulman RG. In vivo nuclear magnetic resonance spectroscopy studies of the relationship between the glutamate-glutamine neurotransmitter cycle and functional neuroenergetics. Philos Trans R Soc Lond B Biol Sci 1999; 354:1165-77. [PMID: 10466144 PMCID: PMC1692640 DOI: 10.1098/rstb.1999.0472] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this article we review recent studies, primarily from our laboratory, using 13C NMR (nuclear magnetic resonance) to non-invasively measure the rate of the glutamate-glutamine neurotransmitter cycle in the cortex of rats and humans. In the glutamate-glutamine cycle, glutamate released from nerve terminals is taken up by surrounding glial cells and returned to the nerve terminals as glutamine. 13C NMR studies have shown that the rate of the glutamate-glutamine cycle is extremely high in both the rat and human cortex, and that it increases with brain activity in an approximately 1:1 molar ratio with oxidative glucose metabolism. The measured ratio, in combination with proposals based on isolated cell studies by P. J. Magistretti and co-workers, has led to the development of a model in which the majority of brain glucose oxidation is mechanistically coupled to the glutamate-glutamine cycle. This model provides the first testable mechanistic relationship between cortical glucose metabolism and a specific neuronal activity. We review here the experimental evidence for this model as well as implications for blood oxygenation level dependent magnetic resonance imaging and positron emission tomography functional imaging studies of brain function.
Collapse
Affiliation(s)
- D L Rothman
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
33
|
Dhalla NS, Golfman L, Liu X, Sasaki H, Elimban V, Rupp H. Subcellular remodeling and heart dysfunction in cardiac hypertrophy due to pressure overload. Ann N Y Acad Sci 1999; 874:100-10. [PMID: 10415524 DOI: 10.1111/j.1749-6632.1999.tb09228.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Rats were treated with etomoxir, an inhibitor of palmitoyltransferase-1, to examine the role of a shift in myocardial metabolism in cardiac hypertrophy. Pressure overload was induced by abdominal aorta banding for 8 weeks. Sham-operated animals served as control. Left ventricular dysfunction, as reflected by decreased LVDP, +dP/dt, -dP/dt, and elevated LVEDP in the pressure overloaded animals, was improved by treatment with etomoxir. Cardiac hypertrophy in pressure-overload rats decreased the sarcoplasmic reticular (SR) Ca2+ uptake and Ca2+ release as well as myofibrillar Ca(2+)-stimulated ATPase and myosin Ca(2+)-ATPase activities; these changes were attenuated by treatment with etomoxir. Steady-state mRNA levels for alpha- and beta-myosin heavy chains, SR Ca(2+)-pump, and protein content of SR Ca(2+)-pump were reduced in hypertrophied hearts; these alterations were prevented by etomoxir treatment. The results indicate that modification of changes in myocardial metabolism by etomoxir may prevent remodeling of myofibrils and SR membrane and thereby improve cardiac function in hypertrophied heart.
Collapse
Affiliation(s)
- N S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnepeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Kawamura A, Fujii T, Miura T, Kawabata T, Okamura T, Yoshitake S, Iida H, Hiro T, Kohno M, Matsuzaki M. Abnormal coronary flow profiles at rest and during rapid atrial pacing in patients with hypertrophic cardiomyopathy. JAPANESE CIRCULATION JOURNAL 1999; 63:350-6. [PMID: 10943613 DOI: 10.1253/jcj.63.350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To examine the mechanism of myocardial ischemia in hypertrophic cardiomyopathy (HCM), coronary flow velocity was measured in the left anterior descending coronary artery (LAD) using a Doppler guide wire in 11 patients with HCM and in 8 normal controls. The average peak velocity (APV), percent increase of APV (%APV), and APV during systole (Vs) and diastole (Vd) were calculated at rest and during rapid atrial pacing. The APV in HCM reached a peak value at a heart rate of 90 beats/min, while in the controls the APV increased continuously until the heart rate reached 130 beats/min [%APV (130 beats/min); 103+/-30% in HCM vs 139+/-23% in controls, p<0.04]. During rapid atrial pacing, Vs in the controls increased, whereas Vs in HCM decreased further. During high-rate pacing, Vd in HCM reached a peak value at a heart rate of 90 beats/min, whereas in the controls, Vd increased continuously until the heart rate reached 130 beats/min. The acceleration rate of early diastolic flow was significantly lower in HCM than in the controls (1.85+/-0.66 vs 3.18+/-1.62 m/s2, p<0.03). This abnormal response might be due to an increase in the reverse systolic flow and a decrease in the diastolic flow, probably caused by a slow acceleration of early diastolic flow velocity in the LAD.
Collapse
Affiliation(s)
- A Kawamura
- The Second Department of Internal Medicine, Yamaguchi University School of Medicine, Ube, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cruz NF, Adachi K, Dienel GA. Rapid efflux of lactate from cerebral cortex during K+ -induced spreading cortical depression. J Cereb Blood Flow Metab 1999; 19:380-92. [PMID: 10197508 DOI: 10.1097/00004647-199904000-00004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Rapid transport of lactate from activated brain regions to blood, perhaps reflecting enhanced metabolite trafficking, would prevent local trapping of labeled metabolites of [6-14C]glucose and cause underestimation of calculated CMRglc. Because the identities of glucose metabolites lost from activated structures and major routes of their removal are not known, arteriovenous differences across brains of conscious normoxic rats for derivatives of [6-14C]glucose were determined under steady-state conditions in blood during K+ -induced spreading cortical depression. Lactate was identified as the major labeled product lost from brain. Its entry to blood was detected within 2 minutes after a pulse of [6-14C]glucose, and it accounted for 96% of the 14C lost from brain within approximately 8 minutes. Lactate efflux corresponded to 20% of glucose influx, but accounted for only half the magnitude of underestimation of CMRglc when [14C]glucose is the tracer, suggesting extensive [14C]lactate trafficking within brain. [14C]Lactate spreading within brain is consistent with (1) relatively uniform pattern labeling of K+ -treated cerebral cortex by [6-14C]glucose contrasting heterogeneous labeling by [14C]deoxyglucose, and (2) transport of 14C-labeled lactate and inulin up to 1.5 and 2.4 mm, respectively, within 10 minutes. Thus, newly synthesized lactate exported from activated cells rapidly flows to blood and probably other brain structures.
Collapse
Affiliation(s)
- N F Cruz
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
36
|
Kamin-Belsky N, Tomashov R, Arav R, Shaklai N. Involvement of the oxygen storage protein myoglobin in muscle damage under oxidative stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 454:219-23. [PMID: 9889895 DOI: 10.1007/978-1-4615-4863-8_26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Myoglobin (Mb), the muscular oxygen reservoir, was shown to possess peroxidative reactivity in presence of H2O2 leading to oxidation of isolated cellular proteins like myosin. The objective of this study was to investigate the peroxidative effect of Mb/H2O2 on proteins in intact myofibrils (MF). Incubation of chicken leg MF in isotonic, pH 7.3 buffer at 37 degrees C in the presence of Mb (30 microM) and H2O2 (200 microM), resulted in aggregation of MF material as inspected under light microscope. SDS-PAGE analysis revealed presence of high molecular weight aggregates at the expense of myosin heavy chains, but not actin. This crosslinking was unaffected by S-S reducing agents. Continuous low flow (0.03-3.00 microM/minute), produced by glucose oxidase and glucose, was more active than bolus H2O2 addition in myosin crosslinking in MF material. Hemin which may be released from Mb under oxidative stress, was more active than Mb as a trigger of MF peroxidative aggregation. Calcium-ATPase activity of crosslinked MF was considerably lost. These findings suggest that Mb/H2O2 may lead to oxidation of neighbouring muscular protein thereby jeopardize their functioning thus explaining muscular malfunction under oxidative stress.
Collapse
Affiliation(s)
- N Kamin-Belsky
- Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | | | | | | |
Collapse
|
37
|
Martin JH, Ghez C. Pharmacological inactivation in the analysis of the central control of movement. J Neurosci Methods 1999; 86:145-59. [PMID: 10065983 DOI: 10.1016/s0165-0270(98)00163-0] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review, we describe how pharmacological inactivation can be used to elucidate the central control of skilled limb movement. Local anesthetics and tetrodotoxin block neuronal cell bodies and passing fibers while gamma-aminobutyric acid (GABA) and muscimol only block cell bodies. Blockade induction time is short (several minutes) for all the agents. Blockade duration produced by local anesthetics and GABA is 15-60 min, while that of tetrodotoxin and muscimol is up to several days. We describe our drug injection system, with an integrated microelectrode and a viewing port for visually monitoring drug flow into the injection cannula. We used glucose metabolism to assess the extent of inactivation. Intracortical lidocaine or muscimol injection produces a central core of maximal hypometabolism (1 mm radius), which could be due to drug spread, surrounded by an extensive region (several millimeters) of reduced hypometabolism, possibly due to reduced synaptic activity of neurons receiving projections from the core region. Drug injection only depresses neuronal activity, which contrasts with cooling, where there can be neuronal hyperexcitability at the periphery of the inactivation site. Our experiments in behaving animals show how pharmacological inactivation is an effective analytical tool for dissecting the differential functional contributions of subcortical and cortical forelimb representations to limb movement control.
Collapse
Affiliation(s)
- J H Martin
- Columbia University Center for Neurobiology and Behavior, and NYS Psychiatric Institute, New York, NY 10032-2695, USA.
| | | |
Collapse
|
38
|
Liu X, Sentex E, Golfman L, Takeda S, Osada M, Dhalla NS. Modification of cardiac subcellular remodeling due to pressure overload by captopril and losartan. Clin Exp Hypertens 1999; 21:145-56. [PMID: 10052650 DOI: 10.3109/10641969909068657] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In view of the activation of renin-angiotensin system under conditions associated with pressure overload on the heart, we examined the effects of captopril, an angiotensin converting enzyme inhibitor, and losartan, an angiotensin II receptor antagonist, on cardiac function, myofibrillar ATPase and sarcoplasmic reticular (SR) Ca2+-pump (SERCA2) activities, as well as myosin and SERCA2 gene expression in hypertrophied hearts. Cardiac hypertrophy was induced in rats treated with or without captopril or losartan by banding the abdominal aorta for 8 weeks; sham operated animals served as control. Decrease in left ventricular developed pressure, +dP/dt and -dP/dt as well as increase in left ventricular end diastolic pressure and increased muscle mass due to pressure overload were prevented by captopril or losartan. Treatment of animals with captopril or losartan also attenuated the pressure overload-induced depression in myofibrillar Ca2+-stimulated ATPase, myosin ATPase, SR Ca2+-uptake and SR Ca2+-release activities. An increase in beta-myosin heavy chain mRNA and a decrease in alpha-myosin heavy chain mRNA as well as depressed SERCA2 protein and SERCA2 mRNA levels were prevented by captopril or losartan. These results suggest that both captopril and losartan improve myocardial function in cardiac hypertrophy by preventing changes in gene expression and subsequent subcellular remodeling due to pressure overload.
Collapse
Affiliation(s)
- X Liu
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Bender D, Gee AD. Solid phase-supported reaction of N.C.A. H11CN with arabinose: a simplified automated synthesis of D-[1-11C]glucose. J Labelled Comp Radiopharm 1998. [DOI: 10.1002/(sici)1099-1344(199804)41:4<287::aid-jlcr80>3.0.co;2-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Cimino M, Balduini W, Marini P, Cattabeni F, Court JA, Bianchi M, Magnani M. Expression of hexokinase mRNA in human hippocampus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 53:297-300. [PMID: 9473702 DOI: 10.1016/s0169-328x(97)00265-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The expression of hexokinase messenger RNA was evaluated in human hippocampus using in situ hybridization technique. The message showed an uneven distribution with high levels present in the granular cell layer of the dentate gyrus and CA3 region. The detection of specific transcripts was also observed in the lateral geniculate nucleus, the dentate polymorphic cell layer and the parahippocampal gyrus. The data suggest that, in the hippocampus, the expression of hexokinase is higher in neurons than in glial cells and that the rate of glucose metabolism may display considerable variations in the different subregions of this area.
Collapse
Affiliation(s)
- M Cimino
- Institute of Pharmacology and Pharmacognosy, Via S. Chiara 27, University of Urbino, Urbino 61029, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Van Zijl PC, Davis D, Eleff SM, Moonen CT, Parker RJ, Strong JM. Determination of cerebral glucose transport and metabolic kinetics by dynamic MR spectroscopy. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:E1216-27. [PMID: 9435539 DOI: 10.1152/ajpendo.1997.273.6.e1216] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A new in vivo nuclear magnetic resonance (NMR) spectroscopy method is introduced that dynamically measures cerebral utilization of magnetically labeled [1-13C]glucose from the change in total brain glucose signals on infusion. Kinetic equations are derived using a four-compartment model incorporating glucose transport and phosphorylation. Brain extract data show that the glucose 6-phosphate concentration is negligible relative to glucose, simplifying the kinetics to three compartments and allowing direct determination of the glucose-utilization half-life time [t1/2 = ln2/(k2 + k3)] from the time dependence of the NMR signal. Results on isofluorane (n = 5)- and halothane (n = 7)-anesthetized cats give a hyperglycemic t1/2 = 5.10 +/- 0.11 min-1 (SE). Using Michaelis-Menten kinetics and an assumed half-saturation constant Kt = 5 +/- 1 mM, we determined a maximal transport rate Tmax = 0.83 +/- 0.19 mumol.g-1.min-1, a cerebral metabolic rate of glucose CMRGlc = 0.22 +/- 0.03 mumol.g-1.min-1, and a normoglycemic cerebral influx rate CIRGlc = 0.37 +/- 0.05 mumol.g-1.min-1. Possible extension of this approach to positron emission tomography and proton NMR is discussed.
Collapse
Affiliation(s)
- P C Van Zijl
- Johns Hopkins University Medical School, Department of Radiology, Baltimore 21205, USA
| | | | | | | | | | | |
Collapse
|
42
|
Dienel GA, Cruz NF, Adachi K, Sokoloff L, Holden JE. Determination of local brain glucose level with [14C]methylglucose: effects of glucose supply and demand. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:E839-49. [PMID: 9374668 DOI: 10.1152/ajpendo.1997.273.5.e839] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Methylglucose can be used to assay brain glucose levels because the equilibrium brain-to-plasma distribution ratio for methylglucose (Ce*/Cp*) is quantitatively related to brain (Ce) and plasma (Cp) glucose contents. The relationship between Ce and Ce*/Cp* predicted by Michaelis-Menten kinetics has been experimentally confirmed when glucose utilization rate (CMRGlc) is maintained at normal, resting levels and Cp is varied in conscious rats. Theoretically, however, Ce and Ce*/Cp* should change when CMRGlc is altered and Cp is held constant; their relationship in such conditions was, therefore, examined experimentally. Drugs were applied topically to brains of conscious rats with fixed levels of Cp to produce focal alterations in CMRGlc, and Ce and Ce*/Cp* were measured. Plots of Ce as a function of Ce*/Cp* for each Cp produced straight lines; their slopes decreased as Cp increased. The results confirm that a single theoretical framework describes the relationship between Ce and Ce*/Cp* as either glucose supply or demand is altered over a wide range; they also validate the use of methylglucose to estimate local Ce under abnormal conditions.
Collapse
Affiliation(s)
- G A Dienel
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
43
|
Kozàkovà M, Palombo C, Pratali L, Pittella G, Galetta F, L'Abbate A. Mechanisms of coronary flow reserve impairment in human hypertension. An integrated approach by transthoracic and transesophageal echocardiography. Hypertension 1997; 29:551-9. [PMID: 9040437 DOI: 10.1161/01.hyp.29.2.551] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The purpose of this study was to investigate the different mechanisms responsible for an impairment of coronary vasodilator capacity in hypertensive subjects by an integrated echocardiographic approach, including transesophageal Doppler echocardiography, which allows noninvasive monitoring of coronary flow velocity in the left anterior descending artery during pharmacological vasodilation. The study population consisted of 17 healthy control subjects and 33 hypertensive subjects: 10 without hypertrophy, 16 with mild to moderate hypertrophy, and 7 with severe left ventricular hypertrophy. Mean systolic and diastolic flow velocities were monitored basally (together with indexes of myocardial oxygen demand, such as heart rate, myocardial inotropism, and left ventricular wall stress) and during infusion of low-dose (0.56 mg/kg per 4 minutes) and high-dose (0.84 mg/kg per 9 minutes) dipyridamole. Coronary reserve was assessed as the ratio of mean diastolic velocity after high-dose dipyridamole and basal diastolic velocity, and minimum coronary resistance as the ratio of diastolic blood pressure and diastolic velocity after high-dose dipyridamole. Compared with the control group, in all hypertensive groups, coronary reserve was similarly decreased (3.54 +/- 0.84 versus 2.59 +/- 0.42, 2.29 +/- 0.46, and 2.43 +/- 0.71; P < .01) and minimum resistance increased (0.56 +/- 0.15 versus 0.75 +/- 0.31, 0.75 +/- 0.19, and 0.78 +/- 0.21 mm Hg.s-1.cm-1; P = NS). These results confirm that coronary reserve in hypertensive individuals is reduced even before the occurrence of left ventricular hypertrophy. The reduction in coronary reserve depends on both an increase in resting coronary flow and an impairment in maximal vasodilator capacity. An increase in resting flow is dependent on higher heart rate and wall stress in hypertensive subjects without ventricular hypertrophy and on increased myocardial mass in hypertensive subjects with hypertrophy. Hypertensive subjects with ventricular hypertrophy also demonstrated a significantly blunted response to low-dose dipyridamole.
Collapse
Affiliation(s)
- M Kozàkovà
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Goto M, VanBavel E, Giezeman MJ, Spaan JA. Vasodilatory effect of pulsatile pressure on coronary resistance vessels. Circ Res 1996; 79:1039-45. [PMID: 8888697 DOI: 10.1161/01.res.79.5.1039] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Intramyocardial pressure becomes high in systole and decreases in diastole. Therefore, the transmural pressure of the intramyocardial vessels is pulsatile, resulting in the cyclic distension of these vessels. However, the effect of pulsatility on the behavior of the coronary resistance vessels has not been evaluated. To assess the influence of pulsatile pressure on the behavior of the coronary arterioles, we measured the luminal cross-sectional area (CSA) of coronary arterioles under cyclically changing transmural pressure. Isolated porcine coronary arterioles (internal diameter, 100 to 150 microns) were cannulated with two micropipettes and pressurized with square waves (1 Hz) through both pipettes so as not to induce flow-dependent vasodilation. During the presence (active, induced by acetylcholine; n = 7) or absence (passive, abolished by bradykinin; n = 7) of vascular tone, the CSA was measured under the following conditions: (1) The amplitude of the pressure pulse was changed at a fixed mean pressure. (2) The mean pressure was changed at a fixed pressure pulse. With increasing pulse pressure, the mean CSA at steady state increased under active conditions, whereas it decreased under passive conditions (P < .0001). This vasodilatory effect of pulse pressure remained present after endothelial denudation (P < .0001; n = 6 vessels with basal tone, n = 9 vessels with U46619-induced tone). The mean steady state CSA under passive conditions increased with the mean pressure (P < .05), whereas under active conditions it remained constant in the range of mean pressures between 50 and 100 mm Hg, reflecting myogenic responsiveness. These results indicate that an increase in amplitude of the pressure pulse dilates coronary arterioles. The vasodilating effect of the pulsation may compensate partly for the extra compressing effect of cardiac contraction on the intramyocardial vessels.
Collapse
Affiliation(s)
- M Goto
- Department of Medical Physics, Academic Medical Center, University of Amsterdam The Netherlands
| | | | | | | |
Collapse
|
45
|
Bontempi B, Jaffard R, Destrade C. Differential temporal evolution of post-training changes in regional brain glucose metabolism induced by repeated spatial discrimination training in mice: visualization of the memory consolidation process? Eur J Neurosci 1996; 8:2348-60. [PMID: 8950099 DOI: 10.1111/j.1460-9568.1996.tb01198.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The present study analyses the effects of the stage of learning on the spatial patterns and time-course of [14C]glucose uptake in BALB/c mice brain regions produced by spatial discrimination training in an eight-arm radial maze. Our particular approach was designed to follow, during the post-training period, the level of functional activity in individual brain areas which may underlie the memory consolidation process. Regional mapping of relative [14C]glucose uptake was assessed at three post-training time intervals (5 min, 1 and 3 h) after either the first (Day 1), the fourth (Day 4) or the last (Day 9) daily training session of the discrimination task and compared with sham-conditioned animals placed in the same experimental environment. The results indicated that numerous subcortical and cortical brain regions exhibit metabolic alterations following the acquisition of the spatial discrimination task. These alterations, which were specifically related to learning since they did not appear in sham-conditioned animals, were functions both of the post-training interval studied and of the degree of mastery of the task. On Day 1, a progressive, time-dependent and sequential increase in labelling was found from subcortical (5 min post-training) to cortical regions (3 h post-training). On Day 4, a peak of cortical metabolic activation was identified at 1 h post-training. In contrast, on Day 9, maximum labelling was found 5 min post-training in all subcortical and cortical regions followed by a general monotonic decline at 1 and 3 h post-training. These findings, which show widely distributed changes of metabolic activity in the brain, are consistent with the hypothesis that learning involves distributed neural networks. The sequential activation from subcortical to cortical regions seems to indicate a general mechanism whose function would ultimately be to store cortical memory representations. The acquisition-dependent shifts in the patterns of post-training metabolic labelling observed as a function of task mastery may be taken to represent a visualization of the spatio-temporal evolution of the networks of brain structures actively engaged in the memory consolidation process. In particular, the present data suggest that the duration of post-acquisition memory processing is a function of the quantity of new information which has to be dealt with by the central nervous system.
Collapse
Affiliation(s)
- B Bontempi
- Laboratoire de Neurosciences Comportementales et cognitives, URA CNRS 339, Université de Bordeaux 1, Talence, France
| | | | | |
Collapse
|
46
|
Ben-Yoseph O, Boxer PA, Ross BD. Noninvasive assessment of the relative roles of cerebral antioxidant enzymes by quantitation of pentose phosphate pathway activity. Neurochem Res 1996; 21:1005-12. [PMID: 8897463 DOI: 10.1007/bf02532410] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cerebral pentose phosphate pathway (PPP) plays a role in the biosynthesis of macromolecules, antioxidant defense and neurotransmitter metabolism. Studies on this potentially important pathway have been hampered by the inability to easily quantitate its activity, particularly in vivo. In this study we review the use of [1,6-13C2,6,6-2H2]glucose for measuring the relative activities of the PPP and glycolysis in a single incubation in cultured neurons and in vivo, when combined with microdialysis techniques. PPP activity in primary cerebrocortical cultures and in the caudate putamem of the rat in vivo was quantitated from data obtained by GC/MS analysis of released labeled lactate following metabolic degradation of [1,6-13C2,6,6-2H2]glucose. Exposure of cultures to H2O2 resulted in stimulation of PPP activity in a concentration-dependent fashion and subsequent cell death. Chelation of iron during H2O2 exposure exerted a protective effect thus implicating the participation of the Fenton reaction in mediating damage caused by the oxidative insult. Partial inhibition of glutathione peroxidase, but not catalase, was extremely toxic to the cultures reflecting the pivotal role of GPx in H2O2 detoxification. These results demonstrate the ability to dynamically monitor PPP activity and its response to oxidative challenges and should assist in facilitating our understanding of antioxidant pathways in the CNS.
Collapse
Affiliation(s)
- O Ben-Yoseph
- Department of Radiology, University of Michigan, Ann Arbor 48109-0648, USA
| | | | | |
Collapse
|
47
|
Sakiyama Y, Ishiwata K, Ishii K, Oda K, Toyama H, Ishii S, Nakayama H, Sato A, Senda M. Evaluation of the brain uptake properties of [1-11C]labeled hexanoate in anesthetized cats by means of positron emission tomography. Ann Nucl Med 1996; 10:361-6. [PMID: 8883717 DOI: 10.1007/bf03164748] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Positron emission tomography (PET) was performed on the cat brain to characterize [1-11C]hexanoate and other [1-11C]labeled short and medium-chain fatty acids as a tracer of fatty acid oxidative metabolism. After an intravenous injection the brain uptake of [1-11C]hexanoate reached a peak followed by rapid washout until 2 min (first phase). Subsequently the total brain uptake was again increased and reached to a peak 7-10 min after tracer injection (second phase). The blood radioactivity of unmetabolized [1-11C]hexanoate was rapidly decreased and almost eliminated within the first 2 min, whereas the blood radioactivity of [11C]CO2/HCO3- was gradually increased and reached a peak approximately 5 min after tracer injection. As the effect of circulating [11C]CO2/HCO3- was examined by a bolus intravenous injection of [11C]CO2/HCO3-, the brain uptake of [11C]CO2/HCO3- was rapidly increased right after the injection and changed parallel to the blood level of [11C]CO2/HCO3-. These results suggest that, in contrast to the previous mouse data, the time-activity curve in the cat brain following intravenous injection of [1-11C]hexanoate has a biphasic pattern, the second phase being determined by peripherally originating [11C]CO2/HCO3-, and therefore does not reflect the metabolism of 11C-labeled fatty acid in the brain.
Collapse
Affiliation(s)
- Y Sakiyama
- Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hyder F, Chase JR, Behar KL, Mason GF, Siddeek M, Rothman DL, Shulman RG. Increased tricarboxylic acid cycle flux in rat brain during forepaw stimulation detected with 1H[13C]NMR. Proc Natl Acad Sci U S A 1996; 93:7612-7. [PMID: 8755523 PMCID: PMC38794 DOI: 10.1073/pnas.93.15.7612] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
NMR spectroscopy was used to test recent proposals that the additional energy required for brain activation is provided through nonoxidative glycolysis. Using localized NMR spectroscopic methods, the rate of C4-glutamate isotopic turnover from infused [1-(13)C]glucose was measured in the somatosensory cortex of rat brain both at rest and during forepaw stimulation. Analysis of the glutamate turnover data using a mathematical model of cerebral glucose metabolism showed that the tricarboxylic acid cycle flux [(V(TCA)] increased from 0.49 +/- 0.03 at rest to 1.48 +/- 0.82 micromol/g/min during stimulation (P < 0.01). The minimum fraction of C4-glutamate derived from C1-glucose was approximately 75%, and this fraction was found in both the resting and stimulated rats. Hence, the percentage increase in oxidative cerebral metabolic rate of glucose use (CMRglc) equals the percentage increases in V(TCA) and cerebral metabolic rate of oxygen consumption (CMRO2). Comparison with previous work for the same rat model, which measured total CMRglc [Ueki, M., Linn, F. & Hossman, K. A. (1988) J. Cereb. Blood Flow Metab. 8, 486-4941, indicates that oxidative CMRglc supplies the majority of energy during sustained brain activation.
Collapse
Affiliation(s)
- F Hyder
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8043, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Kaul N, Siveski-Iliskovic N, Hill M, Khaper N, Seneviratne C, Singal PK. Probucol treatment reverses antioxidant and functional deficit in diabetic cardiomyopathy. Mol Cell Biochem 1996; 160-161:283-8. [PMID: 8901484 DOI: 10.1007/bf00240060] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Earlier we reported that probucol treatment subsequent to the induction of diabetes can prevent diabetes-associated changes in myocardial antioxidants as well as function at 8 weeks. In this study, we examined the efficacy of probucol in the reversal of diabetes induced myocardial changes. Rats were made diabetic with a single injection of streptozotocin (65 mg/kg, i.v.). After 4 weeks of induction of diabetes, a group of animals was treated on alternate days with probucol (10 mg/kg i.p.), a known lipid lowering agent with antioxidant properties. At 8 weeks, there was a significant drop in the left ventricle (LVSP) and aortic systolic pressures (ASP) in the diabetic group. Hearts from these animals showed an increase in the thiobarbituric acid reacting substances (TBARS), indicating increased lipid peroxidation. This was accompanied by a decrease in the myocardial antioxidant enzymes activities, superoxide dismutase (SOD) and glutathione peroxidase (GSHPx). Myocardial catalase activity in the diabetic group was higher. In the diabetic + probucol group both LVSP and ASP showed significant recovery. This was also accompanied by an improvement in SOD and GSHPx activities and there was further increase in the catalase activity. Levels of the TBARS was decreased in this group. These data provide evidence that diabetic cardiomyopathy is associated with an antioxidant deficit which can be reversed with probucol treatment. Improved cardiac function with probucol may be due to the recovery of antioxidants in the heart.
Collapse
Affiliation(s)
- N Kaul
- Department of Physiology, University of Manitoba, St. Boniface General Hospital Research Centre, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Ross JF, Switzer RC, Poston MR, Lawhorn GT. Distribution of bismuth in the brain after intraperitoneal dosing of bismuth subnitrate in mice: implications for routes of entry of xenobiotic metals into the brain. Brain Res 1996; 725:137-54. [PMID: 8836520 DOI: 10.1016/0006-8993(96)00146-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Bismuth (Bi) can produce neurotoxic effects in both humans and animals under certain dosing conditions, but little else is known about the effects of Bi in the brain. In the present study we determined the distribution of Bi in the brains of adult female Swiss-Webster mice 4, 7, 14, 21 and 28 days after a single 2500 mg/kg i.p. injection of Bi subnitrate (BSN), which establishes a depot of absorbable Bi and produces morphological signs of neurotoxicity. Sections of brains were processed by autometallographic (AMG) procedures that produced silver grains at the site of Bi localization (AMGBi). Ventricular dilation was observed in all BSN-dosed mice. Among treated mice there were marked interanimal differences in the absolute amount of AMGBi, but consistent regional and cellular patterns of AMGBi were observed. AMGBi was observed in many cell types in brain regions adjacent to fenestrated blood vessels of the circumventricular organs (CVOs) and olfactory epithelium. Prominent intrasomal AMGBi was observed in nuclei containing large cell bodies, including cranial motor neurons innervating somatic muscle, lateral vestibular and red nucleus and pontine/medullary reticular nuclei. In the hypothalamus, the supraoptic and paraventricular nuclei demonstrated the densest AMGBi. In the cerebellum, Purkinje and granule cell layers with the densest AMGBi were in folia adjacent to the fourth ventricle. In the hippocampus, AMGBi was densest in the fasciola cinerum, polymorph cells of the dentate gyrus, and pyramidal cell layer of the CA3 regions. Neuropil of subcortical auditory nuclei (cochlear nucleus, trapezoid body, lateral lemniscus and nucleus of lateral lemniscus, medial geniculate nucleus and inferior colliculus) had a high density of AMGBi. Among nonneuronal cells, ependyma and meninges lining the ventricular and subarachnoid spaces were labeled extensively. Glial labeling was prominent adjacent to CVOs, in subependymal regions, and in fiber tracts. Presumptive perivascular cells lining large blood vessels had extremely dense AMGBi as early as 4 days after dosing. Smaller blood vessels had moderate AMGBi. However, in regions (e.g. cerebral cortex, striatum) known to have low brain Bi levels after i.p. dosing, vascular deposits accounted for most of the AMGBi. Several animals had foci of AMGBi which suggested that vascular or perivascular aberrations may have contributed to the unusually dense accumulations. The results of the present studies indicate that Bi accumulates predictably in certain regions and cell types. The pattern of regions and cells with the highest AMGBi accumulations is very similar to pattern reported for other xenobiotic metals (i.e. mercury, silver, gold), and supports the hypothesis that these metals may share some mechanisms for entry, distribution and storage in the brain.
Collapse
Affiliation(s)
- J F Ross
- Procter and Gamble Company, Miami Valley Laboratories, Cincinnati, OH 45239-8707, USA
| | | | | | | |
Collapse
|