1
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
2
|
Gürtler F, Jordan K, Tegtmeier I, Herold J, Stindl J, Warth R, Bandulik S. Cellular Pathophysiology of Mutant Voltage-Dependent Ca2+ Channel CACNA1H in Primary Aldosteronism. Endocrinology 2020; 161:5891807. [PMID: 32785697 DOI: 10.1210/endocr/bqaa135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/04/2020] [Indexed: 12/29/2022]
Abstract
The physiological stimulation of aldosterone production in adrenocortical glomerulosa cells by angiotensin II and high plasma K+ depends on the depolarization of the cell membrane potential and the subsequent Ca2+ influx via voltage-activated Ca2+ channels. Germline mutations of the low-voltage activated T-type Ca2+ channel CACNA1H (Cav3.2) have been found in patients with primary aldosteronism. Here, we investigated the electrophysiology and Ca2+ signaling of adrenal NCI-H295R cells overexpressing CACNA1H wildtype and mutant M1549V in order to understand how mutant CACNA1H alters adrenal cell function. Whole-cell patch-clamp measurements revealed a strong activation of mutant CACNA1H at the resting membrane potential of adrenal cells. Both the expression of wildtype and mutant CACNA1H led to a depolarized membrane potential. In addition, cells expressing mutant CACNA1H developed pronounced action potential-like membrane voltage oscillations. Ca2+ measurements showed an increased basal Ca2+ activity, an altered K+ sensitivity, and abnormal oscillating Ca2+ changes in cells with mutant CACNA1H. In addition, removal of extracellular Na+ reduced CACNA1H current, voltage oscillations, and Ca2+ levels in mutant cells, suggesting a role of the partial Na+ conductance of CACNA1H in cellular pathology. In conclusion, the pathogenesis of stimulus-independent aldosterone production in patients with CACNA1H mutations involves several factors: i) a loss of normal control of the membrane potential, ii) an increased Ca2+ influx at basal conditions, and iii) alterations in sensitivity to extracellular K+ and Na+. Finally, our findings underline the importance of CACNA1H in the control of aldosterone production and support the concept of the glomerulosa cell as an electrical oscillator.
Collapse
Affiliation(s)
- Florian Gürtler
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Katrin Jordan
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Ines Tegtmeier
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Janina Herold
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Julia Stindl
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Richard Warth
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Sascha Bandulik
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Spät A, Hunyady L, Szanda G. Signaling Interactions in the Adrenal Cortex. Front Endocrinol (Lausanne) 2016; 7:17. [PMID: 26973596 PMCID: PMC4770035 DOI: 10.3389/fendo.2016.00017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/11/2016] [Indexed: 11/30/2022] Open
Abstract
The major physiological stimuli of aldosterone secretion are angiotensin II (AII) and extracellular K(+), whereas cortisol production is primarily regulated by corticotropin (ACTH) in fasciculata cells. AII triggers Ca(2+) release from internal stores that is followed by store-operated and voltage-dependent Ca(2+) entry, whereas K(+)-evoked depolarization activates voltage-dependent Ca(2+) channels. ACTH acts primarily through the formation of cAMP and subsequent protein phosphorylation by protein kinase A. Both Ca(2+) and cAMP facilitate the transfer of cholesterol to mitochondrial inner membrane. The cytosolic Ca(2+) signal is transferred into the mitochondrial matrix and enhances pyridine nucleotide reduction. Increased formation of NADH results in increased ATP production, whereas that of NADPH supports steroid production. In reality, the control of adrenocortical function is a lot more sophisticated with second messengers crosstalking and mutually modifying each other's pathways. Cytosolic Ca(2+) and cGMP are both capable of modifying cAMP metabolism, while cAMP may enhance Ca(2+) release and voltage-activated Ca(2+) channel activity. Besides, mitochondrial Ca(2+) signal brings about cAMP formation within the organelle and this further enhances aldosterone production. Maintained aldosterone and cortisol secretion are optimized by the concurrent actions of Ca(2+) and cAMP, as exemplified by the apparent synergism of Ca(2+) influx (inducing cAMP formation) and Ca(2+) release during response to AII. Thus, cross-actions of parallel signal transducing pathways are not mere intracellular curiosities but rather substantial phenomena, which fine-tune the biological response. Our review focuses on these functionally relevant interactions between the Ca(2+) and the cyclic nucleotide signal transducing pathways hitherto described in the adrenal cortex.
Collapse
Affiliation(s)
- András Spät
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
- Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Budapest, Hungary
- *Correspondence: András Spät,
| | - László Hunyady
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
- Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergő Szanda
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary
| |
Collapse
|
4
|
Rossier MF. T-Type Calcium Channel: A Privileged Gate for Calcium Entry and Control of Adrenal Steroidogenesis. Front Endocrinol (Lausanne) 2016; 7:43. [PMID: 27242667 PMCID: PMC4873500 DOI: 10.3389/fendo.2016.00043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/05/2016] [Indexed: 12/03/2022] Open
Abstract
Intracellular calcium plays a crucial role in modulating a variety of functions such as muscle contraction, hormone secretion, gene expression, or cell growth. Calcium signaling has been however shown to be more complex than initially thought. Indeed, it is confined within cell microdomains, and different calcium channels are associated with different functions, as shown by various channelopathies. Sporadic mutations on voltage-operated L-type calcium channels in adrenal glomerulosa cells have been shown recently to be the second most prevalent genetic abnormalities present in human aldosterone-producing adenoma. The observed modification of the threshold of activation of the mutated channels not only provides an explanation for this gain of function but also reminds us on the importance of maintaining adequate electrophysiological characteristics to make channels able to exert specific cellular functions. Indeed, the contribution to steroid production of the various calcium channels expressed in adrenocortical cells is not equal, and the reason has been investigated for a long time. Given the very negative resting potential of these cells, and the small membrane depolarization induced by their physiological agonists, low threshold T-type calcium channels are particularly well suited for responding under these conditions and conveying calcium into the cell, at the right place for controlling steroidogenesis. In contrast, high threshold L-type channels are normally activated by much stronger cell depolarizations. The fact that dihydropyridine calcium antagonists, specific for L-type channels, are poorly efficient for reducing aldosterone secretion either in vivo or in vitro, strongly supports the view that these two types of channels differently affect steroid biosynthesis. Whether a similar analysis is transposable to fasciculata cells and cortisol secretion is one of the questions addressed in the present review. No similar mutations on L-type or T-type channels have been described yet to affect cortisol secretion or to be linked to the development of Cushing syndrome, but several evidences suggest that the function of T channels is also crucial in fasciculata cells. Putative molecular mechanisms and cellular structural organization making T channels a privileged entry for the "steroidogenic calcium" are also discussed.
Collapse
Affiliation(s)
- Michel F. Rossier
- Service of Clinical Chemistry and Toxicology, Hospital of Valais, Sion, Switzerland
- Department of Human Protein Science, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- *Correspondence: Michel F. Rossier,
| |
Collapse
|
5
|
Abstract
The purpose of this article is to review fundamentals in adrenal gland histophysiology. Key findings regarding the important signaling pathways involved in the regulation of steroidogenesis and adrenal growth are summarized. We illustrate how adrenal gland morphology and function are deeply interconnected in which novel signaling pathways (Wnt, Sonic hedgehog, Notch, β-catenin) or ionic channels are required for their integrity. Emphasis is given to exploring the mechanisms and challenges underlying the regulation of proliferation, growth, and functionality. Also addressed is the fact that while it is now well-accepted that steroidogenesis results from an enzymatic shuttle between mitochondria and endoplasmic reticulum, key questions still remain on the various aspects related to cellular uptake and delivery of free cholesterol. The significant progress achieved over the past decade regarding the precise molecular mechanisms by which the two main regulators of adrenal cortex, adrenocorticotropin hormone (ACTH) and angiotensin II act on their receptors is reviewed, including structure-activity relationships and their potential applications. Particular attention has been given to crucial second messengers and how various kinases, phosphatases, and cytoskeleton-associated proteins interact to ensure homeostasis and/or meet physiological demands. References to animal studies are also made in an attempt to unravel associated clinical conditions. Many of the aspects addressed in this article still represent a challenge for future studies, their outcome aimed at providing evidence that the adrenal gland, through its steroid hormones, occupies a central position in many situations where homeostasis is disrupted, thus highlighting the relevance of exploring and understanding how this key organ is regulated. © 2014 American Physiological Society. Compr Physiol 4:889-964, 2014.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of Endocrinology, Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, and Centre de Recherche Clinique Étienne-Le Bel of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Quebec, Canada
| | | |
Collapse
|
6
|
Uebele VN, Nuss CE, Renger JJ, Connolly TM. Role of voltage-gated calcium channels in potassium-stimulated aldosterone secretion from rat adrenal zona glomerulosa cells. J Steroid Biochem Mol Biol 2004; 92:209-18. [PMID: 15555914 DOI: 10.1016/j.jsbmb.2004.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Accepted: 04/26/2004] [Indexed: 10/26/2022]
Abstract
The mineralocorticoid aldosterone plays an important role in the regulation of plasma electrolyte homeostasis. Exposure of acutely isolated rat adrenal zona glomerulosa cells to elevated K(+) activates voltage-gated calcium channels and initiates a calcium-dependent increase in aldosterone synthesis. We developed a novel 96-well format aldosterone secretion assay to rapidly evaluate the effect of known T- and L-type calcium channel antagonists on K(+)-stimulated aldosterone secretion and better define the role of voltage-gated calcium channels in this process. Reported T-type antagonists, mibefradil and Ni(2+), and selected L-type antagonist dihydropyridines, inhibited K(+)-stimulated aldosterone synthesis. Dihydropyridine-mediated inhibition occurred at concentrations which had no effect on rat alpha1H T-type Ca(2+) currents. In contrast, below 10 microM, the L-type antagonists verapamil and diltiazem showed only minimal inhibitory effects. To examine the selectivity of the calcium channel antagonist-mediated inhibition, we established an aldosterone secretion assay in which 8Br-cAMP stimulates aldosterone secretion independent of extracellular calcium. Mibefradil remained inhibitory in this assay, while the dihydropyridines had only limited effects. Taken together, these data demonstrate a role for the L-type calcium channel in K(+)-stimulated aldosterone secretion. Further, they confirm the need for selective T-type calcium channel antagonists to better address the role of T-type channels in K(+)-stimulated aldosterone secretion.
Collapse
Affiliation(s)
- Victor N Uebele
- Merck Research Labs, Sumneytown and West Point Pikes, Department of Molecular Neurology, WP26-265, West Point, PA 194486, USA.
| | | | | | | |
Collapse
|
7
|
Makara JK, Koncz P, Petheö GL, Spät A. Role of cell volume in K+-induced Ca2+ signaling by rat adrenal glomerulosa cells. Endocrinology 2003; 144:4916-22. [PMID: 12960104 DOI: 10.1210/en.2003-0383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The involvement of cell volume in the K+-evoked Ca2+ signaling was studied in cultured rat glomerulosa cells. Previously we reported that hyposmosis (250 mOsm) increased the amplitude of T-type Ca2+ current and, accordingly, enhanced the Ca2+ response of cultured rat glomerulosa cells to K+. In the present study we found that this enhancement is not influenced by the cytoskeleton-disrupting drugs cytochalasin-D (20 microM) and colchicine (100 microM). Elevation of extracellular potassium concentration ([K+]e) from 3.6 to 4.6-8.6 mM induced cell swelling, which had slower kinetics than the Ca2+ signal. Cytoplasmic Ca2+ signal measured in single glomerulosa cells in response to stimulation with 5 mm K+ for 2 min showed two phases: after a rapid rise reaching a plateau within 20-30 sec, [Ca2+]c increased further slowly by approximately one third. When 5 mM K+ was coapplied with elevation of extracellular osmolarity from 290 to 320 mOsm, the second phase was prevented. These results indicate that cell swelling evoked by physiological elevation of [K+]e may contribute to the generation of sustained Ca2+ signals by enhancing voltage-activated Ca2+ influx.
Collapse
Affiliation(s)
- Judit K Makara
- Department of Physiology and Laboratory of Cellular and Molecular Physiology, Semmelweis University Medical School and Hungarian Academy of Sciences, H-1444 Budapest, Hungary
| | | | | | | |
Collapse
|
8
|
Abstract
ACTH is the major regulator of adrenal cortex function, having acute and chronic effects on steroid synthesis and secretion. The precise molecular mechanisms by which ACTH stimulates steroid synthesis and secretion, as well as cell hypertrophy, survival, and migration are still poorly understood. Several studies have shown that ACTH action is mediated not only by cyclic adenosine monophosphate (cAMP), but also by calcium (Ca(2+)), both interacting closely through positive feedback loops to enhance steroid secretion. However, in spite of the evidence that ACTH could stimulate other signaling pathways, such as inositol phosphates and diacylglycerol or mitogenic-activated protein kinase pathway (MAPK), none is as potent as cAMP. Recent data indicate that duration and potency of the cAMP production could be modulated by several isoforms of adenylyl cyclases and phosphodiesterases. In addition, calcium is probably not a first second messenger per se; rather, there are several arguments indicating that its increase occurs following cAMP production. Finally, in addition to steroid secretion, ACTH, through cAMP, is a survival factor, protecting cells against apoptosis. All of the effects of ACTH are dependent on cytoskeleton integrity. In summary, after 30 years of intensive research in this field, cAMP remains the first obligatory second messenger of ACTH action. However, recent work emphasizes that cell environment (matrix and cytoskeleton) probably interacts with cAMP to coordinate functions other than steroid secretion.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Service of Endocrinology, Department of Medicine, Faculty of Medicine, University of Sherbrooke, 3001 12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4.
| | | |
Collapse
|
9
|
Czirják G, Enyedi P. TASK-3 dominates the background potassium conductance in rat adrenal glomerulosa cells. Mol Endocrinol 2002; 16:621-9. [PMID: 11875121 DOI: 10.1210/mend.16.3.0788] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In a preceding study we showed that the highly negative resting membrane potential of rat adrenal glomerulosa cells is related to background potassium channel(s), which belong to the two-pore domain channel family. TWIK-related acid-sensitive K+ channel (TASK-1) expression was found in glomerulosa tissue, and the currents elicited by injection of glomerulosa mRNA (I(glom)) or TASK-1 cRNA (I(TASK-1)) showed remarkable similarity in Xenopus laevis oocytes. However, based on the different sensitivity of these currents to acidification, we concluded that TASK-1 may be responsible for a maximum of 25% of the weakly pH-dependent glomerulosa background K+ current. Here we demonstrate that TASK-3, a close relative of TASK-1, is expressed abundantly in glomerulosa cells. Northern blot detected TASK-3 message in adrenal glomerulosa, but not in other tissues. Quantitative RT-PCR experiments indicated even higher mRNA expression of TASK-3 than TASK-1 in glomerulosa tissue. Similarly to the glomerulosa background current, the current expressed by injection of TASK-3 cRNA (I(TASK-3)) was less acid-sensitive than I(TASK-1). Ruthenium red in the micromolar range inhibited I(glom) and I(TASK-3), but not I(TASK-1). Like I(TASK-1), I(TASK-3) was inhibited by stimulation of AT1a angiotensin II receptor coexpressed with the potassium channel. The high level of expression and its pharmacological properties suggest that TASK-3 dominates the resting potassium conductance of glomerulosa cells.
Collapse
Affiliation(s)
- Gábor Czirják
- Department of Physiology, Semmelweis University of Medicine, Budapest H-1444, Hungary
| | | |
Collapse
|
10
|
Foster RH, Casado A, Bakal F, Catalán L, Pino M. Okadaic acid inhibits angiotensin II, adrenocorticotropin and potassium-dependent aldosterone secretion. J Steroid Biochem Mol Biol 2002; 80:331-7. [PMID: 11948018 DOI: 10.1016/s0960-0760(02)00030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The present study was designed to assess the effect of okadaic acid (OA), a protein phosphatase inhibitor, on aldosterone secretion in response to angiotensin II (AII), adrenocorticotropin (ACTH) and rises in external potassium concentration (K+). AII (10nM) caused a 20-fold increase in aldosterone production and OA reduced this response by 45%. ACTH (10nM) caused an 8.6-fold increase in aldosterone secretion and OA reduced this by 83%. Increasing K+ concentration from 3 to 12mM caused a 13-fold increase in aldosterone production, which OA inhibited by 36%. These results suggest that protein phosphatases participate in the control of adrenal steroid production, even though ACTH, AII and K+ act via different intracellular messenger systems.
Collapse
Affiliation(s)
- Richard H Foster
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70005, Correo 7, Santiago, Chile.
| | | | | | | | | |
Collapse
|
11
|
Lotshaw DP. Role of membrane depolarization and T-type Ca2+ channels in angiotensin II and K+ stimulated aldosterone secretion. Mol Cell Endocrinol 2001; 175:157-71. [PMID: 11325526 DOI: 10.1016/s0303-7207(01)00384-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hypothesis that Ca2+ influx necessary for angiotensin II (AngII) and K+ stimulation of aldosterone secretion is primarily mediated by membrane depolarization and activation of T-type Ca2+ channels was examined in isolated rat adrenal glomerulosa cells. Perforated-patch clamp recordings of membrane potential (Vm) demonstrated that AngII and K+ induce concentration-dependent depolarizations capable of activating T channels and, at high K+ and AngII concentrations, activating L channels and inactivating T channels. K+-induced depolarizations were stable and readily reversible. Vm was proportional to K+ concentration, exhibiting a linear slope of 53.7 mV per 10-fold increase in K+. AngII-induced depolarizations were complex, consisting of a slow maintained component superimposed with small amplitude depolarizing fluctuations. Slow oscillations in Vm were occasionally observed in response to 10(-9) M AngII or greater. The slow, maintained component of depolarization coincided with inhibition of K+ conductance. Neither rapid fluctuations nor slow oscillations in Vm were blocked by mibefradil or other treatments that inhibit voltage-gated Ca2+ channels. Perforated-patch clamp experiments also demonstrated that AngII (10(-8) M) inhibited L channels by 45.6% without affecting T channels. Thus AngII activates T channels by depolarization rather than T channel modulation in rat cells. The concentration dependencies of mibefradil inhibition of T channels and AngII- and K+-induced aldosterone secretion were compared. Under whole-cell patch clamp mibefradil induced a concentration-dependent inhibition of T channels, exhibiting a K(app) of 0.62 microM. Mibefradil inhibition was use-dependent but mibefradil neither acted as an open channel blocker nor significantly affected T channel inactivation or activation. Mibefradil inhibited K+- and AngII-induced secretion at concentrations similar to that for T channel inhibition; at high concentrations (10 microM) mibefradil inhibited AngII-induced secretion by 88% and completely inhibited K+-induced secretion. The IC50 for K+-induced secretion was dependent on K+ concentration, increasing from 0.2 microM for 6 mM K+ to 2.5 microM for 10 mM K+ or greater. Mibefradil exhibited an IC50 of 1.1 microM for inhibition of secretion at all AngII concentrations examined (0.1, 1.0, and 10 nM). Mibefradil also exhibited multiple nonspecific effects, which complicated the assessment of T channel function, including; inhibition of leak and voltage-dependent K+ conductances, inhibition of Ca2+-independent aldosterone secretion, and inhibition of secretion under conditions expected to completely inactivate T channels (10 nM AngII or 20 mM K+). In summary, these results indicate that voltage-gated T channels represent the primary Ca2+ influx pathway activated by physiological concentrations of AngII and K+ but other Ca2+ influx pathways must mediate aldosterone secretion induced by high K+ or AngII concentrations.
Collapse
Affiliation(s)
- D P Lotshaw
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
12
|
Schrier AD, Wang H, Talley EM, Perez-Reyes E, Barrett PQ. alpha1H T-type Ca2+ channel is the predominant subtype expressed in bovine and rat zona glomerulosa. Am J Physiol Cell Physiol 2001; 280:C265-72. [PMID: 11208520 DOI: 10.1152/ajpcell.2001.280.2.c265] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The low voltage-activated (T-type) Ca2+ channel has been implicated in the regulation of aldosterone secretion from the adrenal zona glomerulosa by extracellular K+ levels, angiotensin II, and ACTH. However, the identity of the specific subtype mediating this regulation has not been determined. We utilized in situ hybridization to examine the distribution of three newly cloned members of the T-type Ca2+ channel family, alpha1G, alpha1H, and alpha1I, in the rat and bovine adrenal gland. Substantial expression of only the mRNA transcript for the alpha1H-subunit was detected in the zona glomerulosa of both rat and bovine. A much weaker expression signal was detected for the alpha1H transcript in the zona fasciculata of bovine. Whole cell recordings of isolated bovine adrenal zona glomerulosa cells showed the native low voltage-activated current to be inhibited by NiCl2 with an IC50 of 6.4 +/- 0.2 microM. Because the alpha1H subtype exhibits similar NiCl2 sensitivity, we propose that the alpha1H subtype is the predominant T-type Ca2+ channel present in the adrenal zona glomerulosa.
Collapse
Affiliation(s)
- A D Schrier
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
13
|
Czirják G, Fischer T, Spät A, Lesage F, Enyedi P. TASK (TWIK-related acid-sensitive K+ channel) is expressed in glomerulosa cells of rat adrenal cortex and inhibited by angiotensin II. Mol Endocrinol 2000; 14:863-74. [PMID: 10847588 DOI: 10.1210/mend.14.6.0466] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The present study was conducted to explore the possible contribution of a recently described leak K+ channel, TASK (TWIK-related acid-sensitive K+ channel), to the high resting K+ conductance of adrenal glomerulosa cells. Northern blot analysis showed the strongest TASK message in adrenal glomerulosa (capsular) tissue among the examined tissues including heart and brain. Single-cell PCR demonstrated TASK expression in glomerulosa cells. In patch-clamp experiments performed on isolated glomerulosa cells the inward current at -100 mV in 30 mM [K+] (reflecting mainly potassium conductance) was pH sensitive (17+/-2% reduction when the pH changed from 7.4 to 6.7). In Xenopus oocytes injected with mRNA prepared from adrenal glomerulosa tissue the expressed K+ current at -100 mV was virtually insensitive to tetraethylammonium (3 mM) and 4-aminopyridine (3 mM). Ba2+ (300 microM) and Cs+ (3 mM) induced voltage-dependent block. Lidocaine (1 mM) and extracellular acidification from pH 7.5 to 6.7 inhibited the current (by 28% and 16%, respectively). This inhibitory profile is similar (although it is not identical) to that of TASK expressed by injecting its cRNA. In oocytes injected with adrenal glomerulosa mRNA, TASK antisense oligonucleotide reduced significantly the expression of K+ current at -100 mV, while the sense oligonucleotide failed to have inhibitory effect. Application of angiotensin II (10 nM) both in isolated glomerulosa cells and in oocytes injected with adrenal glomerulosa mRNA inhibited the K+ current at -100 mV. Similarly, in oocytes coexpressing TASK and ATla angiotensin II receptor, angiotensin II inhibited the TASK current. These data together indicate that TASK contributes to the generation of high resting potassium permeability of glomerulosa cells, and this background K+ channel may be a target of hormonal regulation.
Collapse
Affiliation(s)
- G Czirják
- Department of Physiology, Semmelweis University of Medicine, Budapest, Hungary
| | | | | | | | | |
Collapse
|
14
|
Foster RH, Rojas AM. Evidence suggesting that the angiotensin II-sensitive intracellular Ca2+ pool is reloaded from the external space in adrenal glomerulosa cells. GENERAL PHARMACOLOGY 1999; 32:171-7. [PMID: 10188615 DOI: 10.1016/s0306-3623(98)00092-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Adrenal glomerulosa cells prelabeled with 45Ca2+ and perifused for 10 min with 10 nM angiotensin II (AII) in a dynamic perifusion system show a biphasic response with an initial transient increase in 45Ca2+ efflux, followed by a sustained phase of increased 45Ca2+ efflux. When labeled adrenal golmerulosa cells were treated with 10 nM AII for three consecutive periods of 5 min, the transient increase in 45Ca2+ efflux was observed only in the first period. However, when 40Ca2+ was measured in the perifusate using a Ca2+-sensitive electrode coupled to the perifusion system, a transient increase in 40Ca2+ efflux was observed in each period of AII treatment. Exposing the cells to AII for 1 min, the amount of 40Ca2+ effluxed out of the cells was 58.3 +/- 8.4 nmol/10(8) cells. In contrast, when the cells were exposed to an increase in the external potassium (K+) concentration of 4 to 12 mM during 1 min of perifusion, the amount of 40Ca2+ effluxed was 16 +/- 5 nmol/10(8) cells. These results indicate that AII induces an increase in the Ca2+ concentration in a local domain outside of the plasma membrane. This Ca2+ comes from AII-induced intracellular Ca2+ depletion and may play a role in refilling intracellular Ca2+ stores.
Collapse
Affiliation(s)
- R H Foster
- Department of Physiology and Biophysics, Faculty of Medicine, University of Chile, Santiago
| | | |
Collapse
|
15
|
Szabadkai G, Várnai P, Enyedi P. Selective inhibition of potassium-stimulated rat adrenal glomerulosa cells by ruthenium red. Biochem Pharmacol 1999; 57:209-18. [PMID: 9890570 DOI: 10.1016/s0006-2952(98)00285-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effect of the cationic dye, ruthenium red (RR), on ionic fluxes, Ca2+ signal generation, and stimulation of aldosterone production was studied in isolated rat adrenal glomerulosa cells. In these cells, increased extracellular [K+] as well as angiotensin II (Ang II) elevate cytoplasmic Ca2+ concentration and thereupon activate steroidogenesis. However, the mode of action of the two stimuli are different: while a dihidropyridine-sensitive mechanism contributes to the response to both agonists, Ang II induces Ca2+ release from intracellular stores and causes capacitative Ca2+ influx, whereas K+ was recently shown to activate a plasma membrane Ca2+ current (Igl) independently of membrane depolarization. The difference is reflected in the sensitivity of the response of the cells to RR. The Ang II-induced Ca2+ signal and aldosterone production were not inhibited, but rather slightly potentiated by the dye. This potentiation was probably the consequence of the membrane-depolarizing effect of RR, due to the observed inhibition of the resting K+ conductance. Conversely, Ca2+ signal and aldosterone production were significantly reduced by RR when the cells were stimulated by moderately elevated [K+] (6-8 mM). Our patch clamp studies suggest that this effect was related to the inhibition of different voltage-dependent and -independent inward Ca2+ currents and indicates the functional importance of the latter in the signal transduction of the potassium-stimulated glomerulosa cell.
Collapse
Affiliation(s)
- G Szabadkai
- Department of Physiology, Semmelweis University of Medicine, Budapest, Hungary
| | | | | |
Collapse
|
16
|
Cirillo M, Canessa M, Quinn S, Conlin PR. Protein kinase C activation stimulates calcium transport in adrenal zona glomerulosa cells. Biochem Biophys Res Commun 1998; 245:466-71. [PMID: 9571176 DOI: 10.1006/bbrc.1998.8458] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adrenal zona glomerulosa (ZG) cells produce aldosterone in response to angiotensin II and extracellular potassium through different mechanisms which involve changes in cytosolic free calcium (Cai). Protein kinase C (PKC) activation is part of the angiotensin II signalling cascade but its effects on Cai are unknown. PKC activation with 1 microM phorbol 12-myristate 13-acetate (PMA) and 8 mM Ko significantly increased the rate of calcium influx (P < 0.001). Both the PKC- and the Ko-induced calcium influx occurred via a nifedipine-sensitive pathway. When both were combined, PKC activation and 8 mM Ko were not additive over either agent alone. PKC activation and 8 mM Ko also stimulated calcium efflux (P < 0.01). When combined together PKC activation and 8 mM Ko had additive effects on calcium efflux (P < 0.05). PKC activation did not increase Cai nor the exchangeable calcium pool in contrast to 8 mM Ko which significantly increased both (P < 0.001). Thus, PKC activation in ZG cells induces a pattern of calcium transport characterized by accelerated calcium recycling across the cell membrane without increasing cell calcium content.
Collapse
Affiliation(s)
- M Cirillo
- Division of Nephrology, School of Medicine, Second University of Naples, Italy
| | | | | | | |
Collapse
|
17
|
Coyne MD, Rodriguez O, Wilson Y, Wang G, Lemos JR. Voltage dependent calcium and potassium currents in Y-1 adrenocortical cells are unresponsive to ACTH. Endocr Res 1997; 23:245-75. [PMID: 9430818 DOI: 10.1080/07435809709031857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this report we use both whole cell and perforated patch clamp recording techniques to characterize calcium and potassium channels in Y-1 adrenocortical cells in order to assess their responsiveness to ACTH. Both transient and long-lasting components of an inward calcium current were identified which were similar to T and L-type Ca2+ currents. With Ba2+ as the charge carrier, the transient current activated at voltages more hyperpolarized than -50 mV with V1/2 for activation at -78.1 mV, and for steady state inactivation at -52.3 mV. The L-type current activated at -20 mV, with a V1/2 for activation at -29.9 mV and steady state inactivation at -44.2 mV. Under perforated patch conditions the response was shifted to more depolarized voltages. Both currents were responsive to agents which usually affect T- or L-type Ca2+ currents. The transient current was completely blocked by 50 microM lanthanum or 200 microM nickel and partially blocked by 300 mM amiloride. Cadmium (100 microM) and nifedipine (300 nM) completely blocked the long-lasting current while omega-conotoxin GVIA (1992 nM) inhibited the current by only 20-25%. The agonist, Bay K 8644 was stimulatory at 50 nM. Both transient and sustained outward potassium currents similar to A-type and delayed rectifier currents, respectively, were present. The transient current demonstrated fast activation at voltages more positive than -10 mV, inactivation with continued depolarization and steady state inactivation at V1/2 = -50 mV. The sustained current activated rapidly and had minimal inactivation with continued depolarization. The transient current was blocked by 5 mM 4AP and the sustained by 25 mM TEA. While Y-1 cells contain both calcium and potassium currents similar to those found in other adrenocortical cells, none of the currents were affected by ACTH or AII, secretagogues which stimulate steroidogenesis. These data, combined with the inability of both Ca2+ and K+ channel blockers to alter ACTH-induced steroidogenesis as reported earlier, suggests that neither calcium nor potassium currents are responsive to ACTH in Y-1 cells.
Collapse
Affiliation(s)
- M D Coyne
- Department of Biological Sciences, Wellesley College, MA 02181, USA
| | | | | | | | | |
Collapse
|
18
|
Nakashima M, Morrison KJ, Vanhoutte PM. Hyperpolarization and relaxation of canine vascular smooth muscle to vasoactive intestinal polypeptide. J Cardiovasc Pharmacol 1997; 30:273-7. [PMID: 9300308 DOI: 10.1097/00005344-199709000-00001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study was designed to determine the influence of the endothelium on the hyperpolarization induced by vasoactive intestinal polypeptide (VIP) in smooth muscle cells of canine blood vessels, and the potential contribution that these electrophysiologic changes may make to the relaxant effects of VIP. Membrane potential was measured in isolated canine coronary arteries and saphenous veins, using glass microelectrodes. Isometric force was recorded in a conventional organ chamber. All experiments were performed in the presence of indomethacin. VIP induced concentration-dependent and endothelium-independent hyperpolarization of the saphenous vein. This response was abolished by glibenclamide. VIP did not induce hyperpolarization of coronary arterial smooth muscle either in the presence or absence of the endothelium. VIP caused concentration-dependent and endothelium-independent relaxations of both arterial and venous rings. The relaxation of the saphenous vein to VIP was not influenced by glibenclamide. These data suggest that hyperpolarization of the cell membrane does not play a significant role in the relaxation of canine blood vessels to VIP.
Collapse
Affiliation(s)
- M Nakashima
- Center for Experimental Therapeutics, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
19
|
Foster RH, MacFarlane CH, Bustamante MO. Recent progress in understanding aldosterone secretion. GENERAL PHARMACOLOGY 1997; 28:647-51. [PMID: 9184796 DOI: 10.1016/s0306-3623(96)00290-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. The synthesis and secretion of aldosterone in the adrenal zona glomerulosa in physiologic conditions is controlled by adrenocorticotropin (ACTH), angiotensin II (AII), and extracellular (K+). 2. ACTH effects on aldosterone output are explained by cyclic AMP-(cAMP)- and Ca(2+)-dependent mechanisms. 3. All effects on aldosterone secretion are initiated by an increase in Ca2+ influx through hormone-operated Ca2+ channels and G-protein- and phospholipase C-(PLC) dependent hydrolysis of phosphoinositides leading to the generation of inositol 1,4,5 trisphosphate (IP3) and DAG that induce intracellular Ca2+ release and PKC activation, respectively. 4. ACTH increases DAG formation with marginal or undetectable IP3 generation. The effect of ACTH on DAG levels is discussed. 5. The requirement of external Ca2+ in PLC activation and aldosterone secretion also is discussed.
Collapse
Affiliation(s)
- R H Foster
- Department of Physiology and Biophysics, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | |
Collapse
|
20
|
Drolet P, Bilodeau L, Chorvatova A, Laflamme L, Gallo-Payet N, Payet MD. Inhibition of the T-type Ca2+ current by the dopamine D1 receptor in rat adrenal glomerulosa cells: requirement of the combined action of the G betagamma protein subunit and cyclic adenosine 3',5'-monophosphate. Mol Endocrinol 1997; 11:503-14. [PMID: 9092802 DOI: 10.1210/mend.11.4.9910] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Modulation of ionic Ca2+ currents by dopamine (DA) could play a pivotal role in the control of steroid secretion by the rat adrenal glomerulosa cells. In the present study, we report that DA decreases the T-type Ca2+ current amplitude in these cells. The use of pharmacological agonists and antagonists reveals that this effect is mediated by activation of the D1-like receptors. Modulation by cAMP is complex inasmuch as preincubation of the cells with 8-Br-cAMP or the specific adenylyl cyclase inhibitor, 2',3'-dideoxyadenosine, have no effect per se, but prevent the DA-induced inhibition. The inhibitory effect of DA was abolished by addition of GDPbetaS to the pipette medium but not by pertussis toxin. If a cell is dialyzed with medium containing G alpha(s)-GDP, the inhibitory effect is reduced and cannot be recovered by the addition of GTPgammaS, indicating that the alpha(s) is not involved, but rather the betagamma-subunit. Indeed, DA-induced inhibition was mimicked by G betagamma in the pipette and 8-Br-cAMP in the bath. Similarly, G betagamma release from the activation of the AT1 receptor of angiotensin II did affect the current amplitude only in the presence of 8-Br-cAMP in the bath. The mitogen-activated protein kinase cascade, which can be activated by receptors coupled to Gs, was not involved as shown by the lack of activation of p42mapk by DA and the absence of effect of the mitogen-activated protein kinase inhibitor, PD 098059, on the DA-induced inhibition. Because the binding of G betagamma-subunits to various effectors involves the motif QXXER, we therefore tested the effect of the QEHA peptide on the inhibition of the T-type Ca2+ current induced by DA. The peptide, added to the medium pipette (200 microM), abolished the effect of DA. We conclude that the presence of the G betagamma and an increase in cAMP concentration are both required to inhibit the T-type Ca2+ current in rat adrenal glomerulosa cells.
Collapse
Affiliation(s)
- P Drolet
- Department of Physiology and Biophysics, Faculty of Medicine, University of Sherbrooke, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Chorvatova A, Gallo-Payet N, Casanova C, Payet MD. Modulation of membrane potential and ionic currents by the AT1 and AT2 receptors of angiotensin II. Cell Signal 1996; 8:525-32. [PMID: 9115844 DOI: 10.1016/s0898-6568(96)00117-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Angiotensin II, the principal effector of the renin-angiotensin system, modulates various ionic currents. Its effects on potassium currents, including outward transient potassium current, the inward or outward rectifiers, as well as Ca(2+)- activated potassium currents, is well described. Other ionic currents, such as voltage-dependent calcium currents, cationic or chloride currents, are also altered by the hormone. All these effects provoke changes in membrane potential, such as modulation of action potential firing or resting membrane potential and control intracellular calcium concentration. Summarized here are the results obtained on these membrane electrical properties using electrophysiological recordings.
Collapse
Affiliation(s)
- A Chorvatova
- Department of Physiology and Biophysics, Faculty of Medicine, Sherbrooke, Québec, Canada
| | | | | | | |
Collapse
|
22
|
Barbara JG, Takeda K. Voltage-dependent currents and modulation of calcium channel expression in zona fasciculata cells from rat adrenal gland. J Physiol 1995; 488 ( Pt 3):609-22. [PMID: 8576852 PMCID: PMC1156728 DOI: 10.1113/jphysiol.1995.sp020994] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. Whole-cell voltage-activated currents from single zona fasciculata (ZF) cells from rat adrenal glands were studied. T- and L-type Ca2+ currents and a slowly inactivating A-type K+ current were the three major currents observed. 2. In freshly isolated cells, the A-type K+ current and the T-type Ca2+ current were predominant. The A-type current was activated at -50 mV and inhibited by 4-amino-pyridine with a half-maximal block (IC50) at 130 microM while the T-type current was activated at -70 mV and blocked by Cd2+, Ni2+ and amiloride with IC50 values of 24.1, 132.4 and 518.9 microM, respectively. 3. Under current clamp, depolarizing current pulses produced a single Ca2+ action potential with Cs+ in the pipette internal solution. Upon replacement of Cs+ by K+, the half-amplitude width of the action potential was shortened and membrane potential oscillations were seen after the spike. 4. In freshly isolated cells and during the first 24 h after plating, the T-type current was observed in all cells, with L-type current being observed in < 2% of cells, even in the presence of (+)SDZ 202,791, a dihydropyridine Ca2+ channel agonist. With time in culture, the T-type current disappeared, and a high-voltage-activated L-type current became increasingly apparent. In cells tested after > 2 days in culture, (+)SDZ 202,791 potentiated L-type current by 407 +/- 12% and the antagonist (-)SDZ 202,791 blocked this increase. The L-type current was activated between -30 and -20 mV and was sensitive to nitrendipine and omega-conotoxin GVIA. 5. Pre-incubation of cultured ZF cells with adrenocorticotrophic hormone (ACTH) or vasoactive intestinal peptide (VIP) for 3 days resulted in a high, sustained level of expression of T-type current, with a mean amplitude of 34.2 +/- 5.5 pA pF-1 for ACTH-treated cells compared with 3.4 +/- 1.8 pA pF-1 for untreated cells. Cycloheximide strongly inhibited this effect. Neither treatment affected L-type current expression. 6. The expression of both Ca2+ current types was unaffected by pre-incubation with 8-bromo-cAMP or forskolin. The protein kinase A antagonist, H89, did not inhibit the ACTH-induced upregulation of T-type Ca2+ currents. 7. It is concluded that the main voltage-dependent currents involved in cell excitability and steroidogenesis in rat adrenal ZF cells are an A-type K+ current and a T-type Ca2+ current. The physiological role and control of expression of L-type Ca2+ channels in rat ZF cells remain less clear.
Collapse
Affiliation(s)
- J G Barbara
- Laboratoire de Pharmacologie Cellulaire et Moléculaire-CNRS URA600, Université Louis Pasteur de Strasbourg, Illkirch, France
| | | |
Collapse
|
23
|
Várnai P, Osipenko ON, Vizi ES, Spät A. Activation of calcium current in voltage-clamped rat glomerulosa cells by potassium ions. J Physiol 1995; 483 ( Pt 1):67-78. [PMID: 7776242 PMCID: PMC1157872 DOI: 10.1113/jphysiol.1995.sp020568] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. We examined Ca2+ influx mechanisms using the whole-cell patch-clamp technique in primary cultures of rat glomerulosa cells. 2. Depolarization of the plasma membrane, as studied by a stepwise or ramp depolarization technique, activated low-threshold, transient (T-type) and high-threshold, long-lasting (L-type) voltage-dependent calcium channels (VDCCs). 3. Extracellular K+ activated an inward current (Ig1), even in voltage-clamped cells. This phenomenon was observed within the physiological concentration range, beginning at 4.6 mM K+o (as opposed to the control level of 3.6 mM K+o). Increased cell conductance and increased background noise indicated that Ig1 is evoked by enhanced channel activity. Potassium induced no outward current in the voltage range examined (-120 to +60 mV). 4. When non-permeable anions were present only in the pipette and Na+ and Mg2+ were omitted from the bath, K+ still activated the current. Ig1 was blocked by 100 microM cadmium but was insensitive to 2 microM nifedipine or to 300 microM Ni2+. 5. In fluorimetric studies elevation of the cytoplasmic Ca2+ concentration in response to K+ (5.6-13.6 mM) was reduced only partially when VDCCs were blocked with Ni2+ (200 microM) and nifedipine (2 microM). 6. Elevation of the K+ concentration shifted the threshold potential of the T-type calcium channel in the negative direction. 7. In summary, K+ as a ligand activates Ca(2+)-permeable channels in rat glomerulosa cells. This current may contribute to the development of Ca2+ signals in response to stimulation with K+ in the physiological range. The reduction of the activation threshold of the T-type current by K+ may also be of physiological significance.
Collapse
Affiliation(s)
- P Várnai
- Department of Physiology, Semmelweis University of Medicine, Budapest, Hungary
| | | | | | | |
Collapse
|
24
|
Tsunoda Y. Receptor-operated Ca2+ signaling and crosstalk in stimulus secretion coupling. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1154:105-56. [PMID: 8218335 DOI: 10.1016/0304-4157(93)90008-c] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the cells of higher eukaryotic organisms, there are several messenger pathways of intracellular signal transduction, such as the inositol 1,4,5-trisphosphate/Ca2+ signal, voltage-dependent and -independent Ca2+ channels, adenylate cyclase/cyclic adenosine 3',5'-monophosphate, guanylate cyclase/cyclic guanosine 3',5'-monophosphate, diacylglycerol/protein kinase C, and growth factors/tyrosine kinase/tyrosine phosphatase. These pathways are present in different cell types and impinge on each other for the modulation of the cell function. Ca2+ is one of the most ubiquitous intracellular messengers mediating transcellular communication in a wide variety of cell types. Over the last decades it has become clear that the activation of many types of cells is accompanied by an increase in cytosolic free Ca2+ concentration ([Ca2+]i) that is thought to play an important part in the sequence of events occurring during cell activation. The Ca2+ signal can be divided into two categories: receptor- and voltage-operated Ca2+ signal. This review describes and integrates some recent views of receptor-operated Ca2+ signaling and crosstalk in the context of stimulus-secretion coupling.
Collapse
Affiliation(s)
- Y Tsunoda
- Department of Faculty Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
25
|
Gallo-Payet N, Payet MD, Chouinard L, Balestre MN, Guillon G. A model for studying regulation of aldosterone secretion: freshly isolated cells or cultured cells? Cell Signal 1993; 5:651-66. [PMID: 8312138 DOI: 10.1016/0898-6568(93)90060-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Practically all studies relating to zona glomerulosa function have been performed either with freshly isolated cells or with cells used after 2 or 3 days in culture. This study compares the step-by-step response (binding, second messenger production and aldosterone response) of isolated glomerulosa cells vs cells maintained in primary culture to the main stimuli of aldosterone secretion. One day in culture induces a decrease of 77 and 65% in the basal level of corticosterone and aldosterone secretions, compared to that observed in freshly isolated cells. In these conditions, the cells become more sensitive to most of their stimuli, but not all: e.g. important differences are noted in the dose-response of aldosterone secretion to adrenocorticotropin (ACTH), which is often shifted to a lower concentration sensitivity in cultured cells. For example, 0.1 nM ACTH stimulates steroid secretion by three-fold in isolated cells while 1 pM ACTH already induces a 25 and nine-fold increase, respectively, in corticosterone and aldosterone output in cultured cells. Moreover, some stimuli such as isoproterenol do not have any effect in isolated cells but do stimulate steroid secretion in cultured cells. In contrast, other stimuli, such as serotonin or DA (via DA2 receptors) act preferentially in freshly isolated cells. The main observation derived from this study is that glomerulosa cells, under appropriate conditions, are able to respond to their main secretagogues even after 4 days in culture. At this time, glomerulosa cells maintain their ultrastructural characteristics and functional properties and, aside from a few exceptions, demonstrate higher sensitivity to their known stimuli.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N Gallo-Payet
- Endocrine Service, Department of Medicine, University of Sherbrooke, Quebec, Canada
| | | | | | | | | |
Collapse
|
26
|
Abstract
In order to better understand the cellular mechanism of potassium (K+) adaptation, the sensitivity of aldosterone secretion to acute changes in extracellular K+ concentration was studied in freshly dissected adrenal capsules of rats adapted to diets of high or low K+ content, of rats adapted to low or high sodium (Na+) diets, and also of control rats. In control tissues, the aldosterone secretion from the capsules of an individual animal averages 0.44 +/- 0.05 nmol/h, increasing 4.4-fold between 2 and 8 mM K+ but decreasing between 8 and 10 mM K+. Although a high K+ diet increases aldosterone secretion by only 34% at 4 mM K+, the rate of secretion increases 3.7-fold more steeply than control as the K+ concentration increases. This change is equivalent to a parallel 3.1-fold increase in the effective number of T- and L-type calcium (Ca2+) channels, accompanied by a 1.3-fold increase in the K(+)-insensitive rate of aldosterone secretion. In contrast, after Na+ restriction, aldosterone secretion is about 3 times the control rate for all K+ concentrations tested, equivalent to an increase in the basal rate and the effective number of L-channels. Thus, the alteration in the number of effective T-channels is specific to diets of increased K+ content, not simply an effect of increased secretory capacity. After a low K+ diet, aldosterone secretion is 18% of control at 4 mM K+ and changes little with the K+ concentration, consistent with a 94% to 96% decrease in the effective number of T- and L-channels plus a 77% decrease in the K(+)-insensitive rate of aldosterone secretion.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R D McCabe
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson 39216-4505
| | | | | |
Collapse
|
27
|
Mlinar B, Biagi B, Enyeart J. A novel K+ current inhibited by adrenocorticotropic hormone and angiotensin II in adrenal cortical cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)52922-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|