1
|
Xu H, Shi X, Li X, Zou J, Zhou C, Liu W, Shao H, Chen H, Shi L. Neurotransmitter and neuropeptide regulation of mast cell function: a systematic review. J Neuroinflammation 2020; 17:356. [PMID: 33239034 PMCID: PMC7691095 DOI: 10.1186/s12974-020-02029-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The existence of the neural control of mast cell functions has long been proposed. Mast cells (MCs) are localized in association with the peripheral nervous system (PNS) and the brain, where they are closely aligned, anatomically and functionally, with neurons and neuronal processes throughout the body. They express receptors for and are regulated by various neurotransmitters, neuropeptides, and other neuromodulators. Consequently, modulation provided by these neurotransmitters and neuromodulators allows neural control of MC functions and involvement in the pathogenesis of mast cell–related disease states. Recently, the roles of individual neurotransmitters and neuropeptides in regulating mast cell actions have been investigated extensively. This review offers a systematic review of recent advances in our understanding of the contributions of neurotransmitters and neuropeptides to mast cell activation and the pathological implications of this regulation on mast cell–related disease states, though the full extent to which such control influences health and disease is still unclear, and a complete understanding of the mechanisms underlying the control is lacking. Future validation of animal and in vitro models also is needed, which incorporates the integration of microenvironment-specific influences and the complex, multifaceted cross-talk between mast cells and various neural signals. Moreover, new biological agents directed against neurotransmitter receptors on mast cells that can be used for therapeutic intervention need to be more specific, which will reduce their ability to support inflammatory responses and enhance their potential roles in protecting against mast cell–related pathogenesis.
Collapse
Affiliation(s)
- Huaping Xu
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xiaoyun Shi
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xin Li
- School of Food Science, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Jiexin Zou
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Chunyan Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Wenfeng Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Huming Shao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Linbo Shi
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
2
|
The antinociception of oxytocin on colonic hypersensitivity in rats was mediated by inhibition of mast cell degranulation via Ca(2+)-NOS pathway. Sci Rep 2016; 6:31452. [PMID: 27538454 PMCID: PMC4990927 DOI: 10.1038/srep31452] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 07/18/2016] [Indexed: 12/17/2022] Open
Abstract
This study was conducted to investigate the effects of oxytocin (OT) on visceral hypersensitivity/pain and mast cell degranulation and the underlying mechanisms. We found that oxytocin receptor (OTR) was expressed in colonic mast cells in humans and rats, as well as in human mast cell line-1 (HMC-1), rat basophilic leukemia cell line (RBL-2H3) and mouse mastocytoma cell line (P815). OT decreased 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced visceral hypersensitivity, colonic mast cell degranulation and histamine release after mast cell degranulation in rats. Also, OT attenuated the compound 48/80 (C48/80)-evoked histamine release in P815 cells and inward currents, responsible for the mast cell degranulation, in HMC-1, RBL-2H3 and P815 cells. Moreover, these protective effects of OT against visceral hypersensitivity and mast cell degranulation were eliminated by coadministration of OTR antagonist atosiban or a nonselective inhibitor of nitric oxide synthase (NOS), NG-Methyl-L-arginine acetate salt (L-NMMA). Notably, OT evoked a concentration-dependent increase of intracellular Ca2+ in HMC-1, RBL-2H3 and P815 cells, which was responsible for the activation of neuronal NOS (NOS1) and endothelial NOS (NOS3). Our findings strongly suggest that OT might exert the antinociception on colonic hypersensitivity through inhibition of mast cell degranulation via Ca2+-NOS pathway.
Collapse
|
3
|
Abstract
Often considered as the archetype of neuroimmune communication, much of our understanding of the bidirectional relationship between the nervous and immune systems has come from the study of mast cell-nerve interaction. Mast cells play a role in resistance to infection and are extensively involved in inflammation and subsequent tissue repair. Thus, the relationship between mast cells and neurons enables the involvement of peripheral and central nervous systems in the regulation of host defense mechanisms and inflammation. Recently, with the identification of the cholinergic anti-inflammatory pathway, there has been increased interest in the role of the parasympathetic nervous system in regulating immune responses. Classical neurotransmitters and neuropeptides released from cholinergic and inhibitory NANC neurons can modulate mast cell activity, and there is good evidence for the existence of parasympathetic nerve-mast cell functional units in the skin, lung, and intestine that have the potential to regulate a range of physiological processes.
Collapse
Affiliation(s)
- Paul Forsythe
- Department of Medicine, The Brain-Body Institute, St. Joseph's Healthcare, McMaster University, 50 Charlton Avenue East, T3302, Hamilton, ON, Canada, L8N 4A6,
| |
Collapse
|
4
|
Kouritas VK, Tepetes K, Spyridakis M, Theodosopoulou KV, Gourgoulianis KI, Molyvdas PA, Hatzoglou C. Role of histamine in altering fluid recycling in normal and post-traumatic rabbit peritoneum. Inflammation 2013; 37:534-41. [PMID: 24218196 DOI: 10.1007/s10753-013-9767-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study aims to investigate if histamine induces electrochemical alterations in the normal and post-traumatic peritoneum. Peritoneal rabbit specimens were obtained before surgery and 10 days post-operatively and were mounted in Ussing chambers. Histamine solutions were added facing the intra-peritoneal and outer-peritoneal surface. Dimetindene maleate-, cetirizine-, and ranitidine-pretreated specimens were used to investigate histamine receptor involvement, whereas amiloride- and ouabain-pretreated specimens were used to investigate ion transportation blockage involvement. Trans-mesothelial resistance (R(TM)) was determined. Histamine-increased R(TM) intra-peritoneally and decreased it outer-peritoneally. A less intense effect was induced in post-traumatic specimens. Dimetindene maleate, cetirizine, amiloride, and ouabain totally inhibited this effect, whereas ranitidine only had a partial effect. Histamine induces electrochemical alterations in the normal and post-operative peritoneum. This effect is mediated by interaction with histamine receptors, hindering the normal process of ion trans-mesothelial transportation.
Collapse
Affiliation(s)
- Vasileios K Kouritas
- Department of Physiology, Medical School, University of Thessaly, Larissa, Greece,
| | | | | | | | | | | | | |
Collapse
|
5
|
Extramitochondrial domain rich in carbonic anhydrase activity improves myocardial energetics. Proc Natl Acad Sci U S A 2013; 110:E958-67. [PMID: 23431149 DOI: 10.1073/pnas.1213471110] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
CO2 is produced abundantly by cardiac mitochondria. Thus an efficient means for its venting is required to support metabolism. Carbonic anhydrase (CA) enzymes, expressed at various sites in ventricular myocytes, may affect mitochondrial CO2 clearance by catalyzing CO2 hydration (to H(+) and HCO3(-)), thereby changing the gradient for CO2 venting. Using fluorescent dyes to measure changes in pH arising from the intracellular hydration of extracellularly supplied CO2, overall CA activity in the cytoplasm of isolated ventricular myocytes was found to be modest (2.7-fold above spontaneous kinetics). Experiments on ventricular mitochondria demonstrated negligible intramitochondrial CA activity. CA activity was also investigated in intact hearts by (13)C magnetic resonance spectroscopy from the rate of H(13)CO3(-) production from (13)CO2 released specifically from mitochondria by pyruvate dehydrogenase-mediated metabolism of hyperpolarized [1-(13)C]pyruvate. CA activity measured upon [1-(13)C]pyruvate infusion was fourfold higher than the cytoplasm-averaged value. A fluorescent CA ligand colocalized with a mitochondrial marker, indicating that mitochondria are near a CA-rich domain. Based on immunoreactivity, this domain comprises the nominally cytoplasmic CA isoform CAII and sarcoplasmic reticulum-associated CAXIV. Inhibition of extramitochondrial CA activity acidified the matrix (as determined by fluorescence measurements in permeabilized myocytes and isolated mitochondria), impaired cardiac energetics (indexed by the phosphocreatine-to-ATP ratio measured by (31)P magnetic resonance spectroscopy of perfused hearts), and reduced contractility (as measured from the pressure developed in perfused hearts). These data provide evidence for a functional domain of high CA activity around mitochondria to support CO2 venting, particularly during elevated and fluctuating respiratory activity. Aberrant distribution of CA activity therefore may reduce the heart's energetic efficiency.
Collapse
|
6
|
Zima AV, Pabbidi MR, Lipsius SL, Blatter LA. Effects of mitochondrial uncoupling on Ca(2+) signaling during excitation-contraction coupling in atrial myocytes. Am J Physiol Heart Circ Physiol 2013; 304:H983-93. [PMID: 23376829 DOI: 10.1152/ajpheart.00932.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria play an important role in intracellular Ca(2+) concentration ([Ca(2+)]i) regulation in the heart. We studied sarcoplasmic reticulum (SR) Ca(2+) release in cat atrial myocytes during depolarization of mitochondrial membrane potential (ΔΨm) induced by the protonophore FCCP. FCCP caused an initial decrease of action potential-induced Ca(2+) transient amplitude and frequency of spontaneous Ca(2+) waves followed by partial recovery despite partially depleted SR Ca(2+) stores. In the presence of oligomycin, FCCP only exerted a stimulatory effect on Ca(2+) transients and Ca(2+) wave frequency, suggesting that the inhibitory effect of FCCP was mediated by ATP consumption through reverse-mode operation of mitochondrial F1F0-ATPase. ΔΨm depolarization was accompanied by cytosolic acidification, increases of diastolic [Ca(2+)]i, intracellular Na(+) concentration ([Na(+)]i), and intracellular Mg(2+) concentration ([Mg(2+)]i), and a decrease of intracellular ATP concentration ([ATP]i); however, glycolytic ATP production partially compensated for the exhaustion of mitochondrial ATP supplies. In conclusion, the initial inhibition of Ca(2+) transients and waves resulted from suppression of ryanodine receptor SR Ca(2+) release channel activity by a decrease in [ATP], an increase of [Mg(2+)]i, and cytoplasmic acidification. The later stimulation resulted from reduced mitochondrial Ca(2+) buffering and cytosolic Na(+) and Ca(2+) accumulation, leading to enhanced Ca(2+)-induced Ca(2+) release and spontaneous Ca(2+) release in the form of Ca(2+) waves. ΔΨm depolarization and the ensuing consequences of mitochondrial uncoupling observed here (intracellular acidification, decrease of [ATP]i, increase of [Na(+)]i and [Mg(2+)]i, and Ca(2+) overload) are hallmarks of ischemia. These findings may therefore provide insight into the consequences of mitochondrial uncoupling for ion homeostasis, SR Ca(2+) release, and excitation-contraction coupling in ischemia at the cellular and subcellular level.
Collapse
Affiliation(s)
- Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | | | | | | |
Collapse
|
7
|
Effects of exogenous hydrogen sulphide on calcium signalling, background (TASK) K channel activity and mitochondrial function in chemoreceptor cells. Pflugers Arch 2012; 463:743-54. [PMID: 22419174 PMCID: PMC3323823 DOI: 10.1007/s00424-012-1089-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 12/24/2022]
Abstract
It has been proposed that endogenous H2S mediates oxygen sensing in chemoreceptors; this study investigates the mechanisms by which H2S excites carotid body type 1 cells. H2S caused a rapid reversible increase in intracellular calcium with EC50 ≈ 6 μM. This [Ca2+]i response was abolished in Ca-free Tyrode. In perforated patch current clamp recordings, H2S depolarised type 1 cells from −59 to −35 mV; this was accompanied by a robust increase in [Ca2+]i. Voltage clamping at the resting membrane potential abolished the H2S-induced rise in [Ca2+]i. H2S inhibited background K+ current in whole cell perforated patch and reduced background K+ channel activity in cell-attached patch recordings. It is concluded that H2S excites type 1 cells through the inhibition of background (TASK) potassium channels leading to membrane depolarisation and voltage-gated Ca2+ entry. These effects mimic those of hypoxia. H2S also inhibited mitochondrial function over a similar concentration range as assessed by NADH autofluorescence and measurement of intracellular magnesium (an index of decline in MgATP). Cyanide inhibited background K channels to a similar extent to H2S and prevented H2S exerting any further influence over channel activity. These data indicate that the effects of H2S on background K channels are a consequence of inhibition of oxidative phosphorylation. Whilst this does not preclude a role for endogenous H2S in oxygen sensing via the inhibition of cytochrome oxidase, the levels of H2S required raise questions as to the viability of such a mechanism.
Collapse
|
8
|
Kolisek M, Nestler A, Vormann J, Schweigel-Röntgen M. Human geneSLC41A1encodes for the Na+/Mg2+exchanger. Am J Physiol Cell Physiol 2012; 302:C318-26. [DOI: 10.1152/ajpcell.00289.2011] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Magnesium (Mg2+), the second most abundant divalent intracellular cation, is involved in the vast majority of intracellular processes, including the synthesis of nucleic acids, proteins, and energy metabolism. The concentration of intracellular free Mg2+([Mg2+]i) in mammalian cells is therefore tightly regulated to its optimum, mainly by an exchange of intracellular Mg2+for extracellular Na+. Despite the importance of this process for cellular Mg2+homeostasis, the gene(s) encoding for the functional Na+/Mg2+exchanger is (are) still unknown. Here, using the fluorescent probe mag-fura 2 to measure [Mg2+]ichanges, we examine Mg2+extrusion from hSLC41A1-overexpressing human embryonic kidney (HEK)-293 cells. A three- to fourfold elevation of [Mg2+]iwas accompanied by a five- to ninefold increase of Mg2+efflux. The latter was strictly dependent on extracellular Na+and reduced by 91% after complete replacement of Na+with N-methyl-d-glucamine. Imipramine and quinidine, known unspecific Na+/Mg2+exchanger inhibitors, led to a strong 88% to 100% inhibition of hSLC41A1-related Mg2+extrusion. In addition, our data show regulation of the transport activity via phosphorylation by cAMP-dependent protein kinase A. As these are the typical characteristics of a Na+/Mg2+exchanger, we conclude that the human SLC41A1 gene encodes for the Na+/Mg2+exchanger, the predominant Mg2+efflux system. Based on this finding, the analysis of Na+/Mg2+exchanger regulation and its involvement in the pathogenesis of diseases such as Parkinson's disease and hypertension at the molecular level should now be possible.
Collapse
Affiliation(s)
- Martin Kolisek
- Institute for Veterinary Physiology, Freie Universität Berlin, Berlin
| | - Axel Nestler
- Institute for Veterinary Physiology, Freie Universität Berlin, Berlin
| | | | - Monika Schweigel-Röntgen
- Research Unit Nutritional Physiology “Oskar Kellner,” Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
9
|
Leonelli M, Graciano M, Britto L. TRP channels, omega-3 fatty acids, and oxidative stress in neurodegeneration: from the cell membrane to intracellular cross-links. Braz J Med Biol Res 2011; 44:1088-96. [DOI: 10.1590/s0100-879x2011007500124] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
10
|
Dedkova EN, Blatter LA. Measuring mitochondrial function in intact cardiac myocytes. J Mol Cell Cardiol 2011; 52:48-61. [PMID: 21964191 DOI: 10.1016/j.yjmcc.2011.08.030] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/30/2011] [Accepted: 08/09/2011] [Indexed: 12/01/2022]
Abstract
Mitochondria are involved in cellular functions that go beyond the traditional role of these organelles as the power plants of the cell. Mitochondria have been implicated in several human diseases, including cardiac dysfunction, and play a role in the aging process. Many aspects of our knowledge of mitochondria stem from studies performed on the isolated organelle. Their relative inaccessibility imposes experimental difficulties to study mitochondria in their natural environment-the cytosol of intact cells-and has hampered a comprehensive understanding of the plethora of mitochondrial functions. Here we review currently available methods to study mitochondrial function in intact cardiomyocytes. These methods primarily use different flavors of fluorescent dyes and genetically encoded fluorescent proteins in conjunction with high-resolution imaging techniques. We review methods to study mitochondrial morphology, mitochondrial membrane potential, Ca(2+) and Na(+) signaling, mitochondrial pH regulation, redox state and ROS production, NO signaling, oxygen consumption, ATP generation and the activity of the mitochondrial permeability transition pore. Where appropriate we complement this review on intact myocytes with seminal studies that were performed on isolated mitochondria, permeabilized cells, and in whole hearts.
Collapse
Affiliation(s)
- Elena N Dedkova
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|
11
|
Singaravelu K, Nelson C, Bakowski D, de Brito OM, Ng SW, Di Capite J, Powell T, Scorrano L, Parekh AB. Mitofusin 2 regulates STIM1 migration from the Ca2+ store to the plasma membrane in cells with depolarized mitochondria. J Biol Chem 2011; 286:12189-201. [PMID: 21220420 DOI: 10.1074/jbc.m110.174029] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Store-operated Ca2+ channels in the plasma membrane (PM) are activated by the depletion of Ca2+ from the endoplasmic reticulum (ER) and constitute a widespread and highly conserved Ca2+ influx pathway. After store emptying, the ER Ca2+ sensor STIM1 forms multimers, which then migrate to ER-PM junctions where they activate the Ca2+ release-activated Ca2+ channel Orai1. Movement of an intracellular protein to such specialized sites where it gates an ion channel is without precedence, but the fundamental question of how STIM1 migrates remains unresolved. Here, we show that trafficking of STIM1 to ER-PM junctions and subsequent Ca2+ release-activated Ca2+ channel activity is impaired following mitochondrial depolarization. We identify the dynamin-related mitochondrial protein mitofusin 2, mutations of which causes the inherited neurodegenerative disease Charcot-Marie-Tooth IIa in humans, as an important component of this mechanism. Our results reveal a molecular mechanism whereby a mitochondrial fusion protein regulates protein trafficking across the endoplasmic reticulum and reveals a homeostatic mechanism whereby mitochondrial depolarization can inhibit store-operated Ca2+ entry, thereby reducing cellular Ca2+ overload.
Collapse
Affiliation(s)
- Karthika Singaravelu
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chinopoulos C, Zhang SF, Thomas B, Ten V, Starkov AA. Isolation and functional assessment of mitochondria from small amounts of mouse brain tissue. Methods Mol Biol 2011; 793:311-24. [PMID: 21913109 DOI: 10.1007/978-1-61779-328-8_20] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent discoveries have brought mitochondria functions in focus of the neuroscience research community and greatly stimulated the demand for approaches to study mitochondria dysfunction in neurodegenerative diseases. Many mouse disease models have been generated, but studying mitochondria isolated from individual mouse brain regions is a challenge because of small amount of the available brain tissue. Conventional techniques for isolation and purification of mitochondria from mouse brain subregions, such as ventral midbrain, hippocampus, or striatum, require pooling brain tissue from six to nine animals for a single mitochondrial preparation. Working with pooled tissue significantly decreases the quality of data because of the time required to dissect several brains. It also greatly increases the labor intensity and the cost of experiments as several animals are required per single data point. We describe a method for isolation of brain mitochondria from mouse striata or other 7-12 mg brain samples. The method utilizes a refrigerated table-top microtube centrifuge, and produces research grade quality mitochondria in amounts sufficient for performing multiple enzymatic and functional assays, thereby eliminating the necessity for pooling mouse brain tissue. We also include a method of measuring ADP-ATP exchange rate as a function of mitochondrial membrane potential (ΔΨm) in small amounts of isolated mitochondria, adapted to a plate reader format.
Collapse
|
13
|
Vais H, Foskett JK, Daniel Mak DO. Unitary Ca(2+) current through recombinant type 3 InsP(3) receptor channels under physiological ionic conditions. J Gen Physiol 2010; 136:687-700. [PMID: 21078871 PMCID: PMC2995152 DOI: 10.1085/jgp.201010513] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/21/2010] [Indexed: 11/20/2022] Open
Abstract
The ubiquitous inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) channel, localized primarily in the endoplasmic reticulum (ER) membrane, releases Ca(2+) into the cytoplasm upon binding InsP(3), generating and modulating intracellular Ca(2+) signals that regulate numerous physiological processes. Together with the number of channels activated and the open probability of the active channels, the size of the unitary Ca(2+) current (i(Ca)) passing through an open InsP(3)R channel determines the amount of Ca(2+) released from the ER store, and thus the amplitude and the spatial and temporal nature of Ca(2+) signals generated in response to extracellular stimuli. Despite its significance, i(Ca) for InsP(3)R channels in physiological ionic conditions has not been directly measured. Here, we report the first measurement of i(Ca) through an InsP(3)R channel in its native membrane environment under physiological ionic conditions. Nuclear patch clamp electrophysiology with rapid perfusion solution exchanges was used to study the conductance properties of recombinant homotetrameric rat type 3 InsP(3)R channels. Within physiological ranges of free Ca(2+) concentrations in the ER lumen ([Ca(2+)](ER)), free cytoplasmic [Ca(2+)] ([Ca(2+)](i)), and symmetric free [Mg(2+)] ([Mg(2+)](f)), the i(Ca)-[Ca(2+)](ER) relation was linear, with no detectable dependence on [Mg(2+)](f). i(Ca) was 0.15 +/- 0.01 pA for a filled ER store with 500 microM [Ca(2+)](ER). The i(Ca)-[Ca(2+)](ER) relation suggests that Ca(2+) released by an InsP(3)R channel raises [Ca(2+)](i) near the open channel to approximately 13-70 microM, depending on [Ca(2+)](ER). These measurements have implications for the activities of nearby InsP(3)-liganded InsP(3)R channels, and they confirm that Ca(2+) released by an open InsP(3)R channel is sufficient to activate neighboring channels at appropriate distances away, promoting Ca(2+)-induced Ca(2+) release.
Collapse
Affiliation(s)
- Horia Vais
- Department of Physiology and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - J. Kevin Foskett
- Department of Physiology and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Don-On Daniel Mak
- Department of Physiology and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
14
|
Dalal P, Romani A. Adenosine triphosphate depletion by cyanide results in a Na(+)-dependent Mg(2+) extrusion from liver cells. Metabolism 2010; 59:1663-71. [PMID: 20494376 PMCID: PMC2928872 DOI: 10.1016/j.metabol.2010.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 03/08/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
Abstract
Addition of NaCN to isolated hepatocytes results in a marked and rapid decrease in cellular adenosine triphosphate (ATP) content, and in the extrusion of a sizable amount of cellular Mg(2+). This extrusion starts after a 10-minute lag phase and reaches a maximum of 35 to 40 nmol Mg(2+) per milligram protein within 60 minutes from the addition of CN(-). A quantitatively similar Mg(2+) extrusion is also observed after the addition of the mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxy-phenylhydrazone but not that of the glycolysis inhibitor iodoacetate. The Mg(2+) extrusion is completely inhibited by the removal of extracellular Na(+) or the addition of imipramine, quinidine, or glibenclamide, whereas it persists after the removal of extracellular Ca(2+) or K(+), or the addition of amiloride. An acidic extracellular pH or the removal of extracellular HCO₃⁻ inhibits the cyanide-induced Mg(2+) extrusion by at least 80%. Taken together, these data suggest that the decrease in cellular adenosine triphosphate content removes a major Mg(2+) complexing agent from the hepatocyte and results in an extrusion of hepatic Mg(2+) exclusively through a Na(+)-dependent exchange mechanism modulated by acidic changes in extracellular pH.
Collapse
Affiliation(s)
| | - Andrea Romani
- To whom correspondence should be addressed: Dr. Andrea Romani, Department of Physiology and Biophysics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4970, USA, Phone : 216 3681625, Fax: 216-3683952,
| |
Collapse
|
15
|
Kawamata H, Starkov AA, Manfredi G, Chinopoulos C. A kinetic assay of mitochondrial ADP-ATP exchange rate in permeabilized cells. Anal Biochem 2010; 407:52-7. [PMID: 20691655 DOI: 10.1016/j.ab.2010.07.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/28/2010] [Accepted: 07/29/2010] [Indexed: 11/27/2022]
Abstract
We previously described a method to measure ADP-ATP exchange rates in isolated mitochondria by recording the changes in free extramitochondrial [Mg(2+)] reported by an Mg(2+)-sensitive fluorescent indicator, exploiting the differential affinity of ADP and ATP to Mg(2+). In the current article, we describe a modification of this method suited for following ADP-ATP exchange rates in environments with competing reactions that interconvert adenine nucleotides such as in permeabilized cells that harbor phosphorylases and kinases, ion pumps exhibiting substantial ATPase activity, and myosin ATPase activity. Here we report that the addition of BeF(3)(-) and sodium orthovanadate (Na(3)VO(4)) to medium containing digitonin-permeabilized cells inhibits all ADP-ATP-using reactions except the adenine nucleotide translocase (ANT)-mediated mitochondrial ADP-ATP exchange. An advantage of this assay is that mitochondria that may have been also permeabilized by digitonin do not contribute to ATP consumption by the exposed F(1)F(o)-ATPase due to its sensitivity to BeF(3)(-) and Na(3)VO(4). With this assay, ADP-ATP exchange rate mediated by the ANT in permeabilized cells is measured for the entire range of mitochondrial membrane potential titrated by stepwise additions of an uncoupler and expressed as a function of citrate synthase activity per total amount of protein.
Collapse
Affiliation(s)
- Hibiki Kawamata
- Weill Medical College, Cornell University, New York, NY 10065, USA
| | | | | | | |
Collapse
|
16
|
Moon TC, St Laurent CD, Morris KE, Marcet C, Yoshimura T, Sekar Y, Befus AD. Advances in mast cell biology: new understanding of heterogeneity and function. Mucosal Immunol 2010; 3:111-28. [PMID: 20043008 DOI: 10.1038/mi.2009.136] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mast cells are classically viewed as effector cells of IgE-mediated allergic diseases. However, over the last decade our understanding has been enriched about their roles in host defense, innate and adaptive immune responses, and in homeostatic responses, angiogenesis, wound healing, tissue remodeling, and immunoregulation. Despite impressive progress, there are large gaps in our understanding of their phenotypic heterogeneity, regulatory mechanisms involved, and functional significance. This review summarizes our knowledge of mast cells in innate and acquired immunity, allergic inflammation and tissue homeostasis, as well as some of the regulatory mechanisms that control mast cell development, phenotypic determination, and function, particularly in the context of mucosal surfaces.
Collapse
Affiliation(s)
- T C Moon
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Pavlov E, Aschar-Sobbi R, Campanella M, Turner RJ, Gómez-García MR, Abramov AY. Inorganic polyphosphate and energy metabolism in mammalian cells. J Biol Chem 2010; 285:9420-9428. [PMID: 20124409 DOI: 10.1074/jbc.m109.013011] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inorganic polyphosphate (poly P) is a polymer made from as few as 10 to several hundred phosphate molecules linked by phosphoanhydride bonds similar to ATP. Poly P is ubiquitous in all mammalian organisms, where it plays multiple physiological roles. The metabolism of poly P in mammalian organisms is not well understood. We have examined the mechanism of poly P production and the role of this polymer in cell energy metabolism. Poly P levels in mitochondria and intact cells were estimated using a fluorescent molecular probe, 4',6-diamidino-2-phenylindole. Poly P levels were dependent on the metabolic state of the mitochondria. Poly P levels were increased by substrates of respiration and in turn reduced by mitochondrial inhibitor (rotenone) or an uncoupler (carbonyl cyanide p-trifluoromethoxyphenylhydrazone). Oligomycin, an inhibitor of mitochondrial ATP-synthase, blocked the production of poly P. Enzymatic depletion of poly P from cells significantly altered the rate of ATP metabolism. We propose the existence of a feedback mechanism where poly P production and cell energy metabolism regulate each other.
Collapse
Affiliation(s)
- Evgeny Pavlov
- Departments of Physiology and Biophysics, Calgary, Alberta T2N 4N1, Canada
| | | | - Michelangelo Campanella
- Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, United Kingdom; Consortium for Mitochondrial Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Raymond J Turner
- Biological Sciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - María R Gómez-García
- Department of Plant Biology, Carnegie Institution for Science, Stanford University, Stanford, California 94305
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom.
| |
Collapse
|
18
|
Metabolic inhibition strongly inhibits Na+-dependent Mg2+ efflux in rat ventricular myocytes. Biophys J 2009; 96:4941-50. [PMID: 19527653 DOI: 10.1016/j.bpj.2009.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 01/22/2009] [Accepted: 02/02/2009] [Indexed: 10/20/2022] Open
Abstract
We measured intracellular Mg2+ concentration ([Mg2+]i) in rat ventricular myocytes using the fluorescent indicator furaptra (25 degrees C). In normally energized cells loaded with Mg2+, the introduction of extracellular Na+ induced a rapid decrease in [Mg2+]i: the initial rate of decrease in [Mg2+]i (initial Delta[Mg2+]i/Deltat) is thought to represent the rate of Na+-dependent Mg2+ efflux (putative Na+/Mg2+ exchange). To determine whether Mg2+ efflux depends directly on energy derived from cellular metabolism, in addition to the transmembrane Na+ gradient, we estimated the initial Delta[Mg2+]i/Deltat after metabolic inhibition. In the absence of extracellular Na+ and Ca2+, treatment of the cells with 1 microM carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone, an uncoupler of mitochondria, caused a large increase in [Mg2+]i from approximately 0.9 mM to approximately 2.5 mM in a period of 5-8 min (probably because of breakdown of MgATP and release of Mg2+) and cell shortening to approximately 50% of the initial length (probably because of formation of rigor cross-bridges). Similar increases in [Mg2+]i and cell shortening were observed after application of 5 mM potassium cyanide (KCN) (an inhibitor of respiration) for > or = 90 min. The initial Delta[Mg2+]i/Deltat was diminished, on average, by 90% in carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone-treated cells and 92% in KCN-treated cells. When the cells were treated with 5 mM KCN for shorter times (59-85 min), a significant decrease in the initial Delta[Mg2+]i/Deltat (on average by 59%) was observed with only a slight shortening of the cell length. Intracellular Na+ concentration ([Na+]i) estimated with a Na+ indicator sodium-binding benzofuran isophthalate was, on average, 5.0-10.5 mM during the time required for the initial Delta[Mg2+]i/Deltat measurements, which is well below the [Na+]i level for half inhibition of the Mg2+ efflux (approximately 40 mM). Normalization of intracellular pH using 10 microM nigericin, a H+ ionophore, did not reverse the inhibition of the Mg2+ efflux. From these results, it seems likely that a decrease in ATP below the threshold of rigor cross-bridge formation (approximately 0.4 mM estimated indirectly in the this study), rather than elevation of [Na+]i or intracellular acidosis, inhibits the Mg2+ efflux, suggesting the absolute necessity of ATP for the Na+/Mg2+ exchange.
Collapse
|
19
|
Abramov AY, Duchen MR. Impaired mitochondrial bioenergetics determines glutamate-induced delayed calcium deregulation in neurons. Biochim Biophys Acta Gen Subj 2009; 1800:297-304. [PMID: 19695307 DOI: 10.1016/j.bbagen.2009.08.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 08/03/2009] [Accepted: 08/06/2009] [Indexed: 01/15/2023]
Abstract
BACKGROUND Accumulation of glutamate in ischaemic CNS is thought to amplify neuronal death during a stroke. Exposure of neurons to toxic glutamate concentrations causes an initial transient increase in [Ca(2+)](c) followed by a delayed increase commonly termed delayed [Ca(2+)](c) deregulation (DCD). METHODS We have used fluorescence imaging techniques to explore differences in glutamate-induced DCD in rat hippocampal neurons after different periods of time in culture (days in vitro; DIV). RESULTS The amplitude of both the initial [Ca(2+)](c) signal and the number of cells showing DCD in response to glutamate increased with the duration of culture. The capacity of mitochondria to accumulate calcium in permeabilised neurons decreased with time in culture, although mitochondrial membrane potential at rest did not change. The rate of ATP consumption, measured as an increase in [Mg(2+)](c) following inhibition of ATP synthesis, was lower in 'young' neurons. The sensitivity of 'young' neurons to glutamate-induced DCD approximated to that of 'old' neurons when mitochondrial function was impaired using either FCCP or oligomycin. Further, following such treatment, cells showed a DCD-like response to increased [Ca(2+)](c) induced by KCl induced depolarisation which was never otherwise seen. GENERAL SIGNIFICANCE Thus, changes in cellular bioenergetics dictate the onset of DCD in response to glutamate.
Collapse
Affiliation(s)
- Andrey Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3 BG, UK.
| | | |
Collapse
|
20
|
Kawahara K, Sato R, Iwabuchi S, Matsuyama D. Rhythmic Fluctuations in the Concentration of Intracellular Mg2+in Association with Spontaneous Rhythmic Contraction in Cultured Cardiac Myocytes. Chronobiol Int 2009; 25:868-81. [DOI: 10.1080/07420520802536387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Abstract
The intestine is not only critical for the absorption of nutrients, but also interacts with a complex external milieu. Most foreign antigens enter the body through the digestive tract. Dietary amino acids are major fuels for the small intestinal mucosa, as well as important substrates for syntheses of intestinal proteins, nitric oxide, polyamines, and other products with enormous biological importance. Recent studies support potential therapeutic roles for specific amino acids (including glutamine, glutamate, arginine, glycine, lysine, threonine, and sulfur-containing amino acids) in gut-related diseases. Results of these new lines of work indicate trophic and cytoprotective effects of amino acids on gut integrity, growth, and health in animals and humans.
Collapse
|
22
|
Iancu RV, Ramamurthy G, Warrier S, Nikolaev VO, Lohse MJ, Jones SW, Harvey RD. Cytoplasmic cAMP concentrations in intact cardiac myocytes. Am J Physiol Cell Physiol 2008; 295:C414-22. [PMID: 18550706 DOI: 10.1152/ajpcell.00038.2008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In cardiac myocytes there is evidence that activation of some receptors can regulate protein kinase A (PKA)-dependent responses by stimulating cAMP production that is limited to discrete intracellular domains. We previously developed a computational model of compartmentalized cAMP signaling to investigate the feasibility of this idea. The model was able to reproduce experimental results demonstrating that both beta(1)-adrenergic and M(2) muscarinic receptor-mediated cAMP changes occur in microdomains associated with PKA signaling. However, the model also suggested that the cAMP concentration throughout most of the cell could be significantly higher than that found in PKA-signaling domains. In the present study we tested this counterintuitive hypothesis using a freely diffusible fluorescence resonance energy transfer-based biosensor constructed from the type 2 exchange protein activated by cAMP (Epac2-camps). It was determined that in adult ventricular myocytes the basal cAMP concentration detected by the probe is approximately 1.2 muM, which is high enough to maximally activate PKA. Furthermore, the probe detected responses produced by both beta(1) and M(2) receptor activation. Modeling suggests that responses detected by Epac2-camps mainly reflect what is happening in a bulk cytosolic compartment with little contribution from microdomains where PKA signaling occurs. These results support the conclusion that even though beta(1) and M(2) receptor activation can produce global changes in cAMP, compartmentation plays an important role by maintaining microdomains where cAMP levels are significantly below that found throughout most of the cell. This allows receptor stimulation to regulate cAMP activity over concentration ranges appropriate for modulating both higher (e.g., PKA) and lower affinity (e.g., Epac) effectors.
Collapse
Affiliation(s)
- Radu V Iancu
- Dept. of Physiology and Biophysics, Case Western Reserve Univ., 10900 Euclid Ave., Cleveland, OH 44106-4970, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Firth AL, Yuill KH, Smirnov SV. Mitochondria-dependent regulation of Kv currents in rat pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2008; 295:L61-70. [PMID: 18469114 PMCID: PMC2494784 DOI: 10.1152/ajplung.90243.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Voltage-gated K+ (Kv) channels are important in the regulation of pulmonary vascular function having both physiological and pathophysiological implications. The pulmonary vasculature is essential for reoxygenation of the blood, supplying oxygen for cellular respiration. Mitochondria have been proposed as the major oxygen-sensing organelles in the pulmonary vasculature. Using electrophysiological techniques and immunofluorescence, an interaction of the mitochondria with Kv channels was investigated. Inhibitors, blocking the mitochondrial electron transport chain at different complexes, were shown to have a dual effect on Kv currents in freshly isolated rat pulmonary arterial smooth muscle cells (PASMCs). These dual effects comprised an enhancement of Kv current in a negative potential range (manifested as a 5- to 14-mV shift in the Kv activation to more negative membrane voltages) with a decrease in current amplitude at positive potentials. Such effects were most prominent as a result of inhibition of Complex III by antimycin A. Investigation of the mechanism of antimycin A-mediated effects on Kv channel currents (IKv) revealed the presence of a mitochondria-mediated Mg2+ and ATP-dependent regulation of Kv channels in PASMCs, which exists in addition to that currently proposed to be caused by changes in intracellular reactive oxygen species.
Collapse
Affiliation(s)
- Amy L Firth
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, United Kingdom
| | | | | |
Collapse
|
24
|
Henrich M, Buckler KJ. Effects of anoxia, aglycemia, and acidosis on cytosolic Mg2+, ATP, and pH in rat sensory neurons. Am J Physiol Cell Physiol 2007; 294:C280-94. [PMID: 17977942 DOI: 10.1152/ajpcell.00345.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sensory neurons can detect ischemia and transmit pain from various organs. Whereas the primary stimulus in ischemia is assumed to be acidosis, little is known about how the inevitable metabolic challenge influences neuron function. In this study we have investigated the effects of anoxia, aglycemia, and acidosis upon intracellular Mg(2+) concentration [Mg(2+)](i) and intracellular pH (pH(i)) in isolated sensory neurons. Anoxia, anoxic aglycemia, and acidosis all caused a rise in [Mg(2+)](i) and a fall in pH(i). The rise in [Mg(2+)](i) in response to acidosis appears to be due to H(+) competing for intracellular Mg(2+) binding sites. The effects of anoxia and aglycemia were mimicked by metabolic inhibition and, in a dorsal root ganglia (DRG)-derived cell line, the rise in [Mg(2+)](i) during metabolic blockade was closely correlated with fall in intracellular ATP concentration ([ATP](i)). Increase in [Mg(2+)](i) during anoxia and aglycemia were therefore assumed to be due to MgATP hydrolysis. Even brief periods of anoxia (<3 min) resulted in rapid internal acidosis and a rise in [Mg(2+)](i) equivalent to a decline in MgATP levels of 15-20%. With more prolonged anoxia (20 min) MgATP depletion is estimated to be around 40%. With anoxic aglycemia, the [Mg(2+)](i) rise occurs in two phases: the first beginning almost immediately and the second after an 8- to 10-min delay. Within 20 min of anoxic aglycemia [Mg(2+)](i) was comparable to that observed following complete metabolic inhibition (dinitrophenol + 2-deoxyglucose, DNP + 2-DOG) indicating a near total loss of MgATP. The consequences of these events therefore need to be considered in the context of sensory neuron function in ischemia.
Collapse
Affiliation(s)
- Michael Henrich
- Department of Physiology, Anatomy and Genetics, Oxford OX1 3PT, United Kingdom
| | | |
Collapse
|
25
|
Swindle EJ, Metcalfe DD. The role of reactive oxygen species and nitric oxide in mast cell-dependent inflammatory processes. Immunol Rev 2007; 217:186-205. [PMID: 17498060 DOI: 10.1111/j.1600-065x.2007.00513.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen oxide species (RNOS), including nitric oxide, are produced in cells by a variety of enzymatic and non-enzymatic mechanisms. At high levels, both types of oxidants are used to kill ingested organisms within phagocytes. At low levels, RNOS may diffuse outside cells where they impact the vasculature and nervous system. Recent evidence suggests that low levels of ROS produced within cells are involved in cell signaling. Along with these physiological roles, many pathological conditions exist where detrimental high-level ROS and RNOS are produced. Many situations in which ROS/RNOS are associated also involve mast cell activation. In innate immunity, such mast cells are involved in the immune response toward pathogens. In acquired immunity, activation of mast cells by cross-linking of receptor-bound immunoglobulin E causes the release of mediators involved in the allergic inflammatory response. In this review, we describe the principle pathways for ROS and RNOS generation by cells and discuss the existence of such pathways in mast cells. In addition, we examine the evidence for a functional role for ROS and RNOS in mast cell secretory responses and discuss evidence for a direct relationship between ROS, RNOS, and mast cells in mast cell-dependent inflammatory conditions.
Collapse
Affiliation(s)
- Emily J Swindle
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-6961, USA.
| | | |
Collapse
|
26
|
Abramov AY, Scorziello A, Duchen MR. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 2007; 27:1129-38. [PMID: 17267568 PMCID: PMC6673180 DOI: 10.1523/jneurosci.4468-06.2007] [Citation(s) in RCA: 485] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Ischemia is a major cause of brain damage, and patient management is complicated by the paradoxical injury that results from reoxygenation. We have now explored the generation of reactive oxygen species (ROS) in hippocampal and cortical neurons in culture in response to oxygen and glucose deprivation or metabolic inhibition and reoxygenation. Fluorescence microscopy was used to measure the rate of ROS generation using hydroethidine, dicarboxyfluorescein diacetate, or MitoSOX. ROS generation was correlated with changing mitochondrial potential (rhodamine 123), [Ca2+]c (fluo-4, fura-2, or Indo-1), or ATP consumption, indicated by increased [Mg2+]c. We found that three distinct mechanisms contribute to neuronal injury by generating ROS and oxidative stress, each operating at a different stage of ischemia and reperfusion. In response to hypoxia, mitochondria generate an initial burst of ROS, which is curtailed once mitochondria depolarize or prevented by previous depolarization with uncoupler. A second phase of ROS generation that followed after a delay was blocked by the xanthine oxidase (XO) inhibitor oxypurinol. This phase correlated with a rise in [Mg2+]c, suggesting XO activation by accumulating products of ATP consumption. A third phase of ROS generation appeared at reoxygenation. This was blocked by NADPH oxidase inhibitors and was absent in cells from gp91(phox-/-) knock-out mice. It was Ca2+ dependent, suggesting activation by increased [Ca2+]c during anoxia, itself partly attributable to glutamate release. Inhibition of either the NADPH oxidase or XO was significantly neuroprotective. Thus, oxidative stress contributes to cell death over and above the injury attributable to energy deprivation.
Collapse
Affiliation(s)
- Andrey Y Abramov
- Department of Physiology, University College London, London WC1E 6BT, United Kingdom.
| | | | | |
Collapse
|
27
|
Videla S, Vilaseca J, Medina C, Mourelle M, Guarner F, Salas A, Malagelada JR. Modulatory effect of nitric oxide on mast cells during induction of dextran sulfate sodium colitis. Dig Dis Sci 2007; 52:45-51. [PMID: 17160477 DOI: 10.1007/s10620-006-9409-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 04/28/2006] [Indexed: 12/27/2022]
Abstract
Nitric oxide (NO) is implicated in the pathophysiology of intestinal inflammation. Intestinal mast cells may amplify inflammatory response and mucosal injury in inflammatory bowel disease. Our aim was to examine the role of NO and intestinal mast cells by investigating the effects of NO synthase (NOS) inhibitors and a mast cell stabilizer during induction of dextran sulfate sodium (DSS) colitis. Colitis was induced by 4% DSS in drinking water, in rats pretreated with L-NAME or aminoguanidine. In another set of experiments, we investigated the effect of ketotifen in this setting. Inhibition of NO by L-NAME worsened DSS-induced inflammation, however, aminoguanidine had no effect. On the other hand, ketotifen abolished the deleterious effects of L-NAME on colonic inflammation, suggesting that hyperactivation of mast cells by NOS inhibition amplifies mucosal injury induced by DSS. Our results suggest that constitutive isoforms of NOS prevent mast cell activation.
Collapse
Affiliation(s)
- Sebastian Videla
- Digestive System Research Unit, Hospital Vall d'Hebron, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Mast cells (MCs) are major effector cells of immunoglobulin E (IgE)-mediated allergic inflammation. However, it has become increasingly clear that they also play important roles in diverse physiological and pathological processes. Recent advances have focused on the importance of MCs in both innate and adaptive immune responses and have fostered studies of MCs beyond the myopic focus on allergic reactions. MCs possess a variety of surface receptors and may be activated by inflammatory mediators, IgE, IgG, light chains, complement fragments, proteases, hormones, neuropeptides, and microbial products. Following activation, they produce a plethora of pro-inflammatory mediators and participate in inflammatory reactions in many organs. This review focuses on the role of MCs in inflammatory reactions in mucosal surfaces with particular emphasis on their role in respiratory and gastrointestinal inflammatory conditions.
Collapse
Affiliation(s)
- Harissios Vliagoftis
- Department of Medicine, Pulmonary Research Group, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
29
|
Almulla HA, Bush PG, Steele MG, Flatman PW, Ellis D. Sodium-dependent recovery of ionised magnesium concentration following magnesium load in rat heart myocytes. Pflugers Arch 2005; 451:657-67. [PMID: 16133259 DOI: 10.1007/s00424-005-1501-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 07/21/2005] [Indexed: 11/24/2022]
Abstract
Our objectives were to investigate regulation of intracellular ionised Mg2+ concentration ([fMg2+]i) in cardiac muscle and cardiac Na+/Mg2+ antiport stoichiometry. [fMg2+]i was measured at 37 degrees C in isolated rat ventricular myocytes with mag-fura-2. Superfusion of myocytes with Na+ and Ca2+ free solutions containing 30 mM Mg2+ for 15 min more than doubled [fMg2+]i from its basal level (0.75 mM). Re-addition of Na+ caused [fMg2+]i to fall exponentially with time to basal level, the rate increasing linearly with [Na+]. Log(recovery rate) increased linearly with log([Na+]), the slope of 1.06 (95% confidence limits, 0.94-1.17) suggesting one Na+ ion is exchanged for each Mg2+. [fMg2+]i recovery was complete even if the membrane potential was depolarised to 0 mV or if superfusate [Mg2+] was increased to 3 mM. Recovery was rapid in normal Tyrode (0.3 min(-1)) with a Q10 of 2.2. It was completely inhibited by 200 microM imipramine but was unaffected by 20 microM KB-R7943 or 1 microM SEA0400, suggesting the Na+ /Ca2+ antiporter is not involved. Membrane depolarisation by increasing superfusate [K+] to 70 mM, or voltage clamp to 0 mV, increased recovery rate in Na+ containing solutions more than threefold. We conclude [fMg2+]i recovery is by Mg2+ efflux on a 1 Na+:1 Mg2+ antiport.
Collapse
Affiliation(s)
- Hasan A Almulla
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, EH8 9XD, Scotland, UK
| | | | | | | | | |
Collapse
|
30
|
Qu XW, Thaete LG, Rozenfeld RA, Zhu Y, De Plaen IG, Caplan MS, Hsueh W. Tetrahydrobiopterin prevents platelet-activating factor-induced intestinal hypoperfusion and necrosis: Role of neuronal nitric oxide synthase. Crit Care Med 2005; 33:1050-6. [PMID: 15891335 PMCID: PMC1568387 DOI: 10.1097/01.ccm.0000162908.14887.36] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE We reported previously that neuronal nitric oxide synthase (nNOS) is the predominant NOS in rat small intestine and is down-regulated by platelet-activating factor (PAF). The severity of the bowel injury induced by PAF is inversely related to its suppressing effect on nNOS. Here, we investigated whether intestinal perfusion is regulated by nNOS and whether tetrahydrobiopterin, a co-factor and stabilizer of nNOS, reverses PAF-induced intestinal hypoperfusion and injury. SETTING Animal laboratory. DESIGN We first examined nNOS regulation of splanchnic blood flow by measuring the perfusion of the heart, lung, ileum, and kidney in rats after a nNOS inhibitor. We then examined the protective effect of tetrahydrobiopterin on PAF-induced bowel injury, mesenteric hypoperfusion, and systemic inflammation. SUBJECTS Adult male Sprague-Dawley rats. INTERVENTION In part 1 of the experiment, rats were given 7-nitroindazole (a specific nNOS inhibitor, 50 mg.kg.day). In part 2 of the experiment, rats were treated with tetrahydrobiopterin (20 mg/kg) 5 mins before and 30 mins after PAF challenge (2.2 microg/kg, intravenously) MEASUREMENTS Perfusion of the heart, lung, ileum, and kidney was measured at 1 and 4 days after 7-nitroindazole, using fluorescent microspheres. Intestinal injury and inflammation (myeloperoxidase content), blood perfusion, calcium dependent-NOS activity, and systemic inflammation (hypotension and hematocrit increase) were assessed 1 hr after PAF with and without tetrahydrobiopterin treatment. RESULTS In part 1 of the experiment, 7-nitroindazole induced a long-lasting reduction of blood perfusion and inducible NOS expression selectively in the ileum but not in nonsplanchnic organs such as heart, lungs, and kidneys. In part 2, tetrahydrobiopterin protected against PAF-induced intestinal necrosis, hypoperfusion, neutrophil influx, and NOS suppression. It also reversed hypotension and hemoconcentration. Sepiapterin (2 mg/kg, stable tetrahydrobiopterin precursor) also attenuated PAF-induced intestinal injury. CONCLUSIONS We conclude that nNOS selectively regulates intestinal perfusion. Tetrahydrobiopterin prevents PAF-induced intestinal injury, probably by stabilizing nNOS and maintaining intestinal perfusion.
Collapse
Affiliation(s)
- Xiao-Wu Qu
- Department of Pathology, Children's Memorial Hospital, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Bove M, Vieth M, Casselbrant A, Ny L, Lundell L, Ruth M. Acid challenge to the esophageal mucosa: effects on local nitric oxide formation and its relation to epithelial functions. Dig Dis Sci 2005; 50:640-8. [PMID: 15844695 DOI: 10.1007/s10620-005-2550-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
To evaluate the effect of esophageal acid exposure on epithelial function, transmucosal potential, histopathological markers of acute tissue damage, and local nitric oxide production were examined in healthy volunteers treated with proton pump inhibitors (group I), patients with treated reflux disease (group II), and patients with untreated erosive reflux disease (group III). The participants were randomized to esophageal perfusion with either saline or HCl. Denominators of acute acid exposure were balloon cells in superficial layers and superficial densification. The nitric oxide concentrations in groups I to III increased from < 1, 10.0+/-10.0, and 20.6+/-19.9 ppb, respectively, to 300+/-80, 1360+/-1080, and 920+/-700 ppb after HCl infusion (P < 0.001). Inducible nitric oxide synthase was consistently expressed in the epithelium. Blood flow was lower among reflux patients but did not correlate with acid exposure or nitric oxide. Nitric oxide is formed following acid perfusion and predominantly in gastroesophageal reflux disease.
Collapse
Affiliation(s)
- Mogens Bove
- Department of Otolaryngology, NAL, Trollhättan, Sweden.
| | | | | | | | | | | |
Collapse
|
32
|
Korge P, Honda HM, Weiss JN. K+-dependent regulation of matrix volume improves mitochondrial function under conditions mimicking ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2005; 289:H66-77. [PMID: 15764674 DOI: 10.1152/ajpheart.01296.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To delineate the role of mitochondrial K+ fluxes in cardioprotection, we investigated the effect of extramitochondrial K+ on the ability of mitochondria to support membrane potential (DeltaPsi), regulate matrix volume, consume oxygen, and phosphorylate ADP under conditions mimicking key elements of ischemia-reperfusion. Isolated energized mitochondria responded to ADP addition with depolarization, increased O2 consumption, and matrix shrinkage. The time required for full recovery of DeltaPsi, signaling the completion of ADP phosphorylation, was used to evaluate the rate of ATP synthesis during repeated ADP pulses. In mitochondria with a decreased ability to support DeltaPsi, the rate of ADP phosphorylation was significantly improved by extramitochondrial K+ > Na+ > Li+, especially at higher buffer osmolarity, which promotes matrix shrinkage. K+-induced improvement in DeltaPsi recovery after ADP pulses was accompanied by more rapid and complete matrix volume recovery and enhanced O2 consumption. Manipulations expected to affect matrix swelling by regulating K+ fluxes or water distribution indicate that matrix volume regulation by external factors becomes increasingly important in mitochondria with decreased ability to support DeltaPsi in the face of a high ADP load. Under these conditions, opening of K+ influx pathways improved mitochondrial function and delayed failure. This may be an important factor in the mechanism of diaxozide-induced cardioprotection.
Collapse
Affiliation(s)
- Paavo Korge
- Cardiovascular Research Laboratory, 3645 MRL Bldg., 675 Charles Young Dr. S., David Geffen School of Medicine, Univ. of California, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
33
|
Duran B. The effects of long-term total parenteral nutrition on gut mucosal immunity in children with short bowel syndrome: a systematic review. BMC Nurs 2005; 4:2. [PMID: 15686591 PMCID: PMC549542 DOI: 10.1186/1472-6955-4-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 02/01/2005] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND: Short bowel syndrome (SBS) is defined as the malabsorptive state that often follows massive resection of the small intestine. Most cases originate in the newborn period and result from congenital anomalies. It is associated with a high morbidity, is potentially lethal and often requires months, sometimes years, in the hospital and home on total parenteral nutrition (TPN). Long-term survival without parenteral nutrition depends upon establishing enteral nutrition and the process of intestinal adaptation through which the remaining small bowel gradually increases its absorptive capacity. The purpose of this article is to perform a descriptive systematic review of the published articles on the effects of TPN on the intestinal immune system investigating whether long-term TPN induces bacterial translocation, decreases secretory immunoglobulin A (S-IgA), impairs intestinal immunity, and changes mucosal architecture in children with SBS. METHODS: The databases of OVID, such as MEDLINE and CINAHL, Cochran Library, and Evidence-Based Medicine were searched for articles published from 1990 to 2001. Search terms were total parenteral nutrition, children, bacterial translocation, small bowel syndrome, short gut syndrome, intestinal immunity, gut permeability, sepsis, hyperglycemia, immunonutrition, glutamine, enteral tube feeding, and systematic reviews. The goal was to include all clinical studies conducted in children directly addressing the effects of TPN on gut immunity. RESULTS: A total of 13 studies were identified. These 13 studies included a total of 414 infants and children between the ages approximately 4 months to 17 years old, and 16 healthy adults as controls; and they varied in design and were conducted in several disciplines. The results were integrated into common themes. Five themes were identified: 1) sepsis, 2) impaired immune functions: In vitro studies, 3) mortality, 4) villous atrophy, 5) duration of dependency on TPN after bowel resection. CONCLUSION: Based on this exhaustive literature review, there is no direct evidence suggesting that TPN promotes bacterial overgrowth, impairs neutrophil functions, inhibits blood's bactericidal effect, causes villous atrophy, or causes to death in human model.The hypothesis relating negative effects of TPN on gut immunity remains attractive, but unproven. Enteral nutrition is cheaper, but no safer than TPN. Based on the current evidence, TPN seems to be safe and a life saving solution.
Collapse
Affiliation(s)
- Beyhan Duran
- School of Nursing, University of Connecticut, Storrs, Connecticut, USA.
| |
Collapse
|
34
|
Kolios G, Valatas V, Ward SG. Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle. Immunology 2005; 113:427-37. [PMID: 15554920 PMCID: PMC1782592 DOI: 10.1111/j.1365-2567.2004.01984.x] [Citation(s) in RCA: 380] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In recent years, nitric oxide (NO), a gas previously considered to be a potentially toxic chemical, has been established as a diffusible universal messenger that mediates cell-cell communication throughout the body. Constitutive and inducible NO production regulate numerous essential functions of the gastrointestinal mucosa, such as maintenance of adequate perfusion, regulation of microvascular and epithelial permeability, and regulation of the immune response. Up-regulation of the production of NO via expression of inducible nitric oxide synthase (iNOS) represents part of a prompt intestinal antibacterial response; however, NO has also been associated with the initiation and maintenance of inflammation in human inflammatory bowel disease (IBD). Recent studies on animal models of experimental IBD have shown that constitutive and inducible NO production seems to be beneficial during acute colitis, but sustained up-regulation of NO is detrimental. This fact is also supported by studies on mice genetically deficient in various NOS isoforms. However, the mechanism by which NO proceeds from being an indispensable homeostatic regulator to a harmful destructor remains unknown. Furthermore, extrapolation of data from animal colitis models to human IBD is questionable. The purpose of this review is to update our knowledge about the role of this universal mediator and the enzymes that generate it in the pathogenesis of IBD.
Collapse
Affiliation(s)
- George Kolios
- Department of Gastroenterology, Faculty of Medicine, University of Crete, Heraklion, Greece.
| | | | | |
Collapse
|
35
|
Davis BJ, Flanagan BF, Gilfillan AM, Metcalfe DD, Coleman JW. Nitric Oxide Inhibits IgE-Dependent Cytokine Production and Fos and Jun Activation in Mast Cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:6914-20. [PMID: 15557187 DOI: 10.4049/jimmunol.173.11.6914] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NO is a cell-derived radical reported to inhibit mast cell degranulation and subsequent allergic inflammation, although whether its action is nonspecific or occurs via specific molecular mechanisms remains unknown. To examine this question, we set out to determine whether NO inhibits mast cell cytokine production, and, if so, whether it also alters FcepsilonRI-dependent signal transduction. As hypothesized, the radical inhibited IgE/Ag-induced IL-4, IL-6, and TNF production. Although NO did not influence phosphorylated JNK, p38 MAPK, or p44/42 MAPK, it did inhibit phosphorylation of phospholipase Cgamma1 and the AP-1 transcription factor protein c-Jun, but not NF-kappaB or CREB. NO further completely abrogated IgE/Ag-induced DNA-binding activity of the nuclear AP-1 proteins Fos and Jun. These results show that NO is capable of inhibiting FcepsilonRI-dependent mast cell cytokine production at the level of gene regulation, and suggest too that NO may contribute to resolution of allergic inflammation.
Collapse
Affiliation(s)
- Beverley J Davis
- Department of, Pharmacology, University of Liverpool, United Kingdom
| | | | | | | | | |
Collapse
|
36
|
Ding HL, Zhu HF, Dong JW, Zhu WZ, Zhou ZN. Intermittent hypoxia protects the rat heart against ischemia/reperfusion injury by activating protein kinase C. Life Sci 2004; 75:2587-603. [PMID: 15363663 DOI: 10.1016/j.lfs.2004.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 07/21/2004] [Indexed: 11/15/2022]
Abstract
The aim of this study was to investigate whether and how protein kinase C (PKC) was involved in the protection afforded by intermittent hypoxia (IH) and the subcellular distribution of different PKC isozymes in rat left ventricle. Post-ischemic recovery of left ventricular developed pressure and +/-dP/dtmax in IH hearts were higher than those of normoxic hearts. Chelerythrine (CHE, 5 microM), a PKC antagonist, significantly inhibited the protective effects of IH, but had no influence on normoxic hearts. CHE significantly reduced the effect of IH on the time to maximal contracture (Tmc), but had no significant effect on the amplitude of maximal contracture (Amc) in IH group. In isolated normoxic cardiomyocytes, [Ca(2+)](i), measured as arbitrary units of fluorescence ratio (340 nm/380 nm) of fura-2, gradually increased during 20 min simulated ischemia and kept at high level during 30 min reperfusion. However, [Ca(2+)](i) kept at normal level during simulated ischemia and reperfusion in isolated IH cardiomyocytes. In normoxic myocytes, [Na(+)](i), indicated as actual concentration undergone calibration, gradually increased during 20 min simulated ischemia and quickly declined to almost the same level as that of pre-ischemia during 30 min simulated reperfusion. However, in IH myocytes, [Na(+)](i) increased to a level lower than the corresponding of normoxic myocytes during simulated ischemia and gradually reduced to the similar level as that of normoxic myocytes after simulated reperfusion. 5 microM CHE greatly increased the levels of [Ca(2+)](i) and [Na(+)](i) during ischemia and reperfusion in normoxic and IH myocytes. In addition, we demonstrated that IH up-regulated the baseline protein expression of particulate fraction of PKC-alpha, epsilon, delta isozymes. There is no significant difference of protein expression of PKC-alpha, epsilon, delta isozymes in cytosolic fraction between IH and normoxic group. The above results suggested that PKC contributed to the cardioprotection afforded by IH against ischemia/reperfusion (I/R) injury; the basal up-regulation of the particulate fraction of PKC-alpha, epsilon, delta isozymes in IH rat hearts and the contribution of PKC to the elimination of calcium and sodium overload might underlie the mechanisms of cardioprotection by IH.
Collapse
Affiliation(s)
- Hai-Lei Ding
- Laboratory of Hypoxic Cardiovascular Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320# YueYang Road, Shanghai 200031, People's Republic of China
| | | | | | | | | |
Collapse
|
37
|
Yamaoka K, Kameyama M. Regulation of L-type Ca2+ channels in the heart: overview of recent advances. Mol Cell Biochem 2004; 253:3-13. [PMID: 14619950 DOI: 10.1023/a:1026036931170] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Regulation of L-type Ca2+ channels is complex, because many factors, such as phosphorylation, divalent cations, and proteins, specified or unspecified, have been shown to affect the channel activities. An additional complication is that these factors interact with one another to achieve final outcomes. Recent molecular technologies have helped to shed light on the mechanisms governing the activity of L-type Ca2+ channels. In this review article, three major topics concerning regulation of L-type Ca2+ channels in the heart are discussed, i.e. c-AMP dependent channel phosphorylation, role of magnesium (Mg2+), and the phenomenon of channel run-down.
Collapse
Affiliation(s)
- Kaoru Yamaoka
- Department of Physiology, School of Medicine, Hiroshima University, Minami-Ku, Hiroshima, Japan.
| | | |
Collapse
|
38
|
Delva P, Pastori C, Degan M, Montesi G, Lechi A. Catecholamine-induced Regulation in Vitro and ex Vivo of Intralymphocyte Ionized Magnesium. J Membr Biol 2004; 199:163-71. [PMID: 15457373 DOI: 10.1007/s00232-004-0686-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Revised: 05/03/2004] [Indexed: 11/25/2022]
Abstract
Despite the importance of the adrenergic activity and of the metabolism of magnesium in some important cardiovascular pathologies, very little is known about how intracellular ionized magnesium (Mgi2+) is regulated by catecholamines. We made an in-vitro study of the variations in the concentration of ionized magnesium in human lymphocytes using the fluorescent probe furaptra in response to different catecholamines. We also made an ex-vivo study of the changes in intracellular ionized magnesium in lymphocytes in 20 subjects with essential arterial hypertension, 10 treated with 120 mg/d of propranolol and 10 with placebo. Norepinephrine and isoproterenol significantly decrease Mgi2+ and this effect is blocked by beta-blockers but not by alpha-blockers. The EC50 of the effect of norepinephrine is within the range of concentrations physiologically present in plasma. The substitution of extracellular sodium with choline blocks the decrease in intracellular ionized magnesium induced by norepinephrine, which leads us to suppose that the magnesium-reducing effect of catecholamines is a result of the activation of a Na+-Mg2+ exchanger. We were not able to demonstrate any change in intracellular ionized magnesium after 1 and 17 days of active treatment in essential hypertensives. The impossibility of demonstrating ex vivo the mechanism of catecholamine-mediated regulation that is evident in vitro is perhaps due to our experimental conditions or to substances which in vivo inhibit the action of the catecholamines on magnesium, such as insulin and/or glucose.
Collapse
Affiliation(s)
- P Delva
- Department of Biomedical and Surgical Sciences, Section of Medicina Interna C, University of Verona, Verona, Italy.
| | | | | | | | | |
Collapse
|
39
|
Sun Y, Fihn BM, Jodal M, Sjövall H. Inhibition of nitric oxide synthesis potentiates the colonic permeability increase triggered by luminal bile acids. ACTA ACUST UNITED AC 2004; 180:167-75. [PMID: 14738475 DOI: 10.1046/j.0001-6772.2003.01226.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM Experiments were performed in anaesthetized rats to clarify the role of nitric oxide (NO) in the control of colonic permeability. METHODS Colonic luminal pressure, the transmucosal potential difference (PD) and the clearance of [3H] mannitol and [14C] urea from blood to lumen were measured. NO synthesis was blocked with Nomega-nitro-L-arginine (L-NNA) i.v. and mucosal permeability was increased by deoxycholic acid (DCA, 4 mm). The involvement of histamine in the response was studied by giving the histamine H1 receptor blocker pyrilamine. RESULTS In proximal colon, L-NNA per se increased luminal pressure and PD but had no significant effect on clearance. DCA per se increased luminal pressure, had no significant effect on PD, but increased mannitol and urea clearance and the clearance ratio. L-NNA and pyrilamine both blocked the luminal pressure effect of DCA but L-NNA had no significant effect on the clearance response to DCA. In distal colon, L-NNA per se had no significant effect on pressure and clearance, but increased PD like in proximal colon. DCA had no significant effect on luminal pressure, but markedly reduced PD and increased both clearance and clearance ratio. In this segment, L-NNA significantly potentiated the clearance response to DCA, and further increased clearance ratio to a value not significantly different from unity (1.00 +/- 0.05). CONCLUSION The data suggest that in vivo, moderate concentrations of bile acids increase colonic permeability in rats via a mechanism that is inhibited by NO in distal but not in proximal colon. In distal colon, NO may contribute to the maintenance of epithelial barrier function.
Collapse
Affiliation(s)
- Y Sun
- Department of Physiology, University of Göteborg, Göteborg, Sweden
| | | | | | | |
Collapse
|
40
|
Walther A, Barth C, Gebhard MM, Martin E. Role of nitric oxide in leukocyte-independent endothelial damage during experimental endotoxemia. Shock 2003; 20:286-91. [PMID: 12923503 DOI: 10.1097/01.shk.0000075567.93053.1e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endothelial damage during early endotoxemia has been shown to be leukocyte independent. Platelet-activating factor and serotonin receptor antagonism has been shown to reduce leukocyte-independent macromolecular leakage significantly. Nevertheless, the exact mechanisms involved in leukocyte-independent endothelial dysfunction are unknown. Therefore, it was the aim of the study to investigate the effects of nitric oxide (NO) on leukocyte-independent endothelial damage during endotoxemia. In male Wistar rats, venular wall shear rate, macromolecular efflux, and leukocyte-endothelial interaction were determined in mesenteric postcapillary venules using intravital microscopy at baseline and at 60 and 120 min after start of the experiment. The animals received fucoidin to prevent leukocyte-endothelial interaction. The experiments were divided into three parts. In part 1, we investigated the effects of the NO-inhibitor L-NAME on leukocyte-independent endothelial damage during endotoxemic and nonendotoxemic conditions. The efficiency of the NO-donor (SIN-1) used, part 2, was investigated by the inhibitory properties of SIN-1 on NO-inhibition-induced macromolecular efflux. Finally, part 3, we analyzed the effects of the NO-donor SIN-1 on endothelial damage during endotoxemia. Both the combined challenge of the animals with L-NAME and endotoxin and the challenge with L-NAME alone resulted in a strong increase in macromolecular efflux, showing significant differences to control groups at an earlier time point than endotoxin challenge alone. Interestingly, combined L-NAME and endotoxin challenge, L-NAME challenge alone, and endotoxin challenge alone showed a similar macromolecular efflux at the end of the experiment. SIN-1 prevented both the increase in macromolecular efflux seen after L-NAME challenge (part 2) and was highly effective in preventing significantly the increase in macromolecular leakage that is seen during leukocyte-independent endotoxemia (part 3). In conclusion, our data indicate that during early states of endotoxemia endogenous NO preserves endothelial integrity in a leukocyte-independent setting. Exogenous NO prevents endothelial damage during early leukocyte-independent endotoxemia. Summarizing these data, endothelial integrity during leukocyte-independent endotoxemia is a NO-mediated event.
Collapse
Affiliation(s)
- Andreas Walther
- Department of Anesthesiology, University of Heidelberg, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
41
|
Agulló L, Garcia-Dorado D, Escalona N, Ruiz-Meana M, Inserte J, Soler-Soler J. Effect of ischemia on soluble and particulate guanylyl cyclase-mediated cGMP synthesis in cardiomyocytes. Am J Physiol Heart Circ Physiol 2003; 284:H2170-6. [PMID: 12586638 DOI: 10.1152/ajpheart.00820.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of simulated ischemia [hypoxia, no glucose, extracellular pH (pH(o)) 6.4] on cGMP synthesis induced by stimulation of soluble (sGC) or particulate guanylyl cyclase (pGC) was investigated in adult rat cardiomyocytes. Intracellular cGMP content was measured after stimulation of sGC by S-nitroso-N-penicillamine (SNAP) or stimulation of pGC by natriuretic peptides [urodilatin (Uro), atrial natriuretic peptide (ANP), or C-type natriuretic peptide (CNP)] for 1 min in the presence of phosphodiesterase inhibitors. After 2 h of simulated ischemia, a decrease of >50% was observed in pGC-dependent cGMP synthesis, but no significant change was observed in sGC-dependent cGMP synthesis. The reduction in cGMP synthesis caused by simulated ischemia was mimicked by extracellular acidosis (pH(o) 6.4), which decreased pGC-mediated cGMP synthesis without altering sGC-mediated cGMP synthesis. An extreme sensitivity of pGC activity to low pH was also observed in membrane cell fractions. Hypoxia without acidosis (pH(o) 7.4) profoundly depressed cellular ATP content but did not change the response to SNAP, Uro, or ANP (selective agonists of pGC type A receptor). Only cGMP synthesis in response to CNP (a selective agonist of pGC type B receptor) was significantly reduced by ATP depletion. These data support the relevance of intracellular pH as a modulator of cGMP and suggest that, in ischemic cardiomyocytes, synthesis of cGMP would be mainly nitric oxide dependent.
Collapse
Affiliation(s)
- Luis Agulló
- Servicio de Cardiologia, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Nitric oxide (NO) is a pleiotropic free radical messenger molecule. There is a large body of evidence that the inducible form of the NO synthase enzyme (iNOS) that is responsible for high-output production of NO from l-arginine is up-regulated in various forms of mucosal inflammation. Consistent with this, multiple detection strategies have demonstrated that iNOS expression, enzymatic activity, and NO production are increased in human inflammatory bowel disease tissues. There is also evidence that the level of iNOS-derived NO correlates well with disease activity in ulcerative colitis, while for Crohn's disease, the results are more variable. A substantial number of animal studies have assessed the role of inducible NO production. While the majority of studies have shown improvement in experimental inflammatory bowel disease with iNOS inhibition, there are also a significant number of reports of exacerbation of disease with inhibitors. Similarly, studies using iNOS-deficient mice in colitis models have shown improvement, worsening, or no effect on disease. The authors suggest that additional studies to assess the role of the competing biochemical pathway, namely the conversion of l-arginine to polyamines via the actions of arginase and ornithine decarboxylase, may provide important new insights into understanding the regulation of mucosal inflammation and inflammatory bowel disease.
Collapse
Affiliation(s)
- Raymond K Cross
- Department of Medicine, Division of Gastroenterology, University of Maryland School of Medicine, Baltimore 21201, USA
| | | |
Collapse
|
43
|
Casselbrant A, Pettersson A, Fändriks L. Oesophageal intraluminal nitric oxide facilitates the acid-induced oesophago-salivary reflex. Scand J Gastroenterol 2003; 38:235-8. [PMID: 12737436 DOI: 10.1080/00365520310000726a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The present study explores some aspects of the triggering of the acid-induced oesophago-salivary reflex. In addition to hydrogen ions, there are two acid-dependent molecules with messenger potential in the oesophageal lumen: CO2 and NO. The aim of this study was to clarify whether oesophageal NO and CO2 participate in the regulation of salivary neutralizing capacity in response to acid exposure. METHODS Healthy volunteers received oesophageal acidification composed of HCl, with NO3-, or HCO3- or NO3- and HCO3- in combination. In a second series of experiments, the exposure period was divided into 2 separate 10-min events. Saliva volume and titratable buffering capacity were used to calculate alkaline secretion. RESULTS Salivary alkaline secretion increased markedly following 20 min intraluminal exposure to HCl. The initial part of this response was 22% +/- 2.2% larger (P < 0.05) if NO3- was present. When HCO3- was added, or if NO3- and HCO3- were given simultaneously, the secretory response tended to be lower. The accumulated responses over 70 min to 2 short HCl exposures (10 min each separated by a 30 min 'rest') compared to one long one lasting 20 min were similar regardless of the presence of NO3-. CONCLUSION The data suggest that oesophageal intraluminal NO facilitates initiation of the oesophago-salivary reflex. CO2 seems to have a negligible effect on alkaline salivation, and repeated stimulation does not influence the magnitude of the response over time.
Collapse
Affiliation(s)
- A Casselbrant
- Dept. of Gastro Research, Göteborg University, Göteborg, Sweden.
| | | | | |
Collapse
|
44
|
Tashiro M, Tursun P, Miyazaki T, Watanabe M, Konishi M. Effects of membrane potential on Na+ -dependent Mg2+ extrusion from rat ventricular myocytes. THE JAPANESE JOURNAL OF PHYSIOLOGY 2002; 52:541-51. [PMID: 12617760 DOI: 10.2170/jjphysiol.52.541] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To study Mg2+ transport across the cell membrane, the cytoplasmic concentration of Mg2+ ([Mg2+](i)) in rat ventricular myocytes was measured with the fluorescent indicator furaptra (mag-fura-2) under Ca2+ -free conditions (0.1 mM EGTA) at 25 degrees C. The fluorescence ratio signal of furaptra was converted to [Mg2+](i) using calibration parameters previously estimated in myocytes (Watanabe and Konishi, Pflügers Arch 442: 35-40, 2001). After [Mg2+](i) was raised by loading the cells with Mg2+ in a solution containing 93 mM Mg(2+), the cells were voltage-clamped at a holding potential of -80 mV using the perforated patch-clamp technique with amphotericin B. At the holding potential of -80 mV, the reduction of extracellular Mg2+ to 1.0 mM caused a rapid decrease in [Mg2+](i) only in the presence of extracellular Na(+). The rate of the net Mg2+ efflux appeared to be dependent on the initial level of [Mg2+](i); the decrease in [Mg2+](i) was significantly faster in the myocytes markedly loaded with Mg2+. The rate of decrease in [Mg2+](i) was influenced little by membrane depolarization from -80 to -40 mV, but the [Mg2+](i) decrease accelerated significantly at 0 mV by, on average, approximately 40%. Hyperpolarization from -80 to -120 mV slightly but significantly slowed the decrease in [Mg2+](i) by approximately 20%. The results clearly demonstrate an extracellular Na(+)- and intracellular Mg2+ -dependent Mg2+ efflux activity, which is consistent with the Na(+)-Mg2+ exchange, in rat ventricular myocytes. We found that the apparent rate of Mg2+ transport depends slightly on the membrane potential: facilitation by depolarization and inhibition by hyperpolarization with no sign of reversal between -120 and 0 mV.
Collapse
Affiliation(s)
- Michiko Tashiro
- Department of Physiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402 Japan
| | | | | | | | | |
Collapse
|
45
|
Agulló L, Garcia-Dorado D, Escalona N, Inserte J, Ruiz-Meana M, Barrabés JA, Mirabet M, Pina P, Soler-Soler J. Hypoxia and acidosis impair cGMP synthesis in microvascular coronary endothelial cells. Am J Physiol Heart Circ Physiol 2002; 283:H917-25. [PMID: 12181119 DOI: 10.1152/ajpheart.01067.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To characterize the effects of ischemia on cGMP synthesis in microvascular endothelium, cultured endothelial cells from adult rat hearts were exposed to hypoxia or normoxia at pH 6.4 or 7.4. Cellular cGMP and soluble (sGC) and membrane guanylyl cyclase (mGC) activities were measured after stimulation of sGC (S-nitroso-N-acetyl-penicillamine) or mGC (urodilatin) or after no stimulation. Cell death (lactate dehydrogenase release) was negligible in all experiments. Hypoxia at pH 6.4 induced a rapid approximately 90% decrease in cellular cGMP after sGC and mGC stimulation. This effect was reproduced by acidosis. Hypoxia at pH 7.4 elicited a less pronounced (approximately 50%) and slower reduction in cGMP synthesis. Reoxygenation after 2 h of hypoxia at either pH 6.4 or 7.4 normalized the response to mGC stimulation but further deteriorated the sGC response; normalization of pH rapidly reversed the effects of acidosis. At pH 7.4, the response to GC stimulation correlated well with cellular ATP. We conclude that simulated ischemia severely depresses cGMP synthesis in microvascular coronary endothelial cells through ATP depletion and acidosis without intrinsic protein alteration.
Collapse
Affiliation(s)
- Luis Agulló
- Servicio de Cardiología, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cornish AS, Jijon H, Yachimec C, Madsen KL. Peroxynitrite enhances the ability of Salmonella dublin to invade T84 monolayers. Shock 2002; 18:93-6. [PMID: 12095142 DOI: 10.1097/00024382-200207000-00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the intestine, epithelial cells continually produce and secrete low levels of nitric oxide (NO). Salmonella sp. invade epithelium by responding to environmental stimuli. The aims of this study were to determine the effect of reactive nitrogen intermediates (RNIs) on S. dublin and S. typhimurium growth and invasion of T84 epithelial monolayers. Intracellular NO formation was inhibited by 7-nitroindazole (7-NI) or N(G)-monomethyl-L-arginine, monoacetate (L-NMMA); extracellular NO and peroxynitrite were scavenged with ferro-hemoglobin or urate. The effect of authentic peroxynitrite (ONOO-); 3-morpholino-sydnonimine (SIN-1), which releases ONOO- via NO and superoxide; spermine NONOate, which releases only NO; or superoxide generated by xanthine oxidase and pterin on S. dublin and S. typhimurium growth and invasion were examined. Inhibition of NO synthesis and scavenging of extracellular NO or peroxynitrite reduced S. dublin invasion into T84 monolayers and enhanced bacterial growth. Pre-exposure of S. dublin to ONOO- and SIN-1 increased subsequent bacterial invasion into T84 monolayers. Conversely, exposure of bacteria to spermine NONOate or superoxide did not affect S. dublin invasion. In contrast, S. typhimurium invasion was not affected by pre-treatment with NO donors. In conclusion, exposure of S. dublin to ONOO- enhances the ability of the bacteria to invade epithelial cells. These results suggest that luminal ONOO- may have a novel role as an extracellular signal between invasive bacteria and epithelial cells.
Collapse
Affiliation(s)
- Anthony S Cornish
- Division of Gastroenterology, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
47
|
Fagan TE, Scarpa A. Hormone-stimulated Mg(2+) accumulation into rat hepatocytes: a pathway for rapid Mg(2+) and Ca(2+) redistribution. Arch Biochem Biophys 2002; 401:277-82. [PMID: 12054479 DOI: 10.1016/s0003-9861(02)00051-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Many diseases such as cardiac arrhythmia, diabetes, and chronic alcoholism are associated with a marked decrease of plasma and parenchymal Mg(2+), and Mg(2+) administration is routinely used therapeutically. This study uses isolated rat hepatocytes to ascertain if and under which conditions increases in extracellular Mg(2+) result in an increase in intracellular Mg(2+). In the absence of stimulation, changing extracellular Mg(2+) had no effect on total cellular Mg(2+) content. By contrast, carbachol or vasopressin administration promoted an accumulation of Mg(2+) that increased cellular Mg(2+) content by 13.2 and 11.8%, respectively, and stimulated Mg(2+) uptake was unaffected by the absence of extracellular Ca(2+). Mg(2+) efflux resulting from stimulation of alpha- or beta-adrenergic receptors operated with a Mg(2+):Ca(2+) exchange ratio of 1. These data indicate that cellular Mg(2+) uptake can occur rapidly and in large amounts, through a process distinct from Mg(2+) release, but operating only upon specific hormonal stimulation.
Collapse
Affiliation(s)
- Theresa E Fagan
- School of Medicine, Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
48
|
Liu P, Xu B, Forman LJ, Carsia R, Hock CE. L-NAME enhances microcirculatory congestion and cardiomyocyte apoptosis during myocardial ischemia-reperfusion in rats. Shock 2002; 17:185-92. [PMID: 11900336 DOI: 10.1097/00024382-200203000-00005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Besides necrosis, apoptosis is the other major mode of cardiomyocyte loss in ischemic cardiovascular disease. In the present study, we examined the hypothesis that nitric oxide (NO) protects myocardial function by improving myocardial microcirculation and attenuating cardiomyocyte apoptosis in a rat model of myocardial ischemia/reperfusion (MI/R). The left main coronary artery of anesthetized male rats was ligated for 40 min, followed by 4 h reperfusion. Four groups of animals were studied: sham operated control + saline; sham operated control + N(W)-nitro-L-arginine methyl ester (L-NAME); MI/R + saline; MI/R + L-NAME (10 mg/kg, iv, 10 min prior to reperfusion). Results show that MI/R caused a decrease in mean arterial blood pressure (MABP), cardiac index (CI), and stroke volume index (SVI). Inhibition of NO synthesis by L-NAME attenuated plasma NO levels, but increased MABP and SVR in sham control rats and rats subjected to MI/R, and further depressed left ventricular function in rats subjected to MI/R as indicated by decreased CI and SVI. Furthermore, administration of L-NAME to rats subjected to MI/R enhanced cardiomyocyte apoptosis as indicated by a significant increase in DNA fragmentation compared to rats with MI/R alone. Histological study revealed that L-NAME caused arterial constriction and congestion of red blood cells in arteries and capillaries in the peri-ischemic areas of the hearts in rats subjected to MI/R and, interestingly, also in the sham control rats. Data suggest that the mechanism of increased reperfusion injury may be attributable to a "no-reflow" phenomenon induced by L-NAME, resulting in increased cardiomyocyte apoptosis secondary to ischemia and enhanced cytochrome-c release from mitochondria. In addition, cardiac injury may be increased due to the augmented oxygen consumption of cardiomyocytes caused by the increased SVR and afterload. These results suggest that endogenous NO may act to improve myocardial microvascular perfusion, reduce SVR, and limit cardiomyocyte apoptosis, thereby, attenuating myocardial dysfunction induced by MI/R.
Collapse
Affiliation(s)
- Peitan Liu
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, School of Osteopathic Medicine, Stratford 08084, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
Inflammation of the mucosal layer of the gastrointestinal (GI) tract is not only a feature almost always associated with ulceration of those tissues, but it also plays an important role in both the production and healing of the lesions. The mediators that coordinate inflammatory responses also have the capability to alter the resistance of the mucosa to injury induced by noxious substances, while others render the mucosa more susceptible to injury. In this article, we provide a review of the inflammatory mediators that modulate GI mucosal defense. Among the mediators discussed are nitric oxide, the eicosanoids (prostaglandins, leukotrienes, and thromboxanes), neuropeptides, cytokines, and proteinases. Many of these mediators are considered potential therapeutic targets for the treatment of ulcerative diseases of the digestive tract.
Collapse
Affiliation(s)
- J L Wallace
- Mucosal Inflammation Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.
| | | |
Collapse
|
50
|
Simsek I, Mas MR, Yasar M, Ozyurt M, Saglamkaya U, Deveci S, Comert B, Basustaoglu A, Kocabalkan F, Refik M. Inhibition of inducible nitric oxide synthase reduces bacterial translocation in a rat model of acute pancreatitis. Pancreas 2001; 23:296-301. [PMID: 11590326 DOI: 10.1097/00006676-200110000-00011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Translocation of bacteria from the gut into pancreatic necrosis is an important factor in the development of septic complications and mortality in acute pancreatitis. S-methylisothiourea (SMT) is an inducible nitric oxide synthase inhibitor that has been shown to decrease bacteria] translocation in sepsis and thermal injury. AIM To investigate whether SMT could affect bacterial translocation in acute necrotizing pancreatitis. METHODOLOGY Forty-five Sprague-Dawley rats were studied. Acute pancreatitis was induced in Group I and Group II by injection of taurocholate and trypsin into the common biliopancreatic duct. Group III underwent laparotomy with the manipulation (but not cannulation) of the pancreas and received saline injection. Group I rats received normal saline as a placebo, and Group II rats received SMT after surgery for 2 days. At 48 hours, blood was drawn for serum amylase determinations. Bacterial translocation to mesenteric lymph nodes and distant sites (pancreas, liver, and peritoneum) were examined. A point scoring system of histologic features was used to evaluate the severity of pancreatitis. RESULTS Plasma amylase levels and pancreatic histologic score were significantly reduced in Group II rats given SMT compared with those in Group I rats given saline (p < 0.01, p < 0.05, respectively). All Group I rats had bacterial translocation to mesenteric lymph nodes compared with 7 of 12 rats in Group II (p < 0.05). There was no difference in bacterial translocation to distant organs between the two groups, although rates tended to be lower in Group II compared with Group I (p > 0.05). Bacterial counts in the pancreas were significantly reduced in Group II rats compared with those in Group I rats (p < 0.05). CONCLUSION Treatment with SMT appears to have ameliorated the course of acute pancreatitis; however, mortality was not affected.
Collapse
Affiliation(s)
- I Simsek
- Department of Internal Medicine, Gulhane School of Medicine, Ankara, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|