1
|
Moaddel R, Zanos P, Farmer CA, Kadriu B, Morris PJ, Lovett J, Acevedo-Diaz EE, Cavanaugh GW, Yuan P, Yavi M, Thomas CJ, Park LT, Ferrucci L, Gould TD, Zarate CA. Comparative metabolomic analysis in plasma and cerebrospinal fluid of humans and in plasma and brain of mice following antidepressant-dose ketamine administration. Transl Psychiatry 2022; 12:179. [PMID: 35501309 PMCID: PMC9061764 DOI: 10.1038/s41398-022-01941-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
Subanesthetic-dose racemic (R,S)-ketamine (ketamine) produces rapid, robust, and sustained antidepressant effects in major depressive disorder (MDD) and bipolar disorder (BD) and has also been shown to effectively treat neuropathic pain, complex regional pain syndrome, and post-traumatic stress disorder (PTSD). However, to date, its mechanism of action remains unclear. Preclinical studies found that (2 R,6 R;2 S,6 S)-hydroxynorketamine (HNK), a major circulating metabolite of ketamine, elicits antidepressant effects similar to those of ketamine. To help determine how (2 R,6 R)-HNK contributes to ketamine's mechanism of action, an exploratory, targeted, metabolomic analysis was carried out on plasma and CSF of nine healthy volunteers receiving a 40-minute ketamine infusion (0.5 mg/kg). A parallel targeted metabolomic analysis in plasma, hippocampus, and hypothalamus was carried out in mice receiving either 10 mg/kg of ketamine, 10 mg/kg of (2 R,6 R)-HNK, or saline. Ketamine and (2 R,6 R)-HNK both affected multiple pathways associated with inflammatory conditions. In addition, several changes were unique to either the healthy human volunteers and/or the mouse arm of the study, indicating that different pathways may be differentially involved in ketamine's effects in mice and humans. Mechanisms of action found to consistently underlie the effects of ketamine and/or (2 R,6 R)-HNK across both the human metabolome in plasma and CSF and the mouse arm of the study included LAT1, IDO1, NAD+, the nitric oxide (NO) signaling pathway, and sphingolipid rheostat.
Collapse
Affiliation(s)
- Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA.
| | - Panos Zanos
- Departments of Psychiatry, Pharmacology, and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
- Department of Psychology, University of Cyprus, 2109, Nicosia, Cyprus
| | - Cristan A Farmer
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Patrick J Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Jacqueline Lovett
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Elia E Acevedo-Diaz
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Grace W Cavanaugh
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Peixiong Yuan
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Mani Yavi
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Lawrence T Park
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Luigi Ferrucci
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Todd D Gould
- Departments of Psychiatry, Pharmacology, and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Li J, Al-Khalili O, Ramosevac S, Eaton DC, Denson DD. Protein-protein interaction between cPLA2 and splice variants of alpha-subunit of BK channels. Am J Physiol Cell Physiol 2009; 298:C251-62. [PMID: 19940072 DOI: 10.1152/ajpcell.00221.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Altering the splice variant composition of large-conductance Ca(2+)-activated potassium (BK) channels can alter their activity and apparent sensitivity to Ca(2+) and other regulators of activity. We hypothesized that differences in the responsiveness to arachidonic acid of GH3 and GH4 cells was due to a difference in two splice variants, one present in GH3 cells and the other in GH4 cells. The sequences of the two splice variants differ from one another in several ways, but the largest difference is the presence or absence of 27 amino acids in the COOH terminus of the BK alpha-subunit. Open probability of the variant containing the 27 amino acids is significantly increased by arachidonic acid, while the variant lacking the 27 amino acids is insensitive to arachidonic acid. In addition, sensitivity of BK channels to arachidonic acid depends on cytosolic phospholipase A(2) (cPLA(2)). Here we used the Mammalian Matchmaker two-hybrid assay and two BK alpha-subunit constructs with [rSlo(27)] and without [rSlo(0)] the 27-amino acid motif to determine whether cPLA(2) associates with one construct [rSlo(27)] and not the other. We hypothesized that differential association of cPLA(2) might explain the differing responsiveness of the two constructs and GH3 and GH4 cells to arachidonic acid. We found that cPLA(2) is strongly associated with the COOH terminus of rSlo(27) and only very weakly associated with rSlo(0). We also found that arachidonic acid has a lower affinity for rSlo(0) than for rSlo(27). We conclude that the lack of response of BK channels in GH4 cells to arachidonic acid can be explained, in part, by the poor binding of cPLA(2) to the COOH terminus of the rSlo(0) alpha-subunit, which is very similar to the splice variant found in the arachidonic acid-insensitive GH4 cells.
Collapse
Affiliation(s)
- Juan Li
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
3
|
Jackson SN, Sachin SK, Woods AS, Morales M, Shippenberg T, Zhang L, Oz M. Volatile anesthetics and endogenous cannabinoid anandamide have additive and independent inhibitory effects on alpha(7)-nicotinic acetylcholine receptor-mediated responses in Xenopus oocytes. Eur J Pharmacol 2008; 582:42-51. [PMID: 18242598 PMCID: PMC2346594 DOI: 10.1016/j.ejphar.2007.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 12/12/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
Abstract
In earlier studies, the volatile anesthetics and the endogenous cannabinoid anandamide have been shown to inhibit the function of alpha(7)-nicotinic acetylcholine receptors. In the present study, interactions between the effects of volatile anesthetics and anandamide on the function of alpha(7)-nicotinic acetylcholine receptors expressed in Xenopus oocytes were investigated using the two-electrode voltage-clamp technique. Anandamide and volatile anesthetics isoflurane and halothane inhibited currents evoked with acetylcholine (100 microM) in a reversible and concentration-dependent manner. Coapplication of anandamide and volatile anesthetics caused a significantly greater inhibition of alpha(7)-nicotinic acetylcholine receptor function than anandamide or volatile anesthetics alone. Analyses of oocytes by matrix-assisted laser desorption/ionization mass spectroscopy indicated that volatile anesthetics did not alter the lipid profile of oocytes. Results of studies with chimeric alpha(7)-nicotinic acetylcholine-5-HT(3) receptors comprised of the N-terminal domain of the alpha(7)-nicotinic acetylcholine receptor and the transmembrane and carboxyl-terminal domains of 5-HT(3) receptors suggest that while isoflurane inhibition of the alpha(7)-nicotinic acetylcholine receptor is likely to involve the N-terminal region of the receptor, the site of action for anandamide involves transmembrane and carboxyl-terminal domains of the receptors. These data indicate that endocannabinoids and isoflurane have additive inhibitory effects on alpha(7)-nicotinic acetylcholine receptor function through allosteric binding sites located on the distinct regions of the receptor.
Collapse
Affiliation(s)
- Shelley N. Jackson
- National Institute on Drug Abuse, NIH/DHHS, Intramural Research Program, Cellular Neurobiology Branch, 5500 Nathan Shock Drive, Baltimore MD, 21224, U.S.A
| | - Singhal K. Sachin
- National Institute on Alcohol Abuse & Alcoholism, NIH/DHHS, Laboratory for Integrative Neuroscience, 5625 Fishers Lane, Rockville, MD, 20852, U.S.A
| | - Amina S. Woods
- National Institute on Drug Abuse, NIH/DHHS, Intramural Research Program, Cellular Neurobiology Branch, 5500 Nathan Shock Drive, Baltimore MD, 21224, U.S.A
| | - Marisela Morales
- National Institute on Drug Abuse, NIH/DHHS, Intramural Research Program, Cellular Neurobiology Branch, 5500 Nathan Shock Drive, Baltimore MD, 21224, U.S.A
| | - Toni Shippenberg
- National Institute on Drug Abuse, NIH/DHHS, Intramural Research Program, Integrative Neuroscience Section, 5500 Nathan Shock Drive, Baltimore MD, 21224, U.S.A
| | - Li Zhang
- National Institute on Alcohol Abuse & Alcoholism, NIH/DHHS, Laboratory for Integrative Neuroscience, 5625 Fishers Lane, Rockville, MD, 20852, U.S.A
| | - Murat Oz
- National Institute on Drug Abuse, NIH/DHHS, Intramural Research Program, Integrative Neuroscience Section, 5500 Nathan Shock Drive, Baltimore MD, 21224, U.S.A
| |
Collapse
|
4
|
Denson DD, Li J, Eaton DC. Co-localization of the alpha-subunit of BK-channels and c-PLA2 in GH3 cells. Biochem Biophys Res Commun 2006; 350:39-49. [PMID: 16997278 DOI: 10.1016/j.bbrc.2006.08.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 08/29/2006] [Indexed: 11/24/2022]
Abstract
Large conductance, calcium-activated potassium channels (maxi K- or BK-channels) can be regulated by arachidonic acid produced by c-Phospholipase A2 (c-PLA2). Since in every excised patch from GH3 cells where there was BK-channel activity, treatment with either a stimulator or inhibitor of c-PLA2 resulted in a corresponding increase or decrease in BK-channel activity, we hypothesized that there must be a close association between BK-channel proteins and c-PLA2 in the cell membrane. To test this hypothesis, we first determined whether the two proteins would co-immunoprecipitate. We then used confocal imaging of fluorescently tagged proteins to determine where in the cells BK-channel proteins and c-PLA2 co-localize. The alpha-subunit of the BK-channel was strongly co-immunoprecipitated by c-PLA2 antibodies, suggesting that most of the BK channel alpha-subunits are associated with c-PLA2. This interaction was not affected by pharmacologically inhibiting c-PLA2 suggesting that the association does not require functionally active c-PLA2. Following dual immunohistochemical labeling and confocal microscopy, image analysis revealed that in the cytosol there was some co-localization, but most of the c-PLA2 was separate from BK-channel proteins. On the other hand, the c-PLA2 and BK-channel proteins at the plasma membrane were strongly co-localized. Immunoprecipitation experiments conducted with plasma membrane proteins support these findings. We conclude that c-PLA2 is likely physically associated with BK-channel proteins at the cell surface.
Collapse
Affiliation(s)
- D D Denson
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
5
|
Roch A, Shlyonsky V, Goolaerts A, Mies F, Sariban-Sohraby S. Halothane directly modifies Na+ and K+ channel activities in cultured human alveolar epithelial cells. Mol Pharmacol 2006; 69:1755-62. [PMID: 16399849 DOI: 10.1124/mol.105.021485] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During inhalational anesthesia, halogenated gases are in direct contact with the alveolar epithelium, in which they may affect transepithelial ion and fluid transport. The effects of halogenated gases in vivo on epithelial Na+ and K+ channels, which participate in alveolar liquid clearance, remain unclear. In the present study, the effects of halothane (1, 2, and 4% atm) on ion-channel function in cultured human alveolar cells were investigated using the patch-clamp technique. After exposure to 4% halothane, amiloride-sensitive whole-cell inward currents increased by 84+/-22%, whereas tetraethylammonium-sensitive outward currents decreased by 63+/-7%. These effects, which occurred within 30 s, remained for 30-min periods of exposure to the gas, were concentration-dependent, and were reversible upon washout. Pretreatment with amiloride prevented 90+/-7% of the increase in inward currents without change in outward currents, consistent with an activation of amiloride-sensitive epithelial sodium channels. Tetraethylammonium obliterated 90+/-9% of the effect of halothane on outward currents, without change in inward currents, indicating inhibition of Ca2+-activated K+ channels. These channels were identified in excised patches to be small-conductance Ca2+-activated K+ channels. These effects of halothane were not modified after the inhibition of cytosolic phospholipase A2 by aristolochic acid. Exposure of the cells to either trypsin or to low Na+ completely prevented the increase in amiloride-sensitive currents induced by halothane, suggesting a release of Na+ channels self-inhibition. Thus, halothane modifies differentially and independently Na+ and K+ permeabilities in human alveolar cells.
Collapse
Affiliation(s)
- Antoine Roch
- Laboratoire de Physiologie et Physiopathologie, Campus Erasme CP 604, 808, route de Lennik, Université Libre de Bruxelles, Belgium
| | | | | | | | | |
Collapse
|
6
|
Denson DD, Li J, Wang X, Eaton DC. Activation of BK channels in GH3 cells by a c-PLA2-dependent G-protein signaling pathway. J Neurophysiol 2005; 93:3146-56. [PMID: 15647401 DOI: 10.1152/jn.00865.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BK-channels in GH3 cells are activated by arachidonic acid produced by c-PLA2. beta-adrenergic agonists also activate BK channels and were presumed to do so via production of cAMP. We, however, show for the first time in GH3 cells that a beta-adrenergic agonist activates a pertussis-toxin-sensitive G protein that activates c-PLA2. The arachidonic acid produced by c-PLA2 then activates BK channels. We examined BK channels in cell-attached patches and in excised patches from untreated GH3 cells and from GH3 cells exposed to c-PLA2 antisense oligonucleotides. For the cell-attached patch experiments, physiologic pipette and bath solutions were used. For the excised patches, 150 mM KCl was used in both the pipette and bath solutions, and the cytosolic surface contained 1 microM free Ca2+ (buffered with 5 mM K2EGTA). Treatment of GH3 cells with the G protein activator, fluoroaluminate, (AlF4-) produced an increase in the Po of BK channels of 177 +/- 41% (mean +/- SD) in cell-attached patches. Because G proteins are membrane associated, we also added an activator of G proteins, 100 microM GTP-gamma-S, to the cytosolic surface of excised patches. This treatment leads to an increase in Po of 50 +/- 9%. Similar treatment of excised patches with GDP-beta-S had no effect on Po. Isoproterenol (1 microM), an activator of beta-adrenergic receptors and, consequently, some G proteins, increased BK channel activity 229 +/- 37% in cell-attached patches from cultured GH3 cells. Western blot analysis showed that GH3 cells have beta-adrenergic receptor protein and that isoproterenol acts through these receptors because the beta-adrenergic receptor antagonist, propanolol, blocks the action of isoproterenol. To test whether G protein activation of BK channels involves c-PLA2, we studied the effects of GTP-gamma-S on excised patches and isoproterenol on cell attached patches from GH3 cells previously treated with c-PLA2 antisense oligonucleotides or pharmacological inhibitors of c-PLA2. Neither isoproterenol nor GTP-gamma-S had any effect on Po in these patches. Similarly, neither isoproterenol nor GTP-gamma-S had any effect on Po in cultured GH3 cells pretreated with pertussis toxin. Isoproterenol also significantly increased the rate of arachidonic production in GH3 cells. These results show that some receptor-linked, pertussis-toxin-sensitive G protein in GH3 cells can activate c-PLA2 to increase the amount of arachidonic acid present and ultimately increase BK-channel activity.
Collapse
Affiliation(s)
- D D Denson
- Dept. of Anesthesiology, Emory University School of Medicine, 3B-South Emory University Hospital, 1364 Clifton Rd., Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
7
|
Ghezzi A, Al-Hasan YM, Larios LE, Bohm RA, Atkinson NS. slo K(+) channel gene regulation mediates rapid drug tolerance. Proc Natl Acad Sci U S A 2004; 101:17276-81. [PMID: 15569939 PMCID: PMC535374 DOI: 10.1073/pnas.0405584101] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Changes in neural activity caused by exposure to drugs may trigger homeostatic mechanisms that attempt to restore normal neural excitability. In Drosophila, a single sedation with the anesthetic benzyl alcohol changes the expression of the slo K(+) channel gene and induces rapid drug tolerance. We demonstrate linkage between these two phenomena by using a mutation and a transgene. A mutation that eliminates slo expression prevents tolerance, whereas expression from an inducible slo transgene mimics tolerance in naive animals. The behavioral response to benzyl alcohol can be separated into an initial phase of hyperkinesis and a subsequent phase of sedation. The hyperkinetic phase causes a drop in slo gene expression and makes animals more sensitive to benzyl alcohol. It is the sedative phase that stimulates slo gene expression and induces tolerance. We demonstrate that the expression level of slo is a predictor of drug sensitivity.
Collapse
Affiliation(s)
- Alfredo Ghezzi
- Section of Neurobiology, University of Texas, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
8
|
Arhem P, Klement G, Nilsson J. Mechanisms of anesthesia: towards integrating network, cellular, and molecular level modeling. Neuropsychopharmacology 2003; 28 Suppl 1:S40-7. [PMID: 12827143 DOI: 10.1038/sj.npp.1300142] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The mechanisms of anesthesia are surprisingly little understood. The present article summarizes current knowledge about the function of general anesthetics at different organization levels of the nervous system. It argues that a consensus view can be constructed, assuming that general anesthetics modulate the activity of ion channels, the main targets being GABA and NMDA channels and possibly voltage-gated and background channels, thereby hyperpolarizing neurons in thalamocortical loops, which lead to disruption of coherent oscillatory activity in the cortex. Two computational cases are used to illustrate the possible importance of molecular level effects on cellular level activity. Subtle differences in the mechanism of ion channel block can be shown to cause considerable differences in the modification of the oscillatory activity in a single neuron, and consequently in an associated network. Finally, the relation between the anesthesia problem and the classical consciousness problem is discussed, and some consequences of introducing the phenomenon of degeneracy into the picture are pointed out.
Collapse
Affiliation(s)
- Peter Arhem
- Department of Neuroscience and the Nobel Institute for Neurophysiology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
9
|
McCormack K. A New Perspective on Signal Transduction in Neuropathic Pain The Emerging Role of the G Protein By Dimer in Transducing and Modulating Opioid Signaling. Pain 2003. [DOI: 10.1201/9780203911259.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Kudoh A, Kudoh E, Katagai H, Takazawa T. Ketamine suppresses norepinephrine-induced inositol 1,4,5-trisphosphate formation via pathways involving protein kinase C. Anesth Analg 2002; 94:552-7; table of contents. [PMID: 11867373 DOI: 10.1097/00000539-200203000-00013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED Inositol 1,4,5-trisphosphate (IP(3)) is not only involved in the physiologic regulation of excitation-contraction coupling, but could also play a role in cardiac pathophysiology. We investigated the mechanism of ketamine modulation of norepinephrine (NE)-induced IP(3) formation in neonatal rat cardiomyocytes. Ketamine 1 and 10 microM significantly decreased the IP(3) response to 1 microM NE by 27% and 43%, respectively. One micromolar TMB-8 (an intracellular calcium antagonist) produced 42% more decreases in IP(3) production than produced by ketamine alone. One hundred micromolar anthranilic acid (a phospholipase A(2) inhibitor) significantly decreased NE (1 microM)-induced IP(3) formation, and the inhibition was further enhanced by ketamine. Ten micromolar U 73122 (a phospholipase C inhibitor) did not significantly affect NE-induced IP(3) in the presence or absence of ketamine. One micromolar ketamine significantly inhibited staurosporine (a nonselective protein kinase C antagonist)-, bisindolylmaleimide (a selective protein kinase C antagonist)-, and wortmannin (a phosphatidylinositide 3-kinase antagonist)-stimulated IP(3) formation. In conclusion, ketamine suppresses NE-induced IP(3) production, and the inhibition is caused through pathways including protein kinase C and a decrease in intracellular Ca(2+) concentrations. IMPLICATIONS Ketamine inhibits norepinephrine-induced inositol 1,4,5-triphosphate formation in a dose-dependent manner via pathways that involve protein kinase C and a decrease in intracellular Ca(2+) concentrations.
Collapse
Affiliation(s)
- Akira Kudoh
- Department of Anesthesiology, Hirosaki National Hospital, Hirosaki, Japan
| | | | | | | |
Collapse
|
11
|
Worrell RT, Bao HF, Denson DD, Eaton DC. Contrasting effects of cPLA2 on epithelial Na+ transport. Am J Physiol Cell Physiol 2001; 281:C147-56. [PMID: 11401837 DOI: 10.1152/ajpcell.2001.281.1.c147] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activity of the epithelial Na+ channel (ENaC) is the limiting step for discretionary Na+ reabsorption in the cortical collecting duct. Xenopus laevis kidney A6 cells were used to investigate the effects of cytosolic phospholipase A2 (cPLA2) activity on Na+ transport. Application of aristolochic acid, a cPLA2 inhibitor, to the apical membrane of monolayers produced a decrease in apical [3H]arachidonic acid (AA) release and led to an approximate twofold increase in transepithelial Na+ current. Increased current was abolished by the nonmetabolized AA analog 5,8,11,14-eicosatetraynoic acid (ETYA), suggesting that AA, rather than one of its metabolic products, affected current. In single channel studies, ETYA produced a decrease in ENaC open probability. This suggests that cPLA2 is tonically active in A6 cells and that the end effect of liberated AA at the apical membrane is to reduce Na+ transport via actions on ENaC. In contrast, aristolochic acid applied basolaterally inhibited current, and the effect was not reversed by ETYA. Basolateral application of the cyclooxygenase inhibitor ibuprofen also inhibited current. Both effects were reversed by prostaglandin E2 (PGE2). This suggests that cPLA2 activity and free AA, which is metabolized to PGE2, are necessary to support transport. This study supports the fine-tuning of Na+ transport and reabsorption through the regulation of free AA and AA metabolism.
Collapse
Affiliation(s)
- R T Worrell
- Department of Physiology, Center for Cell and Molecular Signaling, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
12
|
Unmack MA, Hansen MB, Grondahl ML, Olsen JE, Christensen P, Skadhauge E. Effects of indomethacin on Salmonella typhimurium- and cholera toxin-induced fluid accumulation in the porcine small intestine. JOURNAL OF VETERINARY MEDICINE. A, PHYSIOLOGY, PATHOLOGY, CLINICAL MEDICINE 2001; 48:153-63. [PMID: 11379389 DOI: 10.1046/j.1439-0442.2001.00348.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of the cyclooxygenase and prostaglandin E2 (PGE2) synthesis inhibitor, indomethacin, on the secretory responses induced by Salmonella serotype Typhimurium (ST) and cholera toxin (CT), in the porcine small intestine was investigated. ST (10(10) colony-forming units) and CT (56 micrograms) were instilled in tied-off intestinal loops in young anaesthetized pigs receiving intravenous indomethacin in a total dose of 7.5 mg/kg, or saline. The accumulated fluid in the loops and the luminal content of endogenous secretagogues PGE2 and 5-hydroxytryptamine (5-HT) were measured. ST induced fluid accumulation in the jejunum, whereas CT induced fluid accumulation in the jejunum and ileum. Indomethacin had no effect on the secretory responses. Indomethacin had a significant effect on the luminal content of PGE2 in jejunal ST and CT loops, whereas no effect of indomethacin was observed on the luminal content of 5-HT in ST and CT loops. In ST and CT loops, an increased content of PGE2 and 5-HT compared with test loops infused with Ringer's solution was observed. These results indicate that the porcine jejunal secretory response to ST and CT does not involve prostaglandins although indomethacin has an influence on the luminal release of PGE2 but not of 5-HT.
Collapse
Affiliation(s)
- M A Unmack
- Department of Anatomy and Physiology, Royal Veterinary and Agricultural University, Grønnegårdsvej 7, DK-1870 Frederiksberg C, Denmark
| | | | | | | | | | | |
Collapse
|
13
|
Denson DD, Wang X, Worrell RT, AlKhalili O, Eaton DC. Cytosolic phospholipase A2 is required for optimal ATP activation of BK channels in GH(3) cells. J Biol Chem 2001; 276:7136-42. [PMID: 11113145 DOI: 10.1074/jbc.m009566200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To test the hypothesis that ATP activation of BK channels in GH(3) cells involves cytosolic phospholipase A(2) (cPLA(2)) as a potential protein target for phosphorylation, we first inhibited the activity of cPLA(2) by both pharmacologic and molecular biologic approaches. Both approaches resulted in a decrease rather than an increase in BK channel activity by ATP, suggesting that in the absence of cPLA(2), phosphorylation of other regulatory elements, possibly the BK channel protein itself, results in inactivation rather than activation of the channel. The absence of changes in activity in the presence of the non-substrate ATP analog 5'-adenylyl-beta,gamma-imidodiphosphate verified that ATP hydrolysis was required for channel activation by ATP. Experiments with an activator and inhibitor of protein kinase C (PKC) support the hypothesis that PKC can be involved in the activation of BK channels by ATP; and in the absence of PKC, other kinases appear to phosphorylate additional elements in the regulatory pathway that reduce channel activity. Our data point to cPLA(2)-alpha (but not cPLA(2)-gamma) as one target protein for phosphorylation that is intimately associated with the BK channel protein.
Collapse
Affiliation(s)
- D D Denson
- Departments of Anesthesiology and Physiology and the Center for Cellular and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | |
Collapse
|
14
|
Denson DD, Wang X, Worrell RT, Eaton DC. Effects of fatty acids on BK channels in GH(3) cells. Am J Physiol Cell Physiol 2000; 279:C1211-9. [PMID: 11003601 DOI: 10.1152/ajpcell.2000.279.4.c1211] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+)-activated K(+) (BK) channels in GH(3) cells are activated by arachidonic acid (AA). Because cytosolic phospholipase A(2) can produce other unsaturated free fatty acids (FFA), we examined the effects of FFA on BK channels in excised patches. Control recordings were made at several holding potentials. The desired FFA was added to the bath solution, and the voltage paradigm was repeated. AA increased the activity of BK channels by 3.6 +/- 1.6-fold. The cis FFA, palmitoleic, oleic, linoleic, linolenic, eicosapentaenoic, and the triple bond analog of AA, eicosatetraynoic acid, all increased BK channel activity, whereas stearic (saturated) or the trans isomers elaidic, linolelaidic, and linolenelaidic had no effect. The cis unsaturated FFA shifted the open probability vs. voltage relationships to the left without a change in slope, suggesting no change in the sensitivity of the voltage sensor. Measurements of membrane fluidity showed no correlation between the change of membrane fluidity and the change in BK channel activation. In addition, AA effects on BK channels were unaffected in the presence of N-acetylcysteine. Arachidonyl-CoA, a membrane impermeable analog of AA, activates channels when applied to the cytosolic surface of excised patches, suggesting an effect of FFAs from the cytosolic surface of BK channels. Our data imply a direct interaction between cis FFA and the BK channel protein.
Collapse
Affiliation(s)
- D D Denson
- Department of Anesthesiolgy, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
15
|
Abstract
K(+) channel effectors are widely used in the treatment of various diseases, including diabetes mellitus type II, hypertension, and cardiac arrhythmia. In addition, a constantly growing body of literature reveals that some of these substances, despite their direct effect on K(+) channels, may influence cellular lipid metabolism. As a result, membrane lipid content and cellular concentrations of lipid messengers are changed. Due to the dependence of K(+) channel activity on membrane lipids, these observations seem to be of particular importance not only to characterize secondary effects of K(+) channel effectors but also to understand the long-term effects of these agents on K(+) channel activity.
Collapse
Affiliation(s)
- A Szewczyk
- Laboratories of *Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | | |
Collapse
|
16
|
Kaye AD, Banister RE, Fox CJ, Ibrahim IN, Nossaman BD. Analysis of ketamine responses in the pulmonary vascular bed of the cat. Crit Care Med 2000; 28:1077-82. [PMID: 10809286 DOI: 10.1097/00003246-200004000-00028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To test the hypothesis that pulmonary vasodilator responses of ketamine are dependent on activation of L-type calcium channels, independent of synthesis of nitric oxide from L-arginine, activation of adenosine triphosphate-sensitive potassium channels, and the release of cyclooxygenase products. DESIGN Prospective study. SETTING Research laboratory. SUBJECTS Isolated lobar lung preparation, mongrel cats. INTERVENTIONS In separate experiments, the effects of nicardipine; N omega-I-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthase; glibenclamide, an adenosine triphosphate-sensitive potassium channel antagonist; and meclofenamate, a cyclooxygenase blocker, were investigated in the pulmonary vascular bed of the cat. The effects of these agents were evaluated on the pulmonary arterial responses of ketamine, acetylcholine, and isoproterenol during elevated tone conditions induced by the thromboxane A2 mimic, U46619 (Upjohn, Kalamazoo, MI). MEASUREMENTS Lobar arterial perfusion pressure, systemic pressure, and left atrial pressure were continuously monitored, electronically averaged, and permanently recorded. MAIN RESULTS Under elevated tone conditions in the isolated left lower lobe vascular bed of the cat, N omega-I-nitro-L-arginine methyl ester, glibenclamide, and meclofenamate had no significant effect on the vasodilator responses to ketamine. Nicardipine, in a dose that reduced significantly vasopressor effects to BAY K 8644, a calcium-channel opener, attenuated significantly vasodilator responses to ketamine, whereas the L-type calcium-channel blocker had no significant effects on responses to acetylcholine and to isoproterenol. CONCLUSIONS These data show that ketamine has significant vasodilator activity in the pulmonary vascular bed of the cat. The present data also suggest that responses to ketamine during elevated tone conditions may in part be mediated by the activation of L-type calcium channels.
Collapse
Affiliation(s)
- A D Kaye
- Department of Anesthesiology, Tulane University Medical School, New Orleans, Louisiana, USA.
| | | | | | | | | |
Collapse
|
17
|
Petroianu G, Liu J, Helfrich U, Maleck W, Rüfer R. Phospholipase A2-induced coagulation abnormalities after bee sting. Am J Emerg Med 2000; 18:22-7. [PMID: 10674526 DOI: 10.1016/s0735-6757(00)90042-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We will examine the correlation between various bee venom phospholipase A2 (PLA2) concentrations and several parameters of coagulation in human plasma in order to offer a rationale for requesting a particular laboratory coagulation test after bee sting(s). We will also evaluate in vitro the influence of clinically available drugs with a noncompetitive inhibitory effect on PLA2 on the anticoagulant effect of bee venom PLA2. Prothrombin index (PTi), partial thromboplastin time (PTT), antithrombin III (AT III), soluble fibrin monomers (SFM), the activity of coagulation factors I, II, V, and VIII, and thrombelastography (TEG) parameters (split point [Sp], reaction time [R], kinetic time [K], coagulation time [R + K], maximal amplitude [MA], and the growth angle [alpha]) were determined before and after addition of 1.4, 2.7, and 4.1 units (1, 2, and 3 microg protein respectively) of bee venom PLA2. Linear regression was used to determine the significance of the relationship between these coagulation parameters and bee venom PLA2 concentrations used. To study the influence of ketamine, lidocaine, magnesium, furosemide, and cromolyn on the anticoagulant effect of bee venom PLA2, PTi and factor II- and V-activities were measured before and after addition of 2.7 units of PLA2 and PLA2 plus one of the tested substances. Determinations of F II, PTi, F V, and F VIII showed a negative correlation to bee venom PLA2 concentration (r = -0.88, -0.86, -0.81, and -0.79 respectively). A positive correlation was found for PTT (r = 0.69). FII- activity and PTi correlated better with bee venom PLA2 concentration than other parameters. F I, AT III, and SFM showed no changes. Whereas Sp, R, and K were prolonged by bee venom PLA2 and a was reduced, there was no correlation to the PLA2 concentration. Addition of none of the 5 substances could correct the effects of bee venom PLA2 on the coagulation. In a patient with toxic reaction or a severe anaphylactic reaction after bee sting(s) we suggest determinations of FII and/or PTi. This will allow a quick and economical assessment of coagulation abnormalities after bee sting(s). Noncompetitive PLA2-inhibitors (ketamine, lidocaine, magnesium, furosemide, and cromolyn) are unable to correct in vitro the anticoagulant effect of bee venom PLA2. They cannot be recommended at this stage for this purpose. Further investigations with competitive PLA2-inhibitors are warranted.
Collapse
Affiliation(s)
- G Petroianu
- University of Heidelberg at Mannheim, Department of Pharmacology and Toxicology, Germany.
| | | | | | | | | |
Collapse
|
18
|
Pagliaro P, Senzaki H, Paolocci N, Isoda T, Sunagawa G, Recchia FA, Kass DA. Specificity of synergistic coronary flow enhancement by adenosine and pulsatile perfusion in the dog. J Physiol 1999; 520 Pt 1:271-80. [PMID: 10517818 PMCID: PMC2269556 DOI: 10.1111/j.1469-7793.1999.00271.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. Coronary flow elevation from enhanced perfusion pulsatility is synergistically amplified by adenosine. This study determined the specificity of this interaction and its potential mechanisms. 2. Mean and phasic coronary flow responses to increasing pulsatile perfusion were assessed in anaesthetized dogs, with the anterior descending coronary artery servoperfused to regulate real-time physiological flow pulsatility at constant mean pressure. Pulsatility was varied between 40 and 100 mmHg. Hearts ejected into the native aorta whilst maintaining stable loading. 3. Increasing pulsatility elevated mean coronary flow +11.5 +/- 1.7 % under basal conditions. Co-infusion of adenosine sufficient to raise baseline flow 66 % markedly amplified this pulsatile perfusion response (+82. 6 +/- 14.3 % increase in mean flow above adenosine baseline), due to a leftward shift of the adenosine-coronary flow response curve at higher pulsatility. Flow augmentation with pulsatility was not linked to higher regional oxygen consumption, supporting direct rather than metabolically driven mechanisms. 4. Neither bradykinin, acetylcholine nor verapamil reproduced the synergistic amplification of mean flow by adenosine and higher pulsatility, despite being administered at doses matching basal flow change with adenosine. 5. ATP-sensitive potassium (KATP) activation (pinacidil) amplified the pulse-flow response 3-fold, although this remained significantly less than with adenosine. Co-administration of the phospholipase A2 inhibitor quinacrine virtually eliminated adenosine-induced vasodilatation, yet synergistic interaction between adenosine and pulse perfusion persisted, albeit at a reduced level. 6. Thus, adenosine and perfusion pulsatility specifically interact to enhance coronary flow. This synergy is partially explained by KATP agonist action and additional non-flow-dependent mechanisms, and may be important for modulating flow reserve during exercise or other high output states where increased flow demand and higher perfusion pulsatility typically co-exist.
Collapse
Affiliation(s)
- P Pagliaro
- The Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Denson DD, Worrell RT, Middleton P, Eaton DC. Ca2+ sensitivity of BK channels in GH3 cells involves cytosolic phospholipase A2. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C201-9. [PMID: 9886936 DOI: 10.1152/ajpcell.1999.276.1.c201] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To test the hypothesis that intracellular Ca2+ activation of large-conductance Ca2+-activated K+ (BK) channels involves the cytosolic form of phospholipase A2 (cPLA2), we first inhibited the expression of cPLA2 by treating GH3 cells with antisense oligonucleotides directed at the two possible translation start sites on cPLA2. Western blot analysis and a biochemical assay of cPLA2 activity showed marked inhibition of the expression of cPLA2 in antisense-treated cells. We then examined the effects of intracellular Ca2+ concentration ([Ca2+]i) on single BK channels from these cells. Open channel probability (Po) for the cells exposed to cPLA2 antisense oligonucleotides in 0.1 microM intracellular Ca2+ was significantly lower than in untreated or sense oligonucleotide-treated cells, but the voltage sensitivity did not change (measured as the slope of the Po-voltage relationship). In fact, a 1,000-fold increase in [Ca2+]i from 0.1 to 100 microM did not significantly increase Po in these cells, whereas BK channels from cells in the other treatment groups showed a normal Po-[Ca2+]i response. Finally, we examined the effect of exogenous arachidonic acid on the Po of BK channels from antisense-treated cells. Although arachidonic acid did significantly increase Po, it did so without restoring the [Ca2+]i sensitivity observed in untreated cells. We conclude that although [Ca2+]i does impart some basal activity to BK channels in GH3 cells, the steep Po-[Ca2+]i relationship that is characteristic of these channels involves cPLA2.
Collapse
Affiliation(s)
- D D Denson
- Department of Anesthesiolgy, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
20
|
Kaye AD, Banister RE, Anwar M, Feng CJ, Kadowitz PJ, Nossaman BD. Pulmonary vasodilation by ketamine is mediated in part by L-type calcium channels. Anesth Analg 1998; 87:956-62. [PMID: 9768801 DOI: 10.1097/00000539-199810000-00039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED We studied the effects of ketamine in the isolated rat lung under conditions of increased pulmonary arterial pressure using the thromboxane A2 mimic, U46619, and in response to ventilatory hypoxia. Ketamine caused dose-dependent vasodilation, and possible mechanisms were evaluated using verapamil, meclofenamate, N(omega)-L-nitro-L-arginine benzyl ester (an inhibitor of nitric oxide synthase), and U-38883A (an ATP-sensitive potassium channel antagonist) in the isolated blood-perfused rat lung. Under increased tone conditions, N(omega)-L-nitro-L-arginine benzyl ester, meclofenamate, and U-38883A had no significant effect in attenuating ketamine-induced vasodilator responses. In a final series of experiments, verapamil significantly attenuated ketamine-induced vasodilator responses. These data suggest that ketamine has significant vasodilator activity in the pulmonary vascular bed of the rat, which seems to be mediated by an L-type calcium channel-sensitive pathway. These responses are not mediated or modulated by the release of nitric oxide, the activation of K+ ATP channels, or the release of vasodilator cyclooxygenase products. IMPLICATIONS In this study, we examined the mechanism of the vasodilator effects of ketamine in the blood-perfused rat lung. The results of the present study suggest that ketamine-induced vasodilator responses are mediated by an L-type calcium channel-sensitive pathway.
Collapse
Affiliation(s)
- A D Kaye
- Department of Anesthesiology, Tulane University Medical School, New Orleans, Louisiana 70112-2699, USA
| | | | | | | | | | | |
Collapse
|
21
|
Kaye AD, Banister RE, Anwar M, Feng CJ, Kadowitz PJ, Nossaman BD. Pulmonary Vasodilation by Ketamine Is Mediated in Part by L-Type Calcium Channels. Anesth Analg 1998. [DOI: 10.1213/00000539-199810000-00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Lopes CM, Franks NP, Lieb WR. Actions of general anaesthetics and arachidonic pathway inhibitors on K+ currents activated by volatile anaesthetics and FMRFamide in molluscan neurones. Br J Pharmacol 1998; 125:309-18. [PMID: 9786503 PMCID: PMC1565621 DOI: 10.1038/sj.bjp.0702069] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
1. K+ currents activated by volatile general anaesthetics (IK(An)) and by the neuropeptide FMRFamide (IK(FMRFa)) were studied under voltage clamp in isolated identified neurones from the pond snail Lymnaea stagnalis. 2. IK(An) was activated by all the volatile anaesthetics studied. The maximal responses varied from agent to agent, with halothane sevoflurane > isoflurane > enflurane approximately chloroform. 3. IK(An) was inhibited rather than activated by the n-alcohols from hexanol to dodecanol and by the 6- and 8-carbon cycloalcohols. The n-alcohols exhibited a cutoff effect, with dodecanol being unable to half-inhibit IK(An). 4. Unlike IK(An) which did not desensitize at reasonable halothane concentrations, IK(FMRFa) desensitized at most FMRFamide concentrations studied. This desensitization could be substantially removed by halothane. Nonetheless, both IK(An) and IK(FMRFa) had similar sensitivities to the potassium channel blockers tetraethylammonium and 4-aminopyridine, consistent with both currents flowing through the same channels. Responses to low concentrations of halothane and FMRFamide showed synergy. 5. The phospholipase A2 inhibitor aristolochic acid inhibited IK(An), consistent with a role for arachidonic acid (AA). The lipoxygenase and cyclooxygenase inhibitor nordihydroguaiaretic acid blocked IK(FMRFa) but did not affect IK(An). IK(An) and IK(FMRFa) were little affected by the cyclooxygenase inhibitor indomethacin. These findings suggest that neither lipoxygenase nor cyclooxygenase pathways of AA metabolism are involved in the anaesthetic activation of IK(An. 6. Inhibitors of a third, cytochrome P450-mediated, pathway of AA metabolism (clotrimazole and econazole) potently blocked IK(An), suggesting possible roles for certain cytochrome P450 isoforms in the activation of IK(An).
Collapse
Affiliation(s)
- C M Lopes
- Biophysics Section, The Blackett Laboratory, Imperial College of Science, Technology and Medicine, South Kensington, London
| | | | | |
Collapse
|
23
|
Abstract
Mesangial cells are smooth muscle-like pericytes that abut and surround the filtration capillaries within the glomerulus. Studies of the fine ultrastructure of the glomerulus show that the mesangial cell and the capillary basement membrane form a biomechanical unit capable of regulating filtration surface area as well as intraglomerular blood volume. Structural and functional studies suggest that mesangial cells regulate filtration rate in both a static and dynamic fashion. Mesangial excitability enables a homeostatic intraglomerular stretch reflex that integrates an increase in filtration pressure with a reduction in capillary surface area. In addition, mesangial tone is regulated by diverse vasoactive hormones. Agonists, such as angiotensin II, contract mesangial cells through a signal transduction pathway that releases intracellular stores of Ca2+, which subsequently activate nonselective cation channels and Cl- channels to depolarize the plasma membrane. The change in membrane potential activates voltage-gated Ca2+ channels, allowing Ca2+ cell entry and further activation of depolarizing conductances. Contraction and entry of cell Ca2+ are inhibited only when Ca2+-activated K+ channels (BK(Ca)) are activated and the membrane is hyperpolarized toward the K+ equilibrium potential. The mesangial BK(Ca) is a weak regulator of contraction in unstimulated cells; however, the gain of the feedback is increased by atrial natriuretic peptide, nitric oxide, and the second messenger cGMP, which activates protein kinase G and decreases both the voltage and Ca2+ activation thresholds of BK(Ca) independent of sensitivity. This enables BK(Ca) to more effectively counter membrane depolarization and voltage-gated Ca2+ influx. After hyperpolarizing the membrane, BK(Ca) rapidly inactivates because of dephosphorylation by protein phosphatase 2A. Regulation of ion channels has been linked casually to hyperfiltration during early stages of diabetes mellitus. Determining the signaling pathways controlling the electrophysiology of glomerular mesangial cells is important for understanding how glomerular filtration rate is regulated in health and disease.
Collapse
Affiliation(s)
- J D Stockand
- The Center for Cellular and Molecular Signaling, Department of Physiology, Emory University Medical School, Atlanta, Georgia, USA
| | | |
Collapse
|
24
|
Stockand JD, Silverman M, Hall D, Derr T, Kubacak B, Sansom SC. Arachidonic acid potentiates the feedback response of mesangial BKCa channels to angiotensin II. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:F658-64. [PMID: 9575888 DOI: 10.1152/ajprenal.1998.274.4.f658] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The influence of arachidonic acid (AA) on the feedback regulation of mesangial contraction by large Ca(2+)-activated K+ channels (BKCa) was determined through single-channel analysis using the patch clamp method. The mesangial BKCa is a low-gain negative feedback inhibitor of contraction that is activated in response to agonist-induced Ca2+ transients and membrane depolarization. AA activated BKCa in cell-attached patches in a dose-dependent manner with a maximal effect at 400 nM and a half-maximal response at 49 nM. In inside-out patches, AA directly activated BKCa with a maximal effect at 400 nM. BKCa was activated significantly in response to addition of 100 nM ANG II in the presence but not the absence of AA. Since it was shown previously that fatty acids stimulated both soluble and membrane-bound guanylyl cyclase, we determined whether AA activated BKCa by interfering with cGMP-mediated signal transduction pathways. It was previously shown that 10 microM cGMP, via cGMP-dependent protein kinase, activated BKCa in a biphasic manner with an early increase in probability of a channel existing in an open state (Po) and a subsequent inactivation mediated by protein phosphatase 2A (PP2A). We found that 10 microM dibutyryl-cGMP enhanced BKCa activity in an additive manner with saturating concentrations (400 nM) of AA. Moreover, the inactivation phase mediated by PP2A was not abolished. Thus AA does not affect the phosphorylation/dephosphorylation regulatory cycle for BKCa. It is concluded that AA potentiates the ANG II feedback response of BKCa by a mechanism that is independent of the phosphorylation cycle.
Collapse
Affiliation(s)
- J D Stockand
- Department of Medicine, University of Texas Medical School at Houston 77030, USA
| | | | | | | | | | | |
Collapse
|