1
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
2
|
Miles L, Powell J, Kozak C, Song Y. Mechanosensitive Ion Channels, Axonal Growth, and Regeneration. Neuroscientist 2022:10738584221088575. [PMID: 35414308 PMCID: PMC9556659 DOI: 10.1177/10738584221088575] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cells sense and respond to mechanical stimuli by converting those stimuli into biological signals, a process known as mechanotransduction. Mechanotransduction is essential in diverse cellular functions, including tissue development, touch sensitivity, pain, and neuronal pathfinding. In the search for key players of mechanotransduction, several families of ion channels were identified as being mechanosensitive and were demonstrated to be activated directly by mechanical forces in both the membrane bilayer and the cytoskeleton. More recently, Piezo ion channels were discovered as a bona fide mechanosensitive ion channel, and its characterization led to a cascade of research that revealed the diverse functions of Piezo proteins and, in particular, their involvement in neuronal repair.
Collapse
Affiliation(s)
- Leann Miles
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jackson Powell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Casey Kozak
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuanquan Song
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Drummond HA. What Evolutionary Evidence Implies About the Identity of the Mechanoelectrical Couplers in Vascular Smooth Muscle Cells. Physiology (Bethesda) 2021; 36:292-306. [PMID: 34431420 DOI: 10.1152/physiol.00008.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Loss of pressure-induced vasoconstriction increases susceptibility to renal and cerebral vascular injury. Favored paradigms underlying initiation of the response include transient receptor potential channels coupled to G protein-coupled receptors or integrins as transducers. Degenerin channels may also mediate the response. This review addresses the 1) evolutionary role of these molecules in mechanosensing, 2) limitations to identifying mechanosensitive molecules, and 3) paradigm shifting molecular model for a VSMC mechanosensor.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
4
|
Breton CV, Landon R, Kahn LG, Enlow MB, Peterson AK, Bastain T, Braun J, Comstock SS, Duarte CS, Hipwell A, Ji H, LaSalle JM, Miller RL, Musci R, Posner J, Schmidt R, Suglia SF, Tung I, Weisenberger D, Zhu Y, Fry R. Exploring the evidence for epigenetic regulation of environmental influences on child health across generations. Commun Biol 2021; 4:769. [PMID: 34158610 PMCID: PMC8219763 DOI: 10.1038/s42003-021-02316-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/03/2021] [Indexed: 02/08/2023] Open
Abstract
Environmental exposures, psychosocial stressors and nutrition are all potentially important influences that may impact health outcomes directly or via interactions with the genome or epigenome over generations. While there have been clear successes in large-scale human genetic studies in recent decades, there is still a substantial amount of missing heritability to be elucidated for complex childhood disorders. Mounting evidence, primarily in animals, suggests environmental exposures may generate or perpetuate altered health outcomes across one or more generations. One putative mechanism for these environmental health effects is via altered epigenetic regulation. This review highlights the current epidemiologic literature and supporting animal studies that describe intergenerational and transgenerational health effects of environmental exposures. Both maternal and paternal exposures and transmission patterns are considered, with attention paid to the attendant ethical, legal and social implications.
Collapse
Affiliation(s)
- Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Remy Landon
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Linda G Kahn
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Michelle Bosquet Enlow
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alicia K Peterson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa Bastain
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joseph Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Cristiane S Duarte
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, NY, USA
| | - Alison Hipwell
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Ji
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, Davis, CA, USA
| | | | - Rashelle Musci
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jonathan Posner
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, NY, USA
| | - Rebecca Schmidt
- Department of Public Health Sciences, UC Davis School of Medicine, Davis, CA, USA
| | | | - Irene Tung
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California and Department of Epidemiology and Biostatistics, University of California, San Francisco, Oakland, CA, USA
| | - Rebecca Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Shear force sensing of epithelial Na + channel (ENaC) relies on N-glycosylated asparagines in the palm and knuckle domains of αENaC. Proc Natl Acad Sci U S A 2019; 117:717-726. [PMID: 31871197 PMCID: PMC6955349 DOI: 10.1073/pnas.1911243117] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The ability to sense mechanical forces is essential for all living organisms. Extracellular tethers have been proposed to mediate mechanical activation of channels belonging to the epithelial Na+ channel (ENaC)/degenerin protein family. The nature and architecture of the tethers that link the channel protein with the extracellular matrix are unknown. Our study provides experimental evidence that glycosylated asparagines and their N-glycans are part of tethers for mechanical activation of ENaC by shear force. The identified asparagines are also important for arterial blood pressure regulation in vivo. These findings provide insights into how mechanical forces are sensed by mechanosensitive ENaC channels to regulate blood pressure. Mechanosensitive ion channels are crucial for normal cell function and facilitate physiological function, such as blood pressure regulation. So far little is known about the molecular mechanisms of how channels sense mechanical force. Canonical vertebrate epithelial Na+ channel (ENaC) formed by α-, β-, and γ-subunits is a shear force (SF) sensor and a member of the ENaC/degenerin protein family. ENaC activity in epithelial cells contributes to electrolyte/fluid-homeostasis and blood pressure regulation. Furthermore, ENaC in endothelial cells mediates vascular responsiveness to regulate blood pressure. Here, we provide evidence that ENaC’s ability to mediate SF responsiveness relies on the “force-from-filament” principle involving extracellular tethers and the extracellular matrix (ECM). Two glycosylated asparagines, respectively their N-glycans localized in the palm and knuckle domains of αENaC, were identified as potential tethers. Decreased SF-induced ENaC currents were observed following removal of the ECM/glycocalyx, replacement of these glycosylated asparagines, or removal of N-glycans. Endothelial-specific overexpression of αENaC in mice induced hypertension. In contrast, expression of αENaC lacking these glycosylated asparagines blunted this effect. In summary, glycosylated asparagines in the palm and knuckle domains of αENaC are important for SF sensing. In accordance with the force-from-filament principle, they may provide a connection to the ECM that facilitates vascular responsiveness contributing to blood pressure regulation.
Collapse
|
6
|
Gang W, Yu-Zhu W, Yang Y, Feng S, Xing-Li F, Heng Z. The critical role of calcineurin/NFAT (C/N) pathways and effective antitumor prospect for colorectal cancers. J Cell Biochem 2019; 120:19254-19273. [PMID: 31489709 DOI: 10.1002/jcb.29243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
Transcription factors (TFs) like a nuclear factor of activated T-cells (NFAT) and its controller calcineurin are highly expressed in primary intestinal epithelial cells (IECs) due to delamination, damage by tumor-associated flora and selective activation in the intestinal tract tumor are crucial in the progression and growth of colorectal cancer (CRC). This study sought to summarize the current findings concerning the dysregulated calcineurin/NFAT (C/N) signaling involved in CRC initiation and progression. These signalings include proliferation, T-cell functions, and glycolysis with high lactate production that remodels the acidosis, which genes in tumor cells provide an evolutionary advantage, or even increased their attack phenotype. Moreover, the relationship between C/N and gut microbiome in CRC, especially role of NFAT and toll-like receptor signaling in regulating intestinal microbiota are also discussed. Furthermore, this review will discuss the proteins and genes relating to C/N induced acidosis in CRC, which includes ASIC2 regulated C/N1 and TFs associated with the glycolytic by-product that affect T-cell functions and CRC cell growth. It is revealed that calcineurin or NFAT targeting to antitumor, selective calcineurin inhibition or targets in NFAT signaling may be useful for clinical treatment of CRC. This can further aid in the identification of specific targets via cancer patient-personalized approach. Future studies should be focused on targeting to C/N or TLR signaling by the combination of therapeutic agents to regulate T-cell functions and gut microbiome for activating potent anticancer property with the prospect of potentiating the antitumor therapy for CRC.
Collapse
Affiliation(s)
- Wang Gang
- Department of Pharmaceutics, Shanghai Eight People's Hospital, Jiangsu University, Shanghai, China
| | - Wang Yu-Zhu
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu Yang
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shi Feng
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fu Xing-Li
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhang Heng
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Khedr S, Palygin O, Pavlov TS, Blass G, Levchenko V, Alsheikh A, Brands MW, El-Meanawy A, Staruschenko A. Increased ENaC activity during kidney preservation in Wisconsin solution. BMC Nephrol 2019; 20:145. [PMID: 31035971 PMCID: PMC6489205 DOI: 10.1186/s12882-019-1329-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/03/2019] [Indexed: 01/09/2023] Open
Abstract
Background The invention of an effective kidney preservation solution capable of prolonging harvested kidney viability is the core of kidney transplantation procedure. Researchers have been working on upgrading the preservation solution quality aiming at prolonging storage time while maintaining utmost organ viability and functionality. For many years, the University of Wisconsin (UW) solution has been considered the gold standard solution for kidney preservation. However, the lifespan of kidney preservation in the UW solution is still limited. Its impact on the epithelial Na+ channel (ENaC) activity and its mediated processes is unknown and the primary goal of this study. Methods Kidneys harvested from 8 weeks old Sprague Dawley rats were divided into 4 groups depending upon the period of preservation in UW solution. Additional analysis was performed using dogs’ kidneys. ENaC activity was measured using patch clamp technique; protein expression and mRNA transcription were tested through Western blot and RT-qPCR, respectively. A colorimetric LDH level estimation was performed at different time points during UW solution preservation. Results Kidney preservation in Wisconsin solution caused reduction of the kidney size and weight and elevation of LDH level. ENaC activity increased in both rat and dog kidneys preserved in the UW solution as assessed by patch clamp analysis. On the contrary, ENaC channel mRNA levels remained unchanged. Conclusions ENaC activity is significantly elevated in the kidneys during preservation in UW solution, which might affect the immediate post-implantation allograft function and trajectory post-transplant.
Collapse
Affiliation(s)
- Sherif Khedr
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Tengis S Pavlov
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Present address: Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Gregory Blass
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Present address: Western Kentucky University, Bowling Green, KY, 42101, USA
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Ammar Alsheikh
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Michael W Brands
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30901, USA
| | - Ashraf El-Meanawy
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
8
|
Schwingshackl A. The role of stretch-activated ion channels in acute respiratory distress syndrome: finally a new target? Am J Physiol Lung Cell Mol Physiol 2016; 311:L639-52. [PMID: 27521425 DOI: 10.1152/ajplung.00458.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023] Open
Abstract
Mechanical ventilation (MV) and oxygen therapy (hyperoxia; HO) comprise the cornerstones of life-saving interventions for patients with acute respiratory distress syndrome (ARDS). Unfortunately, the side effects of MV and HO include exacerbation of lung injury by barotrauma, volutrauma, and propagation of lung inflammation. Despite significant improvements in ventilator technologies and a heightened awareness of oxygen toxicity, besides low tidal volume ventilation few if any medical interventions have improved ARDS outcomes over the past two decades. We are lacking a comprehensive understanding of mechanotransduction processes in the healthy lung and know little about the interactions between simultaneously activated stretch-, HO-, and cytokine-induced signaling cascades in ARDS. Nevertheless, as we are unraveling these mechanisms we are gathering increasing evidence for the importance of stretch-activated ion channels (SACs) in the activation of lung-resident and inflammatory cells. In addition to the discovery of new SAC families in the lung, e.g., two-pore domain potassium channels, we are increasingly assigning mechanosensing properties to already known Na(+), Ca(2+), K(+), and Cl(-) channels. Better insights into the mechanotransduction mechanisms of SACs will improve our understanding of the pathways leading to ventilator-induced lung injury and lead to much needed novel therapeutic approaches against ARDS by specifically targeting SACs. This review 1) summarizes the reasons why the time has come to seriously consider SACs as new therapeutic targets against ARDS, 2) critically analyzes the physiological and experimental factors that currently limit our knowledge about SACs, and 3) outlines the most important questions future research studies need to address.
Collapse
|
9
|
The Epithelial Sodium Channel and the Processes of Wound Healing. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5675047. [PMID: 27493961 PMCID: PMC4963570 DOI: 10.1155/2016/5675047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/15/2016] [Indexed: 12/19/2022]
Abstract
The epithelial sodium channel (ENaC) mediates passive sodium transport across the apical membranes of sodium absorbing epithelia, like the distal nephron, the intestine, and the lung airways. Additionally, the channel has been involved in the transduction of mechanical stimuli, such as hydrostatic pressure, membrane stretch, and shear stress from fluid flow. Thus, in vascular endothelium, it participates in the control of the vascular tone via its activity both as a sodium channel and as a shear stress transducer. Rather recently, ENaC has been shown to participate in the processes of wound healing, a role that may also involve its activities as sodium transporter and as mechanotransducer. Its presence as the sole channel mediating sodium transport in many tissues and the diversity of its functions probably underlie the complexity of its regulation. This brief review describes some aspects of ENaC regulation, comments on evidence about ENaC participation in wound healing, and suggests possible regulatory mechanisms involved in this participation.
Collapse
|
10
|
Potential Roles of Amiloride-Sensitive Sodium Channels in Cancer Development. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2190216. [PMID: 27403419 PMCID: PMC4926023 DOI: 10.1155/2016/2190216] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/18/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022]
Abstract
The ENaC/degenerin ion channel superfamily includes the amiloride-sensitive epithelial sodium channel (ENaC) and acid sensitive ionic channel (ASIC). ENaC is a multimeric ion channel formed by heteromultimeric membrane glycoproteins, which participate in a multitude of biological processes by mediating the transport of sodium (Na+) across epithelial tissues such as the kidney, lungs, bladder, and gut. Aberrant ENaC functions contribute to several human disease states including pseudohypoaldosteronism, Liddle syndrome, cystic fibrosis, and salt-sensitive hypertension. Increasing evidence suggests that ion channels not only regulate ion homeostasis and electric signaling in excitable cells but also play important roles in cancer cell behaviors such as proliferation, apoptosis, invasion, and migration. Indeed, ENaCs/ASICs had been reported to be associated with cancer characteristics. Given their cell surface localization and pharmacology, pharmacological strategies to target ENaC/ASIC family members may be promising cancer therapeutics.
Collapse
|
11
|
Drummond HA, Stec DE. βENaC acts as a mechanosensor in renal vascular smooth muscle cells that contributes to renal myogenic blood flow regulation, protection from renal injury and hypertension. ACTA ACUST UNITED AC 2015; 1:1-9. [PMID: 27928552 DOI: 10.17554/j.issn.2410-0579.2015.01.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pressure-induced constriction (also known as the "myogenic response") is an important mechanodependent response in small renal arteries and arterioles. The response is initiated by vascular smooth muscle cell (VSMC) stretch due to an increase in intraluminal pressure and leads to vasoconstriction. The myogenic response has two important roles as a mechanism of local blood flow autoregulation and protection against systemic blood pressure-induced microvascular damage. However, the molecular mechanisms underlying initiation of myogenic response are unresolved. Although several molecules have been considered initiators of the response, our laboratory has focused on the role of degenerin proteins because of their strong evolutionary link to mechanosensing in the nematode. Our laboratory has addressed the hypothesis that certain degenerin proteins act as mechanosensors in VSMCs. This article discusses the importance of a specific degenerin protein, β Epithelial Na+ Channel (βENaC), in pressure-induced vasoconstriction, renal blood flow and susceptibility to renal injury. We propose that loss of the renal myogenic constrictor response delays the correction of renal blood flow that occurs with fluctuations in systemic pressure, which allows pressure swings to be transmitted to the microvasculature, thus increasing the susceptibility to renal injury and hypertension. The role of βENaC in myogenic regulation is independent of tubular βENaC and thus represents a non-tubular role for βENaC in renal-cardiovascular homeostasis.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS, 39216-4505
| | - David E Stec
- Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS, 39216-4505
| |
Collapse
|
12
|
Pujol-Giménez J, Pérez A, Reyes AM, Loo DDF, Lostao MP. Functional characterization of the human facilitative glucose transporter 12 (GLUT12) by electrophysiological methods. Am J Physiol Cell Physiol 2015; 308:C1008-22. [PMID: 25855082 DOI: 10.1152/ajpcell.00343.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 04/06/2015] [Indexed: 12/11/2022]
Abstract
GLUT12 is a member of the facilitative family of glucose transporters. The goal of this study was to characterize the functional properties of GLUT12, expressed in Xenopus laevis oocytes, using radiotracer and electrophysiological methods. Our results showed that GLUT12 is a facilitative sugar transporter with substrate selectivity: d-glucose ≥ α-methyl-d-glucopyranoside (α-MG) > 2-deoxy-d-glucose(2-DOG) > d-fructose = d-galactose. α-MG is a characteristic substrate of the Na(+)/glucose (SGLT) family and has not been shown to be a substrate of any of the GLUTs. In the absence of sugar, (22)Na(+) was transported through GLUT12 at a higher rate (40%) than noninjected oocytes, indicating that there is a Na(+) leak through GLUT12. Genistein, an inhibitor of GLUT1, also inhibited sugar uptake by GLUT12. Glucose uptake was increased by the PKA activator 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) but not by the PKC activator phorbol-12-myristate-13-acetate (PMA). In high K(+) concentrations, glucose uptake was blocked. Addition of glucose to the external solution induced an inward current with a reversal potential of approximately -15 mV and was blocked by Cl(-) channel blockers, indicating the current was carried by Cl(-) ions. The sugar-activated Cl(-) currents were unaffected by genistein. In high external K(+) concentrations, sugar-activated Cl(-) currents were also blocked, indicating that GLUT12 activity is voltage dependent. Furthermore, glucose-induced current was increased by the PKA activator 8-Br-cAMP but not by the PKC activator PMA. These new features of GLUT12 are very different from those described for other GLUTs, indicating that GLUT12 must have a specific physiological role within glucose homeostasis, still to be discovered.
Collapse
Affiliation(s)
- Jonai Pujol-Giménez
- Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | - Alejandra Pérez
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; and
| | - Alejandro M Reyes
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; and
| | - Donald D F Loo
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Maria Pilar Lostao
- Department of Nutrition, Food Science and Physiology, School of Pharmacy, University of Navarra, Pamplona, Spain;
| |
Collapse
|
13
|
Quigley SP, Greenwood PL, Kleemann DO, Owens JA, Bawden CS, Nattrass GS. Myogenesis in small and large ovine fetuses at three stages of pregnancy. ANIMAL PRODUCTION SCIENCE 2015. [DOI: 10.1071/an14203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Perturbations of the prenatal environment may influence fetal muscle development. This study investigated muscle cellularity and mRNA abundance of myogenic genes in fetal sheep divergent in their patterns of growth. Muscle samples were obtained from small and large fetuses on Days 50, 92 and 133 of pregnancy. Number of myofibres in the semitendinosus muscle increased between Day 92 and 133 of pregnancy, but did not differ between small and large fetuses at either stage of pregnancy. The semitendinosus of small fetuses had smaller cross-sectional areas of myofibres than did those of their large counterparts on Day 133 of pregnancy. The semitendinosus of small fetuses also had lower DNA concentration on Day 92 and lower protein concentration on Day 133 than did those of large fetuses. The mRNA levels of the myogenic regulatory factors (MRFs), myostatin, the insulin-like growth factors and embryonic myosin in fetal muscles varied with the stage of development, but no differences occurred in response to divergent fetal growth. Myostatin mRNA was more abundant in the semitendinosus than in the supraspinatus muscle on Days 92 and 133, as were myogenic regulatory factors, myf-5, myf-6 and follistatin mRNA on Day 133. The results indicated that muscle growth but not the number of myofibres in fetal sheep is modified by restricted fetal growth, and that genes that regulate muscle development are affected by the stage of development in an anatomical muscle-specific manner.
Collapse
|
14
|
Marunaka Y. Characteristics and Pharmacological Regulation of Epithelial Na+ Channel (ENaC) and Epithelial Na+ Transport. J Pharmacol Sci 2014. [DOI: 10.1254/jphs.14r01sr] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
15
|
Hypotonic Regulation of Mouse Epithelial Sodium Channel in Xenopus laevis Oocytes. J Membr Biol 2013; 246:949-58. [DOI: 10.1007/s00232-013-9598-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
|
16
|
Dagenais A, Tessier MC, Tatur S, Brochiero E, Grygorczyk R, Berthiaume Y. Hypotonic shock modulates Na(+) current via a Cl(-) and Ca(2+)/calmodulin dependent mechanism in alveolar epithelial cells. PLoS One 2013; 8:e74565. [PMID: 24019969 PMCID: PMC3760838 DOI: 10.1371/journal.pone.0074565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 08/05/2013] [Indexed: 12/02/2022] Open
Abstract
Alveolar epithelial cells are involved in Na+ absorption via the epithelial Na+ channel (ENaC), an important process for maintaining an appropriate volume of liquid lining the respiratory epithelium and for lung oedema clearance. Here, we investigated how a 20% hypotonic shock modulates the ionic current in these cells. Polarized alveolar epithelial cells isolated from rat lungs were cultured on permeant filters and their electrophysiological properties recorded. A 20% bilateral hypotonic shock induced an immediate, but transient 52% rise in total transepithelial current and a 67% increase in the amiloride-sensitive current mediated by ENaC. Amiloride pre-treatment decreased the current rise after hypotonic shock, showing that ENaC current is involved in this response. Since Cl- transport is modulated by hypotonic shock, its contribution to the basal and hypotonic-induced transepithelial current was also assessed. Apical NPPB, a broad Cl- channel inhibitor and basolateral DIOA a potassium chloride co-transporter (KCC) inhibitor reduced the total and ENaC currents, showing that transcellular Cl- transport plays a major role in that process. During hypotonic shock, a basolateral Cl- influx, partly inhibited by NPPB is essential for the hypotonic-induced current rise. Hypotonic shock promoted apical ATP secretion and increased intracellular Ca2+. While apyrase, an ATP scavenger, did not inhibit the hypotonic shock current response, W7 a calmodulin antagonist completely prevented the hypotonic current rise. These results indicate that a basolateral Cl- influx as well as Ca2+/calmodulin, but not ATP, are involved in the acute transepithelial current rise elicited by hypotonic shock.
Collapse
Affiliation(s)
- André Dagenais
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| | | | - Sabina Tatur
- Centre de Recherche du CHUM (CRCHUM), Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Emmanuelle Brochiero
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM (CRCHUM), Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Ryszard Grygorczyk
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM (CRCHUM), Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Yves Berthiaume
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Rasgado-Flores H, Krishna Mandava V, Siman H, Van Driessche W, Pilewski JM, Randell SH, Bridges RJ. Effect of apical hyperosmotic sodium challenge and amiloride on sodium transport in human bronchial epithelial cells from cystic fibrosis donors. Am J Physiol Cell Physiol 2013; 305:C1114-22. [PMID: 23986197 DOI: 10.1152/ajpcell.00166.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypertonic saline (HS) inhalation therapy benefits cystic fibrosis (CF) patients [Donaldson SH, Bennet WD, Zeman KL, Knowles MR, Tarran R, Boucher RC. N Engl J Med 354: 241-250, 2006; Elkins MR, Robinson M, Rose BR, Harbour C, Moriarty CP, Marks GB, Belousova EG, Xuan W, Bye PT; the National Hypertonic Saline in Cystic Fibrosis (NHSCF) Study Group. N Engl J Med 354: 229-240, 2006]. Surprisingly, these benefits are long-lasting and are diminished by the epithelial Na(+) channel blocker amiloride (Donaldson SH, Bennet WD, Zeman KL, Knowles MR, Tarran R, Boucher RC. N Engl J Med 354: 241-250, 2006). Our aim was to explain these effects. Human bronchial epithelial (hBE) cells from CF lungs were grown in inserts and were used in three experimental approaches: 1) Ussing chambers to measure amiloride-sensitive short-circuit currents (INa); 2) continuous perfusion Ussing chambers; and 3) near "thin-film" conditions in which the airway surface of the inserts was exposed to a small volume (30 μl) of isosmotic or HS solution as the inserts were kept in their incubation tray and were subsequently used to measure INa under isosmotic conditions (near thin-film experiments; Tarran R, Boucher RC. Methods Mol Med 70: 479-492, 2002). HS solutions (660 mosmol/kgH2O) were prepared by adding additional NaCl to the isosmotic buffer. The transepithelial short-circuit current (ISC), conductance (GT), and capacitance (CT) were measured by transepithelial impedance analysis (Danahay H, Atherton HC, Jackson AD, Kreindler JL, Poll CT, Bridges RJ. Am J Physiol Lung Cell Mol Physiol 290: L558-L569, 2006; Singh AK, Singh S, Devor DC, Frizzell RA, van Driessche W, Bridges RJ. Methods Mol Med 70: 129-142, 2002). Exposure to apical HS inhibited INa, GT, and CT. The INa inhibition required 60 min of reexposure to the isosmotic solution to recover 75%. The time of exposure to HS required to inhibit INa was <2.5 min. Under near thin-film conditions, apical exposure to HS inhibited INa, but as osmotically driven water moved to the apical surface, the aqueous apical volume increased, leading to an amiloride-insensitive decrease in its osmolality and to recovery of INa that lagged behind the osmotic recovery. Amiloride significantly accelerated the recovery of INa following exposure to HS. Our conclusions are that exposure to HS inhibits hBE INa and that amiloride diminishes this effect.
Collapse
Affiliation(s)
- Hector Rasgado-Flores
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The epithelial Na(+) channel (ENaC) and acid-sensitive ion channel (ASIC) branches of the ENaC/degenerin superfamily of cation channels have drawn increasing attention as potential therapeutic targets in a variety of diseases and conditions. Originally thought to be solely expressed in fluid absorptive epithelia and in neurons, it has become apparent that members of this family exhibit nearly ubiquitous expression. Therapeutic opportunities range from hypertension, due to the role of ENaC in maintaining whole body salt and water homeostasis, to anxiety disorders and pain associated with ASIC activity. As a physiologist intrigued by the fundamental mechanics of salt and water transport, it was natural that Dale Benos, to whom this series of reviews is dedicated, should have been at the forefront of research into the amiloride-sensitive sodium channel. The cloning of ENaC and subsequently the ASIC channels has revealed a far wider role for this channel family than was previously imagined. In this review, we will discuss the known and potential roles of ENaC and ASIC subunits in the wide variety of pathologies in which these channels have been implicated. Some of these, such as the role of ENaC in Liddle's syndrome are well established, others less so; however, all are related in that the fundamental defect is due to inappropriate channel activity.
Collapse
Affiliation(s)
- Yawar J Qadri
- Department of Physiology and Biophysics, University of Alabama at Birmingham, AL 35294, USA
| | | | | |
Collapse
|
19
|
Regulation of epithelial sodium transport via epithelial Na+ channel. J Biomed Biotechnol 2011; 2011:978196. [PMID: 22028593 PMCID: PMC3196915 DOI: 10.1155/2011/978196] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 07/09/2011] [Accepted: 08/03/2011] [Indexed: 12/02/2022] Open
Abstract
Renal epithelial Na+ transport plays an important role in homeostasis of our body fluid content and blood pressure. Further, the Na+ transport in alveolar epithelial cells essentially controls the amount of alveolar fluid that should be kept at an appropriate level for normal gas exchange. The epithelial Na+ transport is generally mediated through two steps: (1) the entry step of Na+ via epithelial Na+ channel (ENaC) at the apical membrane and (2) the extrusion step of Na+ via the Na+, K+-ATPase at the basolateral membrane. In general, the Na+ entry via ENaC is the rate-limiting step. Therefore, the regulation of ENaC plays an essential role in control of blood pressure and normal gas exchange. In this paper, we discuss two major factors in ENaC regulation: (1) activity of individual ENaC and (2) number of ENaC located at the apical membrane.
Collapse
|
20
|
Fuchigami T, Matsuzaki T, Ihara S. Possible Roles of ENaC and Cl-Channel in Wound Closure inXenopus laevisEmbryos. Zoolog Sci 2011; 28:703-11. [DOI: 10.2108/zsj.28.703] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Kashlan OB, Kleyman TR. ENaC structure and function in the wake of a resolved structure of a family member. Am J Physiol Renal Physiol 2011; 301:F684-96. [PMID: 21753073 DOI: 10.1152/ajprenal.00259.2011] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Our understanding of epithelial Na(+) channel (ENaC) structure and function has been profoundly impacted by the resolved structure of the homologous acid-sensing ion channel 1 (ASIC1). The structure of the extracellular and pore regions provide insight into channel assembly, processing, and the ability of these channels to sense the external environment. The absence of intracellular structures precludes insight into important interactions with intracellular factors that regulate trafficking and function. The primary sequences of ASIC1 and ENaC subunits are well conserved within the regions that are within or in close proximity to the plasma membrane, but poorly conserved in peripheral domains that may functionally differentiate family members. This review examines functional data, including ion selectivity, gating, and amiloride block, in light of the resolved ASIC1 structure.
Collapse
Affiliation(s)
- Ossama B Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | | |
Collapse
|
22
|
Karpushev AV, Ilatovskaya DV, Staruschenko A. The actin cytoskeleton and small G protein RhoA are not involved in flow-dependent activation of ENaC. BMC Res Notes 2010; 3:210. [PMID: 20663206 PMCID: PMC2918634 DOI: 10.1186/1756-0500-3-210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 07/27/2010] [Indexed: 11/13/2022] Open
Abstract
Background Epithelial cells are exposed to a variety of mechanical stimuli. Epithelial Na+ channels (ENaC) mediate sodium transport across apical membranes of epithelial cells that line the distal nephron, airway and alveoli, and distal colon. Early investigations into stretch sensitivity of ENaC were controversial. However, recent studies are supportive of ENaC's mechanosensitivity. This work studied whether flow-dependent activation of ENaC is modulated by changes in the state of the actin cytoskeleton and whether small GTPase RhoA is involved in flow-mediated increase of ENaC activity. Findings Pretreatment with Cytochalasin D and Latrunculin B for 20 min and 1-2 hrs to disassemble F-actin had no effect on flow-mediated increase of amiloride-sensitive current. Overexpression of ENaC with constitutively active (G14V) or dominant negative (T19N) RhoA similarly had no effect on flow-dependent activation of ENaC activity. In addition, we did not observe changes when we inhibited Rho-kinase with Y27632. Conclusions Our results suggest that the flow-dependent activation of ENaC is not influenced by small GTPase RhoA and modifications in the actin cytoskeleton.
Collapse
Affiliation(s)
- Alexey V Karpushev
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd,, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
23
|
Abstract
Mechanosensitive ion channels are gated directly by physical stimuli and transduce these stimuli into electrical signals. Several criteria must apply for a channel to be considered mechanically gated. Mechanosensitive channels from bacterial systems have met these criteria, but few eukaryotic channels have been confirmed by the same standards. Recent work has suggested or confirmed that diverse types of channels, including TRP channels, K(2P) channels, MscS-like proteins, and DEG/ENaC channels, are mechanically gated. Several studies point to the importance of the plasma membrane for channel gating, but intracellular and/or extracellular structures may also be required.
Collapse
Affiliation(s)
- Jóhanna Arnadóttir
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| | | |
Collapse
|
24
|
Jernigan NL, Paffett ML, Walker BR, Resta TC. ASIC1 contributes to pulmonary vascular smooth muscle store-operated Ca(2+) entry. Am J Physiol Lung Cell Mol Physiol 2009; 297:L271-85. [PMID: 19482897 DOI: 10.1152/ajplung.00020.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Acid-sensing ion channels (ASIC) are voltage-insensitive, cationic channels that have recently been identified in vascular smooth muscle (VSM). It is possible that ASIC contribute to vascular reactivity via Na(+) and Ca(2+) conductance; however, their function in VSM is largely unknown. In pulmonary VSM, store-operated Ca(2+) entry (SOCE) plays a significant role in vasoregulatory mechanisms such as hypoxic pulmonary vasoconstriction and receptor-mediated arterial constriction. Therefore, we hypothesized that ASIC contribute to SOCE in pulmonary VSM. We examined SOCE resulting from depletion of intracellular Ca(2+) stores with cyclopiazonic acid in isolated small pulmonary arteries and primary cultured pulmonary arterial smooth muscle cells by measuring 1) changes in VSM [Ca(2+)](i) using fura-2 indicator dye, 2) Mn(2+) quenching of fura-2 fluorescence, and 3) store-operated Ca(2+) and Na(+) currents using conventional whole cell patch-clamp configuration in voltage-clamp mode. The role of ASIC was assessed by the use of the ASIC inhibitors, amiloride, benzamil, and psalmotoxin 1, or siRNA directed towards ASIC1, ASIC2, or ASIC3 isoforms. We found that store-operated VSM [Ca(2+)](i) responses, Mn(2+) influx, and inward cationic currents were attenuated by either pharmacological ASIC inhibition or treatment with ASIC1 siRNA. These data establish a unique role for ASIC1 in mediating SOCE in pulmonary VSM and provide new insight into mechanisms of VSM Ca(2+) entry and pulmonary vasoregulation.
Collapse
Affiliation(s)
- Nikki L Jernigan
- Dept. of Cell Biology and Physiology, Univ. of New Mexico Health Sciences Center, Albuquerque, 87131-0001, USA.
| | | | | | | |
Collapse
|
25
|
Kondás K, Szláma G, Trexler M, Patthy L. Both WFIKKN1 and WFIKKN2 have high affinity for growth and differentiation factors 8 and 11. J Biol Chem 2008; 283:23677-84. [PMID: 18596030 DOI: 10.1074/jbc.m803025200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
WFIKKN1 and WFIKKN2 are large extracellular multidomain proteins consisting of a WAP, a follistatin, an immunoglobulin, two Kunitz-type protease inhibitor domains, and an NTR domain. Recent experiments have shown that WFIKKN2 protein binds mature GDF8/myostatin and myostatin propeptide and inhibits the biological activity of myostatin (Hill, J. J., Qiu, Y., Hewick, R. M., and Wolfman, N. M. (2003) Mol. Endocrinol. 17, 1144-1154). Here we show that the paralogue of this protein, WFIKKN1, also binds to both myostatin and myostatin propeptide and that both WFIKKN1 and WFIKKN2 bind GDF11, the growth and differentiation factor most closely related to myostatin, with high affinity. Structure-function studies on WFIKKN1 have revealed that the follistatin domain is primarily responsible for the binding of mature growth factor, whereas the NTR domain contributes most significantly to the interaction with myostatin propeptide. Analysis of the evolutionary histories of WFIKKN1/WFIKKN2 and GDF8/GDF11 proteins indicates that the functional association of an ancestral WFIKKN protein with an ancestor of GDF8/11 may date back to cephalochordates/urochordates. Although duplication of the corresponding genes gave rise to WFIKKN1/WFIKKN2 and GDF8/GDF11 in early vertebrates, the data presented here suggest that there is significant functional overlap of the paralogous proteins.
Collapse
Affiliation(s)
- Katalin Kondás
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1113 Budapest, Hungary
| | | | | | | |
Collapse
|
26
|
Drummond HA, Jernigan NL, Grifoni SC. Sensing tension: epithelial sodium channel/acid-sensing ion channel proteins in cardiovascular homeostasis. Hypertension 2008; 51:1265-71. [PMID: 18378856 PMCID: PMC2788303 DOI: 10.1161/hypertensionaha.107.093401] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS 39216-4505, USA.
| | | | | |
Collapse
|
27
|
Drummond HA, Grifoni SC, Jernigan NL. A new trick for an old dogma: ENaC proteins as mechanotransducers in vascular smooth muscle. Physiology (Bethesda) 2008; 23:23-31. [PMID: 18268362 DOI: 10.1152/physiol.00034.2007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Myogenic constriction is a vasoconstriction of blood vessels to increases in perfusion pressure. In renal preglomerular vasculature, it is an established mechanism of renal blood flow autoregulation. Recently, myogenic constriction has been identified as an important protective mechanism, preventing the transmission of systemic pressure to the fragile glomerular vasculature. Although the signal transduction pathways mediating vasoconstriction are well known, how the increases in pressure trigger vasoconstriction is unclear. The response is initiated by pressure-induced stretch of the vessel wall and thus is dependent on mechanical signaling. The identity of the sensor detecting VSMC stretch is unknown. Previous studies have considered the role of extracellular matrix-integrin interactions, ion conduction units (channels and/or transporters), and the cytoskeleton as pressure detectors. Whether, and how, these structures fit together in VSMCs is poorly understood. However, a model of mechanotransduction in the nematode Caenorhadbditis elegans (C. elegans) has been established that ties together extracellular matrix, ion channels, and cytoskeletal proteins into a large mechanosensing complex. In the C. elegans mechanotransducer model, a family of evolutionarily conserved proteins, referred to as the DEG/ENaC/ASIC family, form the ion-conducting pore of the mechanotransducer. Members of this protein family are expressed in VSMC where they may participate in pressure detection. This review will address how the C. elegans mechanotransducer model can be used to model pressure detection in mammalian VSMCs and provide a new perspective to pressure detection in VSMCs.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, and Center for Excellence in Cardio-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi, USA.
| | | | | |
Collapse
|
28
|
Folgering JHA, Sharif-Naeini R, Dedman A, Patel A, Delmas P, Honoré E. Molecular basis of the mammalian pressure-sensitive ion channels: focus on vascular mechanotransduction. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 97:180-95. [PMID: 18343483 DOI: 10.1016/j.pbiomolbio.2008.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mechano-gated ion channels are implicated in a variety of neurosensory functions ranging from touch sensitivity to hearing. In the heart, rhythm disturbance subsequent to mechanical effects is also associated with the activation of stretch-sensitive ion channels. Arterial autoregulation in response to hemodynamic stimuli, a vital process required for protection against hypertension-induced injury, is similarly dependent on the activity of force-sensitive ion channels. Seminal work in prokaryotes and invertebrates, including the nematode Caenorhabditis elegans and the fruit fly drosophila, greatly helped to identify the molecular basis of volume regulation, hearing and touch sensitivity. In mammals, more recent findings have indicated that members of several structural family of ion channels, namely the transient receptor potential (TRP) channels, the amiloride-sensitive ENaC/ASIC channels and the potassium channels K2P and Kir are involved in cellular mechanotransduction. In the present review, we will focus on the molecular and functional properties of these channel subunits and will emphasize on their role in the pressure-dependent arterial myogenic constriction and the flow-mediated vasodilation.
Collapse
Affiliation(s)
- Joost H A Folgering
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR6097, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | | | | | | | | | | |
Collapse
|
29
|
Ugawa S, Ishida Y, Ueda T, Yu Y, Shimada S. Hypotonic stimuli enhance proton-gated currents of acid-sensing ion channel-1b. Biochem Biophys Res Commun 2007; 367:530-4. [PMID: 18158916 DOI: 10.1016/j.bbrc.2007.12.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 12/12/2007] [Indexed: 11/19/2022]
Abstract
Acid-sensing ion channels (ASICs) are strong candidates for mammalian mechanoreceptors. We investigated whether mouse acid-sensing ion channel-1b (ASIC1b) is sensitive to mechanical stimuli using oocyte electrophysiology, because ASIC1b is located in the mechanosensory stereocilia of cochlear hair cells. Hypotonic stimuli that induced membrane stretch of oocytes evoked no significant current in ASIC1b-expressing oocytes at pH 7.5. However, acid (pH 4.0 or 5.0)-evoked currents in the oocytes were substantially enhanced by the hypotonicity, showing mechanosensitivity of ASIC1b and possible mechanogating of the channel in the presence of other components. Interestingly, the ASIC1b channel was permeable to K(+) (a principal charge carrier for cochlear sensory transduction) and the affinity of the channel for amiloride (IC(50) (inhibition constant)=approximately 48.3 microM) was quite similar to that described for the mouse hair cell mechanotransducer current. Taken together, these data raise the possibility that ASIC1b participates in cochlear mechanoelectrical transduction.
Collapse
Affiliation(s)
- Shinya Ugawa
- Department of Neurobiology and Anatomy, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | |
Collapse
|
30
|
Kusche-Vihrog K, Sobczak K, Bangel N, Wilhelmi M, Nechyporuk-Zloy V, Schwab A, Schillers H, Oberleithner H. Aldosterone and amiloride alter ENaC abundance in vascular endothelium. Pflugers Arch 2007; 455:849-57. [PMID: 17891415 DOI: 10.1007/s00424-007-0341-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/29/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
The amiloride-sensitive epithelial sodium channel (ENaC) is usually found in the apical membrane of epithelial cells but has also recently been described in vascular endothelium. Because little is known about the regulation and cell surface density of ENaC, we studied the influence of aldosterone, spironolactone, and amiloride on its abundance in the plasma membrane of human endothelial cells. Three different methods were applied, single ENaC molecule detection in the plasma membrane, quantification by Western blotting, and cell surface imaging using atomic force microscopy. We found that aldosterone increases the surface expression of ENaC molecules by 36% and the total cellular amount by 91%. The aldosterone receptor antagonist spironolactone prevents these effects completely. Acute application of amiloride to aldosterone-pretreated cells led to a decline of intracellular ENaC by 84%. We conclude that, in vascular endothelium, aldosterone induces ENaC expression and insertion into the plasma membrane. Upon functional blocking with amiloride, the channel disappears from the cell surface and from intracellular pools, indicating either rapid degradation and/or membrane pinch-off. This opens new perspectives in the regulation of ENaC expressed in the vascular endothelium.
Collapse
Affiliation(s)
- Kristina Kusche-Vihrog
- Institute of Animal Physiology, University of Muenster, Hindenburgplatz 55, 48143 Muenster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Fronius M, Clauss WG. Mechano-sensitivity of ENaC: may the (shear) force be with you. Pflugers Arch 2007; 455:775-85. [PMID: 17874325 DOI: 10.1007/s00424-007-0332-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 08/03/2007] [Indexed: 10/22/2022]
Abstract
The epithelial Na+ channel (ENaC) is the rate-limiting step for Na+ absorption in various vertebrate epithelia and deeply enmeshed in the control of salt and water homeostasis. The phylogenetic relationship of ENaC molecules to mechano-sensitive Degenerins from Caenorhabditis elegans indicates that ENaC might be mechano-sensitive as well. Primarily, it was suggested that ENaC might be activated by membrane stretch. However, this issue still remains to be clarified because controversial results were published. Recent publications indicate that shear stress represents an adequate stimulus, activating ENaC via increasing the single-channel open probability. Basing on the experimental evidence published within the past years and integrating this knowledge into a model related to the mechano-sensitive receptor complex known from C. elegans, we introduce a putative mechanism concerning the mechano-sensitivity of ENaC. We suggest that mechano-sensitive ENaC activation represents a nonhormonal regulatory mechanism. This feature could be of considerable physiological significance because many Na+-absorbing epithelia are exposed to shear forces. Furthermore, it may explain the wide distribution of ENaC proteins in nonepithelial tissues. Nevertheless, it remains a challenge for future studies to explore the mechanism how ENaC is controlled by mechanical forces and shear stress in particular.
Collapse
Affiliation(s)
- Martin Fronius
- Institute of Animal Physiology, Justus-Liebig-University Giessen, Wartweg 95, 35392, Giessen, Germany.
| | | |
Collapse
|
32
|
Lyall V, Phan THT, Mummalaneni S, Mansouri M, Heck GL, Kobal G, DeSimone JA. Effect of nicotine on chorda tympani responses to salty and sour stimuli. J Neurophysiol 2007; 98:1662-74. [PMID: 17615133 DOI: 10.1152/jn.00366.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The effect of nicotine on the benzamil (Bz)-insensitive (transient receptor potential vanilloid-1 variant cation channel, TRPV1t) and the Bz-sensitive (epithelial Na(+) channel, ENaC) salt taste receptors and sour taste was investigated by monitoring intracellular Na(+) and H(+) activity (pH(i)) in polarized fungiform taste receptor cells (TRCs) and the chorda tympani (CT) nerve responses to NaCl, KCl, and HCl. CT responses in Sprague-Dawley rats and both wildtype and TRPV1 knockout (KO) mice were recorded in the presence and absence of agonists [resiniferatoxin (RTX) and elevated temperature] and an antagonist (SB-366791) of TRPV1t, the ENaC blocker (Bz), and varying apical pH (pH(o)). At concentrations <0.015 M, nicotine enhanced and at >0.015 M, it inhibited CT responses to KCl and NaCl. Nicotine produced maximum enhancement in the Bz-insensitive NaCl CT response at pH(o) between 6 and 7. RTX and elevated temperature increased the sensitivity of the CT response to nicotine in salt-containing media, and SB-366791 inhibited these effects. TRPV1 KO mice demonstrated no Bz-insensitive CT response to NaCl and no sensitivity to nicotine, RTX, and elevated temperature. We conclude that nicotine modulates salt responses by direct interaction with TRPV1t. At pH(o) >8, the apical membrane permeability of nicotine was increased significantly, resulting in increase in TRC pH(i) and volume, activation of ENaC, and enhancement of the Bz-sensitive NaCl CT response. At pH(o) >8, nicotine also inhibited the phasic component of the HCl CT response. We conclude that the effects of nicotine on ENaC and the phasic HCl CT response arise from increases in TRC pH(i) and volume.
Collapse
Affiliation(s)
- Vijay Lyall
- Department of Physiology, Virginia Commonwealth University, Sanger Hall 3010, 1101 E. Marshall St., Richmond, VA 23298-0551, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Ye JH, Gao J, Wu YN, Hu YJ, Zhang CP, Xu TL. Identification of acid-sensing ion channels in adenoid cystic carcinomas. Biochem Biophys Res Commun 2007; 355:986-92. [PMID: 17324378 DOI: 10.1016/j.bbrc.2007.02.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Accepted: 02/13/2007] [Indexed: 11/19/2022]
Abstract
Tissue acidosis is an important feature of tumor. The response of adenoid cystic carcinoma (ACC) cells to acidic solution was studied using whole-cell patch-clamp recording in the current study. An inward, amiloride-sensitive Na(+) current was identified in cultured ACC-2 cells while not in normal human salivary gland epithelial cells. Electrophysiological and pharmacological properties of the currents suggest that heteromeric acid-sensing ion channels (ASICs) containing 2a and 3 may be responsible for the proton-induced currents in the majority of ACC-2 cells. Consistent with it, analyses of RT-PCR and Western blotting demonstrated the presences of ASIC2a and 3 in ACC-2 cells. Furthermore, we observed the enhanced expression of ASIC2a and 3 in the sample of ACC tissues. These results indicate that the functional expression of ASICs is characteristic feature of ACC cells.
Collapse
Affiliation(s)
- Jin-Hai Ye
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Affiliated Ninth People's Hospital, Shanghai Jiaotong University, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | | | | | | | | | | |
Collapse
|
34
|
Ravosa MJ, Klopp EB, Pinchoff J, Stock SR, Hamrick MW. Plasticity of mandibular biomineralization in myostatin-deficient mice. J Morphol 2007; 268:275-82. [PMID: 17299778 DOI: 10.1002/jmor.10517] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Compared with the normal or wild-type condition, knockout mice lacking myostatin (Mstn), a negative regulator of skeletal muscle growth, develop significant increases in relative masticatory muscle mass as well as the ability to generate higher maximal muscle forces. Wild-type and myostatin-deficient mice were compared to assess the postweaning influence of elevated masticatory loads because of increased jaw-adductor muscle and bite forces on the biomineralization of mandibular cortical bone and dental tissues. Microcomputed tomography (microCT) was used to quantify bone density at a series of equidistant external and internal sites in coronal sections for two symphysis and two corpus locations. Discriminant function analyses and nonparametric ANOVAs were used to characterize variation in biomineralization within and between loading cohorts. Multivariate analyses indicated that 95% of the myostatin-deficient mice and 95% of the normal mice could be distinguished based on biomineralization values at both symphysis and corpus sections. At the corpus, ANOVAs suggest that between-group differences are due to the tendency for cortical bone mineralization to be higher in myostatin-deficient mice, coupled with higher levels of dental biomineralization in normal mice. At the symphysis, ANOVAs indicate that between-group differences are related to significantly elevated bone-density levels along the articular surface and external cortical bone in the knockout mice. Both patterns, especially those for the symphysis, appear because of the postweaning effects of increased masticatory stresses in the knockout mice versus normal mice. The greater number of symphyseal differences suggest that bone along this jaw joint may be characterized by elevated plasticity. Significant differences in bone-density levels between normal and myostatin-deficient mice, coupled with the multivariate differences in patterns of plasticity between the corpus and symphysis, underscore the need for a comprehensive analysis of the plasticity of masticatory tissues vis-à-vis altered mechanical loads.
Collapse
Affiliation(s)
- Matthew J Ravosa
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65212, USA.
| | | | | | | | | |
Collapse
|
35
|
ENaC Proteins in Vascular Smooth Muscle Mechanotransduction. CURRENT TOPICS IN MEMBRANES 2007; 59:127-53. [DOI: 10.1016/s1063-5823(06)59006-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
36
|
Hamrick MW, Pennington C, Webb CN, Isales CM. Resistance to body fat gain in 'double-muscled' mice fed a high-fat diet. Int J Obes (Lond) 2006; 30:868-70. [PMID: 16404405 DOI: 10.1038/sj.ijo.0803200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine if myostatin deficiency attenuates body fat gain with increased dietary fat intake. METHODS Normal and myostatin-deficient mice were fed control (8-10 kcal %fat) and high-fat (HF) (45 kcal %fat) diets for a period of 8 weeks, starting at 2 months of age. Body composition, including percent body fat, lean mass, and fat mass, were measured using DXA. Serum adipokines were measured using a Beadlyte assay. RESULTS Two-factor ANOVA revealed significant treatment x genotype interactions for body fat (g), percent body fat, and serum leptin. The HF diet significantly increased body fat, percent body fat, and serum leptin in normal mice but not in myostatin-deficient mice. CONCLUSION Loss of myostatin function not only increases muscle mass in animal models but also attenuates the body fat accumulation that usually accompanies an HF diet.
Collapse
Affiliation(s)
- M W Hamrick
- Department of Cellular Biology & Anatomy, Institute of Molecular Medicine & Genetics, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | |
Collapse
|
37
|
Yang W, Zhang Y, Li Y, Wu Z, Zhu D. Myostatin induces cyclin D1 degradation to cause cell cycle arrest through a phosphatidylinositol 3-kinase/AKT/GSK-3 beta pathway and is antagonized by insulin-like growth factor 1. J Biol Chem 2006; 282:3799-808. [PMID: 17130121 DOI: 10.1074/jbc.m610185200] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myostatin is a transforming growth factor beta superfamily member and is known as an inhibitor of skeletal muscle cell proliferation and differentiation. Exposure to myostatin induces G1 phase cell cycle arrest. In this study, we demonstrated that myostatin down-regulates Cdk4 activity via promotion of cyclin D1 degradation. Overexpression of cyclin D1 significantly blocked myostatin-induced proliferation inhibition. We further showed that phosphorylation at threonine 286 by GSK-3beta was required for myostatin-stimulated cyclin D1 nuclear export and degradation. This process is dependent upon the activin receptor IIB and the phosphatidylinositol 3-kinase/Akt pathway but not Smad3. Insulin-like growth factor 1 (IGF-1) treatment or Akt activation attenuated the myostatin-stimulated cyclin D1 degradation as well as the associated cell proliferation repression. In contrast, attenuation of IGF-1 signaling caused C2C12 cells to undergo apoptosis in response to myostatin treatment. The observation that IGF-1 treatment increases myostatin expression through a phosphatidylinositol 3-kinase pathway suggests a possible feedback regulation between IGF-1 and myostatin. These findings uncover a novel role for myostatin in the regulation of cell growth and cell death in concert with IGF-1.
Collapse
Affiliation(s)
- Wei Yang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | | | | | | | | |
Collapse
|
38
|
Satlin LM, Carattino MD, Liu W, Kleyman TR. Regulation of cation transport in the distal nephron by mechanical forces. Am J Physiol Renal Physiol 2006; 291:F923-31. [PMID: 16849691 DOI: 10.1152/ajprenal.00192.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Thiazide and loop diuretics induce renal K(+) secretion, often leading to renal K(+) wasting and hypokalemia. This phenomenon has been proposed to reflect an increase in delivery to and reabsorption of Na(+) by the distal nephron, with a resultant increase in the driving force for passive K(+) efflux across the apical membrane. Recent studies suggest that cellular mechanisms that lead to enhanced rates of Na(+) reabsorption as well as K(+) secretion in response to increases tubular flow rates are more complex. Increases in tubular flow rates directly enhance the activity of apical membrane Na(+) channels and indirectly activate a class of K(+) channels, referred to as maxi-K, that are functionally inactive under low flow states. This review addresses the role of biomechanical forces, generated by variations in urinary flow rate and tubular fluid volume, in the regulation of transepithelial Na(+) and K(+) transport in the distal nephron. The question of why the distal nephron has evolved to include a component of flow-dependent K(+) secretion is also addressed.
Collapse
Affiliation(s)
- Lisa M Satlin
- Renal-Electrolyte Div, Univ. of Pittsburgh, A919 Scaife Hall, 3550 Terrace St, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
39
|
Wehner F, Bondarava M, ter Veld F, Endl E, Nürnberger HR, Li T. Hypertonicity-induced cation channels. Acta Physiol (Oxf) 2006; 187:21-5. [PMID: 16734739 DOI: 10.1111/j.1748-1716.2006.01561.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Whenever studied in a quantitative fashion, hypertonicity-induced cation channels (HICCs) are found to be the main mediators of regulatory volume increase. In most instances, these channels are either inhibited by amiloride (but insensitive to Gd3+ and flufenamate) or they are efficiently blocked by Gd3+ and flufenamate (but insensitive to amiloride). Of note, however, from two preparations so far a mixed type of pharmacology has also been reported. Whereas the ion selectivity of amiloride-sensitive HICCs has not been studied in much detail yet, amiloride-insensitive channels are either equally permeable to Na+, K+, Cs+ and Li+ but impermeable to N-methyl-D-glucamine (NMDG+) or they exhibit a permeability to Li+ and NMDG+ that amounts to some 50% when compared with that of Na+. Also in this respect, however, some peculiarities do exist. Concerning the actual molecular correlate, evidence was reported that HICCs may be related to the (amiloride-sensitive) epithelial Na+ channel and/or to transient receptor potential channels. Recent findings suggest that HICCs may contribute to cell proliferation, just as the K+ channels that are employed in regulatory volume decrease are mediators of the opposing process, i.e. apoptosis.
Collapse
Affiliation(s)
- F Wehner
- Max-Planck-Institut für molekulare Physiologie, Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Mercado A, Broumand V, Zandi-Nejad K, Enck AH, Mount DB. A C-terminal domain in KCC2 confers constitutive K+-Cl- cotransport. J Biol Chem 2006; 281:1016-26. [PMID: 16291749 DOI: 10.1074/jbc.m509972200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neuron-specific K(+)-Cl(-) cotransporter KCC2 plays a crucial role in determining intracellular chloride activity and thus the neuronal response to gamma-aminobutyric acid and glycine. Of the four KCCs, KCC2 is unique in mediating constitutive K(+)-Cl(-) cotransport under isotonic conditions; the other three KCCs are exclusively swelling-activated, with no isotonic activity. We have utilized a series of chimeric cDNAs to localize the determinant of isotonic transport in KCC2. Two generations of chimeric KCC4-KCC2 cDNAs initially localized this characteristic to within a KCC2-specific expansion of the cytoplasmic C terminus, between residues 929 and 1043. This region of KCC2 is rich in prolines, serines, and charged residues and encompasses two predicted PEST sequences. Substitution of this region in KCC2 with the equivalent sequence of KCC4 resulted in a chimeric KCC that was devoid of isotonic activity, with intact swelling-activated transport. A third generation of chimeras demonstrated that a domain just distal to the PEST sequences confers isotonic transport on KCC4. Mutagenesis of this region revealed that residues 1021-1035 of KCC2 are sufficient for isotonic transport. Swelling-activated K(+)-Cl(-) cotransport is abrogated by calyculin A, whereas isotonic transport mediated by KCC chimeras and KCC2 is completely resistant to this serine-threonine phosphatase inhibitor. In summary, a 15-residue C-terminal domain in KCC2 is both necessary and sufficient for constitutive K(+)-Cl(-) cotransport under isotonic conditions. Furthermore, unlike swelling-activated transport, constitutive K(+)-Cl(-) cotransport mediated by KCC2 is completely independent of serine-threonine phosphatase activity, suggesting that these two modes of transport are activated by distinct mechanisms.
Collapse
Affiliation(s)
- Adriana Mercado
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
41
|
Schwiebert EM, Liang L, Cheng NL, Williams CR, Olteanu D, Welty EA, Zsembery A. Extracellular zinc and ATP-gated P2X receptor calcium entry channels: New zinc receptors as physiological sensors and therapeutic targets. Purinergic Signal 2005; 1:299-310. [PMID: 18404515 PMCID: PMC2096558 DOI: 10.1007/s11302-005-0777-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 07/06/2005] [Accepted: 07/08/2005] [Indexed: 12/15/2022] Open
Abstract
In this review, we focus on two attributes of P2X receptor channel function, one essential and one novel. First, we propose that P2X receptors are extracellular sensors as well as receptors and ion channels. In particular, the large extracellular domain (that comprises 70% of the molecular mass of the receptor channel protein) lends itself to be a cellular sensor. Moreover, its exquisite sensitivity to extracellular pH, ionic strength, and multiple ligands evokes the function of a sensor. Second, we propose that P2X receptors are extracellular zinc receptors as well as receptors for nucleotides. We provide novel data in multiple publications and illustrative data in this invited review to suggest that zinc triggers ATP-independent activation of P2X receptor channel function. In this light, P2X receptors are the cellular site of integration between autocrine and paracrine zinc signaling and autocrine and paracrine purinergic signaling. P2X receptors may sense changes in these ligands as well as in extracellular pH and ionic strength and transduce these sensations via calcium and/or sodium entry and changes in membrane potential.
Collapse
Affiliation(s)
- Erik M Schwiebert
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama, USA,
| | | | | | | | | | | | | |
Collapse
|
42
|
Lyall V, Heck GL, Phan THT, Mummalaneni S, Malik SA, Vinnikova AK, DeSimone JA. Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. I. Effect on TRC volume and Na+ flux. J Gen Physiol 2005; 125:569-85. [PMID: 15928403 PMCID: PMC2234079 DOI: 10.1085/jgp.200409213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 05/04/2005] [Indexed: 01/06/2023] Open
Abstract
The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by the measurement of intracellular Na(+) activity ([Na(+)](i)) in polarized rat fungiform taste receptor cells (TRCs) using fluorescence imaging and by chorda tympani (CT) taste nerve recordings. CT responses were monitored during lingual stimulation with ethanol solutions containing NaCl or KCl. CT responses were recorded in the presence of Bz (a specific blocker of the epithelial Na(+) channel [ENaC]) or the vanilloid receptor-1 (VR-1) antagonists capsazepine or SB-366791, which also block the Bz-insensitive salt taste receptor, a VR-1 variant. CT responses were recorded at 23 degrees C or 42 degrees C (a temperature at which the VR-1 variant salt taste receptor activity is maximally enhanced). In the absence of permeable cations, ethanol induced a transient decrease in TRC volume, and stimulating the tongue with ethanol solutions without added salt elicited only transient phasic CT responses that were insensitive to elevated temperature or SB-366791. Preshrinking TRCs in vivo with hypertonic mannitol (0.5 M) attenuated the magnitude of the phasic CT response, indicating that in the absence of mineral salts, transient phasic CT responses are related to the ethanol-induced osmotic shrinkage of TRCs. In the presence of mineral salts, ethanol increased the Bz-insensitive apical cation flux in TRCs without a change in cell volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a transient phasic component and a sustained tonic component. Ethanol increased the Bz-insensitive NaCl CT response. This effect was further enhanced by elevating the temperature from 23 degrees C to 42 degrees C, and was blocked by SB-366791. We conclude that in the presence of mineral salts, ethanol modulates the Bz-insensitive VR-1 variant salt taste receptor.
Collapse
Affiliation(s)
- Vijay Lyall
- Department of Physiology, Division of Nephrology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Mechanosensitive ion channels are thought to mediate stretch-induced contraction in vascular smooth muscle cells (VSMCs); however, the molecular identity of the mechanosensitive ion channel complex is unknown. Although recent reports suggest degenerin/epithelial Na+ channel (DEG/ENaC) proteins may be mechanosensors in sensory neurons, their role as mechanosensors in vascular tissue has not been examined. We first tested whether DEG/ENaC subunits are expressed in cerebral blood vessels and VSMCs and then examined their role as mechanosensors in mediating the myogenic response in intact blood vessels. Using RT-PCR, we found ENaC transcripts expressed in rat cerebral arteries and freshly dissociated rat cerebral VSMCs. We also detected ENaC expression in isolated blood vessels and VSMCs by immunoblotting and immunolocalization. Moreover, inhibition of ENaC with amiloride (1 micromol/L) and benzamil (30 nmol/L, 1 micromol), an amiloride analog, blocked myogenic constriction in isolated rat cerebral arteries. These data suggest that DEG/ENaC proteins are required for vessel responses to pressure and are consistent with the evolutionary conservation of mechanosensory function of DEG/ENaC proteins.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | | | |
Collapse
|
44
|
Braunstein GM, Zsembery A, Tucker TA, Schwiebert EM. Purinergic signaling underlies CFTR control of human airway epithelial cell volume. J Cyst Fibros 2004; 3:99-117. [PMID: 15463893 DOI: 10.1016/j.jcf.2004.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Accepted: 01/02/2004] [Indexed: 11/26/2022]
Abstract
BACKGROUND Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function in cystic fibrosis (CF) causes dysregulation of multiple ion channels, water channels, and acid-base transporters in epithelia. As such, we hypothesized that dysregulation of many critical ion channels and transporters may cause defects in human airway epithelial cell volume regulation. METHODS Cell volume, regulatory volume decrease, and its regulation was assessed in real-time via Coulter Counter Multisizer III-driven electronic cell sizing in non-CF, CF, and CFTR-complemented CF human airway epithelial cells. SPQ halide fluorescence assay of hypotonicity-induced chloride efflux provided indirect validation of the cell volume assays. RESULTS CFTR, via autocrine ATP signaling, governs human airway epithelial cell volume regulation. Non-CF cells and wild-type (WT)-CFTR-transfected CF cells had normal regulatory volume decrease (RVD) responses that were attenuated by blockade of autocrine and paracrine purinergic signaling. In contrast, parental IB3-1 CF cells or IB3-1 cells expressing CFTR mutants (DeltaF508, G551D, and S1455X) failed to RVD. CF cell RVD was rescued by agonists to P2Y G protein-coupled receptors and, more robustly, by agonists to P2X purinergic receptor channels. CONCLUSIONS Loss of CFTR and CFTR-driven autocrine ATP signaling may underlie defective cell volume regulation and dysregulated ion, water, and acid-base transport in CF airway epithelia.
Collapse
Affiliation(s)
- Gavin M Braunstein
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA
| | | | | | | |
Collapse
|
45
|
Ji HL, Bishop LR, Anderson SJ, Fuller CM, Benos DJ. The role of Pre-H2 domains of alpha- and delta-epithelial Na+ channels in ion permeation, conductance, and amiloride sensitivity. J Biol Chem 2003; 279:8428-40. [PMID: 14660613 DOI: 10.1074/jbc.m312012200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epithelial Na(+) channels (ENaC) regulate salt and water re-absorption across the apical membrane of absorptive epithelia such as the kidney, colon, and lung. Structure-function studies have suggested that the second transmembrane domain (M2) and the adjacent pre- and post-M2 regions are involved in channel pore formation, cation selectivity, and amiloride sensitivity. Because Na(+) selectivity, unitary Na(+) conductance (gamma(Na)), and amiloride sensitivity of delta-ENaC are strikingly different from those of alpha-ENaC, the hypothesis that the pre-H2 domain may contribute to these characterizations has been examined by swapping the pre-H2, H2, and both (pre-H2+H2) domains of delta- and alpha-ENaCs. Whole-cell and single channel results showed that the permeation ratio of Li(+) and Na(+) (P(Li)/P(Na)) for the swap alpha chimeras co-expressed with betagamma-ENaC in Xenopus oocytes decreased significantly. In contrast, the ratio of P(Li)/P(Na) for the swap delta constructs was not significantly altered. Single channel studies confirmed that swapping of the H2 and the pre-H2+H2 domains increased the gamma(Na) of alpha-ENaC but decreased the gamma(Na) of delta-ENaC. A significant increment in the apparent inhibitory dissociation constant for amiloride (K(i)(amil)) was observed in the alpha chimeras by swapping the pre-H2, H2, and pre-H2+H2 domains. In contrast, a striking decline of K(i)(amil) was obtained in the chimeric delta constructs with substitution of the H2 and pre-H2+H2 domains. Our results demonstrate that the pre-H2 domain, combined with the H2 domain, contributes to the P(Li)/P(Na) ratio, single channel Na(+) conductance, and amiloride sensitivity of alpha- and delta-ENaCs.
Collapse
Affiliation(s)
- Hong-Long Ji
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA.
| | | | | | | | | |
Collapse
|
46
|
Carattino MD, Sheng S, Kleyman TR. Epithelial Na+ channels are activated by laminar shear stress. J Biol Chem 2003; 279:4120-6. [PMID: 14625286 DOI: 10.1074/jbc.m311783200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The degenerin/epithelial Na+ channel (ENaC) superfamily is a group of structurally related ion channels that are involved in diverse biological processes, including responses to mechanical stimuli. In renal cortical collecting ducts, changes in rates of perfusion affect Na+ reabsorption through an amiloride-sensitive pathway, suggesting that ENaC may be a mechanosensitive channel. In this study, we examined whether ENaC expressed in oocytes is regulated by laminar shear stress (LSS). A 1.8-mm (internal diameter) perfusion pipette was placed within 0.5-1.0 mm of the oocyte to provide laminar flow across the oocyte surface. LSS induced a dose-dependent and reversible increase in benzamil-sensitive whole cell Na+ currents in oocytes expressing alphabetagamma ENaC. The half-time for activation by LSS was approximately 5 s. Repetitive stimulation by LSS of oocytes expressing ENaC was associated with a reduction in the response to LSS. Oocytes expressing alphabetaS518Kgamma, a pore region mutant with a high open probability, were insensitive to LSS. We demonstrated previously that channels with a Cys residue introduced at position alphaSer-580 had a low open probability, but, following modification by [2-(trimethylammonium)ethyl]methanethiosulfonate bromide (MTSET), channels exhibited a high open probability. Oocytes expressing alphaS580Cbetagamma ENaC respond to LSS similar to wild type; however, covalent modification by MTSET largely eliminated the response to LSS. Our results suggest that shear stress activates ENaC by modifying the gating properties of the channel.
Collapse
Affiliation(s)
- Marcelo D Carattino
- Renal-Electrolyte Division, Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
47
|
Hamrick MW, Pennington C, Byron CD. Bone architecture and disc degeneration in the lumbar spine of mice lacking GDF-8 (myostatin). J Orthop Res 2003; 21:1025-32. [PMID: 14554215 DOI: 10.1016/s0736-0266(03)00105-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
GDF-8, also known as myostatin, is a member of the transforming growth factor-beta superfamily of secreted growth and differentiation factors that is expressed in vertebrate skeletal muscle. Myostatin functions as a negative regulator of skeletal muscle growth and myostatin null mice show a doubling of muscle mass compared to normal mice. We describe here morphology of the lumbar spine in myostatin knockout (Mstn(-/-)) mice using histological and densitometric techniques. The Mstn(-/-) mice examined in this study weigh approximately 10% more than controls (p<0.001) but the iliopsoas muscle is over 50% larger in the knockout mice than in wild-type mice (p<0.001). Peripheral quantitative computed tomography (pQCT) data from the fifth lumbar vertebra show that mice lacking myostatin have approximately 50% greater trabecular bone mineral density (p=0.001) and significantly greater cortical bone mineral content than normal mice. Toluidine blue staining of the intervertebral disc between L4-L5 reveals loss of proteoglycan staining in the hyaline end plates and inner annulus fibrosus of the knockout mice. Loss of cartilage staining in the caudal end plate of L4 is due to ossification of the end plate in the myostatin-deficient animals. Results from this study suggest that increased muscle mass in mice lacking myostatin is associated with increased bone mass as well as degenerative changes in the intervertebral disc.
Collapse
Affiliation(s)
- Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Laney Wlker Blvds CB 2915, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
48
|
Hamrick MW. Increased bone mineral density in the femora of GDF8 knockout mice. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 272:388-91. [PMID: 12704695 DOI: 10.1002/ar.a.10044] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
GDF8 (myostatin), a member of the transforming growth factor (TGF)-beta superfamily of secreted growth and differentiation factors, is a negative regulator of skeletal muscle growth. GDF8 knockout mice have approximately twice the skeletal muscle mass of normal mice. The effects of increased muscle mass on bone modeling were investigated by examining bone mineral content (BMC) and bone mineral density (BMD) in the femora of female GDF8 knockout mice. Dual-energy X-ray absorptiometry (DEXA) densitometry was used to measure whole-femur BMC and BMD, and pQCT densitometry was used to calculate BMC and BMD from cross-sections taken at two different locations: the midshaft and the distal metaphysis. The DEXA results show that the knockout mice have significantly greater femoral BMD than normal mice. The peripheral quantitative computed tomography (pQCT) data indicate that the GDF8 knockout mice have approximately 10% greater cortical BMC (P =.01) at the midshaft and over 20% greater cortical BMC at the metaphysis (P <.001). Likewise, knockouts show approximately 10% greater cortical thickness (P <.001) and significantly greater cortical BMD (P <.001) at both locations. These results suggest that inhibitors of GDF8 function may be useful pharmacological agents for increasing both muscle mass and BMD.
Collapse
Affiliation(s)
- Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia 30912, USA.
| |
Collapse
|
49
|
Cahill DJ, Fry CH, Foxall PJ. Variation in urine composition in the human urinary tract: evidence of urothelial function in situ? J Urol 2003; 169:871-4. [PMID: 12576802 DOI: 10.1097/01.ju.0000052404.42651.55] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE An increased awareness of the concept that the urothelium has a significant transport function led us to question whether urine composition changes as it passes along the human lower urinary tract. MATERIALS AND METHODS Urine samples from the bladder and renal pelvis were collected from 30 adults who underwent percutaneous nephrolithotomy (27) or ureteral stent insertion before lithotripsy (3). Urine was obtained from the 2 renal pelves (operative and contralateral sides) in 6 patients (24%). Urine pH was measured using an ultra-thin glass pH electrode. Urinary osmolality, Na and K were measured by micro-osmometry and flame photometry, respectively. Comparison of data sets was achieved using conventional nonparametric statistical methods. RESULTS Median bladder urine pH in 30 patients, osmolality in 16, Na in 16 and K in 15 were significantly higher than in the renal pelvis at 6.76 (IQR 6.23 to 6.99), 469 mOsm. kg.1 (IQR 349 to 553), 132 (IQR 100 to 154) and 45 mM. (IQR 30 to 64) versus 6.08 (IQR 5.84 to 6.89), 308 mOsm. kg.1 (IQR 248 to 465), 90 (IQR 69 to 115) and 17 mM. (IQR 10 to 47), respectively (p < or = 0.05). There was no significant difference in these parameters in the urine of the paired renal pelves. CONCLUSIONS Bladder urine pH, osmolality, Na and K significantly differ from values in the renal pelvis in moderately hydrated humans. Our data show that urine composition is modified in the lower urinary tract, supporting the concept of a dynamic urothelium. We propose that urothelial-urinary interactions and urinalysis need reappraisal, particularly in investigations of urinary stone formation and sensory bladder function.
Collapse
Affiliation(s)
- Declan J Cahill
- Deparment of Urology, Guy's and St. Thomas' Hospital and Institute of Urology and Nephrology, University College London, United Kingdom
| | | | | |
Collapse
|
50
|
Sheng S, Perry CJ, Kleyman TR. External nickel inhibits epithelial sodium channel by binding to histidine residues within the extracellular domains of alpha and gamma subunits and reducing channel open probability. J Biol Chem 2002; 277:50098-111. [PMID: 12397059 DOI: 10.1074/jbc.m209975200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epithelial sodium channels (ENaC) are regulated by various intracellular and extracellular factors including divalent cations. We studied the inhibitory effect and mechanism of external Ni(2+) on cloned mouse alpha-beta-gamma ENaC expressed in Xenopus oocytes. Ni(2+) reduced amiloride-sensitive Na(+) currents of the wild type mouse ENaC in a dose-dependent manner. The Ni(2+) block was fast and partially reversible at low concentrations and irreversible at high concentrations. ENaC inhibition by Ni(2+) was accompanied by moderate inward rectification at concentrations higher than 0.1 mm. ENaC currents were also blocked by the histidine-reactive reagent diethyl pyrocarbonate. Pretreatment of the oocytes with the reagent reduced Ni(2+) inhibition of the remaining current. Mutations at alphaHis(282) and gammaHis(239) located within the extracellular loops significantly decreased Ni(2+) inhibition of ENaC currents. The mutation alphaH282D or double mutations alphaH282R/gammaH239R eliminated Ni(2+) block. All mutations at gammaHis(239) eliminated Ni(2+)-induced inward current rectification. Ni(2+) block was significantly enhanced by introduction of a histidine at alphaArg(280). Lowering extracellular pH to 5.5 and 4.4 decreased or eliminated Ni(2+) block. Although alphaH282C-beta-gamma channels were partially inhibited by the sulfhydryl-reactive reagent [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET), alpha-beta-gamma H239C channels were insensitive to MTSET. From patch clamp studies, Ni(2+) did not affect unitary current but decreased open probability when perfused into the recording pipette. Our results suggest that external Ni(2+) reduces ENaC open probability by binding to a site consisting of alphaHis(282) and gammaHis(239) and that these histidine residues may participate in ENaC gating.
Collapse
MESH Headings
- Amiloride/pharmacology
- Amino Acid Sequence
- Animals
- Binding Sites
- Cloning, Molecular
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Epithelial Sodium Channels
- Histidine/chemistry
- Kinetics
- Magnesium/pharmacology
- Mice
- Models, Biological
- Models, Chemical
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Nickel/pharmacology
- Oocytes/metabolism
- Patch-Clamp Techniques
- Point Mutation
- Protein Binding
- Protein Structure, Tertiary
- RNA, Complementary/metabolism
- Sequence Homology, Amino Acid
- Sodium/metabolism
- Sodium/pharmacology
- Sodium Channels/chemistry
- Sodium Channels/metabolism
- Time Factors
- Xenopus
Collapse
Affiliation(s)
- Shaohu Sheng
- Renal-Electrolyte Division, the Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|