1
|
Arhen BB, Renwick JRM, Zedic AK, Menezes ES, Preobrazenski N, Simpson CA, Stokes T, McGlory C, Gurd BJ. AMPK and PGC- α following maximal and supramaximal exercise in men and women: a randomized cross-over study. Appl Physiol Nutr Metab 2024; 49:526-538. [PMID: 38113478 DOI: 10.1139/apnm-2023-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
We tested the hypothesis that AMPK activation and peroxisome proliferator gamma coactivator 1 alpha (PGC-1α) expression are not augmented as exercise intensity (power output) increases from maximal to supramaximal intensities and conducted an exploratory analysis comparing AMPK activation and PGC-1α expression in males and females. Seventeen (n = 9 males; n = 8 females) recreationally active, healthy, young individuals volunteered to participate in the current study. Participants completed work matched interval exercise at 100% (Max) and 133% (Supra) of peak work rate (WRpeak). Intervals were 1 min in duration and participants were prescribed 6 and 8 intervals of Max and Supra, respectively, to equate external work across protocols. PGC-1α mRNA expression and activation of AMPK (p-ACC) were examined in muscle biopsy samples. Interval WR (watts; W), intensity (%WRpeak) and average HR (bpm), blood lactate (mmol/L) and rating of perceived exertion were all higher (all p < 0.05) in Supra. Fatigue was greater (p < 0.05) in Supra. PGC-1α mRNA expression significantly increased after exercise in Max (p < 0.01) and Supra (p < 0.01), but was not significantly different (p = 0.71) between intensities. A main effect of time (Pre - 0 h) (p < 0.01) was observed for p-ACC; however, no effect of intensity (p = 0.08) or interaction (p = 0.97) was observed. No significant effects of time (p = 0.05) intensity (p = 0.42), or interaction (p = 0.97) were observed for p-AMPK (Thr172). Exploratory sex analysis demonstrated a main effect of sex for p-ACC (greater p-ACC in males; p < 0.05) but not for p-AMPK or PGC-1α expression. Our results confirm that AMPK-PGC-1α signalling is not augmented following supramaximal exercise and provide novel data demonstrating a decrease in AMPK activation (p-ACC) in females compared to men. Trial registration: https://doi.org/10.17605/OSF.IO/U7PX9.
Collapse
Affiliation(s)
- Benjamin B Arhen
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - J R M Renwick
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - A K Zedic
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - E S Menezes
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - N Preobrazenski
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - C A Simpson
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - T Stokes
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - C McGlory
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
2
|
Granic A, Suetterlin K, Shavlakadze T, Grounds M, Sayer A. Hallmarks of ageing in human skeletal muscle and implications for understanding the pathophysiology of sarcopenia in women and men. Clin Sci (Lond) 2023; 137:1721-1751. [PMID: 37986616 PMCID: PMC10665130 DOI: 10.1042/cs20230319] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Ageing is a complex biological process associated with increased morbidity and mortality. Nine classic, interdependent hallmarks of ageing have been proposed involving genetic and biochemical pathways that collectively influence ageing trajectories and susceptibility to pathology in humans. Ageing skeletal muscle undergoes profound morphological and physiological changes associated with loss of strength, mass, and function, a condition known as sarcopenia. The aetiology of sarcopenia is complex and whilst research in this area is growing rapidly, there is a relative paucity of human studies, particularly in older women. Here, we evaluate how the nine classic hallmarks of ageing: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication contribute to skeletal muscle ageing and the pathophysiology of sarcopenia. We also highlight five novel hallmarks of particular significance to skeletal muscle ageing: inflammation, neural dysfunction, extracellular matrix dysfunction, reduced vascular perfusion, and ionic dyshomeostasis, and discuss how the classic and novel hallmarks are interconnected. Their clinical relevance and translational potential are also considered.
Collapse
Affiliation(s)
- Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
| | - Karen Suetterlin
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, U.K
| | - Tea Shavlakadze
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, NY, U.S.A
| | - Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Avan A. Sayer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
| |
Collapse
|
3
|
The modifier effect of physical activity, body mass index, and age on the association of metformin and chronic back pain: A cross-sectional analysis of 21,899 participants from the UK Biobank. PLoS One 2023; 18:e0282205. [PMID: 36854023 PMCID: PMC9974111 DOI: 10.1371/journal.pone.0282205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND There is growing evidence of the anti-inflammatory effect of the anti-diabetic drug metformin and its use to reduce pain. However, we currently lack studies investigating whether metformin is associated with a reduction in chronic back pain prevalence when considering physical activity levels, body mass index (BMI), and age. OBJECTIVE To investigate whether use of metformin is associated with lower levels of reporting of chronic back pain in a large cohort with type 2 diabetes when stratified for physical activity, BMI, and age. METHODS This is a cross-sectional study of 21,889 participants with type 2 diabetes who were drawn from the UK Biobank database. We investigated whether people using metformin reported a higher prevalence of chronic low back pain than those who did not. Type 2 diabetes, chronic back pain, and metformin were self-reported. Participants were stratified according to their physical activity level (low, moderate and high), BMI (normal, overweight, and obese), and age (40 to <50; 50 to < 60; and ≥60 years). Logistic regression models were built for each physical activity level, BMI and age category to investigate the prevalence of chronic back pain amongst those using and not using metformin. RESULTS Participants who were using metformin and who had low levels of physical activity [OR 0.87, 95%CI 0.78 to 0.96] or who were obese [OR 0.90, 95%CI 0.86 to 0.98] or older [OR 0.85, 95%CI 0.78 to 0.93] had lower odds of reporting chronic back pain than their counterparts. CONCLUSION The anti-diabetic drug metformin might reduce prevalence of chronic low back pain in people who are older, overweight, or less active. These findings should be confirmed in studies using a longitudinal design.
Collapse
|
4
|
Zou YY, Chen ZL, Sun CC, Yang D, Zhou ZQ, Xiao Q, Peng XY, Tang CF. A High-Fat Diet Induces Muscle Mitochondrial Dysfunction and Impairs Swimming Capacity in Zebrafish: A New Model of Sarcopenic Obesity. Nutrients 2022; 14:nu14091975. [PMID: 35565942 PMCID: PMC9105418 DOI: 10.3390/nu14091975] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity is a highly prevalent disease that can induce metabolic syndrome and is associated with a greater risk of muscular atrophy. Mitochondria play central roles in regulating the physiological metabolism of skeletal muscle; however, whether a decreased mitochondrial function is associated with impaired muscle function is unclear. In this study, we evaluated the effects of a high-fat diet on muscle mitochondrial function in a zebrafish model of sarcopenic obesity (SOB). In SOB zebrafish, a significant decrease in exercise capacity and skeletal muscle fiber cross-sectional area was detected, accompanied by high expression of the atrophy-related markers Atrogin-1 and muscle RING-finger protein-1. Zebrafish with SOB exhibited inhibition of mitochondrial biogenesis and fatty acid oxidation as well as disruption of mitochondrial fusion and fission in atrophic muscle. Thus, our findings showed that muscle atrophy was associated with SOB-induced mitochondrial dysfunction. Overall, these results showed that the SOB zebrafish model established in this study may provide new insights into the development of therapeutic strategies to manage mitochondria-related muscular atrophy.
Collapse
|
5
|
Saxton SN, Toms LK, Aldous RG, Withers SB, Ohanian J, Heagerty AM. Restoring Perivascular Adipose Tissue Function in Obesity Using Exercise. Cardiovasc Drugs Ther 2021; 35:1291-1304. [PMID: 33687595 PMCID: PMC8578065 DOI: 10.1007/s10557-020-07136-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Purpose Perivascular adipose tissue (PVAT) exerts an anti-contractile effect which is vital in regulating vascular tone. This effect is mediated via sympathetic nervous stimulation of PVAT by a mechanism which involves noradrenaline uptake through organic cation transporter 3 (OCT3) and β3-adrenoceptor-mediated adiponectin release. In obesity, autonomic dysfunction occurs, which may result in a loss of PVAT function and subsequent vascular disease. Accordingly, we have investigated abnormalities in obese PVAT, and the potential for exercise in restoring function. Methods Vascular contractility to electrical field stimulation (EFS) was assessed ex vivo in the presence of pharmacological tools in ±PVAT vessels from obese and exercised obese mice. Immunohistochemistry was used to detect changes in expression of β3-adrenoceptors, OCT3 and tumour necrosis factor-α (TNFα) in PVAT. Results High fat feeding induced hypertension, hyperglycaemia, and hyperinsulinaemia, which was reversed using exercise, independent of weight loss. Obesity induced a loss of the PVAT anti-contractile effect, which could not be restored via β3-adrenoceptor activation. Moreover, adiponectin no longer exerts vasodilation. Additionally, exercise reversed PVAT dysfunction in obesity by reducing inflammation of PVAT and increasing β3-adrenoceptor and OCT3 expression, which were downregulated in obesity. Furthermore, the vasodilator effects of adiponectin were restored. Conclusion Loss of neutrally mediated PVAT anti-contractile function in obesity will contribute to the development of hypertension and type II diabetes. Exercise training will restore function and treat the vascular complications of obesity. Supplementary Information The online version contains supplementary material available at 10.1007/s10557-020-07136-0.
Collapse
Affiliation(s)
- Sophie N Saxton
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
- The Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, UK
| | - Lauren K Toms
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | | | - Sarah B Withers
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
- The Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, UK
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Jacqueline Ohanian
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Anthony M Heagerty
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.
- The Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, UK.
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, Core Technology Facility (3rd floor), 46 Grafton Street, Manchester, M13 9NT, UK.
| |
Collapse
|
6
|
Tobias IS, Galpin AJ. Moving human muscle physiology research forward: an evaluation of fiber type-specific protein research methodologies. Am J Physiol Cell Physiol 2020; 319:C858-C876. [DOI: 10.1152/ajpcell.00107.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human skeletal muscle is a heterogeneous tissue composed of multiple fiber types that express unique contractile and metabolic properties. While analysis of mixed fiber samples predominates and holds value, increasing attention has been directed toward studying proteins segregated by fiber type, a methodological distinction termed “fiber type-specific.” Fiber type-specific protein studies have the advantage of uncovering key molecular effects that are often missed in mixed fiber homogenate studies but also require greater time and resource-intensive methods, particularly when applied to human muscle. This review summarizes and compares current methods used for fiber type-specific protein analysis, highlighting their advantages and disadvantages for human muscle studies, in addition to recent advances in these techniques. These methods can be grouped into three categories based on the initial processing of the tissue: 1) muscle-specific fiber homogenates, 2) cross sections of fiber bundles, and 3) isolated single fibers, with various subtechniques for performing fiber type identification and protein quantification. The relative implementation for each unique methodological approach is analyzed from 83 fiber type-specific studies of proteins in live human muscle found in the literature to date. These studies have investigated several proteins involved in a wide range of cellular functions that are important to muscle tissue. The second half of this review summarizes key findings from this ensemble of fiber type-specific human protein studies. We highlight examples of where this analytical approach has helped to improve understanding of important physiological topics such as insulin sensitivity, muscle hypertrophy, muscle fatigue, and adaptation to different exercise programs.
Collapse
Affiliation(s)
- Irene S. Tobias
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Andrew J. Galpin
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| |
Collapse
|
7
|
Broholm C, Ribel-Madsen R, Hjort L, Olsson AH, Ahlers JMD, Hansen NS, Schrölkamp M, Gillberg L, Perfilyev A, Volkov P, Ling C, Jørgensen SW, Mortensen B, Hingst J, Wojtaszewski J, Scheele C, Brøns C, Pedersen BK, Vaag A. Epigenome- and Transcriptome-wide Changes in Muscle Stem Cells from Low Birth Weight Men. Endocr Res 2020; 45:58-71. [PMID: 31566019 DOI: 10.1080/07435800.2019.1669160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Being born with low birth weight (LBW) is a risk factor for muscle insulin resistance and type 2 diabetes (T2D), which may be mediated by epigenetic mechanisms programmed by the intrauterine environment. Epigenetic mechanisms exert their prime effects in developing cells. We hypothesized that muscle insulin resistance in LBW subjects may be due to early differential epigenomic and transcriptomic alterations in their immature muscle progenitor cells.Results: Muscle progenitor cells were obtained from 23 healthy young adult men born at term with LBW, and 15 BMI-matched normal birth weight (NBW) controls. The cells were subsequently cultured and differentiated into myotubes. DNA and RNA were harvested before and after differentiation for genome-wide DNA methylation and RNA expression measurements.After correcting for multiple comparisons (q ≤ 0.05), 56 CpG sites were found to be significantly, differentially methylated in myoblasts from LBW compared with NBW men, of which the top five gene-annotated CpG sites (SKI, ARMCX3, NR5A2, NEUROG, ESRRG) previously have been associated to regulation of cholesterol, fatty acid and glucose metabolism and muscle development or hypertrophy. LBW men displayed markedly decreased myotube gene expression levels of the AMPK-repressing tyrosine kinase gene FYN and the histone deacetylase gene HDAC7. Silencing of FYN and HDAC7 was associated with impaired myotube formation, which for HDAC7 reduced muscle glucose uptake.Conclusions: The data provides evidence of impaired muscle development predisposing LBW individuals to T2D is linked to and potentially caused by distinct DNA methylation and transcriptional changes including down regulation of HDAC7 and FYN in their immature myoblast stem cells.
Collapse
Affiliation(s)
- Christa Broholm
- Department of Endocrinology, Diabetes and Bone-metabolic Research Unit, Copenhagen, Denmark
| | - Rasmus Ribel-Madsen
- Department of Endocrinology, Diabetes and Bone-metabolic Research Unit, Copenhagen, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - Line Hjort
- Department of Endocrinology, Diabetes and Bone-metabolic Research Unit, Copenhagen, Denmark
- Danish Diabetes Academy, Odense, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Henrik Olsson
- Department of Endocrinology, Diabetes and Bone-metabolic Research Unit, Copenhagen, Denmark
| | | | - Ninna Schiøler Hansen
- Department of Endocrinology, Diabetes and Bone-metabolic Research Unit, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish PhD School of Molecular Metabolism, Odense, Denmark
| | - Maren Schrölkamp
- Department of Endocrinology, Diabetes and Bone-metabolic Research Unit, Copenhagen, Denmark
| | - Linn Gillberg
- Department of Endocrinology, Diabetes and Bone-metabolic Research Unit, Copenhagen, Denmark
| | - Alexander Perfilyev
- Department of Clinical Sciences, Epigenetics and Diabetes Unit, Lund University Diabetes Centre, CRC, Malmo, Sweden
| | - Petr Volkov
- Department of Clinical Sciences, Epigenetics and Diabetes Unit, Lund University Diabetes Centre, CRC, Malmo, Sweden
| | - Charlotte Ling
- Department of Clinical Sciences, Epigenetics and Diabetes Unit, Lund University Diabetes Centre, CRC, Malmo, Sweden
| | | | | | - Janne Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sport, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sport, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Scheele
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Brøns
- Department of Endocrinology, Diabetes and Bone-metabolic Research Unit, Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Allan Vaag
- Department of Endocrinology, Diabetes and Bone-metabolic Research Unit, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Cardiovascular and Metabolic Disease (CVMD) Translational Medicine Unit, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
8
|
Tobias IS, Lazauskas KK, Siu J, Costa PB, Coburn JW, Galpin AJ. Sex and fiber type independently influence AMPK, TBC1D1, and TBC1D4 at rest and during recovery from high-intensity exercise in humans. J Appl Physiol (1985) 2020; 128:350-361. [PMID: 31895596 DOI: 10.1152/japplphysiol.00704.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Women and men present different metabolic responses to exercise, yet whether this phenomenon results from differences in fiber type (FT) composition or other sex-specific factors remains unclear. Therefore, our aim was to examine the effects of sex and FT independently on AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), Tre-2/BUB2/CDC1 domain family (TBC1D)1, and TBC1D4 in response to acute exercise. Segregated pools of myosin heavy chain (MHC) I and MHC IIa fibers were prepared from vastus lateralis biopsies of young trained men and women at rest and during recovery (0 min, 45 min, 90 min, or 180 min) from high-intensity interval exercise (6 × 1.5 min at 95% maximum oxygen uptake). In resting MHC I vs. IIa fibers, AMPKα2, AMPKγ3, and TBC1D1 were higher and TBC1D4 expression was lower in both sexes, along with higher phospho (p)-TBC1D1Ser660 and lower p-TBC1D4Thr642. Women expressed higher ACC than men in MHC IIa fibers and higher AMPKβ1, AMPKβ2, TBC1D1, and TBC1D4 in both FTs. Immediately after exercise, p-AMPKαThr172 increased only in MHC IIa fibers, whereas p-ACCSer221 increased in both FTs, with no change in p-TBC1D1Ser660 or p-TBC1D4Thr642. During recovery, delayed responses were observed for p-AMPKαThr172 in MHC I (45 min), p-TBC1D4Thr642 in both FTs (45 min), and p-TBC1D1Ser660 (180 min). FT-specific phosphorylation responses to exercise were similar between men and women. Data indicate that sex and FT independently influence expression of AMPK and its substrates. Thus failing to account for sex or FT may reduce accuracy and precision of metabolic protein measurements and conceal key findings.NEW & NOTEWORTHY This investigation is the first to compare muscle fiber type (FT)-specific analysis of proteins between the sexes, providing comprehensive data on AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), Tre-2/BUB2/CDC1 domain family (TBC1D)1, and TBC1D4 before and in the hours following high-intensity interval exercise (HIIT). Expression and phosphorylation of specific AMPK isoforms, ACC, TBC1D1, and TBC1D4 were shown to be FT dependent, sex dependent, or both, and TBC1D1 showed an unexpected delay in FT-dependent phosphorylation in the time period following HIIT.
Collapse
Affiliation(s)
- Irene S Tobias
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Kara K Lazauskas
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Jeremy Siu
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Pablo B Costa
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Jared W Coburn
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Andrew J Galpin
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| |
Collapse
|
9
|
Steenberg DE, Jørgensen NB, Birk JB, Sjøberg KA, Kiens B, Richter EA, Wojtaszewski JFP. Exercise training reduces the insulin-sensitizing effect of a single bout of exercise in human skeletal muscle. J Physiol 2018; 597:89-103. [PMID: 30325018 DOI: 10.1113/jp276735] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS A single bout of exercise is capable of increasing insulin sensitivity in human skeletal muscle. Whether this ability is affected by training status is not clear. Studies in mice suggest that the AMPK-TBC1D4 signalling axis is important for the increased insulin-stimulated glucose uptake after a single bout of exercise. The present study is the first longitudinal intervention study to show that, although exercise training increases insulin-stimulated glucose uptake in skeletal muscle at rest, it diminishes the ability of a single bout of exercise to enhance muscle insulin-stimulated glucose uptake. The present study provides novel data indicating that AMPK in human skeletal muscle is important for the insulin-sensitizing effect of a single bout of exercise. ABSTRACT Not only chronic exercise training, but also a single bout of exercise, increases insulin-stimulated glucose uptake in skeletal muscle. However, it is not well described how adaptations to exercise training affect the ability of a single bout of exercise to increase insulin sensitivity. Rodent studies suggest that the insulin-sensitizing effect of a single bout of exercise is AMPK-dependent (presumably via the α2 β2 γ3 AMPK complex). Whether this is also the case in humans is unknown. Previous studies have shown that exercise training decreases the expression of the α2 β2 γ3 AMPK complex and diminishes the activation of this complex during exercise. Thus, we hypothesized that exercise training diminishes the ability of a single bout of exercise to enhance muscle insulin sensitivity. We investigated nine healthy male subjects who performed one-legged knee-extensor exercise at the same relative intensity before and after 12 weeks of exercise training. Training increased V ̇ O 2 peak and expression of mitochondrial proteins in muscle, whereas the expression of AMPKγ3 was decreased. Training also increased whole body and muscle insulin sensitivity. Interestingly, insulin-stimulated glucose uptake in the acutely exercised leg was not enhanced further by training. Thus, the increase in insulin-stimulated glucose uptake following a single bout of one-legged exercise was lower in the trained vs. untrained state. This was associated with reduced signalling via confirmed α2 β2 γ3 AMPK downstream targets (ACC and TBC1D4). These results suggest that the insulin-sensitizing effect of a single bout of exercise is also AMPK-dependent in human skeletal muscle.
Collapse
Affiliation(s)
- Dorte E Steenberg
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Nichlas B Jørgensen
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Birk
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Kim A Sjøberg
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Chen PB, Yang JS, Park Y. Adaptations of Skeletal Muscle Mitochondria to Obesity, Exercise, and Polyunsaturated Fatty Acids. Lipids 2018; 53:271-278. [PMID: 29663395 DOI: 10.1002/lipd.12037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/01/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022]
Abstract
Mitochondria intricately modulate their energy production through the control of mitochondrial adaptation (mitochondrial biogenesis, fusion, and/or fission) to meet energy demands. Nutrient overload may result in dysregulated mitochondrial biogenesis, morphology toward mitochondrial fragmentation, and oxidative stress in the skeletal muscle. In addition, physical activity and diet components influence mitochondrial function. Exercise may stimulate mitochondrial biogenesis and promote mitochondrial fusion/fission in the skeletal muscle. Moreover, some dietary fatty acids, such as n-3 polyunsaturated fatty acids and conjugated linoleic acid, have been identified to positively regulate mitochondrial adaptation in the skeletal muscle. This review discusses the association of mitochondrial impairments and obesity, and presents an overview of various mechanisms of which exercise training and mitochondrial nutrients promote mitochondrial function in the skeletal muscle.
Collapse
Affiliation(s)
- Phoebe B Chen
- Department of Food Science, University of Massachusetts, Amherst, 102 Holdsworth Way, Amherst, MA, 01003, USA
| | - Jason S Yang
- Department of Food Science, University of Massachusetts, Amherst, 102 Holdsworth Way, Amherst, MA, 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, 102 Holdsworth Way, Amherst, MA, 01003, USA
| |
Collapse
|
11
|
Donovan EL, Buckels EJ, Hancock S, Smeitink D, Oliver MH, Bloomfield FH, Jaquiery AL. Twin Conception in Sheep Leads to Impaired Insulin Sensitivity and Sexually Dimorphic Adipose Tissue and Skeletal Muscle Phenotypes in Adulthood. Reprod Sci 2016; 24:865-881. [DOI: 10.1177/1933719116670516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Elise L. Donovan
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| | - Emma J. Buckels
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Serina Hancock
- Liggins Institute, University of Auckland, Auckland, New Zealand
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | | | - Mark H. Oliver
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| | - Frank H. Bloomfield
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
- Department of Paediatrics, Child and Youth Health, University of Auckland, Auckland, New Zealand
| | - Anne L. Jaquiery
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
- Department of Paediatrics, Child and Youth Health, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Vigelsø A, Gram M, Dybboe R, Kuhlman AB, Prats C, Greenhaff PL, Constantin-Teodosiu D, Birk JB, Wojtaszewski JFP, Dela F, Helge JW. The effect of age and unilateral leg immobilization for 2 weeks on substrate utilization during moderate-intensity exercise in human skeletal muscle. J Physiol 2016; 594:2339-58. [PMID: 26801521 DOI: 10.1113/jp271712] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/15/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS This study aimed to provide molecular insight into the differential effects of age and physical inactivity on the regulation of substrate metabolism during moderate-intensity exercise. Using the arteriovenous balance technique, we studied the effect of immobilization of one leg for 2 weeks on leg substrate utilization in young and older men during two-legged dynamic knee-extensor moderate-intensity exercise, as well as changes in key proteins in muscle metabolism before and after exercise. Age and immobilization did not affect relative carbohydrate and fat utilization during exercise, but the older men had higher uptake of exogenous fatty acids, whereas the young men relied more on endogenous fatty acids during exercise. Using a combined whole-leg and molecular approach, we provide evidence that both age and physical inactivity result in intramuscular lipid accumulation, but this occurs only in part through the same mechanisms. ABSTRACT Age and inactivity have been associated with intramuscular triglyceride (IMTG) accumulation. Here, we attempt to disentangle these factors by studying the effect of 2 weeks of unilateral leg immobilization on substrate utilization across the legs during moderate-intensity exercise in young (n = 17; 23 ± 1 years old) and older men (n = 15; 68 ± 1 years old), while the contralateral leg served as the control. After immobilization, the participants performed two-legged isolated knee-extensor exercise at 20 ± 1 W (∼50% maximal work capacity) for 45 min with catheters inserted in the brachial artery and both femoral veins. Biopsy samples obtained from vastus lateralis muscles of both legs before and after exercise were used for analysis of substrates, protein content and enzyme activities. During exercise, leg substrate utilization (respiratory quotient) did not differ between groups or legs. Leg fatty acid uptake was greater in older than in young men, and although young men demonstrated net leg glycerol release during exercise, older men showed net glycerol uptake. At baseline, IMTG, muscle pyruvate dehydrogenase complex activity and the protein content of adipose triglyceride lipase, acetyl-CoA carboxylase 2 and AMP-activated protein kinase (AMPK)γ3 were higher in young than in older men. Furthermore, adipose triglyceride lipase, plasma membrane-associated fatty acid binding protein and AMPKγ3 subunit protein contents were lower and IMTG was higher in the immobilized than the contralateral leg in young and older men. Thus, immobilization and age did not affect substrate choice (respiratory quotient) during moderate exercise, but the whole-leg and molecular differences in fatty acid mobilization could explain the age- and immobilization-induced IMTG accumulation.
Collapse
Affiliation(s)
- A Vigelsø
- XLAB, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Gram
- XLAB, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - R Dybboe
- XLAB, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Section of Molecular Physiology, The August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - A B Kuhlman
- XLAB, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - C Prats
- XLAB, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - P L Greenhaff
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, School of Life Sciences, The Medical School, University of Nottingham, Nottingham, UK
| | - D Constantin-Teodosiu
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, School of Life Sciences, The Medical School, University of Nottingham, Nottingham, UK
| | - J B Birk
- Section of Molecular Physiology, The August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - J F P Wojtaszewski
- Section of Molecular Physiology, The August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - F Dela
- XLAB, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J W Helge
- XLAB, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Guadalupe-Grau A, Rodríguez-García L, Torres-Peralta R, Morales-Álamo D, Ponce-González JG, Pérez-Suarez I, Santana A, Calbet JA. Greater basal skeletal muscle AMPKα phosphorylation in men than in women: Associations with anaerobic performance. Eur J Sport Sci 2015; 16:455-64. [DOI: 10.1080/17461391.2015.1063701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Allerton TD, Primeaux SD. High-fat diet differentially regulates metabolic parameters in obesity-resistant S5B/Pl rats and obesity-prone Osborne-Mendel rats. Can J Physiol Pharmacol 2015; 94:206-215. [PMID: 26641537 DOI: 10.1139/cjpp-2015-0141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The current experiment tested the hypothesis that consumption of a high-fat diet (HFD) would differentially affect metabolic parameters in obesity-prone Osborne-Mendel (OM) and obesity-resistant S5B/Pl (S5B) rats. In OM rats consuming a HFD, an increase in HFD intake, body mass, and percent fat mass, and a HFD-induced decrease in metabolic rate and energy expenditure were demonstrated. In S5B rats consuming a HFD, no change in percent body fat or HFD intake was demonstrated and HFD increased metabolic rate and energy expenditure. To assess whether HFD differentially altered skeletal muscle markers of metabolism in OM and S5B rats, the expression of the transporters, CD36 and GLUT4, and the energy sensors, AMPK and PPARγ, in the gastrocnemius muscle was measured. Oxidation and lipid accumulation in the gastrocnemius muscle was histologically determined. Consumption of a HFD decreased phosphorylated AMPK and PPARγ expression in the skeletal muscle of obesity-prone OM rats. Lipid accumulation in skeletal muscle was significantly higher in OM rats fed a HFD. Overall, these data suggest that the differential response to HFD on metabolic rate, energy expenditure, and phosphorylated AMPK and PPARγ in OM and S5B rats, may partially account for differences in the susceptibility to develop obesity.
Collapse
Affiliation(s)
- Timothy D Allerton
- a Department of Physiology, Louisiana State University Health Sciences Center-New Orleans, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Stefany D Primeaux
- a Department of Physiology, Louisiana State University Health Sciences Center-New Orleans, 1901 Perdido Street, New Orleans, LA 70112, USA.,b Joint Diabetes, Endocrinology & Metabolism Program, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
15
|
Kristensen DE, Albers PH, Prats C, Baba O, Birk JB, Wojtaszewski JFP. Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise. J Physiol 2015; 593:2053-69. [PMID: 25640469 DOI: 10.1113/jphysiol.2014.283267] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/23/2015] [Indexed: 11/08/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a regulator of energy homeostasis during exercise. Studies suggest muscle fibre type-specific AMPK expression. However, fibre type-specific regulation of AMPK and downstream targets during exercise has not been demonstrated. We hypothesized that AMPK subunits are expressed in a fibre type-dependent manner and that fibre type-specific activation of AMPK and downstream targets is dependent on exercise intensity. Pools of type I and II fibres were prepared from biopsies of vastus lateralis muscle from healthy men before and after two exercise trials: (1) continuous cycling (CON) for 30 min at 69 ± 1% peak rate of O2 consumption (V̇O2 peak ) or (2) interval cycling (INT) for 30 min with 6 × 1.5 min high-intensity bouts peaking at 95 ± 2% V̇O2 peak . In type I vs. II fibres a higher β1 AMPK (+215%) and lower γ3 AMPK expression (-71%) was found. α1 , α2 , β2 and γ1 AMPK expression was similar between fibre types. In type I vs. II fibres phosphoregulation after CON was similar (AMPK(Thr172) , ACC(Ser221) , TBC1D1(Ser231) and GS(2+2a) ) or lower (TBC1D4(Ser704) ). Following INT, phosphoregulation in type I vs. II fibres was lower (AMPK(Thr172) , TBC1D1(Ser231) , TBC1D4(Ser704) and ACC(Ser221) ) or higher (GS(2+2a) ). Exercise-induced glycogen degradation in type I vs. II fibres was similar (CON) or lower (INT). In conclusion, a differentiated response to exercise of metabolic signalling/effector proteins in human type I and II fibres was evident during interval exercise. This could be important for exercise type-specific adaptations, i.e. insulin sensitivity and mitochondrial density, and highlights the potential for new discoveries when investigating fibre type-specific signalling.
Collapse
Affiliation(s)
- Dorte E Kristensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
16
|
Bujak AL, Blümer RME, Marcinko K, Fullerton MD, Kemp BE, Steinberg GR. Reduced skeletal muscle AMPK and mitochondrial markers do not promote age-induced insulin resistance. J Appl Physiol (1985) 2014; 117:171-9. [DOI: 10.1152/japplphysiol.01101.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In both rodents and humans, aging-associated reductions in skeletal muscle AMP-activated protein kinase (AMPK) activity and mitochondrial function have been linked to the development of skeletal muscle insulin resistance. However, whether reductions in skeletal muscle AMPK and mitochondrial capacity actually precipitate the development of aging-induced insulin resistance is not known. Mice lacking both isoforms of the AMPK β-subunit in skeletal muscle (AMPK-MKO) have no detectable AMPK activity and are characterized by large reductions in exercise capacity, mitochondrial content, and contraction-stimulated glucose uptake making them an ideal model to determine whether reductions in AMPK and mitochondrial content promote the development of aging-induced insulin resistance. In the current study we find that a lack of skeletal muscle AMPK results in a life-long reduction in mitochondrial activity but does not affect body mass, body composition, glucose tolerance, or insulin sensitivity as measured by hyperinsulinemic-euglycemic clamp in mice of old age (18 mo). These data demonstrate that reductions in skeletal muscle AMPK and mitochondrial activity do not cause the development of age-induced insulin resistance.
Collapse
Affiliation(s)
- Adam L. Bujak
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Ontario, Canada
| | - Regje M. E. Blümer
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Ontario, Canada
| | - Katarina Marcinko
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Ontario, Canada
| | - Morgan D. Fullerton
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Ontario, Canada
| | - Bruce E. Kemp
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia
| | - Gregory R. Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Ontario, Canada
- Faculty of Health Sciences, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; and
| |
Collapse
|
17
|
Guadalupe-Grau A, Larsen S, Guerra B, Calbet JAL, Dela F, Helge JW. Influence of age on leptin induced skeletal muscle signalling. Acta Physiol (Oxf) 2014; 211:214-28. [PMID: 24605926 DOI: 10.1111/apha.12273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/03/2013] [Accepted: 03/04/2014] [Indexed: 12/27/2022]
Abstract
AIM Age associated fat mass accumulation could be because of dysregulation of leptin signalling in skeletal muscle. Thus, we investigated total protein expression and phosphorylation levels of the long isoform of the leptin receptor (OB-Rb), and leptin signalling through janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3), insulin receptor substrate 1 (IRS-1), AMP-activated protein kinase (AMPK) and acetyl-coenzyme A carboxylase (ACC), combined with the leptin signalling inhibitors suppressor of cytokine signalling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) in human skeletal muscle of different age. METHODS Vastus lateralis muscle biopsies were obtained from 39 men matched for BMI < 30 kg m(-2) and separated into three groups: 13 young (Y, 24 ± 4 years); 14 middle aged (MA, 44 ± 5 years) and 12 aged (A, 58 ± 8 years) subjects. RESULTS Whole body fat percentage and plasma leptin were higher (P < 0.05), whereas lean mass, plasma free testosterone and total testosterone were lower (P < 0.05) in A compared to Y. Skeletal muscle OB-Rb (170 KDa) protein expression and pTyr(1141) -OB-R170 were comparable between groups, whereas pTyr(985) -OB-R170 was lower in A compared to Y (P < 0.05). pSTAT3 levels tended (P = 0.09) to be lower (50%) in A compared to Y. In A, muscle PTP1B was greater and IRS-1 lower than Y and MA respectively (P < 0.05). PTyr(612) -IRS-1 tended to be lower in A than in Y (P = 0.09). Suppressor of cytokine signalling 3 (SOCS3) protein expression, pJAK2, pSer(1101) -IRS-1, pAMPKα and pACCβ were similar between groups. CONCLUSION Age is associated with dysregulation of the leptin signalling and increased PTP1B protein expression in skeletal muscle.
Collapse
Affiliation(s)
- A. Guadalupe-Grau
- Department of Physical Education; University of Las Palmas de Gran Canaria; Las Palmas de Gran Canaria Spain
- Xlab; Department of Biomedical Sciences; Faculty of Health Sciences; Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - S. Larsen
- Xlab; Department of Biomedical Sciences; Faculty of Health Sciences; Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - B. Guerra
- Department of Clinical Sciences; Molecular and Translational Endocrinology Group; Associate Unit of University of Las Palmas de Gran Canaria and Biomedical Institute “Alberto Sols” - CSIC; Las Palmas de Gran Canaria Spain
- ICIC; Cancer Research Institute of the Canary Islands; Las Palmas de Gran Canaria Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias; Las Palmas de Gran Canaria Spain
| | - J. A. L. Calbet
- Department of Physical Education; University of Las Palmas de Gran Canaria; Las Palmas de Gran Canaria Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias; Las Palmas de Gran Canaria Spain
| | - F. Dela
- Xlab; Department of Biomedical Sciences; Faculty of Health Sciences; Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - J. W. Helge
- Xlab; Department of Biomedical Sciences; Faculty of Health Sciences; Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
18
|
Hardman SE, Hall DE, Cabrera AJ, Hancock CR, Thomson DM. The effects of age and muscle contraction on AMPK activity and heterotrimer composition. Exp Gerontol 2014; 55:120-8. [PMID: 24747582 DOI: 10.1016/j.exger.2014.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/05/2014] [Accepted: 04/10/2014] [Indexed: 01/06/2023]
Abstract
Sarcopenia is characterized by increased skeletal muscle atrophy due in part to alterations in muscle metabolism. AMP-activated protein kinase (AMPK) is a master regulator of skeletal muscle metabolic pathways which regulate many cellular processes that are disrupted in old-age. Functional AMPK is a heterotrimer composed of α, β and γ subunits, and each subunit can be represented in the heterotrimer by one of two (α1/α2, β1/β2) or three (γ1/γ2/γ3) isoforms. Altered isoform composition affects AMPK localization and function. Previous work has shown that overall AMPK activation with endurance-type exercise is blunted in old vs. young skeletal muscle. However, details regarding the activation of the specific isoforms of AMPK, as well as the heterotrimeric composition of AMPK in old skeletal muscle, are unknown. Our purpose here, therefore, was to determine the effect of old-age on 1) the activation of the α1 and α2 catalytic subunits of AMPK in skeletal muscle by a continuous contraction bout, and 2) the heterotrimeric composition of skeletal muscle AMPK. We studied gastrocnemius (GAST) and tibialis anterior (TA) muscles from young adult (YA; 8months old) and old (O; 30months old) male Fischer344×Brown Norway F1 hybrid rats after an in situ bout of endurance-type contractions produced via electrical stimulation of the sciatic nerve (STIM). AMPKα phosphorylation and AMPKα1 and α2 activities were unaffected by age at rest. However, AMPKα phosphorylation and AMPKα2 protein content and activity were lower in O vs. YA after STIM. Conversely, AMPKα1 content was greater in O vs. YA muscle, and α1 activity increased with STIM in O but not YA muscles. AMPKγ3 overall concentration and its association with AMPKα1 and α2 were lower in O vs. YA GAST. We conclude that activation of AMPKα1 is enhanced, while activation of α2 is suppressed immediately after repeated skeletal muscle contractions in O vs. YA skeletal muscle. These changes are associated with changes in the AMPK heterotrimer composition. Given the known roles of AMPK α1, α2 and γ3, this may contribute to sarcopenia and associated muscle metabolic dysfunction.
Collapse
Affiliation(s)
- Shalene E Hardman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Derrick E Hall
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Alyssa J Cabrera
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Chad R Hancock
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, USA
| | - David M Thomson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
19
|
Mortensen B, Friedrichsen M, Andersen NR, Alibegovic AC, Højbjerre L, Sonne MP, Stallknecht B, Dela F, Wojtaszewski JFP, Vaag A. Physical inactivity affects skeletal muscle insulin signaling in a birth weight-dependent manner. J Diabetes Complications 2014; 28:71-8. [PMID: 24120282 DOI: 10.1016/j.jdiacomp.2013.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
Abstract
AIMS We investigated whether physical inactivity could unmask defects in insulin and AMPK signaling in low birth weight (LBW) subjects. METHODS Twenty LBW and 20 normal birth weight (NBW) subjects were investigated using the euglycemic-hyperinsulinemic clamp with excision of skeletal muscle biopsies pre and post 9days of bed rest. Employing Western blotting, we investigated skeletal muscle Akt, AS160, GLUT4, and AMPK signaling. RESULTS Peripheral insulin action was similar in the two groups and was decreased to the same extent post bed rest. Insulin and AMPK signaling was unaffected by bed rest in NBW individuals. LBW subjects showed decreased insulin-stimulated Akt phosphorylation and increased AMPK α1 and γ3 protein expression post bed rest. Insulin response of AS160 phosphorylation was lower in LBW subjects both pre and post bed rest. CONCLUSIONS Bed rest-induced insulin resistance is not explained by impaired muscle insulin or AMPK signaling in subjects with or without LBW. Lower muscle insulin signaling in LBW subjects post bed rest despite similar degree of insulin resistance as seen in controls may to some extent support the idea that LBW subjects are at higher risk of developing type 2 diabetes when being physically inactive.
Collapse
Affiliation(s)
- Brynjulf Mortensen
- Steno Diabetes Center, Gentofte, Denmark; Molecular Physiology Group, The August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen.
| | - Martin Friedrichsen
- Steno Diabetes Center, Gentofte, Denmark; Molecular Physiology Group, The August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen
| | - Nicoline R Andersen
- Molecular Physiology Group, The August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen
| | | | - Lise Højbjerre
- Department of Biomedical Sciences, University of Copenhagen; Center for Healthy Ageing, University of Copenhagen
| | - Mette P Sonne
- Department of Biomedical Sciences, University of Copenhagen; Center for Healthy Ageing, University of Copenhagen
| | | | - Flemming Dela
- Department of Biomedical Sciences, University of Copenhagen; Center for Healthy Ageing, University of Copenhagen
| | - Jørgen F P Wojtaszewski
- Molecular Physiology Group, The August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen
| | - Allan Vaag
- Steno Diabetes Center, Gentofte, Denmark; Rigshospitalet, Department of Endocrinology, Denmark
| |
Collapse
|
20
|
Abstract
AMP-activated kinase (AMPK) is a heterotrimeric complex composed of three subunits and is the core energy sensor of the cell. The AMPK activity is important for survival during periods of stress and starvation and also has implications in type II diabetes, obesity, metabolic syndrome, longevity and cancer, etc. The activation of AMPK is triggered through binding of Adenosine Monophosphate Activated Proteins (AMP) to the Bateman domains of the gamma subunit, leading to increased phosphorylation of the threonine 172 on the alpha subunit by inducing allosteric activation and inhibiting dephosphorylation. AMPK and its subunits have been the focuses of many researchers dealing with genetic and metabolic issues. The study makes a comprehensive review on the structure, function, distribution, enzyme activity, the genetic mutation and other aspects of AMPK and its subunit genes, with the aim to outline main aspects of present researches on AMPK and its subunits in animal genetics.
Collapse
Affiliation(s)
- W Y Liu
- Faculty of Scientific and Research, Fuyang Normal College, China
| | - R S Jiang
- Department of Animal Sciences, Anhui Agricultural University, China
| |
Collapse
|
21
|
Mortensen B, Hingst JR, Frederiksen N, Hansen RWW, Christiansen CS, Iversen N, Friedrichsen M, Birk JB, Pilegaard H, Hellsten Y, Vaag A, Wojtaszewski JFP. Effect of birth weight and 12 weeks of exercise training on exercise-induced AMPK signaling in human skeletal muscle. Am J Physiol Endocrinol Metab 2013; 304:E1379-90. [PMID: 23612997 DOI: 10.1152/ajpendo.00295.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Subjects with a low birth weight (LBW) display increased risk of developing type 2 diabetes (T2D). We hypothesized that this is associated with defects in muscle adaptations following acute and regular physical activity, evident by impairments in the exercise-induced activation of AMPK signaling. We investigated 21 LBW and 21 normal birth weight (NBW) subjects during 1 h of acute exercise performed at the same relative workload before and after 12 wk of exercise training. Multiple skeletal muscle biopsies were obtained before and after exercise. Protein levels and phosphorylation status were determined by Western blotting. AMPK activities were measured using activity assays. Protein levels of AMPKα1 and -γ1 were significantly increased, whereas AMPKγ3 levels decreased with training independently of group. The LBW group had higher exercise-induced AMPK Thr(172) phosphorylation before training and higher exercise-induced ACC2 Ser(221) phosphorylation both before and after training compared with NBW. Despite exercise being performed at the same relative intensity (65% of Vo2peak), the acute exercise response on AMPK Thr(172), ACC2 Ser(221), AMPKα2β2γ1, and AMPKα2β2γ3 activities, GS activity, and adenine nucleotides as well as hexokinase II mRNA levels were all reduced after exercise training. Increased exercise-induced muscle AMPK activation and ACC2 Ser(221) phosphorylation in LBW subjects may indicate a more sensitive AMPK system in this population. Long-term exercise training may reduce the need for AMPK to control energy turnover during exercise. Thus, the remaining γ3-associated AMPK activation by acute exercise after exercise training might be sufficient to maintain cellular energy balance.
Collapse
|
22
|
Lee-Young RS, Bonner JS, Mayes WH, Iwueke I, Barrick BA, Hasenour CM, Kang L, Wasserman DH. AMP-activated protein kinase (AMPK)α2 plays a role in determining the cellular fate of glucose in insulin-resistant mouse skeletal muscle. Diabetologia 2013; 56:608-17. [PMID: 23224579 PMCID: PMC4075509 DOI: 10.1007/s00125-012-2787-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 11/01/2012] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS We determined whether: (1) an acute lipid infusion impairs skeletal muscle AMP-activated protein kinase (AMPK)α2 activity, increases inducible nitric oxide synthase (iNOS) and causes peripheral insulin resistance in conscious, unstressed, lean mice; and (2) restoration of AMPKα2 activity during the lipid infusion attenuates the increase in iNOS and reverses the defect in insulin sensitivity in vivo. METHODS Chow-fed, 18-week-old C57BL/6J male mice were surgically catheterised. After 5 days they received: (1) a 5 h infusion of 5 ml kg(-1) h(-1) Intralipid + 6 U/h heparin (Lipid treatment) or saline (Control); (2) Lipid treatment or Control, followed by a 2 h hyperinsulinaemic-euglycaemic clamp (insulin clamp; 4 mU kg(-1) min(-1)); and (3) infusion of the AMPK activator, 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) (1 mg kg(-1) min(-1)), or saline during Lipid treatment, followed by a 2 h insulin clamp. In a separate protocol, mice producing a muscle-specific kinase-dead AMPKα2 subunit (α2-KD) underwent an insulin clamp to determine the role of AMPKα2 in insulin-mediated muscle glucose metabolism. RESULTS Lipid treatment decreased AMPKα2 activity, increased iNOS abundance/activation and reduced whole-body insulin sensitivity in vivo. AICAR increased AMPKα2 activity twofold; this did not suppress iNOS or improve whole-body or tissue-specific rates of glucose uptake during Lipid treatment. AICAR caused a marked increase in insulin-mediated glycogen synthesis in skeletal muscle. Consistent with this latter result, lean α2-KD mice exhibited impaired insulin-stimulated glycogen synthesis even though muscle glucose uptake was not affected. CONCLUSIONS/INTERPRETATION Acute induction of insulin resistance via lipid infusion in healthy mice impairs AMPKα2, increases iNOS and causes insulin resistance in vivo. However, these changes do not appear to be interrelated. Rather, a functionally active AMPKα2 subunit is required for insulin-stimulated muscle glycogen synthesis.
Collapse
Affiliation(s)
- R S Lee-Young
- Cellular and Molecular Metabolism Laboratory, Division of Metabolism and Obesity, Baker IDI Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
O'Neill HM, Holloway GP, Steinberg GR. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol Cell Endocrinol 2013; 366:135-51. [PMID: 22750049 DOI: 10.1016/j.mce.2012.06.019] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 03/13/2012] [Accepted: 06/21/2012] [Indexed: 12/25/2022]
Abstract
Skeletal muscle plays an important role in regulating whole-body energy expenditure given it is a major site for glucose and lipid oxidation. Obesity and type 2 diabetes are causally linked through their association with skeletal muscle insulin resistance, while conversely exercise is known to improve whole body glucose homeostasis simultaneously with muscle insulin sensitivity. Exercise activates skeletal muscle AMP-activated protein kinase (AMPK). AMPK plays a role in regulating exercise capacity, skeletal muscle mitochondrial content and contraction-stimulated glucose uptake. Skeletal muscle AMPK is also thought to be important for regulating fatty acid metabolism; however, direct genetic evidence in this area is currently lacking. This review will discuss the current paradigms regarding the influence of AMPK in regulating skeletal muscle fatty acid metabolism and mitochondrial biogenesis at rest and during exercise, and highlight the potential implications in the development of insulin resistance.
Collapse
Affiliation(s)
- Hayley M O'Neill
- University of Melbourne, Department of Medicine, St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
24
|
Friedrichsen M, Mortensen B, Pehmøller C, Birk JB, Wojtaszewski JFP. Exercise-induced AMPK activity in skeletal muscle: role in glucose uptake and insulin sensitivity. Mol Cell Endocrinol 2013; 366:204-14. [PMID: 22796442 DOI: 10.1016/j.mce.2012.06.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/21/2012] [Indexed: 12/25/2022]
Abstract
The energy/fuel sensor 5'-AMP-activated protein kinase (AMPK) is viewed as a master regulator of cellular energy balance due to its many roles in glucose, lipid, and protein metabolism. In this review we focus on the regulation of AMPK activity in skeletal muscle and its involvement in glucose metabolism, including glucose transport and glycogen synthesis. In addition, we discuss the plausible interplay between AMPK and insulin signaling regulating these processes.
Collapse
Affiliation(s)
- Martin Friedrichsen
- Molecular Physiology Group, The August Krogh Centre, Department of Exercise and Sport Sciences, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
25
|
Abstract
AMPK is an evolutionary conserved sensor of cellular energy status that is activated during exercise. Pharmacological activation of AMPK promotes glucose uptake, fatty acid oxidation, mitochondrial biogenesis, and insulin sensitivity; processes that are reduced in obesity and contribute to the development of insulin resistance. AMPK deficient mouse models have been used to provide direct genetic evidence either supporting or refuting a role for AMPK in regulating these processes. Exercise promotes glucose uptake by an insulin dependent mechanism involving AMPK. Exercise is important for improving insulin sensitivity; however, it is not known if AMPK is required for these improvements. Understanding how these metabolic processes are regulated is important for the development of new strategies that target obesity-induced insulin resistance. This review will discuss the involvement of AMPK in regulating skeletal muscle metabolism (glucose uptake, glycogen synthesis, and insulin sensitivity).
Collapse
Affiliation(s)
- Hayley M. O'Neill
- Protein Chemistry and Metabolism Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| |
Collapse
|
26
|
Kristensen JM, Larsen S, Helge JW, Dela F, Wojtaszewski JFP. Two weeks of metformin treatment enhances mitochondrial respiration in skeletal muscle of AMPK kinase dead but not wild type mice. PLoS One 2013; 8:e53533. [PMID: 23341947 PMCID: PMC3544921 DOI: 10.1371/journal.pone.0053533] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 12/03/2012] [Indexed: 12/25/2022] Open
Abstract
Metformin is used as an anti-diabetic drug. Metformin ameliorates insulin resistance by improving insulin sensitivity in liver and skeletal muscle. Reduced mitochondrial content has been reported in type 2 diabetic muscles and it may contribute to decreased insulin sensitivity characteristic for diabetic muscles. The molecular mechanism behind the effect of metformin is not fully clarified but inhibition of complex I in the mitochondria and also activation of the 5'AMP activated protein kinase (AMPK) has been reported in muscle. Furthermore, both AMPK activation and metformin treatment have been associated with stimulation of mitochondrial function and biogenesis. However, a causal relationship in skeletal muscle has not been investigated. We hypothesized that potential effects of in vivo metformin treatment on mitochondrial function and protein expressions in skeletal muscle are dependent upon AMPK signaling. We investigated this by two weeks of oral metformin treatment of muscle specific kinase dead α(2) (KD) AMPK mice and wild type (WT) littermates. We measured mitochondrial respiration and protein activity and expressions of key enzymes involved in mitochondrial carbohydrate and fat metabolism and oxidative phosphorylation. Mitochondrial respiration, HAD and CS activity, PDH and complex I-V and cytochrome c protein expression were all reduced in AMPK KD compared to WT tibialis anterior muscles. Surprisingly, metformin treatment only enhanced respiration in AMPK KD mice and thereby rescued the respiration defect compared to the WT mice. Metformin did not influence protein activities or expressions in either WT or AMPK KD mice.We conclude that two weeks of in vivo metformin treatment enhances mitochondrial respiration in the mitochondrial deficient AMPK KD but not WT mice. The improvement seems to be unrelated to AMPK, and does not involve changes in key mitochondrial proteins.
Collapse
Affiliation(s)
- Jonas M Kristensen
- Section of Molecular Physiology Group, August Krogh Centre, Department of Nutrition, Exercise and Sport Sciences, University of Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
27
|
Reduced AMPK-ACC and mTOR signaling in muscle from older men, and effect of resistance exercise. Mech Ageing Dev 2012; 133:655-64. [PMID: 23000302 DOI: 10.1016/j.mad.2012.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/20/2012] [Accepted: 09/07/2012] [Indexed: 11/20/2022]
Abstract
AMP-activated protein kinase (AMPK) is a key energy-sensitive enzyme that controls numerous metabolic and cellular processes. Mammalian target of rapamycin (mTOR) is another energy/nutrient-sensitive kinase that controls protein synthesis and cell growth. In this study we determined whether older versus younger men have alterations in the AMPK and mTOR pathways in skeletal muscle, and examined the effect of a long term resistance type exercise training program on these signaling intermediaries. Older men had decreased AMPKα2 activity and lower phosphorylation of AMPK and its downstream signaling substrate acetyl-CoA carboxylase (ACC). mTOR phosphylation also was reduced in muscle from older men. Exercise training increased AMPKα1 activity in older men, however, AMPKα2 activity, and the phosphorylation of AMPK, ACC and mTOR, were not affected. In conclusion, older men have alterations in the AMPK-ACC and mTOR pathways in muscle. In addition, prolonged resistance type exercise training induces an isoform-selective up regulation of AMPK activity.
Collapse
|
28
|
Lendoye E, Sibille B, Rousseau AS, Murdaca J, Grimaldi PA, Lopez P. PPARbeta activation induces rapid changes of both AMPK subunit expression and AMPK activation in mouse skeletal muscle. Mol Endocrinol 2011; 25:1487-98. [PMID: 21798999 DOI: 10.1210/me.2010-0504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AMP-activated protein kinases (AMPK) are heterotrimeric, αβγ, serine/threonine kinases. The γ3-AMPK subunit is particularly interesting in muscle physiology because 1) it is specifically expressed in skeletal muscle, 2) α2β2γ3 is the AMPK heterotrimer activated during exercise in humans, and 3) it is down-regulated in humans after a training period. However, mechanisms underlying this decrease of γ3-AMPK expression remained unknown. We investigated whether the expression of AMPK subunits and particularly that of γ3-AMPK are regulated by the PPARβ pathway. We report that PPARβ activation with GW0742 induces a rapid (2 h) and sustained down-regulation of γ3-AMPK expression both in mouse skeletal muscles and in culture myotubes. Concomitantly, phosphorylation levels of both AMPK and acetyl-coenzyme A carboxylase are rapidly modified. The γ3-AMPK down-regulation is also observed in muscles from young and adult transgenic mice with muscle-specific overexpression of peroxisome proliferator-activated receptor β (PPARβ). We showed that γ3-AMPK down-regulation is a rapid physiological muscle response observed in mouse after running exercise or fasting, two situations leading to PPARβ activation. Finally, using C2C12, we demonstrated that dose and time-dependent down-regulation of γ3-AMPK expression upon GW0742 treatment, is due to decrease γ3-AMPK promoter activity.
Collapse
Affiliation(s)
- E Lendoye
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche (UMR) 907, Nice, France
| | | | | | | | | | | |
Collapse
|