1
|
Guo YX, Wang BY, Gao H, Hua RX, Gao L, He CW, Wang Y, Xu JD. Peroxisome Proliferator–Activated Receptor-α: A Pivotal Regulator of the Gastrointestinal Tract. Front Mol Biosci 2022; 9:864039. [PMID: 35558563 PMCID: PMC9086433 DOI: 10.3389/fmolb.2022.864039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Peroxisome proliferator–activated receptor (PPAR)-α is a ligand-activated transcription factor distributed in various tissues and cells. It regulates lipid metabolism and plays vital roles in the pathology of the cardiovascular system. However, its roles in the gastrointestinal tract (GIT) are relatively less known. In this review, after summarizing the expression profile of PPAR-α in the GIT, we analyzed its functions in the GIT, including physiological control of the lipid metabolism and pathologic mediation in the progress of inflammation. The mechanism of this regulation could be achieved via interactions with gut microbes and further impact the maintenance of body circadian rhythms and the secretion of nitric oxide. These are also targets of PPAR-α and are well-described in this review. In addition, we also highlighted the potential use of PPAR-α in treating GIT diseases and the inadequacy of clinical trials in this field.
Collapse
Affiliation(s)
- Yue-Xin Guo
- Department of Oral Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bo-Ya Wang
- Eight Program of Clinical Medicine, Peking University Health Science Center, Beijing, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Rong-Xuan Hua
- Clinical Medicine of “5+3” Program, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Gao
- Department of Biomedical Informatics, Faculty of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Cheng-Wei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Wang
- Department of Dermatology, Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Jing-Dong Xu,
| |
Collapse
|
2
|
Sapian S, Taib IS, Latip J, Katas H, Chin KY, Mohd Nor NA, Jubaidi FF, Budin SB. Therapeutic Approach of Flavonoid in Ameliorating Diabetic Cardiomyopathy by Targeting Mitochondrial-Induced Oxidative Stress. Int J Mol Sci 2021; 22:11616. [PMID: 34769045 PMCID: PMC8583796 DOI: 10.3390/ijms222111616] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetes cardiomyopathy is one of the key factors of mortality among diabetic patients around the globe. One of the prior contributors to the progression of diabetic cardiomyopathy is cardiac mitochondrial dysfunction. The cardiac mitochondrial dysfunction can induce oxidative stress in cardiomyocytes and was found to be the cause of majority of the heart morphological and dynamical changes in diabetic cardiomyopathy. To slow down the occurrence of diabetic cardiomyopathy, it is crucial to discover therapeutic agents that target mitochondrial-induced oxidative stress. Flavonoid is a plentiful phytochemical in plants that shows a wide range of biological actions against human diseases. Flavonoids have been extensively documented for their ability to protect the heart from diabetic cardiomyopathy. Flavonoids' ability to alleviate diabetic cardiomyopathy is primarily attributed to their antioxidant properties. In this review, we present the mechanisms involved in flavonoid therapies in ameliorating mitochondrial-induced oxidative stress in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Syaifuzah Sapian
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.S.); (I.S.T.); (N.A.M.N.); (F.F.J.)
| | - Izatus Shima Taib
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.S.); (I.S.T.); (N.A.M.N.); (F.F.J.)
| | - Jalifah Latip
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 46300, Malaysia;
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Kok-Yong Chin
- Department of Pharmacology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
| | - Nor Anizah Mohd Nor
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.S.); (I.S.T.); (N.A.M.N.); (F.F.J.)
| | - Fatin Farhana Jubaidi
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.S.); (I.S.T.); (N.A.M.N.); (F.F.J.)
| | - Siti Balkis Budin
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.S.); (I.S.T.); (N.A.M.N.); (F.F.J.)
| |
Collapse
|
3
|
Liu L, Wu J, Gao Y, Lv Y, Xue J, Qin L, Xiao C, Hu Z, Zhang L, Luo X, Wang Y, Cao Y, Cao Y, Zhang G. The effect of Acot2 overexpression or downregulation on the preadipocyte differentiation in Chinese Red Steppe cattle. Adipocyte 2020; 9:279-289. [PMID: 32579860 PMCID: PMC7469445 DOI: 10.1080/21623945.2020.1776553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The quality and nutritional value of beef is closely linked to its content of intramuscular fat (IMF). The differentiation of preadipocytes and the deposition of lipid droplets in the adipocytes are the key to regulate the IMF content. The differentiation of adipocytes is regulated by a series of transcription factors and genes. Acyl-CoA thioesterase 2 (Acot2) hydrolyzes the acyl-coenzyme A (CoA) into free fatty acids and CoA and has the potential to maintain the free fatty acids and acyl CoA at the cellular level. In this work, we detected the expression of the Acot2 gene during the adipocyte differentiation in Chinese Red Steppe cattle, and then interfered and overexpressed the Acot2 gene in the preadipocytes to explore its regulatory role in the adipocyte differentiation. The results showed that the expression and regulation of Acot2 mainly occurred at the later stage of the adipocyte differentiation. The interference with the Acot2 gene significantly inhibited the lipid droplets accumulation and triglyceride content, while its overexpression significantly promoted both of them. The results of this study show that the Acot2 gene is a positive regulator of the adipocyte differentiation and may become a new target to improve the beef quality.
Collapse
Affiliation(s)
- Lixiang Liu
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Agriculture, Changchun, China
| | - Jian Wu
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Agriculture, Changchun, China
- Jilin Beef Cattle Breeding and Breeding Technology Innovation Center, Gongzhuling, China
- Jilin Kuncheng Animal Husbandry Technology Development Co., Ltd, Gongzhuling, China
| | - Yi Gao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Yang Lv
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Agriculture, Changchun, China
| | - Jiajia Xue
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Agriculture, Changchun, China
| | - Lihong Qin
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Agriculture, Changchun, China
- Jilin Beef Cattle Breeding and Breeding Technology Innovation Center, Gongzhuling, China
| | - Cheng Xiao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Agriculture, Changchun, China
| | - Zhongchang Hu
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Agriculture, Changchun, China
| | - Lichun Zhang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Agriculture, Changchun, China
| | - Xiaotong Luo
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Yanli Wang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Yang Cao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Agriculture, Changchun, China
| | - Yang Cao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Agriculture, Changchun, China
| | - Guoliang Zhang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Agriculture, Changchun, China
- Jilin Beef Cattle Breeding and Breeding Technology Innovation Center, Gongzhuling, China
- Jilin Kuncheng Animal Husbandry Technology Development Co., Ltd, Gongzhuling, China
| |
Collapse
|
4
|
Bekeova C, Anderson-Pullinger L, Boye K, Boos F, Sharpadskaya Y, Herrmann JM, Seifert EL. Multiple mitochondrial thioesterases have distinct tissue and substrate specificity and CoA regulation, suggesting unique functional roles. J Biol Chem 2019; 294:19034-19047. [PMID: 31676684 PMCID: PMC6916504 DOI: 10.1074/jbc.ra119.010901] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
Acyl-CoA thioesterases (Acots) hydrolyze fatty acyl-CoA esters. Acots in the mitochondrial matrix are poised to mitigate β-oxidation overload and maintain CoA availability. Several Acots associate with mitochondria, but whether they all localize to the matrix, are redundant, or have different roles is unresolved. Here, we compared the suborganellar localization, activity, expression, and regulation among mitochondrial Acots (Acot2, -7, -9, and -13) in mitochondria from multiple mouse tissues and from a model of Acot2 depletion. Acot7, -9, and -13 localized to the matrix, joining Acot2 that was previously shown to localize there. Mitochondria from heart, skeletal muscle, brown adipose tissue, and kidney robustly expressed Acot2, -9, and -13; Acot9 levels were substantially higher in brown adipose tissue and kidney mitochondria, as was activity for C4:0-CoA, a unique Acot9 substrate. In all tissues, Acot2 accounted for about half of the thioesterase activity for C14:0-CoA and C16:0-CoA. In contrast, liver mitochondria from fed and fasted mice expressed little Acot activity, which was confined to long-chain CoAs and due mainly to Acot7 and Acot13 activities. Matrix Acots occupied different functional niches, based on substrate specificity (Acot9 versus Acot2 and -13) and strong CoA inhibition (Acot7, -9, and -13, but not Acot2). Interpreted in the context of β-oxidation, CoA inhibition would prevent Acot-mediated suppression of β-oxidation, while providing a release valve when CoA is limiting. In contrast, CoA-insensitive Acot2 could provide a constitutive siphon for long-chain fatty acyl-CoAs. These results reveal how the family of matrix Acots can mitigate β-oxidation overload and prevent CoA limitation.
Collapse
Affiliation(s)
- Carmen Bekeova
- MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Lauren Anderson-Pullinger
- MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Kevin Boye
- MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Felix Boos
- Division of Cellular Biology, Department of Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Yana Sharpadskaya
- MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Johannes M Herrmann
- Division of Cellular Biology, Department of Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Erin L Seifert
- MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
5
|
Liu Q, Li R, Chen G, Wang J, Hu B, Li C, Zhu X, Lu Y. Inhibitory effect of 17β‑estradiol on triglyceride synthesis in skeletal muscle cells is dependent on ESR1 and not ESR2. Mol Med Rep 2019; 19:5087-5096. [PMID: 31059046 PMCID: PMC6522926 DOI: 10.3892/mmr.2019.10189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/13/2019] [Indexed: 12/02/2022] Open
Abstract
The present study aimed to investigate the inhibitory effects and the mechanisms underlying 17β-estradiol (E2) effects on triglyceride synthesis and insulin resistance in skeletal muscle tissues and cells. Ovariectomy (OVX) was performed on 6-month-old female rats treated with or without E2. Subsequently, various serum biochemical markers were measured. Additionally, pathological alterations of the uterus, liver and skeletal muscle were analyzed, and the content of triglycerides (TG) in muscle was detected. Differentiated myotubes formed by C2C12 cells were treated with palmitic acid (PA) or pretreated with E2, estrogen receptor (ESR) 1 agonist propylpyrazoletriol (PPT) and ESR2 agonist diarylpropionitrile (DPN). Subsequently, the mRNA or protein expression levels of ESR1/2, peroxisome proliferator activated receptor α (PPARα), CD36 molecule (CD36), fatty acid synthase (FASN), perilipin 2 (PLIN2), phosphorylated acetyl-CoA carboxylase α (p-ACACA), p-AKT serine/threonine kinase (p-AKT) and p-mitogen-activated protein kinase 8 (p-MAPK8) were analyzed in skeletal muscle or in C2C12 cells by reverse transcription-semi-quantitative polymerase chain reaction and western blotting. The present results suggested that treatment with E2 inhibited OVX-induced body weight gain, TG accumulation and insulin resistance. The protein or mRNA expression levels of ESR1, CD36, PPARα, p-ACACA and p-AKT were decreased, whereas the protein or mRNA expression levels of ESR2, PLIN2, FASN and p-MAPK8 were increased in the OVX group. Of note, treatment with E2 restored the expression levels of the aforementioned factors. In C2C12 cells, treatment with E2 or PPT reversed the alterations induced by treatment with PA. In contrast, pretreatment with DPN did not influence the effect of PA. Collectively, E2 was able to interact with ESR1, thus activating the CD36-PPARα pathway, decreasing the level of TG in the muscles and improving insulin resistance in skeletal muscles and C2C12 cells.
Collapse
Affiliation(s)
- Quan Liu
- Department of Clinical Pharmacy, Class 2014, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Rui Li
- Department of Clinical Pharmacy, Class 2014, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Guanjun Chen
- Center of Scientific Research, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jianming Wang
- Dalian Maple International School, Dalian, Liaoning 116100, P.R. China
| | - Bingfeng Hu
- Department of Clinical Pharmacy, Class 2014, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chaofei Li
- The Comprehensive Laboratory, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiaohuan Zhu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yunxia Lu
- The Comprehensive Laboratory, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
6
|
Cadenas S. Mitochondrial uncoupling, ROS generation and cardioprotection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:940-950. [DOI: 10.1016/j.bbabio.2018.05.019] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/11/2018] [Accepted: 05/29/2018] [Indexed: 12/31/2022]
|
7
|
de Goede P, Wefers J, Brombacher EC, Schrauwen P, Kalsbeek A. Circadian rhythms in mitochondrial respiration. J Mol Endocrinol 2018; 60:R115-R130. [PMID: 29378772 PMCID: PMC5854864 DOI: 10.1530/jme-17-0196] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/29/2018] [Indexed: 12/29/2022]
Abstract
Many physiological processes are regulated with a 24-h periodicity to anticipate the environmental changes of daytime to nighttime and vice versa. These 24-h regulations, commonly termed circadian rhythms, among others control the sleep-wake cycle, locomotor activity and preparation for food availability during the active phase (daytime for humans and nighttime for nocturnal animals). Disturbing circadian rhythms at the organ or whole-body level by social jetlag or shift work, increases the risk to develop chronic metabolic diseases such as type 2 diabetes mellitus. The molecular basis of this risk is a topic of increasing interest. Mitochondria are essential organelles that produce the majority of energy in eukaryotes by converting lipids and carbohydrates into ATP through oxidative phosphorylation. To adapt to the ever-changing environment, mitochondria are highly dynamic in form and function and a loss of this flexibility is linked to metabolic diseases. Interestingly, recent studies have indicated that changes in mitochondrial morphology (i.e., fusion and fission) as well as generation of new mitochondria are dependent on a viable circadian clock. In addition, fission and fusion processes display diurnal changes that are aligned to the light/darkness cycle. Besides morphological changes, mitochondrial respiration also displays diurnal changes. Disturbing the molecular clock in animal models leads to abrogated mitochondrial rhythmicity and altered respiration. Moreover, mitochondrial-dependent production of reactive oxygen species, which plays a role in cellular signaling, has also been linked to the circadian clock. In this review, we will summarize recent advances in the study of circadian rhythms of mitochondria and how this is linked to the molecular circadian clock.
Collapse
Affiliation(s)
- Paul de Goede
- Department of Clinical ChemistryLaboratory of Endocrinology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Jakob Wefers
- Department of Human Biology and Human Movement SciencesMaastricht University Medical Center (MUMC), Maastricht, The Netherlands
| | - Eline Constance Brombacher
- Department of Endocrinology and MetabolismAcademic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick Schrauwen
- Department of Human Biology and Human Movement SciencesMaastricht University Medical Center (MUMC), Maastricht, The Netherlands
| | - Andries Kalsbeek
- Department of Clinical ChemistryLaboratory of Endocrinology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology and MetabolismAcademic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Hypothalamic Integration Mechanisms GroupNetherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
| |
Collapse
|
8
|
Brewer RA, Collins HE, Berry RD, Brahma MK, Tirado BA, Peliciari-Garcia RA, Stanley HL, Wende AR, Taegtmeyer H, Rajasekaran NS, Darley-Usmar V, Zhang J, Frank SJ, Chatham JC, Young ME. Temporal partitioning of adaptive responses of the murine heart to fasting. Life Sci 2018; 197:30-39. [PMID: 29410090 DOI: 10.1016/j.lfs.2018.01.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/16/2022]
Abstract
Recent studies suggest that the time of day at which food is consumed dramatically influences clinically-relevant cardiometabolic parameters (e.g., adiposity, insulin sensitivity, and cardiac function). Meal feeding benefits may be the result of daily periods of feeding and/or fasting, highlighting the need for improved understanding of the temporal adaptation of cardiometabolic tissues (e.g., heart) to fasting. Such studies may provide mechanistic insight regarding how time-of-day-dependent feeding/fasting cycles influence cardiac function. We hypothesized that fasting during the sleep period elicits beneficial adaptation of the heart at transcriptional, translational, and metabolic levels. To test this hypothesis, temporal adaptation was investigated in wild-type mice fasted for 24-h, or for either the 12-h light/sleep phase or the 12-h dark/awake phase. Fasting maximally induced fatty acid responsive genes (e.g., Pdk4) during the dark/active phase; transcriptional changes were mirrored at translational (e.g., PDK4) and metabolic flux (e.g., glucose/oleate oxidation) levels. Similarly, maximal repression of myocardial p-mTOR and protein synthesis rates occurred during the dark phase; both parameters remained elevated in the heart of fasted mice during the light phase. In contrast, markers of autophagy (e.g., LC3II) exhibited peak responses to fasting during the light phase. Collectively, these data show that responsiveness of the heart to fasting is temporally partitioned. Autophagy peaks during the light/sleep phase, while repression of glucose utilization and protein synthesis is maximized during the dark/active phase. We speculate that sleep phase fasting may benefit cardiac function through augmentation of protein/cellular constituent turnover.
Collapse
Affiliation(s)
- Rachel A Brewer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Helen E Collins
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ryan D Berry
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Manoja K Brahma
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian A Tirado
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rodrigo A Peliciari-Garcia
- Morphophysiology & Pathology Sector, Department of Biological Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Haley L Stanley
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adam R Wende
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School UT Health Science Center, Houston, TX, USA
| | - Namakkal Soorappan Rajasekaran
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor Darley-Usmar
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianhua Zhang
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stuart J Frank
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Endocrinology Section, Birmingham VAMC Medical Service, Birmingham, AL, USA
| | - John C Chatham
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
9
|
Cell Death and Heart Failure in Obesity: Role of Uncoupling Proteins. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9340654. [PMID: 27642497 PMCID: PMC5011521 DOI: 10.1155/2016/9340654] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 12/19/2022]
Abstract
Metabolic diseases such as obesity, metabolic syndrome, and type II diabetes are often characterized by increased reactive oxygen species (ROS) generation in mitochondrial respiratory complexes, associated with fat accumulation in cardiomyocytes, skeletal muscle, and hepatocytes. Several rodents studies showed that lipid accumulation in cardiac myocytes produces lipotoxicity that causes apoptosis and leads to heart failure, a dynamic pathological process. Meanwhile, several tissues including cardiac tissue develop an adaptive mechanism against oxidative stress and lipotoxicity by overexpressing uncoupling proteins (UCPs), specific mitochondrial membrane proteins. In heart from rodent and human with obesity, UCP2 and UCP3 may protect cardiomyocytes from death and from a state progressing to heart failure by downregulating programmed cell death. UCP activation may affect cytochrome c and proapoptotic protein release from mitochondria by reducing ROS generation and apoptotic cell death. Therefore the aim of this review is to discuss recent findings regarding the role that UCPs play in cardiomyocyte survival by protecting against ROS generation and maintaining bioenergetic metabolism homeostasis to promote heart protection.
Collapse
|
10
|
Moffat C, Bhatia L, Nguyen T, Lynch P, Wang M, Wang D, Ilkayeva OR, Han X, Hirschey MD, Claypool SM, Seifert EL. Acyl-CoA thioesterase-2 facilitates mitochondrial fatty acid oxidation in the liver. J Lipid Res 2014; 55:2458-70. [PMID: 25114170 DOI: 10.1194/jlr.m046961] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Acyl-CoA thioesterase (Acot)2 localizes to the mitochondrial matrix and hydrolyses long-chain fatty acyl-CoA into free FA and CoASH. Acot2 is expressed in highly oxi-dative tissues and is poised to modulate mitochondrial FA oxidation (FAO), yet its biological role is unknown. Using a model of adenoviral Acot2 overexpression in mouse liver (Ad-Acot2), we show that Acot2 increases the utilization of FA substrate during the daytime in ad libitum-fed mice, but the nighttime switch to carbohydrate oxidation is similar to control mice. In further support of elevated FAO in Acot2 liver, daytime serum ketones were higher in Ad-Acot2 mice, and overnight fasting led to minimal hepatic steatosis as compared with control mice. In liver mitochondria from Ad-Acot2 mice, phosphorylating O₂ consumption was higher with lipid substrate, but not with nonlipid substrate. This increase depended on whether FA could be activated on the outer mitochondrial membrane, suggesting that the FA released by Acot2 could be effluxed from mitochondria then taken back up again for oxidation. This circuit would prevent the build-up of inhibitory long-chain fatty acyl-CoA esters. Altogether, our findings indicate that Acot2 can enhance FAO, possibly by mitigating the accumulation of FAO intermediates within the mitochondrial matrix.
Collapse
Affiliation(s)
- Cynthia Moffat
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Lavesh Bhatia
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Teresa Nguyen
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Peter Lynch
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Miao Wang
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL 32827
| | - Dongning Wang
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710
| | - Olga R Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710
| | - Xianlin Han
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL 32827
| | - Matthew D Hirschey
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Erin L Seifert
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
11
|
Aksentijević D, McAndrew DJ, Karlstädt A, Zervou S, Sebag-Montefiore L, Cross R, Douglas G, Regitz-Zagrosek V, Lopaschuk GD, Neubauer S, Lygate CA. Cardiac dysfunction and peri-weaning mortality in malonyl-coenzyme A decarboxylase (MCD) knockout mice as a consequence of restricting substrate plasticity. J Mol Cell Cardiol 2014; 75:76-87. [PMID: 25066696 PMCID: PMC4169183 DOI: 10.1016/j.yjmcc.2014.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 01/21/2023]
Abstract
UNLABELLED Inhibition of malonyl-coenzyme A decarboxylase (MCD) shifts metabolism from fatty acid towards glucose oxidation, which has therapeutic potential for obesity and myocardial ischemic injury. However, ~40% of patients with MCD deficiency are diagnosed with cardiomyopathy during infancy. AIM To clarify the link between MCD deficiency and cardiac dysfunction in early life and to determine the contributing systemic and cardiac metabolic perturbations. METHODS AND RESULTS MCD knockout mice ((-/-)) exhibited non-Mendelian genotype ratios (31% fewer MCD(-/-)) with deaths clustered around weaning. Immediately prior to weaning (18days) MCD(-/-) mice had lower body weights, elevated body fat, hepatic steatosis and glycogen depletion compared to wild-type littermates. MCD(-/-) plasma was hyperketonemic, hyperlipidemic, had 60% lower lactate levels and markers of cellular damage were elevated. MCD(-/-) hearts exhibited hypertrophy, impaired ejection fraction and were energetically compromised (32% lower total adenine nucleotide pool). However differences between WT and MCD(-/-) converged with age, suggesting that, in surviving MCD(-/-) mice, early cardiac dysfunction resolves over time. These observations were corroborated by in silico modelling of cardiomyocyte metabolism, which indicated improvement of the MCD(-/-) metabolic phenotype and improved cardiac efficiency when switched from a high-fat diet (representative of suckling) to a standard post-weaning diet, independent of any developmental changes. CONCLUSIONS MCD(-/-) mice consistently exhibited cardiac dysfunction and severe metabolic perturbations while on a high-fat, low carbohydrate diet of maternal milk and these gradually resolved post-weaning. This suggests that dysfunction is a common feature of MCD deficiency during early development, but that severity is dependent on composition of dietary substrates.
Collapse
Affiliation(s)
- Dunja Aksentijević
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK; British Heart Foundation Centre for Research Excellence, University of Oxford, UK
| | - Debra J McAndrew
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK; British Heart Foundation Centre for Research Excellence, University of Oxford, UK
| | - Anja Karlstädt
- Institute of Gender in Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; Center for Cardiovascular Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sevasti Zervou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK; British Heart Foundation Centre for Research Excellence, University of Oxford, UK
| | - Liam Sebag-Montefiore
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK; British Heart Foundation Centre for Research Excellence, University of Oxford, UK
| | - Rebecca Cross
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK; British Heart Foundation Centre for Research Excellence, University of Oxford, UK
| | - Gillian Douglas
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK; British Heart Foundation Centre for Research Excellence, University of Oxford, UK
| | - Vera Regitz-Zagrosek
- Institute of Gender in Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; Center for Cardiovascular Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gary D Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK; British Heart Foundation Centre for Research Excellence, University of Oxford, UK
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK; British Heart Foundation Centre for Research Excellence, University of Oxford, UK.
| |
Collapse
|
12
|
van Lunteren E, Moyer M. Gene expression of sternohyoid and diaphragm muscles in type 2 diabetic rats. BMC Endocr Disord 2013; 13:43. [PMID: 24199937 PMCID: PMC3851765 DOI: 10.1186/1472-6823-13-43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/26/2013] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Type 2 diabetes differs from type 1 diabetes in its pathogenesis. Type 1 diabetic diaphragm has altered gene expression which includes lipid and carbohydrate metabolism, ubiquitination and oxidoreductase activity. The objectives of the present study were to assess respiratory muscle gene expression changes in type 2 diabetes and to determine whether they are greater for the diaphragm than an upper airway muscle. METHODS Diaphragm and sternohyoid muscle from Zucker diabetic fatty (ZDF) rats were analyzed with Affymetrix gene expression arrays. RESULTS The two muscles had 97 and 102 genes, respectively, with at least ± 1.5-fold significantly changed expression with diabetes, and these were assigned to gene ontology groups based on over-representation analysis. Several significantly changed groups were common to both muscles, including lipid metabolism, carbohydrate metabolism, muscle contraction, ion transport and collagen, although the number of genes and the specific genes involved differed considerably for the two muscles. In both muscles there was a shift in metabolism gene expression from carbohydrate metabolism toward lipid metabolism, but the shift was greater and involved more genes in diabetic diaphragm than diabetic sternohyoid muscle. Groups present in only diaphragm were blood circulation and oxidoreductase activity. Groups present in only sternohyoid were immune & inflammation and response to stress & wounding, with complement genes being a prominent component. CONCLUSION Type 2 diabetes-induced gene expression changes in respiratory muscles has both similarities and differences relative to previous data on type 1 diabetes gene expression. Furthermore, the diabetic alterations in gene expression differ between diaphragm and sternohyoid.
Collapse
Affiliation(s)
- Erik van Lunteren
- Pulmonary, Critical Care & Sleep Division, Department of Medicine, Louis Stokes, Cleveland, USA
- Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michelle Moyer
- Pulmonary, Critical Care & Sleep Division, Department of Medicine, Louis Stokes, Cleveland, USA
| |
Collapse
|
13
|
Ceusters JD, Mouithys-Mickalad AA, Franck TJ, Deby-Dupont GP, Derochette S, Serteyn DA. Effect of different kinds of anoxia/reoxygenation on the mitochondrial function and the free radicals production of cultured primary equine skeletal myoblasts. Res Vet Sci 2013; 95:870-8. [PMID: 24099743 DOI: 10.1016/j.rvsc.2013.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 08/22/2013] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
Abstract
Horses are outstanding athletes, performing in many different disciplines involving different kinds of efforts and metabolic responses. Depending on exercise intensity, their skeletal muscle oxygenation decreases, and the reperfusion at cessation of the exercise can cause excessive production of free radicals. This study on cultured primary equine myoblasts investigated the effect of different kinds of anoxia/reoxygenation (A/R) on routine respiration, mitochondrial complex I specific activity and free radicals production. Our data revealed that short cycles of A/R caused a decrease of all the parameters, opposite to what a single long period of anoxia did. A preconditioning-like effect could explain our first pattern of results whereas mild uncoupling could be more appropriate for the second one. Anyway, it seems that mitochondrial complex I could play a major role in the regulation of the balance between metabolic and antioxidant protection of the muscular function of athletic horses.
Collapse
Affiliation(s)
- Justine D Ceusters
- Center for Oxygen Research and Development, Institute of Chemistry B6a, University of Liège, Sart Tilman, 4000 Liège, Belgium.
| | | | | | | | | | | |
Collapse
|
14
|
Chatham JC, Young ME. Regulation of myocardial metabolism by the cardiomyocyte circadian clock. J Mol Cell Cardiol 2013; 55:139-46. [PMID: 22766272 PMCID: PMC4107417 DOI: 10.1016/j.yjmcc.2012.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 11/24/2022]
Abstract
On a daily basis, the heart is subjected to dramatic fluctuations in energetic demand and neurohumoral influences, many of which occur in a temporally predictable manner. In order to preserve cardiac performance, the heart must therefore maintain metabolic flexibility, even within the confines of a single day. Recent studies have established mechanistic links between time-of-day-dependent oscillations in myocardial metabolism and the cardiomyocyte circadian clock. More specifically, evidence suggests that this cell autonomous molecular mechanism regulates myocardial glucose uptake, flux through both glycolysis and the hexosamine biosynthetic pathway, and pyruvate oxidation, as well as glycogen, triglyceride, and protein turnover. These observations have led to the hypothesis that the cardiomyocyte circadian clock confers the selective advantage of anticipation of increased energetic demand during the awake period. Here, we review the accumulative evidence in support of this hypothesis thus far, and discuss the possibility that attenuation of these metabolic rhythms, through disruption of the cardiomyocyte circadian clock, contributes towards the etiology of cardiac dysfunction in various disease states. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Collapse
Affiliation(s)
- John C. Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Martin E. Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
15
|
Divergent effects of a CLA-enriched beef diet on metabolic health in ApoE−/− and ob/ob mice. J Nutr Biochem 2013; 24:401-11. [DOI: 10.1016/j.jnutbio.2011.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/01/2011] [Accepted: 12/21/2011] [Indexed: 11/18/2022]
|
16
|
Boudina S, Han YH, Pei S, Tidwell TJ, Henrie B, Tuinei J, Olsen C, Sena S, Abel ED. UCP3 regulates cardiac efficiency and mitochondrial coupling in high fat-fed mice but not in leptin-deficient mice. Diabetes 2012; 61:3260-9. [PMID: 22912419 PMCID: PMC3501860 DOI: 10.2337/db12-0063] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
These studies investigate the role of uncoupling protein 3 (UCP3) in cardiac energy metabolism, cardiac O(2) consumption (MVO(2)), cardiac efficiency (CE), and mitochondrial uncoupling in high fat (HF)-fed or leptin-deficient mice. UCP3KO and wild-type (WT) mice were fed normal chow or HF diets for 10 weeks. Substrate utilization rates, MVO(2), CE, and mitochondrial uncoupling were measured in perfused working hearts and saponin-permeabilized cardiac fibers, respectively. Similar analyses were performed in hearts of ob/ob mice lacking UCP3 (U3OB mice). HF increased cardiac UCP3 protein. However, fatty acid (FA) oxidation rates were similarly increased by HF diet in WT and UCP3KO mice. By contrast, MVO(2) increased in WT, but not in UCP3KO with HF, leading to increased CE in UCP3KO mice. Consistent with increased CE, mitochondrial coupling was increased in the hearts of HF-fed UCP3KO mice. Unexpectedly, UCP3 deletion in ob/ob mice reduced FA oxidation but had no effect on MVO(2) or CE. In addition, FA-induced mitochondrial uncoupling was similarly enhanced in U3OB compared with ob/ob hearts and was associated with elevated mitochondrial thioesterase-1 protein content. These studies show that although UCP3 may mediate mitochondrial uncoupling and reduced CE after HF feeding, it does not mediate uncoupling in leptin-deficient states.
Collapse
Affiliation(s)
- Sihem Boudina
- Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cha-Molstad H, Xu G, Chen J, Jing G, Young ME, Chatham JC, Shalev A. Calcium channel blockers act through nuclear factor Y to control transcription of key cardiac genes. Mol Pharmacol 2012; 82:541-9. [PMID: 22734068 DOI: 10.1124/mol.112.078253] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
First-generation calcium channel blockers such as verapamil are a widely used class of antihypertensive drugs that block L-type calcium channels. We recently discovered that they also reduce cardiac expression of proapoptotic thioredoxin-interacting protein (TXNIP), suggesting that they may have unappreciated transcriptional effects. By use of TXNIP promoter deletion and mutation studies, we found that a CCAAT element was mediating verapamil-induced transcriptional repression and identified nuclear factor Y (NFY) to be the responsible transcription factor as assessed by overexpression/knockdown and luciferase and chromatin immunoprecipitation assays in cardiomyocytes and in vivo in diabetic mice receiving oral verapamil. We further discovered that increased NFY-DNA binding was associated with histone H4 deacetylation and transcriptional repression and mediated by inhibition of calcineurin signaling. It is noteworthy that the transcriptional control conferred by this newly identified verapamil-calcineurin-NFY signaling cascade was not limited to TXNIP, suggesting that it may modulate the expression of other NFY targets. Thus, verapamil induces a calcineurin-NFY signaling pathway that controls cardiac gene transcription and apoptosis and thereby may affect cardiac biology in previously unrecognized ways.
Collapse
Affiliation(s)
- Hyunjoo Cha-Molstad
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294-2182, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Mori J, Basu R, McLean BA, Das SK, Zhang L, Patel VB, Wagg CS, Kassiri Z, Lopaschuk GD, Oudit GY. Agonist-induced hypertrophy and diastolic dysfunction are associated with selective reduction in glucose oxidation: a metabolic contribution to heart failure with normal ejection fraction. Circ Heart Fail 2012; 5:493-503. [PMID: 22705769 DOI: 10.1161/circheartfailure.112.966705] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Activation of the renin-angiotensin and sympathetic nervous systems may alter the cardiac energy substrate preference, thereby contributing to the progression of heart failure with normal ejection fraction. We assessed the qualitative and quantitative effects of angiotensin II (Ang II) and the α-adrenergic agonist, phenylephrine (PE), on cardiac energy metabolism in experimental models of hypertrophy and diastolic dysfunction and the role of the Ang II type 1 receptor. METHODS AND RESULTS Ang II (1.5 mg·kg(-1)·day(-1)) or PE (40 mg·kg(-1)·day(-1)) was administered to 9-week-old male C57/BL6 wild-type mice for 14 days via implanted microosmotic pumps. Echocardiography showed concentric hypertrophy and diastolic dysfunction, with preserved systolic function in Ang II- and PE-treated mice. Ang II induced marked reduction in cardiac glucose oxidation and lactate oxidation, with no change in glycolysis and fatty acid β-oxidation. Tricarboxylic acid acetyl coenzyme A production and ATP production were reduced in response to Ang II. Cardiac pyruvate dehydrogenase kinase 4 expression was upregulated by Ang II and PE, resulting in a reduction in the pyruvate dehydrogenase activity, the rate-limiting step for carbohydrate oxidation. Pyruvate dehydrogenase kinase 4 upregulation correlated with the activation of the cyclin/cyclin-dependent kinase-retinoblastoma protein-E2F pathway in response to Ang II. Ang II type 1 receptor blockade normalized the activation of the cyclin/cyclin-dependent kinase-retinoblastoma protein-E2F pathway and prevented the reduction in glucose oxidation but increased fatty acid oxidation. CONCLUSIONS Ang II- and PE-induced hypertrophy and diastolic dysfunction is associated with reduced glucose oxidation because of the cyclin/cyclin-dependent kinase-retinoblastoma protein-E2F-induced upregulation of pyruvate dehydrogenase kinase 4, and targeting these pathways may provide novel therapy for heart failure with normal ejection fraction.
Collapse
Affiliation(s)
- Jun Mori
- Department of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pôrto LCJ, de Castro CH, Savergnini SSQ, Santos SHS, Ferreira AVM, Cordeiro LMDS, Sobrinho DBDS, Santos RAS, de Almeida AP, Botion LM. Improvement of the energy supply and contractile function in normal and ischemic rat hearts by dietary orotic acid. Life Sci 2012; 90:476-83. [DOI: 10.1016/j.lfs.2011.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/24/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
|
20
|
Matsumoto K, Yokoyama SI. Induction of uncoupling protein-1 and -3 in brown adipose tissue by kaki-tannin in type 2 diabetic NSY/Hos mice. Food Chem Toxicol 2012; 50:184-90. [DOI: 10.1016/j.fct.2011.10.067] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/05/2011] [Accepted: 10/25/2011] [Indexed: 01/06/2023]
|
21
|
Garcia MM, Guéant-Rodriguez RM, Pooya S, Brachet P, Alberto JM, Jeannesson E, Maskali F, Gueguen N, Marie PY, Lacolley P, Herrmann M, Juillière Y, Malthiery Y, Guéant JL. Methyl donor deficiency induces cardiomyopathy through altered methylation/acetylation of PGC-1α by PRMT1 and SIRT1. J Pathol 2011; 225:324-35. [PMID: 21633959 DOI: 10.1002/path.2881] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/29/2011] [Accepted: 02/20/2011] [Indexed: 12/16/2023]
Abstract
Cardiomyopathies occur by mechanisms that involve inherited and acquired metabolic disorders. Both folate and vitamin B12 deficiencies are associated with left ventricular dysfunction, but mechanisms that underlie these associations are not known. However, folate and vitamin B12 are methyl donors needed for the synthesis of S-adenosylmethionine, the substrate required for the activation by methylation of regulators of energy metabolism. We investigated the consequences of a diet lacking methyl donors in the myocardium of weaning rats from dams subjected to deficiency during gestation and lactation. Positron emission tomography (PET), microscope and metabolic examinations evidenced a myocardium hypertrophy, with cardiomyocyte enlargement, disturbed mitochondrial alignment, lipid droplets, decreased respiratory activity of complexes I and II and decreased S-adenosylmethionine:S-adenosylhomocysteine ratio. The increased concentrations of triglycerides and acylcarnitines were consistent with a deficit in fatty acid oxidation. These changes were explained by imbalanced acetylation/methylation of PGC-1α, through decreased expression of SIRT1 and PRMT1 and decreased S-adenosylmethionine:S-adenosylhomocysteine ratio, and by decreased expression of PPARα and ERRα. The main changes of the myocardium proteomic study were observed for proteins regulated by PGC-1α, PPARs and ERRα. These proteins, namely trifunctional enzyme subunit α-complex, short chain acylCoA dehydrogenase, acylCoA thioesterase 2, fatty acid binding protein-3, NADH dehydrogenase (ubiquinone) flavoprotein 2, NADH dehydrogenase (ubiquinone) 1α-subunit 10 and Hspd1 protein, are involved in fatty acid oxidation and mitochondrial respiration. In conclusion, the methyl donor deficiency produces detrimental effects on fatty acid oxidation and energy metabolism of myocardium through imbalanced methylation/acetylation of PGC-1α and decreased expression of PPARα and ERRα. These data are of pathogenetic relevance to perinatal cardiomyopathies.
Collapse
|
22
|
Anticancer Properties of PPARalpha-Effects on Cellular Metabolism and Inflammation. PPAR Res 2011; 2008:930705. [PMID: 18509489 PMCID: PMC2396219 DOI: 10.1155/2008/930705] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 04/14/2008] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) have lately attracted much attention as therapeutic targets. Previously, PPAR ligands were associated with the treatment of diabetes, hyperlipidemia and cardiovascular diseases, as they modulate the expression of genes regulating glucose and lipid metabolism. Recently, PPAR ligands have been also considered as potential anticancer agents, with relatively low systemic toxicity. The emerging evidence for antiproliferative, proapoptotic, antiinflammatory and potential antimetastatic properties of PPARα ligands prompted us to discuss possible roles of PPARα in tumor suppression. PPARα activation can target cancer cells energy balance by blocking fatty acid synthesis and by promoting fatty acid β-oxidation. In the state of limited nutrient availability, frequently presents in the tumor microenvironment, PPARα cooperates with AMP-dependent protein kinase in: (i) repressing oncogenic Akt activity, (ii) inhibiting cell proliferation, and (iii) forcing glycolysis-dependent cancer cells into “metabolic catastrophe.” Other potential anticancer effects of PPARα include suppression of inflammation, and upregulation of uncoupling proteins (UCPs), which attenuates mitochondrial reactive oxygen species production and cell proliferation. In conclusion, there are strong premises that the low-toxic and well-tolerated PPAR ligands should be considered as new therapeutic agents to fight disseminating cancer, which represents the major challenge for modern medicine and basic research.
Collapse
|
23
|
Fujita M, Momose A, Ohtomo T, Nishinosono A, Tanonaka K, Toyoda H, Morikawa M, Yamada J. Upregulation of fatty acyl-CoA thioesterases in the heart and skeletal muscle of rats fed a high-fat diet. Biol Pharm Bull 2011; 34:87-91. [PMID: 21212523 DOI: 10.1248/bpb.34.87] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In rodent models of diet-induced obesity, prolonged high-fat feeding increases the cellular uptake of fatty acids and causes lipotoxicity in the heart and skeletal muscle, where substrate overload to beta-oxidation generates mitochondrial stress. We examined the hypothesis that, because of its catalytic properties, acyl-CoA thioesterase (ACOT) would counteract these detrimental situations by modulating intracellular acyl-CoA levels. Rats were fed a low- or high-fat diet for up to 20 weeks, and the expressions of ACOT isoforms and fatty acid beta-oxidation enzymes were analyzed by western blotting. The expressions of ACOT1, ACOT2 and ACOT7 proteins in the heart and soleus muscle were significantly increased, by 2.0-7.6-fold, in rats fed the high-fat diet as compared with the low-fat diet group. These effects were accompanied by increases in carnitine palmitoyltransferase and acyl-CoA oxidase expression. However, ACOT was not induced in the extensor digitorum longus muscle or the liver. Subcellular fractionation of heart and soleus muscle homogenates confirmed expression of both the cytosolic and mitochondrial ACOT isoforms. These results underscore the functional relationship between ACOT and fatty acid oxidation, and suggest adaptive upregulation of ACOT to protect against fatty acid oversupply in the heart and skeletal muscle.
Collapse
Affiliation(s)
- Mariko Fujita
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192–0392, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ko ML, Shi L, Grushin K, Nigussie F, Ko GYP. Circadian profiles in the embryonic chick heart: L-type voltage-gated calcium channels and signaling pathways. Chronobiol Int 2011; 27:1673-96. [PMID: 20969517 DOI: 10.3109/07420528.2010.514631] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Circadian clocks exist in the heart tissue and modulate multiple physiological events, from cardiac metabolism to contractile function and expression of circadian oscillator and metabolic-related genes. Ample evidence has demonstrated that there are endogenous circadian oscillators in adult mammalian cardiomyocytes. However, mammalian embryos cannot be entrained independently to light-dark (LD) cycles in vivo without any maternal influence, but circadian genes are well expressed and able to oscillate in embryonic stages. The authors took advantage of using chick embryos that are independent of maternal influences to investigate whether embryonic hearts could be entrained under LD cycles in ovo. The authors found circadian regulation of L-type voltage-gated calcium channels (L-VGCCs), the ion channels responsible for the production of cardiac muscle contraction in embryonic chick hearts. The mRNA levels and protein expression of VGCCα1C and VGCCα1D are under circadian control, and the average L-VGCC current density is significantly larger when cardiomyocytes are recorded during the night than day. The phosphorylation states of several kinases involved in insulin signaling and cardiac metabolism, including extracellular signal-regulated kinase (Erk), stress-activated protein kinase (p38), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK-3β), are also under circadian control. Both Erk and p38 have been implicated in regulating cardiac contractility and in the development of various pathological states, such as cardiac hypertrophy and heart failure. Even though both Erk and phosphoinositide 3-kinase (PI3K)-Akt signaling pathways participate in complex cellular processes regarding physiological or pathological states of cardiomyocytes, the circadian oscillators in the heart regulate these pathways independently, and both pathways contribute to the circadian regulation of L-VGCCs.
Collapse
Affiliation(s)
- Michael L Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
25
|
Cole MA, Murray AJ, Cochlin LE, Heather LC, McAleese S, Knight NS, Sutton E, Jamil AA, Parassol N, Clarke K. A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart. Basic Res Cardiol 2011; 106:447-57. [PMID: 21318295 PMCID: PMC3071466 DOI: 10.1007/s00395-011-0156-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/12/2010] [Accepted: 12/23/2010] [Indexed: 12/03/2022]
Abstract
Elevated levels of cardiac mitochondrial uncoupling protein 3 (UCP3) and decreased cardiac efficiency (hydraulic power/oxygen consumption) with abnormal cardiac function occur in obese, diabetic mice. To determine whether cardiac mitochondrial uncoupling occurs in non-genetic obesity, we fed rats a high fat diet (55% kcal from fat) or standard laboratory chow (7% kcal from fat) for 3 weeks, after which we measured cardiac function in vivo using cine MRI, efficiency in isolated working hearts and respiration rates and ADP/O ratios in isolated interfibrillar mitochondria; also, measured were medium chain acyl-CoA dehydrogenase (MCAD) and citrate synthase activities plus uncoupling protein 3 (UCP3), mitochondrial thioesterase 1 (MTE-1), adenine nucleotide translocase (ANT) and ATP synthase protein levels. We found that in vivo cardiac function was the same for all rats, yet oxygen consumption was 19% higher in high fat-fed rat hearts, therefore, efficiency was 21% lower than in controls. We found that mitochondrial fatty acid oxidation rates were 25% higher, and MCAD activity was 23% higher, in hearts from rats fed the high fat diet when compared with controls. Mitochondria from high fat-fed rat hearts had lower ADP/O ratios than controls, indicating increased respiratory uncoupling, which was ameliorated by GDP, a UCP3 inhibitor. Mitochondrial UCP3 and MTE-1 levels were both increased by 20% in high fat-fed rat hearts when compared with controls, with no significant change in ATP synthase or ANT levels, or citrate synthase activity. We conclude that increased cardiac oxygen utilisation, and thereby decreased cardiac efficiency, occurs in non-genetic obesity, which is associated with increased mitochondrial uncoupling due to elevated UCP3 and MTE-1 levels.
Collapse
Affiliation(s)
- Mark A Cole
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Edwards LM, Murray AJ, Holloway CJ, Carter EE, Kemp GJ, Codreanu I, Brooker H, Tyler DJ, Robbins PA, Clarke K. Short‐term consumption of a high‐fat diet impairs whole‐body efficiency and cognitive function in sedentary men. FASEB J 2010; 25:1088-96. [DOI: 10.1096/fj.10-171983] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lindsay M. Edwards
- Department of Physiology Anatomy, and Genetics, University of Oxford Oxford UK
- The Oxford Centre for Clinical Magnetic Resonance Research John Radcliffe Hospital Oxford UK
| | - Andrew J. Murray
- Department of Physiology Development, and Neuroscience University of Cambridge Cambridge UK
| | - Cameron J. Holloway
- The Oxford Centre for Clinical Magnetic Resonance Research John Radcliffe Hospital Oxford UK
| | - Emma E. Carter
- Department of Physiology Anatomy, and Genetics, University of Oxford Oxford UK
| | - Graham J. Kemp
- Institute of Ageing and Chronic Disease Faculty of Health and Life Sciences University of Liverpool Liverpool UK
| | - Ion Codreanu
- The Oxford Centre for Clinical Magnetic Resonance Research John Radcliffe Hospital Oxford UK
| | | | - Damian J. Tyler
- Department of Physiology Anatomy, and Genetics, University of Oxford Oxford UK
| | - Peter A. Robbins
- Department of Physiology Anatomy, and Genetics, University of Oxford Oxford UK
| | - Kieran Clarke
- Department of Physiology Anatomy, and Genetics, University of Oxford Oxford UK
| |
Collapse
|
27
|
Burgmaier M, Sen S, Philip F, Wilson CR, Miller CC, Young ME, Taegtmeyer H. Metabolic adaptation follows contractile dysfunction in the heart of obese Zucker rats fed a high-fat "Western" diet. Obesity (Silver Spring) 2010; 18:1895-901. [PMID: 20111021 PMCID: PMC3623948 DOI: 10.1038/oby.2009.500] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The normal heart responds to changes in its metabolic milieu by changing relative oxidation rates of energy-providing substrates. We hypothesized that this flexibility is lost when genetically obese rats are fed a high-caloric, high-fat "Western" diet (WD). Male Zucker obese (ZO) and Zucker lean (ZL) rats were fed either control or WD composed of 10 kcal% and 45 kcal% fat, respectively, for 7 or 28 days. Cardiac triglycerides and mRNA transcript levels were measured in situ. Substrate oxidation rates and cardiac power were measured ex vivo. Hearts from ZO rats fed WD for 7 days showed decreased cardiac power and increased cardiac triglyceride content, but no change in oleate oxidation rates or mRNA transcript levels of pyruvate dehydrogenase kinase-4 (PDK-4), uncoupling protein-3 (UCP-3), and mitochondrial (MTE-1) and cytosolic thioesterase-1(CTE-1). When fed WD for 28 days, ZO rats showed no further decrease in cardiac power and no further increase in intramyocardial triglyceride levels compared to ZO rats fed the same diet for 7 days only, but did show significantly increased oleate oxidation rates and transcript levels of CTE-1, MTE-1, PDK-4, and UCP-3. In contrast, hearts from ZL rats fed WD showed increased rates of oleate oxidation and increased transcript levels of the fatty acid responsive genes investigated, and no further deterioration of contractile function. We conclude that exposing a genetic model of obesity to the nutrient stress of WD results in an early reversible loss of metabolic flexibility of the heart that is accompanied by contractile dysfunction.
Collapse
Affiliation(s)
- Mathias Burgmaier
- Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, TX
| | - Shiraj Sen
- Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, TX
| | - Femi Philip
- Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, TX
| | - Christopher R. Wilson
- Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, TX
| | - Charles C. Miller
- Department of Cardiothoracic and Vascular Surgery, University of Texas Houston Medical School, Houston, TX
| | - Martin E. Young
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, TX
| |
Collapse
|
28
|
Moreno M, Lombardi A, Silvestri E, Senese R, Cioffi F, Goglia F, Lanni A, de Lange P. PPARs: Nuclear Receptors Controlled by, and Controlling, Nutrient Handling through Nuclear and Cytosolic Signaling. PPAR Res 2010; 2010:435689. [PMID: 20814433 PMCID: PMC2929508 DOI: 10.1155/2010/435689] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 05/31/2010] [Accepted: 06/30/2010] [Indexed: 12/31/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs), which are known to regulate lipid homeostasis, are tightly controlled by nutrient availability, and they control nutrient handling. In this paper, we focus on how nutrients control the expression and action of PPARs and how cellular signaling events regulate the action of PPARs in metabolically active tissues (e.g., liver, skeletal muscle, heart, and white adipose tissue). We address the structure and function of the PPARs, and their interaction with other nuclear receptors, including PPAR cross-talk. We further discuss the roles played by different kinase pathways, including the extracellular signal-regulated kinases/mitogen-activated protein kinase (ERK MAPK), AMP-activated protein kinase (AMPK), Akt/protein kinase B (Akt/PKB), and the NAD+-regulated protein deacetylase SIRT1, serving to control the activity of the PPARs themselves as well as that of a key nutrient-related PPAR coactivator, PPARgamma coactivator-1alpha (PGC-1alpha). We also highlight how currently applied nutrigenomic strategies will increase our understanding on how nutrients regulate metabolic homeostasis through PPAR signaling.
Collapse
Affiliation(s)
- Maria Moreno
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Assunta Lombardi
- Dipartimento delle Scienze Biologiche, Sezione Fisiologia ed Igiene, Università degli Studi di Napoli “Federico II”, Via Mezzocannone 8, 80134 Napoli, Italy
| | - Elena Silvestri
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Rosalba Senese
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Federica Cioffi
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Fernando Goglia
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Antonia Lanni
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Pieter de Lange
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
29
|
van Lunteren E, Moyer M. Gene expression profiling in the type 1 diabetes rat diaphragm. PLoS One 2009; 4:e7832. [PMID: 19915678 PMCID: PMC2773011 DOI: 10.1371/journal.pone.0007832] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 10/14/2009] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Respiratory muscle contractile performance is impaired by diabetes, mechanisms of which included altered carbohydrate and lipid metabolism, oxidative stress and changes in membrane electrophysiology. The present study examined to what extent these cellular perturbations involve changes in gene expression. METHODOLOGY/PRINCIPAL FINDINGS Diaphragm muscle from streptozotocin-diabetic rats was analyzed with Affymetrix gene expression arrays. Diaphragm from diabetic rats had 105 genes with at least +/-2-fold significantly changed expression (55 increased, 50 decreased), and these were assigned to gene ontology groups based on over-representation analysis using DAVID software. There was increased expression of genes involved in palmitoyl-CoA hydrolase activity (a component of lipid metabolism) (P = 0.037, n = 2 genes, fold change 4.2 to 27.5) and reduced expression of genes related to carbohydrate metabolism (P = 0.000061, n = 8 genes, fold change -2.0 to -8.5). Other gene ontology groups among upregulated genes were protein ubiquitination (P = 0.0053, n = 4, fold change 2.2 to 3.4), oxidoreductase activity (P = 0.024, n = 8, fold change 2.1 to 6.0), and morphogenesis (P = 0.012, n = 10, fold change 2.1 to 4.3). Other downregulated gene groups were extracellular region (including extracellular matrix and collagen) (P = 0.00032, n = 13, fold change -2.2 to -3.7) and organogenesis (P = 0.032, n = 7, fold change -2.1 to -3.7). Real-time PCR confirmed the directionality of changes in gene expression for 30 of 31 genes tested. CONCLUSIONS/SIGNIFICANCE These data indicate that in diaphragm muscle type 1 diabetes increases expression of genes involved in lipid energetics, oxidative stress and protein ubiquitination, decreases expression of genes involved in carbohydrate metabolism, and has little effect on expression of ion channel genes. Reciprocal changes in expression of genes involved in carbohydrate and lipid metabolism may change the availability of energetic substrates and thereby directly modulate fatigue resistance, an important issue for a muscle like the diaphragm which needs to contract without rest for the entire lifetime of the organism.
Collapse
Affiliation(s)
- Erik van Lunteren
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center and Case Western Reserve University, Cleveland, OH, USA.
| | | |
Collapse
|
30
|
Brennan KM, Michal JJ, Ramsey JJ, Johnson KA. Body weight loss in beef cows: I. The effect of increased β-oxidation on messenger ribonucleic acid levels of uncoupling proteins two and three and peroxisome proliferator-activated receptor in skeletal muscle. J Anim Sci 2009; 87:2860-6. [DOI: 10.2527/jas.2008-1302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Murray AJ, Knight NS, Cochlin LE, McAleese S, Deacon RMJ, Rawlins JNP, Clarke K. Deterioration of physical performance and cognitive function in rats with short‐term high‐fat feeding. FASEB J 2009; 23:4353-60. [DOI: 10.1096/fj.09-139691] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andrew J. Murray
- Department of Physiology Anatomy, and Genetics University of Oxford Oxford UK
| | - Nicholas S. Knight
- Department of Physiology Anatomy, and Genetics University of Oxford Oxford UK
| | - Lowri E. Cochlin
- Department of Physiology Anatomy, and Genetics University of Oxford Oxford UK
| | - Sara McAleese
- Department of Physiology Anatomy, and Genetics University of Oxford Oxford UK
| | | | | | - Kieran Clarke
- Department of Physiology Anatomy, and Genetics University of Oxford Oxford UK
| |
Collapse
|
32
|
Fromme T, Hoffmann C, Nau K, Rozman J, Reichwald K, Utting M, Platzer M, Klingenspor M. An intronic single base exchange leads to a brown adipose tissue-specific loss of Ucp3 expression and an altered body mass trajectory. Physiol Genomics 2009; 38:54-62. [PMID: 19383623 DOI: 10.1152/physiolgenomics.00249.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Uncoupling protein 3 (Ucp3) is a transport protein of the inner mitochondrial membrane and presumably is implicated in the maintenance or tolerance of high lipid oxidation rates. Ucp3 is predominantly expressed in skeletal muscle and brown adipose tissue and is regulated by a transcription factor complex involving peroxisome proliferator-activated receptor-alpha, MyoD, and COUP transcription factor II. By analysis of a mutant Djungarian hamster model lacking Ucp3 transcription specifically in brown adipose tissue, we identified a putative transcription factor-binding site that confers tissue specificity. A naturally occurring intronic point mutation disrupting this site leads to brown adipose tissue-specific loss of Ucp3 expression and an altered body weight trajectory. Our findings provide insight into tissue-specific Ucp3 regulation and, for the first time, unambiguously demonstrate that changes in Ucp3 expression can interfere with body weight regulation.
Collapse
Affiliation(s)
- Tobias Fromme
- Molecular Nutritional Medicine, ZIEL Research Center for Nutrition and Food Sciences, Technische Universität München, Freising, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
At present the prevalence of heart failure rises along with aging of the population. Current heart failure therapeutic options are directed towards disease prevention via neurohormonal antagonism (β-blockers, angiotensin converting enzyme inhibitors and/or angiotensin receptor blockers and aldosterone antagonists), symptomatic treatment with diuretics and digitalis and use of biventricular pacing and defibrillators in a special subset of patients. Despite these therapies and device interventions heart failure remains a progressive disease with high mortality and morbidity rates. The number of patients who survive to develop advanced heart failure is increasing. These patients require new therapeutic strategies. In this review two of emerging therapies in the treatment of heart failure are discussed: metabolic modulation and cellular therapy. Metabolic modulation aims to optimize the myocardial energy utilization via shifting the substrate utilization from free fatty acids to glucose. Cellular therapy on the other hand has the goal to achieve true cardiac regeneration. We review the experimental data that support these strategies as well as the available pharmacological agents for metabolic modulation and clinical application of cellular therapy.
Collapse
Affiliation(s)
- Diana Revenco
- Division of Cardiovascular Medicine, Caritas St. Elizabeth's Medical Center, Boston, MA 02135, USA
| | | |
Collapse
|
34
|
Boudina S, Bugger H, Sena S, O'Neill BT, Zaha VG, Ilkun O, Wright JJ, Mazumder PK, Palfreyman E, Tidwell TJ, Theobald H, Khalimonchuk O, Wayment B, Sheng X, Rodnick KJ, Centini R, Chen D, Litwin SE, Weimer BE, Abel ED. Contribution of impaired myocardial insulin signaling to mitochondrial dysfunction and oxidative stress in the heart. Circulation 2009; 119:1272-83. [PMID: 19237663 DOI: 10.1161/circulationaha.108.792101] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Diabetes-associated cardiac dysfunction is associated with mitochondrial dysfunction and oxidative stress, which may contribute to left ventricular dysfunction. The contribution of altered myocardial insulin action, independent of associated changes in systemic metabolism, is incompletely understood. The present study tested the hypothesis that perinatal loss of insulin signaling in the heart impairs mitochondrial function. METHODS AND RESULTS In 8-week-old mice with cardiomyocyte deletion of insulin receptors (CIRKO), inotropic reserves were reduced, and mitochondria manifested respiratory defects for pyruvate that was associated with proportionate reductions in catalytic subunits of pyruvate dehydrogenase. Progressive age-dependent defects in oxygen consumption and ATP synthesis with the substrate glutamate and the fatty acid derivative palmitoyl-carnitine were observed. Mitochondria also were uncoupled when exposed to palmitoyl-carnitine, in part as a result of increased reactive oxygen species production and oxidative stress. Although proteomic and genomic approaches revealed a reduction in subsets of genes and proteins related to oxidative phosphorylation, no reductions in maximal activities of mitochondrial electron transport chain complexes were found. However, a disproportionate reduction in tricarboxylic acid cycle and fatty acid oxidation proteins in mitochondria suggests that defects in fatty acid and pyruvate metabolism and tricarboxylic acid flux may explain the mitochondrial dysfunction observed. CONCLUSIONS Impaired myocardial insulin signaling promotes oxidative stress and mitochondrial uncoupling, which, together with reduced tricarboxylic acid and fatty acid oxidative capacity, impairs mitochondrial energetics. This study identifies specific contributions of impaired insulin action to mitochondrial dysfunction in the heart.
Collapse
Affiliation(s)
- Sihem Boudina
- University of Utah School of Medicine, Salt Lake City, 84112, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wright JJ, Kim J, Buchanan J, Boudina S, Sena S, Bakirtzi K, Ilkun O, Theobald HA, Cooksey RC, Kandror KV, Abel ED. Mechanisms for increased myocardial fatty acid utilization following short-term high-fat feeding. Cardiovasc Res 2009; 82:351-60. [PMID: 19147655 DOI: 10.1093/cvr/cvp017] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIMS Diet-induced obesity is associated with increased myocardial fatty acid (FA) utilization, insulin resistance, and cardiac dysfunction. The study was designed to test the hypothesis that impaired glucose utilization accounts for initial changes in FA metabolism. METHODS AND RESULTS Ten-week-old C57BL6J mice were fed a high-fat diet (HFD, 45% calories from fat) or normal chow (4% calories from fat). Cardiac function and substrate metabolism in isolated working hearts, glucose uptake in isolated cardiomyocytes, mitochondrial function, insulin-stimulated protein kinase B (Akt/PKB) and Akt substrate (AS-160) phosphorylation, glucose transporter 4 (GLUT4) translocation, pyruvate dehydrogenase (PDH) activity, and mRNA levels for metabolic genes were determined after 2 or 5 weeks of HFD. Two weeks of HFD reduced basal rates of glycolysis and glucose oxidation and prevented insulin stimulation of glycolysis in hearts and reduced insulin-stimulated glucose uptake in cardiomyocytes. Insulin-stimulated Akt/PKB and AS-160 phosphorylation were preserved, and PDH activity was unchanged. GLUT4 content was reduced by 55% and GLUT4 translocation was significantly attenuated. HFD increased FA oxidation rates and myocardial oxygen consumption (MVO2), which could not be accounted for by mitochondrial uncoupling or by increased expression of peroxisome proliferator activated receptor-alpha (PPAR-alpha) target genes, which increased only after 5 weeks of HFD. CONCLUSION Rates of myocardial glucose utilization are altered early in the course of HFD because of reduced GLUT4 content and GLUT4 translocation despite normal insulin signalling to Akt/PKB and AS-160. The reciprocal increase in FA utilization is not due to PPAR-alpha-mediated signalling or mitochondrial uncoupling. Thus, the initial increase in myocardial FA utilization in response to HFD likely results from impaired glucose transport that precedes impaired insulin signalling.
Collapse
Affiliation(s)
- Jordan J Wright
- Division of Endocrinology, Metabolism and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, 15 N 2030 East, Bldg 533, Rm 3110B, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Szendroedi J, Roden M. Mitochondrial fitness and insulin sensitivity in humans. Diabetologia 2008; 51:2155-67. [PMID: 18802678 DOI: 10.1007/s00125-008-1153-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 04/15/2008] [Indexed: 02/06/2023]
Abstract
Human mitochondria can be studied either in biopsies or by measuring flux through ATP synthase and phosphocreatine recovery using magnetic resonance spectroscopy. Myocellular ATP production (flux through ATP synthase [fATP]) increases by up to 90% during 8 h of insulin stimulation. Fasting mitochondrial function is 14-40% lower than in controls in the presence of insulin resistance, as seen in those with type 2 diabetes, their insulin-resistant relatives or the obese. Insulin-stimulated fATP is abolished in insulin-resistant relatives and patients with type 2 diabetes, and patients frequently show decreased mitochondrial size/density. Age, fat mass, physical activity, plasma NEFA and glucose all correlate negatively with mitochondrial function, but it is for methodological reasons difficult to determine whether reduced mitochondrial content or function account for reduced ATP production in insulin resistance. Experimental plasma NEFA elevation appears to inhibit mitochondrial function by interfering with the metabolic actions of insulin, which might explain impaired mitochondrial function in obesity. Alternatively, primary mitochondrial abnormalities, as seen in those with inherited risk of type 2 diabetes, could decrease lipid oxidation, thereby raising circulating and intracellular NEFA levels. In type 2 diabetes, chronic hyperglycaemia and dyslipidaemia could first diminish the function, and subsequently reduce the size or density of mitochondria via oxidative stress and apoptosis. Many questions remain unsolved, including (1) which mechanisms regulate mitochondrial adaptation to nutrient overload; (2) what factors control the expression of genes encoding mitochondrial proteins and other signals involved in mitochondrial biogenesis; (3) which geno/phenotypes are associated with both insulin resistance and mitochondrial abnormalities; and (4) which are the most promising targets for improving mitochondrial fitness in insulin resistance?
Collapse
Affiliation(s)
- J Szendroedi
- First Medical Department, Hanusch Hospital (Teaching Hospital of the Medical University of Vienna), Vienna, Austria
| | | |
Collapse
|
37
|
Lockridge JB, Sailors ML, Durgan DJ, Egbejimi O, Jeong WJ, Bray MS, Stanley WC, Young ME. Bioinformatic profiling of the transcriptional response of adult rat cardiomyocytes to distinct fatty acids. J Lipid Res 2008; 49:1395-408. [PMID: 18387886 DOI: 10.1194/jlr.m700517-jlr200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus, obesity, and dyslipidemia increase risk for cardiovascular disease, and expose the heart to high plasma fatty acid (FA) levels. Recent studies suggest that distinct FA species are cardiotoxic (e.g., palmitate), while others are cardioprotective (e.g., oleate), although the molecular mechanisms mediating these observations are unclear. The purpose of the present study was to investigate the differential effects of distinct FA species (varying carbon length and degree of saturation) on adult rat cardiomyocyte (ARC) gene expression. ARCs were initially challenged with 0.4 mM octanoate (8:0), palmitate (16:0), stearate (18:0), oleate (18:1), or linoleate (18:2) for 24 h. Microarray analysis revealed differential regulation of gene expression by the distinct FAs; the order regarding the number of genes whose expression was influenced by a specific FA was octanoate (1,188) > stearate (740) > palmitate (590) > oleate (83) > linoleate (65). In general, cardioprotective FAs (e.g., oleate) increased expression of genes promoting FA oxidation to a greater extent than cardiotoxic FAs (e.g., palmitate), whereas the latter induced markers of endoplasmic reticulum and oxidative stress. Subsequent RT-PCR analysis revealed distinct time- and concentration-dependent effects of these FA species, in a gene-specific manner. For example, stearate- and palmitate-mediated ucp3 induction tended to be transient (i.e., initial high induction, followed by subsequent repression), whereas oleate-mediated induction was sustained. These findings may provide insight into why diets high in unsaturated FAs (e.g., oleate) are cardioprotective, whereas diets rich in saturated FAs (e.g., palmitate) are not.
Collapse
Affiliation(s)
- Joseph B Lockridge
- University of Texas Health Science Center at Houston, Brown Foundation Institute of Molecular Medicine, Houston TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Enhanced acyl-CoA dehydrogenase activity is associated with improved mitochondrial and contractile function in heart failure. Cardiovasc Res 2008; 79:331-40. [DOI: 10.1093/cvr/cvn066] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Xu J, Zhou L, Persson XM, Balagopal P, Jensen MD, Guo Z. Oxidation of Intracellular and Extracellular Fatty Acids in Skeletal Muscle: Application of kinetic modeling, stable isotopes and liquid chromatography/electrospray ionization ion-trap tandem mass spectrometry technology. EUR J LIPID SCI TECH 2008; 110:5-15. [PMID: 23616729 DOI: 10.1002/ejlt.200600267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fatty acids are a major fuel for many tissues and abnormal utilization is implicated in diseases. However, tissue fatty acid oxidation has not been determined reliably in vivo. Furthermore, fatty acid oxidation has not been partitioned into intracellular and extracellular components. In this report, a one-pool model is described that enables direct quantitation of fluxes of intracellular and plasma fatty acids to mitochondria in skeletal muscle using dual stable isotopes and liquid chromatography/electrospray ionization ion-trap tandem mass spectrometry (LC/ESI-itMS2) technology. It is validated by the determination of palmitate oxidation by skeletal muscle in lean and obese rats and the regulation by insulin. Resting postabsorptive intramyocellular and plasma palmitate oxidation by gastrocnemius muscle was determined to be 3.47±0.8 and 2.06±0.5 nmol/g min in lean and 6.96±1.8 and 1.34±0.2 nmol/g min in obese rats, respectively. In obese rats, hyperinsulinemia (1 nmol/l) suppressed intramyocellular (by 59±5% to 2.88±0.3 nmol/g min P<0.05) but not plasma (1.41±0.14 nmol/g min, P>0.05) palmitate oxidation. The fractional turnover rate of palmitoylcarnitine (0.34±0.1/min vs. 0.83±0.2/min, P<0.05) was also suppressed by insulin. In obese and lean rats, there are 83% and 51%, respectively (P=0.08), of plasma fatty acids traverse triglyceride pool before being oxidized. The results demonstrated that the methodology is feasible and sensitive to metabolic alterations and thus can be used to study fatty acid utilization at tissue level in a compartmentalized manner for the firs time.
Collapse
Affiliation(s)
- J Xu
- Endocrine Research Unit, Mayo Foundation, Rochester, MN, USA
| | | | | | | | | | | |
Collapse
|
40
|
Koonen DPY, Jacobs RL, Febbraio M, Young ME, Soltys CLM, Ong H, Vance DE, Dyck JRB. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity. Diabetes 2007; 56:2863-71. [PMID: 17728375 DOI: 10.2337/db07-0907] [Citation(s) in RCA: 356] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The etiology of type 2 diabetes often involves diet-induced obesity (DIO), which is associated with elevated plasma fatty acids and lipoprotein associated triglycerides. Since aberrant hepatic fatty acid uptake may contribute to this, we investigated whether increased expression of a fatty acid transport protein (CD36) in the liver during DIO contributes to the dyslipidemia that precedes development of type 2 diabetes. RESEARCH DESIGN AND METHODS We determined the effect DIO has on hepatic CD36 protein expression and the functional consequence of this in terms of hepatic triglyceride storage and secretion. In addition, in vivo adenoviral gene delivery of CD36 to the livers of lean mice was performed to determine if increased hepatic CD36 protein was sufficient to alter hepatic fatty acid uptake and triglyceride storage and secretion. RESULTS During DIO, CD36 protein levels in the liver are significantly elevated, and these elevated levels correlate with increased hepatic triglyceride storage and secretion. These alterations in liver lipid storage and secretion were also observed upon forced expression of hepatic CD36 in the absence of DIO and were accompanied with a marked rise in hepatic fatty acid uptake in vivo, demonstrating that increased CD36 expression is sufficient to recapitulate the aberrant liver lipid handling observed in DIO. CONCLUSIONS Increased expression of hepatic CD36 protein in response to DIO is sufficient to exacerbate hepatic triglyceride storage and secretion. As these CD36-mediated effects contribute to the dyslipidemia that often precedes the development of type 2 diabetes, increased hepatic CD36 expression likely plays a causative role in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Debby P Y Koonen
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Folmes KD, Witters LA, Allard MF, Young ME, Dyck JRB. The AMPK γ1 R70Q mutant regulates multiple metabolic and growth pathways in neonatal cardiac myocytes. Am J Physiol Heart Circ Physiol 2007; 293:H3456-64. [PMID: 17906100 DOI: 10.1152/ajpheart.00936.2007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although mutations in the γ-subunit of AMP-activated protein kinase (AMPK) can result in excessive glycogen accumulation and cardiac hypertrophy, the mechanisms by which this occurs have not been well defined. Because >65% of cardiac AMPK activity is associated with the γ1-subunit of AMPK, we investigated the effects of expression of an AMPK-activating γ1-subunit mutant (γ1 R70Q) on regulatory pathways controlling glycogen accumulation and cardiac hypertrophy in neonatal rat cardiac myocytes. Whereas expression of γ1 R70Q displayed the expected increase in palmitate oxidation rates, rates of glycolysis were significantly depressed. In addition, glycogen synthase activity was increased in cardiac myocytes expressing γ1 R70Q, due to both increased expression and decreased phosphorylation of glycogen synthase. The inhibition of glycolysis and increased glycogen synthase activity were correlated with elevated glycogen levels in γ1 R70Q-expressing myocytes. In association with the reduced phosphorylation of glycogen synthase, glycogen synthase kinase (GSK)-3β protein and mRNA levels were profoundly decreased in the γ1 R70Q-expressing myocytes. Consistent with GSK-3β negatively regulating hypertrophy via inhibition of nuclear factor of activated T cells (NFAT), the dramatic downregulation of GSK-3β was associated with increased nuclear activity of NFAT. Together, these data provide important new information about the mechanisms by which a mutation in the γ-subunit of AMPK causes altered AMPK signaling and identify multiple pathways involved in regulating both cardiac myocyte metabolism and growth that may contribute to the development of the γ mutant-associated cardiomyopathy.
Collapse
Affiliation(s)
- Karalyn D Folmes
- Cardiovascular Research Group, Faculty of Medicine and Dentistry, University of Alberta, 474 Heritage Medical Research Centre, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
42
|
Wilson C, Tran M, Salazar K, Young M, Taegtmeyer H. Western diet, but not high fat diet, causes derangements of fatty acid metabolism and contractile dysfunction in the heart of Wistar rats. Biochem J 2007; 406:457-67. [PMID: 17550347 PMCID: PMC2049036 DOI: 10.1042/bj20070392] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Obesity and diabetes are associated with increased fatty acid availability in excess of muscle fatty acid oxidation capacity. This mismatch is implicated in the pathogenesis of cardiac contractile dysfunction and also in the development of skeletal-muscle insulin resistance. We tested the hypothesis that 'Western' and high fat diets differentially cause maladaptation of cardiac- and skeletal-muscle fatty acid oxidation, resulting in cardiac contractile dysfunction. Wistar rats were fed on low fat, 'Western' or high fat (10, 45 or 60% calories from fat respectively) diet for acute (1 day to 1 week), short (4-8 weeks), intermediate (16-24 weeks) or long (32-48 weeks) term. Oleate oxidation in heart muscle ex vivo increased with high fat diet at all time points investigated. In contrast, cardiac oleate oxidation increased with Western diet in the acute, short and intermediate term, but not in the long term. Consistent with fatty acid oxidation maladaptation, cardiac power decreased with long-term Western diet only. In contrast, soleus muscle oleate oxidation (ex vivo) increased only in the acute and short term with either Western or high fat feeding. Fatty acid-responsive genes, including PDHK4 (pyruvate dehydrogenase kinase 4) and CTE1 (cytosolic thioesterase 1), increased in heart and soleus muscle to a greater extent with feeding a high fat diet compared with a Western diet. In conclusion, we implicate inadequate induction of a cassette of fatty acid-responsive genes, and impaired activation of fatty acid oxidation, in the development of cardiac dysfunction with Western diet.
Collapse
Affiliation(s)
- Christopher R. Wilson
- *Department of Internal Medicine, Division of Cardiology, University of Texas Medical School at Houston, University of Texas Health Science Center at Houston, 6431 Fannin, MSB 1.246, Houston, TX 77030, U.S.A
| | - Mai K. Tran
- *Department of Internal Medicine, Division of Cardiology, University of Texas Medical School at Houston, University of Texas Health Science Center at Houston, 6431 Fannin, MSB 1.246, Houston, TX 77030, U.S.A
| | - Katrina L. Salazar
- *Department of Internal Medicine, Division of Cardiology, University of Texas Medical School at Houston, University of Texas Health Science Center at Houston, 6431 Fannin, MSB 1.246, Houston, TX 77030, U.S.A
| | - Martin E. Young
- †Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, U.S.A
| | - Heinrich Taegtmeyer
- *Department of Internal Medicine, Division of Cardiology, University of Texas Medical School at Houston, University of Texas Health Science Center at Houston, 6431 Fannin, MSB 1.246, Houston, TX 77030, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
43
|
van Lunteren E, Moyer M. Oxidoreductase, morphogenesis, extracellular matrix, and calcium ion-binding gene expression in streptozotocin-induced diabetic rat heart. Am J Physiol Endocrinol Metab 2007; 293:E759-68. [PMID: 17566115 DOI: 10.1152/ajpendo.00191.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes has far-ranging effects on cardiac structure and function. Previous gene expression studies of the heart in animal models of type 1 diabetes concur that there is altered expression of genes involved in lipid and protein metabolism, but they diverge with regard to expression changes involving many other functional groups of genes of mechanistic importance in diabetes-induced cardiac dysfunction. To obtain additional information about these controversial areas, genome-wide expression was assessed using microarrays in left ventricle from streptozotocin-diabetic and normal rats. There were 261 genes with statistically significant altered expression of at least +/-1.5-fold, of which 124 were increased and 137 reduced by diabetes. Gene ontology assignment testing identified several statistical significantly overrepresented groups among genes with altered expression, which differed for increased compared with reduced expression. Relevant gene groups with increased expression by diabetes included lipid metabolism (P < 0.001, n = 13 genes, fold change 1.5 to 14.6) and oxidoreductase activity (P < 0.001, n = 17, fold change 1.5 to 4.6). Groups with reduced expression by diabetes included morphogenesis (P < 0.00001, n = 28, fold change -1.5 to -5.1), extracellular matrix (P < 0.02, n = 9, fold change -1.5 to -3.9), cell adhesion (P < 0.05, n = 10, fold change -1.5 to -2.7), and calcium ion binding (P < 0.01, n = 13, fold change -1.5 to -3.0). Array findings were verified by quantitative PCR for 36 genes. These data combined with previous findings strengthen the evidence for diabetes-induced cardiac gene expression changes involved in cell growth and development, oxidoreductase activity, and the extracellular matrix and also point out other gene groups not previously identified as being affected, such as those involved in calcium ion homeostasis.
Collapse
Affiliation(s)
- Erik van Lunteren
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd., Cleveland, OH 44106, USA.
| | | |
Collapse
|
44
|
de Lange P, Feola A, Ragni M, Senese R, Moreno M, Lombardi A, Silvestri E, Amat R, Villarroya F, Goglia F, Lanni A. Differential 3,5,3'-triiodothyronine-mediated regulation of uncoupling protein 3 transcription: role of Fatty acids. Endocrinology 2007; 148:4064-72. [PMID: 17478558 DOI: 10.1210/en.2007-0206] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T(3) regulates energy metabolism by stimulating metabolic rate and decreasing metabolic efficiency. The discovery of mitochondrial uncoupling protein 3 (UCP3), its homology to UCP1, and regulation by T(3) rendered it a possible molecular determinant of the action of T(3) on energy metabolism, but data are controversial. This controversy may in part be attributable to discrepancies observed between the regulation by T(3) of UCP3 expression in rats, humans, and mice. To clarify this issue, we studied 1) the induction kinetics of the UCP3 gene by T(3) in rat skeletal muscle, 2) the influence of fatty acids, and 3) the structure and regulation of the various UCP3 promoters by T(3). Within 8 h of single-dose T(3) administration, hypothyroid rats showed a rise in serum fatty acid levels concomitant with a rapid increase in UCP3 expression in gastrocnemius muscle, followed by inductions of peroxisome proliferator activated receptor delta (PPARdelta) (within 24 h) and PPAR target gene expression (after 24 h). This T(3)-induced early UCP3 expression depended on fatty acid-PPAR signaling because depleting serum fatty acid levels abolished its expression, restorable by administration of the PPARdelta agonist L165,041 (4-[3-(4-acetyl-3-hydroxy-2-propylphenoxy)propoxy]phenoxy]acetic acid). In transfected rat L6 myoblasts, only the rat UCP3 promoter positively responded to T(3) and L165,041 together in the presence of MyoD, thyroid hormone receptor beta1 (TRbeta1), PPARdelta, or PPARdelta plus the TR dimerization partner retinoid X receptor alpha. All promoters share a response element common to TR and PPAR (TRE 1), but the observed species differences may be attributable to different localizations of the MyoD response element, which in the rat maps to exon 1.
Collapse
Affiliation(s)
- Pieter de Lange
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Diabetes mellitus increases the risk of heart failure independently of underlying coronary artery disease, and many believe that diabetes leads to cardiomyopathy. The underlying pathogenesis is partially understood. Several factors may contribute to the development of cardiac dysfunction in the absence of coronary artery disease in diabetes mellitus. This review discusses the latest findings in diabetic humans and in animal models and reviews emerging new mechanisms that may be involved in the development and progression of cardiac dysfunction in diabetes.
Collapse
Affiliation(s)
- Sihem Boudina
- Division of Endocrinology, Metabolism and Diabetes and Program in Human Molecular Biology and Genetics, University of Utah School of Medicine, Salt Lake City 84112, USA
| | | |
Collapse
|
46
|
Durgan DJ, Moore MWS, Ha NP, Egbejimi O, Fields A, Mbawuike U, Egbejimi A, Shaw CA, Bray MS, Nannegari V, Hickson-Bick DL, Heird WC, Dyck JRB, Chandler MP, Young ME. Circadian rhythms in myocardial metabolism and contractile function: influence of workload and oleate. Am J Physiol Heart Circ Physiol 2007; 293:H2385-93. [PMID: 17616739 DOI: 10.1152/ajpheart.01361.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple extracardiac stimuli, such as workload and circulating nutrients (e.g., fatty acids), known to influence myocardial metabolism and contractile function exhibit marked circadian rhythms. The aim of the present study was to investigate whether the rat heart exhibits circadian rhythms in its responsiveness to changes in workload and/or fatty acid (oleate) availability. Thus, hearts were isolated from male Wistar rats (housed during a 12:12-h light-dark cycle: lights on at 9 AM) at 9 AM, 3 PM, 9 PM, and 3 AM and perfused in the working mode ex vivo with 5 mM glucose plus either 0.4 or 0.8 mM oleate. Following 20-min perfusion at normal workload (i.e., 100 cm H(2)O afterload), hearts were challenged with increased workload (140 cm H(2)O afterload plus 1 microM epinephrine). In the presence of 0.4 mM oleate, myocardial metabolism exhibited a marked circadian rhythm, with decreased rates of glucose oxidation, increased rates of lactate release, decreased glycogenolysis capacity, and increased channeling of oleate into nonoxidative pathways during the light phase. Rat hearts also exhibited a modest circadian rhythm in responsiveness to the workload challenge when perfused in the presence of 0.4 mM oleate, with increased myocardial oxygen consumption at the dark-to-light phase transition. However, rat hearts perfused in the presence of 0.8 mM oleate exhibited a markedly blunted contractile function response to the workload challenge during the light phase. In conclusion, these studies expose marked circadian rhythmicities in myocardial oxidative and nonoxidative metabolism as well as responsiveness of the rat heart to changes in workload and fatty acid availability.
Collapse
Affiliation(s)
- David J Durgan
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
de Lange P, Moreno M, Silvestri E, Lombardi A, Goglia F, Lanni A. Fuel economy in food‐deprived skeletal muscle: signaling pathways and regulatory mechanisms. FASEB J 2007; 21:3431-41. [PMID: 17595346 DOI: 10.1096/fj.07-8527rev] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Energy deprivation poses a tremendous challenge to skeletal muscle. Glucose (ATP) depletion causes muscle fibers to undergo rapid adaptive changes toward the use of fatty acids (instead of glucose) as fuel. Physiological situations involving energy deprivation in skeletal muscle include exercise and fasting. A vast body of evidence is available on the signaling pathways that lead to structural/metabolic changes in muscle during exercise and endurance training. In contrast, only recently has a systematic, overall picture been obtained of the signaling processes (and their kinetics and sequential order) that lead to adaptations of the muscle to the fasting state. It has become clear that the reaction of the organism to food restraint or deprivation involves a rapid signaling process causing skeletal muscles, which generally use glucose as their predominant fuel, to switch to the use of fat as fuel. Efficient sensing of glucose depletion in skeletal muscle guarantees maintained activity in those tissues that rely entirely on glucose (such as the brain). To metabolize fatty acids, skeletal muscle needs to activate complex transcription, translation, and phosphorylation pathways. Only recently has it become clear that these pathways are interrelated and tightly regulated in a rapid, transient manner. Food deprivation may trigger these responses with a timing/intensity that differs among animal species and that may depend on their individual ability to induce structural/metabolic changes that serve to safeguard whole-body energy homeostasis in the longer term. The increased cellular AMP/ATP ratio induced by food deprivation, which results in activation of AMP-activated protein kinase (AMPK), initiates a rapid signaling process, resulting in the recruitment of factors mediating the structural/metabolic shift in skeletal muscle toward this change in fuel usage. These factors include peroxisome proliferator-activated receptor (PPAR)gamma coactivator-1alpha (PGC-1alpha), PPARdelta, and their target genes, which are involved in the formation of oxidative muscle fibers, mitochondrial biogenesis, oxidative phosphorylation, and fatty acid oxidation. Fatty acids, besides being the fuel for mitochondrial oxidation, have been identified as important signaling molecules regulating the transcription and/or activity of the genes or gene products involved in fatty acid metabolism during food deprivation. It is thus becoming increasingly clear that fatty acids determine the economy of their own usage. We discuss the order of events from the onset of food deprivation and their importance.
Collapse
Affiliation(s)
- Pieter de Lange
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Zahradka P. Cardiovascular Actions of the Peroxisome Proliferator-Activated Receptor-Alpha (PPAR?) Agonist Wy14,643. ACTA ACUST UNITED AC 2007; 25:99-122. [PMID: 17614934 DOI: 10.1111/j.1527-3466.2007.00008.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review examines the various effects of Wy14,643, a hypolipidemic agent that activates peroxisome proliferator-activated receptor-alpha (PPARalpha), on the cardiovascular system. An emphasis has been placed on the specific cellular processes affected by Wy14,643 as they relate to vascular and cardiac function. Although the topic of this discussion is limited to vascular and cardiac tissues, the importance of circulating lipids on cardiovascular disease requires that a description of the indirect actions of this compound on liver metabolism also be included. Finally, the pharmacology of Wy14,643 is discussed within the context of PPARalpha-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Peter Zahradka
- Institute of Cardiovascular Sciences, Department of Physiology, University of Manitoba and Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface General Hospital Research Centre, Winnipeg, MB, Canada.
| |
Collapse
|
49
|
Chandler MP, Morgan EE, McElfresh TA, Kung TA, Rennison JH, Hoit BD, Young ME. Heart failure progression is accelerated following myocardial infarction in type 2 diabetic rats. Am J Physiol Heart Circ Physiol 2007; 293:H1609-16. [PMID: 17545473 DOI: 10.1152/ajpheart.01338.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Clinical studies have shown a greater incidence of myocardial infarction in diabetic patients, and following an infarction, diabetes is associated with an increased risk for the development of left ventricular (LV) dysfunction and heart failure. The goal of this study was to determine if the progression of heart failure following myocardial infarction in type 2 diabetic (T2D) rats is accelerated compared with nondiabetic rats. Male nondiabetic Wistar-Kyoto (WKY) and T2D Goto-Kakizaki (GK) rats underwent coronary artery ligation or sham surgery to induce heart failure. Postligation (8 and 20 wk), two-dimensional echocardiography and LV pressure measurements were made. Heart failure progression, as assessed by enhanced LV remodeling and contractile dysfunction, was accelerated 8 wk postligation in the T2D animals. LV remodeling was evident from increased end-diastolic and end-systolic diameters and areas in the GK compared with the WKY infarcted group. Furthermore, enhanced LV contractile dysfunction was evident from a greater deterioration in fractional shortening and enhanced myocardial performance index (an index of global LV dysfunction) in the GK infarcted group. This accelerated progression was accompanied by greater increases in atrial natriuretic factor and skeletal alpha-actin (gene markers of heart failure and hypertrophy) mRNA levels in GK infarcted hearts. Despite similar decreases in metabolic gene expression (i.e., peroxisome proliferator-activated receptor-alpha-regulated genes associated with fatty acid oxidation) between infarcted WKY and GK rat hearts, myocardial triglyceride levels were elevated in the GK hearts only. These results, demonstrating enhanced remodeling and LV dysfunction 8 wk postligation provide evidence of an accelerated progression of heart failure in T2D rats.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Animals
- Atrial Natriuretic Factor/genetics
- Atrial Natriuretic Factor/metabolism
- Blood Glucose/metabolism
- Cardiac Output, Low/metabolism
- Cardiac Output, Low/physiopathology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Disease Models, Animal
- Disease Progression
- Fatty Acids, Nonesterified/blood
- Heart Rate/physiology
- Male
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Strains
- Rats, Inbred WKY
- Ventricular Dysfunction, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- Margaret P Chandler
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
King KL, Young ME, Kerner J, Huang H, O'Shea KM, Alexson SEH, Hoppel CL, Stanley WC. Diabetes or peroxisome proliferator-activated receptor alpha agonist increases mitochondrial thioesterase I activity in heart. J Lipid Res 2007; 48:1511-7. [PMID: 17438340 DOI: 10.1194/jlr.m600364-jlr200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPAR alpha) is a transcriptional regulator of the expression of mitochondrial thioesterase I (MTE-I) and uncoupling protein 3 (UCP3), which are induced in the heart at the mRNA level in response to diabetes. Little is known about the regulation of protein expression of MTE-I and UCP3 or about MTE-I activity; thus, we investigated the effects of diabetes and treatment with a PPAR alpha agonist on these parameters. Rats were either made diabetic with streptozotocin (55 mg/kg ip) and maintained for 10-14 days or treated with the PPAR alpha agonist fenofibrate (300 mg/kg/day) for 4 weeks. MTE-I and UCP3 protein expression, MTE-1 activity, palmitate export, and oxidative phosphorylation were measured in isolated cardiac mitochondria. Diabetes and fenofibrate increased cardiac MTE-I mRNA, protein, and activity ( approximately 4-fold compared with controls). This increase in activity was matched by a 6-fold increase in palmitate export in fenofibrate-treated animals, despite there being no effect in either group on UCP3 protein expression. Both diabetes and fenofibrate caused significant decreases in state III respiration of isolated mitochondria with pyruvate + malate as the substrate, but only diabetes reduced state III rates with palmitoylcarnitine. Both diabetes and specific PPAR alpha activation increased MTE-I protein, activity, and palmitate export in the heart, with little effect on UCP3 protein expression.
Collapse
Affiliation(s)
- Kristen L King
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|