1
|
Wang T, Chen S, Zhou D, Hong Z. Exploring receptors for pro-resolving and non-pro-resolving mediators as therapeutic targets for sarcopenia. Metabolism 2025:156148. [PMID: 39892864 DOI: 10.1016/j.metabol.2025.156148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/01/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Sarcopenia is defined by a reduction in both muscle strength and mass. Sarcopenia may be an inevitable component of the aging process, but it may also be accelerated by comorbidities and metabolic derangements. The underlying mechanisms contributing to these pathological changes remain poorly understood. We propose that chronic inflammation-mediated networks and metabolic defects that exacerbate muscle dysfunction are critical factors in sarcopenia and related diseases. Consequently, utilizing specialized pro-resolving mediators (SPMs) that function through specific G-protein coupled receptors (GPCRs) may offer effective therapeutic options for these disorders. However, challenges such as a limited understanding of SPM/receptor signaling pathways, rapid inactivation of SPMs, and the complexities of SPM synthesis impede their practical application. In this context, stable small-molecule SPM mimetics and receptor agonists present promising alternatives. Moreover, the aged adipose-skeletal axis may contribute to this process. Activating non-SPM GPCRs on adipocytes, immune cells, and muscle cells under conditions of systemic, chronic, low-grade inflammation (SCLGI) could help alleviate inflammation and metabolic dysfunction. Recent preclinical studies indicate that both SPM GPCRs and non-SPM GPCRs can mitigate symptoms of aging-related diseases such as obesity and diabetes, which are driven by chronic inflammation and metabolic disturbances. These findings suggest that targeting these receptors could provide a novel strategy for addressing various chronic inflammatory conditions, including sarcopenia.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Neurology, Institute of Neurology and Disease, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Sihan Chen
- West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Dong Zhou
- Department of Neurology, Institute of Neurology and Disease, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhen Hong
- Department of Neurology, Institute of Neurology and Disease, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Peixoto TC, Quitete FT, Teixeira AVS, Martins BC, Soares RDA, Atella GC, Bertasso IM, Lisboa PC, Resende AC, Mucci DDB, Souza-Mello V, Martins FF, Daleprane JB. Palm and interesterified palm oil-enhanced brown fat whitening contributes to metabolic dysfunction in C57BL/6J mice. Nutr Res 2025; 133:94-107. [PMID: 39705913 DOI: 10.1016/j.nutres.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
Palm oil is widely used in the food industry owing to its high stability and versatility. The interesterified version has been used as an alternative to oils rich in trans fatty acids. However, the health effects of these vegetable oils are not yet fully understood. We hypothesized that the consumption of palm oil (noninteresterified and interesterified), even without excessive amounts of energy and lipids in the diet, could lead to morphofunctional changes in brown adipose tissue (BAT). To this end, male C57BL/6J mice were divided into 3 dietary groups (n = 10 each): soybean oil (SO), palm oil (PO), and interesterified palm oil (IPO) for 10 weeks. The PO and IPO groups had significant increases in the visceral fat mass and interscapular BAT (iBAT) lipid content. In iBAT, the PO and IPO groups showed lower mRNA expression of Ucp1, Adrb3, and Pgc1a, while the PO also showed lower mRNA levels of Ppara and Ampk, and the IPO showed lower Prdm16 expression. Moreover, PO had higher Il6 expression and lower catalase activity, while the IPO showed an upregulated Tnfa expression and lower catalase activity, but higher antioxidant activity of the glutathione peroxidase (GPx) enzyme. The consumption of PO and IPO had negative effects on weight and body fat, including the impairment of iBAT function. Our findings give rise to apprehensions regarding the safety and consequences of consuming PO and IPO for energy metabolism.
Collapse
MESH Headings
- Animals
- Palm Oil/pharmacology
- Mice, Inbred C57BL
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/drug effects
- Male
- Soybean Oil/administration & dosage
- Soybean Oil/pharmacology
- Mice
- Plant Oils/pharmacology
- Intra-Abdominal Fat/metabolism
- Uncoupling Protein 1/metabolism
- RNA, Messenger/metabolism
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/drug effects
- Interleukin-6/metabolism
- Receptors, Adrenergic, beta-3/metabolism
- Receptors, Adrenergic, beta-3/genetics
- Diet
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Lipid Metabolism/drug effects
- Catalase/metabolism
- DNA-Binding Proteins
- PPAR alpha
Collapse
Affiliation(s)
- Thamara Cherem Peixoto
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Fernanda Torres Quitete
- Laboratory of Cardiovascular Pharmacology and Medicinal Plants, Department of Pharmacology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ananda Vitoria Silva Teixeira
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Bruna Cadete Martins
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ricardo de Andrade Soares
- Laboratory of Cardiovascular Pharmacology and Medicinal Plants, Department of Pharmacology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Geórgia Correa Atella
- Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iala Milene Bertasso
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angela Castro Resende
- Laboratory of Cardiovascular Pharmacology and Medicinal Plants, Department of Pharmacology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Daniela de Barros Mucci
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Fabiane Ferreira Martins
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil; Department of Morphology, Federal University of Rio Grande do Norte, Rio Grande do Norte, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Fazeli SA, Nourollahi S, Alirezaei A, Mirhashemi S, Davarian A, Hosseini I. Perirenal Adipose Tissue: Clinical Implication and Therapeutic Interventions. Indian J Nephrol 2024; 34:573-582. [PMID: 39649326 PMCID: PMC11619052 DOI: 10.25259/ijn_532_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/29/2024] [Indexed: 12/10/2024] Open
Abstract
Perirenal adipose tissue (PRAT) has been identified as an important factor in local and general homeostasis of the human body and is especially important in regulating renal and cardiovascular functions. It has also been identified as a crucial risk factor to consider in cardiovascular and renal disorders, malignancies, and various other diseases. Having a concrete idea of the effects of therapeutic interventions on the size and metabolism of the PRAT could prove highly beneficial. This review summarizes what is known about the PRAT and provides a collection of studies on the effects of therapeutic interventions on PRAT and its related diseases. We used papers written on a variety of subjects, mainly concerning adipose tissue and the effects of therapeutic procedures on it. Our main challenge was to excerpt the information specifically related to the PRAT in these papers. These effects vary greatly, from an increase or decrease in mass or size of the PRAT to changes in metabolism and drug residue accumulation. The current studies often fail to consider PRAT as an individual subject of research and only examine the adipose tissue of the entire body as a whole. This leads us to believe this field could benefit greatly from further research.
Collapse
Affiliation(s)
- Seyed Amirhossein Fazeli
- Clinical Research and Development Center, Shahid Modarres Educational Hospital, Division of Nephrology, Department of Internal Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nephrology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Taleghani General Hospital, Division of Nephrology, Department of Internal Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Nourollahi
- Students’ Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Alirezaei
- Clinical Research and Development Center, Shahid Modarres Educational Hospital, Division of Nephrology, Department of Internal Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedhadi Mirhashemi
- Department of General Surgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Davarian
- Golestan Cardiovascular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ida Hosseini
- Students’ Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Yuan J, Nian Y, Wang X, Shi Q, Shui S, Cai H, Lin Y, Zhang X, Wang F, Chen J, Qiu M, Liu J. Actein ameliorates diet-induced obesity through the activation of AMPK-mediated white fat browning. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156009. [PMID: 39260136 DOI: 10.1016/j.phymed.2024.156009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Targeting white adipose tissue (WAT) browning to increase systemic energy expenditure is a promising therapeutic strategy to combat obesity. Actein from Actaea cimicifuga L. has recently been reported to ameliorate high fat-induced hepatic steatosis. However, the effect of actein on diet-induced obesity merits more and further investigation. PURPOSE We aimed to examine the anti-obesity potential of actein and unravel its actions on WAT browning. METHODS The effect of actein on diet-induced obesity was evaluated using a high-fat diet model in C57BL/6 mice. Systemic energy expenditure of mice was measured with a combined indirect calorimetry system. Quantitative real-time PCR analyses were performed to investigate the mRNA levels of genes involved in thermogenesis, browning, and lipolysis. The protein levels were assessed by Western blot. Moreover, WAT explants and a transwell co-culture system consisting of SVFs and adipocytes were constructed to study the mechanisms of actein on promoting WAT browning and lipolysis. RESULTS At a dosage of 5 mg/kg/d, actein not only protected mice against diet-induced obesity and insulin resistance, but also reversed pre-established obesity and glucose intolerance in mice. Meanwhile, actein facilitated systemic energy expenditure by activating WAT lipolysis and browning. Further, mechanistic studies revealed that actein indirectly induced epididymal adipocyte lipolysis and directly promoted a white-to-beige conversion of subcutaneous adipocytes by activating the AMPK signaling. CONCLUSION Actein ameliorated diet-induced obesity and was discovered as a natural lead compound directly targeting white-to-beige conversion of subcutaneous adipocytes, suggesting the potential of developing new therapies for obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Jingjing Yuan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yin Nian
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiangqiang Shi
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Shanshan Shui
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Cai
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fangbin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
5
|
Ishida Y, Matsushita M, Yoneshiro T, Saito M, Fuse S, Hamaoka T, Kuroiwa M, Tanaka R, Kurosawa Y, Nishimura T, Motoi M, Maeda T, Nakayama K. Genetic evidence for involvement of β2-adrenergic receptor in brown adipose tissue thermogenesis in humans. Int J Obes (Lond) 2024; 48:1110-1117. [PMID: 38632325 PMCID: PMC11281906 DOI: 10.1038/s41366-024-01522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Sympathetic activation of brown adipose tissue (BAT) thermogenesis can ameliorate obesity and related metabolic abnormalities. However, crucial subtypes of the β-adrenergic receptor (AR), as well as effects of its genetic variants on functions of BAT, remains unclear in humans. We conducted association analyses of genes encoding β-ARs and BAT activity in human adults. METHODS Single nucleotide polymorphisms (SNPs) in β1-, β2-, and β3-AR genes (ADRB1, ADRB2, and ADRB3) were tested for the association with BAT activity under mild cold exposure (19 °C, 2 h) in 399 healthy Japanese adults. BAT activity was measured using fluorodeoxyglucose-positron emission tomography and computed tomography (FDG-PET/CT). To validate the results, we assessed the effects of SNPs in the two independent populations comprising 277 healthy East Asian adults using near-infrared time-resolved spectroscopy (NIRTRS) or infrared thermography (IRT). Effects of SNPs on physiological responses to intensive cold exposure were tested in 42 healthy Japanese adult males using an artificial climate chamber. RESULTS We found a significant association between a functional SNP (rs1042718) in ADRB2 and BAT activity assessed with FDG-PET/CT (p < 0.001). This SNP also showed an association with cold-induced thermogenesis in the population subset. Furthermore, the association was replicated in the two other independent populations; BAT activity was evaluated by NIRTRS or IRT (p < 0.05). This SNP did not show associations with oxygen consumption and cold-induced thermogenesis under intensive cold exposure, suggesting the irrelevance of shivering thermogenesis. The SNPs of ADRB1 and ADRB3 were not associated with these BAT-related traits. CONCLUSIONS The present study supports the importance of β2-AR in the sympathetic regulation of BAT thermogenesis in humans. The present collection of DNA samples is the largest to which information on the donor's BAT activity has been assigned and can serve as a reference for further in-depth understanding of human BAT function.
Collapse
MESH Headings
- Adult
- Female
- Humans
- Male
- Middle Aged
- Adipose Tissue, Brown/metabolism
- Japan
- Polymorphism, Single Nucleotide
- Positron Emission Tomography Computed Tomography
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-3/genetics
- Receptors, Adrenergic, beta-3/metabolism
- Thermogenesis
- East Asian People/genetics
Collapse
Affiliation(s)
- Yuka Ishida
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Mami Matsushita
- Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Sapporo, Hokkaido, 065-0013, Japan
| | - Takeshi Yoneshiro
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, 153-8904, Japan
- Department of Molecular Metabolism and Physiology, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, 980-8575, Japan
| | - Masayuki Saito
- Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Sapporo, Hokkaido, 065-0013, Japan
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Sayuri Fuse
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Takafumi Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Miyuki Kuroiwa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Riki Tanaka
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Fukuoka, 814-0180, Japan
| | - Yuko Kurosawa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Takayuki Nishimura
- Department of Human Life Design and Science, Faculty of Design, Kyushu University, Fukuoka, Fukuoka, 815-8540, Japan
- Physiological Anthropology Research Center, Faculty of Design, Kyushu University, Fukuoka, Fukuoka, 815-8540, Japan
| | - Midori Motoi
- Department of Human Life Design and Science, Faculty of Design, Kyushu University, Fukuoka, Fukuoka, 815-8540, Japan
| | - Takafumi Maeda
- Department of Human Life Design and Science, Faculty of Design, Kyushu University, Fukuoka, Fukuoka, 815-8540, Japan
- Physiological Anthropology Research Center, Faculty of Design, Kyushu University, Fukuoka, Fukuoka, 815-8540, Japan
| | - Kazuhiro Nakayama
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
6
|
Prapaharan B, Lea M, Beaudry JL. Weighing in on the role of brown adipose tissue for treatment of obesity. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13157. [PMID: 39087083 PMCID: PMC11290130 DOI: 10.3389/jpps.2024.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Brown adipose tissue (BAT) activation is an emerging target for obesity treatments due to its thermogenic properties stemming from its ability to shuttle energy through uncoupling protein 1 (Ucp1). Recent rodent studies show how BAT and white adipose tissue (WAT) activity can be modulated to increase the expression of thermogenic proteins. Consequently, these alterations enable organisms to endure cold-temperatures and elevate energy expenditure, thereby promoting weight loss. In humans, BAT is less abundant in obese subjects and impacts of thermogenesis are less pronounced, bringing into question whether energy expending properties of BAT seen in rodents can be translated to human models. Our review will discuss pharmacological, hormonal, bioactive, sex-specific and environmental activators and inhibitors of BAT to determine the potential for BAT to act as a therapeutic strategy. We aim to address the feasibility of utilizing BAT modulators for weight reduction in obese individuals, as recent studies suggest that BAT's contributions to energy expenditure along with Ucp1-dependent and -independent pathways may or may not rectify energy imbalance characteristic of obesity.
Collapse
Affiliation(s)
| | | | - Jacqueline L. Beaudry
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Wang H, Ülgen M, Trajkovski M. Importance of temperature on immuno-metabolic regulation and cancer progression. FEBS J 2024; 291:832-845. [PMID: 36152006 DOI: 10.1111/febs.16632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022]
Abstract
Cancer immunotherapies emerge as promising strategies for restricting tumour growth. The tumour microenvironment (TME) has a major impact on the anti-tumour immune response and on the efficacy of the immunotherapies. Recent studies have linked changes in the ambient temperature with particular immuno-metabolic reprogramming and anti-cancer immune response in laboratory animals. Here, we describe the energetic balance of the organism during change in temperature, and link this to the immune alterations that could be of relevance for cancer, as well as for other human diseases. We highlight the contribution of the gut microbiota in modifying this interaction. We describe the overall metabolic response and underlying mechanisms of tumourigenesis in mouse models at varying ambient temperatures and shed light on their potential importance in developing therapeutics against cancer.
Collapse
Affiliation(s)
- Haiping Wang
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
| | - Melis Ülgen
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Dwaib HS, Michel MC. Is the β 3-Adrenoceptor a Valid Target for the Treatment of Obesity and/or Type 2 Diabetes? Biomolecules 2023; 13:1714. [PMID: 38136585 PMCID: PMC10742325 DOI: 10.3390/biom13121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
β3-Adrenoceptors mediate several functions in rodents that could be beneficial for the treatment of obesity and type 2 diabetes. This includes promotion of insulin release from the pancreas, cellular glucose uptake, lipolysis, and thermogenesis in brown adipose tissue. In combination, they lead to a reduction of body weight in several rodent models including ob/ob mice and Zucker diabetic fatty rats. These findings stimulated drug development programs in various pharmaceutical companies, and at least nine β3-adrenoceptor agonists have been tested in clinical trials. However, all of these projects were discontinued due to the lack of clinically relevant changes in body weight. Following a concise historical account of discoveries leading to such drug development programs we discuss species differences that explain why β3-adrenoceptors are not a meaningful drug target for the treatment of obesity and type 2 diabetes in humans.
Collapse
Affiliation(s)
- Haneen S. Dwaib
- Department of Clinical Nutrition and Dietetics, Palestine Ahliya University, Bethlehem P.O. Box 1041, Palestine;
| | - Martin C. Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
9
|
Santos WLL, da Silva Pinheiro C, de Oliveira Santos R, da Silva ACA, Severo JS, Mendes PHM, de Sousa LC, de Sousa OMC, Dos Santos BLB, de Oliveira KBV, Freitas AK, Torres-Leal FL, Dos Santos AA, da Silva MTB. Physical exercise alleviates oxidative stress in brown adipose tissue and causes changes in body composition and nutritional behavior in rats with polycystic ovary syndrome. Life Sci 2023; 325:121754. [PMID: 37156395 DOI: 10.1016/j.lfs.2023.121754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
AIM Polycystic Ovary Syndrome (PCOS) is a very common endocrine disorder in women. We investigate the effect of physical exercise on body composition, nutritional parameters, and oxidative stress in rats with PCOS. METHODS Female rats were into three groups: Control, PCOS, and PCOS + Exercise. PCOS was induced by letrozole (1 mg/kg via p.o.) for 21 days consecutively. Physical exercise was swimming, for 21 consecutive days, 1 h/day with 5 % load. In all groups, we assessed the nutritional and murinometric parameters, body composition, thermography, and oxidative stress in brown adipose tissue (BAT) and peri-ovarian adipose tissue (POAT). KEY FINDINGS In PCOS we observed an increase (P < 0.05) in body weight vs. the Control group. But, the PCOS + Exercise group prevent this weight gain (P < 0.05). The temperature in BAT, decrease (P < 0.05) in the PCOS group vs. Control group. PCOS + Exercise prevented this reduction (P < 0.05) in BAT temperature vs. PCOS groups. We observed decreases (P < 0.05) in Lee Index and BMI in POS + Exercise vs. PCOS group. In PCOS rats, we observed an increase (P < 0.05) in murinometric (SRWG, EI, and FE) and body composition parameters (TWB, ECF, ICF, and FFM) vs. the Control group. The PCOS + Exercise prevents (P < 0.05) these changes in all groups, compared with PCOS. Regarding the BAT, we observe an increase (P < 0.05) in MPO and MDA levels in the PCOS vs. Control group. PCOS + Exercise prevents (P < 0.05) these increases vs. the PCOS group. SIGNIFICANCE PCOS modifies body composition, and nutritional parameters, and induces changes in oxidative stress in BAT. Physical exercise prevented these alterations.
Collapse
Affiliation(s)
- Wenna Lúcia Lima Santos
- Graduate Program in Food and Nutrition, Federal University of Piaui, Teresina, PI, Brazil; Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Federal University of Piaui, Teresina, PI, Brazil
| | - Clailson da Silva Pinheiro
- Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Federal University of Piaui, Teresina, PI, Brazil; Graduate Program in Pharmacology, Federal University of Piaui, Teresina, PI, Brazil
| | | | - Alda Cassia Alves da Silva
- Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Federal University of Piaui, Teresina, PI, Brazil; Graduate Program in Pharmacology, Federal University of Piaui, Teresina, PI, Brazil
| | - Juliana Soares Severo
- Graduate Program in Food and Nutrition, Federal University of Piaui, Teresina, PI, Brazil; Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Federal University of Piaui, Teresina, PI, Brazil
| | - Pedro Henrique Moraes Mendes
- Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Federal University of Piaui, Teresina, PI, Brazil
| | - Luiza Carolinda de Sousa
- Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Federal University of Piaui, Teresina, PI, Brazil
| | - Olga Maria Castro de Sousa
- Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Federal University of Piaui, Teresina, PI, Brazil
| | | | | | - António Klingem Freitas
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Moises Tolentino Bento da Silva
- Graduate Program in Food and Nutrition, Federal University of Piaui, Teresina, PI, Brazil; Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Federal University of Piaui, Teresina, PI, Brazil; Graduate Program in Pharmacology, Federal University of Piaui, Teresina, PI, Brazil; Laboratory of Physiology. Department of Immuno-Physiology and Pharmacology. Institute of the Biomedical Science Abel Salazar - ICBAS, Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, Porto, Portugal.
| |
Collapse
|
10
|
Mendoza-Viveros L, Marmolejo-Gutierrez C, Cid-Castro C, Escalante-Covarrubias Q, Montellier E, Carreño-Vázquez E, Noriega LG, Velázquez-Villegas LA, Tovar AR, Sassone-Corsi P, Aguilar-Arnal L, Orozco-Solis R. Astrocytic circadian clock control of energy expenditure by transcriptional stress responses in the ventromedial hypothalamus. Glia 2023; 71:1626-1647. [PMID: 36919670 DOI: 10.1002/glia.24360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/16/2023]
Abstract
Hypothalamic circuits compute systemic information to control metabolism. Astrocytes residing within the hypothalamus directly sense nutrients and hormones, integrating metabolic information, and modulating neuronal responses. Nevertheless, the role of the astrocytic circadian clock on the control of energy balance remains unclear. We used mice with a targeted ablation of the core-clock gene Bmal1 within Gfap-expressing astrocytes to gain insight on the role played by this transcription factor in astrocytes. While this mutation does not substantially affect the phenotype in mice fed normo-caloric diet, under high-fat diet we unmasked a thermogenic phenotype consisting of increased energy expenditure, and catabolism in brown adipose and overall metabolic improvement consisting of better glycemia control, and body composition. Transcriptomic analysis in the ventromedial hypothalamus revealed an enhanced response to moderate cellular stress, including ER-stress response, unfolded protein response and autophagy. We identified Xbp1 and Atf1 as two key transcription factors enhancing cellular stress responses. Therefore, we unveiled a previously unknown role of the astrocytic circadian clock modulating energy balance through the regulation of cellular stress responses within the VMH.
Collapse
Affiliation(s)
- Lucia Mendoza-Viveros
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, Mexico
- Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), México City, México
| | | | - Carolina Cid-Castro
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, Mexico
- Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), México City, México
| | | | | | | | - Lilia G Noriega
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Armando R Tovar
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Lorena Aguilar-Arnal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, Mexico
| | - Ricardo Orozco-Solis
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), México City, México
| |
Collapse
|
11
|
Activation of β-Adrenoceptors Promotes Lipid Droplet Accumulation in MCF-7 Breast Cancer Cells via cAMP/PKA/EPAC Pathways. Int J Mol Sci 2023; 24:ijms24010767. [PMID: 36614209 PMCID: PMC9820888 DOI: 10.3390/ijms24010767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Physiologically, β-adrenoceptors are major regulators of lipid metabolism, which may be reflected in alterations in lipid droplet dynamics. β-adrenoceptors have also been shown to participate in breast cancer carcinogenesis. Since lipid droplets may be seen as a hallmark of cancer, the present study aimed to investigate the role of β-adrenoceptors in the regulation of lipid droplet dynamics in MCF-7 breast cancer cells. Cells were treated for up to 72 h with adrenaline (an endogenous adrenoceptor agonist), isoprenaline (a non-selective β-adrenoceptor agonist) and salbutamol (a selective β2-selective agonist), and their effects on lipid droplets were evaluated using Nile Red staining. Adrenaline or isoprenaline, but not salbutamol, caused a lipid-accumulating phenotype in the MCF-7 cells. These effects were significantly reduced by selective β1- and β3-antagonists (10 nM atenolol and 100 nM L-748,337, respectively), indicating a dependence on both β1- and β3-adrenoceptors. These effects were dependent on the cAMP signalling pathway, involving both protein kinase A (PKA) and cAMP-dependent guanine-nucleotide-exchange (EPAC) proteins: treatment with cAMP-elevating agents (forskolin or 8-Br-cAMP) induced lipid droplet accumulation, whereas either 1 µM H-89 or 1 µM ESI-09 (PKA or EPAC inhibitors, respectively) abrogated this effect. Taken together, the present results demonstrate the existence of a β-adrenoceptor-mediated regulation of lipid droplet dynamics in breast cancer cells, likely involving β1- and β3-adrenoceptors, revealing a new mechanism by which adrenergic stimulation may influence cancer cell metabolism.
Collapse
|
12
|
Della Guardia L, Shin AC. The role of adipose tissue dysfunction in PM 2.5-induced vascular pathology. Am J Physiol Heart Circ Physiol 2022; 322:H971-H972. [PMID: 35481793 DOI: 10.1152/ajpheart.00156.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Lucio Della Guardia
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Andrew C Shin
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, Texas
| |
Collapse
|
13
|
Verduzco-Mendoza A, Bueno-Nava A, Wang D, Martínez-Burnes J, Olmos-Hernández A, Casas A, Domínguez A, Mota-Rojas D. Experimental Applications and Factors Involved in Validating Thermal Windows Using Infrared Thermography to Assess the Health and Thermostability of Laboratory Animals. Animals (Basel) 2021; 11:3448. [PMID: 34944225 PMCID: PMC8698170 DOI: 10.3390/ani11123448] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Evaluating laboratory animals' health and thermostability are fundamental components of all experimental designs. Alterations in either one of these parameters have been shown to trigger physiological changes that can compromise the welfare of the species and the replicability and robustness of the results obtained. Due to the nature and complexity of evaluating and managing the species involved in research protocols, non-invasive tools such as infrared thermography (IRT) have been adopted to quantify these parameters without altering them or inducing stress responses in the animals. IRT technology makes it possible to quantify changes in surface temperatures that are derived from alterations in blood flow that can result from inflammatory, stressful, or pathological processes; changes can be measured in diverse regions, called thermal windows, according to their specific characteristics. The principal body regions that were employed for this purpose in laboratory animals were the orbital zone (regio orbitalis), auricular pavilion (regio auricularis), tail (cauda), and the interscapular area (regio scapularis). However, depending on the species and certain external factors, the sensitivity and specificity of these windows are still subject to controversy due to contradictory results published in the available literature. For these reasons, the objectives of the present review are to discuss the neurophysiological mechanisms involved in vasomotor responses and thermogenesis via BAT in laboratory animals and to evaluate the scientific usefulness of IRT and the thermal windows that are currently used in research involving laboratory animals.
Collapse
Affiliation(s)
- Antonio Verduzco-Mendoza
- PhD Program in Biological and Health Sciences [Doctorado en Ciencias Biológicas y de la Salud], Universidad Autónoma Metropolitana, Mexico City 04960, Mexico;
| | - Antonio Bueno-Nava
- División of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, (INR-LGII), Mexico City 14389, Mexico;
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China;
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico;
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico;
| | - Alejandro Casas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.C.); (A.D.)
| | - Adriana Domínguez
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.C.); (A.D.)
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.C.); (A.D.)
| |
Collapse
|
14
|
Peres Valgas da Silva C, Calmasini F, Alexandre EC, Raposo HF, Delbin MA, Monica FZ, Zanesco A. The effects of mirabegron on obesity-induced inflammation and insulin resistance are associated with brown adipose tissue activation but not beiging in the subcutaneous white adipose tissue. Clin Exp Pharmacol Physiol 2021; 48:1477-1487. [PMID: 34343353 DOI: 10.1111/1440-1681.13566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023]
Abstract
Mirabegron is a selective β₃-adrenergic receptors agonist, which has been recently shown to improve metabolic health in rodents and humans. In this study, we investigated the effects of 2-week mirabegron treatment on the metabolic parameters of mice with a diet-induced obesity (DIO). C57BL/6JUnib mice were divided into control (CTR) and obese (OB) groups treated with vehicle, and an OB group treated with mirabegron (OB + MIRA). The obese groups were fed a high-fat diet for 12 weeks. Mirabegron (10 mg/kg/day) was administrated orally by gavage from weeks 10-12. After 2 weeks of mirabegron treatment, the energy expenditure was assessed with indirect calorimetry. Blood glucose, insulin, glycerol, free fatty acids (FFA), thiobarbituric acid reactive substance (TBAR), and tumour necrosis factor (TNF)-α levels were also assessed, and the HOMA index was determined. Liver tissue, brown adipose tissue (BAT), and inguinal white adipose tissue (iWAT) samples were collected for histological examination. The protein expressions of uncoupling protein 1 (UCP1) and mitochondrial transcription factor A (TFAM) were assessed using western blotting of the BAT and iWAT samples. In this study, mirabegron increased the energy expenditure and decreased adiposity in OB + MIRA. Increased UCP1 expression in BAT without changes in iWAT was also found. Mirabegron decreased circulating levels of FFA, glycerol, insulin, TNF-α, TBARS and HOMA index. DIO significantly increased the lipid deposits in the liver and BAT, but mirabegron partially reversed this change. Our findings indicate that treatment with mirabegron decreased inflammation and improved metabolism in obese mice. This effect was associated with increased BAT-mediated energy expenditure, but not iWAT beiging, which suggests that mirabegron might be useful for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Carmem Peres Valgas da Silva
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physical Education, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Fabiano Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Eduardo Costa Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Helena Fonseca Raposo
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Maria Andreia Delbin
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fabiola Zakia Monica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Angelina Zanesco
- Department of Physical Education, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
- Medical School, Graduate Program in Environmental Health, Metropolitan University of Santos, Santos, Brazil
| |
Collapse
|
15
|
Cero C, Lea HJ, Zhu KY, Shamsi F, Tseng YH, Cypess AM. β3-Adrenergic receptors regulate human brown/beige adipocyte lipolysis and thermogenesis. JCI Insight 2021; 6:e139160. [PMID: 34100382 PMCID: PMC8262278 DOI: 10.1172/jci.insight.139160] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
β3-Adrenergic receptors (β3-ARs) are the predominant regulators of rodent brown adipose tissue (BAT) thermogenesis. However, in humans, the physiological relevance of BAT and β3-AR remains controversial. Herein, using primary human adipocytes from supraclavicular neck fat and immortalized brown/beige adipocytes from deep neck fat from 2 subjects, we demonstrate that the β3-AR plays a critical role in regulating lipolysis, glycolysis, and thermogenesis. Silencing of the β3-AR compromised genes essential for thermogenesis, fatty acid metabolism, and mitochondrial mass. Functionally, reduction of β3-AR lowered agonist-mediated increases in intracellular cAMP, lipolysis, and lipolysis-activated, uncoupling protein 1-mediated thermogenic capacity. Furthermore, mirabegron, a selective human β3-AR agonist, stimulated BAT lipolysis and thermogenesis, and both processes were lost after silencing β3-AR expression. This study highlights that β3-ARs in human brown/beige adipocytes are required to maintain multiple components of the lipolytic and thermogenic cellular machinery and that β3-AR agonists could be used to achieve metabolic benefit in humans.
Collapse
Affiliation(s)
- Cheryl Cero
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Hannah J Lea
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Kenneth Y Zhu
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Farnaz Shamsi
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Yu-Hua Tseng
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Shinde AB, Song A, Wang QA. Brown Adipose Tissue Heterogeneity, Energy Metabolism, and Beyond. Front Endocrinol (Lausanne) 2021; 12:651763. [PMID: 33953697 PMCID: PMC8092391 DOI: 10.3389/fendo.2021.651763] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/18/2021] [Indexed: 01/19/2023] Open
Abstract
Brown adipocyte in brown adipose tissue (BAT) specializes in expending energy through non-shivering thermogenesis, a process that produces heat either by uncoupling protein 1 (UCP1) dependent uncoupling of mitochondrial respiration or by UCP1 independent mechanisms. Apart from this, there is ample evidence suggesting that BAT has an endocrine function. Studies in rodents point toward its vital roles in glucose and lipid homeostasis, making it an important therapeutic target for treating metabolic disorders related to morbidities such as obesity and type 2 diabetes. The rediscovery of thermogenically active BAT depots in humans by several independent research groups in the last decade has revitalized interest in BAT as an even more promising therapeutic intervention. Over the last few years, there has been overwhelming interest in understanding brown adipocyte's developmental lineages and how brown adipocyte uniquely utilizes energy beyond UCP1 mediated uncoupling respiration. These new discoveries would be leveraged for designing novel therapeutic interventions for metabolic disorders.
Collapse
Affiliation(s)
- Abhijit Babaji Shinde
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, United States
| | - Anying Song
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, United States
| | - Qiong A. Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, United States
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, United States
| |
Collapse
|
17
|
Grigoraș A, Balan RA, Căruntu ID, Giușcă SE, Lozneanu L, Avadanei RE, Rusu A, Riscanu LA, Amalinei C. Perirenal Adipose Tissue-Current Knowledge and Future Opportunities. J Clin Med 2021; 10:1291. [PMID: 33800984 PMCID: PMC8004049 DOI: 10.3390/jcm10061291] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
The perirenal adipose tissue (PRAT), a component of visceral adipose tissue, has been recently recognized as an important factor that contributes to the maintenance of the cardiovascular system and kidney homeostasis. PRAT is a complex microenvironment consisting of a mixture of white adipocytes and dormant and active brown adipocytes, associated with predipocytes, sympathetic nerve endings, vascular structures, and different types of inflammatory cells. In this review, we summarize the current knowledge about PRAT and discuss its role as a major contributing factor in the pathogenesis of hypertension, obesity, chronic renal diseases, and involvement in tumor progression. The new perspectives of PRAT as an endocrine organ and recent knowledge regarding the possible activation of dormant brown adipocytes are nowadays considered as new areas of research in obesity, in close correlation with renal and cardiovascular pathology. Supplementary PRAT complex intervention in tumor progression may reveal new pathways involved in carcinogenesis and, implicitly, may identify additional targets for tailored cancer therapy.
Collapse
Affiliation(s)
- Adriana Grigoraș
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, Iasi 700115, Romania; (R.A.B.); (I.-D.C.); (S.E.G.); (L.L.); (R.E.A.); (A.R.); (L.A.R.)
| | | | | | | | | | | | | | | | - Cornelia Amalinei
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, Iasi 700115, Romania; (R.A.B.); (I.-D.C.); (S.E.G.); (L.L.); (R.E.A.); (A.R.); (L.A.R.)
| |
Collapse
|
18
|
Saxton SN, Toms LK, Aldous RG, Withers SB, Ohanian J, Heagerty AM. Restoring Perivascular Adipose Tissue Function in Obesity Using Exercise. Cardiovasc Drugs Ther 2021; 35:1291-1304. [PMID: 33687595 PMCID: PMC8578065 DOI: 10.1007/s10557-020-07136-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Purpose Perivascular adipose tissue (PVAT) exerts an anti-contractile effect which is vital in regulating vascular tone. This effect is mediated via sympathetic nervous stimulation of PVAT by a mechanism which involves noradrenaline uptake through organic cation transporter 3 (OCT3) and β3-adrenoceptor-mediated adiponectin release. In obesity, autonomic dysfunction occurs, which may result in a loss of PVAT function and subsequent vascular disease. Accordingly, we have investigated abnormalities in obese PVAT, and the potential for exercise in restoring function. Methods Vascular contractility to electrical field stimulation (EFS) was assessed ex vivo in the presence of pharmacological tools in ±PVAT vessels from obese and exercised obese mice. Immunohistochemistry was used to detect changes in expression of β3-adrenoceptors, OCT3 and tumour necrosis factor-α (TNFα) in PVAT. Results High fat feeding induced hypertension, hyperglycaemia, and hyperinsulinaemia, which was reversed using exercise, independent of weight loss. Obesity induced a loss of the PVAT anti-contractile effect, which could not be restored via β3-adrenoceptor activation. Moreover, adiponectin no longer exerts vasodilation. Additionally, exercise reversed PVAT dysfunction in obesity by reducing inflammation of PVAT and increasing β3-adrenoceptor and OCT3 expression, which were downregulated in obesity. Furthermore, the vasodilator effects of adiponectin were restored. Conclusion Loss of neutrally mediated PVAT anti-contractile function in obesity will contribute to the development of hypertension and type II diabetes. Exercise training will restore function and treat the vascular complications of obesity. Supplementary Information The online version contains supplementary material available at 10.1007/s10557-020-07136-0.
Collapse
Affiliation(s)
- Sophie N Saxton
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
- The Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, UK
| | - Lauren K Toms
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | | | - Sarah B Withers
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
- The Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, UK
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Jacqueline Ohanian
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Anthony M Heagerty
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.
- The Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, UK.
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, Core Technology Facility (3rd floor), 46 Grafton Street, Manchester, M13 9NT, UK.
| |
Collapse
|
19
|
Wang Z, Hou Y, Ren S, Liu Z, Zuo Z, Huang S, Wang W, Wang H, Chen Y, Xu Y, Yamamoto M, Zhang Q, Fu J, Pi J. CL316243 treatment mitigates the inflammation in white adipose tissues of juvenile adipocyte-specific Nfe2l1 knockout mice. Free Radic Biol Med 2021; 165:289-298. [PMID: 33545311 DOI: 10.1016/j.freeradbiomed.2021.01.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 12/13/2022]
Abstract
Nuclear factor-erythroid 2-related factor 1 (NFE2L1) is a key transcription factor that regulates cellular adaptive responses to various stresses. Our previous studies revealed that adult adipocyte-specific Nfe2l1-knockout [Nfe2l1(f)-KO] mice show adipocyte hypertrophy and severe adipose inflammation, which can be worsened by rosiglitazone, a peroxisome proliferator-activated receptor γ agonist. To further assess the crucial roles of NFE2L1 in adipocytes, we investigated the effect of CL316243, a β3 adrenergic agonist that promotes lipolysis via a post-translational mechanism, on adipose inflammation in juvenile Nfe2l1(f)-KO mice. In contrast to adult mice, 4-week-old juvenile Nfe2l1(f)-KO mice displayed a normal fat distribution but reduced fasting plasma glycerol levels and elevated adipocyte hypertrophy and macrophage infiltration in inguinal and gonadal WAT. In addition, Nfe2l1(f)-KO mice had decreased expression of multiple lipolytic genes and reduced lipolytic activity in WAT. While 7 days of CL316243 treatment showed no significant effect on adipose inflammation in Nfe2l1-Floxed control mice, the same treatment dramatically alleviated macrophage infiltration and mRNA expression of inflammation and pyroptosis-related genes in WAT of Nfe2l1(f)-KO mice. Together with previous findings in adult mice, the current study highlights that NFE2L1 plays a fundamental regulatory role in lipolytic gene expression and thus might be an important target to improve adipose plasticity and lipid homeostasis.
Collapse
Affiliation(s)
- Zhendi Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Suping Ren
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Zhiyuan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Zhuo Zuo
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Sicui Huang
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Wanqi Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Huihui Wang
- Group of Chronic Disease and Environmental Genomics, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Yanyan Chen
- The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Road, Heping Area, Shenyang, 110001, PR China
| | - Yuanyuan Xu
- Group of Chronic Disease and Environmental Genomics, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China.
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China.
| |
Collapse
|
20
|
Hammoud SH, AlZaim I, Al-Dhaheri Y, Eid AH, El-Yazbi AF. Perirenal Adipose Tissue Inflammation: Novel Insights Linking Metabolic Dysfunction to Renal Diseases. Front Endocrinol (Lausanne) 2021; 12:707126. [PMID: 34408726 PMCID: PMC8366229 DOI: 10.3389/fendo.2021.707126] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
A healthy adipose tissue (AT) is indispensable to human wellbeing. Among other roles, it contributes to energy homeostasis and provides insulation for internal organs. Adipocytes were previously thought to be a passive store of excess calories, however this view evolved to include an endocrine role. Adipose tissue was shown to synthesize and secrete adipokines that are pertinent to glucose and lipid homeostasis, as well as inflammation. Importantly, the obesity-induced adipose tissue expansion stimulates a plethora of signals capable of triggering an inflammatory response. These inflammatory manifestations of obese AT have been linked to insulin resistance, metabolic syndrome, and type 2 diabetes, and proposed to evoke obesity-induced comorbidities including cardiovascular diseases (CVDs). A growing body of evidence suggests that metabolic disorders, characterized by AT inflammation and accumulation around organs may eventually induce organ dysfunction through a direct local mechanism. Interestingly, perirenal adipose tissue (PRAT), surrounding the kidney, influences renal function and metabolism. In this regard, PRAT emerged as an independent risk factor for chronic kidney disease (CKD) and is even correlated with CVD. Here, we review the available evidence on the impact of PRAT alteration in different metabolic states on the renal and cardiovascular function. We present a broad overview of novel insights linking cardiovascular derangements and CKD with a focus on metabolic disorders affecting PRAT. We also argue that the confluence among these pathways may open several perspectives for future pharmacological therapies against CKD and CVD possibly by modulating PRAT immunometabolism.
Collapse
Affiliation(s)
- Safaa H. Hammoud
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Departmment of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yusra Al-Dhaheri
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt
- *Correspondence: Ahmed F. El-Yazbi,
| |
Collapse
|
21
|
Martínez-Sánchez N. There and Back Again: Leptin Actions in White Adipose Tissue. Int J Mol Sci 2020; 21:ijms21176039. [PMID: 32839413 PMCID: PMC7503240 DOI: 10.3390/ijms21176039] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Leptin is a hormone discovered almost 30 years ago with important implications in metabolism. It is primarily produced by white adipose tissue (WAT) in proportion to the amount of fat. The discovery of leptin was a turning point for two principle reasons: on one hand, it generated promising expectations for the treatment of the obesity, and on the other, it changed the classical concept that white adipose tissue was simply an inert storage organ. Thus, adipocytes in WAT produce the majority of leptin and, although its primary role is the regulation of fat stores by controlling lipolysis and lipogenesis, this hormone also has implications in other physiological processes within WAT, such as apoptosis, browning and inflammation. Although a massive number of questions related to leptin actions have been answered, the necessity for further clarification facilitates constantly renewing interest in this hormone and its pathways. In this review, leptin actions in white adipose tissue will be summarized in the context of obesity.
Collapse
|
22
|
You L, Wang Y, Gao Y, Wang X, Cui X, Zhang Y, Pang L, Ji C, Guo X, Chi X. The role of microRNA-23b-5p in regulating brown adipogenesis and thermogenic program. Endocr Connect 2020; 9:457-470. [PMID: 32348962 PMCID: PMC7274556 DOI: 10.1530/ec-20-0124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Enhanced brown adipose tissue (BAT) mass and activity have been demonstrated to promote the expenditure of excess stored energy and reduce prevalence of obesity. Cold is known as a potent stimulator of BAT and activates BAT primarily through the β3-adrenergic-cAMP signaling. Here, we performed RNA-sequencing to identify differential miRNAs in mouse BAT upon cold exposure and a total of 20 miRNAs were validated. With the treatment of CL-316,243 (CL) and forskolin (Fsk) in mouse and human differentiated brown adipocyte cells in vitro, miR-23b-5p, miR-133a-3p, miR-135-5p, miR-491-5p, and miR-150-3p expression decreased and miR-455-5p expression increased. Among these deferentially expressed miRNAs, miR-23b-5p expression was differentially regulated in activated and aging mouse BAT and negatively correlated with Ucp1 expression. Overexpression of miR-23b-5p in the precursor cells from BAT revealed no significant effects on lipid accumulation, but diminished mitochondrial function and decreased expression of BAT specific markers. Though luciferase reporter assays did not confirm the positive association of miR-23b-5p with the 3'UTRs of the predicted target Ern1, miR-23b-5p overexpression may affect brown adipocyte thermogenic capacity mainly through regulating genes expression involving in lipolysis and fatty acid β-oxidation pathways. Our results suggest that miRNAs are involved in cold-mediated BAT thermogenic activation and further acknowledged miR-23b-5p as a negative regulator in controlling thermogenic programs, further providing potential molecular therapeutic targets to increase surplus energy and treat obesity.
Collapse
Affiliation(s)
- Lianghui You
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yan Wang
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yao Gao
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xingyun Wang
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xianwei Cui
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yanyan Zhang
- Beijing Chaoyang Distirct Maternal and Child Health Care Hospital, Beijing, China
| | - Lingxia Pang
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Chenbo Ji
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Xirong Guo
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Correspondence should be addressed to X Chi or X Guo: or
| | - Xia Chi
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China
- Correspondence should be addressed to X Chi or X Guo: or
| |
Collapse
|
23
|
Huang N, Mao EW, Hou NN, Liu YP, Han F, Sun XD. Novel insight into perirenal adipose tissue: A neglected adipose depot linking cardiovascular and chronic kidney disease. World J Diabetes 2020; 11:115-125. [PMID: 32313610 PMCID: PMC7156295 DOI: 10.4239/wjd.v11.i4.115] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/13/2020] [Accepted: 03/22/2020] [Indexed: 02/05/2023] Open
Abstract
Obesity is associated with adverse metabolic diseases including cardiovascular disease (CVD) and chronic kidney disease (CKD). These obesity-related diseases are highly associated with excess fat accumulation in adipose tissue. However, emerging evidence indicates that visceral adiposity associates more with metabolic and cardiovascular risk factors. Perirenal adipose tissue, surrounding the kidney, is originally thought to provides only mechanical support for kidney. However, more studies demonstrated perirenal adipose tissue have a closer association with renal disease than other visceral fat deposits in obesity. Additionally, perirenal adipose tissue is also an independent risk factor for CKD and even associated more with CVD. Thus, perirenal adipose tissue may be a connection of CVD with CKD. Here, we will provide an overview of the perirenal adipose tissue, a neglected visceral adipose tissue, and the roles of perirenal adipose tissue linking with CVD and CKD and highlight the perirenal adipose tissue as a potential strategy for future therapeutics against obesity-related disease.
Collapse
Affiliation(s)
- Na Huang
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - En-Wen Mao
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Ning-Ning Hou
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Yong-Ping Liu
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Xiao-Dong Sun
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| |
Collapse
|
24
|
Riis-Vestergaard MJ, Richelsen B, Bruun JM, Li W, Hansen JB, Pedersen SB. Beta-1 and Not Beta-3 Adrenergic Receptors May Be the Primary Regulator of Human Brown Adipocyte Metabolism. J Clin Endocrinol Metab 2020; 105:5684994. [PMID: 31867674 DOI: 10.1210/clinem/dgz298] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/19/2019] [Indexed: 11/19/2022]
Abstract
PURPOSE Brown adipose tissue (BAT) activation in humans has gained interest as a potential target for treatment of obesity and insulin resistance. In rodents, BAT is primarily induced through beta-3 adrenergic receptor (ADRB3) stimulation, whereas the primary beta adrenergic receptors (ADRBs) involved in human BAT activation are debated. We evaluated the importance of different ADRB subtypes for uncoupling protein 1 (UCP1) induction in human brown adipocytes. METHODS A human BAT cell model (TERT-hBA) was investigated for subtype-specific ADRB agonists and receptor knockdown on UCP1 mRNA levels and lipolysis (glycerol release). In addition, fresh human BAT biopsies and TERT-hBA were evaluated for expression of ADRB1, ADRB2, and ADRB3 using RT-qPCR. RESULTS The predominant ADRB subtype in TERT-hBA adipocytes and BAT biopsies was ADRB1. In TERT-hBA, UCP1 mRNA expression was stimulated 11.0-fold by dibutyryl cAMP (dbcAMP), 8.0-fold to 8.4-fold by isoproterenol (ISO; a pan-ADRB agonist), and 6.1-fold to 12.7-fold by dobutamine (ADRB1 agonist), whereas neither procaterol (ADRB2 agonist), CL314.432, or Mirabegron (ADRB3 agonists) affected UCP1. Similarly, dbcAMP, ISO, and dobutamine stimulated glycerol release, whereas lipolysis was unaffected by ADRB2 and ADRB3 agonists. Selective knockdown of ADRB1 significantly attenuated ISO-induced UCP1 expression. CONCLUSION The adrenergic stimulation of UCP1 and lipolysis may mainly be mediated through ADRB1. Moreover, ADRB1 is the predominant ADRB in both TERT-hBA and human BAT biopsies. Thus, UCP1 expression in human BAT may, unlike in rodents, primarily be regulated by ADRB1. These findings may have implications for ADRB agonists as future therapeutic compounds for human BAT activation.
Collapse
MESH Headings
- Adipocytes, Brown/cytology
- Adipocytes, Brown/metabolism
- Adult
- Aged
- Aged, 80 and over
- Cells, Cultured
- Cross-Sectional Studies
- Female
- Follow-Up Studies
- Gene Expression Regulation
- Humans
- Lipolysis
- Male
- Middle Aged
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-3/genetics
- Receptors, Adrenergic, beta-3/metabolism
- Young Adult
Collapse
Affiliation(s)
- Mette Ji Riis-Vestergaard
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus N, Denmark
| | - Bjørn Richelsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus N, Denmark
| | - Jens Meldgaard Bruun
- Institute of Clinical Medicine, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus N, Denmark
| | - Wei Li
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen Ø, Denmark
| | - Jacob B Hansen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen Ø, Denmark
| | - Steen Bønløkke Pedersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus N, Denmark
| |
Collapse
|
25
|
Kroon T, Harms M, Maurer S, Bonnet L, Alexandersson I, Lindblom A, Ahnmark A, Nilsson D, Gennemark P, O'Mahony G, Osinski V, McNamara C, Boucher J. PPARγ and PPARα synergize to induce robust browning of white fat in vivo. Mol Metab 2020; 36:100964. [PMID: 32248079 PMCID: PMC7132097 DOI: 10.1016/j.molmet.2020.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Peroxisome proliferator-activated receptors (PPARs) are key transcription factors that regulate adipose development and function, and the conversion of white into brown-like adipocytes. Here we investigated whether PPARα and PPARγ activation synergize to induce the browning of white fat. METHODS A selection of PPAR activators was tested for their ability to induce the browning of both mouse and human white adipocytes in vitro, and in vivo in lean and obese mice. RESULTS All dual PPARα/γ activators tested robustly increased uncoupling protein 1 (Ucp1) expression in both mouse and human adipocytes in vitro, with tesaglitazar leading to the largest Ucp1 induction. Importantly, dual PPARα/γ activator tesaglitazar strongly induced browning of white fat in vivo in both lean and obese male mice at thermoneutrality, greatly exceeding the increase in Ucp1 observed with the selective PPARγ activator rosiglitazone. While selective PPARγ activation was sufficient for the conversion of white into brown-like adipocytes in vitro, dual PPARα/γ activation was superior to selective PPARγ activation at inducing white fat browning in vivo. Mechanistically, the superiority of dual PPARα/γ activators is mediated at least in part via a PPARα-driven increase in fibroblast growth factor 21 (FGF21). Combined treatment with rosiglitazone and FGF21 resulted in a synergistic increase in Ucp1 mRNA levels both in vitro and in vivo. Tesaglitazar-induced browning was associated with increased energy expenditure, enhanced insulin sensitivity, reduced liver steatosis, and an overall improved metabolic profile compared to rosiglitazone and vehicle control groups. CONCLUSIONS PPARγ and PPARα synergize to induce robust browning of white fat in vivo, via PPARγ activation in adipose, and PPARα-mediated increase in FGF21.
Collapse
Affiliation(s)
- Tobias Kroon
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Matthew Harms
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stefanie Maurer
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Laurianne Bonnet
- The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Ida Alexandersson
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Anna Lindblom
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Andrea Ahnmark
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Nilsson
- The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Peter Gennemark
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Gavin O'Mahony
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Victoria Osinski
- Department of Medicine, Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Coleen McNamara
- Department of Medicine, Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Jeremie Boucher
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.
| |
Collapse
|
26
|
Saxton SN, Clark BJ, Withers SB, Eringa EC, Heagerty AM. Mechanistic Links Between Obesity, Diabetes, and Blood Pressure: Role of Perivascular Adipose Tissue. Physiol Rev 2019; 99:1701-1763. [PMID: 31339053 DOI: 10.1152/physrev.00034.2018] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Obesity is increasingly prevalent and is associated with substantial cardiovascular risk. Adipose tissue distribution and morphology play a key role in determining the degree of adverse effects, and a key factor in the disease process appears to be the inflammatory cell population in adipose tissue. Healthy adipose tissue secretes a number of vasoactive adipokines and anti-inflammatory cytokines, and changes to this secretory profile will contribute to pathogenesis in obesity. In this review, we discuss the links between adipokine dysregulation and the development of hypertension and diabetes and explore the potential for manipulating adipose tissue morphology and its immune cell population to improve cardiovascular health in obesity.
Collapse
Affiliation(s)
- Sophie N Saxton
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Ben J Clark
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Sarah B Withers
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Etto C Eringa
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Anthony M Heagerty
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
27
|
Kim YJ, Ryu R, Choi JY, Choi MS. Platycodon grandiflorus Root Ethanol Extract Induces Lipid Excretion, Lipolysis, and Thermogenesis in Diet-Induced Obese Mice. J Med Food 2019; 22:1100-1109. [PMID: 31566484 DOI: 10.1089/jmf.2019.4443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adipocytes regulate lipid metabolism according to physiological energy requirements. A dysfunctional lipid metabolism can lead to obesity and its complications such as hepatic steatosis, diabetes, and hyperlipidemia. In our study, the impact of Platycodon grandiflorus root ethanol extract (PGH) on lipid excretion and thermogenesis-related markers in diet-induced obesity mice was analyzed. Our data show that PGH elevated fatty acid uptake in epididymal adipose tissue by increasing Cd36, Slc27a1, Ffar2, and Ffar4 expression, which led to decreased blood free fatty acid concentrations. Moreover, PGH normalized body weight and fat mass in diet-induced obese mice by increasing lipolysis (Plin1, Atgl, and Hsl) and fatty acid oxidation. Changes in the levels of browning-related genes, enzyme activity of carnitine palmitoyltransferase, and the overall transcriptome (Bmp4, Cidec, Ucp3, Sirt3, and Cox4i1) led to promote brown adipose tissue-like features (browning) in epididymal white adipose tissue and enhanced energy expenditure. Our results suggest that PGH promotes lipid excretion and thermogenic function in high-fat diet-induced obese mice, which are mediated by regulation of fat metabolism.
Collapse
Affiliation(s)
- Ye Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyungpook National University, Daegu, Korea
| | - Ri Ryu
- Research Institute of Applied Animal Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Korea
| | - Ji-Young Choi
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Myung-Sook Choi
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Korea.,Department of Food Science and Nutrition, Kyungpook National University, Daegu, Korea
| |
Collapse
|
28
|
Caron A, Reynolds RP, Castorena CM, Michael NJ, Lee CE, Lee S, Berdeaux R, Scherer PE, Elmquist JK. Adipocyte Gs but not Gi signaling regulates whole-body glucose homeostasis. Mol Metab 2019; 27:11-21. [PMID: 31279640 PMCID: PMC6717754 DOI: 10.1016/j.molmet.2019.06.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 01/24/2023] Open
Abstract
Objective The sympathetic nervous system (SNS) is a key regulator of the metabolic and endocrine functions of adipose tissue. Increased SNS outflow promotes fat mobilization, stimulates non-shivering thermogenesis, promotes browning, and inhibits leptin production. Most of these effects are attributed to norepinephrine activation of the Gs-coupled beta adrenergic receptors located on the surface of the adipocytes. Evidence suggests that other adrenergic receptor subtypes, including the Gi-coupled alpha 2 adrenergic receptors might also mediate the SNS effects on adipose tissue. However, the impact of acute stimulation of adipocyte Gs and Gi has never been reported. Methods We harness the power of chemogenetics to develop unique mouse models allowing the specific and spatiotemporal stimulation of adipose tissue Gi and Gs signaling. We evaluated the impact of chemogenetic stimulation of these pathways on glucose homeostasis, lipolysis, leptin production, and gene expression. Results Stimulation of Gs signaling in adipocytes induced rapid and sustained hypoglycemia. These hypoglycemic effects were secondary to increased insulin release, likely consequent to increased lipolysis. Notably, we also observed differences in gene regulation and ex vivo lipolysis in different adipose depots. In contrast, acute stimulation of Gi signaling in adipose tissue did not affect glucose metabolism or lipolysis, but regulated leptin production. Conclusion Our data highlight the significance of adipose Gs signaling in regulating systemic glucose homeostasis. We also found previously unappreciated heterogeneity across adipose depots following acute stimulation. Together, these results highlight the complex interactions of GPCR signaling in adipose tissue and demonstrate the usefulness of chemogenetic technology to better understand adipocyte function. Chemogenetic stimulation of Gs signaling in adipose tissue potently induces hypoglycemia in mice. The magnitude by which adipose Gs stimulation reduces blood glucose is similar to the hypoglycemic effects of insulin. Chemogenetic stimulation of Gs signaling in adipose tissue ex vivo stimulates lipolysis. Chemogenetic stimulation of adipose Gi signaling does not affect glycemia or lipolysis, but increases leptin levels. Our data demonstrate the usefulness of chemogenetic technology to understand adipocytes functions.
Collapse
Affiliation(s)
- Alexandre Caron
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Ryan P Reynolds
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos M Castorena
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Natalie J Michael
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charlotte E Lee
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Syann Lee
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, Center for Metabolic and Degenerative Diseases at the Brown Foundation, Institute of Molecular Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center-UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel K Elmquist
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
29
|
Hao L, Scott S, Abbasi M, Zu Y, Khan MSH, Yang Y, Wu D, Zhao L, Wang S. Beneficial Metabolic Effects of Mirabegron In Vitro and in High-Fat Diet-Induced Obese Mice. J Pharmacol Exp Ther 2019; 369:419-427. [PMID: 30940691 DOI: 10.1124/jpet.118.255778] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/22/2019] [Indexed: 01/26/2023] Open
Abstract
Mirabegron, a β3-adrenergic receptor agonist, has been shown to stimulate the activity of brown fat and increase the resting metabolic rate in humans. However, it is unknown whether mirabegron can reduce body weight and improve metabolic health. We investigated the antiobesity effects of mirabegron using both in vitro and in vivo models. Mouse brown preadipocytes and 3T3-L1 cells were treated with different concentrations of mirabegron (0.03-3 µg/ml), and the expression of brown fat-related genes was measured by quantitative real-time polymerase chain reaction. Furthermore, male C57BL/6J mice were fed a high-fat diet for 10 weeks, and mirabegron (2 mg/kg body weight) or a vehicle control was delivered to the interscapular brown adipose tissue (iBAT) using ALZET osmotic pumps from week 7 to 10. The metabolic parameters and tissues were analyzed. In both mouse brown preadipocytes and 3T3-L1 cells, mirabegron stimulated uncoupling protein 1 (UCP1) expression. In animal studies, mirabegron-treated mice had a lower body weight and adiposity. Lipid droplets in the iBAT of mirabegron-treated mice were fewer and smaller in size compared with those from vehicle-treated mice. H&E staining and immunohistochemistry indicated that mirabegron increased the abundance of beige cells in inguinal white adipose tissue (iWAT). Compared with vehicle-treated mice, mirabegron-treated mice had a higher gene expression of UCP1 (14-fold) and cell death-inducing DNA fragmentation factor alpha-like effector A (CIDEA) (4-fold) in iWAT. Furthermore, mirabegron-treated mice had improved glucose tolerance and insulin sensitivity. Taken together, mirabegron enhances UCP1 expression and promotes browning of iWAT, which are accompanied by improved glucose tolerance and insulin sensitivity and prevention from high-fat diet-induced obesity.
Collapse
Affiliation(s)
- Lei Hao
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., M.A., Y.Z., M.S.H.K., S.W.); Department of Nutrition, University of Tennessee, Knoxville, Tennessee (Y.Y., L.Z.); and Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.)
| | - Sheyenne Scott
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., M.A., Y.Z., M.S.H.K., S.W.); Department of Nutrition, University of Tennessee, Knoxville, Tennessee (Y.Y., L.Z.); and Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.)
| | - Mehrnaz Abbasi
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., M.A., Y.Z., M.S.H.K., S.W.); Department of Nutrition, University of Tennessee, Knoxville, Tennessee (Y.Y., L.Z.); and Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.)
| | - Yujiao Zu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., M.A., Y.Z., M.S.H.K., S.W.); Department of Nutrition, University of Tennessee, Knoxville, Tennessee (Y.Y., L.Z.); and Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.)
| | - Md Shahjalal Hossain Khan
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., M.A., Y.Z., M.S.H.K., S.W.); Department of Nutrition, University of Tennessee, Knoxville, Tennessee (Y.Y., L.Z.); and Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.)
| | - Yang Yang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., M.A., Y.Z., M.S.H.K., S.W.); Department of Nutrition, University of Tennessee, Knoxville, Tennessee (Y.Y., L.Z.); and Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.)
| | - Dayong Wu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., M.A., Y.Z., M.S.H.K., S.W.); Department of Nutrition, University of Tennessee, Knoxville, Tennessee (Y.Y., L.Z.); and Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.)
| | - Ling Zhao
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., M.A., Y.Z., M.S.H.K., S.W.); Department of Nutrition, University of Tennessee, Knoxville, Tennessee (Y.Y., L.Z.); and Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.)
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., M.A., Y.Z., M.S.H.K., S.W.); Department of Nutrition, University of Tennessee, Knoxville, Tennessee (Y.Y., L.Z.); and Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.)
| |
Collapse
|
30
|
Abstract
Perivascular adipose tissue (PVAT) is no longer recognised as simply a structural support for the vasculature, and we now know that PVAT releases vasoactive factors which modulate vascular function. Since the discovery of this function in 1991, PVAT research is rapidly growing and the importance of PVAT function in disease is becoming increasingly clear. Obesity is associated with a plethora of vascular conditions; therefore, the study of adipocytes and their effects on the vasculature is vital. PVAT contains an adrenergic system including nerves, adrenoceptors and transporters. In obesity, the autonomic nervous system is dysfunctional; therefore, sympathetic innervation of PVAT may be the key mechanistic link between increased adiposity and vascular disease. In addition, not all obese people develop vascular disease, but a common feature amongst those that do appears to be the inflammatory cell population in PVAT. This review will discuss what is known about sympathetic innervation of PVAT, and the links between nerve activation and inflammation in obesity. In addition, we will examine the therapeutic potential of exercise in sympathetic stimulation of adipose tissue.
Collapse
Affiliation(s)
- Sophie N Saxton
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Core Technology Facility (3rd floor), 46 Grafton Street, M13 9NT, Manchester, UK.
| | - Sarah B Withers
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Core Technology Facility (3rd floor), 46 Grafton Street, M13 9NT, Manchester, UK
- School of Environment and Life Sciences, University of Salford, Manchester, UK
| | - Anthony M Heagerty
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Core Technology Facility (3rd floor), 46 Grafton Street, M13 9NT, Manchester, UK
| |
Collapse
|
31
|
Labbé SM, Caron A, Festuccia WT, Lecomte R, Richard D. Interscapular brown adipose tissue denervation does not promote the oxidative activity of inguinal white adipose tissue in male mice. Am J Physiol Endocrinol Metab 2018; 315:E815-E824. [PMID: 30153064 DOI: 10.1152/ajpendo.00210.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Brown adipose tissue (BAT) thermogenesis is a key controller of energy metabolism. In response to cold or other adrenergic stimuli, brown adipocytes increase their substrate uptake and oxidative activity while uncoupling ATP synthesis from the mitochondrial respiratory chain activity. Brown adipocytes are found in classic depots such as in the interscapular BAT (iBAT). They can also develop in white adipose tissue (WAT), such as in the inguinal WAT (iWAT), where their presence has been associated with metabolic improvements. We previously reported that the induction of oxidative metabolism in iWAT is low compared with that of iBAT, even after sustained adrenergic stimulation. One explanation to this apparent lack of thermogenic ability of iWAT is the presence of an active iBAT, which may prevent the full activation of iWAT. In this study, we evaluated whether iBAT denervation-induced browning of white fat enhanced the thermogenic activity of iWAT following cold acclimation, under beta-3 adrenergic stimulation (CL 316,243). Following a bilateral denervation of iBAT, we assessed energy balance, evaluated the oxidative activity of iBAT and iWAT using 11C-acetate, and quantified the dynamic glucose uptake of those tissues using 2-deoxy-2-[18F]- fluoro-d-glucose. Our results indicate that despite portraying marked browning and mildly enhanced glucose uptake, iWAT of cold-adapted mice does not exhibit significant oxidative activity following beta-3 adrenergic stimulation in the absence of a functional iBAT. The present results suggest that iWAT is not readily recruitable as a thermogenic organ even when functional iBAT is lacking.
Collapse
Affiliation(s)
- Sébastien M Labbé
- Institut universitaire de Cardiologie et de Pneumologie de Québec , Quebec, Quebec , Canada
- Département de Médecine, Faculté de Médecine, Université Laval , Québec, Québec , Canada
| | - Alexandre Caron
- Institut universitaire de Cardiologie et de Pneumologie de Québec , Quebec, Quebec , Canada
- Département de Médecine, Faculté de Médecine, Université Laval , Québec, Québec , Canada
| | - William T Festuccia
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| | - Roger Lecomte
- Département de Médecine nucléaire et de Radiologie, Centre d'Imagerie moléculaire de Sherbrooke, Université de Sherbrooke , Sherbrooke , Canada
| | - Denis Richard
- Institut universitaire de Cardiologie et de Pneumologie de Québec , Quebec, Quebec , Canada
- Département de Médecine, Faculté de Médecine, Université Laval , Québec, Québec , Canada
| |
Collapse
|
32
|
Browning of white adipose tissue induced by the ß3 agonist CL-316,243 after local and systemic treatment - PK-PD relationship. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2972-2982. [PMID: 29902549 DOI: 10.1016/j.bbadis.2018.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/20/2018] [Accepted: 06/09/2018] [Indexed: 12/12/2022]
Abstract
Transformation of white adipose tissue (WAT) to a brown adipose tissue-like (BAT-like) phenotype has emerged as an attractive approach against obesity e.g. using g ß3 adrenergic receptor agonists. These could however, produce side-effects following systemic exposure. The present study explored the possibility of local use of CL-316,243 - a selective ß3 agonist - to circumvent this problem. Rats treated s.c. for 2 weeks (0.3 and 1 mg/kg) showed decreased inguinal fat pad (IFP) weight/volume, increased UCP-1 staining and expressed BAT-like features in H&E stained micrographs. Interscapular BAT increased in weight/volume. In contrast, local treatment into the IFP was not efficacious in terms of weight/volume, despite slight increases in UCP-1 staining and changes in histological features. After local treatment, the exposure of the IFP was lower than after systemic treatment. In turn higher local doses (0.5 and 5 mg/ml) were then tested which produced a strong trend for decreased volume of the IFP, a significant increase in UCP-1 staining, and also a decrease in adipocytes size but increased number. However, after this treatment the systemic exposure was in the same range as following systemic treatment. In conclusion, we saw no evidence for the possibility of converting inguinal WAT to a BAT-phenotype solely through local activation of ß3 receptors. This is in concert with our in vitro experiments which detected direct effects of PPARγ agonists at the gene/protein expression and functional level, but were unable to detect any effect of CL-316,243.
Collapse
|
33
|
Hao L, Kearns J, Scott S, Wu D, Kodani SD, Morisseau C, Hammock BD, Sun X, Zhao L, Wang S. Indomethacin Enhances Brown Fat Activity. J Pharmacol Exp Ther 2018; 365:467-475. [PMID: 29567865 DOI: 10.1124/jpet.117.246256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/14/2018] [Indexed: 01/08/2023] Open
Abstract
Indomethacin, a nonsteroidal anti-inflammatory drug, has been shown to induce white adipocyte differentiation; however, its roles in brown adipocyte differentiation and activation in brown adipose tissue (BAT) and obesity are unknown. To address this issue, we treated mouse brown preadipocytes with different doses of indomethacin, and delivered indomethacin to interscapular BAT (iBAT) of obese mice using implanted osmotic pumps. Indomethacin dose dependently increased brown preadipocyte differentiation and upregulated both mRNA and protein expression of uncoupling protein 1 (UCP1) and peroxisome proliferator-activated receptor (PPAR) γ coactivator 1-alpha. The mechanistic study showed that indomethacin significantly activated the reporter driven by the PPAR response element, indicating that indomethacin may work as a PPARγ agonist in this cell line. Consistently, indomethacin significantly decreased iBAT mass and fasting blood glucose levels in high-fat diet-induced obesity (DIO) mice. Histologic analysis showed that brown adipocytes of indomethacin-treated mice contained smaller lipid droplets compared with control mice, suggesting that indomethacin alleviated the whitening of BAT induced by the high-fat diet. Moreover, indomethacin significantly increased UCP1 mRNA expression in iBAT. Taken together, this study indicates that indomethacin can promote mouse brown adipocyte differentiation, and might increase brown fat and glucose oxidation capacity in DIO mice.
Collapse
Affiliation(s)
- Lei Hao
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., S.W.); Department of Nutrition (J.K., L.Z.), and Research Computing Support (X.S.), University of Tennessee, Knoxville, Tennessee; Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.); and Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California (S.D.K., C.M., B.D.H.)
| | - Jamie Kearns
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., S.W.); Department of Nutrition (J.K., L.Z.), and Research Computing Support (X.S.), University of Tennessee, Knoxville, Tennessee; Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.); and Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California (S.D.K., C.M., B.D.H.)
| | - Sheyenne Scott
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., S.W.); Department of Nutrition (J.K., L.Z.), and Research Computing Support (X.S.), University of Tennessee, Knoxville, Tennessee; Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.); and Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California (S.D.K., C.M., B.D.H.)
| | - Dayong Wu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., S.W.); Department of Nutrition (J.K., L.Z.), and Research Computing Support (X.S.), University of Tennessee, Knoxville, Tennessee; Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.); and Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California (S.D.K., C.M., B.D.H.)
| | - Sean D Kodani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., S.W.); Department of Nutrition (J.K., L.Z.), and Research Computing Support (X.S.), University of Tennessee, Knoxville, Tennessee; Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.); and Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California (S.D.K., C.M., B.D.H.)
| | - Christophe Morisseau
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., S.W.); Department of Nutrition (J.K., L.Z.), and Research Computing Support (X.S.), University of Tennessee, Knoxville, Tennessee; Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.); and Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California (S.D.K., C.M., B.D.H.)
| | - Bruce D Hammock
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., S.W.); Department of Nutrition (J.K., L.Z.), and Research Computing Support (X.S.), University of Tennessee, Knoxville, Tennessee; Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.); and Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California (S.D.K., C.M., B.D.H.)
| | - Xiaocun Sun
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., S.W.); Department of Nutrition (J.K., L.Z.), and Research Computing Support (X.S.), University of Tennessee, Knoxville, Tennessee; Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.); and Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California (S.D.K., C.M., B.D.H.)
| | - Ling Zhao
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., S.W.); Department of Nutrition (J.K., L.Z.), and Research Computing Support (X.S.), University of Tennessee, Knoxville, Tennessee; Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.); and Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California (S.D.K., C.M., B.D.H.)
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., S.W.); Department of Nutrition (J.K., L.Z.), and Research Computing Support (X.S.), University of Tennessee, Knoxville, Tennessee; Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.); and Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California (S.D.K., C.M., B.D.H.)
| |
Collapse
|
34
|
Abstract
Interactions between the brain and distinct adipose depots have a key role in maintaining energy balance, thereby promoting survival in response to metabolic challenges such as cold exposure and starvation. Recently, there has been renewed interest in the specific central neuronal circuits that regulate adipose depots. Here, we review anatomical, genetic and pharmacological studies on the neural regulation of adipose function, including lipolysis, non-shivering thermogenesis, browning and leptin secretion. In particular, we emphasize the role of leptin-sensitive neurons and the sympathetic nervous system in modulating the activity of brown, white and beige adipose tissues. We provide an overview of advances in the understanding of the heterogeneity of the brain regulation of adipose tissues and offer a perspective on the challenges and paradoxes that the community is facing regarding the actions of leptin on this system.
Collapse
Affiliation(s)
- Alexandre Caron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Syann Lee
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel K. Elmquist
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laurent Gautron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
35
|
Kroon J, Koorneef LL, van den Heuvel JK, Verzijl CRC, van de Velde NM, Mol IM, Sips HCM, Hunt H, Rensen PCN, Meijer OC. Selective Glucocorticoid Receptor Antagonist CORT125281 Activates Brown Adipose Tissue and Alters Lipid Distribution in Male Mice. Endocrinology 2018; 159:535-546. [PMID: 28938459 DOI: 10.1210/en.2017-00512] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/12/2017] [Indexed: 11/19/2022]
Abstract
Glucocorticoids influence a wide range of metabolic processes in the human body, and excessive glucocorticoid exposure is known to contribute to the development of metabolic disease. We evaluated the utility of the novel glucocorticoid receptor (GR) antagonist CORT125281 for its potential to overcome adiposity, glucose intolerance, and dyslipidemia and compared this head-to-head with the classic GR antagonist RU486 (mifepristone). We show that, although RU486 displays cross-reactivity to the progesterone and androgen receptor, CORT125281 selectively inhibits GR transcriptional activity. In a mouse model for diet-induced obesity, rhythmicity of circulating corticosterone levels was disturbed. CORT125281 restored this disturbed rhythmicity, in contrast to RU486, which further inhibited endogenous corticosterone levels and suppressed adrenal weight. Both CORT125281 and RU486 reduced body weight gain and fat mass. In addition, CORT125281, but not RU486, lowered plasma levels of triglycerides, cholesterol, and free fatty acids and strongly stimulated triglyceride-derived fatty acid uptake by brown adipose tissue depots. In combination with reduced lipid content in brown adipocytes, this indicates that CORT125281 enhances metabolic activity of brown adipose tissue depots. CORT125281 was also found to increase liver lipid accumulation. Taken together, CORT125281 displayed a wide range of beneficial metabolic activities that are in part distinct from RU486, but clinical utility may be limited due to liver lipid accumulation. This warrants further evaluation of GR antagonists or selective modulators that are not accompanied by liver lipid accumulation while preserving their beneficial metabolic activities.
Collapse
Affiliation(s)
- Jan Kroon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa L Koorneef
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jose K van den Heuvel
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Cristy R C Verzijl
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Nienke M van de Velde
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Isabel M Mol
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Hetty C M Sips
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, California
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
36
|
The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat Med 2017; 23:631-637. [PMID: 28346411 DOI: 10.1038/nm.4297] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/03/2017] [Indexed: 12/15/2022]
Abstract
Brown adipose tissue (BAT) and beige adipose tissue combust fuels for heat production in adult humans, and so constitute an appealing target for the treatment of metabolic disorders such as obesity, diabetes and hyperlipidemia. Cold exposure can enhance energy expenditure by activating BAT, and it has been shown to improve nutrient metabolism. These therapies, however, are time consuming and uncomfortable, demonstrating the need for pharmacological interventions. Recently, lipids have been identified that are released from tissues and act locally or systemically to promote insulin sensitivity and glucose tolerance; as a class, these lipids are referred to as 'lipokines'. Because BAT is a specialized metabolic tissue that takes up and burns lipids and is linked to systemic metabolic homeostasis, we hypothesized that there might be thermogenic lipokines that activate BAT in response to cold. Here we show that the lipid 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) is a stimulator of BAT activity, and that its levels are negatively correlated with body-mass index and insulin sensitivity. Using a global lipidomic analysis, we found that 12,13-diHOME was increased in the circulation of humans and mice exposed to cold. Furthermore, we found that the enzymes that produce 12,13-diHOME were uniquely induced in BAT by cold stimulation. The injection of 12,13-diHOME acutely activated BAT fuel uptake and enhanced cold tolerance, which resulted in decreased levels of serum triglycerides. Mechanistically, 12,13-diHOME increased fatty acid (FA) uptake into brown adipocytes by promoting the translocation of the FA transporters FATP1 and CD36 to the cell membrane. These data suggest that 12,13-diHOME, or a functional analog, could be developed as a treatment for metabolic disorders.
Collapse
|