1
|
Ong C, Lee JH, Leow MKS, Puthucheary ZA. A narrative review of skeletal muscle atrophy in critically ill children: pathogenesis and chronic sequelae. Transl Pediatr 2021; 10:2763-2777. [PMID: 34765499 PMCID: PMC8578782 DOI: 10.21037/tp-20-298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/18/2020] [Indexed: 11/10/2022] Open
Abstract
Muscle wasting is now recognized as a growing, debilitating problem in critically ill adults, resulting in long-term deficits in function and an impaired quality of life. Ultrasonography has demonstrated decreases in skeletal muscle size during pediatric critical illness, although variations exist. However, muscle protein turnover patterns during pediatric critical illness are unclear. Understanding muscle protein turnover during critical illness is important in guiding interventions to reduce muscle wasting. The aim of this review was to explore the possible protein synthesis and breakdown patterns in pediatric critical illness. Muscle protein turnover studies in critically ill children are lacking, with the exception of those with burn injuries. Children with burn injuries demonstrate an elevation in both muscle protein breakdown (MPB) and synthesis during critical illness. Extrapolations from animal models and whole-body protein turnover studies in children suggest that children may be more dependent on anabolic factors (e.g., nutrition and growth factors), and may experience greater muscle degradation in response to insults than adults. Yet, children, particularly the younger ones, are more responsive to anabolic agents, suggesting modifiable muscle wasting during critical illness. There is a lack of evidence for muscle wasting in critically ill children and its correlation with outcomes, possibly due to current available methods to study muscle protein turnover in children-most of which are invasive or tedious. In summary, children may experience muscle wasting during critical illness, which may be more reversible by the appropriate anabolic agents than adults. Age appears an important determinant of skeletal muscle turnover. Less invasive methods to study muscle protein turnover and associations with long-term outcome would strengthen the evidence for muscle wasting in critically ill children.
Collapse
Affiliation(s)
- Chengsi Ong
- Nutrition and Dietetics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Jan Hau Lee
- Children's Intensive Care Unit, KK Women's Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Melvin K S Leow
- Duke-NUS Medical School, Singapore, Singapore.,Clinical Nutrition Research Center, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Zudin A Puthucheary
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Adult Critical Care Unit, Royal London Hospital, London, UK
| |
Collapse
|
2
|
Laufenberg LJ, Crowell KT, Lang CH. Alcohol Acutely Antagonizes Refeeding-Induced Alterations in the Rag GTPase-Ragulator Complex in Skeletal Muscle. Nutrients 2021; 13:1236. [PMID: 33918604 PMCID: PMC8070399 DOI: 10.3390/nu13041236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
The Ragulator protein complex is critical for directing the Rag GTPase proteins and mTORC1 to the lysosome membrane mediating amino acid-stimulated protein synthesis. As there is a lack of evidence on alcohol's effect on the Rag-Ragulator complex as a possible mechanism for the development of alcoholic skeletal muscle wasting, the aim of our study was to examine alterations in various protein-protein complexes in the Rag-Ragulator pathway produced acutely by feeding and how these are altered by alcohol under in vivo conditions. Mice (C57Bl/6; adult males) were fasted, and then provided rodent chow for 30 min ("refed") or remained food-deprived ("fasted"). Mice subsequently received ethanol (3 g/kg ethanol) or saline intraperitoneally, and hindlimb muscles were collected 1 h thereafter for analysis. Refeeding-induced increases in myofibrillar and sarcoplasmic protein synthesis, and mTOR and S6K1 phosphorylation, were prevented by alcohol. This inhibition was not associated with a differential rise in the intracellular leucine concentration or plasma leucine or insulin levels. Alcohol increased the amount of the Sestrin1•GATOR2 complex in the fasted state and prevented the refeeding-induced decrease in Sestrin1•GATOR2 seen in control mice. Alcohol antagonized the increase in the RagA/C•Raptor complex formation seen in the refed state. Alcohol antagonized the increase in Raptor with immunoprecipitated LAMPTOR1 (part of the Ragulator complex) after refeeding and decreased the association of RagC with LAMPTOR1. Finally, alcohol increased the association of the V1 domain of v-ATPase with LAMPTOR1 and prevented the refeeding-induced decrease in v-ATPase V1 with LAMPTOR1. Overall, these data demonstrate that acute alcohol intake disrupts multiple protein-protein complexes within the Rag-Ragulator complex, which are associated with and consistent with the concomitant decline in nutrient-stimulated muscle protein synthesis under in vivo conditions.
Collapse
Affiliation(s)
- Lacee J. Laufenberg
- Department of Surgery, Penn State College of Medicine, Hershey, PA 17033, USA; (L.J.L.); (K.T.C.)
| | - Kristen T. Crowell
- Department of Surgery, Penn State College of Medicine, Hershey, PA 17033, USA; (L.J.L.); (K.T.C.)
- Beth Israel Deaconess Medical Center, Department of Surgery, Boston, MA 02215, USA
| | - Charles H. Lang
- Department of Surgery, Penn State College of Medicine, Hershey, PA 17033, USA; (L.J.L.); (K.T.C.)
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
3
|
Helm ET, Curry SM, De Mille CM, Schweer WP, Burrough ER, Zuber EA, Lonergan SM, Gabler NK. Impact of porcine reproductive and respiratory syndrome virus on muscle metabolism of growing pigs1. J Anim Sci 2019; 97:3213-3227. [PMID: 31212312 PMCID: PMC6667233 DOI: 10.1093/jas/skz168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) virus is one of the most economically significant pig pathogens worldwide. However, the metabolic explanation for reductions in tissue accretion observed in growing pigs remains poorly defined. Additionally, PRRS virus challenge is often accompanied by reduced feed intake, making it difficult to discern which effects are virus vs. feed intake driven. To account for this, a pair-fed model was employed to examine the effects of PRRS challenge and nutrient restriction on skeletal muscle and liver metabolism. Forty-eight pigs were randomly selected (13.1 ± 1.97 kg BW) and allotted to 1 of 3 treatments (n = 16 pigs/treatment): 1) PRRS naïve, ad libitum fed (Ad), 2) PRRS-inoculated, ad libitum fed (PRRS+), and 3) PRRS naïve, pair-fed to the PRRS-inoculated pigs' daily feed intake (PF). At days postinoculation (dpi) 10 and 17, 8 pigs per treatment were euthanized and tissues collected. Tissues were assayed for markers of proteolysis (LM only), protein synthesis (LM only), oxidative stress (LM only), gluconeogenesis (liver), and glycogen concentrations (LM and liver). Growth performance, feed intake, and feed efficiency were all reduced in both PRRS+ and PF pigs compared with Ad pigs (P < 0.001). Furthermore, growth performance and feed efficiency were additionally reduced in PRRS+ pigs compared with PF pigs (P < 0.05). Activity of most markers of LM proteolysis (μ-calpain, 20S proteasome, and caspase 3/7) was not increased (P > 0.10) in PRRS+ pigs compared with Ad pigs, although activity of m-calpain was increased in PRRS+ pigs compared with Ad pigs (P = 0.025) at dpi 17. Muscle reactive oxygen species production was not increased (P > 0.10) in PRRS+ pigs compared with Ad pigs. However, phosphorylation of protein synthesis markers was decreased in PRRS+ pigs compared with both Ad (P < 0.05) and PF (P < 0.05) pigs. Liver gluconeogenesis was not increased as a result of PRRS; however, liver glycogen was decreased (P < 0.01) in PRRS+ pigs compared with Ad and PF pigs at both time points. Taken together, this work demonstrates the differential impact a viral challenge and nutrient restriction have on metabolism of growing pigs. Although markers of skeletal muscle proteolysis showed limited evidence of increase, markers of skeletal muscle synthesis were reduced during PRRS viral challenge. Furthermore, liver glycogenolysis seems to provide PRRS+ pigs with glucose needed to fuel the immune response during viral challenge.
Collapse
Affiliation(s)
- Emma T Helm
- Department of Animal Science, Iowa State University, Ames, IA
| | - Shelby M Curry
- Department of Animal Science, Iowa State University, Ames, IA
| | | | - Wesley P Schweer
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - Eric R Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | | | | | | |
Collapse
|
4
|
Năstase L, Cretoiu D, Stoicescu SM. Skeletal Muscle Damage in Intrauterine Growth Restriction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:93-106. [PMID: 30390249 DOI: 10.1007/978-981-13-1435-3_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intrauterine growth restriction (IUGR) represents a rate of fetal growth that is less than average for the population and the growth potential of a specific infant. IUGR produces infants who are small for gestational age (SGA) but also appropriate for gestational age (AGA). It refers to growth less than expected for gestational age and is most often under 10th percentiles for age. It develops during the late second and third trimesters of gestation. The etiology of IUGR is multifactorial. One of the most important factors which leads to IUGR is a decrease of nutrients and oxygen delivered to the fetus by the placenta. The growth of adipose tissue and skeletal muscle is limited by the declined fetal nutrient supply later in gestation. IUGR affects about 24% of babies born in developing countries. Worldwide, IUGR is the second cause of perinatal morbidity and mortality behind the premature birth and a major predisposing factor to metabolic disorders throughout postnatal life, even at adult age. Skeletal muscle represents about 35-40% of the body mass and plays an essential role in metabolic homeostasis, being responsible for 65% of fetal glucose consumption. A reduction in skeletal muscle growth characterizes IUGR fetuses compared to normal weight neonates. The decrease in muscle mass is not compensated after birth and persists until adulthood. This is a review of the literature, a neonatological, clinical point of view on the effects of IUGR on striated muscles. The available studies on this subject are currently the results of experimental research on animals, and information about the human fetus and newborn are scarce.
Collapse
Affiliation(s)
- Leonard Năstase
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania. .,Alessandrescu-Rusescu National Institute for the Mother and Child Health, Polizu Maternity, Bucharest, Romania.
| | - Dragos Cretoiu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Alessandrescu-Rusescu National Institute for the Mother and Child Health, Polizu Maternity, Bucharest, Romania
| | - Silvia Maria Stoicescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Alessandrescu-Rusescu National Institute for the Mother and Child Health, Polizu Maternity, Bucharest, Romania
| |
Collapse
|
5
|
Schweer W, Schwartz K, Patience JF, Karriker L, Sparks C, Weaver M, Fitzsimmons M, Burkey TE, Gabler NK. Porcine Reproductive and Respiratory Syndrome virus reduces feed efficiency, digestibility, and lean tissue accretion in grow-finish pigs. Transl Anim Sci 2017; 1:480-488. [PMID: 32704671 PMCID: PMC7204981 DOI: 10.2527/tas2017.0054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/08/2017] [Indexed: 11/30/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) virus is a major swine virus that causes reproductive impairment in sows, as well as respiratory disease, reduction in growth rates, and mortalities in all ages of pigs. The objective of this study was to quantify the impact PRRS has on grower-finisher pig feed efficiency and tissue accretion rates. Thirty PRRS naïve, littermate pairs of maternal line Choice Genetics gilts (33.6 ± 0.58 kg BW) were selected and pairs split across 2 barns consisting of 5 pens (n = 6 pigs/pen per barn). Pigs in both barns were fed corn-soybean-DDGS diets ad libitum. All pigs in one barn were inoculated (CHAL) via an i.m. injection of a live PRRS strain isolated from the region (0 d post inoculation, dpi), while pigs in the other barn were given a saline control injection (CONT). Pig performance (ADG, ADFI, G:F) was assessed from 35 kg BW until each group reached market BW (128 kg). Additionally, longitudinal apparent total tract digestibility (ATTD) and body composition was assessed using Dual-energy X-ray absorptiometry (DXA) post inoculation (dpi) to estimate lean, protein, fat and bone accretion rates. Serological data from CHAL pigs showed that PRRS titers peaked 7 dpi and these pigs seroconverted by 35 dpi. According to both genomic and protein PRRS titers, CONT pigs were naïve to CHAL throughout the study. The PRRS infection reduced (P < 0.001) ATTD of dry matter, energy and nitrogen by 3 to 5% at 21 dpi and the reduction in ATTD persisted after 65 dpi. Compared to the CONT, CHAL pigs had decreased ADG (0.89 vs. 0.80 kg/d, P < 0.001), ADFI (2.05 vs. 1.93 kg/d, P < 0.001), and G:F (0.44 vs. 0.41 kg/d, P < 0.001) over the entire test period. The CHAL pigs also had attenuated DXA predicted whole body accretion of lean (547 vs. 633 g/d, P = 0.001), protein (109 vs. 126 g/d, P = 0.001) and fat (169 vs. 205 g/d, P = 0.001) compared to their CONT counterparts from dpi 0 to 80. Based on carcass data at slaughter (and consistent with the DXA data), CHAL pigs had leaner carcasses and reduced yields. These data clearly demonstrate that PRRS infection reduces digestibility, feed efficiency and protein accretion rates in grower-finisher pigs.
Collapse
Affiliation(s)
- W Schweer
- Department of Animal Science, Iowa State University, Ames 50011
| | - K Schwartz
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames 50011
| | - J F Patience
- Department of Animal Science, Iowa State University, Ames 50011
| | - L Karriker
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames 50011
| | - C Sparks
- Huvepharma, Peachtree City, GA, 30269
| | - M Weaver
- Weaver Consulting, Des Moines, IA, 50265
| | | | - T E Burkey
- Department of Animal Science, University of Nebraska, Lincoln 68583
| | - N K Gabler
- Department of Animal Science, Iowa State University, Ames 50011
| |
Collapse
|
6
|
Coss-Bu JA, Hamilton-Reeves J, Patel JJ, Morris CR, Hurt RT. Protein Requirements of the Critically Ill Pediatric Patient. Nutr Clin Pract 2017; 32:128S-141S. [PMID: 28388381 DOI: 10.1177/0884533617693592] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This article includes a review of protein needs in children during health and illness, as well as a detailed discussion of protein metabolism, including nitrogen balance during critical illness, and assessment and prescription/delivery of protein to critically ill children. The determination of protein requirements in children has been difficult and challenging. The protein needs in healthy children should be based on the amount needed to ensure adequate growth during infancy and childhood. Compared with adults, children require a continuous supply of nutrients to maintain growth. The protein requirement is expressed in average requirements and dietary reference intake, which represents values that cover the needs of 97.5% of the population. Critically ill children have an increased protein turnover due to an increase in whole-body protein synthesis and breakdown with protein degradation leading to loss of lean body mass (LBM) and development of growth failure, malnutrition, and worse clinical outcomes. The results of protein balance studies in critically ill children indicate higher protein needs, with infants and younger children requiring higher intakes per body weight compared with older children. Monitoring the side effects of increased protein intake should be performed. Recent studies found a survival benefit in critically ill children who received a higher percentage of prescribed energy and protein goal by the enteral route. Future randomized studies should evaluate the effect of protein dosing in different age groups on patient outcomes, including LBM, muscle structure and function, duration of mechanical ventilation, intensive care unit and hospital length of stay, and mortality.
Collapse
Affiliation(s)
- Jorge A Coss-Bu
- 1 Section of Critical Care, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,2 Texas Children's Hospital, Houston, Texas, USA
| | - Jill Hamilton-Reeves
- 3 Department of Dietetics & Nutrition, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jayshil J Patel
- 4 Division of Pulmonary & Critical Care Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Claudia R Morris
- 5 Department of Pediatrics, Emory-Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ryan T Hurt
- 6 Division of General Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Insulin modulates energy and substrate sensing and protein catabolism induced by chronic peritonitis in skeletal muscle of neonatal pigs. Pediatr Res 2016; 80:744-752. [PMID: 27508897 PMCID: PMC5746053 DOI: 10.1038/pr.2016.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/26/2016] [Indexed: 11/08/2022]
Abstract
BACKGROUND Acute infection promotes skeletal muscle wasting and insulin resistance, but the effect of insulin on energy and substrate sensing in skeletal muscle of chronically infected neonates has not been studied. METHODS Eighteen 2-d-old pigs underwent cecal ligation and puncture (CLP) or sham surgery (CON) to induce a chronic infection for 5 d. On d 5, pancreatic-substrate clamps were performed to attain fasting or fed insulin levels but to maintain glucose and amino acids in the fasting range. Total fractional protein synthesis rates (Ks), translational control mechanisms, and energy sensing and degradation signal activation were measured in longissimus dorsi muscle. RESULTS In fasting conditions, CLP reduced Ks and sirtuin 1 (SIRT1) and increased AMP-activated protein kinase α (AMPKα) activation and muscle RING-finger protein-1 (MuRF1). Insulin treatment increased Ks and mitochondrial protein synthesis, enhanced translation activation, and reduced SIRT1 in CON. In contrast, in CLP, insulin treatment increased Ks, protein kinase B (PKB) and Forkhead box O1 phosphorylation, antagonized AMPK activation, and decreased peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), MuRF1, and SIRT1. CONCLUSION Energy and substrate sensing in skeletal muscle by the PKB-AMPK-SIRT1-PGC-1α axis is impacted by chronic infection in neonatal pigs and can be modulated by insulin.
Collapse
|
8
|
Hernandez-García AD, Columbus DA, Manjarín R, Nguyen HV, Suryawan A, Orellana RA, Davis TA. Leucine supplementation stimulates protein synthesis and reduces degradation signal activation in muscle of newborn pigs during acute endotoxemia. Am J Physiol Endocrinol Metab 2016; 311:E791-E801. [PMID: 27624100 PMCID: PMC5241557 DOI: 10.1152/ajpendo.00217.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/06/2016] [Indexed: 11/22/2022]
Abstract
Sepsis disrupts skeletal muscle proteostasis and mitigates the anabolic response to leucine (Leu) in muscle of mature animals. We have shown that Leu stimulates muscle protein synthesis (PS) in healthy neonatal piglets. To determine if supplemental Leu can stimulate PS and reduce protein degradation (PD) signaling in neonatal muscle during endotoxemia, overnight-fasted neonatal pigs were infused for 8 h with LPS or saline while plasma amino acids, glucose, and insulin were maintained at fasting levels during pancreatic-substrate clamps. Leu or saline was infused during the last hour. Markers of PS and PD were determined in skeletal muscle. Compared with controls, Leu increased PS in longissimus dorsi (LD), gastrocnemius, and soleus muscles. LPS decreased PS in these three muscles by 36%, 28%, and 38%, but Leu antagonized that reduction by increasing PS by 84%, 81%, and 83%, respectively, when supplemented to LPS. Leu increased eukaryotic translation initiation factor (eIF)3b-raptor interactions, eIF4E-binding protein-1, and S6 kinase 1 phosphorylation as well as eIF4E·eIF4G complex formation in LD, gastrocnemius, and soleus muscles of control and LPS-treated pigs. In LD muscle, LPS increased the light chain (LC)3-II-to-LC3 ratio and muscle-specific RING finger (MuRF-1) abundance but not atrogin-1 abundance or AMP-activated protein kinase-α phosphorylation. Leu supplementation to LPS-treated pigs reduced the LC3-II-to-LC3 ratio, MuRF-1 abundance, and AMP-activated protein kinase-α phosphorylation compared with LPS alone. In conclusion, parenteral Leu supplementation attenuates the LPS-induced reduction in PS by stimulating mammalian target of rapamycin complex 1-dependent translation and may reduce PD by attenuating autophagy-lysosome and MuRF-1 signaling in neonatal skeletal muscle.
Collapse
Affiliation(s)
- Adriana D Hernandez-García
- Children's Nutrition Research Center, United States Department of Agriculture/Agricultural Research Service, Houston, Texas; and Critical Care Section, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Daniel A Columbus
- Children's Nutrition Research Center, United States Department of Agriculture/Agricultural Research Service, Houston, Texas; and
| | - Rodrigo Manjarín
- Children's Nutrition Research Center, United States Department of Agriculture/Agricultural Research Service, Houston, Texas; and
| | - Hanh V Nguyen
- Children's Nutrition Research Center, United States Department of Agriculture/Agricultural Research Service, Houston, Texas; and
| | - Agus Suryawan
- Children's Nutrition Research Center, United States Department of Agriculture/Agricultural Research Service, Houston, Texas; and
| | - Renán A Orellana
- Children's Nutrition Research Center, United States Department of Agriculture/Agricultural Research Service, Houston, Texas; and Critical Care Section, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Teresa A Davis
- Children's Nutrition Research Center, United States Department of Agriculture/Agricultural Research Service, Houston, Texas; and
| |
Collapse
|
9
|
Mani V, Harris AJ, Keating AF, Weber TE, Dekkers JCM, Gabler NK. Intestinal integrity, endotoxin transport and detoxification in pigs divergently selected for residual feed intake. J Anim Sci 2013; 91:2141-50. [PMID: 23463550 PMCID: PMC7109995 DOI: 10.2527/jas.2012-6053] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Microbes and microbial components potentially impact the performance of pigs through immune stimulation and altered metabolism. These immune modulating factors can include endotoxin from gram negative bacterial outer membrane component, commonly referred to as lipopolysaccharide (LPS). In this study, our objective was to examine the relationship between intestinal barrier integrity, endotoxin and inflammation with feed efficiency (FE), using pig lines divergently selected for residual feed intake (RFI) as a model. Twelve gilts (62 ± 3 kg BW) from the low RFI (LRFI, more efficient) and 12 from the high RFI (HRFI, less efficient) were used. Individual performance data was recorded for 5 wk. At the end of the experimental period, ADFI of LRFI pigs was less (P < 0.001), ADG not different between the 2 lines (P = 0.72) but the G:F of LRFI pigs was greater than for HRFI pigs (P = 0.019). Serum endotoxin concentration (P < 0.01) and the acute phase protein haptoglobin (P < 0.05) were greater in HRFI pigs. Transepithelial resistance of the ileum, transport of fluorescein isothiocyanate labeled-Dextran and-LPS in ileum and colon, as well as tight junction protein mRNA expression in ileum, did not differ between the lines, indicating the 2 lines did not differ in transport characteristics at the intestinal level. Ileum inflammatory markers, myeloperoxidase (P < 0.05) and IL-8 (P < 0.10), were found to be greater in HRFI pigs. Alkaline phosphatase (ALP) activity was significantly increased in the LRFI pigs in ileum and liver tissues and negatively correlated with blood endotoxin (P < 0.05). Lysozyme activity in the liver was not different between the lines; however, the LRFI pigs had a twofold greater lysozyme activity in ileum (P < 0.05). Despite the difference in their activity, ALP or lysozyme mRNA expression was not different between the lines in either tissue. Decreased endotoxin and inflammatory markers and the enhanced activities of antimicrobial enzymes in the LRFI line may not fully explain the difference in the FE between the lines, but they have the potential to prevent the growth potential in HRFI pigs. Further studies are needed to identify the other mechanisms that may contribute to the greater endotoxin and acute phase proteins in the HRFI pigs and the greater FE in the LRFI pigs.
Collapse
Affiliation(s)
- V Mani
- Department of Animal Science, Iowa State University, Ames, IO 50011, USA
| | | | | | | | | | | |
Collapse
|
10
|
Orellana RA, Wilson FA, Gazzaneo MC, Suryawan A, Davis TA, Nguyen HV. Sepsis and development impede muscle protein synthesis in neonatal pigs by different ribosomal mechanisms. Pediatr Res 2011; 69:473-8. [PMID: 21364490 PMCID: PMC3090498 DOI: 10.1203/pdr.0b013e3182176da1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In muscle, sepsis reduces protein synthesis (MPS) by restraining translation in neonates and adults. Even though protein accretion decreases with development as neonatal MPS rapidly declines by maturation, the changes imposed by development on the sepsis-associated decrease in MPS have not been described. Pigs at 7 and 26 d of age were infused for 8 h with lipopolysaccharide (LPS, endotoxin, 0 and 10 μg · kg⁻¹ · h⁻¹). Fractional MPS rates and translation eukaryotic initiation factor (eIF) activation in muscle were examined (n = 5-7/group). The LPS-induced decrease in MPS was associated with reduced ribosomal and translational efficiency, whereas the age-induced decrease in MPS occurred by decreasing ribosome number. Abundances of mammalian target of rapamycin (mTOR) and S6 decreased, and that of the repressor eIF4E · 4E-binding protein 1 (4EBP1) association increased in 26-d-old pigs--compared with 7-d-old pigs. LPS decreased the abundance of the active eIF4E ·eIF4G association and the phosphorylation of eIF4G across ages, whereas the abundance of eIF4G declined and eIF2α phosphorylation increased with age. Therefore, when lacking anabolic stimulation, the decrease in MPS induced by LPS is associated with reduced ribosomal efficiency and decreased eIF4E ·eIF4G assembly, whereas that induced by development involves reduced ribosomal number, translation factor abundance, and increased eIF2α phosphorylation.
Collapse
Affiliation(s)
- Renán A Orellana
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Kaul G, Pattan G, Rafeequi T. Eukaryotic elongation factor-2 (eEF2): its regulation and peptide chain elongation. Cell Biochem Funct 2011; 29:227-34. [PMID: 21394738 DOI: 10.1002/cbf.1740] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/17/2011] [Accepted: 01/31/2011] [Indexed: 12/19/2022]
Abstract
Regulation at the level of translation in eukaryotes is feasible because of the longer lifetime of eukaryotic mRNAs in the cell. The elongation stage of mRNA translation requires a substantial amount of energy and also eukaryotic elongation factors (eEFs). The important component of eEFs, i.e. eEF2 promotes the GTP-dependent translocation of the nascent protein chain from the A-site to the P-site of the ribosome. Mostly the eEF2 is regulated by phosphorylation and dephosphorylation by a specific kinase known as eEF2 kinase, which itself is up-regulated by various mechanisms in the eukaryotic cell. The activity of this kinase is dependent on calcium ions and calmodulin. Recently it has been shown that the activity of eEF2 kinase is regulated by MAP kinase signalling and mTOR signalling pathway. There are also various stimuli that control the peptide chain elongation in eukaryotic cell; some stimuli inhibit and some activate eEF2. These reports provide the mechanisms by which cells likely serve to slow down protein synthesis and conserve energy under nutrient deprived conditions via regulation of eEF2. The regulation via eEF2 has also been seen in mammary tissue of lactating cows, suggesting that eEF2 may be a limiting factor in milk protein synthesis. Regulation at this level provides the molecular understanding about the control of protein translocation reactions in eukaryotes, which is critical for numerous biological phenomenons. Further the elongation factors could be potential targets for regulation of protein synthesis like milk protein synthesis and hence probably its foreseeable application to synthetic biology.
Collapse
Affiliation(s)
- Gautam Kaul
- N.T Lab-I, National Dairy Research Institute, Karnal, Haryana, India.
| | | | | |
Collapse
|
12
|
Albumin synthesis rates in post-surgical infants and septic adolescents; influence of amino acids, energy, and insulin. Clin Nutr 2011; 30:469-77. [PMID: 21367495 DOI: 10.1016/j.clnu.2011.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 01/26/2011] [Accepted: 02/03/2011] [Indexed: 01/25/2023]
Abstract
BACKGROUND & AIMS To investigate the effects of glucose, parenteral amino acids, and intravenous insulin on albumin synthesis rates in critically ill children. METHODS Two studies were performed in 8 post-surgical infants (age 9.8 ± 1.9 months; weight 9.5 ± 1.1 kg) and 9 septic adolescents (age 15 ± 1 yr; BMI 23 ± 4 kg m(-2)), respectively. All received a primed, constant, tracer infusion with [1-(13)C]Leucine. The infants in study 1 were randomized to receive low (2.5 mg kg(-1) min(-1)) and standard (5.0 mg kg(-1) min(-1)) glucose intake in a cross-over setting of two periods of 4 h each. The adolescents in study 2 were randomized to receive total parenteral nutrition with standard (1.5 g kg(-1) day(-1)) and high (3.0 g kg(-1) day(-1)) amino acid intake in a two day cross-over setting. On both study days, during the last 3 h of the tracer study, they received insulin infused at 80 mU m(-2) min(-1). RESULTS The post-surgical infants and the septic adolescents were mildly hypoalbuminemic (∼2.5 g dL(-1)) with high synthesis rates, which were not affected by different intakes of glucose, amino acids, or insulin infusion. CONCLUSIONS Albumin synthesis rates in hypoalbuminemic critically ill children are high but were not upregulated through nutrient supply, and in septic adolescents are unaffected by insulin.
Collapse
|
13
|
Harding SV, Adegoke OAJ, Fraser KG, Marliss EB, Chevalier S, Kimball SR, Jefferson LS, Wykes LJ. Maintaining adequate nutrition, not probiotic administration, prevents growth stunting and maintains skeletal muscle protein synthesis rates in a piglet model of colitis. Pediatr Res 2010; 67:268-73. [PMID: 19952868 PMCID: PMC2826364 DOI: 10.1203/pdr.0b013e3181cb8e49] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Malnutrition and cytokine-induced catabolism are pervasive in children with inflammatory bowel diseases (IBD), however, the benefits of aggressive nutrition support or of probiotics on nutrient and functional deficiencies and growth remain unclear. Piglets with dextran sulfate (DS)-induced colitis consuming a 50% macronutrient restricted diet (C-MR) were compared with those receiving probiotics (C-MRP) or adequate nutrition (C-WN) and with healthy well-nourished controls (REF). C-WN versus REF had reduced growth (-34% chest circumference and -22% snout-to-rump length gain) and a tendency toward lesser weight gain, but no differences in skeletal muscle protein fractional synthesis rates (FSR) or initiation of translation via the mTOR pathway were observed. Compared with C-WN, the C-MR and C-MRP piglets had lower weight gain, growth, and skeletal muscle FSR, and lower phosphorylated p70S6K1 with higher eIF4E*4E-BP1, indicative of reduced initiation of protein translation. Finally, plasma leucine concentrations were positively correlated with weight and phosphorylated p70S6K1, whereas negatively correlated with eIF4E*4E-BP1. In conclusion, reductions in weight gain, growth, protein turnover, skeletal muscle FSR, and initiation of protein translation with moderate macronutrient restriction in colitis are not ameliorated by probiotic supplementation. However, maintaining adequate nutrient intake during colitis preserves whole body protein metabolism, but growth remains compromised.
Collapse
Affiliation(s)
- Scott V Harding
- School of Dietetics and Human Nutrition, McGill University, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Orellana RA, Suryawan A, Kimball SR, Wu G, Nguyen HV, Jefferson LS, Davis TA. Insulin signaling in skeletal muscle and liver of neonatal pigs during endotoxemia. Pediatr Res 2008; 64:505-10. [PMID: 18596577 PMCID: PMC2774270 DOI: 10.1203/pdr.0b013e318183fd4c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sepsis has been associated with tumor necrosis factor alpha (TNF-alpha) and nitric oxide (NO) overproduction, insulin resistance, and a profound suppression of muscle protein synthesis. However, lesser suppression of muscle protein synthesis in neonatal pigs occurs in response to endotoxin (LPS) when glucose and amino acids are provided. We hypothesize that the LPS-induced TNF-alpha and NO overproduction down-regulates insulin signaling pathway activation in neonatal pigs in the presence of fed levels of insulin, glucose, and amino acids. In skeletal muscle, inducible NOS activity was increased in response to LPS infusion, but phosphorylation of the insulin receptor, insulin receptor substrate-1 (IRS-1), p42/p44 mitogen-activated protein kinase (MAPK), and protein kinase B, the association of IRS-1 with phosphatidylinositol 3-kinase (PI 3-kinase), and constitutive NOS activity were not altered. In liver, activation of the insulin receptor, IRS-1, and PI 3-kinase were not affected by LPS, but p42 MAPK phosphorylation was increased. The absence of a down-regulation in the insulin signaling cascade in muscle despite the LPS-induced increase in TNF-alpha and muscle iNOS, may contribute to the near-maintenance of muscle protein synthesis rates in the presence of glucose and amino acids in LPS-infused neonatal pigs.
Collapse
Affiliation(s)
- Renán A Orellana
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Orellana RA, Jeyapalan A, Escobar J, Frank JW, Nguyen HV, Suryawan A, Davis TA. Amino acids augment muscle protein synthesis in neonatal pigs during acute endotoxemia by stimulating mTOR-dependent translation initiation. Am J Physiol Endocrinol Metab 2007; 293:E1416-25. [PMID: 17848637 DOI: 10.1152/ajpendo.00146.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In skeletal muscle of adults, sepsis reduces protein synthesis by depressing translation initiation and induces resistance to branched-chain amino acid stimulation. Normal neonates maintain a high basal muscle protein synthesis rate that is sensitive to amino acid stimulation. In the present study, we determined the effect of amino acids on protein synthesis in skeletal muscle and other tissues in septic neonates. Overnight-fasted neonatal pigs were infused with endotoxin (LPS, 0 and 10 microg.kg(-1).h(-1)), whereas glucose and insulin were maintained at fasting levels; amino acids were clamped at fasting or fed levels. In the presence of fasting insulin and amino acids, LPS reduced protein synthesis in longissimus dorsi (LD) and gastrocnemius muscles and increased protein synthesis in the diaphragm, but had no effect in masseter and heart muscles. Increasing amino acids to fed levels accelerated muscle protein synthesis in LD, gastrocnemius, masseter, and diaphragm. LPS stimulated protein synthesis in liver, lung, spleen, pancreas, and kidney in fasted animals. Raising amino acids to fed levels increased protein synthesis in liver of controls, but not LPS-treated animals. The increase in muscle protein synthesis in response to amino acids was associated with increased mTOR, 4E-BP1, and S6K1 phosphorylation and eIF4G-eIF4E association in control and LPS-infused animals. These findings suggest that amino acids stimulate skeletal muscle protein synthesis during acute endotoxemia via mTOR-dependent ribosomal assembly despite reduced basal protein synthesis rates in neonatal pigs. However, provision of amino acids does not further enhance the LPS-induced increase in liver protein synthesis.
Collapse
Affiliation(s)
- Renán A Orellana
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Insulin therapy in the pediatric intensive care unit. Clin Nutr 2007; 26:677-90. [PMID: 17950500 DOI: 10.1016/j.clnu.2007.08.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/22/2007] [Accepted: 08/29/2007] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Hyperglycemia is a major risk factor for increased morbidity and mortality in the intensive care unit. Insulin therapy has emerged in adult intensive care units and several pediatric studies are currently being conducted. This review discusses hyperglycemia and the effects of insulin on metabolic and non-metabolic pathways, with a focus on pediatric critical illness. METHODS A PubMed search was performed by using the following keywords and limits (("hyperglycemia"[MeSH terms] or ("insulin resistance"[MeSH major topic]) and ("critical care"[MeSH terms] or "critical illness"[MeSH terms])) in different combinations with ("metabolism"[MeSH terms] or "metabolic networks and pathways"[MeSH terms]) and ("outcome"[all fields]) and ("infant"[MeSH terms] or "child"[MeSH terms] or "adolescent"[MeSH terms]). Quality assessment of selected studies included clinical pertinence, publication in peer-reviewed journals, objectivity of measurements and techniques used to minimize bias. Reference lists of such studies were included. RESULTS The magnitude and duration of hyperglycemia are associated with increased morbidity and mortality in the pediatric intensive care unit (PICU), but prospective, randomized controlled studies with insulin therapy have not been published yet. Evidence concerning the mechanism and the effect of insulin on glucose and lipid metabolism in pediatric critical illness is scarce. More is known about the positive effect on protein homeostasis, especially in severely burned children. The effect in septic children is less clear and seems age dependent. Some non-metabolic properties of insulin such as the modulation of inflammation, endothelial dysfunction and coagulopathy have not been fully investigated in children. CONCLUSION Future studies on the effect of insulin on morbidity and mortality as well as on the mechanisms through which insulin exerts these effects are necessary in critically ill children. We propose these studies to be conducted under standardized conditions including precise definitions of hyperglycemia and rates of glucose intake.
Collapse
|
17
|
Jeyapalan AS, Orellana RA, Suryawan A, O'Connor PMJ, Nguyen HV, Escobar J, Frank JW, Davis TA. Glucose stimulates protein synthesis in skeletal muscle of neonatal pigs through an AMPK- and mTOR-independent process. Am J Physiol Endocrinol Metab 2007; 293:E595-603. [PMID: 17551002 DOI: 10.1152/ajpendo.00121.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Skeletal muscle protein synthesis is elevated in neonates in part due to an enhanced response to the rise in insulin and amino acids after eating. In vitro studies suggest that glucose plays a role in protein synthesis regulation. To determine whether glucose, independently of insulin and amino acids, is involved in the postprandial rise in skeletal muscle protein synthesis, pancreatic-substrate clamps were performed in neonatal pigs. Insulin secretion was inhibited with somatostatin and insulin was infused to reproduce fasting or fed levels, while glucose and amino acids were clamped at fasting or fed levels. Fractional protein synthesis rates and translational control mechanisms were examined. Raising glucose alone increased protein synthesis in fast-twitch glycolytic muscles but not in other tissues. The response in muscle was associated with increased phosphorylation of protein kinase B (PKB) and enhanced formation of the active eIF4E.eIF4G complex but no change in phosphorylation of AMP-activated protein kinase (AMPK), tuberous sclerosis complex 2 (TSC2), mammalian target of rapamycin (mTOR), 4E-binding protein-1 (4E-BP1), ribosomal protein S6 kinase (S6K1), or eukaryotic elongation factor 2 (eEF2). Raising glucose, insulin, and amino acids increased protein synthesis in most tissues. The response in muscle was associated with phosphorylation of PKB, mTOR, S6K1, and 4E-BP1 and enhanced eIF4E.eIF4G formation. The results suggest that the postprandial rise in glucose, independently of insulin and amino acids, stimulates protein synthesis in neonates, and this response is specific to fast-twitch glycolytic muscle and occurs by AMPK- and mTOR-independent pathways.
Collapse
Affiliation(s)
- Asumthia S Jeyapalan
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center and Pediatric Critical Care Section, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|