1
|
Neuhauser C, Schwarzinger B, Schwarzinger C, Feichtinger M, Stadlbauer V, Arnaut V, Drotarova I, Blank-Landeshammer B, Weghuber J. Insulin-Mimetic Activity of Herbal Extracts Identified with Large-Scale Total Internal Reflection Fluorescence Microscopy. Nutrients 2024; 16:2182. [PMID: 39064624 PMCID: PMC11280383 DOI: 10.3390/nu16142182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes mellitus is a spreading global pandemic. Type 2 diabetes mellitus (T2DM) is the predominant form of diabetes, in which a reduction in blood glucose uptake is caused by impaired glucose transporter 4 (GLUT4) translocation to the plasma membrane in adipose and muscle cells. Antihyperglycemic drugs play a pivotal role in ameliorating diabetes symptoms but often are associated with side effects. Hence, novel antidiabetic compounds and nutraceutical candidates are urgently needed. Phytogenic therapy can support the prevention and amelioration of impaired glucose homeostasis. Using total internal reflection fluorescence microscopy (TIRFM), 772 plant extracts of an open-access plant extract library were screened for their GLUT4 translocation activation potential, resulting in 9% positive hits. Based on commercial interest and TIRFM assay-based GLUT4 translocation activation, some of these extracts were selected, and their blood glucose-reducing effects in ovo were investigated using a modified hen's egg test (Gluc-HET). To identify the active plant part, some of the available candidate plants were prepared in-house from blossoms, leaves, stems, or roots and tested. Acacia catechu (catechu), Pulmonaria officinalis (lungwort), Mentha spicata (spearmint), and Saponaria officinalis (common soapwort) revealed their potentials as antidiabetic nutraceuticals, with common soapwort containing GLUT4 translocation-activating saponarin.
Collapse
Affiliation(s)
- Cathrina Neuhauser
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (C.N.); (B.S.); (M.F.); (V.S.); (V.A.); (I.D.)
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria;
| | - Bettina Schwarzinger
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (C.N.); (B.S.); (M.F.); (V.S.); (V.A.); (I.D.)
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria;
| | - Clemens Schwarzinger
- Institute for Chemical Technology of Organic Materials, Johannes Kepler University, 4040 Linz, Austria;
| | - Michaela Feichtinger
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (C.N.); (B.S.); (M.F.); (V.S.); (V.A.); (I.D.)
| | - Verena Stadlbauer
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (C.N.); (B.S.); (M.F.); (V.S.); (V.A.); (I.D.)
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria;
| | - Verena Arnaut
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (C.N.); (B.S.); (M.F.); (V.S.); (V.A.); (I.D.)
| | - Ivana Drotarova
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (C.N.); (B.S.); (M.F.); (V.S.); (V.A.); (I.D.)
| | - Bernhard Blank-Landeshammer
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria;
| | - Julian Weghuber
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (C.N.); (B.S.); (M.F.); (V.S.); (V.A.); (I.D.)
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria;
| |
Collapse
|
2
|
Al-Kouh A, Babiker F. Nitric Oxide/Glucose Transporter Type 4 Pathway Mediates Cardioprotection against Ischemia/Reperfusion Injury under Hyperglycemic and Diabetic Conditions in Rats. J Vasc Res 2024; 61:179-196. [PMID: 38952123 DOI: 10.1159/000539461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/17/2024] [Indexed: 07/03/2024] Open
Abstract
INTRODUCTION The comorbidities of ischemic heart disease (IHD) and diabetes mellitus (DM) compromise the protection of the diabetic heart from ischemia/reperfusion (I/R) injury. We hypothesized that manipulation of reperfusion injury salvage kinase (RISK) and survivor activating factor enhancement (SAFE) pathways might protect the diabetic heart, and intervention of these pathways could be a new avenue for potentially protecting the diabetic heart. METHODS All hearts were subjected to 30-min ischemia and 30-min reperfusion. During reperfusion, hearts were exposed to molecules proven to protect the heart from I/R injury. The hemodynamic data were collected using suitable software. The infarct size, troponin T levels, and protein levels in hearts were evaluated. RESULTS Both cyclosporine-A and nitric oxide donor (SNAP) infusion at reperfusion protected 4-week diabetic hearts from I/R injury. However, 6-week diabetic hearts were protected only by SNAP, but not cyclosporin-A. These treatments significantly (p < 0.05) improved cardiac hemodynamics and decreased infarct size. CONCLUSIONS The administration of SNAP to diabetic hearts protected both 4- and 6-week diabetic hearts; however, cyclosporine-A protected only the 4-week diabetic hearts. The eNOS/GLUT-4 pathway executed the SNAP-mediated cardioprotection.
Collapse
Affiliation(s)
- Aisha Al-Kouh
- Department of Physiology, College of Medicine, Kuwait University, Kuwait, Kuwait
| | - Fawzi Babiker
- Department of Physiology, College of Medicine, Kuwait University, Kuwait, Kuwait
| |
Collapse
|
3
|
Yu Y, Liu S, Yang L, Song P, Liu Z, Liu X, Yan X, Dong Q. Roles of reactive oxygen species in inflammation and cancer. MedComm (Beijing) 2024; 5:e519. [PMID: 38576456 PMCID: PMC10993368 DOI: 10.1002/mco2.519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/21/2024] [Accepted: 02/23/2024] [Indexed: 04/06/2024] Open
Abstract
Reactive oxygen species (ROS) constitute a spectrum of oxygenic metabolites crucial in modulating pathological organism functions. Disruptions in ROS equilibrium span various diseases, and current insights suggest a dual role for ROS in tumorigenesis and the immune response within cancer. This review rigorously examines ROS production and its role in normal cells, elucidating the subsequent regulatory network in inflammation and cancer. Comprehensive synthesis details the documented impacts of ROS on diverse immune cells. Exploring the intricate relationship between ROS and cancer immunity, we highlight its influence on existing immunotherapies, including immune checkpoint blockade, chimeric antigen receptors, and cancer vaccines. Additionally, we underscore the promising prospects of utilizing ROS and targeting ROS modulators as novel immunotherapeutic interventions for cancer. This review discusses the complex interplay between ROS, inflammation, and tumorigenesis, emphasizing the multifaceted functions of ROS in both physiological and pathological conditions. It also underscores the potential implications of ROS in cancer immunotherapy and suggests future research directions, including the development of targeted therapies and precision oncology approaches. In summary, this review emphasizes the significance of understanding ROS-mediated mechanisms for advancing cancer therapy and developing personalized treatments.
Collapse
Affiliation(s)
- Yunfei Yu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Shengzhuo Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Luchen Yang
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Pan Song
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Zhenghuan Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xiaoyang Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xin Yan
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Qiang Dong
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
4
|
Zhang T, Xu L, Guo X, Tao H, Liu Y, Liu X, Zhang Y, Meng X. The potential of herbal drugs to treat heart failure: The roles of Sirt1/AMPK. J Pharm Anal 2024; 14:157-176. [PMID: 38464786 PMCID: PMC10921247 DOI: 10.1016/j.jpha.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 03/12/2024] Open
Abstract
Heart failure (HF) is a highly morbid syndrome that seriously affects the physical and mental health of patients and generates an enormous socio-economic burden. In addition to cardiac myocyte oxidative stress and apoptosis, which are considered mechanisms for the development of HF, alterations in cardiac energy metabolism and pathological autophagy also contribute to cardiac abnormalities and ultimately HF. Silent information regulator 1 (Sirt1) and adenosine monophosphate-activated protein kinase (AMPK) are nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases and phosphorylated kinases, respectively. They play similar roles in regulating some pathological processes of the heart through regulating targets such as peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), protein 38 mitogen-activated protein kinase (p38 MAPK), peroxisome proliferator-activated receptors (PPARs), and mammalian target of rapamycin (mTOR). We summarized the synergistic effects of Sirt1 and AMPK in the heart, and listed the traditional Chinese medicine (TCM) that exhibit cardioprotective properties by modulating the Sirt1/AMPK pathway, to provide a basis for the development of Sirt1/AMPK activators or inhibitors for the treatment of HF and other cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaowei Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, 620032, China
| |
Collapse
|
5
|
Wei J, Duan X, Chen J, Zhang D, Xu J, Zhuang J, Wang S. Metabolic adaptations in pressure overload hypertrophic heart. Heart Fail Rev 2024; 29:95-111. [PMID: 37768435 DOI: 10.1007/s10741-023-10353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
This review article offers a detailed examination of metabolic adaptations in pressure overload hypertrophic hearts, a condition that plays a pivotal role in the progression of heart failure with preserved ejection fraction (HFpEF) to heart failure with reduced ejection fraction (HFrEF). The paper delves into the complex interplay between various metabolic pathways, including glucose metabolism, fatty acid metabolism, branched-chain amino acid metabolism, and ketone body metabolism. In-depth insights into the shifts in substrate utilization, the role of different transporter proteins, and the potential impact of hypoxia-induced injuries are discussed. Furthermore, potential therapeutic targets and strategies that could minimize myocardial injury and promote cardiac recovery in the context of pressure overload hypertrophy (POH) are examined. This work aims to contribute to a better understanding of metabolic adaptations in POH, highlighting the need for further research on potential therapeutic applications.
Collapse
Affiliation(s)
- Jinfeng Wei
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xuefei Duan
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jiaying Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Dengwen Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jindong Xu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Sheng Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Linzhi People's Hospital, Linzhi, Tibet, China.
| |
Collapse
|
6
|
Pahlavani HA, Laher I, Weiss K, Knechtle B, Zouhal H. Physical exercise for a healthy pregnancy: the role of placentokines and exerkines. J Physiol Sci 2023; 73:30. [PMID: 37964253 PMCID: PMC10718036 DOI: 10.1186/s12576-023-00885-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Complications such as diabetes and preeclampsia can occur during pregnancy. Moderate-intensity exercise can prevent such complications by releasing placentokines and exerkines, such as apelin, adiponectin, leptin, irisin, and chemerin. Exercise and apelin increase thermogenesis and glucose uptake in pregnancy by activating AMPK, PI3K, PGC-1α, AKT1, UCP3, and sarcolipin. Exercise increases apelin levels to reduce preeclampsia symptoms by increasing eNOS, NO, placental growth factor (PlGF), and VEGF and decreasing levels of fms-like tyrosine kinase 1 (sFlt-1), soluble endoglin (sEng), and oxidative stress. A negative relationship has been reported between plasma leptin and VO2peak/kg and VO2peak in women with gestational diabetes. In active women, decreases in leptin levels reduce the risk of preeclampsia by ~ 40%. Higher adiponectin levels are associated with greater physical activity and lead to increased insulin sensitivity. Increased adiponectin levels in preeclampsia and exercise counteract inflammatory and atherogenic activities while also having vascular protective effects. Exercise increases irisin levels that correlate negatively with fasting glucose, insulin concentration, and glycosylated hemoglobin levels. Irisin augments mRNA expression levels of UCP1 and cell death-inducing DNA fragmentation factor-like effector A (cidea) to cause browning of adipose tissue, increased thermogenesis, and increased energy consumption. Irisin concentrations in mothers with preeclampsia in the third trimester negatively correlate with systolic and diastolic blood pressure. Expression levels of chemerin, IL-6, and TNF-α are increased in gestational diabetes, and the increases in chemerin in late pregnancy positively correlate with the ratio of sFlt-1 to PlGF as a marker of preeclampsia. The effects of physical exercise on placentokines and exerkines in women at various stages of pregnancy remain poorly understood.
Collapse
Affiliation(s)
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Katja Weiss
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland.
- Medbase St Gallen Am Vadianplatz, Vadianstrasse 26, 9001, St. Gallen, Switzerland.
| | - Hassane Zouhal
- Movement Sport, Health and Sciences Laboratory (M2S) UFR-STAPS, University of Rennes 2-ENS Cachan, Charles Tillon, France.
- Institut International Des Sciences Du Sport (2IS), Irodouer, France.
| |
Collapse
|
7
|
Dawson LW, Cronin NM, DeMali KA. Mechanotransduction: Forcing a change in metabolism. Curr Opin Cell Biol 2023; 84:102219. [PMID: 37651955 PMCID: PMC10523412 DOI: 10.1016/j.ceb.2023.102219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/02/2023]
Abstract
Epithelial and endothelial cells experience numerous mechanical cues throughout their lifetimes. Cells resist these forces by fortifying their cytoskeletal networks and adhesions. This reinforcement is energetically costly. Here we describe how these energetic demands are met. We focus on the response of epithelial and endothelial cells to mechanical cues, describe the energetic needs of epithelia and endothelia, and identify the mechanisms these cells employ to increase glycolysis, oxidative phosphorylation, and fatty acid metabolism. We discuss the similarities and differences in the responses of the two cell types.
Collapse
Affiliation(s)
- Logan W Dawson
- Department of Biochemistry and Molecular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nicholas M Cronin
- Department of Biochemistry and Molecular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kris A DeMali
- Department of Biochemistry and Molecular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
8
|
Lin SP, Bu J, Ye S, Xie Q, Wei JX, Yin X, Mei F, Lin PY, Chen XH. Activated AMPK-mediated glucose uptake and mitochondrial dysfunction is critically involved in the glutamate-induced oxidative injury in HT22 cell. Tissue Cell 2023; 81:102039. [PMID: 36805774 DOI: 10.1016/j.tice.2023.102039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/09/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Accumulation of glutamate damages neurons via the reactive oxygen species (ROS) injury, which was involved in the development of neurodegenerative diseases. However, the mechanism of neuronal oxidative stress damage caused by glutamate and the intervention targets still needs to be further studied. This study explored whether 5' adenosine monophosphate-activated protein kinase (AMPK)-induced glucose metabolic and mitochondrial dysfunction were related to glutamate-dependent ROS injury of the neuron. METHODS Neuronal oxidative stress injury was induced by glutamate treatment in HT-22 cells. Western blotting was used to evaluate the phosphorylation of the AMPK. The XF24 Flux Analyzer was used to measure the effect of glutamate and Compound C (a well-known pharmacological inhibitor of AMPK phosphorylation) on the cellular oxygen consumption rate (OCR) of HT-22 cells. Glucose uptake, intracellular ROS, mitochondrial potential, apoptosis and cell viability were quantified using biochemical assays. RESULTS Glutamate caused the phosphorylation of AMPK and subsequently promoted the glucose uptake. Furthermore, AMPK-mediated glucose uptake enhanced OCR and increased the intracellular ROS levels in neurons. The pharmacological inhibition of AMPK phosphorylation by Compound C attenuated glutamate-induced toxicity in HT22 cells by regulating the glucose uptake/mitochondrial respiration/ROS pathway. CONCLUSIONS The AMPK phosphorylation/glucose uptake/mitochondrial respiration/ROS pathway was involved in glutamate-induced excitotoxic injury in HT22 cells. The inhibition of AMPK phosphorylation may be a potential target for the development of therapeutic agents for treating the glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- Shao-Peng Lin
- Department of Emergency, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Jingyi Bu
- Department of Emergency, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Shan Ye
- Department of Geriatrics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Qiangda Xie
- Department of Emergency, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Jue-Xian Wei
- Department of Emergency, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Xiaofang Yin
- Department of Emergency, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Fen Mei
- Department of Emergency, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Pei-Yi Lin
- Department of Emergency, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Xiao-Hui Chen
- Department of Emergency, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China.
| |
Collapse
|
9
|
Pappas G, Wilkinson ML, Gow AJ. Nitric oxide regulation of cellular metabolism: Adaptive tuning of cellular energy. Nitric Oxide 2023; 131:8-17. [PMID: 36470373 PMCID: PMC9839556 DOI: 10.1016/j.niox.2022.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Nitric oxide can interact with a wide range of proteins including many that are involved in metabolism. In this review we have summarized the effects of NO on glycolysis, fatty acid metabolism, the TCA cycle, and oxidative phosphorylation with reference to skeletal muscle. Low to moderate NO concentrations upregulate glucose and fatty acid oxidation, while higher NO concentrations shift cellular reliance toward a fully glycolytic phenotype. Moderate NO production directly inhibits pyruvate dehydrogenase activity, reducing glucose-derived carbon entry into the TCA cycle and subsequently increasing anaploretic reactions. NO directly inhibits aconitase activity, increasing reliance on glutamine for continued energy production. At higher or prolonged NO exposure, citrate accumulation can inhibit multiple ATP-producing pathways. Reduced TCA flux slows NADH/FADH entry into the ETC. NO can also inhibit the ETC directly, further limiting oxidative phosphorylation. Moderate NO production improves mitochondrial efficiency while improving O2 utilization increasing whole-body energy production. Long-term bioenergetic capacity may be increased because of NO-derived ROS, which participate in adaptive cellular redox signaling through AMPK, PCG1-α, HIF-1, and NF-κB. However, prolonged exposure or high concentrations of NO can result in membrane depolarization and opening of the MPT. In this way NO may serve as a biochemical rheostat matching energy supply with demand for optimal respiratory function.
Collapse
Affiliation(s)
- Gregory Pappas
- Department of Kinesiology & Applied Physiology, Rutgers the State University of New Jersey, NJ, 08854, USA.
| | - Melissa L Wilkinson
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, NJ, 08854, USA.
| | - Andrew J Gow
- Department of Kinesiology & Applied Physiology, Rutgers the State University of New Jersey, NJ, 08854, USA; Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, NJ, 08854, USA.
| |
Collapse
|
10
|
Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell 2022; 185:2853-2878. [DOI: 10.1016/j.cell.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 10/16/2022]
|
11
|
Gao M, Cai Q, Si H, Shi S, Wei H, Lv M, Wang X, Dong T. Isoliquiritigenin attenuates pathological cardiac hypertrophy via regulating AMPKα in vivo and in vitro. J Mol Histol 2022; 53:679-689. [PMID: 35834120 DOI: 10.1007/s10735-022-10090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/07/2022] [Indexed: 11/29/2022]
Abstract
Isoliquiritigenin (ISL) is a type of flavonoid, derived from the root of the legume plant Glycyrrhiza, that has multiple pharmacological properties. However, its role in cardiac remodeling induced by pressure overload has yet to be fully elucidated. Aortic banding (AB) surgery was used to establish a cardiac hypertrophy model in male C57BL/6 mice. Mice were randomly divided into four groups (n = 20 per group) as follows: Sham + vehicle, sham + ISL, AB + vehicle and AB + ISL. ISL was administered to the mice intragastrically for 1 week after the operation. To evaluate the role of ISL in mice challenged with AB, echocardiography, histological analysis and molecular biochemistry examinations were performed. ISL treatment decreased cardiac hypertrophy and improved cardiac dysfunction induced by pressure overload. In addition, ISL decreased the cross-sectional area of cardiomyocytes. Furthermore, ISL reversed the AB-mediated increase in phosphorylated (p-)mTOR and p-ERK protein levels and further increased the protein expression of p-AMP-activated protein kinase (AMPK)α in response to AB, whereas knockout of AMPKα abolished the protective effects of ISL. The present study suggested that ISL could suppress pressure overload-induced cardiac hypertrophy through the activation of AMPKα. Therefore, ISL may serve as a therapeutic target for cardiac remodeling.
Collapse
Affiliation(s)
- Meiling Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Cai
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Haichao Si
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Si Shi
- Department of Anesthesiology, Hubei Provincial Peoples Hospital affiliated to Wuhan University, Wuhan, China
| | - Huixia Wei
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Miaomiao Lv
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaofan Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Tieli Dong
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
12
|
Abstract
Obesity has reached epidemic proportions and is a major contributor to insulin resistance (IR) and type 2 diabetes (T2D). Importantly, IR and T2D substantially increase the risk of cardiovascular (CV) disease. Although there are successful approaches to maintain glycemic control, there continue to be increased CV morbidity and mortality associated with metabolic disease. Therefore, there is an urgent need to understand the cellular and molecular processes that underlie cardiometabolic changes that occur during obesity so that optimal medical therapies can be designed to attenuate or prevent the sequelae of this disease. The vascular endothelium is in constant contact with the circulating milieu; thus, it is not surprising that obesity-driven elevations in lipids, glucose, and proinflammatory mediators induce endothelial dysfunction, vascular inflammation, and vascular remodeling in all segments of the vasculature. As cardiometabolic disease progresses, so do pathological changes in the entire vascular network, which can feed forward to exacerbate disease progression. Recent cellular and molecular data have implicated the vasculature as an initiating and instigating factor in the development of several cardiometabolic diseases. This Review discusses these findings in the context of atherosclerosis, IR and T2D, and heart failure with preserved ejection fraction. In addition, novel strategies to therapeutically target the vasculature to lessen cardiometabolic disease burden are introduced.
Collapse
|
13
|
Xu L, Lin X, Li X, Hu Z, Hou Q, Wang Y, Wang Z. Integration of transcriptomics and metabolomics provides metabolic and functional insights into reduced insulin secretion in MIN6 β-cells exposed to deficient and excessive arginine. FASEB J 2022; 36:e22206. [PMID: 35199385 DOI: 10.1096/fj.202101723r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 01/17/2023]
Abstract
Previous work demonstrated that arginine is one of the strongest insulin secretagogues. However, knowledge of the mechanisms linking chronic arginine metabolism with β-cell function and insulin secretion is relatively limited. After preliminary selection of concentration according to the cell proliferation, the MIN6 pancreatic β-cells were randomly assigned to culture in 0.04 mM (low-arginine, LA), 0.4 mM (standard-arginine, SA), or 8 mM arginine (high-arginine, HA) for 24 h. Following the treatment, a combination of transcriptomics and metabolomics, together with a series of molecular biological tests were performed to investigate the responses of β-cells to varied arginine availability. Our results showed that HA treatment reduced the chronic insulin releases, and LA and HA treatments decreased the glucose-stimulated insulin secretions (GSIS) of β-cells relative to the SA group (p < .05). Transcriptomics analysis indicated that LA administration significantly inhibited oxidative phosphorylation and ATP metabolic process but promoted DNA repair and mRNA processing in β-cells, while HA administration affected ammonium ion metabolic process and mRNA export (p < .05). Both LA and HA regulated the expressions of genes involved in DNA replication, cell-cycle phase transition, and response to oxidative stress (p < .05). Protein-protein interaction and transcription factor analyses suggested that Trp53 and Nr4a2 genes may play key roles during arginine stimulation. On the contrary, metabolomics analysis demonstrated that the differentially expressed metabolites (DEM) of MIN6 β-cells induced by LA were mainly enriched in glycerophospholipid metabolism, linoleic acid metabolism, and purine metabolism, while most DEMs between LA vs. SA comparison belonged to amino acid metabolism. When combined the three groups, co-expression analysis suggested that insulin secretions had strong associations with L-pyroglutamic acid, L-glutamate, and creatine concentrations, while intracellular insulin contents were mainly correlated to L-arginine, argininosuccinic acid, and phosphorylcholine. At last, integrated analysis of transcriptomics and metabolomics showed that glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids, and amino acid metabolism were the most relevant pathways in β-cells exposed to abnormal arginine supply. This descriptive bioinformatics analysis suggested that the disturbed carbohydrate, lipid, and amino acid metabolisms, as well as the increased apoptosis and elevated oxidative stress, contributed to the reduced insulin secretion and lower GSIS in β-cells induced by LA or HA treatments, while some underlying mechanisms need to be further explored.
Collapse
Affiliation(s)
- Lianbin Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, P. R. China
| | - Xueyan Lin
- College of Animal Science and Technology, Shandong Agricultural University, Taian, P. R. China
| | - Xiuli Li
- Institute of Animal Immune Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Zhiyong Hu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, P. R. China
| | - Qiuling Hou
- College of Animal Science and Technology, Shandong Agricultural University, Taian, P. R. China
| | - Yun Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, P. R. China
| | - Zhonghua Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, P. R. China
| |
Collapse
|
14
|
Leung SWS, Shi Y. The glycolytic process in endothelial cells and its implications. Acta Pharmacol Sin 2022; 43:251-259. [PMID: 33850277 PMCID: PMC8791959 DOI: 10.1038/s41401-021-00647-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells play an obligatory role in regulating local vascular tone and maintaining homeostasis in vascular biology. Cell metabolism, converting food to energy in organisms, is the primary self-sustaining mechanism for cell proliferation and reproduction, structure maintenance, and fight-or-flight responses to stimuli. Four major metabolic processes take place in the energy-producing process, including glycolysis, oxidative phosphorylation, glutamine metabolism, and fatty acid oxidation. Among them, glycolysis is the primary energy-producing mechanism in endothelial cells. The present review focused on glycolysis in endothelial cells under both physiological and pathological conditions. Since the switches among metabolic processes precede the functional changes and disease developments, some prophylactic and/or therapeutic strategies concerning the role of glycolysis in cardiovascular disease are discussed.
Collapse
Affiliation(s)
- Susan, Wai Sum Leung
- grid.194645.b0000000121742757Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yi Shi
- grid.8547.e0000 0001 0125 2443Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| |
Collapse
|
15
|
Ren D, Fedorova J, Davitt K, Van Le TN, Griffin JH, Liaw PC, Esmon CT, Rezaie AR, Li J. Activated Protein C Strengthens Cardiac Tolerance to Ischemic Insults in Aging. Circ Res 2022; 130:252-272. [PMID: 34930019 PMCID: PMC8882057 DOI: 10.1161/circresaha.121.319044] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND APC (activated protein C) is a plasma serine protease with anticoagulant and anti-inflammatory activities. EPCR (Endothelial protein C receptor) is associated with APC's activity and mediates its downstream signaling events. APC exerts cardioprotective effects during ischemia and reperfusion (I/R). This study aims to characterize the role of the APC-EPCR axis in ischemic insults in aging. METHODS Young (3-4 months) and aged (24-26 months) wild-type C57BL/6J mice, as well as EPCR point mutation (EPCRR84A/R84A) knockin C57BL/6J mice incapable of interaction with APC and its wild type of littermate C57BL/6J mice, were subjected to I/R. Wild-type APC, signaling-selective APC-2Cys, or anticoagulant-selective APC-E170A were administrated before reperfusion. RESULTS The results demonstrated that cardiac I/R reduces APC activity, and the APC activity was impaired in the aged versus young hearts possibly attributable to the declined EPCR level with aging. Serum EPCR measurement showed that I/R triggered the shedding of membrane EPCR into circulation, while administration of APC attenuated the I/R-induced EPCR shedding in both young and aged hearts. Subsequent echocardiography showed that APC and APC-2Cys but not APC-E170A ameliorated cardiac dysfunction during I/R in both young and aged mice. Importantly, APC elevated the resistance of the aged heart to ischemic insults through stabilizing EPCR. However, all these cardioprotective effects of APC were blunted in the EPCRR84A/R84A mice versus its wild-type littermates. The ex vivo working heart and metabolomics results demonstrated that AMPK (AMP-activated protein kinase) mediates acute adaptive response while AKT (protein kinase B) is involved in chronic metabolic programming in the hearts with APC treatment. CONCLUSIONS I/R stress causes shedding of the membrane EPCR in the heart, and administration of APC prevents I/R-induced cardiac EPCR shedding that is critical for limiting cardiac damage in aging.
Collapse
Affiliation(s)
- Di Ren
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Julia Fedorova
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Kayla Davitt
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Tran Ngoc Van Le
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - John H. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Patricia C. Liaw
- Thrombosis and Atherosclerosis Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Charles T. Esmon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Alireza R. Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Ji Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| |
Collapse
|
16
|
Zhang L, Yu X, Wu Y, Fu H, Xu P, Zheng Y, Wen L, Yang X, Zhang F, Hu M, Wang H, Liu X, Qiao J, Peng C, Gao R, Saffery R, Fu Y, Qi H, Tong C, Kilby MD, Baker PN. Gestational Diabetes Mellitus-Associated Hyperglycemia Impairs Glucose Transporter 3 Trafficking in Trophoblasts Through the Downregulation of AMP-Activated Protein Kinase. Front Cell Dev Biol 2021; 9:722024. [PMID: 34796169 PMCID: PMC8593042 DOI: 10.3389/fcell.2021.722024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is an important regulator of glucose metabolism, and glucose transporter 3 (GLUT3) is an efficient glucose transporter in trophoblasts. Whether placental AMPK and GLUT3 respond accordingly to gestational diabetes mellitus (GDM) remains uncertain. Here, we explored the regulatory role of AMPK in the GLUT3-dependent uptake of glucose by placental trophoblasts and the viability of the cells. In this study, the level of glycolysis in normal and GDM-complicated placentas was assessed by LC-MS/MS. The trophoblast hyperglycemia model was induced by the incubation of HTR8/SVneo cells with a high glucose concentration. GDM animal models were generated with db/ + mice and C57BL/6J mice fed a high-fat diet, and AMPK was manipulated by the oral administration of metformin. The uptake of glucose by trophoblasts was assessed using 2-NBDG or 2-deoxy-D-[3H] glucose. The results showed that GDM is associated with impaired glycolysis, AMPK activity, GLUT3 expression in the plasma membrane (PM) and cell survival in the placenta. Hyperglycemia induced similar changes in trophoblasts, and these changes were rescued by AMPK activation. Both hyperglycemic db/ + and high-fat diet-induced GDM mice exhibited a compromised AMPK–GLUT3 axis and suppressed cell viability in the placenta as well as excessive fetal growth, and all of these effects were partially alleviated by metformin. Taken together, our findings support the notion that AMPK activation upregulates trophoblast glucose uptake by stimulating GLUT3 translocation, which is beneficial for viability. Thus, the modulation of glucose metabolism in trophoblasts by targeting AMPK might ameliorate the adverse intrauterine environment caused by GDM.
Collapse
Affiliation(s)
- Li Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xinyang Yu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yue Wu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Huijia Fu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ping Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School, Houston, TX, United States
| | - Yangxi Zheng
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School, Houston, TX, United States.,Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Li Wen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiaotao Yang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Fumei Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Mingyu Hu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hao Wang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiyao Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Juan Qiao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chuan Peng
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China
| | - Rufei Gao
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Richard Saffery
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Department of Paediatrics, Cancer, Disease and Developmental Epigenetics, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia
| | - Yong Fu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Mark D Kilby
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Philip N Baker
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
17
|
Yadid M, Lind JU, Ardoña HAM, Sheehy SP, Dickinson LE, Eweje F, Bastings MMC, Pope B, O'Connor BB, Straubhaar JR, Budnik B, Kleber AG, Parker KK. Endothelial extracellular vesicles contain protective proteins and rescue ischemia-reperfusion injury in a human heart-on-chip. Sci Transl Med 2021; 12:12/565/eaax8005. [PMID: 33055246 DOI: 10.1126/scitranslmed.aax8005] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EVs) derived from various stem cell sources induce cardioprotective effects during ischemia-reperfusion injury (IRI). These have been attributed mainly to the antiapoptotic, proangiogenic, microRNA (miRNA) cargo within the stem cell-derived EVs. However, the mechanisms of EV-mediated endothelial signaling to cardiomyocytes, as well as their therapeutic potential toward ischemic myocardial injury, are not clear. EV content beyond miRNA that may contribute to cardioprotection has not been fully illuminated. This study characterized the protein cargo of human vascular endothelial EVs (EEVs) to identify lead cardioactive proteins and assessed the effect of EEVs on human laminar cardiac tissues (hlCTs) exposed to IRI. We mapped the protein content of human vascular EEVs and identified proteins that were previously associated with cellular metabolism, redox state, and calcium handling, among other processes. Analysis of the protein landscape of human cardiomyocytes revealed corresponding modifications induced by EEV treatment. To assess their human-specific cardioprotection in vitro, we developed a human heart-on-a-chip IRI assay using human stem cell-derived, engineered cardiac tissues. We found that EEVs alleviated cardiac cell death as well as the loss in contractile capacity during and after simulated IRI in an uptake- and dose-dependent manner. Moreover, we found that EEVs increased the respiratory capacity of normoxic cardiomyocytes. These results suggest that vascular EEVs rescue hlCTs exposed to IRI possibly by supplementing injured myocytes with cargo that supports multiple metabolic and salvage pathways and therefore may serve as a multitargeted therapy for IRI.
Collapse
Affiliation(s)
- Moran Yadid
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Johan U Lind
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Herdeline Ann M Ardoña
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Sean P Sheehy
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Lauren E Dickinson
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Feyisayo Eweje
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Maartje M C Bastings
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Ecole Polytechnique Federale Lausanne (EPFL), School of Engineering, Institute of Materials, Programmable Biomaterials Laboratory, Station 12, 1015 Lausanne, Switzerland
| | - Benjamin Pope
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Blakely B O'Connor
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | - Bogdan Budnik
- FAS Division of Science, Harvard University, Cambridge, MA 02138, USA
| | - Andre G Kleber
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. .,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
18
|
Ding R, Wu W, Sun Z, Li Z. AMP-activated protein kinase: An attractive therapeutic target for ischemia-reperfusion injury. Eur J Pharmacol 2020; 888:173484. [DOI: 10.1016/j.ejphar.2020.173484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/26/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
|
19
|
Tsg101 Is Involved in the Sorting and Re-Distribution of Glucose Transporter-4 to the Sarcolemma Membrane of Cardiac Myocytes. Cells 2020; 9:cells9091936. [PMID: 32839388 PMCID: PMC7565110 DOI: 10.3390/cells9091936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 11/17/2022] Open
Abstract
Cardiac cells can adapt to pathological stress-induced energy crisis by shifting from fatty acid oxidation to glycolysis. However, the use of glucose-insulin-potassium (GIK) solution in patients undergoing cardiac surgery does not alleviate ischemia/reperfusion (I/R)-induced energy shortage. This indicates that insulin-mediated translocation of glucose transporter-4 (Glut-4) is impaired in ischemic hearts. Indeed, cardiac myocytes contain two intracellular populations of Glut-4: an insulin-dependent non-endosomal pool (also referred to as Glut-4 storage vesicles, GSVs) and an insulin-independent endosomal pool. Tumor susceptibility gene 101 (Tsg101) has been implicated in the endosomal recycling of membrane proteins. In this study, we aimed to examine whether Tsg101 regulated the sorting and re-distribution of Glut-4 to the sarcolemma membrane of cardiomyocytes under basal and ischemic conditions, using gain- and loss-of-function approaches. Forced overexpression of Tsg101 in mouse hearts and isolated cardiomyocytes could promote Glut-4 re-distribution to the sarcolemma, leading to enhanced glucose entry and adenosine triphosphate (ATP) generation in I/R hearts which in turn, attenuation of I/R-induced cardiac dysfunction. Conversely, knockdown of Tsg101 in cardiac myocytes exhibited opposite effects. Mechanistically, we identified that Tsg101 could interact and co-localize with Glut-4 in the sarcolemma membrane of cardiomyocytes. Our findings define Tsg101 as a novel regulator of cardiac Glut-4 trafficking, which may provide a new therapeutic strategy for the treatment of ischemic heart disease.
Collapse
|
20
|
Gao L, Tang H, Zeng Q, Tang T, Chen M, Pu P. The anti-insulin resistance effect of scutellarin may be related to antioxidant stress and AMPKα activation in diabetic mice. Obes Res Clin Pract 2020; 14:368-374. [PMID: 32631803 DOI: 10.1016/j.orcp.2020.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/25/2022]
Abstract
AIMS Scutellarein (Sc), a natural compound and an active ingredient of Erigeronbrevis-capus (Vant.), shows anti-obesity, anti-inflammation and lipid-lowering properties in our previous study. However, no previous in vivo and vitro has been conducted to assess the effects of Sc in insulin resistance (IR). This study investigated the effects of Sc on IR and oxidative stress and explored the underlying mechanisms of action in vivo and vitro. MATERIAL AND METHOD A well-established mouse model of IR, induced by high-fat diet (HFD) feeding, was applied in this study. The effects of Sc were evaluated on obesity, glycometabolism disorder and oxidative stress. The anti-IR effect was assessed using blood glucose, serum insulin, HOMA index, intraperitoneal glucose tolerance tests (IPGTT), intraperitoneal insulin tolerance tests (IPITT), and glucose-regulating enzyme activity. The insulin signaling pathways and AMPKα expressions were tested by Western blot. The primary culture of hepatocytes was prepared and used for confirming the above signaling pathways. RESULTS Obesity, IR and oxidative stress developed in HFD mice. Administration of Sc at a dose of 50mg/kg for 16 weeks effectively attenuated these changes. Further studies revealed the antagonistic effect of Sc on IR was a result of the activation of the insulin signaling pathway and AMPKα. The primary hepatocyte test, stimulated by high glucose, further confirmed that SC exerts anti-IR through the above signaling pathway and key protein. CONCLUSION These results suggested that Sc possesses not only an important novel anti-IR effect but also an anti-oxidative stress effect. These favorable effects were causally associated with weight loss and the improved glycometabolism. The underlying mechanisms might associated with the activation of the insulin signaling pathway and AMPKα. Our study promotes the understanding of the pharmacological actions of Sc, and plays a role for Sc in the effective treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Lingyun Gao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Heng Tang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qingfu Zeng
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, People's Republic of China
| | - Ting Tang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ming Chen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Peng Pu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
21
|
Rodríguez C, Contreras C, Sáenz-Medina J, Muñoz M, Corbacho C, Carballido J, García-Sacristán A, Hernandez M, López M, Rivera L, Prieto D. Activation of the AMP-related kinase (AMPK) induces renal vasodilatation and downregulates Nox-derived reactive oxygen species (ROS) generation. Redox Biol 2020. [PMID: 32470915 DOI: 10.1016/j.redox.2020.101575.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a cellular energy sensor activated during energy stress to stimulate ATP production pathways and restore homeostasis. AMPK is widely expressed in the kidney and involved in mitochondrial protection and biogenesis upon acute renal ischemia, AMPK activity being blunted in metabolic disease-associated kidney disease. Since little is known about AMPK in the regulation of renal blood flow, the present study aimed to assess the role of AMPK in renal vascular function. Functional responses to the selective AMPK activator A769662 were assessed in intrarenal small arteries isolated from the kidney of renal tumour patients and Wistar rats and mounted in microvascular myographs to perform simultaneous measurements of intracellular calcium [Ca2+]i and tension. Superoxide (O2.-) and hydrogen peroxide (H2O2) production were measured by chemiluminescence and fluorescence and protein expression by Western blot. Activation of AMPK with A769662 increased AMPKα phosphorylation at Thr-172 and induced potent relaxations compared to AICAR in isolated human and rat intrarenal arteries, through both endothelium-dependent mechanisms involving nitric oxide (NO) and intermediate-conductance calcium-activated potassium (IKCa) channels, as well as activation of ATP-sensitive (KATP) channels and sarcoplasmic reticulum Ca2+-ATPase (SERCA) in vascular smooth muscle (VSM). Furthermore, AMPK activator reduced NADPH oxidase 4 (Nox4) and Nox2-derived reactive oxygen species (ROS) production. These results demonstrate that A769662 has potent vasodilator and antioxidant effects in intrarenal arteries. The benefits of AMPK activation in rat kidney are reproduced in human arteries and therefore vascular AMPK activation might be a therapeutic target in the treatment of metabolic disease-associated kidney injury.
Collapse
Affiliation(s)
- Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Javier Sáenz-Medina
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - César Corbacho
- Departamento de Anatomía Patológica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Joaquín Carballido
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | | | - Medardo Hernandez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, Universidad de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
22
|
Activation of the AMP-related kinase (AMPK) induces renal vasodilatation and downregulates Nox-derived reactive oxygen species (ROS) generation. Redox Biol 2020; 34:101575. [PMID: 32470915 PMCID: PMC7256643 DOI: 10.1016/j.redox.2020.101575] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/10/2020] [Indexed: 12/19/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a cellular energy sensor activated during energy stress to stimulate ATP production pathways and restore homeostasis. AMPK is widely expressed in the kidney and involved in mitochondrial protection and biogenesis upon acute renal ischemia, AMPK activity being blunted in metabolic disease-associated kidney disease. Since little is known about AMPK in the regulation of renal blood flow, the present study aimed to assess the role of AMPK in renal vascular function. Functional responses to the selective AMPK activator A769662 were assessed in intrarenal small arteries isolated from the kidney of renal tumour patients and Wistar rats and mounted in microvascular myographs to perform simultaneous measurements of intracellular calcium [Ca2+]i and tension. Superoxide (O2.-) and hydrogen peroxide (H2O2) production were measured by chemiluminescence and fluorescence and protein expression by Western blot. Activation of AMPK with A769662 increased AMPKα phosphorylation at Thr-172 and induced potent relaxations compared to AICAR in isolated human and rat intrarenal arteries, through both endothelium-dependent mechanisms involving nitric oxide (NO) and intermediate-conductance calcium-activated potassium (IKCa) channels, as well as activation of ATP-sensitive (KATP) channels and sarcoplasmic reticulum Ca2+-ATPase (SERCA) in vascular smooth muscle (VSM). Furthermore, AMPK activator reduced NADPH oxidase 4 (Nox4) and Nox2-derived reactive oxygen species (ROS) production. These results demonstrate that A769662 has potent vasodilator and antioxidant effects in intrarenal arteries. The benefits of AMPK activation in rat kidney are reproduced in human arteries and therefore vascular AMPK activation might be a therapeutic target in the treatment of metabolic disease-associated kidney injury.
Collapse
|
23
|
McCallum ML, Pru CA, Smith AR, Kelp NC, Foretz M, Viollet B, Du M, Pru JK. A functional role for AMPK in female fertility and endometrial regeneration. Reproduction 2020; 156:501-513. [PMID: 30328345 DOI: 10.1530/rep-18-0372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a highly conserved heterotrimeric complex that acts as an intracellular energy sensor. Based on recent observations of AMPK expression in all structures of the female reproductive system, we hypothesized that AMPK is functionally required for maintaining fertility in the female. This hypothesis was tested by conditionally ablating the two catalytic alpha subunits of AMPK, Prkaa1 and Prkaa2, using Pgr-cre mice. After confirming the presence of PRKAA1, PRKAA2 and the active phospho-PRKAA1/2 in the gravid uterus by immunohistochemistry, control (Prkaa1/2 fl/fl ) and double conditional knockout mice (Prkaa1/2 d/d ) were placed into a six-month breeding trial. While the first litter size was comparable between Prkaa1/2 fl/fl and Prkaa1/2 d/d female mice (P = 0.8619), the size of all subsequent litters was dramatically reduced in Prkaa1/2 d/d female mice (P = 0.0015). All Prkaa1/2 d/d female mice experienced premature reproductive senescence or dystocia by the fourth parity. This phenotype manifested despite no difference in estrous cycle length, ovarian histology in young and old nulliparous or multiparous animals, mid-gestation serum progesterone levels or uterine expression of Esr1 or Pgr between Prkaa1/2 fl/fl and Prkaa1/2 d/d female mice suggesting that the hypothalamic-pituitary-ovary axis remained unaffected by PRKAA1/2 deficiency. However, an evaluation of uterine histology from multiparous animals identified extensive endometrial fibrosis and disorganized stromal-glandular architecture indicative of endometritis, a condition that causes subfertility or infertility in most mammals. Interestingly, Prkaa1/2 d/d female mice failed to undergo artificial decidualization. Collectively, these findings suggest that AMPK plays an essential role in endometrial regeneration following parturition and tissue remodeling that accompanies decidualization.
Collapse
Affiliation(s)
- Melissa L McCallum
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Cindy A Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Andrea R Smith
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Nicole C Kelp
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Min Du
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - James K Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
24
|
Resveratrol and Diabetic Cardiomyopathy: Focusing on the Protective Signaling Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7051845. [PMID: 32256959 PMCID: PMC7094200 DOI: 10.1155/2020/7051845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/01/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a common cardiovascular complication of diabetic mellitus that is characterized by diastolic disorder in the early stage and clinical heart failure in the later stage. Presently, DCM is considered one of the major causes of death in diabetic patients. Resveratrol (RSV), a naturally occurring stilbene, is widely reported as a cardioprotective substance in many heart diseases. Thus far, the specific roles of RSV in DCM prevention and treatment have attracted great attention. Here, we discuss the roles of RSV in DCM by focusing its downstream targets from both in vivo and in vitro studies. Among such targets, Sirtuins 1/3 and AMP-activated kinase have been identified as key mediators that induce cardioprotection during hyperglycemia. In addition, many other signaling molecules (e.g., forkhead box-O3a and extracellular regulated protein kinases) are also regulated in the presence of RSV and exert beneficial effects such as opposing oxidative stress, inflammation, and apoptosis in cardiomyocytes exposed to high-glucose conditions. The beneficial potential of an RSV/stem cell cotherapy is also reviewed as a promising therapeutic strategy for preventing the development of DCM.
Collapse
|
25
|
Kozlowska L, Mizera O, Mroz A. An Untargeted Metabolomics Approach to Investigate the Metabolic Effect of Beetroot Juice Supplementation in Fencers-A Preliminary Study. Metabolites 2020; 10:metabo10030100. [PMID: 32168803 PMCID: PMC7143097 DOI: 10.3390/metabo10030100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 01/14/2023] Open
Abstract
This study aimed at assessment of the long-term (4 weeks) metabolic effect of a diet with and without beetroot juice supplementation in fencers using the untargeted metabolomics method with the UPLC Q-TOF/MS system to carry out an analysis of urine samples. Ten women and 10 men underwent the cardiovascular fitness VO2max test at baseline-(B) and after two stages of implementation of the dietary recommendations-the first 4 weeks without beetroot juice (D) and the second with 26 g/d of freeze-dried beetroot juice supplementation (D&J). The urine samples were collected one hour after the VO2max test at B and after D and D&J. The meal before the VO2max test after D&J contained beetroot juice, whereas to the meal at B and after D maltodextrin was added. Changes in metabolites and VO2max were significant only for comparison of D versus D&J. During D and D&J, there were no significant changes in the physical activity level, body mass, and body composition. We observed significant changes in tyrosine and tryptophan metabolism, mainly associated with such neurotransmitter's metabolism as: Serotonin, noradrenaline, and adrenaline. Changes in signal intensity of bile acid, AICAR, and 4-Hydroxynonenal (peroxidation of polyunsaturated fatty acids product) were also observed. The obtained results indicate that long-term beetroot juice supplementation induces considerable changes in metabolism.
Collapse
Affiliation(s)
- Lucyna Kozlowska
- Department of Dietetics, Faculty of Human Nutrition, Warsaw University of Life Sciences—WULS, 02-776 Warsaw, Poland
- Correspondence: (L.K.); (O.M.); Tel.: +48-22-59-370-17 (L.K.)
| | - Olga Mizera
- Department of Dietetics, Faculty of Human Nutrition, Warsaw University of Life Sciences—WULS, 02-776 Warsaw, Poland
- Correspondence: (L.K.); (O.M.); Tel.: +48-22-59-370-17 (L.K.)
| | - Anna Mroz
- Department of Physiology and Sport Medicine, Jozef Pilsudski University of Physical Education in Warsaw, 00-968 Warsaw, Poland;
| |
Collapse
|
26
|
Zhao P, Tian D, Song G, Ming Q, Liu J, Shen J, Liu QH, Yang X. Neferine Promotes GLUT4 Expression and Fusion With the Plasma Membrane to Induce Glucose Uptake in L6 Cells. Front Pharmacol 2019; 10:999. [PMID: 31551792 PMCID: PMC6737894 DOI: 10.3389/fphar.2019.00999] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/06/2019] [Indexed: 11/21/2022] Open
Abstract
Glucose transporter 4 (GLUT4) is involved in regulating glucose uptake in striated muscle, liver, and adipose tissue. Neferine is a dibenzyl isoquinoline alkaloid derived from dietary lotus seeds and has multiple pharmacological effects. Therefore, this study investigated neferine’s role in glucose translocation to cell surface, glucose uptake, and GLUT4 expression. In our study, neferine upregulated GLUT4 expression, induced GLUT4 plasma membrane fusion, increased intracellular Ca2+, promoted glucose uptake, and alleviated insulin resistance in L6 cells. Furthermore, neferine significantly activated phosphorylation of AMP-activated protein kinase (AMPK) and protein kinase C (PKC). AMPK and PKC inhibitors blocked neferine-induced GLUT4 expression and increased intracellular Ca2+. While neferine-induced GLUT4 expression and intracellular Ca2+ were inhibited by G protein and PLC inhibitors, only intracellular Ca2+ was inhibited by inositol trisphosphate receptor (IP3R) inhibitors. Thus, neferine promoted GLUT4 expression via the G protein-PLC-PKC and AMPK pathways, inducing GLUT4 plasma membrane fusion and subsequent glucose uptake and increasing intracellular Ca2+ through the G protein-PLC-IP3-IP3R pathway. Treatment with 0 mM extracellular Ca2+ + Ca2+ chelator did not inhibit neferine-induced GLUT4 expression but blocked neferine-induced GLUT4 plasma membrane fusion and glucose uptake, suggesting the latter two are Ca2+-dependent. Therefore, we conclude that neferine is a potential treatment for type 2 diabetes.
Collapse
Affiliation(s)
- Ping Zhao
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, China.,Hubei Medical Biology International Science and Technology Cooperation Base, Wuhan, China
| | - Di Tian
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Guanjun Song
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qian Ming
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jia Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jinhua Shen
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China.,Hubei Medical Biology International Science and Technology Cooperation Base, Wuhan, China
| | - Qing-Hua Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China.,Hubei Medical Biology International Science and Technology Cooperation Base, Wuhan, China
| | - Xinzhou Yang
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, China.,School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
27
|
Haddadi NS, Shakiba S, Afshari K, Haj-Mirzaian A, Vesaghati S, Gharagozlou S, Foroumadi R, Shafaroodi H, Ostadhadi S, Dehpour A. Possible Involvement of Nitric Oxide in the Antipruritic Effect of Metformin on Chloroquine-Induced Scratching in Mice. Dermatology 2019; 236:151-159. [DOI: 10.1159/000501583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/14/2019] [Indexed: 11/19/2022] Open
Abstract
Background: Metformin ameliorates non-histamine-mediated itch. We have recently reported that the nitric oxide (NO) pathway is involved in chloroquine (CQ)-induced scratching behavior. Here we investigated the involvement of the NO pathway in the antipruritic effect of metformin on CQ-induced itch. Methods: Metformin (5–200 mg/kg, given intraperitoneally [i.p.]) was injected 4 h before CQ (400 µg/site, given intradermally [i.d.]) or compound 48/80 (100 µg/site, i.d.). A nonspecific nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME; 1 and 10 mg/kg, i.p.), or an NO precursor, L-arginine (10 and 100 mg/kg, i.p.) was administered 30 min before injection of CQ. A neural NOS (nNOS) inhibitor, 7-nitroindazole (7-NI; 1 and 10 nmol/site, i.d.) was concurrently administered with CQ. The scratching behavior was recorded for 30 min following the injection of CQ. We studied the changes in skin and spinal nitrite levels after treatments. Results: Our results showed that metformin (100 and 200 mg/kg) significantly reduced the CQ-induced scratching behavior but not the compound 48/80-induced scratching behavior. L-Arginine inhibited the antipruritic effect of metformin, while L-NAME and 7-NI significantly potentiated the inhibitory effects of a subeffective dose of metformin on the CQ-induced scratching behavior. The skin but not the spinal nitrite level was significantly increased after CQ administration. The elevated cutaneous nitrite level was reversed by effective doses of either metformin or 7-NI, but not by the subeffective doses of metformin + 7-NI. Conclusion: Acute injection of metformin significantly inhibits CQ-induced scratching behavior. This effect is mediated through inhibition of the NO pathway, especially by inhibiting the dermal nNOS enzyme.
Collapse
|
28
|
Longo M, Alrais M, Tamayo EH, Ferrari F, Facchinetti F, Refuerzo JS, Blackwell SC, Sibai BM. Vascular and metabolic profiles in offspring born to pregnant mice with metabolic syndrome treated with inositols. Am J Obstet Gynecol 2019; 220:279.e1-279.e9. [PMID: 30521799 DOI: 10.1016/j.ajog.2018.11.1101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 11/11/2018] [Accepted: 11/24/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Inositols (INOs) supplementation during pregnancy, specifically the combination of myo-inositol (MI) and D-chiro-inositol (DCI), has been reported to improve vascular parameters in women with gestational diabetes mellitus. We demonstrated previously that offspring born to pregnant mice lacking the endothelial nitric oxide synthase (eNOS+/-) gene have hypertension (HTN) as adults and, when fed a high-fat diet (HFD), develop a metabolic syndrome (MS) phenotype. OBJECTIVE Our aim was to evaluate whether INOs treatment in pregnancy complicated by MS improves the vascular and metabolic profile in mice offspring programmed in utero to develop HTN and MS. MATERIALS AND METHODS Heterozygous eNOS+/- mice fed an HFD manifest a MS phenotype. Female eNOS+/- mice with MS were bred with a wild-type (WT) male. On gestational day 1, pregnant females were randomly allocated to receive either a mixture of INOs (MI/DCI: 7.2/0.18 mg/mL) or water as placebo until delivery. The female offspring obtained were genotyped and categorized as: WT (genetically normal, with eNOS gene) and eNOS+/- offspring (genetically modified, heterozygous for eNOS gene). Both offspring developed in an abnormal uterine environment due to maternal MS. At 9-10 weeks of age, the offspring underwent a glucose tolerance test (GTT) and systolic blood pressure (SBP) measurement. The mice were then sacrificed, and the carotid arteries were isolated for evaluation of vascular responses. Responses to phenylephrine (PE), in the presence and absence of a nonspecific nitric oxide inhibitor (N-nitro-L-arginine methyl ester [L-NAME]), the vasodilator acetylcholine (ACh), and sodium nitroprusside (SNP) were assessed. RESULTS The GTT showed lower glucose levels in both eNOS+/-INOs (P = .03) and WT-INOs (P = .05) offspring born to MS dams on INOs supplementation compared to offspring born to untreated dams. SBP was higher in eNOS+/- offspring compared to WT (169 ± 7 vs 142 ± 9 mm Hg, respectively, P = .04) and INOs treatment decreased SBP in WT-INOs (110 ± 10 mm Hg, P = .01) but not in eNOS+/-INOs offspring. Maximal (%Max) contractile response to PE was higher in eNOS+/- offspring born to MS dams and was decreased in those born to MS dams treated with INOs (%Max, eNOS+/-, 123 ± 7 vs eNOS+/-INOs, 82 ± 11 mm Hg, P = .007). No differences were seen in PE contractile responses in WT offspring born to MS dams treated or not treated with INOs (WT, 92 ± 4 vs WT-INOs, 75 ± 7). The L-NAME response was decreased in eNOS+/-INOs and WT-INOs offspring compared to untreated ones. The ACh vasorelaxation was impaired in eNOS+/- and WT offspring born to MS dams, and maternal INOs treatment improved offspring vascular relaxation in both offspring (P = .01 and P = .03, respectively). No differences were seen in response to SNP. CONCLUSION Inositols supplementation improved glucose tolerance, SBP, and vascular responses in adult eNOS+/- and WT offspring born to dams with MS. Interestingly, WT born to MS dams show an altered vascular profile similar to eNOS+/- offspring and exhibit an improved response to INOs treatment. Our findings suggest that the benefits of INOs treatment are more pronounced in offspring exposed to environmental factors in utero, and less likely in those due to genetic factors.
Collapse
|
29
|
Calcimimetic restores diabetic peripheral neuropathy by ameliorating apoptosis and improving autophagy. Cell Death Dis 2018; 9:1163. [PMID: 30478254 PMCID: PMC6255917 DOI: 10.1038/s41419-018-1192-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 01/11/2023]
Abstract
Decreased AMPK-eNOS bioavailability mediates the development of diabetic peripheral neuropathy (DPN) through increased apoptosis and decreased autophagy activity in relation to oxidative stress. Schwann cells are responsible for maintaining structural and functional integrity of neurons and for repairing damaged nerves. We evaluated the neuro-protective effect of cinacalcet on DPN by activating the AMPK-eNOS pathway using db/db mice and human Schwann cells (HSCs). Sciatic nerve of db/db mice was characterized by disorganized myelin, axonal shrinkage, and degeneration that were accompanied by marked fibrosis, inflammation, and apoptosis. These phenotypical alterations were significantly improved by cinacalcet treatment along with improvement in sensorimotor functional parameters. Cinacalcet demonstrated favorable effects through increased expression and activation of calcium-sensing receptor (CaSR)-CaMKKβ and phosphorylation of AMPK-eNOS signaling in diabetic sciatic nerve. Cinacalcet decreased apoptosis and increased autophagy activity in relation to decreased oxidative stress in HSCs cultured in high-glucose medium as well. This was accompanied by increased expression of the CaSR, intracellular Ca++ ([Ca++]i) levels, and CaMKKβ-LKB1-AMPK signaling pathway, resulting in the net effect of increased eNOS phosphorylation, NOx concentration, Bcl-2/Bax ratio, beclin 1, and LC3-II/LC3-I ratio. These results demonstrated that cinacalcet treatment ameliorates inflammation, apoptosis, and autophagy through increased expression of the CaSR, [Ca++]i levels and subsequent activation of CaMKKβ-LKB-1-AMPK-eNOS pathway in the sciatic nerve and HSCs under diabetic condition. Therefore, cinacalcet may play an important role in the restoration and amelioration of DPN by ameliorating apoptosis and improving autophagy.
Collapse
|
30
|
Gu C, Li T, Jiang S, Yang Z, Lv J, Yi W, Yang Y, Fang M. AMP-activated protein kinase sparks the fire of cardioprotection against myocardial ischemia and cardiac ageing. Ageing Res Rev 2018; 47:168-175. [PMID: 30110651 DOI: 10.1016/j.arr.2018.08.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/28/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
Abstract
AMP-activated protein kinase (AMPK) is a pivotal regulator of some endogenous defensive molecules in various pathological processes, particularly myocardial ischemia (MI), a high risk of myocardial infarction. Thereby it is of great significance to explore the inherent mechanism between AMPK and myocardial infarction. In this review, we first introduce the structure and role of AMPK in the heart. Next, we introduce the mechanisms of AMPK in the heart; followed by the energy regulation of AMPK in MI. Lastly, the attention will be expanded to some potential directions and further perspectives. The information compiled here will be helpful for further research and drug design in the future before AMPK might be considered as a therapeutic target of MI.
Collapse
|
31
|
Jesus ICGD, Scalzo S, Alves F, Marques K, Rocha-Resende C, Bader M, Santos RAS, Guatimosim S. Alamandine acts via MrgD to induce AMPK/NO activation against ANG II hypertrophy in cardiomyocytes. Am J Physiol Cell Physiol 2018; 314:C702-C711. [PMID: 29443552 DOI: 10.1152/ajpcell.00153.2017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The renin-angiotensin system (RAS) plays a pivotal role in the pathogenesis of cardiovascular diseases. New members of this system have been characterized and shown to have biologically relevant actions. Alamandine and its receptor MrgD are recently identified components of RAS. In the cardiovascular system, alamandine actions included vasodilation, antihypertensive, and antifibrosis effects. Currently, the actions of alamandine on cardiomyocytes are unknown. Here our goal was twofold: 1) to unravel the signaling molecules activated by the alamandine/MrgD axis in cardiomyocytes; and 2) to evaluate the ability of this axis to prevent angiotensin II (ANG II)-induced hypertrophy. In cardiomyocytes from C57BL/6 mice, alamandine treatment induced an increase in nitric oxide (NO) production, which was blocked by d-Pro7-ANG-(1-7), a MrgD antagonist. This NO rise correlated with increased phosphorylation of AMPK. Alamandine-induced NO production was preserved in Mas-/- myocytes and lost in MrgD-/- cells. Binding of fluorescent-labeled alamandine was observed in wild-type cells, but it was dramatically reduced in MrgD-/- myocytes. We also assessed the consequences of prolonged alamandine exposure to cultured neonatal rat cardiomyocytes (NRCMs) treated with ANG II. Treatment of NRCMs with alamandine prevented ANG II-induced hypertrophy. Moreover, the antihypertrophic actions of alamandine were mediated via MrgD and NO, since they could be prevented by d-Pro7-ANG-(1-7) or inhibitors of NO synthase or AMPK. β-Alanine, a MrgD agonist, recapitulated alamandine's cardioprotective effects in cardiomyocytes. Our data show that alamandine via MrgD induces AMPK/NO signaling to counterregulate ANG II-induced hypertrophy. These findings highlight the therapeutic potential of the alamandine/MrgD axis in the heart.
Collapse
Affiliation(s)
- Itamar Couto Guedes de Jesus
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,National Institute of Science and Technology in Nanobiopharmaceutics , Belo Horizonte , Brazil
| | - Sérgio Scalzo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Fabiana Alves
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Kariny Marques
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Cibele Rocha-Resende
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine , Berlin , Germany
| | - Robson A Souza Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,National Institute of Science and Technology in Nanobiopharmaceutics , Belo Horizonte , Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,National Institute of Science and Technology in Nanobiopharmaceutics , Belo Horizonte , Brazil
| |
Collapse
|
32
|
How AMPK and PKA Interplay to Regulate Mitochondrial Function and Survival in Models of Ischemia and Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4353510. [PMID: 29391924 PMCID: PMC5748092 DOI: 10.1155/2017/4353510] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/02/2017] [Indexed: 12/17/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a conserved, redox-activated master regulator of cell metabolism. In the presence of oxidative stress, AMPK promotes cytoprotection by enhancing the conservation of energy by suppressing protein translation and by stimulating autophagy. AMPK interplays with protein kinase A (PKA) to regulate oxidative stress, mitochondrial function, and cell survival. AMPK and dual-specificity A-kinase anchoring protein 1 (D-AKAP1), a mitochondrial-directed scaffold of PKA, interact to regulate mitochondrial function and oxidative stress in cardiac and endothelial cells. Ischemia and diabetes, a chronic disease that increases the onset of cardiovascular diseases, suppress the cardioprotective effects of AMPK and PKA. Here, we review the molecular mechanisms by which AMPK and D-AKAP1/PKA interplay to regulate mitochondrial function, oxidative stress, and signaling pathways that prime endothelial cells, cardiac cells, and neurons for cytoprotection against oxidative stress. We discuss recent literature showing how temporal dynamics and localization of activated AMPK and PKA holoenzymes play a crucial role in governing cellular bioenergetics and cell survival in models of ischemia, cardiovascular diseases, and diabetes. Finally, we propose therapeutic strategies that tout localized PKA and AMPK signaling to reverse mitochondrial dysfunction, oxidative stress, and death of neurons and cardiac and endothelial cells during ischemia and diabetes.
Collapse
|
33
|
Feng Y, Zhang Y, Xiao H. AMPK and cardiac remodelling. SCIENCE CHINA-LIFE SCIENCES 2017; 61:14-23. [PMID: 29170891 DOI: 10.1007/s11427-017-9197-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022]
Abstract
Cardiac remodelling is generally accepted as a critical process in the progression of heart failure. Myocyte hypertrophy, inflammatory responses and cardiac fibrosis are the main pathological changes associated with cardiac remodelling. AMP-activated protein kinase (AMPK) is known as an energy sensor and a regulator of cardiac metabolism under normal and ischaemic conditions. Additionally, AMPK has been shown to play roles in cardiac remodelling extending well beyond metabolic regulation. In this review, we discuss the currently defined roles of AMPK in cardiac remodelling and summarize the effects of AMPK on cardiac hypertrophy, inflammatory responses and fibrosis and the molecular mechanisms underlying these effects. In addition, we discuss some pharmacological activators of AMPK that are promising treatments for cardiac remodelling.
Collapse
Affiliation(s)
- Yenan Feng
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Youyi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|
34
|
Quan N, Sun W, Wang L, Chen X, Bogan JS, Zhou X, Cates C, Liu Q, Zheng Y, Li J. Sestrin2 prevents age-related intolerance to ischemia and reperfusion injury by modulating substrate metabolism. FASEB J 2017; 31:4153-4167. [PMID: 28592638 PMCID: PMC5572689 DOI: 10.1096/fj.201700063r] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/22/2017] [Indexed: 12/24/2022]
Abstract
A novel stress-inducible protein, Sestrin2 (Sesn2), declines in the heart with aging. AMPK has emerged as a pertinent stress-activated kinase that has been shown to have cardioprotective capabilities against myocardial ischemic injury. We identified the interaction between Sesn2 and AMPK in the ischemic heart. To determine whether ischemic AMPK activation-modulated by the Sesn2-AMPK complex in the heart-is impaired in aging that sensitizes the heart to ischemic insults, young C57BL/6 mice (age 3-4 mo), middle-aged mice (age 10-12 mo), and aged mice (age 24-26 mo) were subjected to left anterior descending coronary artery occlusion for in vivo regional ischemia. The ex vivo working heart system was used for measuring substrate metabolism. The protein level of Sesn2 in hearts was gradually decreased with aging. Of interest, ischemic AMPK activation was blunted in aged hearts compared with young hearts (P < 0.05); the AMPK downstream glucose uptake and the rate of glucose oxidation were significantly impaired in aged hearts during ischemia and reperfusion (P < 0.05 vs. young hearts). Myocardial infarction size was larger in aged hearts (P < 0.05 vs. young hearts). Immunoprecipitation with Sesn2 Ab revealed that cardiac Sesn2 forms a complex with AMPK and upstream liver kinase B1 (LKB1) during ischemia. Of interest, the binding affinity between Sesn2 and AMPK upstream LKB1 is impaired in aged hearts during ischemia (P < 0.05 vs. young hearts). Furthermore, Sesn2-knockout hearts demonstrate a cardiac phenotype and response to ischemic stress that is similar to wild-type aged hearts (i.e., impaired ischemic AMPK activation and higher sensitivity to ischemia- and reperfusion- induced injury). Adeno-associated virus-Sesn2 was delivered to aged hearts via a coronary delivery approach and significantly rescued the protein level of Sesn2 and the ischemic tolerance of aged hearts; therefore, Sesn2 is a scaffold protein that mediates AMPK activation in the ischemic myocardium via an interaction with AMPK upstream LKB1. Decreased Sesn2 levels in aging lead to a blunted ischemic AMPK activation, alterations in substrate metabolism, and an increased sensitivity to ischemic insults-Quan, N., Sun, W., Wang, L., Chen, X., Bogan, J. S., Zhou, X., Cates, C., Liu, Q., Zheng, Y., Li J. Sestrin2 prevents age-related intolerance to ischemia and reperfusion injury by modulating substrate metabolism.
Collapse
Affiliation(s)
- Nanhu Quan
- Cardiovascular Center, First Hospital of Jilin University, Changchun, China
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Wanqing Sun
- Cardiovascular Center, First Hospital of Jilin University, Changchun, China
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Lin Wang
- Cardiovascular Center, First Hospital of Jilin University, Changchun, China
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Xu Chen
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jonathan S Bogan
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; and
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xinchun Zhou
- Department of Pathology, Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Courtney Cates
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Quan Liu
- Cardiovascular Center, First Hospital of Jilin University, Changchun, China
| | - Yang Zheng
- Cardiovascular Center, First Hospital of Jilin University, Changchun, China;
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA;
| |
Collapse
|
35
|
Jayanthy G, Roshana Devi V, Ilango K, Subramanian SP. Rosmarinic Acid Mediates Mitochondrial Biogenesis in Insulin Resistant Skeletal Muscle Through Activation of AMPK. J Cell Biochem 2017; 118:1839-1848. [PMID: 28059465 DOI: 10.1002/jcb.25869] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/04/2017] [Indexed: 01/03/2023]
Abstract
Rosmarinic acid (RA), a polyphenol, is known to improve hepatic insulin sensitivity in experimental type 2 diabetes. However, its effect on skeletal muscle insulin resistance is meagerly understood. The present study was aimed to investigate the up- and downstream mediators of the molecular targets of RA in attenuating insulin resistance in the skeletal muscle both in vivo and in vitro. We found that supplementation of RA increased the expression of key genes involved in the mitochondrial biogenesis like PGC-1α, SIRT-1, and TFAM via activation of AMPK in the skeletal muscle of insulin resistant rats as well as in L6 myotubes. Further, RA treatment increased the glucose uptake and decreased the phosphorylation of serine IRS-1 while increasing the translocation of GLUT 4. Together, our findings evidenced that RA treatment significantly inhibit insulin resistance in skeletal muscle cells by enhancing mitochondrial biogenesis. J. Cell. Biochem. 118: 1839-1848, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Govindaraj Jayanthy
- Division of Molecular Biology, Interdisciplinary Institute of Indian System of Medicine, SRM University, Kattankulathur, Kancheepuram 603203, Tamil Nadu, India
| | - Vellai Roshana Devi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Kaliappan Ilango
- Division of Molecular Biology, Interdisciplinary Institute of Indian System of Medicine, SRM University, Kattankulathur, Kancheepuram 603203, Tamil Nadu, India
| | | |
Collapse
|
36
|
Qiliqiangxin Enhances Cardiac Glucose Metabolism and Improves Diastolic Function in Spontaneously Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3197320. [PMID: 28706558 PMCID: PMC5494577 DOI: 10.1155/2017/3197320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/08/2017] [Accepted: 05/07/2017] [Indexed: 01/19/2023]
Abstract
Cardiac diastolic dysfunction has emerged as a growing type of heart failure. The present study aims to explore whether Qiliqiangxin (QL) can benefit cardiac diastolic function in spontaneously hypertensive rat (SHR) through enhancement of cardiac glucose metabolism. Fifteen 12-month-old male SHRs were randomly divided into QL-treated, olmesartan-treated, and saline-treated groups. Age-matched WKY rats served as normal controls. Echocardiography and histological analysis were performed. Myocardial glucose uptake was determined by 18F-FDG using small-animal PET imaging. Expressions of several crucial proteins and key enzymes related to glucose metabolism were also evaluated. As a result, QL improved cardiac diastolic function in SHRs, as evidenced by increased E′/A′and decreased E/E′ (P < 0.01). Meanwhile, QL alleviated myocardial hypertrophy, collagen deposits, and apoptosis (P < 0.01). An even higher myocardial glucose uptake was illustrated in QL-treated SHR group (P < 0.01). Moreover, an increased CS activity and ATP production was observed in QL-treated SHRs (P < 0.05). QL enhanced cardiac glucose utilization and oxidative phosphorylation in SHRs by upregulating AMPK/PGC-1α axis, promoting GLUT-4 expression, and regulating key enzymes related to glucose aerobic oxidation such as HK2, PDK4, and CS (P < 0.01). Our data suggests that QL improves cardiac diastolic function in SHRs, which may be associated with enhancement of myocardial glucose metabolism.
Collapse
|
37
|
Ji Q, Zhao Y, Yuan A, Pu J, He B. Deficiency of liver-X-receptor-α reduces glucose uptake and worsens post-myocardial infarction remodeling. Biochem Biophys Res Commun 2017; 488:489-495. [PMID: 28511797 DOI: 10.1016/j.bbrc.2017.05.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 12/15/2022]
Abstract
Liver X receptor α (LXRα) is an endogenous protective receptor against ischemic heart diseases. However, whether LXRα regulated glucose metabolism in ischemic heart diseases has not been investigated. In this study we investigated the involvement of LXRα on glucose metabolism in cardiac remodeling after myocardial infarction (MI). MI was induced in mice by permanent ligation of the left anterior descending coronary artery (LCA). Genetic LXRα deletion significantly worsened cardiac remodeling and impaired cardiac function at 4 weeks after MI. Cardiac 18F-fluorodeoxyglucose (FDG) uptake by positron emission tomography (PET) demonstrated that the FDG standardized uptake value (SUV) was significantly lower in LXRα-/- mice as compared to WT mice. Mechanistically, GLUT1/4 and AMPK phosphorylation were significantly downregulated while CD36 expression was markedly upregulated in LXRα-/- mice. This study demonstrated that deficiency of LXRα decreased glucose uptake after MI, resulting in a metabolic shift that suppressed glucose metabolism, which was in association with adverse cardiac remodeling.
Collapse
Affiliation(s)
- Qingqi Ji
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Yichao Zhao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Ancai Yuan
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China.
| | - Ben He
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China.
| |
Collapse
|
38
|
Shepherd AI, Wilkerson DP, Fulford J, Winyard PG, Benjamin N, Shore AC, Gilchrist M. Effect of nitrate supplementation on hepatic blood flow and glucose homeostasis: a double-blind, placebo-controlled, randomized control trial. Am J Physiol Gastrointest Liver Physiol 2016; 311:G356-64. [PMID: 27418682 PMCID: PMC5076007 DOI: 10.1152/ajpgi.00203.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/11/2016] [Indexed: 01/31/2023]
Abstract
Nitric oxide alters gastric blood flow, improves vascular function, and mediates glucose uptake within the intestines and skeletal muscle. Dietary nitrate, acting as a source of nitric oxide, appears to be a potential low-cost therapy that may help maintain glucose homeostasis. In a randomized, double-blind, placebo-controlled crossover study, 31 young and older adult participants had a standardized breakfast, supplemented with either nitrate-rich beetroot juice (11.91 mmol nitrate) or nitrate-depleted beetroot juice as placebo (0.01 mmol nitrate). MRI was used to assess apparent diffusion coefficient (ADC), portal vein flux, and velocity. Plasma glucose, incretin, and C-peptide concentrations and blood pressure were assessed. Outcome variables were measured at baseline and hourly for 3 h. Compared with a placebo, beetroot juice resulted in a significant elevation in plasma nitrate and plasma nitrite concentration. No differences were seen for the young or older adult cohorts between placebo and beetroot juice for ADC, or portal vein flux. There was an interaction effect in the young adults between visits for portal vein velocity. Nitrate supplementation did not reduce plasma glucose, active GLP-1, total GLP-1, or plasma C-peptide concentrations for the young or older adult cohorts. Despite a significant elevation in plasma nitrite concentration following an acute dose of (11.91 mmol) nitrate, there was no effect on hepatic blood flow, plasma glucose, C-peptide, or incretin concentration in healthy adults.
Collapse
Affiliation(s)
- Anthony I. Shepherd
- 1College of Life and Environmental Sciences, Sport and Health Sciences, University of Exeter, Devon, United Kingdom; ,2University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Royal Devon and Exeter Hospital, Exeter, Devon, United Kingdom; ,4Department of Sport and Exercise Science, Portsmouth, United Kingdom
| | - Daryl P. Wilkerson
- 1College of Life and Environmental Sciences, Sport and Health Sciences, University of Exeter, Devon, United Kingdom;
| | - Jon Fulford
- 2University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Royal Devon and Exeter Hospital, Exeter, Devon, United Kingdom;
| | - Paul G. Winyard
- 2University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Royal Devon and Exeter Hospital, Exeter, Devon, United Kingdom;
| | - Nigel Benjamin
- 2University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Royal Devon and Exeter Hospital, Exeter, Devon, United Kingdom; ,3Torbay Hospital, Heart and Lung Unit, Torquay, Devon, United Kingdom; and
| | - Angela C. Shore
- 2University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Royal Devon and Exeter Hospital, Exeter, Devon, United Kingdom;
| | - Mark Gilchrist
- 2University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Royal Devon and Exeter Hospital, Exeter, Devon, United Kingdom;
| |
Collapse
|
39
|
Role of AMP-activated protein kinase α1 in angiotensin-II-induced renal Tgfß-activated kinase 1 activation. Biochem Biophys Res Commun 2016; 476:267-272. [DOI: 10.1016/j.bbrc.2016.05.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 05/22/2016] [Indexed: 01/12/2023]
|
40
|
Choi KH, Lee HA, Park MH, Han JS. Mulberry (Morus alba L.) Fruit Extract Containing Anthocyanins Improves Glycemic Control and Insulin Sensitivity via Activation of AMP-Activated Protein Kinase in Diabetic C57BL/Ksj-db/db Mice. J Med Food 2016; 19:737-45. [PMID: 27441957 DOI: 10.1089/jmf.2016.3665] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The effect of mulberry (Morus alba L.) fruit extract (MFE) on hyperglycemia and insulin sensitivity in an animal model of type 2 diabetes was evaluated. C57BL/Ksj-diabetic db/db mice were divided into three groups: diabetic control, rosiglitazone, and MFE groups. Blood glucose, plasma insulin, and intraperitoneal glucose were measured, and an insulin tolerance test was performed after MFE supplementation in db/db mice. In addition, the protein levels of various targets of insulin signaling were measured by western blotting. The blood levels of glucose and HbA1c were significantly lower in the MFE-supplemented group than in the diabetic control group. Moreover, glucose and insulin tolerance tests showed that MFE treatment increased insulin sensitivity. The homeostatic index of insulin resistance significantly decreased in the MFE-supplemented group relative to the diabetic control group. MFE supplementation significantly stimulated the levels of phosphorylated (p)-AMP-activated protein kinase (pAMPK) and p-Akt substrate of 160 kDa (pAS160) and enhanced the level of plasma membrane-glucose transporter 4 (GLUT4) in skeletal muscles. Further, dietary MFE significantly increased pAMPK and decreased the levels of glucose 6-phosphatase and phosphoenolpyruvate carboxykinase in the liver. MFE may improve hyperglycemia and insulin sensitivity via activation of AMPK and AS160 in skeletal muscles and inhibition of gluconeogenesis in the liver.
Collapse
Affiliation(s)
- Kyung Ha Choi
- 1 Department of Food and Nutrition, College of Medical and Life Science, Silla University , Busan, Korea.,2 Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University , Busan, Korea
| | - Hyun Ah Lee
- 2 Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University , Busan, Korea
| | - Mi Hwa Park
- 1 Department of Food and Nutrition, College of Medical and Life Science, Silla University , Busan, Korea
| | - Ji-Sook Han
- 2 Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University , Busan, Korea
| |
Collapse
|
41
|
Bairwa SC, Parajuli N, Dyck JRB. The role of AMPK in cardiomyocyte health and survival. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2199-2210. [PMID: 27412473 DOI: 10.1016/j.bbadis.2016.07.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 01/09/2023]
Abstract
Cellular energy homeostasis is a fundamental process that governs the overall health of the cell and is paramount to cell survival. Central to this is the control of ATP generation and utilization, which is regulated by a complex myriad of enzymatic reactions controlling cellular metabolism. In the cardiomyocyte, ATP generated from substrate catabolism is used for numerous cellular processes including maintaining ionic homeostasis, cell repair, protein synthesis and turnover, organelle turnover, and contractile function. In many instances, cardiovascular disease is associated with impaired cardiac energetics and thus the signalling that regulates pathways involved in cardiomyocyte metabolism may be potential targets for pharmacotherapy designed to help treat cardiovascular disease. An important regulator of cardiomyocyte energy homeostasis is adenosine monophosphate-activated protein kinase (AMPK). AMPK is a serine-threonine kinase that functions primarily as a metabolic sensor to coordinate anabolic and catabolic activities in the cell via the phosphorylation of multiple proteins involved in metabolic pathways. In addition to the direct role that AMPK plays in the regulation of cardiomyocyte metabolism, AMPK can also either directly or indirectly influence other cellular processes such as regulating mitochondrial function, post-translation acetylation, autophagy, mitophagy, endoplasmic reticulum stress, and apoptosis. Thus, AMPK is implicated in the control of a wide variety of cellular processes that can influence cardiomyocyte health and survival. In this review, we will discuss the important role that AMPK plays in regulating cardiac metabolism, as well as the additional cellular processes that may contribute to cardiomyocyte function and survival in the healthy and the diseased heart. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan. F.C. Glatz.
Collapse
Affiliation(s)
- Suresh C Bairwa
- Department of Medicine, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Nirmal Parajuli
- Department of Medicine, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Department of Medicine, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
42
|
Lim J, Henry CJ, Haldar S. Vinegar as a functional ingredient to improve postprandial glycemic control-human intervention findings and molecular mechanisms. Mol Nutr Food Res 2016; 60:1837-49. [PMID: 27213723 DOI: 10.1002/mnfr.201600121] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/20/2016] [Accepted: 05/17/2016] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes prevalence worldwide is increasing and the burden is particularly high in Asian countries. Identification of functional food ingredients to curb the rise of diabetes among various Asian population groups is warranted. Vinegar is widely consumed throughout Asia, where the principle bioactive component is acetic acid. This review has collated data from human intervention trials to show that vinegar consumption seems more effective in modulating glycemic control in normal glucose-tolerant individuals than in either type 2 diabetics or in those with impaired glucose tolerance. The molecular mechanisms by which vinegar can improve glycemic control have been presented using human, animal and cell culture data. These mechanisms include (i) activation of the free fatty acid receptor 2 (FFAR2) receptors localized in the enteroendocrine L-cells of the intestinal lumen, leading to increased glucagon like peptide 1 (GLP-1) secretion, (ii) increased 5'adenosine monophosphate-activated protein kinase (AMPK) activation, leading to increased fatty acid oxidation and decreased hepatic gluconeogenesis, (iii) lowering of free fatty acid in circulation, potentially leading to improved insulin sensitivity, (iv) increased blood flow to the peripheral tissues and (v) increased satiety, leading to lower food intake. The review also discusses why these mechanisms appear more effective in nondiabetics than in diabetics.
Collapse
Affiliation(s)
- Joseph Lim
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Singapore.,Department of Biochemistry, National University of Singapore, Singapore
| | - Sumanto Haldar
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Singapore
| |
Collapse
|
43
|
Chiu APL, Wan A, Rodrigues B. Cardiomyocyte-endothelial cell control of lipoprotein lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1434-41. [PMID: 26995461 DOI: 10.1016/j.bbalip.2016.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/17/2023]
Abstract
In people with diabetes, inadequate pharmaceutical management predisposes the patient to heart failure, which is the leading cause of diabetes related death. One instigator for this cardiac dysfunction is change in fuel utilization by the heart. Thus, following diabetes, when cardiac glucose utilization is impaired, the heart undergoes metabolic transformation wherein it switches to using fats as an exclusive source of energy. Although this switching is geared to help the heart initially, in the long term, this has detrimental effects on cardiac function. These include the generation of noxious byproducts, which damage the cardiomyocytes, and ultimately result in increased morbidity and mortality. A key perpetrator that may be responsible for organizing this metabolic disequilibrium is lipoprotein lipase (LPL), the enzyme responsible for providing fat to the hearts. Either exaggeration or reduction in its activity following diabetes could lead to heart dysfunction. Given the disturbing news that diabetes is rampant across the globe, gaining more insight into the mechanism(s) by which cardiac LPL is regulated may assist other researchers in devising new therapeutic strategies to restore metabolic equilibrium, to help prevent or delay heart disease seen during diabetes. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Amy Pei-Ling Chiu
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Andrea Wan
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brian Rodrigues
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
44
|
Abstract
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease.
Collapse
Affiliation(s)
- Monique N Foster
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - William A Coetzee
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
45
|
Wang LL, Miller D, Wanders D, Nanayakkara G, Amin R, Judd R, Morrison EE, Zhong JM. Adiponectin downregulation is associated with volume overload-induced myocyte dysfunction in rats. Acta Pharmacol Sin 2016; 37:187-95. [PMID: 26616727 DOI: 10.1038/aps.2015.84] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/26/2015] [Indexed: 12/13/2022] Open
Abstract
AIM Adiponectin has been reported to exert protective effects during pathological ventricular remodeling, but the role of adiponectin in volume overload-induced heart failure remains unclear. In this study we investigated the effect of adiponectin on cardiac myocyte contractile dysfunction following volume overload in rats. METHODS Volume overload was surgically induced in rats by infrarenal aorta-vena cava fistula. The rats were intravenously administered adenoviral adiponectin at 2-, 6- and 9-weeks following fistula. The protein expression of adiponectin, adiponectin receptors (AdipoR1/R2 and T-cadherin) and AMPK activity were measured using Western blot analyses. Isolated ventricular myocytes were prepared at 12 weeks post-fistula to examine the contractile performance of myocytes and intracellular Ca(2+) transient. RESULTS A-V fistula resulted in significant reductions in serum and myocardial adiponectin levels, myocardial adiponectin receptor (AdipoR1/R2 and T-cadherin) levels, as well as myocardial AMPK activity. Consistent with these changes, the isolated myocytes exhibited significant depression in cell shortening and intracellular Ca(2+) transient. Administration of adenoviral adiponectin significantly increased serum adiponectin levels and prevented myocyte contractile dysfunction in fistula rats. Furthermore, pretreatment of isolated myocytes with recombinant adiponectin (2.5 μg/mL) significantly improved their contractile performance in fistula rats, but had no effects in control or adenoviral adiponectin-administered rats. CONCLUSION These results demonstrate a positive correlation between adiponectin downregulation and volume overload-induced ventricular remodeling. Adiponectin plays a protective role in volume overload-induced heart failure.
Collapse
|
46
|
Abstract
The heart is adapted to utilize all classes of substrates to meet the high-energy demand, and it tightly regulates its substrate utilization in response to environmental changes. Although fatty acids are known as the predominant fuel for the adult heart at resting stage, the heart switches its substrate preference toward glucose during stress conditions such as ischemia and pathological hypertrophy. Notably, increasing evidence suggests that the loss of metabolic flexibility associated with increased reliance on glucose utilization contribute to the development of cardiac dysfunction. The changes in glucose metabolism in hypertrophied hearts include altered glucose transport and increased glycolysis. Despite the role of glucose as an energy source, changes in other nonenergy producing pathways related to glucose metabolism, such as hexosamine biosynthetic pathway and pentose phosphate pathway, are also observed in the diseased hearts. This article summarizes the current knowledge regarding the regulation of glucose transporter expression and translocation in the heart during physiological and pathological conditions. It also discusses the signaling mechanisms governing glucose uptake in cardiomyocytes, as well as the changes of cardiac glucose metabolism under disease conditions.
Collapse
Affiliation(s)
- Dan Shao
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
47
|
Spillmann F, Trimpert C, Peng J, Eckerle LG, Staudt A, Warstat K, Felix SB, Pieske B, Tschöpe C, Van Linthout S. High-density lipoproteins reduce palmitate-induced cardiomyocyte apoptosis in an AMPK-dependent manner. Biochem Biophys Res Commun 2015; 466:272-7. [PMID: 26362182 DOI: 10.1016/j.bbrc.2015.09.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/05/2015] [Indexed: 12/18/2022]
Abstract
Palmitate has been implicated in the induction of cardiomyocyte apoptosis via reducing the activity of 5' AMP-activated protein kinase (AMPK). We sought to evaluate whether high-density lipoproteins (HDLs), known for their cardioprotective features and their potential to increase AMPK activity, can reduce palmitate-induced cardiomyocyte apoptosis and whether this effect is AMPK-dependent. Therefore, cardiomyocytes were isolated from adult Wistar rat hearts via perfusion on a Langendorff-apparatus and cultured in free fatty acid-free BSA control medium or 0.5 mM palmitate medium in the presence or absence of HDL (5 μg protein/ml) with or without 0.1 μM of the AMPK-inhibitor compound S for the analysis of Annexin V/propidium, genes involved in apoptosis and fatty acid oxidation, and cardiomyocyte contractility. We found that HDLs decreased palmitate-induced cardiomyocyte apoptosis as indicated by a reduction in Annexin V-positive cardiomyocytes and an increase in Bcl-2 versus Bax ratio. Concomitantly, HDLs increased the palmitate-impaired expression of genes involved in fatty acid oxidation. Furthermore, HDLs improved the palmitate-impaired cardiomyocyte contractility. All effects were mediated in an AMPK-dependent manner, concluding that HDLs reduce palmitate-induced cardiomyocyte apoptosis, resulting in improved cardiomyocyte contractility through a mechanism involving AMPK.
Collapse
Affiliation(s)
- Frank Spillmann
- Charité-University-Medicine Berlin, Campus Virchow Klinikum, Department of Cardiology, Berlin, Germany
| | - Christiane Trimpert
- Department of Internal Medicine I, University Medicine Greifswald, Greifswald, Germany
| | - Jun Peng
- Charité-University-Medicine Berlin, Campus Virchow Klinikum, Department of Cardiology, Berlin, Germany
| | - Lars G Eckerle
- Department of Internal Medicine I, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Staudt
- Department of Internal Medicine I, University Medicine Greifswald, Greifswald, Germany
| | - Katrin Warstat
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Stephan B Felix
- Department of Internal Medicine I, University Medicine Greifswald, Greifswald, Germany; Deutsches Zentrum für Herz Kreislaufforschung (DZHK), Standort Greifswald, Germany
| | - Burkert Pieske
- Charité-University-Medicine Berlin, Campus Virchow Klinikum, Department of Cardiology, Berlin, Germany; Deutsches Zentrum für Herz Kreislaufforschung (DZHK), Standort Berlin/Charité, Germany
| | - Carsten Tschöpe
- Charité-University-Medicine Berlin, Campus Virchow Klinikum, Department of Cardiology, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany; Deutsches Zentrum für Herz Kreislaufforschung (DZHK), Standort Berlin/Charité, Germany
| | - Sophie Van Linthout
- Charité-University-Medicine Berlin, Campus Virchow Klinikum, Department of Cardiology, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany; Deutsches Zentrum für Herz Kreislaufforschung (DZHK), Standort Berlin/Charité, Germany.
| |
Collapse
|
48
|
Castorena CM, Arias EB, Sharma N, Bogan JS, Cartee GD. Fiber type effects on contraction-stimulated glucose uptake and GLUT4 abundance in single fibers from rat skeletal muscle. Am J Physiol Endocrinol Metab 2015; 308:E223-30. [PMID: 25491725 PMCID: PMC4312834 DOI: 10.1152/ajpendo.00466.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To fully understand skeletal muscle at the cellular level, it is essential to evaluate single muscle fibers. Accordingly, the major goals of this study were to determine if there are fiber type-related differences in single fibers from rat skeletal muscle for: 1) contraction-stimulated glucose uptake and/or 2) the abundance of GLUT4 and other metabolically relevant proteins. Paired epitrochlearis muscles isolated from Wistar rats were either electrically stimulated to contract (E-Stim) or remained resting (No E-Stim). Single fibers isolated from muscles incubated with 2-deoxy-d-[(3)H]glucose (2-DG) were used to determine fiber type [myosin heavy chain (MHC) isoform protein expression], 2-DG uptake, and abundance of metabolically relevant proteins, including the GLUT4 glucose transporter. E-Stim, relative to No E-Stim, fibers had greater (P < 0.05) 2-DG uptake for each of the isolated fiber types (MHC-IIa, MHC-IIax, MHC-IIx, MHC-IIxb, and MHC-IIb). However, 2-DG uptake for E-Stim fibers was not significantly different among these five fiber types. GLUT4, tethering protein containing a UBX domain for GLUT4 (TUG), cytochrome c oxidase IV (COX IV), and filamin C protein levels were significantly greater (P < 0.05) in MHC-IIa vs. MHC-IIx, MHC-IIxb, or MHC-IIb fibers. TUG and COX IV in either MHC-IIax or MHC-IIx fibers exceeded values for MHC-IIxb or MHC-IIb fibers. GLUT4 levels for MHC-IIax fibers exceeded MHC-IIxb fibers. GLUT4, COX IV, filamin C, and TUG abundance in single fibers was significantly (P < 0.05) correlated with each other. Differences in GLUT4 abundance among the fiber types were not accompanied by significant differences in contraction-stimulated glucose uptake.
Collapse
Affiliation(s)
- Carlos M Castorena
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Naveen Sharma
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Jonathan S Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
49
|
Morrison A, Chen L, Wang J, Zhang M, Yang H, Ma Y, Budanov A, Lee JH, Karin M, Li J. Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart. FASEB J 2015; 29:408-17. [PMID: 25366347 PMCID: PMC4314228 DOI: 10.1096/fj.14-258814] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/19/2014] [Indexed: 11/11/2022]
Abstract
The regulation of AMPK in the ischemic heart remains incompletely understood. Recent evidence implicates the role of Sestrin2 in the AMPK signaling pathway, and it is hypothesized that Sestrin2 plays an influential role during myocardial ischemia to promote AMPK activation. Sestrin2 protein was found to be expressed in adult cardiomyocytes and accumulated in the heart during ischemic conditions. Sestrin2 knockout (KO) mice were used to determine the importance of Sestrin2 during ischemia and reperfusion (I/R) injury. When wild-type (WT) and Sestrin2 KO mice were subjected to in vivo I/R, myocardial infarct size was significantly greater in Sestrin2 KO compared with WT hearts. Similarly, Langendorff perfused hearts indicated exacerbated postischemic contractile function in Sestrin2 KO hearts compared with WT. Ischemic AMPK activation was found to be impaired in the Sestrin2 KO hearts. Immunoprecipitation of Sestrin2 demonstrated an association with AMPK. Moreover, liver kinase B1 (LKB1), a major AMPK upstream kinase, was associated with the Sestrin2-AMPK complex in a time-dependent manner during ischemia, whereas this interaction was nearly abolished in Sestrin2 KO hearts. Thus, Sestrin2 plays an important role in cardioprotection against I/R injury, serving as an LKB1-AMPK scaffold to initiate AMPK activation during ischemic insults.
Collapse
Affiliation(s)
- Alex Morrison
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York, USA
| | - Li Chen
- Department of Pharmacology, College of Basic Medicine, Jilin University, Changchun, Jilin, China
| | - Jinli Wang
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York, USA
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medicine, Jilin University, Changchun, Jilin, China
| | - Hui Yang
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yina Ma
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York, USA
| | - Andrei Budanov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; and
| | - Michael Karin
- Department of Pharmacology, University of California at San Diego, La Jolla, California, USA
| | - Ji Li
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York, USA;
| |
Collapse
|
50
|
Dihydromyricetin ameliorates the oxidative stress response induced by methylglyoxal via the AMPK/GLUT4 signaling pathway in PC12 cells. Brain Res Bull 2014; 109:117-26. [PMID: 25451453 DOI: 10.1016/j.brainresbull.2014.10.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/03/2014] [Accepted: 10/20/2014] [Indexed: 01/01/2023]
Abstract
Dihydromyricetin (DMY), the major bioactive flavonoid ingredient extracted from the leaves of Ampelopsis grossedentata (Hand.-Mazz) W.T. Wang, displays multiple pharmacological activities, including oxidation resistance, antitumor properties and free radical scavenging capacities. However, the role of DMY in methylglyoxal (MG)-induced diabetes-associated cognitive decline and its underlying molecular mechanisms are unclear. The aim of the present study was to evaluate the effects of DMY on oxidative stress and glucose transport activity in a MG-induced PC12 cell line and to explore the related mechanisms. The effects of DMY on cell survival and apoptosis were examined, and the dysregulation of intracellular Ca(2+) was determined. Oxidative stress was evaluated by monitoring ROS production and the glutathione to glutathione disulfide ratio. The effects of DMY on glucose metabolism were investigated using a fluorescently labeled deoxyglucose analog and by measuring ATP and lactate production. Western blot analysis was performed to examine the protein levels of glyoxalase I (Glo-1), glucose transporter 4 (GLUT4), AMP-activated protein kinase (AMPKα) and phosphorylated AMPKα (p-AMPKα). The results revealed that DMY suppressed cellular oxidative stress in PC12 cells and balanced glucose metabolism. Additionally, DMY reduced GLUT4 translocation dysfunction and increased Glo-1 and p-AMPKα expression. We found that DMY protected PC12 cells against MG-induced apoptosis and glycometabolic disorders, at least in part by restraining the hyperactivation of p-AMPK activity and normalizing the translocation of GLUT4 from the intracellular compartment, resulting in a balance in glucose uptake. This result indicates that DMY may serve as a novel and effective candidate agent to treat diabetic encephalopathy by reducing the toxicity of MG.
Collapse
|