1
|
Kim YI, Lee H, Kim MJ, Jung CH, Kim YS, Ahn J. Identification of Peucedanum japonicum Thunb. extract components and their protective effects against dexamethasone-induced muscle atrophy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155449. [PMID: 38518644 DOI: 10.1016/j.phymed.2024.155449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/21/2023] [Accepted: 02/11/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Peucedanum japonicum Thunb. (PJ) is a vegetable widely consumed in East Asia and is known to have anticancer and anti-inflammatory effects. However, the effect of PJ on muscle atrophy remains elusive. PURPOSE This study aimed to investigate the effect of PJ and its active compound on dexamethasone (DEX)-induced muscle atrophy. METHODS We performed qualitative and quantitative analysis of PJ using ultra-performance liquid chromatography-mass spectrometry tandem mass spectrometry (UPLC-MS/MS) and high-performance liquid chromatography (HPLC), respectively. The efficacy of PJ and its main compound 4-caffeoylquinic acid (CQA) on muscle atrophy was evaluated in DEX-induced myotube atrophy and DEX-induced muscle atrophy in mouse myoblasts (C2C12) and C57BL/6 mice, in vitro and in vivo, respectively. RESULTS The UPLC-MS/MS and HPLC data showed that the concentration of 4-CQA in PJ was 18.845 mg/g. PJ and 4-CQA treatments significantly inhibited DEX-induced myotube atrophy by decreasing protein synthesis and glucocorticoid translocation to the nucleus in C2C12 myotubes. In addition, PJ enhanced myogenesis by upregulating myogenin and myogenic differentiation 1 in C2C12 cells. PJ supplementation effectively increased muscle function and mass, downregulated atrogenes, and decreased proteasome activity in C57BL/6 mice. Additionally, PJ effectively decreased the nuclear translocation of forkhead transcription factor 3 alpha by inhibiting glucocorticoid receptor. CONCLUSION Overall, PJ and its active compound 4-CQA alleviated skeletal muscle atrophy by inhibiting protein degradation. Hence, our findings present PJ as a potential novel pharmaceutical candidate for the treatment of muscle atrophy.
Collapse
Affiliation(s)
- Young In Kim
- Aging and Metabolism Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, South Korea; Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, South Korea
| | - Hyunjung Lee
- Aging and Metabolism Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, South Korea
| | - Min Jung Kim
- Aging and Metabolism Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, South Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, South Korea; Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon, South Korea
| | - Young-Soo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, South Korea
| | - Jiyun Ahn
- Aging and Metabolism Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, South Korea; Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
2
|
Chudakova DA, Trubetskoy D, Baida G, Bhalla P, Readhead B, Budunova I. REDD1 (regulated in development and DNA damage 1) modulates the glucocorticoid receptor function in keratinocytes. Exp Dermatol 2023; 32:1725-1733. [PMID: 37483165 DOI: 10.1111/exd.14887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/27/2023] [Accepted: 07/02/2023] [Indexed: 07/25/2023]
Abstract
Glucocorticoids (GCs) are widely used for the treatment of inflammatory skin diseases despite significant adverse effects including skin atrophy. Effects of GCs are mediated by the glucocorticoid receptor (GR), a well-known transcription factor. Previously, we discovered that one of the GR target genes, REDD1, is causatively involved in skin atrophy. Here, we investigated its role in GR function using HaCaT REDD1 knockout (KO) keratinocytes. We found large differences in transcriptome of REDD1 KO and control Cas9 cells in response to glucocorticoid fluocinolone acetonide (FA): both the scope and amplitude of response were significantly decreased in REDD1 KO. The status of REDD1 did not affect GR stability/degradation during self-desensitization, and major steps in GR activation-its nuclear import and phosphorylation at activating Ser211. However, the amount of GR phosphorylated at Ser226 that may play negative role in GR signalling, was increased in the nuclei of REDD1 KO cells. GR nuclear import and transcriptional activity also depend on the composition of GR chaperone complex: exchange of chaperone FKBP51 (FK506-binding protein 5) for FKBP52 (FK506-binding protein 4) being a necessary step in GR activation. We found the increased expression and abnormal nuclear translocation of FKBP51 in both untreated and FA-treated REDD1 KO cells. Overall, our results suggest the existence of a feed-forward loop in GR signalling mediated by its target gene REDD1, which has translational potential for the development of safer GR-targeted therapies.
Collapse
Affiliation(s)
- D A Chudakova
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
- Federal Centre for Brain and Neurotechnologies of the Federal Medical and Biological Agency of Russia, Moscow, Russia
| | - D Trubetskoy
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | - G Baida
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | - P Bhalla
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
- SBDRC, Northwestern University, Chicago, Illinois, USA
| | - B Readhead
- ASU-Banner Neurodegenerative Disease Research Centre, Arizona State University, Tempe, Arizona, USA
| | - I Budunova
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
- ASU-Banner Neurodegenerative Disease Research Centre, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
3
|
Kubat GB, Bouhamida E, Ulger O, Turkel I, Pedriali G, Ramaccini D, Ekinci O, Ozerklig B, Atalay O, Patergnani S, Nur Sahin B, Morciano G, Tuncer M, Tremoli E, Pinton P. Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies. Mitochondrion 2023; 72:33-58. [PMID: 37451353 DOI: 10.1016/j.mito.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Skeletal muscle, which accounts for approximately 40% of total body weight, is one of the most dynamic and plastic tissues in the human body and plays a vital role in movement, posture and force production. More than just a component of the locomotor system, skeletal muscle functions as an endocrine organ capable of producing and secreting hundreds of bioactive molecules. Therefore, maintaining healthy skeletal muscles is crucial for supporting overall body health. Various pathological conditions, such as prolonged immobilization, cachexia, aging, drug-induced toxicity, and cardiovascular diseases (CVDs), can disrupt the balance between muscle protein synthesis and degradation, leading to skeletal muscle atrophy. Mitochondrial dysfunction is a major contributing mechanism to skeletal muscle atrophy, as it plays crucial roles in various biological processes, including energy production, metabolic flexibility, maintenance of redox homeostasis, and regulation of apoptosis. In this review, we critically examine recent knowledge regarding the causes of muscle atrophy (disuse, cachexia, aging, etc.) and its contribution to CVDs. Additionally, we highlight the mitochondrial signaling pathways involvement to skeletal muscle atrophy, such as the ubiquitin-proteasome system, autophagy and mitophagy, mitochondrial fission-fusion, and mitochondrial biogenesis. Furthermore, we discuss current strategies, including exercise, mitochondria-targeted antioxidants, in vivo transfection of PGC-1α, and the potential use of mitochondrial transplantation as a possible therapeutic approach.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey.
| | - Esmaa Bouhamida
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey
| | - Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Gaia Pedriali
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Daniela Ramaccini
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Ozgur Ekinci
- Department of Pathology, Gazi University, 06500 Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Ozbeyen Atalay
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Simone Patergnani
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Beyza Nur Sahin
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Giampaolo Morciano
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Elena Tremoli
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Paolo Pinton
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
4
|
Kim JY, Kwon YG, Kim YM. The stress-responsive protein REDD1 and its pathophysiological functions. Exp Mol Med 2023; 55:1933-1944. [PMID: 37653030 PMCID: PMC10545776 DOI: 10.1038/s12276-023-01056-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 09/02/2023] Open
Abstract
Regulated in development and DNA damage-response 1 (REDD1) is a stress-induced protein that controls various cellular functions, including metabolism, oxidative stress, autophagy, and cell fate, and contributes to the pathogenesis of metabolic and inflammatory disorders, neurodegeneration, and cancer. REDD1 usually exerts deleterious effects, including tumorigenesis, metabolic inflammation, neurodegeneration, and muscle dystrophy; however, it also exhibits protective functions by regulating multiple intrinsic cell activities through either an mTORC1-dependent or -independent mechanism. REDD1 typically regulates mTORC1 signaling, NF-κB activation, and cellular pro-oxidant or antioxidant activity by interacting with 14-3-3 proteins, IκBα, and thioredoxin-interacting protein or 75 kDa glucose-regulated protein, respectively. The diverse functions of REDD1 depend on cell type, cellular context, interaction partners, and cellular localization (e.g., mitochondria, endomembrane, or cytosol). Therefore, comprehensively understanding the molecular mechanisms and biological roles of REDD1 under pathophysiological conditions is of utmost importance. In this review, based on the published literature, we highlight and discuss the molecular mechanisms underlying the REDD1 expression and its actions, biological functions, and pathophysiological roles.
Collapse
Affiliation(s)
- Ji-Yoon Kim
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul, 04763, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
5
|
Clarisse D, Prekovic S, Vlummens P, Staessens E, Van Wesemael K, Thommis J, Fijalkowska D, Acke G, Zwart W, Beck IM, Offner F, De Bosscher K. Crosstalk between glucocorticoid and mineralocorticoid receptors boosts glucocorticoid-induced killing of multiple myeloma cells. Cell Mol Life Sci 2023; 80:249. [PMID: 37578563 PMCID: PMC10425521 DOI: 10.1007/s00018-023-04900-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
The glucocorticoid receptor (GR) is a crucial drug target in multiple myeloma as its activation with glucocorticoids effectively triggers myeloma cell death. However, as high-dose glucocorticoids are also associated with deleterious side effects, novel approaches are urgently needed to improve GR action in myeloma. Here, we reveal a functional crosstalk between GR and the mineralocorticoid receptor (MR) that plays a role in improved myeloma cell killing. We show that the GR agonist dexamethasone (Dex) downregulates MR levels in a GR-dependent way in myeloma cells. Co-treatment of Dex with the MR antagonist spironolactone (Spi) enhances Dex-induced cell killing in primary, newly diagnosed GC-sensitive myeloma cells. In a relapsed GC-resistant setting, Spi alone induces distinct myeloma cell killing. On a mechanistic level, we find that a GR-MR crosstalk likely arises from an endogenous interaction between GR and MR in myeloma cells. Quantitative dimerization assays show that Spi reduces Dex-induced GR-MR heterodimerization and completely abolishes Dex-induced MR-MR homodimerization, while leaving GR-GR homodimerization intact. Unbiased transcriptomics analyses reveal that c-myc and many of its target genes are downregulated most by combined Dex-Spi treatment. Proteomics analyses further identify that several metabolic hallmarks are modulated most by this combination treatment. Finally, we identified a subset of Dex-Spi downregulated genes and proteins that may predict prognosis in the CoMMpass myeloma patient cohort. Our study demonstrates that GR-MR crosstalk is therapeutically relevant in myeloma as it provides novel strategies for glucocorticoid-based dose-reduction.
Collapse
Affiliation(s)
- Dorien Clarisse
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Stefan Prekovic
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Philip Vlummens
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Eleni Staessens
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Karlien Van Wesemael
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Jonathan Thommis
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Daria Fijalkowska
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
| | - Guillaume Acke
- Department of Chemistry, Ghent University, Ghent, Belgium
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ilse M Beck
- Department of Health Sciences, Odisee University of Applied Sciences, Ghent, Belgium
| | - Fritz Offner
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
6
|
Dunlap KR, Steiner JL, Hickner RC, Chase PB, Gordon BS. The duration of glucocorticoid treatment alters the anabolic response to high-force muscle contractions. J Appl Physiol (1985) 2023; 135:183-195. [PMID: 37289956 PMCID: PMC10312323 DOI: 10.1152/japplphysiol.00113.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
Glucocorticoids induce a myopathy that includes loss of muscle mass and strength. Resistance exercise may reverse the muscle loss because it induces an anabolic response characterized by increases in muscle protein synthesis and potentially suppressing protein breakdown. Whether resistance exercise induces an anabolic response in glucocorticoid myopathic muscle is unknown, which is a problem because long-term glucocorticoid exposure alters the expression of genes that may prevent an anabolic response by limiting activation of pathways such as the mechanistic target of rapamycin in complex 1 (mTORC1). The purpose of this study was to assess whether high-force contractions initiate an anabolic response in glucocorticoid myopathic muscle. The anabolic response was analyzed by treating female mice with dexamethasone (DEX) for 7 days or 15 days. After treatment, the left tibialis anterior muscle of all mice was contracted via electrical stimulation of the sciatic nerve. Muscles were harvested 4 h after contractions. Rates of muscle protein synthesis were estimated using the SUnSET method. After 7 days of treatment, high-force contractions increased protein synthesis and mTORC1 signaling in both groups. After 15 days of treatment, high-force contractions activated mTORC1 signaling equally in both groups, but protein synthesis was only increased in control mice. The failure to increase protein synthesis may be because baseline synthetic rates were elevated in DEX-treated mice. The LC3 II/I ratio marker of autophagy was decreased by contractions regardless of treatment duration. These data show duration of glucocorticoid treatment alters the anabolic response to high-force contractions.NEW & NOTEWORTHY Glucocorticoid myopathy is the most common, toxic, noninflammatory myopathy. Our work shows that high-force contractions increase protein synthesis in skeletal muscle following short-term glucocorticoid treatment. However, longer duration glucocorticoid treatment results in anabolic resistance to high-force contractions despite activation of the mechanistic target of rapamycin in complex 1 (mTORC1) signaling pathway. This work defines potential limits for high-force contractions to activate the processes that would restore lost muscle mass in glucocorticoid myopathic patients.
Collapse
Affiliation(s)
- Kirsten R Dunlap
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Jennifer L Steiner
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| | - Robert C Hickner
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States
| | - Bradley S Gordon
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
7
|
Lyu W, Kousaka M, Jia H, Kato H. Effects of Turmeric Extract on Age-Related Skeletal Muscle Atrophy in Senescence-Accelerated Mice. Life (Basel) 2023; 13:life13040941. [PMID: 37109470 PMCID: PMC10141758 DOI: 10.3390/life13040941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Muscle atrophy is one of the main causes of sarcopenia—the age-related loss of skeletal muscle. In this study, we investigated the effect of turmeric (Curcuma longa) extract (TE) supplementation on age-related muscle atrophy in a senescence-accelerated mouse model and explored the underlying mechanisms. Twenty-six-week-old male, senescence-accelerated mouse resistant (SAMR) mice received the AIN-93G basal diet, while twenty-six-week-old male, senescence-accelerated mouse prone 8 (SAMP8) mice received the AIN-93G basal diet or a 2% TE powder-supplemented diet for ten weeks. Our findings revealed that TE supplementation showed certain effects on ameliorating the decrease in body weight, tibialis anterior weight, and mesenteric fat tissue weight in SAMP8 mice. TE improved gene expression in the glucocorticoid receptor-FoxO signaling pathway in skeletal muscle, including redd1, klf15, foxo1, murf1, and mafbx. Furthermore, TE might have the certain potential on improving the dynamic balance between anabolic and catabolic processes by inhibiting the binding of glucocorticoid receptor or FoxO1 to the glucocorticoid response element or FoxO-binding element in the MuRF1 promoter in skeletal muscle, thereby promoting muscle mass and strength, and preventing muscle atrophy and sarcopenia prevention. Moreover, TE may have reduced mitochondrial damage and maintained cell growth and division by downregulating the mRNA expression of the genes mfn2 and tsc2. Thus, the results indicated TE’s potential for preventing age-related muscle atrophy and sarcopenia.
Collapse
Affiliation(s)
- Weida Lyu
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Marika Kousaka
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Huijuan Jia
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hisanori Kato
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
8
|
Glucocorticoid receptor activation reduces food intake independent of hyperglycemia in zebrafish. Sci Rep 2022; 12:15677. [PMID: 36127383 PMCID: PMC9489701 DOI: 10.1038/s41598-022-19572-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022] Open
Abstract
Chronic cortisol exposure suppresses food intake in fish, but the central mechanism(s) involved in appetite regulation are unclear. Stress and the associated increase in cortisol levels increase hepatic gluconeogenesis, leading to hyperglycemia. As hyperglycemia causes a reduction in food intake, we tested the hypothesis that cortisol-induced hyperglycemia suppresses feeding in zebrafish (Danio rerio). We first established that stress-independent hyperglycemia suppressed food intake, and this corresponded with a reduction in the phosphorylation of the nutrient sensor, AMP-activated protein kinase (AMPK) in the brain. Chronic cortisol exposure also led to hyperglycemia and reduced food intake, but the mechanisms were distinct. In cortisol-exposed fish, there were no changes in brain glucose uptake or AMPK phosphorylation. Also, the phosphorylation of Akt and mTOR was reduced along with an increase in redd1, suggesting an enhanced capacity for proteolysis. Loss of the glucocorticoid receptor did not rescue cortisol-mediated feeding suppression but did increase glucose uptake and abolished the changes seen in mTOR phosphorylation and redd1 transcript abundance. Taken together, our results indicate that GR activation enhances brain proteolysis, and the associated amino acids levels, and not hyperglycemia, maybe a key mediator of the feeding suppression in response to chronic cortisol stimulation in zebrafish.
Collapse
|
9
|
A glucocorticoid-receptor agonist ameliorates bleomycin-induced alveolar simplification in newborn rats. Pediatr Res 2022; 93:1551-1558. [PMID: 36068343 DOI: 10.1038/s41390-022-02257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/13/2022] [Accepted: 07/24/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Glucocorticoids (GCs) are highly effective yet problematic agents against bronchopulmonary dysplasia (BPD). The dimeric trans-activation of GCs induces unfavorable effects, while monomeric trans-repression suppresses inflammation-related genes. Recently, non-steroidal-selective glucocorticoid-receptor agonists and modulators (SEGRAMs) with only the trans-repressive action have been designed. METHODS Using a bleomycin (Bleo)-induced alveolar simplification newborn rat model (recapitulating arrested alveolarization during BPD), we evaluated the therapeutic effects of compound-A (CpdA), a SEGRAM. Sprague-Dawley rats were administered Bleo from postnatal day (PD) 0 to 10 and treated with dexamethasone (Dex) or CpdA from PD 0 to 13. The morphological changes and mRNA expression of inflammatory mediators, including interleukin (IL)-1β, C-X-C motif chemokine ligand 1 (CXCL1), and C-C motif chemokine 2 (CCL2) were investigated. RESULTS Similar to the effects of Dex, CpdA exerted protective effects on morphological derangements and inhibited macrophage infiltration and production of pro-inflammatory mediators in Bleo-treated animals. The effects of CpdA were probably mediated by GC receptor (GR)-dependent trans-repression, because unlike the Dex-treated group, anti-inflammatory genes specifically induced by GR-dependent trans-activation (such as "glucocorticoid-induced leucine zipper, GILZ") were not upregulated. CONCLUSIONS CpdA improved lung inflammation, inhibited the arrest of alveolar maturation, and restored histological and biochemical changes in a Bleo-induced alveolar simplification model. IMPACT SEGRAMs have attracted widespread attention because they are expected to not exhibit unfavorable effects of GCs. Compound A, one of the SEGRAMs, improved lung morphometric changes and decreased lung inflammation in a bleomycin-induced arrested alveolarization, a newborn rat model representing one of the main features of BPD pathology. Compound A did not elicit bleomycin-induced poor weight gain, in contrast to dexamethasone treatment. SEGRAMs, including compound A, may be promising candidates for the therapy of BPD with less adverse effects compared with GCs.
Collapse
|
10
|
Tice AL, Laudato JA, Fadool DA, Gordon BS, Steiner JL. Acute binge alcohol alters whole body metabolism and the time-dependent expression of skeletal muscle-specific metabolic markers for multiple days in mice. Am J Physiol Endocrinol Metab 2022; 323:E215-E230. [PMID: 35793479 PMCID: PMC9423784 DOI: 10.1152/ajpendo.00026.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022]
Abstract
Alcohol is a myotoxin that disrupts skeletal muscle function and metabolism, but specific metabolic alternations following a binge and the time course of recovery remain undefined. The purpose of this work was to determine the metabolic response to binge alcohol, the role of corticosterone in this response, and whether nutrient availability mediates the response. Female mice received saline (control) or alcohol (EtOH) (5 g/kg) via intraperitoneal injection at the start of the dark cycle. Whole body metabolism was assessed for 5 days. In a separate cohort, gastrocnemius muscles and liver were collected every 4 h for 48 h following intoxication. Metyrapone was administered before alcohol and gastrocnemius was collected 4 h later. Lastly, alcohol-treated mice were compared with fed or fasted controls. Alcohol disrupted whole body metabolism for multiple days. Alcohol altered the expression of genes and proteins in the gastrocnemius related to the promotion of fat oxidation (Pparα, Pparδ/β, AMPK, and Cd36) and protein breakdown (Murf1, Klf15, Bcat2). Changes to select metabolic genes in the liver did not parallel those in skeletal muscle. An alcohol-induced increase in circulating corticosterone was responsible for the initial change in protein breakdown factors but not the induction of FoxO1, Cebpβ, Pparα, and FoxO3. Alcohol led to a similar, but distinct metabolic response when compared with fasting animals. Overall, these data show that an acute alcohol binge rapidly disrupts macronutrient metabolism including sustained disruption to the metabolic gene signature of skeletal muscle in a manner similar to fasting at some time points.NEW & NOTEWORTHY Herein, we demonstrate that acute alcohol intoxication immediately alters whole body metabolism coinciding with rapid changes in the skeletal muscle macronutrient gene signature for at least 48 h postbinge and that this response diverges from hepatic effects and those of a fasted animal.
Collapse
Affiliation(s)
- Abigail L Tice
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Joseph A Laudato
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Debra A Fadool
- Department of Biological Science, Program in Neuroscience, and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - Bradley S Gordon
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| | - Jennifer L Steiner
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| |
Collapse
|
11
|
Nutritional Sensor REDD1 in Cancer and Inflammation: Friend or Foe? Int J Mol Sci 2022; 23:ijms23179686. [PMID: 36077083 PMCID: PMC9456073 DOI: 10.3390/ijms23179686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Regulated in Development and DNA Damage Response 1 (REDD1)/DNA Damage-Induced Transcript 4 (DDIT4) is an immediate early response gene activated by different stress conditions, including growth factor depletion, hypoxia, DNA damage, and stress hormones, i.e., glucocorticoids. The most known functions of REDD1 are the inhibition of proliferative signaling and the regulation of metabolism via the repression of the central regulator of these processes, the mammalian target of rapamycin (mTOR). The involvement of REDD1 in cell growth, apoptosis, metabolism, and oxidative stress implies its role in various pathological conditions, including cancer and inflammatory diseases. Recently, REDD1 was identified as one of the central genes mechanistically involved in undesirable atrophic effects induced by chronic topical and systemic glucocorticoids widely used for the treatment of blood cancer and inflammatory diseases. In this review, we discuss the role of REDD1 in the regulation of cell signaling and processes in normal and cancer cells, its involvement in the pathogenesis of different diseases, and the approach to safer glucocorticoid receptor (GR)-targeted therapies via a combination of glucocorticoids and REDD1 inhibitors to decrease the adverse atrophogenic effects of these steroids.
Collapse
|
12
|
Jia H, Yamashita T, Li X, Kato H. Laurel Attenuates Dexamethasone-Induced Skeletal Muscle Atrophy In Vitro and in a Rat Model. Nutrients 2022; 14:nu14102029. [PMID: 35631169 PMCID: PMC9143575 DOI: 10.3390/nu14102029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
Prevention of muscle atrophy contributes to improved quality of life and life expectancy. In this study, we investigated the effects of laurel, selected from 34 spices and herbs, on dexamethasone (DEX)-induced skeletal muscle atrophy and deciphered the underlying mechanisms. Co-treatment of C2C12 myotubes with laurel for 12 h inhibited the DEX-induced expression of intracellular ubiquitin ligases—muscle atrophy F-box (atrogin-1/MAFbx) and muscle RING finger 1 (MuRF1)—and reduction in myotube diameter. Male Wistar rats were supplemented with 2% laurel for 17 days, with DEX-induced skeletal muscle atrophy occurring in the last 3 days. Laurel supplementation inhibited the mRNA expression of MuRF1, regulated DNA damage and development 1 (Redd1), and forkhead box class O 1 (Foxo1) in the muscles of rats. Mechanistically, we evaluated the effects of laurel on the cellular proteolysis machinery—namely, the ubiquitin/proteasome system and autophagy—and the mTOR signaling pathway, which regulates protein synthesis. These data indicated that the amelioration of DEX-induced skeletal muscle atrophy induced by laurel, is mainly mediated by the transcriptional inhibition of downstream factors of the ubiquitin-proteasome system. Thus, laurel may be a potential food ingredient that prevents muscle atrophy.
Collapse
|
13
|
Graca FA, Rai M, Hunt LC, Stephan A, Wang YD, Gordon B, Wang R, Quarato G, Xu B, Fan Y, Labelle M, Demontis F. The myokine Fibcd1 is an endogenous determinant of myofiber size and mitigates cancer-induced myofiber atrophy. Nat Commun 2022; 13:2370. [PMID: 35501350 PMCID: PMC9061726 DOI: 10.1038/s41467-022-30120-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/14/2022] [Indexed: 12/19/2022] Open
Abstract
Decline in skeletal muscle cell size (myofiber atrophy) is a key feature of cancer-induced wasting (cachexia). In particular, atrophy of the diaphragm, the major muscle responsible for breathing, is an important determinant of cancer-associated mortality. However, therapeutic options are limited. Here, we have used Drosophila transgenic screening to identify muscle-secreted factors (myokines) that act as paracrine regulators of myofiber growth. Subsequent testing in mouse myotubes revealed that mouse Fibcd1 is an evolutionary-conserved myokine that preserves myofiber size via ERK signaling. Local administration of recombinant Fibcd1 (rFibcd1) ameliorates cachexia-induced myofiber atrophy in the diaphragm of mice bearing patient-derived melanoma xenografts and LLC carcinomas. Moreover, rFibcd1 impedes cachexia-associated transcriptional changes in the diaphragm. Fibcd1-induced signaling appears to be muscle selective because rFibcd1 increases ERK activity in myotubes but not in several cancer cell lines tested. We propose that rFibcd1 may help reinstate myofiber size in the diaphragm of patients with cancer cachexia.
Collapse
Affiliation(s)
- Flavia A Graca
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Mamta Rai
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Liam C Hunt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Brittney Gordon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
- Xenograft Core, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Ruishan Wang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Giovanni Quarato
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Myriam Labelle
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States.
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States.
| |
Collapse
|
14
|
Role of Glucocorticoid Signaling and HDAC4 Activation in Diaphragm and Gastrocnemius Proteolytic Activity in Septic Rats. Int J Mol Sci 2022; 23:ijms23073641. [PMID: 35408999 PMCID: PMC8998191 DOI: 10.3390/ijms23073641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Sepsis increases glucocorticoid and decreases IGF-1, leading to skeletal muscle wasting and cachexia. Muscle atrophy mainly takes place in locomotor muscles rather than in respiratory ones. Our study aimed to elucidate the mechanism responsible for this difference in muscle proteolysis, focusing on local inflammation and IGF-1 as well as on their glucocorticoid response and HDAC4-myogenin activation. Sepsis was induced in adult male rats by lipopolysaccharide (LPS) injection (10 mg/kg), and 24 h afterwards, rats were euthanized. LPS increased TNFα and IL-10 expression in both muscles studied, the diaphragm and gastrocnemius, whereas IL-6 and SOCS3 mRNA increased only in diaphragm. In comparison with gastrocnemius, diaphragm showed a lower increase in proteolytic marker expression (atrogin-1 and LC3b) and in LC3b protein lipidation after LPS administration. LPS increased the expression of glucocorticoid induced factors, KLF15 and REDD1, and decreased that of IGF-1 in gastrocnemius but not in the diaphragm. In addition, an increase in HDAC4 and myogenin expression was induced by LPS in gastrocnemius, but not in the diaphragm. In conclusion, the lower activation of both glucocorticoid signaling and HDAC4-myogenin pathways by sepsis can be one of the causes of lower sepsis-induced proteolysis in the diaphragm compared to gastrocnemius.
Collapse
|
15
|
Ubachs J, van de Worp WRPH, Vaes RDW, Pasmans K, Langen RC, Meex RCR, van Bijnen AAJHM, Lambrechts S, Van Gorp T, Kruitwagen RFPM, Olde Damink SWM, Rensen SS. Ovarian cancer ascites induces skeletal muscle wasting in vitro and reflects sarcopenia in patients. J Cachexia Sarcopenia Muscle 2022; 13:311-324. [PMID: 34951138 PMCID: PMC8818657 DOI: 10.1002/jcsm.12885] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/22/2021] [Accepted: 11/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cachexia-associated skeletal muscle wasting or 'sarcopenia' is highly prevalent in ovarian cancer and contributes to poor outcome. Drivers of cachexia-associated sarcopenia in ovarian cancer remain elusive, underscoring the need for novel and better models to identify tumour factors inducing sarcopenia. We aimed to assess whether factors present in ascites of sarcopenic vs. non-sarcopenic ovarian cancer patients differentially affect protein metabolism in skeletal muscle cells and to determine if these effects are correlated to cachexia-related patient characteristics. METHODS Fifteen patients with an ovarian mass and ascites underwent extensive physical screening focusing on cachexia-related parameters. Based on computed tomography-based body composition imaging, six cancer patients were classified as sarcopenic and six were not; three patients with a benign condition served as an additional non-sarcopenic control group. Ascites was collected, and concentrations of cachexia-associated factors were assessed by enzyme-linked immunosorbent assay. Subsequently, ascites was used for in vitro exposure of C2C12 myotubes followed by measurements of protein synthesis and breakdown by radioactive isotope tracing, qPCR-based analysis of atrophy-related gene expression, and NF-κB activity reporter assays. RESULTS C2C12 protein synthesis was lower after exposure to ascites from sarcopenic patients (sarcopenia 3.1 ± 0.1 nmol/h/mg protein vs. non-sarcopenia 5.5 ± 0.2 nmol/h/mg protein, P < 0.01), and protein breakdown rates tended to be higher (sarcopenia 31.2 ± 5.2% vs. non-sarcopenia 20.9 ± 1.9%, P = 0.08). Ascites did not affect MuRF1, Atrogin-1, or REDD1 expression of C2C12 myotubes, but NF-κB activity was specifically increased in cells exposed to ascites from sarcopenic patients (sarcopenia 2.2 ± 0.4-fold compared with control vs. non-sarcopenia 1.2 ± 0.2-fold compared with control, P = 0.01). Protein synthesis and breakdown correlated with NF-κB activity (rs = -0.60, P = 0.03 and rs = 0.67, P = 0.01, respectively). The skeletal muscle index of the ascites donors was also correlated to both in vitro protein synthesis (rs = 0.70, P = 0.005) and protein breakdown rates (rs = -0.57, P = 0.04). CONCLUSIONS Ascites of sarcopenic ovarian cancer patients induces pronounced skeletal muscle protein metabolism changes in C2C12 cells that correlate with clinical muscle measures of the patient and that are characteristic of cachexia. The use of ascites offers a new experimental tool to study the impact of both tumour-derived and systemic factors in various cachexia model systems, enabling identification of novel drivers of tissue wasting in ovarian cancer.
Collapse
Affiliation(s)
- Jorne Ubachs
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands.,NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Wouter R P H van de Worp
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Pulmonology, Maastricht University, Maastricht, The Netherlands
| | - Rianne D W Vaes
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands.,NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Kenneth Pasmans
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Ramon C Langen
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Pulmonology, Maastricht University, Maastricht, The Netherlands
| | - Ruth C R Meex
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Annemarie A J H M van Bijnen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands.,NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Sandrina Lambrechts
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Toon Van Gorp
- Department of Obstetrics and Gynecology, Division of Gynecological Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Roy F P M Kruitwagen
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Steven W M Olde Damink
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands.,NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH Aachen University, Aachen, Germany
| | - Sander S Rensen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands.,NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
16
|
Genomic polymorphisms at the crhr2 locus improve feed conversion efficiency through alleviation of hypothalamus-pituitary-interrenal axis activity in gibel carp (Carassius gibelio). SCIENCE CHINA. LIFE SCIENCES 2022; 65:206-214. [PMID: 33948869 DOI: 10.1007/s11427-020-1924-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/02/2020] [Indexed: 01/24/2023]
Abstract
Improvement in fish feed conversion efficiency (FCE) is beneficial for sustaining global food fish supplies. Here, we show that a set of polymorphisms at locus of the corticotropin releasing hormone receptor 2 (crhr2), which is involved in hypothalamus-pituitary-interrenal (HPI) axis signaling, is associated with improved FCE in farmed allogynogenetic gibel carp strain CAS III compared with that in the wild gibel carp strain Dongting (DT). This set of polymorphisms downregulates the expression levels of crhr2 mRNA in the brain and pituitary tissues in gibel carp strain CAS III compared with those in strain DT. Furthermore, compromised HPI axis signaling is observed in gibel carp strain CAS III, such as decreased α-melanocyte stimulating hormone protein levels, plasma cortisol content, and stress responses. Moreover, enhanced activation of protein kinase B/mammalian target of rapamycin complex 1 signaling observed in the muscle tissue of strain CAS III in comparison to that in strain DT indicated elevated anabolic metabolism in strain CAS III. Thus, these studies demonstrate that the genetic markers associated with compromised HPI axis signaling, such as crhr2, are potentially useful for genetic selection toward improvement in farmed fish growth and FCE, which would reduce fishmeal consumption and thereby indirectly facilitate sustainable fisheries.
Collapse
|
17
|
Hain BA, Xu H, Waning DL. Loss of REDD1 prevents chemotherapy-induced muscle atrophy and weakness in mice. J Cachexia Sarcopenia Muscle 2021; 12:1597-1612. [PMID: 34664403 PMCID: PMC8718092 DOI: 10.1002/jcsm.12795] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 06/30/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chemotherapy is an essential treatment to combat solid tumours and mitigate metastasis. Chemotherapy causes side effects including muscle wasting and weakness. Regulated in Development and DNA Damage Response 1 (REDD1) is a stress-response protein that represses the mechanistic target of rapamycin (mTOR) in complex 1 (mTORC1), and its expression is increased in models of muscle wasting. The aim of this study was to determine if deletion of REDD1 is sufficient to attenuate chemotherapy-induced muscle wasting and weakness in mice. METHODS C2C12 myotubes were treated with carboplatin, and changes in myotube diameter were measured. Protein synthesis was measured by puromycin incorporation, and REDD1 mRNA and protein expression were analysed in myotubes treated with carboplatin. Markers of mTORC1 signalling were measured by western blot. REDD1 global knockout mice and wild-type mice were treated with a single dose of carboplatin and euthanized 7 days later. Body weight, hindlimb muscle weights, forelimb grip strength, and extensor digitorum longus whole muscle contractility were measured in all groups. Thirty minutes prior to euthanasia, mice were injected with puromycin to measure puromycin incorporation in skeletal muscle. RESULTS C2C12 myotube diameter was decreased at 24 (P = 0.0002) and 48 h (P < 0.0001) after carboplatin treatment. Puromycin incorporation was decreased in myotubes treated with carboplatin for 24 (P = 0.0068) and 48 h (P = 0.0008). REDD1 mRNA and protein expression were increased with carboplatin treatment (P = 0.0267 and P = 0.0015, respectively), and this was accompanied by decreased phosphorylation of Akt T308 (P < 0.0001) and S473 (P = 0.0006), p70S6K T389 (P = 0.0002), and 4E-binding protein 1 S65 (P = 0.0341), all markers of mTORC1 activity. REDD1 mRNA expression was increased in muscles from mice treated with carboplatin (P = 0.0295). Loss of REDD1 reduced carboplatin-induced body weight loss (P = 0.0013) and prevented muscle atrophy in mice. REDD1 deletion prevented carboplatin-induced decrease of protein synthesis (P = 0.7626) and prevented muscle weakness. CONCLUSIONS Carboplatin caused loss of body weight, muscle atrophy, muscle weakness, and inhibition of protein synthesis. Loss of REDD1 attenuates muscle atrophy and weakness in mice treated with carboplatin. Our study illustrates the importance of REDD1 in the regulation of muscle mass with chemotherapy treatment and may be an attractive therapeutic target to combat cachexia.
Collapse
Affiliation(s)
- Brian A Hain
- Dept. of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA
| | - Haifang Xu
- Dept. of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA
| | - David L Waning
- Dept. of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
18
|
Hain BA, Xu H, VanCleave AM, Gordon BS, Kimball SR, Waning DL. REDD1 deletion attenuates cancer cachexia in mice. J Appl Physiol (1985) 2021; 131:1718-1730. [PMID: 34672766 PMCID: PMC10392697 DOI: 10.1152/japplphysiol.00536.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cancer cachexia is a wasting disorder associated with advanced cancer that contributes to mortality. Cachexia is characterized by involuntary loss of body weight and muscle weakness that affects physical function. Regulated in DNA damage and development 1 (REDD1) is a stress-response protein that is transcriptionally upregulated in muscle during wasting conditions and inhibits mechanistic target of rapamycin complex 1 (mTORC1). C2C12 myotubes treated with Lewis lung carcinoma (LLC)-conditioned media increased REDD1 mRNA expression and decreased myotube diameter. To investigate the role of REDD1 in cancer cachexia, we inoculated 12-week old male wild-type or global REDD1 knockout (REDD1 KO) mice with LLC cells and euthanized 28-days later. Wild-type mice had increased skeletal muscle REDD1 expression, and REDD1 deletion prevented loss of body weight and lean tissue mass, but not fat mass. We found that REDD1 deletion attenuated loss of individual muscle weights and loss of myofiber cross sectional area. We measured markers of the Akt/mTORC1 pathway and found that, unlike wild-type mice, phosphorylation of both Akt and 4E-BP1 was maintained in the muscle of REDD1 KO mice after LLC inoculation, suggesting that loss of REDD1 is beneficial in maintaining mTORC1 activity in mice with cancer cachexia. We measured Foxo3a phosphorylation as a marker of the ubiquitin proteasome pathway and autophagy and found that REDD1 deletion prevented dephosphorylation of Foxo3a in muscles from cachectic mice. Our data provides evidence that REDD1 plays an important role in cancer cachexia through the regulation of both protein synthesis and protein degradation pathways.
Collapse
Affiliation(s)
- Brian A Hain
- The Penn State College of Medicine, Dept. of Cellular and Molecular Physiology, Hershey, PA, United States.,Penn State Cancer Institute, Hershey, PA, United States
| | - Haifang Xu
- The Penn State College of Medicine, Dept. of Cellular and Molecular Physiology, Hershey, PA, United States
| | - Ashley M VanCleave
- The Penn State College of Medicine, Dept. of Cellular and Molecular Physiology, Hershey, PA, United States
| | - Bradley S Gordon
- Florida State University, Dept. of Nutrition and Integrative Physiology, Tallahassee, FL, United States
| | - Scot R Kimball
- The Penn State College of Medicine, Dept. of Cellular and Molecular Physiology, Hershey, PA, United States
| | - David L Waning
- The Penn State College of Medicine, Dept. of Cellular and Molecular Physiology, Hershey, PA, United States.,Penn State Cancer Institute, Hershey, PA, United States
| |
Collapse
|
19
|
Torres-Velarde JM, Kolora SRR, Khudyakov JI, Crocker DE, Sudmant PH, Vázquez-Medina JP. Elephant seal muscle cells adapt to sustained glucocorticoid exposure by shifting their metabolic phenotype. Am J Physiol Regul Integr Comp Physiol 2021; 321:R413-R428. [PMID: 34260302 DOI: 10.1152/ajpregu.00052.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022]
Abstract
Elephant seals experience natural periods of prolonged food deprivation while breeding, molting, and undergoing postnatal development. Prolonged food deprivation in elephant seals increases circulating glucocorticoids without inducing muscle atrophy, but the cellular mechanisms that allow elephant seals to cope with such conditions remain elusive. We generated a cellular model and conducted transcriptomic, metabolic, and morphological analyses to study how seal cells adapt to sustained glucocorticoid exposure. Seal muscle progenitor cells differentiate into contractile myotubes with a distinctive morphology, gene expression profile, and metabolic phenotype. Exposure to dexamethasone at three ascending concentrations for 48 h modulated the expression of six clusters of genes related to structural constituents of muscle and pathways associated with energy metabolism and cell survival. Knockdown of the glucocorticoid receptor (GR) and downstream expression analyses corroborated that GR mediates the observed effects. Dexamethasone also decreased cellular respiration, shifted the metabolic phenotype toward glycolysis, and induced mitochondrial fission and dissociation of mitochondria-endoplasmic reticulum (ER) interactions without decreasing cell viability. Knockdown of DNA damage-inducible transcript 4 (DDIT4), a GR target involved in the dissociation of mitochondria-ER membranes, recovered respiration and modulated antioxidant gene expression in myotubes treated with dexamethasone. These results show that adaptation to sustained glucocorticoid exposure in elephant seal myotubes involves a metabolic shift toward glycolysis, which is supported by alterations in mitochondrial morphology and a reduction in mitochondria-ER interactions, resulting in decreased respiration without compromising cell survival.
Collapse
Affiliation(s)
| | | | - Jane I Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, California
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, Rohnert Park, California
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, California
| | | |
Collapse
|
20
|
Xia Q, Huang X, Huang J, Zheng Y, March ME, Li J, Wei Y. The Role of Autophagy in Skeletal Muscle Diseases. Front Physiol 2021; 12:638983. [PMID: 33841177 PMCID: PMC8027491 DOI: 10.3389/fphys.2021.638983] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is the most abundant type of tissue in human body, being involved in diverse activities and maintaining a finely tuned metabolic balance. Autophagy, characterized by the autophagosome–lysosome system with the involvement of evolutionarily conserved autophagy-related genes, is an important catabolic process and plays an essential role in energy generation and consumption, as well as substance turnover processes in skeletal muscles. Autophagy in skeletal muscles is finely tuned under the tight regulation of diverse signaling pathways, and the autophagy pathway has cross-talk with other pathways to form feedback loops under physiological conditions and metabolic stress. Altered autophagy activity characterized by either increased formation of autophagosomes or inhibition of lysosome-autophagosome fusion can lead to pathological cascades, and mutations in autophagy genes and deregulation of autophagy pathways have been identified as one of the major causes for a variety of skeleton muscle disorders. The advancement of multi-omics techniques enables further understanding of the molecular and biochemical mechanisms underlying the role of autophagy in skeletal muscle disorders, which may yield novel therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Qianghua Xia
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xubo Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jieru Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yongfeng Zheng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Michael E March
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jin Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yongjie Wei
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Dunlap KR, Steiner JL, Rossetti ML, Kimball SR, Gordon BS. A clinically relevant decrease in contractile force differentially regulates control of glucocorticoid receptor translocation in mouse skeletal muscle. J Appl Physiol (1985) 2021; 130:1052-1063. [PMID: 33600283 DOI: 10.1152/japplphysiol.01064.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Muscle atrophy decreases physical function and overall health. Increased glucocorticoid production and/or use of prescription glucocorticoids can significantly induce muscle atrophy by activating the glucocorticoid receptor, thereby transcribing genes that shift protein balance in favor of net protein degradation. Although mechanical overload can blunt glucocorticoid-induced atrophy in young muscle, those affected by glucocorticoids generally have impaired force generation. It is unknown whether contractile force alters the ability of resistance exercise to mitigate glucocorticoid receptor translocation and induce a desirable shift in protein balance when glucocorticoids are elevated. In the present study, mice were subjected to a single bout of unilateral, electrically induced muscle contractions by stimulating the sciatic nerve at 100 Hz or 50 Hz frequencies to elicit high or moderate force contractions of the tibialis anterior, respectively. Dexamethasone was used to activate the glucocorticoid receptor. Dexamethasone increased glucocorticoid signaling, including nuclear translocation of the receptor, but this was mitigated only by high force contractions. The ability of high force contractions to mitigate glucocorticoid receptor translocation coincided with a contraction-mediated increase in muscle protein synthesis, which did not occur in the dexamethasone-treated mice subjected to moderate force contractions. Though moderate force contractions failed to increase protein synthesis following dexamethasone treatment, both high and moderate force contractions blunted the glucocorticoid-mediated increase in LC3 II:I marker of autophagy. Thus, these data show that force generation is important for the ability of resistance exercise to mitigate glucocorticoid receptor translocation and promote a desirable shift in protein balance when glucocorticoids are elevated.NEW & NOTEWORTHY Glucocorticoids induce significant skeletal muscle atrophy by activating the glucocorticoid receptor. Our work shows that muscle contractile force dictates glucocorticoid receptor nuclear translocation. We also show that blunting nuclear translocation by high force contractions coincides with the ability of muscle to mount an anabolic response characterized by increased muscle protein synthesis. This work further defines the therapeutic parameters of skeletal muscle contractions to blunt glucocorticoid-induced atrophy.
Collapse
Affiliation(s)
- Kirsten R Dunlap
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, Florida
| | - Jennifer L Steiner
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, Florida.,Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| | - Michael L Rossetti
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, Florida
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Bradley S Gordon
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, Florida.,Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| |
Collapse
|
22
|
Chen TC, Kuo T, Dandan M, Lee RA, Chang M, Villivalam SD, Liao SC, Costello D, Shankaran M, Mohammed H, Kang S, Hellerstein MK, Wang JC. The role of striated muscle Pik3r1 in glucose and protein metabolism following chronic glucocorticoid exposure. J Biol Chem 2021; 296:100395. [PMID: 33567340 PMCID: PMC8010618 DOI: 10.1016/j.jbc.2021.100395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 11/03/2022] Open
Abstract
Chronic glucocorticoid exposure causes insulin resistance and muscle atrophy in skeletal muscle. We previously identified phosphoinositide-3-kinase regulatory subunit 1 (Pik3r1) as a primary target gene of skeletal muscle glucocorticoid receptors involved in the glucocorticoid-mediated suppression of insulin action. However, the in vivo functions of Pik3r1 remain unclear. Here, we generated striated muscle-specific Pik3r1 knockout (MKO) mice and treated them with a dexamethasone (DEX), a synthetic glucocorticoid. Treating wildtype (WT) mice with DEX attenuated insulin activated Akt activity in liver, epididymal white adipose tissue, and gastrocnemius (GA) muscle. This DEX effect was diminished in GA muscle of MKO mice, therefore, resulting in improved glucose and insulin tolerance in DEX-treated MKO mice. Stable isotope labeling techniques revealed that in WT mice, DEX treatment decreased protein fractional synthesis rates in GA muscle. Furthermore, histology showed that in WT mice, DEX treatment reduced GA myotube diameters. In MKO mice, myotube diameters were smaller than in WT mice, and there were more fast oxidative fibers. Importantly, DEX failed to further reduce myotube diameters. Pik3r1 knockout also decreased basal protein synthesis rate (likely caused by lower 4E-BP1 phosphorylation at Thr37/Thr46) and curbed the ability of DEX to attenuate protein synthesis rate. Finally, the ability of DEX to inhibit eIF2α phosphorylation and insulin-induced 4E-BP1 phosphorylation was reduced in MKO mice. Taken together, these results demonstrate the role of Pik3r1 in glucocorticoid-mediated effects on glucose and protein metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Tzu-Chieh Chen
- Metabolic Biology Graduate Program, University of California Berkeley, Berkeley, California, USA; Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California, USA
| | - Taiyi Kuo
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California, USA; Endocrinology Graduate Program, University of California Berkeley, Berkeley, California, USA
| | - Mohamad Dandan
- Metabolic Biology Graduate Program, University of California Berkeley, Berkeley, California, USA; Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California, USA
| | - Rebecca A Lee
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California, USA; Endocrinology Graduate Program, University of California Berkeley, Berkeley, California, USA
| | - Maggie Chang
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California, USA; Endocrinology Graduate Program, University of California Berkeley, Berkeley, California, USA
| | - Sneha D Villivalam
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California, USA; Endocrinology Graduate Program, University of California Berkeley, Berkeley, California, USA
| | - Szu-Chi Liao
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California, USA; Endocrinology Graduate Program, University of California Berkeley, Berkeley, California, USA
| | - Damian Costello
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California, USA; Endocrinology Graduate Program, University of California Berkeley, Berkeley, California, USA
| | - Mahalakshmi Shankaran
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California, USA
| | - Hussein Mohammed
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California, USA
| | - Sona Kang
- Metabolic Biology Graduate Program, University of California Berkeley, Berkeley, California, USA; Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California, USA; Endocrinology Graduate Program, University of California Berkeley, Berkeley, California, USA
| | - Marc K Hellerstein
- Metabolic Biology Graduate Program, University of California Berkeley, Berkeley, California, USA; Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California, USA; Endocrinology Graduate Program, University of California Berkeley, Berkeley, California, USA
| | - Jen-Chywan Wang
- Metabolic Biology Graduate Program, University of California Berkeley, Berkeley, California, USA; Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, California, USA; Endocrinology Graduate Program, University of California Berkeley, Berkeley, California, USA.
| |
Collapse
|
23
|
Korkmaz C, Cansu DU, Cansu GB. Familial Mediterranean fever: the molecular pathways from stress exposure to attacks. Rheumatology (Oxford) 2021; 59:3611-3621. [PMID: 33026080 DOI: 10.1093/rheumatology/keaa450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/21/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
FMF is an autoinflammatory disease characterized by recurrent attacks and increased IL-1 synthesis owing to activation of the pyrin inflammasome. Although knowledge of the mechanisms leading to the activation of pyrin inflammasome is increasing, it is still unknown why the disease is characterized by attack. The emergence of FMF attacks after emotional stress and the induction of attacks with metaraminol in previous decades suggested that stress-induced sympathoadrenal system activation might play a role in inflammasome activation and triggering attacks. In this review, we will review the possible molecular mechanism of stress mediators on the inflammation pathway and inflammasome activation. Studies on stress mediators and their impact on inflammation pathways will provide a better understanding of stress-related exacerbation mechanisms in both autoinflammatory and autoimmune diseases. This review provides a new perspective on this subject and will contribute to new studies.
Collapse
Affiliation(s)
- Cengiz Korkmaz
- Division of Rheumatology, Department of Internal Medicine, Eskisehir Osmangazi University, School of Medicine, Eskisehir
| | - Döndü U Cansu
- Division of Rheumatology, Department of Internal Medicine, Eskisehir Osmangazi University, School of Medicine, Eskisehir
| | - Güven Barış Cansu
- Department of Endocrinology, Kütahya Health Science University, School of Medicine, Kütahya, 43100, Turkey
| |
Collapse
|
24
|
Ding F, Gao F, Zhang S, Lv X, Chen Y, Liu Q. A review of the mechanism of DDIT4 serve as a mitochondrial related protein in tumor regulation. Sci Prog 2021; 104:36850421997273. [PMID: 33729069 PMCID: PMC10455034 DOI: 10.1177/0036850421997273] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DDIT4 is a mitochondrial and tumor-related protein involved in anti-tumor therapy resistance, proliferation, and invasion, etc. Its expression level increases under the stress such as chemotherapy, hypoxia, and DNA damage. A number of clinical studies have confirmed that DDIT4 can change the behavior of tumor cells and the prognosis of patients with cancer. However, the role of DDIT4 in promoting or suppressing cancer is still inconclusive. This article summarized the four characteristics of DDIT4 including a mitochondria-related protein, interactions with various protein molecules, immune and metabolic cell related proteins and participator in the oxygen sensing pathway, which may be related to the progress of cancer.
Collapse
Affiliation(s)
- Fadian Ding
- Department of Hepatobiliary Pancreatic Surgery, 1st Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Feng Gao
- Department of Pathology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Sheng Zhang
- Department of Pathology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaoting Lv
- Department of Respiratory, First Affiliated Hospital; Fujian Medical University, Fuzhou, China
| | - Youting Chen
- Department of Hepatobiliary Pancreatic Surgery, 1st Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Abdominal Surgery Research Institute, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qicai Liu
- Center for Reproductive Medicine, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
25
|
Zhidkova EM, Lylova ES, Savinkova AV, Mertsalov SA, Kirsanov KI, Belitsky GA, Yakubovskaya MG, Lesovaya EA. A Brief Overview of the Paradoxical Role of Glucocorticoids in Breast Cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2020; 14:1178223420974667. [PMID: 33424228 PMCID: PMC7755940 DOI: 10.1177/1178223420974667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/21/2020] [Indexed: 11/15/2022]
Abstract
Glucocorticoids (GCs) are stress hormones that play multiple roles in the regulation of cancer cell differentiation, apoptosis, and proliferation. Some types of cancers, such as hematological malignancies, can be effectively treated by GCs, whereas the responses of epithelial cancers to GC treatment vary, even within cancer subtypes. In particular, GCs are frequently used as supporting treatment of breast cancer (BC) to protect against chemotherapy side effects. In the therapy of nonaggressive luminal subtypes of BC, GCs can have auxiliary antitumor effects due to their cytotoxic actions on cancer cells. However, GCs can promote BC progression, colonization of distant metastatic sites, and metastasis. The effects of GCs on cell proliferation vary with BC subtype and its molecular profile and are realized via the activation of glucocorticoid receptor (GR), a well-known transcriptional factor involved in the regulation of the expression of multiple genes, cell-cell adhesion, and cell migration and polarity. This review focuses on the roles of GC signaling in the adhesion, migration, and metastasis of BC cells. We discuss the molecular mechanisms of GC actions that lead to BC metastasis and propose alternative pharmacological uses of GCs for BC treatment.
Collapse
Affiliation(s)
- Ekaterina M Zhidkova
- Department of Oncology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Evgeniya S Lylova
- Department of Oncology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Alena V Savinkova
- Department of Oncology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | | | - Kirill I Kirsanov
- Department of Oncology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia.,Department of General Medical Practice, RUDN University, Moscow, Russia
| | - Gennady A Belitsky
- Department of Oncology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Marianna G Yakubovskaya
- Department of Oncology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Ekaterina A Lesovaya
- Department of Oncology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia.,I.P. Pavlov Ryazan State Medical University, Ryazan, Russia
| |
Collapse
|
26
|
Britto FA, Dumas K, Giorgetti-Peraldi S, Ollendorff V, Favier FB. Is REDD1 a metabolic double agent? Lessons from physiology and pathology. Am J Physiol Cell Physiol 2020; 319:C807-C824. [PMID: 32877205 DOI: 10.1152/ajpcell.00340.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Akt/mechanistic target of rapamycin (mTOR) signaling pathway governs macromolecule synthesis, cell growth, and metabolism in response to nutrients and growth factors. Regulated in development and DNA damage response (REDD)1 is a conserved and ubiquitous protein, which is transiently induced in response to multiple stimuli. Acting like an endogenous inhibitor of the Akt/mTOR signaling pathway, REDD1 protein has been shown to regulate cell growth, mitochondrial function, oxidative stress, and apoptosis. Recent studies also indicate that timely REDD1 expression limits Akt/mTOR-dependent synthesis processes to spare energy during metabolic stresses, avoiding energy collapse and detrimental consequences. In contrast to this beneficial role for metabolic adaptation, REDD1 chronic expression appears involved in the pathogenesis of several diseases. Indeed, REDD1 expression is found as an early biomarker in many pathologies including inflammatory diseases, cancer, neurodegenerative disorders, depression, diabetes, and obesity. Moreover, prolonged REDD1 expression is associated with cell apoptosis, excessive reactive oxygen species (ROS) production, and inflammation activation leading to tissue damage. In this review, we decipher several mechanisms that make REDD1 a likely metabolic double agent depending on its duration of expression in different physiological and pathological contexts. We also discuss the role played by REDD1 in the cross talk between the Akt/mTOR signaling pathway and the energetic metabolism.
Collapse
Affiliation(s)
| | - Karine Dumas
- Université Cote d'Azur, INSERM, UMR1065, C3M, Nice, France
| | | | | | | |
Collapse
|
27
|
Lesovaya EA, Savinkova AV, Morozova OV, Lylova ES, Zhidkova EM, Kulikov EP, Kirsanov KI, Klopot A, Baida G, Yakubovskaya MG, Gordon LI, Readhead B, Dudley JT, Budunova I. A Novel Approach to Safer Glucocorticoid Receptor-Targeted Anti-lymphoma Therapy via REDD1 (Regulated in Development and DNA Damage 1) Inhibition. Mol Cancer Ther 2020; 19:1898-1908. [PMID: 32546661 PMCID: PMC7875139 DOI: 10.1158/1535-7163.mct-19-1111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022]
Abstract
Glucocorticoids are widely used for therapy of hematologic malignancies. Unfortunately, chronic treatment with glucocorticoids commonly leads to adverse effects including skin and muscle atrophy and osteoporosis. We found recently that REDD1 (regulated in development and DNA damage 1) plays central role in steroid atrophy. Here, we tested whether REDD1 suppression makes glucocorticoid-based therapy of blood cancer safer. Unexpectedly, approximately 50% of top putative REDD1 inhibitors selected by bioinformatics screening of Library of Integrated Network-Based Cellular Signatures database (LINCS) were PI3K/Akt/mTOR inhibitors. We selected Wortmannin, LY294002, and AZD8055 for our studies and showed that they blocked basal and glucocorticoid-induced REDD1 expression. Moreover, all PI3K/mTOR/Akt inhibitors modified glucocorticoid receptor function shifting it toward therapeutically important transrepression. PI3K/Akt/mTOR inhibitors enhanced anti-lymphoma effects of Dexamethasone in vitro and in vivo, in lymphoma xenograft model. The therapeutic effects of PI3K inhibitor+Dexamethasone combinations ranged from cooperative to synergistic, especially in case of LY294002 and Rapamycin, used as a previously characterized reference REDD1 inhibitor. We found that coadministration of LY294002 or Rapamycin with Dexamethasone protected skin against Dexamethasone-induced atrophy, and normalized RANKL/OPG ratio indicating a reduction of Dexamethasone-induced osteoporosis. Together, our results provide foundation for further development of safer and more effective glucocorticoid-based combination therapy of hematologic malignancies using PI3K/Akt/mTOR inhibitors.
Collapse
Affiliation(s)
- Ekaterina A Lesovaya
- N.N. Blokhin NMRCO, Moscow, Russia
- I.P. Pavlov Ryazan State Medical University, Ryazan, Russia
| | | | | | | | | | | | | | - Anna Klopot
- Department of Dermatology, Northwestern University, Chicago, Illinois
| | - Gleb Baida
- Department of Dermatology, Northwestern University, Chicago, Illinois
| | | | - Leo I Gordon
- Division of Hematology Oncology; Northwestern University; Chicago, Illinois
| | - Ben Readhead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Irina Budunova
- Department of Dermatology, Northwestern University, Chicago, Illinois.
| |
Collapse
|
28
|
Shang Y, Kuang M, Wang Z, Huang Y, Liu L, Zhao X, Zhang R, Zhao Y, Peng R, Sun S, Yang Q, Yang Z. An Ultrashort Peptide-Based Supramolecular Hydrogel Mimicking IGF-1 to Alleviate Glucocorticoid-Induced Sarcopenia. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34678-34688. [PMID: 32668906 DOI: 10.1021/acsami.0c09973] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sarcopenia is a common disease in older people due to aging, and it can also occur in midlife because of diseases including cancer. Sarcopenia, characterized by rapid loss of muscle mass and accelerated loss of function, can lead to adverse outcomes such as frailty, falls, and even mortality. The development of pharmacological and therapeutic approaches to treat sarcopenia remains challenging. The growth status and quantity of myoblasts are the key factors directly affecting muscle formation. Therefore, enhancing the function of myoblasts is crucial for the treatment of sarcopenia. In our study, we introduced an insulin-like growth factor-I (IGF-1) mimicking supramolecular nanofibers/hydrogel formed by Nap-FFGSSSR that effectively promoted proliferation and significantly reduced dexamethasone-induced apoptosis of myoblasts, assisted myoblasts to differentiate into myotubes, and prevented the fibrosis of muscle tissue and the deposition of collagen, ultimately achieving outstanding effects in the treatment of sarcopenia. The RNA-sequencing results revealed that our nanofibers possessed similar bioactivity to the growth factor IGF-1, which increased the phosphorylation of Akt by activating the insulin signaling pathway. We prepared novel supramolecular nanomaterials to reverse glucocorticoid-induced myoblast dysfunction, which was promising for the treatment of muscular atrophy. In addition, we envisioned the generation of biofunctional nanomaterials by molecular self-assembly for the treatment of chronic diseases in middle-aged and older people.
Collapse
Affiliation(s)
- Yuna Shang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China
| | - Mingjie Kuang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Shandong 250014, P. R. China
| | - Zhongyan Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China
| | - Ying Huang
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P. R. China
| | - Lulu Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China
| | - Xige Zhao
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P. R. China
| | - Rui Zhang
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P. R. China
| | - Yanhong Zhao
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P. R. China
| | - Rong Peng
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China
| | - Shenghuan Sun
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China
| | - Qiang Yang
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P. R. China
| | - Zhimou Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P. R. China
| |
Collapse
|
29
|
Bouquier N, Moutin E, Tintignac LA, Reverbel A, Jublanc E, Sinnreich M, Chastagnier Y, Averous J, Fafournoux P, Verpelli C, Boeckers T, Carnac G, Perroy J, Ollendorff V. AIMTOR, a BRET biosensor for live imaging, reveals subcellular mTOR signaling and dysfunctions. BMC Biol 2020; 18:81. [PMID: 32620110 PMCID: PMC7334845 DOI: 10.1186/s12915-020-00790-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/06/2020] [Indexed: 11/24/2022] Open
Abstract
Background mTOR signaling is an essential nutrient and energetic sensing pathway. Here we describe AIMTOR, a sensitive genetically encoded BRET (Bioluminescent Resonance Energy Transfer) biosensor to study mTOR activity in living cells. Results As a proof of principle, we show in both cell lines and primary cell cultures that AIMTOR BRET intensities are modified by mTOR activity changes induced by specific inhibitors and activators of mTORC1 including amino acids and insulin. We further engineered several versions of AIMTOR enabling subcellular-specific assessment of mTOR activities. We then used AIMTOR to decipher mTOR signaling in physio-pathological conditions. First, we show that mTORC1 activity increases during muscle cell differentiation and in response to leucine stimulation in different subcellular compartments such as the cytosol and at the surface of the lysosome, the nucleus, and near the mitochondria. Second, in hippocampal neurons, we found that the enhancement of neuronal activity increases mTOR signaling. AIMTOR further reveals mTOR-signaling dysfunctions in neurons from mouse models of autism spectrum disorder. Conclusions Altogether, our results demonstrate that AIMTOR is a sensitive and specific tool to investigate mTOR-signaling dynamics in living cells and phenotype mTORopathies.
Collapse
Affiliation(s)
| | - Enora Moutin
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Lionel A Tintignac
- University Hospital Basel, Department of Biomedecine, Basel, Switzerland
| | | | - Elodie Jublanc
- DMEM, University of Montpellier, INRAE, Montpellier, France
| | - Michael Sinnreich
- University Hospital Basel, Department of Biomedecine, Basel, Switzerland
| | - Yan Chastagnier
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julien Averous
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France
| | - Pierre Fafournoux
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France
| | - Chiara Verpelli
- Cnr Institute of Neuroscience, Via Vanvitelli, 3220129, Milan, Italy
| | - Tobias Boeckers
- Anatomie und Zellbiologie Universität Ulm, Albert-Einstein Allee 11, Raumnummer 4105, M24, 89081, Ulm, Germany
| | - Gilles Carnac
- Phymedexp, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie Perroy
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | | |
Collapse
|
30
|
Yamada T, Ashida Y, Tatebayashi D, Abe M, Himori K. Cancer Cachexia Induces Preferential Skeletal Muscle Myosin Loss When Combined With Denervation. Front Physiol 2020; 11:445. [PMID: 32425814 PMCID: PMC7212425 DOI: 10.3389/fphys.2020.00445] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
Patients with cancer cachexia (CCX) suffer from muscle wasting, which is often but not always accompanied by selective loss of myosin. Here we examined the effects of CCX on muscle mass and myosin heavy chain (MyHC) expression in denervated (DEN) muscles, especially focusing on the protein synthesis and degradation pathways. Male CD2F1 mice were randomly divided into control (CNT) and CCX groups and their left sciatic nerve was transected. CCX was induced by an intraperitoneal injection of colon 26 cells. After 14 days, the serum concentration of IL-6 and corticosteroid was higher in CCX mice than in CNT mice. The combination of CCX with DEN (CCX + DEN) resulted in a marked reduction of the gastrocnemius muscle weight (−69%) that was significantly lower than DEN (−53%) or CCX (−36%) alone. CCX had no effect on MyHC content, but it elicited a preferential MyHC loss when combined with DEN. The expression levels of autophagy markers cathepsin D and LC3BII/I ratio were markedly higher in the CCX + DEN group than in the CNT + DEN and the CCX groups. Paradoxically, there was an increase in protein synthesis rate and phosphorylation levels of p70S6K and rpS6, markers of mTORC1 signaling, in the CNT + DEN group, and these molecular alterations were inhibited in the CCX + DEN group. Our data indicate that CCX aggravates muscle atrophy in DEN muscles by inducing seletive loss of myosin, which involves inactivity dependent mechanisms that is likely to be a consequence of increased autophagy-mediated protein breakdown coupled with impaired protein synthesis.
Collapse
Affiliation(s)
- Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Daisuke Tatebayashi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Masami Abe
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
31
|
Sexual dimorphism in atrophic effects of topical glucocorticoids is driven by differential regulation of atrophogene REDD1 in male and female skin. Oncotarget 2020; 11:409-418. [PMID: 32064044 PMCID: PMC6996908 DOI: 10.18632/oncotarget.27445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/04/2020] [Indexed: 12/11/2022] Open
Abstract
Topical glucocorticoids, well-known anti-inflammatory drugs, induce multiple adverse effects, including skin atrophy. The sex-specific effects of systemic glucocorticoids are known, but sexual dimorphism of therapeutic and side effects of topical steroids has not been studied. We report here that female and male mice were equally sensitive to the anti-inflammatory effect of glucocorticoid fluocinolone acetonide (FA) in ear edema test. At the same time, females were more sensitive to FA-induced skin atrophy. We recently reported that REDD1 (regulated in development and DNA damage 1) plays central role in steroid atrophy. We found that REDD1 was more efficiently activated by FA in females, and that REDD1 knockout significantly protected female but not male mice from skin atrophy. Studies using human keratinocytes revealed that both estradiol and FA induced REDD1 mRNA/protein expression, and cooperated when they were combined at low doses. Chromatin immunoprecipitation analysis confirmed that REDD1 is an estrogen receptor (ER) target gene with multiple estrogen response elements in its promoter. Moreover, experiments with GR and ER inhibitors suggested that REDD1 induction by these hormones was interdependent on functional activity of both receptors. Overall, our results are important for the development of safer GR-targeted therapies suited for female and male dermatological patients.
Collapse
|
32
|
Van Moortel L, Gevaert K, De Bosscher K. Improved Glucocorticoid Receptor Ligands: Fantastic Beasts, but How to Find Them? Front Endocrinol (Lausanne) 2020; 11:559673. [PMID: 33071974 PMCID: PMC7541956 DOI: 10.3389/fendo.2020.559673] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/26/2020] [Indexed: 01/01/2023] Open
Abstract
Exogenous glucocorticoids are widely used in the clinic for the treatment of inflammatory disorders and hematological cancers. Unfortunately, their use is associated with debilitating side effects, including hyperglycemia, osteoporosis, mood swings, and weight gain. Despite the continued efforts of pharma as well as academia, the search for so-called selective glucocorticoid receptor modulators (SEGRMs), compounds with strong anti-inflammatory or anti-cancer properties but a reduced number or level of side effects, has had limited success so far. Although monoclonal antibody therapies have been successfully introduced for the treatment of certain disorders (such as anti-TNF for rheumatoid arthritis), glucocorticoids remain the first-in-line option for many other chronic diseases including asthma, multiple sclerosis, and multiple myeloma. This perspective offers our opinion on why a continued search for SEGRMs remains highly relevant in an era where small molecules are sometimes unrightfully considered old-fashioned. Besides a discussion on which bottlenecks and pitfalls might have been overlooked in the past, we elaborate on potential solutions and recent developments that may push future research in the right direction.
Collapse
Affiliation(s)
- Laura Van Moortel
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- *Correspondence: Karolien De Bosscher
| |
Collapse
|
33
|
Merle A, Jollet M, Britto FA, Goustard B, Bendridi N, Rieusset J, Ollendorff V, Favier FB. Endurance exercise decreases protein synthesis and ER-mitochondria contacts in mouse skeletal muscle. J Appl Physiol (1985) 2019; 127:1297-1306. [PMID: 31487224 DOI: 10.1152/japplphysiol.00196.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Exercise is important to maintain skeletal muscle mass through stimulation of protein synthesis, which is a major ATP-consuming process for cells. However, muscle cells have to face high energy demand during contraction. The present study aimed to investigate protein synthesis regulation during aerobic exercise in mouse hindlimb muscles. Male C57Bl/6J mice ran at 12 m/min for 45 min or at 12 m/min for the first 25 min followed by a progressive increase in velocity up to 20 m/min for the last 20 min. Animals were injected intraperitoneally with 40 nmol/g of body weight of puromycin and euthanized by cervical dislocation immediately after exercise cessation. Analysis of gastrocnemius, plantaris, quadriceps, soleus, and tibialis anterior muscles revealed a decrease in protein translation assessed by puromycin incorporation, without significant differences among muscles or running intensities. The reduction of protein synthesis was associated with a marked inhibition of mammalian target of rapamycin complex 1 (mTORC1)-dependent phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1, a mechanism consistent with reduced translation initiation. A slight activation of AMP-activated protein kinase consecutive to the running session was measured but did not correlate with mTORC1 inhibition. More importantly, exercise resulted in a strong upregulation of regulated in development and DNA damage 1 (REDD1) protein and gene expressions, whereas transcriptional regulation of other recognized exercise-induced genes (IL-6, kruppel-like factor 15, and regulator of calcineurin 1) did not change. Consistently with the recently discovered role of REDD1 on mitochondria-associated membranes, we observed a decrease in mitochondria-endoplasmic reticulum interaction following exercise. Collectively, these data raise questions concerning the role of mitochondria-associated endoplasmic reticulum membrane disruption in the regulation of muscle proteostasis during exercise and, more generally, in cell adaptation to metabolic stress.NEW & NOTEWORTHY How muscles regulate protein synthesis to cope with the energy demand during contraction is poorly documented. Moreover, it is unknown whether protein translation is differentially affected among mouse hindlimb muscles under different physiological exercise modalities. We showed here that 45 min of running decreases puromycin incorporation similarly in 5 different mouse muscles. This decrease was associated with a strong increase in regulated in development and DNA damage 1 protein expression and a significant disruption of the mitochondria and sarcoplasmic reticulum interaction.
Collapse
Affiliation(s)
- Audrey Merle
- DMEM, University of Montpellier, INRA, Montpellier, France
| | - Maxence Jollet
- DMEM, University of Montpellier, INRA, Montpellier, France
| | | | | | - Nadia Bendridi
- INSERM CarMeN Laboratory, Lyon 1 University, INRA U1397, Oullins, France
| | - Jennifer Rieusset
- INSERM CarMeN Laboratory, Lyon 1 University, INRA U1397, Oullins, France
| | | | | |
Collapse
|
34
|
The glucocorticoid receptor agonistic modulators CpdX and CpdX-D3 do not generate the debilitating effects of synthetic glucocorticoids. Proc Natl Acad Sci U S A 2019; 116:14200-14209. [PMID: 31221758 DOI: 10.1073/pnas.1908264116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Seventy years after the discovery of their anti-inflammatory properties, glucocorticoids (GCs) remain the mainstay treatment for major allergic and inflammatory disorders, such as atopic dermatitis, asthma, rheumatoid arthritis, colitis, and conjunctivitis, among others. However, their long-term therapeutical administration is limited by major debilitating side effects, e.g., skin atrophy, osteoporosis, Addison-like adrenal insufficiency, fatty liver, and type 2 diabetes syndrome, as well as growth inhibition in children. These undesirable side effects are mostly related to GC-induced activation of both the direct transactivation and the direct transrepression functions of the GC receptor (GR), whereas the activation of its GC-induced indirect tethered transrepression function results in beneficial anti-inflammatory effects. We have reported in the accompanying paper that the nonsteroidal compound CpdX as well as its deuterated form CpdX-D3 selectively activate the GR indirect transrepression function and are as effective as synthetic GCs at repressing inflammations generated in several mouse models of major pathologies. We now demonstrate that these CpdX compounds are bona fide selective GC receptor agonistic modulators (SEGRAMs) as none of the known GC-induced debilitating side effects were observed in the mouse upon 3-mo CpdX treatments. We notably report that, unlike that of GCs, the administration of CpdX to ovariectomized (OVX) mice does not induce a fatty liver nor type 2 diabetes, which indicates that CpdX could be used in postmenopausal women as an efficient "harmless" GC substitute.
Collapse
|
35
|
Gordon BS, Rossetti ML, Eroshkin AM. Arrdc2 and Arrdc3 elicit divergent changes in gene expression in skeletal muscle following anabolic and catabolic stimuli. Physiol Genomics 2019; 51:208-217. [DOI: 10.1152/physiolgenomics.00007.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle is a highly plastic organ regulating various processes in the body. As such, loss of skeletal muscle underlies the increased morbidity and mortality risk that is associated with numerous conditions. However, no therapies are available to combat the loss of muscle mass during atrophic conditions, which is due in part to the incomplete understanding of the molecular networks altered by anabolic and catabolic stimuli. Thus, the current objective was to identify novel gene networks modulated by such stimuli. For this, total RNA from the tibialis anterior muscle of mice that were fasted overnight or fasted overnight and refed the next morning was subjected to microarray analysis. The refeeding stimulus altered the expression of genes associated with signal transduction. Specifically, expression of alpha arrestin domain containing 2 (Arrdc2) and alpha arrestin domain containing 3 (Arrdc3) was significantly lowered 70–85% by refeeding. Subsequent analysis showed that expression of these genes was also lowered 50–75% by mechanical overload, with the combination of nutrients and mechanical overload acting synergistically to lower Arrdc2 and Arrdc3 expression. On the converse, stimuli that suppress growth such as testosterone depletion or acute aerobic exercise increased Arrdc2 and Arrdc3 expression in skeletal muscle. While Arrdc2 and Arrdc3 exhibited divergent changes in expression following anabolic or catabolic stimuli, no other member of the Arrdc family of genes exhibited the consistent change in expression across the analyzed conditions. Thus, Arrdc2 and Arrdc3 are a novel set of genes that may be implicated in the regulation of skeletal muscle mass.
Collapse
Affiliation(s)
- Bradley S. Gordon
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| | - Michael L. Rossetti
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, Florida
| | - Alexey M. Eroshkin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
- Rancho BioSciences, San Diego, California
| |
Collapse
|
36
|
Faught E, Vijayan MM. Loss of the glucocorticoid receptor in zebrafish improves muscle glucose availability and increases growth. Am J Physiol Endocrinol Metab 2019; 316:E1093-E1104. [PMID: 30939052 PMCID: PMC6620571 DOI: 10.1152/ajpendo.00045.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chronic stress and the associated elevation in corticosteroid levels increase muscle protein catabolism. We hypothesized that the glucocorticoid receptor (GR)-regulated restriction of muscle glucose availability may play a role in the increased protein catabolism during chronic stress. To test this, we generated a ubiquitous GR knockout (GRKO) zebrafish to determine the physiological consequence of glucocorticoid stimulation on muscle metabolism and growth. Adult GRKO zebrafish had higher body mass, and this corresponded to an increased protein and lipid, but not carbohydrate, content. GRKO fish were hypercortisolemic, but they elicited a higher cortisol response to an acute stressor. However, the stressor-induced increase in plasma glucose level observed in the wild type was completely abolished in the GRKO fish. Also, the muscle, but not liver, capacity for glucose uptake was enhanced in the GRKO fish, and this corresponded with a higher hexokinase activity in the mutants. Zebrafish lacking GR also showed a higher capacity for protein synthesis, including increased phosphorylation of eukaryotic initiation factor 4B, higher expression of heat shock protein cognate 70, and total protein content. A chronic fasting stressor reduced body mass and muscle protein content in adult zebrafish, but this decrease was attenuated in the GRKO compared with the wild-type fish. Metabolomics analysis revealed that the free pool of amino acid substrates used for oxidation and gluconeogenesis were lower in the fasted GRKO fish muscle compared with the wild type. Altogether, chronic stressor-mediated GR signaling limits muscle glucose uptake, and this may play a role in protein catabolism, leading to the growth suppression in fish.
Collapse
Affiliation(s)
- Erin Faught
- Department of Biological Sciences, University of Calgary , Calgary, Alberta , Canada
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
37
|
Skeletal Muscle Response to Deflazacort, Dexamethasone and Methylprednisolone. Cells 2019; 8:cells8050406. [PMID: 31052442 PMCID: PMC6562646 DOI: 10.3390/cells8050406] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/07/2019] [Accepted: 04/23/2019] [Indexed: 12/27/2022] Open
Abstract
Glucocorticoids represent some of the most prescribed drugs that are widely used in the treatment of neuromuscular diseases, but their usage leads to side effects such as muscle atrophy. However, different synthetic glucocorticoids can lead to different muscle effects, depending upon its chemical formulation. Here, we intended to demonstrate the muscle histologic and molecular effects of administering different glucocorticoids in equivalency and different dosages. Methods: Seventy male Wistar rats distributed into seven groups received different glucocorticoids in equivalency for ten days or saline solution. The study groups were: Control group (CT) saline solution; dexamethasone (DX) 1.25 or 2.5 mg/kg/day; methylprednisolone (MP) 6.7 or 13.3mg/kg/day; and deflazacort (DC) 10 or 20 mg/kg/day. At the end of the study, the animals were euthanized, and the tibialis anterior and gastrocnemius muscles were collected for metachromatic ATPase (Cross-sectional area (CSA) measurement), Western blotting (protein expression of IGF-1 and Ras/Raf/MEK/ERK pathways) and RT-PCR (MYOSTATIN, MuRF-1, Atrogin-1, REDD-1, REDD-2, MYOD, MYOG and IRS1/2 genes expression) experiments. Results: Muscle atrophy occurred preferentially in type 2B fibers in all glucocorticoid treated groups. DC on 10 mg/kg/day was less harmful to type 2B fibers CSA than other doses and types of synthetic glucocorticoids. In type 1 fibers CSA, lower doses of DC and DX were more harmful than high doses. DX had a greater effect on the IGF-1 pathway than other glucocorticoids. MP more significantly affected P-ERK1/2 expression, muscle fiber switching (fast-to-slow), and expression of REDD1 and MyoD genes than other glucocorticoids. Compared to DX and MP, DC had less of an effect on the expression of atrogenes (MURF-1 and Atrogin-1) despite increased MYOSTATIN and decreased IRS-2 genes expression. Conclusions: Different glucocorticoids appears to cause muscle atrophy affecting secondarily different signaling mechanisms. MP is more likely to affect body/muscles mass, MEK/ERK pathway and fiber type transition, DX the IGF-1 pathway and IRS1/2 expression. DC had the smallest effect on muscle atrophic response possibly due a delayed timing on atrogenes response.
Collapse
|
38
|
Dungan CM, Gordon BS, Williamson DL. Acute treadmill exercise discriminately improves the skeletal muscle insulin-stimulated growth signaling responses in mice lacking REDD1. Physiol Rep 2019; 7:e14011. [PMID: 30806987 PMCID: PMC6383112 DOI: 10.14814/phy2.14011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
A loss of the regulated in development and DNA damage 1 (REDD1) hyperactivates mechanistic Target of Rapamycin Complex 1 (mTORC1) reducing insulin-stimulated insulin signaling, which could provide insight into mechanisms of insulin resistance. Although aerobic exercise acutely inhibits mTORC1 signaling, improvements in insulin-stimulated signaling are exhibited. The goal of this study was to determine if a single bout of treadmill exercise was sufficient to improve insulin signaling in mice lacking REDD1. REDD1 wildtype (WT) and REDD1 knockout (KO) mice were acutely exercised on a treadmill (30 min, 20 m/min, 5% grade). A within animal noninsulin-to-insulin-stimulated percent change in skeletal muscle insulin-stimulated kinases (IRS-1, ERK1/2, Akt), growth signaling activation (4E-BP1, S6K1), and markers of growth repression (REDD1, AMPK, FOXO1/3A) was examined, following no exercise control or an acute bout of exercise. Unlike REDD1 KO mice, REDD1 WT mice exhibited an increase (P < 0.05) in REDD1 following treadmill exercise. However, both REDD1 WT and KO mice exhibited an increase (P < 0.05) AMPK phosphorylation, and a subsequent reduction (P < 0.05) in mTORC1 signaling after the exercise bout versus nonexercising WT or KO mice. Exercise increased (P < 0.05) the noninsulin-to-insulin-stimulated percent change phosphorylation of mTORC1, ERK1/2, IRS-1, and Akt on S473 in REDD1 KO mice when compared to nonexercised KO mice. However, there was no change in the noninsulin-to-insulin-stimulated percent change activation of Akt on T308 and FOXO1/3A in the KO when compared to WT or KO mouse muscle after exercise. Our data show that a bout of treadmill exercise discriminately improves insulin-stimulated signaling in the absence of REDD1.
Collapse
Affiliation(s)
- Cory M. Dungan
- Department of Rehabilitation SciencesCollege of Health SciencesUniversity of KentuckyLexingtonKentucky
| | - Bradley S. Gordon
- Department of Nutrition, Food, and Exercise SciencesCollege of Human SciencesFlorida State UniversityTallahasseeFlorida
| | - David L. Williamson
- Kinesiology ProgramSchool of Behavioral Sciences and EducationPenn State HarrisburgMiddletownPennsylvania
| |
Collapse
|
39
|
Fappi A, Neves JDC, Kawasaki KA, Bacelar L, Sanches LN, P. da Silva F, Larina‐Neto R, Chadi G, Zanoteli E. Omega-3 multiple effects increasing glucocorticoid-induced muscle atrophy: autophagic, AMPK and UPS mechanisms. Physiol Rep 2019; 7:e13966. [PMID: 30648357 PMCID: PMC6333722 DOI: 10.14814/phy2.13966] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Muscle atrophy occurs in many conditions, including use of glucocorticoids. N-3 (omega-3) is widely consumed due its healthy properties; however, concomitant use with glucocorticoids can increase its side effects. We evaluated the influences of N-3 on glucocorticoid atrophy considering IGF-1, Myostatin, MEK/ERK, AMPK pathways besides the ubiquitin-proteasome system (UPS) and autophagic/lysosomal systems. Sixty animals constituted six groups: CT, N-3 (EPA 100 mg/kg/day for 40 days), DEXA 1.25 (DEXA 1.25 mg/kg/day for 10 days), DEXA 1.25 + N3 (EPA for 40 days + DEXA 1.25 mg/kg/day for the last 10 days), DEXA 2.5 (DEXA 2.5 mg/kg/day for 10 days), and DEXA 2.5 + N3 (EPA for 40 days + DEXA 2.5 mg/kg/day for 10 days). Results: N-3 associated with DEXA increases atrophy (fibers 1 and 2A), FOXO3a, P-SMAD2/3, Atrogin-1/MAFbx (mRNA) expression, and autophagic protein markers (LC3II, LC3II/LC3I, LAMP-1 and acid phosphatase). Additionally, N-3 supplementation alone decreased P-FOXO3a, PGC1-alpha, and type 1 muscle fiber area. Conclusion: N-3 supplementation increases muscle atrophy caused by DEXA in an autophagic, AMPK and UPS process.
Collapse
Affiliation(s)
- Alan Fappi
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Juliana de C. Neves
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Karine A. Kawasaki
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Luana Bacelar
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Leandro N. Sanches
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Felipe P. da Silva
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Rubens Larina‐Neto
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Gerson Chadi
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Edmar Zanoteli
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| |
Collapse
|
40
|
Hypoxia impairs adaptation of skeletal muscle protein turnover- and AMPK signaling during fasting-induced muscle atrophy. PLoS One 2018; 13:e0203630. [PMID: 30212583 PMCID: PMC6136752 DOI: 10.1371/journal.pone.0203630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/23/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Hypoxemia in humans may occur during high altitude mountaineering and in patients suffering from ventilatory insufficiencies such as cardiovascular- or respiratory disease including Chronic Obstructive Pulmonary Disease (COPD). In these conditions, hypoxemia has been correlated to reduced appetite and decreased food intake. Since hypoxemia and reduced food intake intersect in various physiological and pathological conditions and both induce loss of muscle mass, we investigated whether hypoxia aggravates fasting-induced skeletal muscle atrophy and evaluated underlying protein turnover signaling. METHODS Mice were kept under hypoxic (8% oxygen) or normoxic conditions (21% oxygen), or were pair-fed to the hypoxia group for 12 days. Following an additional 24 hours of fasting, muscle weight and protein turnover signaling were assessed in the gastrocnemius muscle by RT-qPCR and Western blotting. RESULTS Loss of gastrocnemius muscle mass in response to fasting in the hypoxic group was increased compared to the normoxic group, but not to the pair-fed normoxic control group. Conversely, the fasting-induced increase in poly-ubiquitin conjugation, and expression of the ubiquitin 26S-proteasome E3 ligases, autophagy-lysosomal degradation-related mRNA transcripts and proteins, and markers of the integrated stress response (ISR), were attenuated in the hypoxia group compared to the pair-fed group. Mammalian target of rapamycin complex 1 (mTORC1) downstream signaling was reduced by fasting under normoxic conditions, but sustained under hypoxic conditions. Activation of AMP-activated protein kinase (AMPK) / tuberous sclerosis complex 2 (TSC2) signaling by fasting was absent, in line with retained mTORC1 activity under hypoxic conditions. Similarly, hypoxia suppressed AMPK-mediated glucocorticoid receptor (GR) signaling following fasting, which corresponded with blunted proteolytic signaling responses. CONCLUSIONS Hypoxia aggravates fasting-induced muscle wasting, and suppresses AMPK and ISR activation. Altered AMPK-mediated regulation of mTORC1 and GR may underlie aberrant protein turnover signaling and affect muscle atrophy responses in hypoxic skeletal muscle.
Collapse
|
41
|
Pyropia yezoensis Protein Supplementation Prevents Dexamethasone-Induced Muscle Atrophy in C57BL/6 Mice. Mar Drugs 2018; 16:md16090328. [PMID: 30208614 PMCID: PMC6163250 DOI: 10.3390/md16090328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/05/2018] [Accepted: 09/09/2018] [Indexed: 12/29/2022] Open
Abstract
We investigated the protective effects of Pyropia yezoensis crude protein (PYCP) against dexamethasone (DEX)-induced myotube atrophy and its underlying mechanisms. DEX (3 mg/kg body weight, intraperitoneal injection) and PYCP (150 and 300 mg/kg body weight, oral) were administrated to mice for 18 days, and the effects of PYCP on DEX-induced muscle atrophy were evaluated. Body weight, calf thickness, and gastrocnemius and tibialis anterior muscle weight were significantly decreased by DEX administration (p < 0.05), while PYCP supplementation effectively prevented the DEX-induced decrease in body weight, calf thickness, and muscle weight. PYCP supplementation also attenuated the DEX-induced increase in serum glucose, creatine kinase, and lactate dehydrogenase levels. Additionally, PYCP supplementation reversed DEX-induced muscle atrophy via the regulation of the insulin-like growth factor-I/protein kinase B/rapamycin-sensitive mTOR complex I/forkhead box O signaling pathway. The mechanistic investigation revealed that PYCP inhibited the ubiquitin-proteasome and autophagy-lysosome pathways in DEX-administrated C57BL/6 mice. These findings demonstrated that PYCP increased protein synthesis and decreased protein breakdown to prevent muscle atrophy. Therefore, PYCP supplementation appears to be useful for preventing muscle atrophy.
Collapse
|
42
|
Tatebayashi D, Himori K, Yamada R, Ashida Y, Miyazaki M, Yamada T. High-intensity eccentric training ameliorates muscle wasting in colon 26 tumor-bearing mice. PLoS One 2018; 13:e0199050. [PMID: 29894511 PMCID: PMC5997314 DOI: 10.1371/journal.pone.0199050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/30/2018] [Indexed: 11/25/2022] Open
Abstract
Eccentric (ECC) contractions are used to maintain skeletal muscle mass and strength in healthy subjects and patients. Here we investigated the effects of ECC training induced by electrical stimulation (ES) on muscle wasting in colon 26 (C-26) tumor-bearing mice. Mice were divided into four groups: control (CNT), CNT + ECC, C-26, and C-26 + ECC. Cancer cachexia was induced by a subcutaneous injection of C-26 cells and developed for four weeks. In experiment 1, muscle protein synthesis rate and mammalian target of rapamycin complex (mTORC) 1 signaling were investigated six hours after one bout of ECC-ES (2 s contraction given every 6 s, 20°/s, 4 sets of 5 contractions). In experiment 2, ECC-ES training, a total of 14 sessions, was performed every other day starting one day after C-26 injection. Compared to the CNT mice, the gastrocnemius muscle weight was significantly decreased in the tumor-bearing mice. This change was accompanied by a reduction in protein synthesis rate and a marked increase in the expression levels of genes including regulated in development and DNA damage responses (REDD) 1, forkhead box protein O1 (FoxO1), muscle-specific E3 ubiquitin ligases atrogin-1, and muscle ring finger 1 (MuRF-1) mRNA. ECC-ES increased the protein synthesis rate and the phosphorylation levels of p70S6K (Thr389) and rpS6 (Ser240/244), markers for mTORC1 signaling, and reversed an upregulation of MuRF-1 mRNA in muscles from C-26 mice. Our findings suggest that ECC-ES training reduces skeletal muscle atrophy in C-26 tumor-bearing mice through activation of mTORC1 signaling and the inhibition of ubiquitin-proteasome pathway. Thus, ECC-ES training might be used to effectively ameliorate muscle wasting in patients with cancer cachexia.
Collapse
Affiliation(s)
- Daisuke Tatebayashi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Ryotaro Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Mitsunori Miyazaki
- School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Tobetsu, Japan
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
43
|
Britto FA, Cortade F, Belloum Y, Blaquière M, Gallot YS, Docquier A, Pagano AF, Jublanc E, Bendridi N, Koechlin-Ramonatxo C, Chabi B, Francaux M, Casas F, Freyssenet D, Rieusset J, Giorgetti-Peraldi S, Carnac G, Ollendorff V, Favier FB. Glucocorticoid-dependent REDD1 expression reduces muscle metabolism to enable adaptation under energetic stress. BMC Biol 2018; 16:65. [PMID: 29895328 PMCID: PMC5998563 DOI: 10.1186/s12915-018-0525-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
Background Skeletal muscle atrophy is a common feature of numerous chronic pathologies and is correlated with patient mortality. The REDD1 protein is currently recognized as a negative regulator of muscle mass through inhibition of the Akt/mTORC1 signaling pathway. REDD1 expression is notably induced following glucocorticoid secretion, which is a component of energy stress responses. Results Unexpectedly, we show here that REDD1 instead limits muscle loss during energetic stresses such as hypoxia and fasting by reducing glycogen depletion and AMPK activation. Indeed, we demonstrate that REDD1 is required to decrease O2 and ATP consumption in skeletal muscle via reduction of the extent of mitochondrial-associated endoplasmic reticulum membranes (MAMs), a central hub connecting energy production by mitochondria and anabolic processes. In fact, REDD1 inhibits ATP-demanding processes such as glycogen storage and protein synthesis through disruption of the Akt/Hexokinase II and PRAS40/mTORC1 signaling pathways in MAMs. Our results uncover a new REDD1-dependent mechanism coupling mitochondrial respiration and anabolic processes during hypoxia, fasting, and exercise. Conclusions Therefore, REDD1 is a crucial negative regulator of energy expenditure that is necessary for muscle adaptation during energetic stresses. This present study could shed new light on the role of REDD1 in several pathologies associated with energetic metabolism alteration, such as cancer, diabetes, and Parkinson’s disease. Electronic supplementary material The online version of this article (10.1186/s12915-018-0525-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Marine Blaquière
- PHYMEDEXP, Univ. Montpellier, INSERM, CNRS, CHRU of Montpellier, Montpellier, France
| | | | | | | | | | - Nadia Bendridi
- INSERM UMR-1060, CarMeN Laboratory, Lyon 1 University, INRA U1397, Oullins, France
| | | | | | - Marc Francaux
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | - Jennifer Rieusset
- INSERM UMR-1060, CarMeN Laboratory, Lyon 1 University, INRA U1397, Oullins, France
| | | | - Gilles Carnac
- PHYMEDEXP, Univ. Montpellier, INSERM, CNRS, CHRU of Montpellier, Montpellier, France
| | | | | |
Collapse
|
44
|
De Wolf H, Cougnaud L, Van Hoorde K, De Bondt A, Wegner JK, Ceulemans H, Göhlmann H. High-Throughput Gene Expression Profiles to Define Drug Similarity and Predict Compound Activity. Assay Drug Dev Technol 2018; 16:162-176. [DOI: 10.1089/adt.2018.845] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Hans De Wolf
- Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Computational Sciences, Discovery Sciences, Beerse, Belgium
| | | | | | - An De Bondt
- Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Computational Sciences, Discovery Sciences, Beerse, Belgium
| | - Joerg K. Wegner
- Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Computational Sciences, Discovery Sciences, Beerse, Belgium
| | - Hugo Ceulemans
- Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Computational Sciences, Discovery Sciences, Beerse, Belgium
| | - Hinrich Göhlmann
- Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Computational Sciences, Discovery Sciences, Beerse, Belgium
| |
Collapse
|
45
|
Lesovaya E, Agarwal S, Readhead B, Vinokour E, Baida G, Bhalla P, Kirsanov K, Yakubovskaya M, Platanias LC, Dudley JT, Budunova I. Rapamycin Modulates Glucocorticoid Receptor Function, Blocks Atrophogene REDD1, and Protects Skin from Steroid Atrophy. J Invest Dermatol 2018; 138:1935-1944. [PMID: 29596905 DOI: 10.1016/j.jid.2018.02.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/16/2018] [Accepted: 02/21/2018] [Indexed: 12/20/2022]
Abstract
Glucocorticoids have excellent therapeutic properties; however, they cause significant adverse atrophogenic effects. The mTORC1 inhibitor REDD1 has been recently identified as a key mediator of glucocorticoid-induced atrophy. We performed computational screening of a connectivity map database to identify putative REDD1 inhibitors. The top selected candidates included rapamycin, which was unexpected because it inhibits pro-proliferative mTOR signaling. Indeed, rapamycin inhibited REDD1 induction by glucocorticoids dexamethasone, clobetasol propionate, and fluocinolone acetonide in keratinocytes, lymphoid cells, and mouse skin. We also showed blunting of glucocorticoid-induced REDD1 induction by either catalytic inhibitor of mTORC1/2 (OSI-027) or genetic inhibition of mTORC1, highlighting role of mTOR in glucocorticoid receptor signaling. Moreover, rapamycin inhibited glucocorticoid receptor phosphorylation, nuclear translocation, and loading on glucocorticoid-responsive elements in REDD1 promoter. Using microarrays, we quantified a global effect of rapamycin on gene expression regulation by fluocinolone acetonide in human keratinocytes. Rapamycin inhibited activation of glucocorticoid receptor target genes yet enhanced the repression of pro-proliferative and proinflammatory genes. Remarkably, rapamycin protected skin against glucocorticoid-induced atrophy but had no effect on the glucocorticoid anti-inflammatory activity in different in vivo models, suggesting the clinical potential of combining rapamycin with glucocorticoids for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Ekaterina Lesovaya
- N. Blokhin Cancer Research Center, Moscow, Russia; I.P. Pavlov Ryazan State Medical University, Ryazan, Russia
| | - Shivani Agarwal
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | - Ben Readhead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Elena Vinokour
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | - Gleb Baida
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | - Pankaj Bhalla
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | | | | | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA; Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Irina Budunova
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
46
|
Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:136-168. [PMID: 29180230 DOI: 10.1016/j.pnpbp.2017.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
47
|
Abstract
The cancer anorexia cachexia syndrome is a systemic metabolic disorder characterized by the catabolism of stored nutrients in skeletal muscle and adipose tissue that is particularly prevalent in nonsmall cell lung cancer (NSCLC). Loss of skeletal muscle results in functional impairments and increased mortality. The aim of the present study was to characterize the changes in systemic metabolism in a genetically engineered mouse model of NSCLC. We show that a portion of these animals develop loss of skeletal muscle, loss of adipose tissue, and increased inflammatory markers mirroring the human cachexia syndrome. Using noncachexic and fasted animals as controls, we report a unique cachexia metabolite phenotype that includes the loss of peroxisome proliferator-activated receptor-α (PPARα) -dependent ketone production by the liver. In this setting, glucocorticoid levels rise and correlate with skeletal muscle degradation and hepatic markers of gluconeogenesis. Restoring ketone production using the PPARα agonist, fenofibrate, prevents the loss of skeletal muscle mass and body weight. These results demonstrate how targeting hepatic metabolism can prevent muscle wasting in lung cancer, and provide evidence for a therapeutic strategy.
Collapse
|
48
|
de Theije CC, Schols AMWJ, Lamers WH, Ceelen JJM, van Gorp RH, Hermans JJR, Köhler SE, Langen RCJ. Glucocorticoid Receptor Signaling Impairs Protein Turnover Regulation in Hypoxia-Induced Muscle Atrophy in Male Mice. Endocrinology 2018; 159:519-534. [PMID: 29069356 DOI: 10.1210/en.2017-00603] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/18/2017] [Indexed: 02/04/2023]
Abstract
Hypoxemia may contribute to muscle wasting in conditions such as chronic obstructive pulmonary disease. Muscle wasting develops when muscle proteolysis exceeds protein synthesis. Hypoxia induces skeletal muscle atrophy in mice, which can in part be attributed to reduced food intake. We hypothesized that hypoxia elevates circulating corticosterone concentrations by reduced food intake and enhances glucocorticoid receptor (GR) signaling in muscle, which causes elevated protein degradation signaling and dysregulates protein synthesis signaling during hypoxia-induced muscle atrophy. Muscle-specific GR knockout and control mice were subjected to normoxia, normobaric hypoxia (8% oxygen), or pair-feeding to the hypoxia group for 4 days. Plasma corticosterone and muscle GR signaling increased after hypoxia and pair-feeding. GR deficiency prevented muscle atrophy by pair-feeding but not by hypoxia. GR deficiency differentially affected activation of ubiquitin 26S-proteasome and autophagy proteolytic systems by pair-feeding and hypoxia. Reduced food intake suppressed mammalian target of rapamycin complex 1 (mTORC1) activity under normoxic but not hypoxic conditions, and this retained mTORC1 activity was mediated by GR. We conclude that GR signaling is required for muscle atrophy and increased expression of proteolysis-associated genes induced by decreased food intake under normoxic conditions. Under hypoxic conditions, muscle atrophy and elevated gene expression of the ubiquitin proteasomal system-associated E3 ligases Murf1 and Atrogin-1 are mostly independent of GR signaling. Furthermore, impaired inhibition of mTORC1 activity is GR-dependent in hypoxia-induced muscle atrophy.
Collapse
MESH Headings
- Animals
- Autophagy
- Cell Size
- Corticosterone/blood
- Corticosterone/metabolism
- Crosses, Genetic
- Gene Expression Regulation, Enzymologic
- Glucocorticoids/metabolism
- Hypoxia/blood
- Hypoxia/metabolism
- Hypoxia/pathology
- Hypoxia/physiopathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Muscle Fibers, Fast-Twitch/enzymology
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/pathology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Atrophy/etiology
- Proteasome Endopeptidase Complex/metabolism
- Proteolysis
- Random Allocation
- Receptors, Glucocorticoid/agonists
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Chiel C de Theije
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Wouter H Lamers
- Department of Anatomy and Embryology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Judith J M Ceelen
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Rick H van Gorp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - J J Rob Hermans
- Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - S Elonore Köhler
- Department of Anatomy and Embryology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
49
|
Gordon BS, Steiner JL, Rossetti ML, Qiao S, Ellisen LW, Govindarajan SS, Eroshkin AM, Williamson DL, Coen PM. REDD1 induction regulates the skeletal muscle gene expression signature following acute aerobic exercise. Am J Physiol Endocrinol Metab 2017; 313:E737-E747. [PMID: 28899858 PMCID: PMC5814598 DOI: 10.1152/ajpendo.00120.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/08/2017] [Accepted: 09/04/2017] [Indexed: 11/22/2022]
Abstract
The metabolic stress placed on skeletal muscle by aerobic exercise promotes acute and long-term health benefits in part through changes in gene expression. However, the transducers that mediate altered gene expression signatures have not been completely elucidated. Regulated in development and DNA damage 1 (REDD1) is a stress-induced protein whose expression is transiently increased in skeletal muscle following acute aerobic exercise. However, the role of this induction remains unclear. Because REDD1 altered gene expression in other model systems, we sought to determine whether REDD1 induction following acute exercise altered the gene expression signature in muscle. To do this, wild-type and REDD1-null mice were randomized to remain sedentary or undergo a bout of acute treadmill exercise. Exercised mice recovered for 1, 3, or 6 h before euthanization. Acute exercise induced a transient increase in REDD1 protein expression within the plantaris only at 1 h postexercise, and the induction occurred in both cytosolic and nuclear fractions. At this time point, global changes in gene expression were surveyed using microarray. REDD1 induction was required for the exercise-induced change in expression of 24 genes. Validation by RT-PCR confirmed that the exercise-mediated changes in genes related to exercise capacity, muscle protein metabolism, neuromuscular junction remodeling, and Metformin action were negated in REDD1-null mice. Finally, the exercise-mediated induction of REDD1 was partially dependent upon glucocorticoid receptor activation. In all, these data show that REDD1 induction regulates the exercise-mediated change in a distinct set of genes within skeletal muscle.
Collapse
Affiliation(s)
- Bradley S Gordon
- Department of Nutrition, Food, and Exercise Science, Florida State University, Tallahassee, Florida;
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, Florida
| | - Jennifer L Steiner
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Michael L Rossetti
- Department of Nutrition, Food, and Exercise Science, Florida State University, Tallahassee, Florida
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, Florida
| | - Shuxi Qiao
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Leif W Ellisen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Alexey M Eroshkin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - David L Williamson
- Kinesiology Program, School of Behavioral Sciences and Education, Pennsylvania State University-Harrisburg, Middletown, Pennsylvania; and
| | - Paul M Coen
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida
| |
Collapse
|
50
|
Mayeuf-Louchart A, Thorel Q, Delhaye S, Beauchamp J, Duhem C, Danckaert A, Lancel S, Pourcet B, Woldt E, Boulinguiez A, Ferri L, Zecchin M, Staels B, Sebti Y, Duez H. Rev-erb-α regulates atrophy-related genes to control skeletal muscle mass. Sci Rep 2017; 7:14383. [PMID: 29085009 PMCID: PMC5662766 DOI: 10.1038/s41598-017-14596-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/12/2017] [Indexed: 12/13/2022] Open
Abstract
The nuclear receptor Rev-erb-α modulates hepatic lipid and glucose metabolism, adipogenesis and thermogenesis. We have previously demonstrated that Rev-erb-α is also an important regulator of skeletal muscle mitochondrial biogenesis and function, and autophagy. As such, Rev-erb-α over-expression in skeletal muscle or its pharmacological activation improved mitochondrial respiration and enhanced exercise capacity. Here, in gain- and loss-of function studies, we show that Rev-erb-α also controls muscle mass. Rev-erb-α-deficiency in skeletal muscle leads to increased expression of the atrophy-related genes (atrogenes), associated with reduced muscle mass and decreased fiber size. By contrast, in vivo and in vitro Rev-erb-α over-expression results in reduced atrogenes expression and increased fiber size. Finally, Rev-erb-α pharmacological activation blocks dexamethasone-induced upregulation of atrogenes and muscle atrophy. This study identifies Rev-erb-α as a promising pharmacological target to preserve muscle mass.
Collapse
Affiliation(s)
- Alicia Mayeuf-Louchart
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France
| | - Quentin Thorel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France
| | - Stéphane Delhaye
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France
| | - Justine Beauchamp
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France
| | - Christian Duhem
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France
| | | | - Steve Lancel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France
| | - Benoit Pourcet
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France
| | - Estelle Woldt
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France
| | - Alexis Boulinguiez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France
| | - Lise Ferri
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France
| | - Mathilde Zecchin
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France
| | - Yasmine Sebti
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France
| | - Hélène Duez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France.
| |
Collapse
|