1
|
Cilvik SN, Boehmer B, Wesolowski SR, Brown LD, Rozance PJ. Chronic late gestation fetal hyperglucagonaemia results in lower insulin secretion, pancreatic mass, islet area and beta- and α-cell proliferation. J Physiol 2024. [PMID: 39383208 DOI: 10.1113/jp286974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024] Open
Abstract
Fetal glucagon concentrations are elevated in the presence of a compromised intrauterine environment, as in cases of placental insufficiency and perinatal acidaemia. Our objective was to investigate the impact of late gestation fetal hyperglucagonaemia on in vivo insulin secretion and pancreatic islet structure. Chronically catheterized late gestation fetal sheep received an intravenous infusion of glucagon at low (5 ng/kg/min; GCG-5) or high (50 ng/kg/min; GCG-50) concentrations or a vehicle control (CON) for 8-10 days. Glucose-stimulated fetal insulin secretion (GSIS) was measured following 3 h (acute response) and 8-10 days (chronic response) of experimental infusions. Insulin, glucose and amino acid concentrations were measured longitudinally. The pancreas was collected at the study end for histology and gene expression analysis. Acute exposure (3 h) to GCG-50 induced a 3-fold increase in basal insulin concentrations with greater GSIS. Meanwhile, chronic exposure to both GCG-5 and GCG-50 decreased basal insulin concentrations 2-fold by day 8-10. Chronic GCG-50 also blunted GSIS at the study end. Fetal amino acid concentrations were decreased within 24 h of GCG-5 and GCG-50, while there were no differences in fetal glucose. Histologically, GCG-5 and GCG-50 had lower β- and α-cell proliferation, as well as lower α-cell mass and pancreas weight, while GCG-50 had lower islet area. This study demonstrates that chronic glucagon elevation in late gestation fetuses impairs β-cell proliferation and insulin secretion, which has the potential to contribute to later-life diabetes risk. We speculate that the action of glucagon in lower circulating fetal amino acid concentrations may have a suppressive effect on insulin secretion. KEY POINTS: We have previously demonstrated in a chronically catheterized fetal sheep model that experimentally elevated glucagon in the fetus impairs placental function, reduces fetal protein accretion and lowers fetal weight. In the present study, we further characterized the effects of elevated fetal glucagon on fetal physiology with a focus on pancreatic development and β-cell function. We show that experimentally elevated fetal glucagon results in lower β- and α-cell proliferation, as well as decreased insulin secretion after 8-10 days of glucagon infusion. These results have important implications for β-cell reserve and later-life predisposition to diabetes.
Collapse
Affiliation(s)
- Sarah N Cilvik
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brit Boehmer
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephanie R Wesolowski
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Laura D Brown
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul J Rozance
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Brown LD, Rozance PJ, Wang D, Eroglu EC, Wilkening RB, Solmonson A, Wesolowski SR. Increased hepatic glucose production with lower oxidative metabolism in the growth-restricted fetus. JCI Insight 2024; 9:e176497. [PMID: 38687612 PMCID: PMC11141920 DOI: 10.1172/jci.insight.176497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Fetal growth restriction (FGR) is accompanied by early activation of hepatic glucose production (HGP), a hallmark of type 2 diabetes (T2D). Here, we used fetal hepatic catheterization to directly measure HGP and substrate flux in a sheep FGR model. We hypothesized that FGR fetuses would have increased hepatic lactate and amino acid uptake to support increased HGP. Indeed, FGR fetuses compared with normal (CON) fetuses had increased HGP and activation of gluconeogenic genes. Unexpectedly, hepatic pyruvate output was increased, while hepatic lactate and gluconeogenic amino acid uptake rates were decreased in FGR liver. Hepatic oxygen consumption and total substrate uptake rates were lower. In FGR liver tissue, metabolite abundance, 13C-metabolite labeling, enzymatic activity, and gene expression supported decreased pyruvate oxidation and increased lactate production. Isolated hepatocytes from FGR fetuses had greater intrinsic capacity for lactate-fueled glucose production. FGR livers also had lower energy (ATP) and redox state (NADH/NAD+ ratio). Thus, reduced hepatic oxidative metabolism may make carbons available for increased HGP, but also produces nutrient and energetic stress in FGR liver. Intrinsic programming of these pathways regulating HGP in the FGR fetus may underlie increased HGP and T2D risk postnatally.
Collapse
Affiliation(s)
- Laura D Brown
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paul J Rozance
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dong Wang
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Evren C Eroglu
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Randall B Wilkening
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ashley Solmonson
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Stephanie R Wesolowski
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Kyllo HM, Wang D, Lorca RA, Julian CG, Moore LG, Wilkening RB, Rozance PJ, Brown LD, Wesolowski SR. Adaptive responses in uteroplacental metabolism and fetoplacental nutrient shuttling and sensing during placental insufficiency. Am J Physiol Endocrinol Metab 2023; 324:E556-E568. [PMID: 37126847 PMCID: PMC10259853 DOI: 10.1152/ajpendo.00046.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
Glucose, lactate, and amino acids are major fetal nutrients. During placental insufficiency-induced intrauterine growth restriction (PI-IUGR), uteroplacental weight-specific oxygen consumption rates are maintained, yet fetal glucose and amino acid supply is decreased and fetal lactate concentrations are increased. We hypothesized that uteroplacental metabolism adapts to PI-IUGR by altering nutrient allocation to maintain oxidative metabolism. Here, we measured nutrient flux rates, with a focus on nutrients shuttled between the placenta and fetus (lactate-pyruvate, glutamine-glutamate, and glycine-serine) in a sheep model of PI-IUGR. PI-IUGR fetuses weighed 40% less and had decreased oxygen, glucose, and amino acid concentrations and increased lactate and pyruvate versus control (CON) fetuses. Uteroplacental weight-specific rates of oxygen, glucose, lactate, and pyruvate uptake were similar. In PI-IUGR, fetal glucose uptake was decreased and pyruvate output was increased. In PI-IUGR placental tissue, pyruvate dehydrogenase (PDH) phosphorylation was decreased and PDH activity was increased. Uteroplacental glutamine output to the fetus and expression of genes regulating glutamine-glutamate metabolism were lower in PI-IUGR. Fetal glycine uptake was lower in PI-IUGR, with no differences in uteroplacental glycine or serine flux. These results suggest increased placental utilization of pyruvate from the fetus, without higher maternal glucose utilization, and lower fetoplacental amino acid shuttling during PI-IUGR. Mechanistically, AMP-activated protein kinase (AMPK) activation was higher and associated with thiobarbituric acid-reactive substances (TBARS) content, a marker of oxidative stress, and PDH activity in the PI-IUGR placenta, supporting a potential link between oxidative stress, AMPK, and pyruvate utilization. These differences in fetoplacental nutrient sensing and shuttling may represent adaptive strategies enabling the placenta to maintain oxidative metabolism.NEW & NOTEWORTHY These results suggest increased placental utilization of pyruvate from the fetus, without higher maternal glucose uptake, and lower amino acid shuttling in the placental insufficiency-induced intrauterine growth restriction (PI-IUGR) placenta. AMPK activation was associated with oxidative stress and PDH activity, supporting a putative link between oxidative stress, AMPK, and pyruvate utilization. These differences in fetoplacental nutrient sensing and shuttling may represent adaptive strategies enabling the placenta to maintain oxidative metabolism at the expense of fetal growth.
Collapse
Affiliation(s)
- Hannah M Kyllo
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Dong Wang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Ramón A Lorca
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Colleen G Julian
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Lorna G Moore
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Randall B Wilkening
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Paul J Rozance
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Laura D Brown
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Stephanie R Wesolowski
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| |
Collapse
|
4
|
Jones AK, Wang D, Goldstrohm DA, Brown LD, Rozance PJ, Limesand SW, Wesolowski SR. Tissue-specific responses that constrain glucose oxidation and increase lactate production with the severity of hypoxemia in fetal sheep. Am J Physiol Endocrinol Metab 2022; 322:E181-E196. [PMID: 34957858 PMCID: PMC8816623 DOI: 10.1152/ajpendo.00382.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fetal hypoxemia decreases insulin and increases cortisol and norepinephrine concentrations and may restrict growth by decreasing glucose utilization and altering substrate oxidation. Specifically, we hypothesized that hypoxemia would decrease fetal glucose oxidation and increase lactate and pyruvate production. We tested this by measuring whole body glucose oxidation and lactate production, and molecular pathways in liver, muscle, adipose, and pancreas tissues of fetuses exposed to maternal hypoxemia for 9 days (HOX) compared with control fetal sheep (CON) in late gestation. Fetuses with more severe hypoxemia had lower whole body glucose oxidation rates, and HOX fetuses had increased lactate production from glucose. In muscle and adipose tissue, expression of the glucose transporter GLUT4 was decreased. In muscle, pyruvate kinase (PKM) and lactate dehydrogenase B (LDHB) expression was decreased. In adipose tissue, LDHA and lactate transporter (MCT1) expression was increased. In liver, there was decreased gene expression of PKLR and MPC2 and phosphorylation of PDH, and increased LDHA gene and LDH protein abundance. LDH activity, however, was decreased only in HOX skeletal muscle. There were no differences in basal insulin signaling across tissues, nor differences in pancreatic tissue insulin content, β-cell area, or genes regulating β-cell function. Collectively, these results demonstrate coordinated metabolic responses across tissues in the hypoxemic fetus that limit glucose oxidation and increase lactate and pyruvate production. These responses may be mediated by hypoxemia-induced endocrine responses including increased norepinephrine and cortisol, which inhibit pancreatic insulin secretion resulting in lower insulin concentrations and decreased stimulation of glucose utilization.NEW & NOTEWORTHY Hypoxemia lowered fetal glucose oxidation rates, based on severity of hypoxemia, and increased lactate production. This was supported by tissue-specific metabolic responses that may result from increased norepinephrine and cortisol concentrations, which decrease pancreatic insulin secretion and insulin concentrations and decrease glucose utilization. This highlights the vulnerability of metabolic pathways in the fetus and demonstrates that constrained glucose oxidation may represent an early event in response to sustained hypoxemia and fetal growth restriction.
Collapse
Affiliation(s)
- Amanda K Jones
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Dong Wang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - David A Goldstrohm
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Laura D Brown
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Paul J Rozance
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
5
|
Fowden AL, Forhead AJ. Endocrine regulation of fetal metabolism towards term. Domest Anim Endocrinol 2022; 78:106657. [PMID: 34525421 DOI: 10.1016/j.domaniend.2021.106657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022]
Abstract
Hormones have an important role in regulating fetal metabolism in relation to the prevailing nutritional conditions both in late gestation and during the prepartum period as the fetus prepares for birth. In particular, the pancreatic, thyroid and adrenal hormones all affect fetal uptake and utilization of nutrients for oxidative metabolism, tissue accretion and fuel storage. These hormones also influence the fetal metabolic preparations for the nutritional transition from intra- to extra-uterine life. This review discusses the role of insulin, glucagon, thyroxine, tri-iodothyronine, cortisol and the catecholamines in these processes during normal intrauterine conditions and in response to maternal undernutrition with particular emphasis on the sheep fetus. It also considers the metabolic interactions between these hormones and their role in the maturation of key tissues, such as the liver, skeletal muscle and adipose tissue, in readiness for their new metabolic functions after birth. Endocrine regulation of fetal metabolism is shown to be multifactorial and dynamic with a central role in optimizing metabolic fitness for survival both in utero and at birth.
Collapse
Affiliation(s)
- Abigail L Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Alison J Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK; Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
6
|
Jones AK, Rozance PJ, Brown LD, Lorca RA, Julian CG, Moore LG, Limesand SW, Wesolowski SR. Uteroplacental nutrient flux and evidence for metabolic reprogramming during sustained hypoxemia. Physiol Rep 2021; 9:e15033. [PMID: 34558219 PMCID: PMC8461030 DOI: 10.14814/phy2.15033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023] Open
Abstract
Gestational hypoxemia is often associated with reduced birth weight, yet how hypoxemia controls uteroplacental nutrient metabolism and supply to the fetus is unclear. This study tested the effects of maternal hypoxemia (HOX) between 0.8 and 0.9 gestation on uteroplacental nutrient metabolism and flux to the fetus in pregnant sheep. Despite hypoxemia, uteroplacental and fetal oxygen utilization and net glucose and lactate uptake rates were similar in HOX (n = 11) compared to CON (n = 7) groups. HOX fetuses had increased lactate and pyruvate concentrations and increased net pyruvate output to the utero-placenta. In the HOX group, uteroplacental flux of alanine to the fetus was decreased, as was glutamate flux from the fetus. HOX fetuses had increased alanine and decreased aspartate, serine, and glutamate concentrations. In HOX placental tissue, we identified hypoxic responses that should increase mitochondrial efficiency (decreased SDHB, increased COX4I2) and increase lactate production from pyruvate (increased LDHA protein and LDH activity, decreased LDHB and MPC2), both resembling metabolic reprogramming, but with evidence for decreased (PFK1, PKM2), rather than increased, glycolysis and AMPK phosphorylation. This supports a fetal-uteroplacental shuttle during sustained hypoxemia whereby uteroplacental tissues produce lactate as fuel for the fetus using pyruvate released from the fetus, rather than pyruvate produced from glucose in the placenta, given the absence of increased uteroplacental glucose uptake and glycolytic gene activation. Together, these results provide new mechanisms for how hypoxemia, independent of AMPK activation, regulates uteroplacental metabolism and nutrient allocation to the fetus, which allow the fetus to defend its oxidative metabolism and growth.
Collapse
Affiliation(s)
- Amanda K. Jones
- Perinatal Research Center, Department of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Paul J. Rozance
- Perinatal Research Center, Department of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Laura D. Brown
- Perinatal Research Center, Department of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Ramón A. Lorca
- Department of Obstetrics and GynecologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Colleen G. Julian
- Department of MedicineUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Lorna G. Moore
- Department of Obstetrics and GynecologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Sean W. Limesand
- School of Animal and Comparative Biomedical SciencesUniversity of ArizonaTucsonArizonaUSA
| | - Stephanie R. Wesolowski
- Perinatal Research Center, Department of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
| |
Collapse
|
7
|
Pendleton AL, Wesolowski SR, Regnault TRH, Lynch RM, Limesand SW. Dimming the Powerhouse: Mitochondrial Dysfunction in the Liver and Skeletal Muscle of Intrauterine Growth Restricted Fetuses. Front Endocrinol (Lausanne) 2021; 12:612888. [PMID: 34079518 PMCID: PMC8165279 DOI: 10.3389/fendo.2021.612888] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/22/2021] [Indexed: 11/14/2022] Open
Abstract
Intrauterine growth restriction (IUGR) of the fetus, resulting from placental insufficiency (PI), is characterized by low fetal oxygen and nutrient concentrations that stunt growth rates of metabolic organs. Numerous animal models of IUGR recapitulate pathophysiological conditions found in human fetuses with IUGR. These models provide insight into metabolic dysfunction in skeletal muscle and liver. For example, cellular energy production and metabolic rate are decreased in the skeletal muscle and liver of IUGR fetuses. These metabolic adaptations demonstrate that fundamental processes in mitochondria, such as substrate utilization and oxidative phosphorylation, are tempered in response to low oxygen and nutrient availability. As a central metabolic organelle, mitochondria coordinate cellular metabolism by coupling oxygen consumption to substrate utilization in concert with tissue energy demand and accretion. In IUGR fetuses, reducing mitochondrial metabolic capacity in response to nutrient restriction is advantageous to ensure fetal survival. If permanent, however, these adaptations may predispose IUGR fetuses toward metabolic diseases throughout life. Furthermore, these mitochondrial defects may underscore developmental programming that results in the sequela of metabolic pathologies. In this review, we examine how reduced nutrient availability in IUGR fetuses impacts skeletal muscle and liver substrate catabolism, and discuss how enzymatic processes governing mitochondrial function, such as the tricarboxylic acid cycle and electron transport chain, are regulated. Understanding how deficiencies in oxygen and substrate metabolism in response to placental restriction regulate skeletal muscle and liver metabolism is essential given the importance of these tissues in the development of later lifer metabolic dysfunction.
Collapse
Affiliation(s)
- Alexander L. Pendleton
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Stephanie R. Wesolowski
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | | | - Ronald M. Lynch
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Sean W. Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
8
|
Cilvik SN, Wesolowski SR, Anthony RV, Brown LD, Rozance PJ. Late gestation fetal hyperglucagonaemia impairs placental function and results in diminished fetal protein accretion and decreased fetal growth. J Physiol 2021; 599:3403-3427. [PMID: 33878802 DOI: 10.1113/jp281288] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Fetal glucagon concentrations are elevated in the setting of placental insufficiency, hypoxia and elevated stress hormones. Chronically elevated glucagon concentrations in the adult result in profound decreases in amino acid concentrations and lean body mass. Experimental elevation of fetal glucagon concentrations in a late-gestation pregnant sheep results in lower fetal amino acid concentrations, lower protein accretion and lower fetal weight, in addition to decreased placental function. This study demonstrates a negative effect of glucagon on fetal protein accretion and growth, and also provides the first example of a fetal hormone that negatively regulates placental nutrient transport and blood flow. ABSTRACT Fetal glucagon concentrations are elevated in the setting of placental insufficiency and fetal stress. Postnatal studies have demonstrated the importance of glucagon in amino acid metabolism, and limited fetal studies have suggested that glucagon inhibits umbilical uptake of certain amino acids. We hypothesized that chronic fetal hyperglucagonaemia would decrease amino acid transfer and increase amino acid oxidation by the fetus. Late gestation singleton fetal sheep received a direct intravenous infusion of glucagon (GCG; 5 or 50 ng/kg/min; n = 7 and 5, respectively) or a vehicle control (n = 10) for 8-10 days. Fetal and maternal nutrient concentrations, uterine and umbilical blood flows, fetal leucine flux, nutrient uptake rates, placental secretion of chorionic somatomammotropin (CSH), and targeted placental gene expression were measured. GCG fetuses had 13% lower fetal weight compared to controls (P = 0.0239) and >28% lower concentrations of 16 out of 21 amino acids (P < 0.02). Additionally, protein synthesis was 49% lower (P = 0.0005), and protein accretion was 92% lower in GCG fetuses (P = 0.0006). Uterine blood flow was 33% lower in ewes with GCG fetuses (P = 0.0154), while umbilical blood flow was similar. Fetal hyperglucagonaemia lowered uterine uptake of 10 amino acids by >48% (P < 0.05) and umbilical uptake of seven amino acids by >29% (P < 0.04). Placental secretion of CSH into maternal circulation was reduced by 80% compared to controls (P = 0.0080). This study demonstrates a negative effect of glucagon on fetal protein accretion and growth. It also demonstrates that glucagon, a hormone of fetal origin, negatively regulates maternal placental nutrient transport function, placental CSH production and uterine blood flow.
Collapse
Affiliation(s)
- Sarah N Cilvik
- Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | | | - Russ V Anthony
- Colorado State University College of Veterinary Medicine, Fort Collins, CO, USA
| | - Laura D Brown
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul J Rozance
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
9
|
Pokharel K, Subedi A, Tripathi M, Biswas BK. Effect of amino acid infusion during cesarean delivery on newborn temperature: a randomized controlled trial. BMC Pregnancy Childbirth 2021; 21:267. [PMID: 33789610 PMCID: PMC8011173 DOI: 10.1186/s12884-021-03734-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The effect of maternal amino acid (AA) infusion before and during cesarean delivery on neonatal temperature remains unknown. We hypothesized that thermogenic effects of AA metabolism would help maintain body temperature of newborn babies and their mothers. METHODS Seventy-six parturients scheduled for elective singleton term cesarean delivery were equally randomized to receive intravenous 200 ml of AA or placebo approximately 1 h before subarachnoid block (infusion rate:100 ml/h). The primary outcome was the newborn rectal temperature at 0, 5 and 10 min after birth. The secondary outcomes included the maternal rectal temperature at six time-points: T0 = before starting study solution infusion, T1 = 30 min after starting infusion, T2 = one hour after starting infusion, T3 = during spinal block, T4 = half an hour after spinal block, T5 = at the time of birth and T6 = at the end of infusion, as well as maternal thermal discomfort and shivering episodes. RESULTS There were no differences in newborn temperature between the two groups at any of the time-points (intervention-time-interaction effect, P = 0.206). The newborn temperature (mean [95%CI] °C) at birth was 37.5 [37.43-37.66] in the AA and 37.4 [37.34-37.55] in the placebo group. It showed a significant (P < 0.001) downward trend at 5 and 10 min after birth (time effect) in both groups. One neonate in the AA and five in the placebo group were hypothermic (temperature < 36.5 °C) (P = 0.20). There was a significant difference in the maternal temperature at all time points between the two groups (Intervention-time interaction effect, P < 0.001). However, after adjustment for multiplicity, the difference was significant only at T6 (P = 0.001). The mean difference [95%CI] in temperature decline from baseline (T0) till the end of infusion (T6) between the two groups was - 0.39 [- 0.55;- 0.22] °C (P < 0.0001). Six mothers receiving placebo and none receiving AA developed hypothermia (temperature < 36 °C) (P = 0.025). Maternal thermal discomfort and shivering episodes were unaffected by AA therapy. CONCLUSIONS Under the conditions of this study, maternal AA infusion before and during spinal anesthesia for cesarean delivery did not influence the neonatal temperature within 10 min after birth. In addition, the maternal temperature was only maintained at two hours of AA infusion. TRIAL REGISTRATION ClinicalTrials.government, Identifier NCT02575170 . Registered on 10th April, 2015 - Retrospectively registered.
Collapse
Affiliation(s)
- Krishna Pokharel
- Department of Anesthesiology and Critical Care, BP Koirala Institute of Health Sciences, Dharan, Nepal.
| | - Asish Subedi
- Department of Anesthesiology and Critical Care, BP Koirala Institute of Health Sciences, Dharan, Nepal
| | - Mukesh Tripathi
- Department of Anesthesiology and Critical Care, All India Institute of Medical Sciences, Rishikesh, India
| | - Binay Kumar Biswas
- Department of Anesthesiology, ESI-Post Graduate Institute of Medical Science & Research, Kolkata, India
| |
Collapse
|
10
|
Rozance PJ, Jones AK, Bourque SL, D'Alessandro A, Hay WW, Brown LD, Wesolowski SR. Effects of chronic hyperinsulinemia on metabolic pathways and insulin signaling in the fetal liver. Am J Physiol Endocrinol Metab 2020; 319:E721-E733. [PMID: 32830555 PMCID: PMC7864241 DOI: 10.1152/ajpendo.00323.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effect of chronic of hyperinsulinemia in the fetal liver is poorly understood. Here, we produced hyperinsulinemia with euglycemia for ∼8 days in fetal sheep [hyperinsulinemic (INS)] at 0.9 gestation. INS fetuses had increased insulin and decreased oxygen and amino acid (AA) concentrations compared with saline-infused fetuses [control (CON)]. Glucose (whole body) utilization rates were increased, as expected, in INS fetuses. In the liver, however, there were few differences in genes and metabolites related to glucose and lipid metabolism and no activation of insulin signaling proteins (Akt and mTOR). There was increased p-AMPK activation and decreased mitochondrial mass (PGC1A expression, mitochondrial DNA content) in INS livers. Using an unbiased multivariate analysis with 162 metabolites, we identified effects on AA and one-carbon metabolism in the INS liver. Expression of the transaminase BCAT2 and glutaminase genes GLS1 and GLS2 was decreased, supporting decreased AA utilization. We further evaluated the roles of hyperinsulinemia and hypoxemia, both present in INS fetuses, on outcomes in the liver. Expression of PGC1A correlated only with hyperinsulinemia, p-AMPK correlated only with hypoxemia, and other genes and metabolites correlated with both hyperinsulinemia and hypoxemia. In fetal hepatocytes, acute treatment with insulin activated p-Akt and decreased PGC1A, whereas hypoxia activated p-AMPK. Overall, chronic hyperinsulinemia produced greater effects on amino acid metabolism compared with glucose and lipid metabolism and a novel effect on one-carbon metabolism in the fetal liver. These hepatic metabolic responses may result from the downregulation of insulin signaling and antagonistic effects of hypoxemia-induced AMPK activation that develop with chronic hyperinsulinemia.
Collapse
Affiliation(s)
- Paul J Rozance
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Amanda K Jones
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Stephanie L Bourque
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Angelo D'Alessandro
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - William W Hay
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Laura D Brown
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Stephanie R Wesolowski
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
11
|
Jones AK, Rozance PJ, Brown LD, Goldstrohm DA, Hay WW, Limesand SW, Wesolowski SR. Sustained hypoxemia in late gestation potentiates hepatic gluconeogenic gene expression but does not activate glucose production in the ovine fetus. Am J Physiol Endocrinol Metab 2019; 317:E1-E10. [PMID: 30964701 PMCID: PMC6732654 DOI: 10.1152/ajpendo.00069.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 02/08/2023]
Abstract
Fetal hypoxemia is associated with pregnancy conditions that cause an early activation of fetal glucose production. However, the independent role of hypoxemia to activate this pathway is not well understood. We hypothesized that fetal hypoxemia would activate fetal glucose production by decreasing umbilical glucose uptake and increasing counter-regulatory hormone concentrations. We induced hypoxemia for 9 days with maternal tracheal N2 gas insufflation to reduce maternal and fetal arterial Po2 by ~20% (HOX) compared with fetuses from ewes receiving intratracheal compressed air (CON). At 0.9 of gestation, fetal metabolic studies were performed (n = 7 CON, 11 HOX). Umbilical blood flow rates, net fetal oxygen and glucose uptake rates, and fetal arterial plasma glucose concentrations were not different between the two groups. Fetal glucose utilization rates were lower in HOX versus CON fetuses but not different from umbilical glucose uptake rates, demonstrating the absence of endogenous glucose production. In liver tissue, mRNA expression of gluconeogenic genes G6PC (P < 0.01) and PCK1 (P = 0.06) were six- and threefold greater in HOX fetuses versus CON fetuses. Increased fetal norepinephrine and cortisol concentrations and hepatic G6PC and PCK1 expression were inversely related to fetal arterial Po2. These findings support a role for fetal hypoxemia to act with counter-regulatory hormones to potentiate fetal hepatic gluconeogenic gene expression. However, in the absence of decreased net fetal glucose uptake rates and plasma glucose concentrations, hypoxemia-induced gluconeogenic gene activation is not sufficient to activate fetal glucose production.
Collapse
Affiliation(s)
- Amanda K Jones
- Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - Paul J Rozance
- Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - Laura D Brown
- Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - David A Goldstrohm
- Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - William W Hay
- Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona , Tucson, Arizona
| | | |
Collapse
|
12
|
Wai SG, Rozance PJ, Wesolowski SR, Hay WW, Brown LD. Prolonged amino acid infusion into intrauterine growth-restricted fetal sheep increases leucine oxidation rates. Am J Physiol Endocrinol Metab 2018; 315:E1143-E1153. [PMID: 30205012 PMCID: PMC6336957 DOI: 10.1152/ajpendo.00128.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Overcoming impaired growth in an intrauterine growth-restricted (IUGR) fetus has potential to improve neonatal morbidity, long-term growth, and metabolic health outcomes. The extent to which fetal anabolic capacity persists as the IUGR condition progresses is not known. We subjected fetal sheep to chronic placental insufficiency and tested whether prolonged amino acid infusion would increase protein accretion in these IUGR fetuses. IUGR fetal sheep were infused for 10 days with either mixed amino acids providing ~2 g·kg-1·day-1 (IUGR-AA) or saline (IUGR-Sal) during late gestation. At the end of the infusion, fetal plasma leucine, isoleucine, lysine, methionine, and arginine concentrations were higher in the IUGR-AA than IUGR-Sal group ( P < 0.05). Fetal plasma glucose, oxygen, insulin, IGF-1, cortisol, and norepinephrine concentrations were similar between IUGR groups, but glucagon concentrations were fourfold higher in the IUGR-AA group ( P < 0.05). Net umbilical amino acid uptake rate did not differ between IUGR groups; thus the total amino acid delivery rate (net umbilical amino acid uptake + infusion rate) was higher in the IUGR-AA than IUGR-Sal group (30 ± 4 vs. 19 ± 1 μmol·kg-1·min-1, P < 0.05). Net umbilical glucose, lactate, and oxygen uptake rates were similar between IUGR groups. Fetal leucine oxidation rate, measured using a leucine tracer, was higher in the IUGR-AA than IUGR-Sal group (2.5 ± 0.3 vs. 1.7 ± 0.3 μmol·kg-1·min-1, P < 0.05). Fetal protein accretion rate was not statistically different between the IUGR groups (1.6 ± 0.4 and 0.8 ± 0.3 μmol·kg-1·min-1 in IUGR-AA and IUGR-Sal, respectively) due to variability in response to amino acids. Prolonged amino acid infusion into IUGR fetal sheep increased leucine oxidation rates with variable anabolic response.
Collapse
Affiliation(s)
- Sandra G Wai
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - Paul J Rozance
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - Stephanie R Wesolowski
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - William W Hay
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - Laura D Brown
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| |
Collapse
|
13
|
Wesolowski SR, Hay WW. Role of placental insufficiency and intrauterine growth restriction on the activation of fetal hepatic glucose production. Mol Cell Endocrinol 2016; 435:61-68. [PMID: 26723529 PMCID: PMC4921201 DOI: 10.1016/j.mce.2015.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 02/07/2023]
Abstract
Glucose is the major fuel for fetal oxidative metabolism. A positive maternal-fetal glucose gradient drives glucose across the placenta and is sufficient to meet the demands of the fetus, eliminating the need for endogenous hepatic glucose production (HGP). However, fetuses with intrauterine growth restriction (IUGR) from pregnancies complicated by placental insufficiency have an early activation of HGP. Furthermore, this activated HGP is resistant to suppression by insulin. Here, we present the data demonstrating the activation of HGP in animal models, mostly fetal sheep, and human pregnancies with IUGR. We also discuss potential mechanisms and pathways that may produce and support HGP and hepatic insulin resistance in IUGR fetuses.
Collapse
Affiliation(s)
- Stephanie R Wesolowski
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - William W Hay
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
14
|
Culpepper C, Wesolowski SR, Benjamin J, Bruce JL, Brown LD, Jonker SS, Wilkening RB, Hay WW, Rozance PJ. Chronic anemic hypoxemia increases plasma glucagon and hepatic PCK1 mRNA in late-gestation fetal sheep. Am J Physiol Regul Integr Comp Physiol 2016; 311:R200-8. [PMID: 27170658 DOI: 10.1152/ajpregu.00037.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/08/2016] [Indexed: 01/30/2023]
Abstract
Hepatic glucose production (HGP) normally begins just prior to birth. Prolonged fetal hypoglycemia, intrauterine growth restriction, and acute hypoxemia produce an early activation of fetal HGP. To test the hypothesis that prolonged hypoxemia increases factors which regulate HGP, studies were performed in fetuses that were bled to anemic conditions (anemic: n = 11) for 8.9 ± 0.4 days and compared with control fetuses (n = 7). Fetal arterial hematocrit and oxygen content were 32% and 50% lower, respectively, in anemic vs. controls (P < 0.005). Arterial plasma glucose was 15% higher in the anemic group (P < 0.05). Hepatic mRNA expression of phosphonenolpyruvate carboxykinase (PCK1) was twofold higher in the anemic group (P < 0.05). Arterial plasma glucagon concentrations were 70% higher in anemic fetuses compared with controls (P < 0.05), and they were positively associated with hepatic PCK1 mRNA expression (P < 0.05). Arterial plasma cortisol concentrations increased 90% in the anemic fetuses (P < 0.05), but fetal cortisol concentrations were not correlated with hepatic PCK1 mRNA expression. Hepatic glycogen content was 30% lower in anemic vs. control fetuses (P < 0.05) and was inversely correlated with fetal arterial plasma glucagon concentrations. In isolated primary fetal sheep hepatocytes, incubation in low oxygen (3%) increased PCK1 mRNA threefold compared with incubation in normal oxygen (21%). Together, these results demonstrate that glucagon and PCK1 may potentiate fetal HGP during chronic fetal anemic hypoxemia.
Collapse
Affiliation(s)
- Christine Culpepper
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Stephanie R Wesolowski
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado; Center for Women's Health Research, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Joshua Benjamin
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Jennifer L Bruce
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Laura D Brown
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado; Center for Women's Health Research, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Sonnet S Jonker
- Knight Cardiovascular Institute Center for Developmental Health, Oregon Health & Science University, Portland, Oregon
| | - Randall B Wilkening
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - William W Hay
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Paul J Rozance
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado; Center for Women's Health Research, University of Colorado School of Medicine, Aurora, Colorado; and
| |
Collapse
|
15
|
Houin SS, Rozance PJ, Brown LD, Hay WW, Wilkening RB, Thorn SR. Coordinated changes in hepatic amino acid metabolism and endocrine signals support hepatic glucose production during fetal hypoglycemia. Am J Physiol Endocrinol Metab 2015; 308:E306-14. [PMID: 25516551 PMCID: PMC4329495 DOI: 10.1152/ajpendo.00396.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Reduced fetal glucose supply, induced experimentally or as a result of placental insufficiency, produces an early activation of fetal glucose production. The mechanisms and substrates used to fuel this increased glucose production rate remain unknown. We hypothesized that in response to hypoglycemia, induced experimentally with maternal insulin infusion, the fetal liver would increase uptake of lactate and amino acids (AA), which would combine with hormonal signals to support hepatic glucose production. To test this hypothesis, metabolic studies were done in six late gestation fetal sheep to measure hepatic glucose and substrate flux before (basal) and after [days (d)1 and 4] the start of hypoglycemia. Maternal and fetal glucose concentrations decreased by 50% on d1 and d4 (P < 0.05). The liver transitioned from net glucose uptake (basal, 5.1 ± 1.5 μmol/min) to output by d4 (2.8 ± 1.4 μmol/min; P < 0.05 vs. basal). The [U-¹³C]glucose tracer molar percent excess ratio across the liver decreased over the same period (basal: 0.98 ± 0.01, vs. d4: 0.89 ± 0.01, P < 0.05). Total hepatic AA uptake, but not lactate or pyruvate uptake, increased by threefold on d1 (P < 0.05) and remained elevated throughout the study. This AA uptake was driven largely by decreased glutamate output and increased glycine uptake. Fetal plasma concentrations of insulin were 50% lower, while cortisol and glucagon concentrations increased 56 and 86% during hypoglycemia (P < 0.05 for basal vs. d4). Thus increased hepatic AA uptake, rather than pyruvate or lactate uptake, and decreased fetal plasma insulin and increased cortisol and glucagon concentrations occur simultaneously with increased fetal hepatic glucose output in response to fetal hypoglycemia.
Collapse
Affiliation(s)
- Satya S Houin
- Perinatal Research Center, Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Paul J Rozance
- Perinatal Research Center, Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Laura D Brown
- Perinatal Research Center, Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - William W Hay
- Perinatal Research Center, Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Randall B Wilkening
- Perinatal Research Center, Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Stephanie R Thorn
- Perinatal Research Center, Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| |
Collapse
|
16
|
Regnault TRH, de Vrijer B, Galan HL, Wilkening RB, Battaglia FC, Meschia G. Umbilical uptakes and transplacental concentration ratios of amino acids in severe fetal growth restriction. Pediatr Res 2013; 73:602-11. [PMID: 23407119 DOI: 10.1038/pr.2013.30] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND This study examines the relationship between placental amino acid (AA) transport and fetal AA demand in an ovine fetal growth restriction (FGR) model in which placental underdevelopment induces fetal hypoxemia and hypoglycemia. METHODS Umbilical uptakes of AA, oxygen, glucose, and lactate were measured near term in eight experimental ewes (FGR group) and in eight controls (C group). RESULTS The FGR group demonstrated significantly reduced umbilical uptakes of oxygen, glucose, lactate, and 11 AAs per kg fetus. The combined uptake of glucose, lactate, and AAs, expressed as nutrient/oxygen quotients, was reduced almost to 1.00 (FGR: 1.05 vs. C: 1.32, P ≤ 0.02). In contrast to a decrease in umbilical glucose concentration, all but one of the AAs that were transported from placenta to fetus demonstrated normal or elevated fetal concentrations, and five of the essential AAs were transported against a significantly higher feto/maternal (F/M) concentration ratio. This ratio peaked at the lowest fetal oxygen levels. CONCLUSION We conclude that, in the hypoxic FGR fetus, the reduction in AA uptake is not due to a disproportionally small placental AA transport capacity. It is the consequence of decreased fetal oxidative metabolism and growth rate, which together reduce fetal AA demand.
Collapse
Affiliation(s)
- Timothy R H Regnault
- Department of Pediatrics, Division of Perinatal Medicine, University of Colorado, Aurora, Colorado, USA
| | | | | | | | | | | |
Collapse
|
17
|
Thorn SR, Brown LD, Rozance PJ, Hay WW, Friedman JE. Increased hepatic glucose production in fetal sheep with intrauterine growth restriction is not suppressed by insulin. Diabetes 2013; 62:65-73. [PMID: 22933111 PMCID: PMC3526037 DOI: 10.2337/db11-1727] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Intrauterine growth restriction (IUGR) increases the risk for metabolic disease and diabetes, although the developmental origins of this remain unclear. We measured glucose metabolism during basal and insulin clamp periods in a fetal sheep model of placental insufficiency and IUGR. Compared with control fetuses (CON), fetuses with IUGR had increased basal glucose production rates and hepatic PEPCK and glucose-6-phosphatase expression, which were not suppressed by insulin. In contrast, insulin significantly increased peripheral glucose utilization rates in CON and IUGR fetuses. Insulin robustly activated AKT, GSK3β, and forkhead box class O (FOXO)1 in CON and IUGR fetal livers. IUGR livers, however, had increased basal FOXO1 phosphorylation, nuclear FOXO1 expression, and Jun NH(2)-terminal kinase activation during hyperinsulinemia. Expression of peroxisome proliferator-activated receptor γ coactivator 1α and hepatocyte nuclear factor-4α were increased in IUGR livers during basal and insulin periods. Cortisol and norepinephrine concentrations were positively correlated with glucose production rates. Isolated IUGR hepatocytes maintained increased glucose production in culture. In summary, fetal sheep with IUGR have increased hepatic glucose production, which is not suppressed by insulin despite insulin sensitivity for peripheral glucose utilization. These data are consistent with a novel mechanism involving persistent transcriptional activation in the liver that seems to be unique in the fetus with IUGR.
Collapse
Affiliation(s)
- Stephanie R Thorn
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA.
| | | | | | | | | |
Collapse
|
18
|
Maliszewski AM, Gadhia MM, O'Meara MC, Thorn SR, Rozance PJ, Brown LD. Prolonged infusion of amino acids increases leucine oxidation in fetal sheep. Am J Physiol Endocrinol Metab 2012; 302:E1483-92. [PMID: 22454287 PMCID: PMC3378157 DOI: 10.1152/ajpendo.00026.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternal high-protein supplements designed to increase birth weight have not been successful. We recently showed that maternal amino acid infusion into pregnant sheep resulted in competitive inhibition of amino acid transport across the placenta and did not increase fetal protein accretion rates. To bypass placental transport, singleton fetal sheep were intravenously infused with an amino acid mixture (AA, n = 8) or saline [control (Con), n = 10] for ∼12 days during late gestation. Fetal leucine oxidation rate increased in the AA group (3.1 ± 0.5 vs. 1.4 ± 0.6 μmol·min(-1)·kg(-1), P < 0.05). Fetal protein accretion (2.6 ± 0.5 and 2.2 ± 0.6 μmol·min(-1)·kg(-1) in AA and Con, respectively), synthesis (6.2 ± 0.8 and 7.0 ± 0.9 μmol·min(-1)·kg(-1) in AA and Con, respectively), and degradation (3.6 ± 0.6 and 4.5 ± 1.0 μmol·min(-1)·kg(-1) in AA and Con, respectively) rates were similar between groups. Net fetal glucose uptake decreased in the AA group (2.8 ± 0.4 vs. 3.9 ± 0.1 mg·kg(-1)·min(-1), P < 0.05). The glucose-O(2) quotient also decreased over time in the AA group (P < 0.05). Fetal insulin and IGF-I concentrations did not change. Fetal glucagon increased in the AA group (119 ± 24 vs. 59 ± 9 pg/ml, P < 0.05), and norepinephrine (NE) also tended to increase in the AA group (785 ± 181 vs. 419 ± 76 pg/ml, P = 0.06). Net fetal glucose uptake rates were inversely proportional to fetal glucagon (r(2) = 0.38, P < 0.05), cortisol (r(2) = 0.31, P < 0.05), and NE (r(2) = 0.59, P < 0.05) concentrations. Expressions of components in the mammalian target of rapamycin signaling pathway in fetal skeletal muscle were similar between groups. In summary, prolonged infusion of amino acids directly into normally growing fetal sheep increased leucine oxidation. Amino acid-stimulated increases in fetal glucagon, cortisol, and NE may contribute to a shift in substrate oxidation by the fetus from glucose to amino acids.
Collapse
Affiliation(s)
- Anne M Maliszewski
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, USA
| | | | | | | | | | | |
Collapse
|
19
|
Marconi AM, Mariotti V, Teng C, Ronzoni S, D'Amato B, Morabito A, Battaglia FC. Effect of antenatal betamethasone on maternal and fetal amino acid concentration. Am J Obstet Gynecol 2010; 202:166.e1-6. [PMID: 20022312 DOI: 10.1016/j.ajog.2009.10.704] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/19/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To determine the concentration of amino acids in women receiving the first course of antenatal betamethasone and to evaluate the umbilical venous and arterial amino acid concentrations at the time of elective cesarean section after betamethasone administration. STUDY DESIGN Blood samples were collected from 34 pregnant women at risk of premature delivery before and 24 and 48 hours after the first course of betamethasone. In addition, maternal and cord blood samples were collected in 13 women undergoing an elective cesarean section between 24 and 192 hours after betamethasone. RESULTS Maternal amino acid concentrations were significantly increased after the first dose of betamethasone. Overall total amino nitrogen increased 17.5% 24 hours after betamethasone administration and 20.5% after 48 hours. The concentration of most amino acids was increased both in the umbilical vein and artery after maternal betamethasone administration. CONCLUSION The concentration of maternal and fetal amino acids increases significantly after betamethasone administration.
Collapse
|
20
|
Limesand SW, Rozance PJ, Smith D, Hay WW. Increased insulin sensitivity and maintenance of glucose utilization rates in fetal sheep with placental insufficiency and intrauterine growth restriction. Am J Physiol Endocrinol Metab 2007; 293:E1716-25. [PMID: 17895285 DOI: 10.1152/ajpendo.00459.2007] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study we determined body weight-specific fetal (umbilical) glucose uptake (UGU), utilization (GUR), and production rates (GPR) and insulin action in intrauterine growth-restricted (IUGR) fetal sheep. During basal conditions, UGU from the placenta was 33% lower in IUGR fetuses, but GUR was not different between IUGR and control fetuses. The difference between glucose utilization and UGU rates in the IUGR fetuses demonstrated the presence and rate of fetal GPR (41% of GUR). The mRNA concentrations of the gluconeogenic enzymes glucose-6-phophatase and PEPCK were higher in the livers of IUGR fetuses, perhaps in response to CREB activation, as phosphorylated CREB/total CREB was increased 4.2-fold. A hyperglycemic clamp resulted in similar rates of glucose uptake and utilization in IUGR and control fetuses. The nearly identical GURs in IUGR and control fetuses at both basal and high glucose concentrations occurred at mean plasma insulin concentrations in the IUGR fetuses that were approximately 70% lower than controls, indicating increased insulin sensitivity. Furthermore, under basal conditions, hepatic glycogen content was similar, skeletal muscle glycogen was increased 2.2-fold, the fraction of fetal GUR that was oxidized was 32% lower, and GLUT1 and GLUT4 concentrations in liver and skeletal muscle were the same in IUGR fetuses compared with controls. These results indicate that insulin-responsive fetal tissues (liver and skeletal muscle) adapt to the hypoglycemic-hypoinsulinemic IUGR environment with mechanisms that promote glucose utilization, particularly for glucose storage, including increased insulin action, glucose production, shunting of glucose utilization to glycogen production, and maintenance of glucose transporter concentrations.
Collapse
Affiliation(s)
- Sean W Limesand
- Department of Pediatrics, University of Colorado Health Sciences Center, Aurora, Colorado, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
Studies in ovine fetus and placenta have pointed to an interaction between the fetal liver and the placenta. The supply of amino acids and carbohydrates depends on this interaction. These studies have led to clinical studies in normal and high-risk pregnancies. The objective of the present review was to compare changes in fetal circulation, in terms of both velocimetry and actual blood flow measurements, and to couple such data with data on the placental transport of amino acids. Flow studies were carried out on the umbilical vein with measurements of time-averaged velocity and venous diameter. A similar approach was used for measurements of ductus venosus flow. Stable-isotope-labeled amino acids were used to study placental transport by the non-steady state approach. The studies of flow showed a marked reduction in umbilical blood flow even when expressed per kilogram fetal body weight in fetal-growth-restricted pregnancies. This may be coupled with an increased ductus venosus shunt, the combination leading to a marked reduction in fetal hepatic blood flow. The placental transport of some amino acids is reduced in fetal-growth-restricted pregnancies. Furthermore, nonglucose carbohydrates and polyols are found in fetal blood, some in concentrations higher than maternal concentrations. There is significant uptake of several polyols and of mannose across the umbilical circulation in normal pregnancies. In conclusion, both perfusion and permeability can now be studied in both normal and high-risk pregnancies.
Collapse
Affiliation(s)
- Frederick C Battaglia
- University of Colorado at Denver and Health Sciences Center, Perinatal Research Center, Aurora, CO 80045, USA.
| |
Collapse
|
22
|
Affiliation(s)
- Giacomo Meschia
- Department of Pediatrics, Perinatal Research Center School of Medicine, Aurora, CO, USA
| |
Collapse
|
23
|
Regnault TRH, Friedman JE, Wilkening RB, Anthony RV, Hay WW. Fetoplacental transport and utilization of amino acids in IUGR — a review. Placenta 2005; 26 Suppl A:S52-62. [PMID: 15837069 DOI: 10.1016/j.placenta.2005.01.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2005] [Indexed: 11/16/2022]
Abstract
Amino acids have multiple functions in fetoplacental development. The supply of amino acids to the fetus involves active transport across and metabolism within the trophoblast. Transport occurs through various amino acid transport systems located on both the maternal and fetal facing membranes, many of which have now been documented to be present in rat, sheep and human placentas. The capacity of the placenta to supply amino acids to the fetus develops during pregnancy through alterations in such factors as surface area and specific time-dependent transport system expression. In intrauterine growth restriction (IUGR), placental surface area and amino acid uptakes are decreased in human and experimental animal models. In an ovine model of IUGR, produced by hyperthermia-induced placental insufficiency (PI-IUGR), umbilical oxygen and essential amino acid uptake rates are significantly reduced in the most severe cases in concert with decreased fetal growth. These changes indicate that severe IUGR is likely associated with a shift in amino acid transport capacity and metabolic pathways within the fetoplacental unit. After transport across the trophoblast in normal conditions, amino acids are actively incorporated into tissue proteins or oxidized. In the sheep IUGR fetus, however, which is hypoxic, hypoglycemic and hypoinsulinemic, there appear to be net effluxes of amino acids from the liver and skeletal muscle, suggesting changes in amino acid metabolism. Potential changes may be occurring in the insulin/IGF-I signaling pathway that includes decreased production and/or activation of specific signaling proteins leading to a reduced protein synthesis in fetal tissues. Such observations in the placental insufficiency model of IUGR indicate that the combination of decreased fetoplacental amino acid uptake and disrupted insulin/IGF signaling in liver and muscle account for decreased fetal growth in IUGR.
Collapse
Affiliation(s)
- T R H Regnault
- Perinatal Research Center, Department of Pediatrics, Division of Perinatal Medicine, University of Colorado Health Sciences Center, F441, Aurora, CO 80045, USA.
| | | | | | | | | |
Collapse
|
24
|
Wilkes PT, Meschia G, Teng C, Zhu Y, Wilkening RB, Battaglia FC. The effect of an elevated maternal lysine concentration on placental lysine transport in pregnant sheep. Am J Obstet Gynecol 2003; 189:1494-500. [PMID: 14634591 DOI: 10.1067/s0002-9378(03)00595-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES In a previous study, the coinfusion into the maternal circulation of lysine and several other amino acids failed to increase significantly lysine umbilical uptake. The purpose of this study was to determine whether umbilical lysine uptake can be increased by infusing a lysine solution that does not contain any other amino acid. STUDY DESIGN Six late-gestation ewes were studied on 2 consecutive days. Samples were collected in both the control (first day) and experimental (second day) periods simultaneously from the maternal artery, uterine vein, fetal artery, and umbilical vein. In the control period, L-[1-(13)C] lysine was infused into the maternal circulation. During the experimental period, both L-[1-(13)C] lysine and L-(12)C lysine were infused to increase maternal lysine concentration. Uterine and umbilical blood flows were measured by the steady state diffusion technique. Uterine and umbilical uptake of lysine and of alpha-aminoaminoadipic acid (AAD, a biproduct of lysine oxidation) were calculated. RESULTS In response to a 2.7-fold increase in maternal lysine concentration (P<.001), fetal lysine concentration increased approximately 70% (P<.05) and umbilical uptake 50% (P<.05). In the experimental period, there was a significant (P<.05) placental uptake of fetal AAD, and the fetal/maternal plasma (13)C-lysine-specific activity ratio increased from 0.221+/-0.026 to 0.294+/-0.029 (P<.05). In response to the increase in maternal lysine concentration, the maternal and fetal concentrations of several other amino acids were significantly decreased. CONCLUSION This study establishes that the umbilical uptake of lysine can be increased by infusing lysine in the maternal circulation. However, the lysine infusion is associated with a decrease in the maternal concentration and umbilical uptake of other essential amino acids. These data, compared with the results of previous studies, indicate that attempts to increase the fetal uptake of an amino acid via maternal infusion may decrease the uptake of other amino acids by decreasing their maternal concentration and by inhibition of placental transport.
Collapse
Affiliation(s)
- Paul T Wilkes
- Department of Obstetrics and Gynecology, University of Colorado Health Sciences Center, Denver, CO, USA
| | | | | | | | | | | |
Collapse
|
25
|
Battaglia FC. In vivo characteristics of placental amino acid transport and metabolism in ovine pregnancy--a review. Placenta 2002; 23 Suppl A:S3-8. [PMID: 11978054 DOI: 10.1053/plac.2002.0812] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The placental transport of amino acids which is nutritionally important is the net entry rate into the fetal circulation (the umbilical uptake). This entry rate is a function of transport across cell membranes, the effect of competition among amino acids for transport, particularly across the fetal surface of the trophoblast, and their metabolism and interconversion within the placenta. The result of these different interactive fluxes is that the relationship between maternal concentration and fetal supply of an amino acid differs for each amino acid. For some amino acids there are relatively large bidirectional fluxes at both the fetal and maternal surfaces of the placenta. These fluxes can be measured in vivo utilizing stable isotope methodology. There is an important interorgan exchange of amino acids between the placenta and fetal liver. This exchange is, at least in part, a function of the absence of gluconeogenesis in the fetal liver. Both glutamate and serine, which are released from the fetal liver, are taken up by the placenta from the fetal circulation and metabolized within the placenta.
Collapse
Affiliation(s)
- F C Battaglia
- Division of Perinatal Medicine, Department of Pediatrics, University of Colorado, Fitzsimons, Bldg 260, Denver, CO 80045-0508, USA.
| |
Collapse
|