1
|
He W, Wang H, Yang G, Zhu L, Liu X. The Role of Chemokines in Obesity and Exercise-Induced Weight Loss. Biomolecules 2024; 14:1121. [PMID: 39334887 PMCID: PMC11430256 DOI: 10.3390/biom14091121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity is a global health crisis that is closely interrelated to many chronic diseases, such as cardiovascular disease and diabetes. This review provides an in-depth analysis of specific chemokines involved in the development of obesity, including C-C motif chemokine ligand 2 (CCL2), CCL3, CCL5, CCL7, C-X-C motif chemokine ligand 8 (CXCL8), CXCL9, CXCL10, CXCL14, and XCL1 (lymphotactin). These chemokines exacerbate the symptoms of obesity by either promoting the inflammatory response or by influencing metabolic pathways and recruiting immune cells. Additionally, the research highlights the positive effect of exercise on modulating chemokine expression in the obese state. Notably, it explores the potential effects of both aerobic exercises and combined aerobic and resistance training in lowering levels of inflammatory mediators, reducing insulin resistance, and improving metabolic health. These findings suggest new strategies for obesity intervention through the modulation of chemokine levels by exercise, providing fresh perspectives and directions for the treatment of obesity and future research.
Collapse
Affiliation(s)
- Wenbi He
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (W.H.); (H.W.); (G.Y.)
| | - Huan Wang
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (W.H.); (H.W.); (G.Y.)
| | - Gaoyuan Yang
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (W.H.); (H.W.); (G.Y.)
| | - Lin Zhu
- School of Sport and Health, Guangzhou Sport University, Guangzhou 510500, China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, China
| | - Xiaoguang Liu
- School of Sport and Health, Guangzhou Sport University, Guangzhou 510500, China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, China
| |
Collapse
|
2
|
Amir Levy Y, P Ciaraldi T, R. Mudaliar S, A. Phillips S, R. Henry R. Adipose tissue from subjects with type 2 diabetes exhibits impaired capillary formation in response to GROα: involvement of MMPs-2 and -9. Adipocyte 2022; 11:276-286. [PMID: 35481427 PMCID: PMC9116416 DOI: 10.1080/21623945.2022.2070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/03/2022] Open
Abstract
Type 2 Diabetes (T2D) is associated with impaired vascularization of adipose tissue (AT) . IL8, GROα and IL15 are pro-angiogenic myokines, secreted at elevated levels by T2D myotubes. We explored the direct impact of these myokines on AT vascularization. AT explants from subjects with T2D and without diabetes (non-diabetic, ND) were treated with rIL8, rGROα and rIL15 in concentrations equal to those in conditioned media (CM) from T2D and ND myotubes, and sprout formation evaluated. Endothelial cells (EC) were isolated from T2D and ND-AT, treated with rGROα and tube formation evaluated. Finally, we investigated the involvement of MMP-2 and -9 in vascularization. ND and T2D concentrations of IL8 or IL15 caused similar stimulation of sprout formation in ND- and T2D-AT. GROα exerted a similar effect in ND-AT. When T2D-AT explants were exposed to GROα, sprout formation in response to T2D concentrations was reduced compared to ND. Exposure of EC from T2D-AT to GROα at T2D concentrations resulted in reduced tube formation. Reduced responses to GROα in T2D-AT and EC were also seen for secretion of MMP-2 and -9. The data indicate that skeletal muscle can potentially regulate AT vascularization, with T2D-AT having impairments in sensitivity to GROα, while responding normally to IL8 and IL15.
Collapse
Affiliation(s)
- Yifat Amir Levy
- Center for Metabolic Research, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Departments of Medicine, University of California, La Jolla, CA, USA
| | - Theodore P Ciaraldi
- Center for Metabolic Research, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Departments of Medicine, University of California, La Jolla, CA, USA
| | - Sunder R. Mudaliar
- Center for Metabolic Research, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Departments of Medicine, University of California, La Jolla, CA, USA
| | - Susan A. Phillips
- Center for Metabolic Research, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Departments of Pediatrics, University of California, La Jolla, CA, USA
| | - Robert R. Henry
- Center for Metabolic Research, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Departments of Medicine, University of California, La Jolla, CA, USA
| |
Collapse
|
3
|
Suzuki T, Shimizu M, Yamauchi Y, Sato R. Nobiletin enhances plasma Interleukin-6 and C-X-C motif chemokine ligand 1 levels that are increased by treadmill running. Food Sci Nutr 2022; 10:2360-2369. [PMID: 35844904 PMCID: PMC9281940 DOI: 10.1002/fsn3.2844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Exercise increases the muscular secretion of Interleukin-6 (IL-6), which is partially regulated by β2-adrenergic receptor signaling. Nobiletin is a polymethoxyflavone (PMF) found in citrus fruits that induces the secretion of IL-6 from C2C12 myotubes, but it remains unclear whether nobiletin promotes IL-6 secretion during exercise. The aim of this study was to clarify the effects of nobiletin on IL-6 secretion during exercise. Nobiletin and epinephrine were found to synergistically increase IL-6 secretion from differentiated C2C12 cells, which was suppressed by the inhibition of adenylyl cyclase (AC) or protein kinase A (PKA). Treadmill running for 60 min increased plasma levels of IL-6, epinephrine, and norepinephrine in rats. Nobiletin (5 mg/kg) orally administered 30 min before running increased plasma IL-6 levels further, although it did not increase plasma epinephrine and norepinephrine. In a similar manner to IL-6, nobiletin and epinephrine synergistically increased the secretion of C-X-C motif chemokine ligand 1 (CXCL-1) from C2C12 cells, or the increase in plasma CXCL-1 was enhanced by nobiletin after treadmill running of rats. Our results suggest that nobiletin promotes IL-6 and CXCL-1 secretion from skeletal muscle by synergistic enhancement of the PKA pathway in β2-adrenergic receptor signaling.
Collapse
Affiliation(s)
- Toshihide Suzuki
- Nutri‐Life Science LaboratoryDepartment of Applied Biological ChemistryGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Makoto Shimizu
- Nutri‐Life Science LaboratoryDepartment of Applied Biological ChemistryGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yoshio Yamauchi
- Nutri‐Life Science LaboratoryDepartment of Applied Biological ChemistryGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
- Food Biochemistry LaboratoryDepartment of Applied Biological ChemistryGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Ryuichiro Sato
- Nutri‐Life Science LaboratoryDepartment of Applied Biological ChemistryGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
- Food Biochemistry LaboratoryDepartment of Applied Biological ChemistryGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
4
|
Balakrishnan R, Thurmond DC. Mechanisms by Which Skeletal Muscle Myokines Ameliorate Insulin Resistance. Int J Mol Sci 2022; 23:4636. [PMID: 35563026 PMCID: PMC9102915 DOI: 10.3390/ijms23094636] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022] Open
Abstract
The skeletal muscle is the largest organ in the body and secretes circulating factors, including myokines, which are involved in various cellular signaling processes. Skeletal muscle is vital for metabolism and physiology and plays a crucial role in insulin-mediated glucose disposal. Myokines have autocrine, paracrine, and endocrine functions, serving as critical regulators of myogenic differentiation, fiber-type switching, and maintaining muscle mass. Myokines have profound effects on energy metabolism and inflammation, contributing to the pathophysiology of type 2 diabetes (T2D) and other metabolic diseases. Myokines have been shown to increase insulin sensitivity, thereby improving glucose disposal and regulating glucose and lipid metabolism. Many myokines have now been identified, and research on myokine signaling mechanisms and functions is rapidly emerging. This review summarizes the current state of the field regarding the role of myokines in tissue cross-talk, including their molecular mechanisms, and their potential as therapeutic targets for T2D.
Collapse
Affiliation(s)
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA;
| |
Collapse
|
5
|
Korbecki J, Gąssowska-Dobrowolska M, Wójcik J, Szatkowska I, Barczak K, Chlubek M, Baranowska-Bosiacka I. The Importance of CXCL1 in Physiology and Noncancerous Diseases of Bone, Bone Marrow, Muscle and the Nervous System. Int J Mol Sci 2022; 23:ijms23084205. [PMID: 35457023 PMCID: PMC9024980 DOI: 10.3390/ijms23084205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023] Open
Abstract
This review describes the role of CXCL1, a chemokine crucial in inflammation as a chemoattractant for neutrophils, in physiology and in selected major non-cancer diseases. Due to the vast amount of available information, we focus on the role CXCL1 plays in the physiology of bones, bone marrow, muscle and the nervous system. For this reason, we describe its effects on hematopoietic stem cells, myoblasts, oligodendrocyte progenitors and osteoclast precursors. We also present the involvement of CXCL1 in diseases of selected tissues and organs including Alzheimer’s disease, epilepsy, herpes simplex virus type 1 (HSV-1) encephalitis, ischemic stroke, major depression, multiple sclerosis, neuromyelitis optica, neuropathic pain, osteoporosis, prion diseases, rheumatoid arthritis, tick-borne encephalitis (TBE), traumatic spinal cord injury and West Nile fever.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Jerzy Wójcik
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Iwona Szatkowska
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Mikołaj Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
- Correspondence: ; Tel.: +48-914-661-515
| |
Collapse
|
6
|
Imai N, Nicholls HT, Alves-Bezerra M, Li Y, Ivanova AA, Ortlund EA, Cohen DE. Up-regulation of thioesterase superfamily member 2 in skeletal muscle promotes hepatic steatosis and insulin resistance in mice. Hepatology 2022; 75:154-169. [PMID: 34433228 PMCID: PMC9938941 DOI: 10.1002/hep.32122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS Thioesterase superfamily member 2 (Them2) is highly expressed in liver and oxidative tissues, where it hydrolyzes long-chain fatty acyl-CoA esters to free fatty acids and CoA. Although mice globally lacking Them2 (Them2-/- ) are protected against diet-induced obesity, hepatic steatosis (HS), and insulin resistance (IR), liver-specific Them2-/- mice remain susceptible. The aim of this study was to test whether Them2 activity in extrahepatic oxidative tissues is a primary determinant of HS and IR. APPROACH AND RESULTS Upon observing IR and up-regulation of Them2 in skeletal, but not cardiac, muscle of high-fat-diet (HFD)-fed wild-type compared to Them2-/- mice, we created mice with Them2 specifically deleted in skeletal (S-Them2-/- ) and cardiac muscle (C-Them2-/- ), as well as in adipose tissue (A-Them2-/- ). When fed an HFD, S-Them2-/- , but not C-Them2-/- or A-Them2-/- , mice exhibited reduced weight gain and improved glucose homeostasis and insulin sensitivity. Reconstitution of Them2 expression in skeletal muscle of global Them2-/- mice, using adeno-associated virus, was sufficient to restore excess weight gain. Increased rates of fatty acid oxidation in skeletal muscle of S-Them2-/- mice contributed to protection from HFD-induced HS by increasing VLDL triglyceride secretion rates in response to greater demand. Increases in insulin sensitivity were further attributable to alterations in production of skeletal muscle metabolites, including short-chain fatty acids, branched-chain amino acids, and pentose phosphate pathway intermediates, as well as in expression of myokines that modulate insulin responsiveness. CONCLUSIONS These results reveal a key role for skeletal muscle Them2 in the pathogenesis of HS and IR and implicate it as a target in the management of NAFLD.
Collapse
Affiliation(s)
- Norihiro Imai
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, NY 10021 USA
| | - Hayley T. Nicholls
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, NY 10021 USA
| | - Michele Alves-Bezerra
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, NY 10021 USA
| | - Yingxia Li
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, NY 10021 USA
| | - Anna A. Ivanova
- Department of Biochemistry, Emory University, Atlanta, GA 30322 USA
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University, Atlanta, GA 30322 USA
| | - David E. Cohen
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, NY 10021 USA
| |
Collapse
|
7
|
Zakharova AN, Kironenko TA, Milovanova KG, Orlova AA, Dyakova EY, Kalinnikova Yu G, Kabachkova AV, Chibalin AV, Kapilevich LV. Treadmill Training Effect on the Myokines Content in Skeletal Muscles of Mice With a Metabolic Disorder Model. Front Physiol 2021; 12:709039. [PMID: 34858197 PMCID: PMC8631430 DOI: 10.3389/fphys.2021.709039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/12/2021] [Indexed: 02/02/2023] Open
Abstract
The effect of treadmill training loads on the content of cytokines in mice skeletal muscles with metabolic disorders induced by a 16 week high fat diet (HFD) was studied. The study included accounting the age and biorhythmological aspects. In the experiment, mice were used at the age of 4 and 32 weeks, by the end of the experiment—respectively 20 and 48 weeks. HFD feeding lasted 16 weeks. Treadmill training were carried out for last 4 weeks six times a week, the duration 60 min and the speed from 15 to 18 m/min. Three modes of loading were applied. The first subgroup was subjected to stress in the morning hours (light phase); the second subgroup was subjected to stress in the evening hours (dark phase); the third subgroup was subjected to loads in the shift mode (the first- and third-weeks treadmill training was used in the morning hours, the second and fourth treadmill training was used in the evening hours). In 20-week-old animals, the exercise effect does not depend on the training regime, however, in 48-week-old animals, the decrease in body weight in mice with the shift training regime was more profound. HFD affected muscle myokine levels. The content of all myokines, except for LIF, decreased, while the concentration of CLCX1 decreased only in young animals in response to HFD. The treadmill training caused multidirectional changes in the concentration of myokines in muscle tissue. The IL-6 content changed most profoundly. These changes were observed in all groups of animals. The changes depended to the greatest extent on the training time scheme. The effect of physical activity on the content of IL-15 in the skeletal muscle tissue was observed mostly in 48-week-old mice. In 20-week-old animals, physical activity led to an increase in the concentration of LIF in muscle tissue when applied under the training during the dark phase or shift training scheme. In the HFD group, this effect was significantly more pronounced. The content of CXCL1 did not change with the use of treadmill training in almost all groups of animals. Physical activity, introduced considering circadian rhythms, is a promising way of influencing metabolic processes both at the cellular and systemic levels, which is important for the search for new ways of correcting metabolic disorders.
Collapse
Affiliation(s)
- Anna Nikolaevna Zakharova
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | | | - Kseniia G Milovanova
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - A A Orlova
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - E Yu Dyakova
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - G Kalinnikova Yu
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - Anastasia V Kabachkova
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - Alexander V Chibalin
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia.,Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Leonid V Kapilevich
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia.,Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
8
|
Schwappacher R, Dieterich W, Reljic D, Pilarsky C, Mukhopadhyay D, Chang DK, Biankin AV, Siebler J, Herrmann HJ, Neurath MF, Zopf Y. Muscle-Derived Cytokines Reduce Growth, Viability and Migratory Activity of Pancreatic Cancer Cells. Cancers (Basel) 2021; 13:cancers13153820. [PMID: 34359731 PMCID: PMC8345221 DOI: 10.3390/cancers13153820] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Pancreatic cancer (PC) is a highly fatal malignancy. A major reason for the poor prognosis of patients with PC is the insensitivity to most oncological treatment approaches. It is known that regular exercise reduces the cancer risk. We have already shown that serum from advanced prostate and colon cancer patients after exercise reduces growth and viability of cancer cells. The aim of this study was to identify exercise-induced cytokines in serum from patients with advanced-stage PC that regulate cancer cell proliferation and apoptosis. Our data suggest that a mild resistance exercise training in advanced PC patients induces the release of CXCL1, IL10 and CCL4 from contracting skeletal muscle. We demonstrate that these myokines inhibit growth and migration of PC cells, and induce PC cell death. With this report we provide new knowledge on the cancer-protective function of exercise in PC. Our data strongly support sport therapies for cancer patients. Abstract The evidence that regular physical exercise reduces the risk of developing cancer is well described. However, the interaction between physical exercise and cancer is not fully clarified yet. Several myokines released by skeletal muscle appear to have a direct anti-tumour function. There are few data on myokine secretion after exercise in patients with advanced tumours. Pancreatic cancer (PC) is a very aggressive and usually fatal cancer. To investigate the effects of exercise in PC, the blood of advanced-stage PC patients was analysed after 12 weeks of resistance training using whole-body electromyostimulation. After the 12-week training period, the patient serum inhibited the proliferation and the motility of PC cells and enhanced PC cell apoptosis. The impact of exercise training was also investigated in an exercise-mimicking in vitro model using electric pulse stimulation of human myotubes and revealed similar anti-tumour effects on PC cells, clearly indicating direct cancer-protective properties of activated skeletal muscle. Protein and gene expression analyses in plasma from exercise-trained patients and in myotube cultures after in vitro exercise showed that interleukin 10 (IL10), C-X-C motif ligand 1 (CXCL1) and C-C motif chemokine ligand 4 (CCL4) are myokines released from activated skeletal muscle. In accordance with the effects of serum from exercise-trained patients, the supplementation with recombinant IL10, CXCL1 and CCL4 impaired growth and migration of PC cells. Treatment of PC cells with these myokines upregulated caspase 3/7 expression and the cleavage of poly(ADP-ribose) polymerase, leading to enhanced PC cell death. The identification of myokines with anti-tumour properties in advanced-stage PC patients after exercise opens a new perspective in supportive therapy with sports and exercise for cancer patients.
Collapse
Affiliation(s)
- Raphaela Schwappacher
- Medical Department 1, Friedrich-Alexander University Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany; (R.S.); (W.D.); (D.R.); (J.S.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Medical Department 1, Friedrich-Alexander University Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany;
| | - Walburga Dieterich
- Medical Department 1, Friedrich-Alexander University Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany; (R.S.); (W.D.); (D.R.); (J.S.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Medical Department 1, Friedrich-Alexander University Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany;
| | - Dejan Reljic
- Medical Department 1, Friedrich-Alexander University Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany; (R.S.); (W.D.); (D.R.); (J.S.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Medical Department 1, Friedrich-Alexander University Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany;
| | - Christian Pilarsky
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany;
- Department of Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 12, 91054 Erlangen, Germany
| | - Debabrata Mukhopadhyay
- Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road, Jacksonville, FL 32224, USA;
| | - David K. Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate Switchback Road, Glasgow G61 1QH, UK; (D.K.C.); (A.V.B.)
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, 84 Castle Street, Glasgow G4 0SF, UK
| | - Andrew V. Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate Switchback Road, Glasgow G61 1QH, UK; (D.K.C.); (A.V.B.)
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, 84 Castle Street, Glasgow G4 0SF, UK
| | - Jürgen Siebler
- Medical Department 1, Friedrich-Alexander University Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany; (R.S.); (W.D.); (D.R.); (J.S.); (H.J.H.); (M.F.N.)
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany;
| | - Hans J. Herrmann
- Medical Department 1, Friedrich-Alexander University Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany; (R.S.); (W.D.); (D.R.); (J.S.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Medical Department 1, Friedrich-Alexander University Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany;
| | - Markus F. Neurath
- Medical Department 1, Friedrich-Alexander University Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany; (R.S.); (W.D.); (D.R.); (J.S.); (H.J.H.); (M.F.N.)
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany;
| | - Yurdagül Zopf
- Medical Department 1, Friedrich-Alexander University Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany; (R.S.); (W.D.); (D.R.); (J.S.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Medical Department 1, Friedrich-Alexander University Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany;
- Correspondence: ; Tel.: +49-09131-8545218; Fax: +49-09131-8535228
| |
Collapse
|
9
|
Delannoy-Bruno O, Desai C, Raman AS, Chen RY, Hibberd MC, Cheng J, Han N, Castillo JJ, Couture G, Lebrilla CB, Barve RA, Lombard V, Henrissat B, Leyn SA, Rodionov DA, Osterman AL, Hayashi DK, Meynier A, Vinoy S, Kirbach K, Wilmot T, Heath AC, Klein S, Barratt MJ, Gordon JI. Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans. Nature 2021; 595:91-95. [PMID: 34163075 PMCID: PMC8324079 DOI: 10.1038/s41586-021-03671-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Changing food preferences brought about by westernization that have deleterious health effects1,2-combined with myriad forces that are contributing to increased food insecurity-are catalysing efforts to identify more nutritious and affordable foods3. Consumption of dietary fibre can help to prevent cardiovascular disease, type 2 diabetes and obesity4-6. A substantial number of reports have explored the effects of dietary fibre on the gut microbial community7-9. However, the microbiome is complex, dynamic and exhibits considerable intra- and interpersonal variation in its composition and functions. The large number of potential interactions between the components of the microbiome makes it challenging to define the mechanisms by which food ingredients affect community properties. Here we address the question of how foods containing different fibre preparations can be designed to alter functions associated with specific components of the microbiome. Because a marked increase in snack consumption is associated with westernization, we formulated snack prototypes using plant fibres from different sustainable sources that targeted distinct features of the gut microbiomes of individuals with obesity when transplanted into gnotobiotic mice. We used these snacks to supplement controlled diets that were consumed by adult individuals with obesity or who were overweight. Fibre-specific changes in their microbiomes were linked to changes in their plasma proteomes indicative of an altered physiological state.
Collapse
Affiliation(s)
- Omar Delannoy-Bruno
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
| | - Chandani Desai
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
| | - Arjun S Raman
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Robert Y Chen
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
| | - Matthew C Hibberd
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Jiye Cheng
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Nathan Han
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
| | - Juan J Castillo
- Department of Chemistry, University of California, Davis, CA, USA
| | - Garret Couture
- Department of Chemistry, University of California, Davis, CA, USA
| | | | - Ruteja A Barve
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Semen A Leyn
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Dmitry A Rodionov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Andrei L Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | | | | | - Kyleigh Kirbach
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Tara Wilmot
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Andrew C Heath
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Samuel Klein
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Michael J Barratt
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Jeffrey I Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA.
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
10
|
Zakharova AN, Kironenko TA, Milovanova KG, Orlova AA, Dyakova EY, Kalinnikova YG, Chibalin AV, Kapilevich LV. Effect of Forced Treadmill Running on Skeletal Muscle Myokine Levels in Mice with a Model of Type II Diabetes Mellitus. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Impaired capillary tube formation induced by elevated secretion of IL8 involves altered signaling via the CXCR1/PI3K/MMP2 pathway. Mol Biol Rep 2021; 48:601-610. [PMID: 33411234 DOI: 10.1007/s11033-020-06104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
Angiogenesis is a multistep process requiring endothelial cell activation, migration, proliferation and tube formation. We recently reported that elevated secretion of interlukin 8 (IL8) by myotubes (MT) from subjects with Type-2 Diabetes (T2D) reduced angiogenesis by human umbilical vein endothelial cells (HUVEC) and human skeletal muscle explants. This lower vascularization was mediated through impaired activation of the phosphatidylinositol 3-kinase (PI3K)-pathway. We sought to investigate additional signaling elements that might mediate reduced angiogenesis. HUVEC were exposed to levels of IL8 equal to those secreted by MT from non-diabetic (ND) and T2D subjects and the involvement of components in the angiogenic response pathway examined. Cellular content of reactive oxygen species and Nitrate secretion were similar after treatment with [ND-IL8] and [T2D-IL8]. CXCR1 protein was down-regulated after treatment with [T2D-IL8] (p < 0.01 vs [ND-IL8] treatment); CXCR2 expression was unaltered. Addition of neutralizing antibodies against CXCR1 and CXCR2 to HUVEC treated with IL8 confirmed that CXCR1 alone mediated the angiogenic response to IL8. A key modulator of angiogenesis is matrix metalloproteinase-2 (MMP2). MMP2 secretion was higher after treatment with [ND-IL8] vs [T2D-IL8] (p < 0.01). MMP2 inhibition reduced tube formation to greater extent with [ND-IL8] than with [T2D-IL8] (p < 0.005). The PI3K-pathway inhibitor LY294002 reduced IL8-induced MMP2 release. IL8 regulation of MMP2 release was CXCR1 dependent, as anti-CXCR1 significantly reduced MMP2 release (p < 0.05). These results suggest that high levels of IL8 secreted by T2D MT trigger reduced capillarization via lower activation of a CXCR1-PI3K pathway, followed by impaired release and activity of MMP2.
Collapse
|
12
|
Correlation of host inflammatory cytokines and immune-related metabolites, but not viral NS1 protein, with disease severity of dengue virus infection. PLoS One 2020; 15:e0237141. [PMID: 32764789 PMCID: PMC7413495 DOI: 10.1371/journal.pone.0237141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Severe dengue can be lethal caused by manifestations such as severe bleeding, fluid accumulation and organ impairment. This study aimed to investigate the role of dengue non-structural 1 (NS1) protein and host factors contributing to severe dengue. Electrical cell-substrate impedance sensing system was used to investigate the changes in barrier function of microvascular endothelial cells treated NS1 protein and serum samples from patients with different disease severity. Cytokines and metabolites profiles were assessed using a multiplex cytokine assay and liquid chromatography mass spectrometry respectively. The findings showed that NS1 was able to induce the loss of barrier function in microvascular endothelium in a dose dependent manner, however, the level of NS1 in serum samples did not correlate with the extent of vascular leakage induced. Further assessment of host factors revealed that cytokines such as CCL2, CCL5, CCL20 and CXCL1, as well as adhesion molecule ICAM-1, that are involved in leukocytes infiltration were expressed higher in dengue patients in comparison to healthy individuals. In addition, metabolomics study revealed the presence of deregulated metabolites involved in the phospholipid metabolism pathway in patients with severe manifestations. In conclusion, disease severity in dengue virus infection did not correlate directly with NS1 level, but instead with host factors that are involved in the regulation of junctional integrity and phospholipid metabolism. However, as the studied population was relatively small in this study, these exploratory findings should be confirmed by expanding the sample size using an independent cohort to further establish the significance of this study.
Collapse
|
13
|
Nilsson IAK, Millischer V, Göteson A, Hübel C, Thornton LM, Bulik CM, Schalling M, Landén M. Aberrant inflammatory profile in acute but not recovered anorexia nervosa. Brain Behav Immun 2020; 88:718-724. [PMID: 32389698 DOI: 10.1016/j.bbi.2020.05.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
Anorexia nervosa (AN) is a severe psychiatric disorder with high mortality and relapse rates. Even though changes in inflammatory markers and cytokines are known to accompany cachexia associated with somatic disorders such as cancer and chronic kidney disorder, studies on inflammatory markers in AN are rare and typically include few individuals. Here, we utilize an Olink Proteomics inflammatory panel to explore the concentrations of 92 preselected inflammation-related proteins in plasma samples from women with active AN (N = 113), recovered from AN (AN-REC, N = 113), and normal weight healthy controls (N = 114). After correction for multiple testing, twenty-five proteins differed significantly between the AN group and controls (lower levels: ADA, CCL19, CD40, CD5, CD8A, CSF1, CXCL1, CXCL5, HGF, IL10RB, IL12B, 1L18R1, LAP TGFß1, MCP3, OSM, TGFα, TNFRSF9, TNFS14 and TRANCE; higher levels: CCL11, CCL25, CST5, DNER, LIFR and OPG). Although more than half of these differences (N = 15) were present in the comparison between AN and AN-REC, no significant differences were seen between AN-REC and controls. Furthermore, twenty-five proteins correlated positively with BMI (ADA, AXIN1, CASP8, CD5, CD40, CSF1, CXCL1, CXCL5, EN-RAGE, HGF, IL6, IL10RB, IL12B, IL18, IL18R1, LAP TGFß1, OSM, SIRT2, STAMBP, TGFα, TNFRSF9, TNFS14, TRANCE, TRAIL and VEGFA) and four proteins correlated negatively with BMI (CCL11, CCL25, CCL28 and DNER). These results suggest that a dysregulated inflammatory status is associated with AN, but, importantly, seem to be confined to the acute illness state.
Collapse
Affiliation(s)
- Ida A K Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Centre for Eating Disorders Innovation, Karolinska Institutet, Stockholm, Sweden.
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Andreas Göteson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Christopher Hübel
- Centre for Eating Disorders Innovation, Karolinska Institutet, Stockholm, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; UK National Institute for Health Research (NIHR) Biomedical Research Centre, South London and Maudsley Hospital, London, UK
| | - Laura M Thornton
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA
| | - Cynthia M Bulik
- Centre for Eating Disorders Innovation, Karolinska Institutet, Stockholm, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA; Department of Nutrition, University of North Carolina at Chapel Hill, NC, USA
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
De Micheli AJ, Spector JA, Elemento O, Cosgrove BD. A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations. Skelet Muscle 2020; 10:19. [PMID: 32624006 PMCID: PMC7336639 DOI: 10.1186/s13395-020-00236-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) facilitates the unbiased reconstruction of multicellular tissue systems in health and disease. Here, we present a curated scRNA-seq dataset of human muscle samples from 10 adult donors with diverse anatomical locations. We integrated ~ 22,000 single-cell transcriptomes using Scanorama to account for technical and biological variation and resolved 16 distinct populations of muscle-resident cells using unsupervised clustering of the data compendium. These cell populations included muscle stem/progenitor cells (MuSCs), which bifurcated into discrete "quiescent" and "early-activated" MuSC subpopulations. Differential expression analysis identified transcriptional profiles altered in the activated MuSCs including genes associated with aging, obesity, diabetes, and impaired muscle regeneration, as well as long non-coding RNAs previously undescribed in human myogenic cells. Further, we modeled ligand-receptor cell-communication interactions and observed enrichment of the TWEAK-FN14 pathway in activated MuSCs, a characteristic signature of muscle wasting diseases. In contrast, the quiescent MuSCs have enhanced expression of the EGFR receptor, a recognized human MuSC marker. This work provides a new benchmark reference resource to examine human muscle tissue heterogeneity and identify potential targets in MuSC diversity and dysregulation in disease contexts.
Collapse
Affiliation(s)
- Andrea J De Micheli
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jason A Spector
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Division of Plastic Surgery, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Benjamin D Cosgrove
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
15
|
Roca E, Cantó E, Nescolarde L, Perea L, Bayes-Genis A, Sibila O, Vidal S. Effects of a polysaccharide-based multi-ingredient supplement on salivary immunity in non-elite marathon runners. J Int Soc Sports Nutr 2019; 16:14. [PMID: 30909945 PMCID: PMC6434855 DOI: 10.1186/s12970-019-0281-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/08/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Extreme exercise may alter the innate immune system. Glycans are involved in several biological processes including immune system regulation. However, limited data regarding the impact of glycan supplementation on immunological parameters after strenuous exercise are available. We aimed to determine the impact of a standardized polysaccharide-based multi-ingredient supplement, Advanced Ambrotose© complex powder (AA) on salivary secretory Immunoglobulin A (sIgA) and pro- and anti-inflammatory protein levels before and after a marathon in non-elite runners. METHODS Forty-one male marathon runners who completed the 42.195 km of the 2016 Barcelona marathon were randomly assigned to two study groups. Of them, n = 20 (48%) received the AA supplement for 15 days prior the race (AA group) and n = 21 (52%) did not receive any AA supplement (non-AA group). Saliva and blood samples were collected the day before the marathon and two days after the end of the race. Salivary IgA, pro-inflammatory chemokines (Gro-alpha, Gro-beta, MCP-1) and anti-inflammatory proteins (Angiogenin, ACRP, Siglec 5) were determined using commercially ELISA kits in saliva supernatant. Biochemical parameters, including C-reactive protein, cardiac biomarkers, and blood hemogram were also evaluated. RESULTS Marathon runners who did not receive the AA supplement experienced a decrease of salivary sIgA and pro-inflammatory chemokines (Gro-alpha and Gro-beta) after the race, while runners with AA supplementation showed lower levels of anti-inflammatory chemokines (Angiogenin). Gro-alpha and Gro-beta salivary levels were lower before the race in the AA group and correlated with blood leukocytes and platelets. CONCLUSIONS Changes in salivary sIgA and inflammatory chemokines, especially Gro-alfa and Gro-beta, were observed in marathon runners supplemented with AA prior to the race. These findings suggested that AA may have a positive effect on immune response after a strenuous exercise.
Collapse
Affiliation(s)
- Emma Roca
- Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Jordi Girona, 1-3, 08034, Barcelona, Spain.
| | - Elisabet Cantó
- Laboratory of Experimental Immunology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia, Spain
| | - Lexa Nescolarde
- Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Jordi Girona, 1-3, 08034, Barcelona, Spain.,Department of Electronic, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Lidia Perea
- Laboratory of Experimental Immunology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia, Spain
| | - Antoni Bayes-Genis
- Department of Cardiology, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Oriol Sibila
- Respiratory Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Catalonia, Spain
| | - Silvia Vidal
- Laboratory of Experimental Immunology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia, Spain
| |
Collapse
|
16
|
Nilsson MI, Bourgeois JM, Nederveen JP, Leite MR, Hettinga BP, Bujak AL, May L, Lin E, Crozier M, Rusiecki DR, Moffatt C, Azzopardi P, Young J, Yang Y, Nguyen J, Adler E, Lan L, Tarnopolsky MA. Lifelong aerobic exercise protects against inflammaging and cancer. PLoS One 2019; 14:e0210863. [PMID: 30682077 PMCID: PMC6347267 DOI: 10.1371/journal.pone.0210863] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 01/03/2019] [Indexed: 12/16/2022] Open
Abstract
Biological aging is associated with progressive damage accumulation, loss of organ reserves, and systemic inflammation ('inflammaging'), which predispose for a wide spectrum of chronic diseases, including several types of cancer. In contrast, aerobic exercise training (AET) reduces inflammation, lowers all-cause mortality, and enhances both health and lifespan. In this study, we examined the benefits of early-onset, lifelong AET on predictors of health, inflammation, and cancer incidence in a naturally aging mouse model (C57BL/J6). Lifelong, voluntary wheel-running (O-AET; 26-month-old) prevented age-related declines in aerobic fitness and motor coordination vs. age-matched, sedentary controls (O-SED). AET also provided partial protection against sarcopenia, dynapenia, testicular atrophy, and overall organ pathology, hence augmenting the 'physiologic reserve' of lifelong runners. Systemic inflammation, as evidenced by a chronic elevation in 17 of 18 pro- and anti-inflammatory cytokines and chemokines (P < 0.05 O-SED vs. 2-month-old Y-CON), was potently mitigated by lifelong AET (P < 0.05 O-AET vs. O-SED), including master regulators of the cytokine cascade and cancer progression (IL-1β, TNF-α, and IL-6). In addition, circulating SPARC, previously known to be upregulated in metabolic disease, was elevated in old, sedentary mice, but was normalized to young control levels in lifelong runners. Remarkably, malignant tumours were also completely absent in the O-AET group, whereas they were present in the brain (pituitary), liver, spleen, and intestines of sedentary mice. Collectively, our results indicate that early-onset, lifelong running dampens inflammaging, protects against multiple cancer types, and extends healthspan of naturally-aged mice.
Collapse
Affiliation(s)
- Mats I. Nilsson
- Department of Pathology and Molecular Medicine, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Jacqueline M. Bourgeois
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Joshua P. Nederveen
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Marlon R. Leite
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Bart P. Hettinga
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Adam L. Bujak
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Linda May
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Ethan Lin
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Michael Crozier
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Daniel R. Rusiecki
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Chris Moffatt
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Paul Azzopardi
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Jacob Young
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Yifan Yang
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Jenny Nguyen
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Ethan Adler
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Lucy Lan
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Mark A. Tarnopolsky
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| |
Collapse
|
17
|
Local and Systemic Cytokine Profiling for Pancreatic Ductal Adenocarcinoma to Study Cancer Cachexia in an Era of Precision Medicine. Int J Mol Sci 2018; 19:ijms19123836. [PMID: 30513792 PMCID: PMC6321633 DOI: 10.3390/ijms19123836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 01/28/2023] Open
Abstract
Cancer cachexia is a debilitating condition seen frequently in patients with pancreatic ductal adenocarcinoma (PDAC). The underlying mechanisms driving cancer cachexia are not fully understood but are related, at least in part, to the immune response to the tumor both locally and systemically. We hypothesize that there are unique differences in cytokine levels in the tumor microenvironment and systemic circulation between PDAC tumors and that these varying profiles affect the degree of cancer cachexia observed. Patient demographics, operative factors, oncologic factors, and perioperative data were collected for the two patients in the patient derived xenograft (PDX) model. Human pancreatic cancer PDX were created by implanting fresh surgical pancreatic cancer tissues directly into immunodeficient mice. At PDX end point, mouse tumor, spleen and muscle tissues were collected and weighed, muscle atrophy related gene expression measured, and tumor and splenic soluble proteins were analyzed. PDX models were created from surgically resected patients who presented with different degrees of cachexia. Tumor free body weight and triceps surae weight differed significantly between the PDX models and control (P < 0.05). Both PDX groups had increased atrophy related gene expression in muscle compared to control (FoxO1, Socs3, STAT3, Acvr2b, Atrogin-1, MuRF1; P < 0.05). Significant differences were noted in splenic soluble protein concentrations in 14 of 15 detected proteins in tumor bearing mice when compared to controls. Eight splenic soluble proteins were significantly different between PDX groups (P < 0.05). Tumor soluble proteins were significantly different between the two PDX groups in 15 of 24 detected proteins (P < 0.05). PDX models preserve the cachectic heterogeneity found in patients and are associated with unique cytokine profiles in both the spleen and tumor between different PDX. These data support the use of PDX as a strategy to study soluble cachexia protein markers and also further efforts to elucidate which cytokines are most related to cachexia in order to provide potential targets for immunotherapy.
Collapse
|
18
|
Xue W, Fan Z, Li L, Lu J, Zhai Y, Zhao J. The chemokine system and its role in obesity. J Cell Physiol 2018; 234:3336-3346. [PMID: 30375006 DOI: 10.1002/jcp.27293] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/31/2018] [Indexed: 12/27/2022]
Abstract
The chemokine system is a complex arrangement of molecules that attract leukocytes to the site of injury or inflammation. This chemotactic behavior gives the system the name "Chemokine." The intricate and redundant nature of the chemokine system has made it a subject of ongoing scientific investigation. Obesity is characterized as low-grade systemic or chronic inflammation that is responsible for the release of cytokines, adipokines, and chemokines. Excessive tissue fat expansion triggers the release of chemokines, which in turn attract various leukocytes and activate the resident immune surveillance system, eventually leading to worsening of obesity and other related comorbidities. To date, 50 chemokines and 20 chemokine receptors that belong to the G-protein-coupled receptor family have been discovered, and over the past two decades, the physiological and pathological roles of many of these chemokines and their receptors have been elucidated. The objective of this review is to present an update on the link between chemokines and obesity under the light of recent knowledge.
Collapse
Affiliation(s)
- Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhirui Fan
- Department of Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lifeng Li
- Department of Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yunkai Zhai
- Center of Telemedicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Engineering Laboratory for Digital Telemedicine Service, Zhengzhou, Henan, China
| | - Jie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Center of Telemedicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Engineering Laboratory for Digital Telemedicine Service, Zhengzhou, Henan, China
| |
Collapse
|
19
|
Mattingly AJ, Laitano O, Clanton TL. Epinephrine stimulates CXCL1 IL-1 α, IL-6 secretion in isolated mouse limb muscle. Physiol Rep 2018; 5. [PMID: 29192066 PMCID: PMC5727277 DOI: 10.14814/phy2.13519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022] Open
Abstract
Catecholamines stimulate interleukin‐6 (IL‐6) secretion in skeletal muscles. However, whether other cytokines are secreted is currently unknown. Skeletal muscle ex vivo preparations commonly used to study cytokine secretion have dealt with limitations including auto‐oxidation of catecholamines. The use of metal chelators could be an alternative to avoid auto‐oxidation and allow catecholamines to be used at physiological doses. We exposed isolated soleus muscles to 1 or 100 ng/mL epinephrine (EPI) and collected bath samples at 1 and 2 h for multiplex cytokine analysis. Keratinocyte chemoattractant (CXCL1), IL‐6, and IL‐1α were significantly elevated by 100 ng/mL exposure, but not by 1 ng/mL (median [CXCL1] (2 h) = 83 pg/mL; [IL‐6] = 19 pg/mL; IL‐1α = 7.5 pg/mL). CXCL1 and IL‐6 were highly correlated in each sample (P = 0.0001). A second experiment combined the metal chelator, deferoxamine mesylate (DFO), to prevent EPI autoxidation, with 2 ng/mL EPI and 10.5 ng/mL norepinephrine (NOREPI) to mimic peak exercise. Unexpectedly, DFO alone stimulated both IL‐6 and CXCL1 secretion, but together with EPI and NOREPI had no additional effects. Stimulation of cytokine secretory responses from skeletal muscle cells in response to DFO thus precludes its use as a chelating agent in ex vivo models. In conclusion, 100 ng/mL EPI stimulates a robust secretory CXCL1 response, which together with IL‐6 and IL‐1α, may constitute an adrenal‐muscle endocrine response system.
Collapse
Affiliation(s)
- Alex J Mattingly
- Department of Applied Physiology & Kinesiology, University of Florida, College of Health and Human Performance, Gainesville, Florida
| | - Orlando Laitano
- Department of Applied Physiology & Kinesiology, University of Florida, College of Health and Human Performance, Gainesville, Florida
| | - Thomas L Clanton
- Department of Applied Physiology & Kinesiology, University of Florida, College of Health and Human Performance, Gainesville, Florida
| |
Collapse
|
20
|
Masuda S, Tanaka M, Inoue T, Ohue-Kitano R, Yamakage H, Muranaka K, Kusakabe T, Shimatsu A, Hasegawa K, Satoh-Asahara N. Chemokine (C-X-C motif) ligand 1 is a myokine induced by palmitate and is required for myogenesis in mouse satellite cells. Acta Physiol (Oxf) 2018; 222. [PMID: 28960786 DOI: 10.1111/apha.12975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/21/2017] [Accepted: 09/24/2017] [Indexed: 01/20/2023]
Abstract
AIM The functional significance of the myokines, cytokines and peptides produced and released by muscle cells has not been fully elucidated. The purpose of this study was to identify a myokine with increased secretion levels in muscle cells due to saturated fatty acids and to examine the role of the identified myokine in the regulation of myogenesis. METHODS Human primary myotubes and mouse C2C12 myotubes were used to identify the myokine; its secretion was stimulated by palmitate loading. The role of the identified myokine in the regulation of the activation, proliferation, differentiation and self-renewal was examined in mouse satellite cells (skeletal muscle stem cells). RESULTS Palmitate loading promoted the secretion of chemokine (C-X-C motif) ligand 1 (CXCL1) in human primary myotubes, and it also increased CXCL1 gene expression level in C2C12 myotubes in a dose- and time-dependent manner. Palmitate loading increased the production of reactive oxygen species along with the activation of nuclear factor-kappa B (NF-κB) signalling. Pharmacological inhibition of NF-κB signalling attenuated the increase in CXCL1 gene expression induced by palmitate and hydrogen peroxide. Palmitate loading significantly increased CXC receptor 2 gene expression in undifferentiated cells. CXCL1 knockdown attenuated proliferation and myotube formation by satellite cells, with reduced self-renewal. CXCL1 knockdown also significantly decreased the Notch intracellular domain protein level. CONCLUSION These results suggest that secretion of the myokine CXCL1 is stimulated by saturated fatty acids and that CXCL1 promotes myogenesis from satellite cells to maintain skeletal muscle homeostasis.
Collapse
Affiliation(s)
- S. Masuda
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - M. Tanaka
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - T. Inoue
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - R. Ohue-Kitano
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - H. Yamakage
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - K. Muranaka
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - T. Kusakabe
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - A. Shimatsu
- Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - K. Hasegawa
- Department of Translational Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - N. Satoh-Asahara
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| |
Collapse
|
21
|
Genome-wide association study for feed efficiency and growth traits in U.S. beef cattle. BMC Genomics 2017; 18:386. [PMID: 28521758 PMCID: PMC5437562 DOI: 10.1186/s12864-017-3754-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/03/2017] [Indexed: 11/13/2022] Open
Abstract
Background Single nucleotide polymorphism (SNP) arrays for domestic cattle have catalyzed the identification of genetic markers associated with complex traits for inclusion in modern breeding and selection programs. Using actual and imputed Illumina 778K genotypes for 3887 U.S. beef cattle from 3 populations (Angus, Hereford, SimAngus), we performed genome-wide association analyses for feed efficiency and growth traits including average daily gain (ADG), dry matter intake (DMI), mid-test metabolic weight (MMWT), and residual feed intake (RFI), with marker-based heritability estimates produced for all traits and populations. Results Moderate and/or large-effect QTL were detected for all traits in all populations, as jointly defined by the estimated proportion of variance explained (PVE) by marker effects (PVE ≥ 1.0%) and a nominal P-value threshold (P ≤ 5e-05). Lead SNPs with PVE ≥ 2.0% were considered putative evidence of large-effect QTL (n = 52), whereas those with PVE ≥ 1.0% but < 2.0% were considered putative evidence for moderate-effect QTL (n = 35). Identical or proximal lead SNPs associated with ADG, DMI, MMWT, and RFI collectively supported the potential for either pleiotropic QTL, or independent but proximal causal mutations for multiple traits within and between the analyzed populations. Marker-based heritability estimates for all investigated traits ranged from 0.18 to 0.60 using 778K genotypes, or from 0.17 to 0.57 using 50K genotypes (reduced from Illumina 778K HD to Illumina Bovine SNP50). An investigation to determine if QTL detected by 778K analysis could also be detected using 50K genotypes produced variable results, suggesting that 50K analyses were generally insufficient for QTL detection in these populations, and that relevant breeding or selection programs should be based on higher density analyses (imputed or directly ascertained). Conclusions Fourteen moderate to large-effect QTL regions which ranged from being physically proximal (lead SNPs ≤ 3Mb) to fully overlapping for RFI, DMI, ADG, and MMWT were detected within and between populations, and included evidence for pleiotropy, proximal but independent causal mutations, and multi-breed QTL. Bovine positional candidate genes for these traits were functionally conserved across vertebrate species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3754-y) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Altered Myokine Secretion Is an Intrinsic Property of Skeletal Muscle in Type 2 Diabetes. PLoS One 2016; 11:e0158209. [PMID: 27453994 PMCID: PMC4959771 DOI: 10.1371/journal.pone.0158209] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 06/13/2016] [Indexed: 01/05/2023] Open
Abstract
Skeletal muscle secretes factors, termed myokines. We employed differentiated human skeletal muscle cells (hSMC) cultured from Type 2 diabetic (T2D) and non-diabetic (ND) subjects to investigate the impact of T2D on myokine secretion. Following 24 hours of culture concentrations of selected myokines were determined to range over 4 orders of magnitude. T2D hSMC released increased amounts of IL6, IL8, IL15, TNFa, Growth Related Oncogene (GRO)a, monocyte chemotactic protein (MCP)-1, and follistatin compared to ND myotubes. T2D and ND hSMC secreted similar levels of IL1ß and vascular endothelial growth factor (VEGF). Treatment with the inflammatory agents lipopolysaccharide (LPS) or palmitate augmented the secretion of many myokines including: GROa, IL6, IL8, IL15, and TNFa, but did not consistently alter the protein content and/or phosphorylation of IkBa, p44/42 MAPK, p38 MAPK, c-Jun N-terminal kinase (JNK) and NF-kB, nor lead to consistent changes in basal and insulin-stimulated glucose uptake or free fatty acid oxidation. Conversely, treatment with pioglitazone or oleate resulted in modest reductions in the secretion of several myokines. Our results demonstrate that altered secretion of a number of myokines is an intrinsic property of skeletal muscle in T2D, suggesting a putative role of myokines in the response of skeletal muscle to T2D.
Collapse
|
23
|
Massaro M, Scoditti E, Pellegrino M, Carluccio MA, Calabriso N, Wabitsch M, Storelli C, Wright M, De Caterina R. Therapeutic potential of the dual peroxisome proliferator activated receptor (PPAR)α/γ agonist aleglitazar in attenuating TNF-α-mediated inflammation and insulin resistance in human adipocytes. Pharmacol Res 2016; 107:125-136. [PMID: 26976796 DOI: 10.1016/j.phrs.2016.02.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/13/2022]
Abstract
Adipose tissue inflammation is a mechanistic link between obesity and its related sequelae, including insulin resistance and type 2 diabetes. Dual ligands of peroxisome proliferator activated receptor (PPAR)α and γ, combining in a single molecule the metabolic and inflammatory-regulatory properties of α and γ agonists, have been proposed as a promising therapeutic strategy to antagonize adipose tissue inflammation. Here we investigated the effects of the dual PPARα/γ agonist aleglitazar on human adipocytes challenged with inflammatory stimuli. Human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were treated with aleglitazar or - for comparison - the selective agonists for PPARα or γ fenofibrate or rosiglitazone, respectively, for 24h before stimulation with TNF-α. Aleglitazar, at concentrations as low as 10nmol/L, providing the half-maximal transcriptional activation of both PPARα and PPARγ, reduced the stimulated expression of several pro-inflammatory mediators including interleukin (IL)-6, the chemokine CXC-L10, and monocyte chemoattractant protein (MCP)-1. Correspondingly, media from adipocytes treated with aleglitazar reduced monocyte migration, consistent with suppression of MCP-1 secretion. Under the same conditions, aleglitazar also reversed the TNF-α-mediated suppression of insulin-stimulated ser473 Akt phosphorylation and decreased the TNF-α-induced ser312 IRS1 phosphorylation, two major switches in insulin-mediated metabolic activities, restoring glucose uptake in insulin-resistant adipocytes. Such effects were similar to those obtainable with a combination of single PPARα and γ agonists. In conclusion, aleglitazar reduces inflammatory activation and dysfunction in insulin signaling in activated adipocytes, properties that may benefit diabetic and obese patients. The effect of aleglitazar was consistent with dual PPARα and γ agonism, but with no evidence of synergism.
Collapse
Affiliation(s)
- Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Mariangela Pellegrino
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy; Department of Biological and Environmental Science and Technology (DISTEBA), University of Salento, Lecce, Italy
| | | | - Nadia Calabriso
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Martin Wabitsch
- Division of Pediatric Endocrinology, Diabetes and Obesity, Department of Pediatrics and Adolescent Medicine, University of Ulm, Germany
| | - Carlo Storelli
- Department of Biological and Environmental Science and Technology (DISTEBA), University of Salento, Lecce, Italy
| | | | - Raffaele De Caterina
- G. dAnnunzio University and Center of Excellence on Aging, Chieti, Italy; G. Monasterio Foundation for Clinical Research, Pisa, Italy.
| |
Collapse
|
24
|
Rai M, Demontis F. Systemic Nutrient and Stress Signaling via Myokines and Myometabolites. Annu Rev Physiol 2016; 78:85-107. [DOI: 10.1146/annurev-physiol-021115-105305] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mamta Rai
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105;
| | - Fabio Demontis
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105;
| |
Collapse
|
25
|
Brotto M, Bonewald L. Bone and muscle: Interactions beyond mechanical. Bone 2015; 80:109-114. [PMID: 26453500 PMCID: PMC4600532 DOI: 10.1016/j.bone.2015.02.010] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/27/2015] [Accepted: 02/08/2015] [Indexed: 02/08/2023]
Abstract
The musculoskeletal system is significantly more complex than portrayed by traditional reductionist approaches that have focused on and studied the components of this system separately. While bone and skeletal muscle are the two largest tissues within this system, this system also includes tendons, ligaments, cartilage, joints and other connective tissues along with vascular and nervous tissues. Because the main function of this system is locomotion, the mechanical interaction among the major players of this system is essential for the many shapes and forms observed in vertebrates and even in invertebrates. Thus, it is logical that the mechanical coupling theories of musculoskeletal development exert a dominant influence on our understanding of the biology of the musculoskeletal system, because these relationships are relatively easy to observe, measure, and perturb. Certainly much less recognized is the molecular and biochemical interaction among the individual players of the musculoskeletal system. In this brief review article, we first introduce some of the key reasons why the mechanical coupling theory has dominated our view of bone-muscle interactions followed by summarizing evidence for the secretory nature of bones and muscles. Finally, a number of highly physiological questions that cannot be answered by the mechanical theories alone will be raised along with different lines of evidence that support both a genetic and a biochemical communication between bones and muscles. It is hoped that these discussions will stimulate new insights into this fertile and promising new way of defining the relationships between these closely related tissues. Understanding the cellular and molecular mechanisms responsible for biochemical communication between bone and muscle is important not only from a basic research perspective but also as a means to identify potential new therapies for bone and muscle diseases, especially for when they co-exist. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Marco Brotto
- Muscle Biology Research Group-MUBIG, UMKC School of Nursing & Health Studies, 2464 Charlotte, USA; UMKC School of Medicine, 2464 Charlotte, USA
| | - Lynda Bonewald
- Bone Biology/Mineralized Tissue Research Program, Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, USA
| |
Collapse
|
26
|
Role of Inflammation in Muscle Homeostasis and Myogenesis. Mediators Inflamm 2015; 2015:805172. [PMID: 26508819 PMCID: PMC4609834 DOI: 10.1155/2015/805172] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/05/2015] [Accepted: 03/10/2015] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle mass is subject to rapid changes according to growth stimuli inducing both hypertrophy, through increased protein synthesis, and hyperplasia, activating the myogenic program. Muscle wasting, characteristic of several pathological states associated with local or systemic inflammation, has been for long considered to rely on the alteration of myofiber intracellular pathways regulated by both hormones and cytokines, eventually leading to impaired anabolism and increased protein breakdown. However, there are increasing evidences that even alterations of the myogenic/regenerative program play a role in the onset of muscle wasting, even though the precise mechanisms involved are far from being fully elucidated. The comprehension of the links potentially occurring between impaired myogenesis and increased catabolism would allow the definition of effective strategies aimed at counteracting muscle wasting. The first part of this review gives an overview of skeletal muscle intracellular pathways determining fiber size, while the second part considers the cells and the regulatory pathways involved in the myogenic program. In both parts are discussed the evidences supporting the role of inflammation in impairing muscle homeostasis and myogenesis, potentially determining muscle atrophy.
Collapse
|
27
|
Engström W, Darbre P, Eriksson S, Gulliver L, Hultman T, Karamouzis MV, Klaunig JE, Mehta R, Moorwood K, Sanderson T, Sone H, Vadgama P, Wagemaker G, Ward A, Singh N, Al-Mulla F, Al-Temaimi R, Amedei A, Colacci AM, Vaccari M, Mondello C, Scovassi AI, Raju J, Hamid RA, Memeo L, Forte S, Roy R, Woodrick J, Salem HK, Ryan EP, Brown DG, Bisson WH. The potential for chemical mixtures from the environment to enable the cancer hallmark of sustained proliferative signalling. Carcinogenesis 2015; 36 Suppl 1:S38-60. [PMID: 26106143 DOI: 10.1093/carcin/bgv030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span.
Collapse
Affiliation(s)
- Wilhelm Engström
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden,
| | - Philippa Darbre
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Staffan Eriksson
- Department of Biochemistry, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, Box 575, 75123 Uppsala, Sweden
| | - Linda Gulliver
- Faculty of Medicine, University of Otago, PO Box 913, Dunedin 9050, New Zealand
| | - Tove Hultman
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden, School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Michalis V Karamouzis
- Department of Biological Chemistry Medical School, Institute of Molecular Medicine and Biomedical Research, University of Athens, Marasli 3, Kolonaki, Athens 10676, Greece
| | - James E Klaunig
- Department of Environmental Health, School of Public Health, Indiana University Bloomington , 1025 E. 7th Street, Suite 111, Bloomington, IN 47405, USA
| | - Rekha Mehta
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, 251 Sir F.G. Banting Driveway, AL # 2202C, Tunney's Pasture, Ottawa, Ontario K1A 0K9, Canada
| | - Kim Moorwood
- Department of Biochemistry and Biology, University of Bath , Claverton Down, Bath BA2 7AY, UK
| | - Thomas Sanderson
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Hideko Sone
- Environmental Exposure Research Section, Center for Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibraki 3058506, Japan
| | - Pankaj Vadgama
- IRC in Biomedical Materials, School of Engineering & Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Gerard Wagemaker
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| | - Andrew Ward
- Department of Biochemistry and Biology, University of Bath , Claverton Down, Bath BA2 7AY, UK
| | - Neetu Singh
- Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Anna Maria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Jayadev Raju
- Regulatoty Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Roslida A Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Hosni K Salem
- Urology Dept. kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Sciences, Colorado State University//Colorado School of Public Health, Fort Collins CO 80523-1680, USA and
| | - Dustin G Brown
- Department of Environmental and Radiological Sciences, Colorado State University//Colorado School of Public Health, Fort Collins CO 80523-1680, USA and
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
28
|
Lightfoot AP, Sakellariou GK, Nye GA, McArdle F, Jackson MJ, Griffiths RD, McArdle A. SS-31 attenuates TNF-α induced cytokine release from C2C12 myotubes. Redox Biol 2015; 6:253-259. [PMID: 26291279 PMCID: PMC4556772 DOI: 10.1016/j.redox.2015.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/07/2015] [Indexed: 02/08/2023] Open
Abstract
TNF-α is a key inflammatory mediator and is proposed to induce transcriptional responses via the mitochondrial generation of Reactive Oxygen Species (ROS). The aim of this study was to determine the effect of TNF-α on the production of myokines by skeletal muscle. Significant increases were seen in the release of IL-6, MCP-1/CCL2, RANTES/CCL5 and KC/CXCL1 and this release was inhibited by treatment with Brefeldin A, suggesting a golgi-mediated release of cytokines by muscle cells. An increase was also seen in superoxide in response to treatment with TNF-α, which was localised to the mitochondria and this was also associated with activation of NF-κB. The changes in superoxide, activation of NF-kB and release of myokines were attenuated following pre-treatment with SS-31 peptide indicating that the ability of TNF-α to induce myokine release may be mediated through mitochondrial superoxide, which is, at least in part, associated with activation of the redox sensitive transcription factor NF-kB.
Collapse
Affiliation(s)
- Adam P Lightfoot
- MRC-Arthritis UK Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, United Kingdom
| | - Giorgos K Sakellariou
- MRC-Arthritis UK Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, United Kingdom
| | - Gareth A Nye
- MRC-Arthritis UK Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, United Kingdom
| | - Francis McArdle
- MRC-Arthritis UK Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, United Kingdom
| | - Malcolm J Jackson
- MRC-Arthritis UK Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, United Kingdom
| | - Richard D Griffiths
- MRC-Arthritis UK Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, United Kingdom
| | - Anne McArdle
- MRC-Arthritis UK Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, United Kingdom.
| |
Collapse
|
29
|
Abstract
Exercise represents a major challenge to whole-body homeostasis provoking widespread perturbations in numerous cells, tissues, and organs that are caused by or are a response to the increased metabolic activity of contracting skeletal muscles. To meet this challenge, multiple integrated and often redundant responses operate to blunt the homeostatic threats generated by exercise-induced increases in muscle energy and oxygen demand. The application of molecular techniques to exercise biology has provided greater understanding of the multiplicity and complexity of cellular networks involved in exercise responses, and recent discoveries offer perspectives on the mechanisms by which muscle "communicates" with other organs and mediates the beneficial effects of exercise on health and performance.
Collapse
Affiliation(s)
- John A Hawley
- Exercise & Nutrition Research Group, School of Exercise Sciences, Australian Catholic University, Fitzroy, Victoria 3065, Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Merseyside L3 5UA, UK.
| | - Mark Hargreaves
- Department of Physiology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael J Joyner
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Juleen R Zierath
- Department of Molecular Medicine, Karolinska Institutet, von Eulers väg 4a, 171 77 Stockholm, Sweden; The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
30
|
Chen T, Li Z, Zhang Y, Feng F, Wang X, Wang X, Shen QW. Muscle-selective knockout of AMPKα2 does not exacerbate diet-induced obesity probably related to altered myokines expression. Biochem Biophys Res Commun 2015; 458:449-455. [DOI: 10.1016/j.bbrc.2015.01.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/17/2015] [Indexed: 11/27/2022]
|
31
|
Brandt C, Hansen RH, Hansen JB, Olsen CH, Galle P, Mandrup-Poulsen T, Gehl J, Pedersen BK, Hojman P. Over-expression of Follistatin-like 3 attenuates fat accumulation and improves insulin sensitivity in mice. Metabolism 2015; 64:283-95. [PMID: 25456456 DOI: 10.1016/j.metabol.2014.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 09/21/2014] [Accepted: 10/08/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Follistatin-like 3 (fstl3), a natural inhibitor of members of the TGF-β family, increases during resistance training in human plasma. Fstl3 primarily binds myostatin and activin A, and thereby inhibits their functions. We hypothesize that blocking myostatin and activin A signalling through systemic fstl3 over-expression protects against diet-induced obesity and insulin resistance. METHODS Fstl3 was over-expressed by DNA electrotransfer in tibialis anterior, quadriceps and gastrocnemius muscles in female C57BL/C mice, and the mice were subsequently randomized to chow or high-fat feeding. Body weight, food intake, fat accumulation by MR scanning, and glucose, insulin and glucagon tolerance were evaluated, as was the response in body weight and metabolic parameters to 24h fasting. Effects of fstl3 on pancreatic insulin and glucagon content, and pancreatic islet morphology were determined. RESULTS Fstl3 over-expression reduced fat accumulation during high-fat feeding by 16%, and liver fat by 50%, as determined by MRI. No changes in body weight were observed, while the weight of the transfected muscles increased by 10%. No transcriptional changes were found in the subcutaneous adipose tissue. Fstl3 mice displayed improved insulin sensitivity and muscle insulin signalling. In contrast, glucose tolerance was impaired in high-fat fed fstl3 mice, which was explained by increased hepatic glucagon sensitivity and glucose output, as well as a decrease in the pancreatic insulin/glucagon ratio. Accordingly, fstl3 transfection improved counter-regulation to 24h fasting. CONCLUSION Fstl3 over-expression regulates insulin and glucagon sensitivities through increased muscular insulin action, as well as increased hepatic glucagon sensitivity and pancreatic glucagon content.
Collapse
Affiliation(s)
- Claus Brandt
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Rasmus Hvass Hansen
- Research Group, Dept. of Radiology, Copenhagen University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Jakob Bondo Hansen
- Immunoendocrinology lab, Section of Endocrinological Research, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Caroline Holkmann Olsen
- Department of Pathology, Copenhagen University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Pia Galle
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Immunoendocrinology lab, Section of Endocrinological Research, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, SE-171 76, Stockholm, Sweden
| | - Julie Gehl
- Department of Oncology, Copenhagen University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Pernille Hojman
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
32
|
Petersen PS, Lei X, Seldin MM, Rodriguez S, Byerly MS, Wolfe A, Whitlock S, Wong GW. Dynamic and extensive metabolic state-dependent regulation of cytokine expression and circulating levels. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1458-70. [PMID: 25320344 PMCID: PMC4269668 DOI: 10.1152/ajpregu.00335.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/11/2014] [Indexed: 02/07/2023]
Abstract
Cytokines play diverse and critical roles in innate and acquired immunity, and several function within the central nervous system and in peripheral tissues to modulate energy metabolism. The extent to which changes in energy balance impact the expression and circulating levels of cytokines (many of which have pleiotropic functions) has not been systematically examined. To investigate metabolism-related changes in cytokine profiles, we used a multiplex approach to assess changes in 71 circulating mouse cytokines in response to acute (fasting and refeeding) and chronic (high-fat feeding) alterations in whole body metabolism. Refeeding significantly decreased serum levels of IL-22, IL-1α, soluble (s)IL-2Rα, and soluble vascular endothelial growth factor receptor 3 (VEGFR3), but markedly increased granulocyte colony-stimulating factor (G-CSF), IL-1β, chemokine (C-C motif) ligand (CCL2), sIL-1RI, lipocalin-2, pentraxin-3, tissue inhibitor of metalloproteinase (TIMP-1), and serum amyloid protein (SAP) relative to the fasted state. Interestingly, only a few of these changes paralleled the alterations in expression of their corresponding mRNAs. Functional studies demonstrated that central delivery of G-CSF increased, whereas IL-22 decreased, food intake. Changes in food intake were not accompanied by acute alterations in orexigenic (Npy and Agrp) and anorexigenic (Pomc and Cart) neuropeptide gene expression in the hypothalamus. In the context of chronic high-fat feeding, circulating levels of chemokine (C-X-C) ligand (CXCL1), serum amyloid protein A3 (SAA3), TIMP-1, α1-acid glycoprotein (AGP), and A2M were increased, whereas IL-12p40, CCL4, sCD30, soluble receptor for advanced glycation end products (sRAGE), CCL12, CCL20, CX3CL1, IL-16, IL-22, and haptoglobin were decreased relative to mice fed a control low-fat diet. These results demonstrate that both short- and long-term changes in whole body metabolism extensively alter cytokine expression and circulating levels, thus providing a foundation and framework for further investigations to ascertain the metabolic roles for these molecules in physiological and pathological states.
Collapse
Affiliation(s)
- Pia S Petersen
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xia Lei
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marcus M Seldin
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susana Rodriguez
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mardi S Byerly
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew Wolfe
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Scott Whitlock
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - G William Wong
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
33
|
Patsouris D, Cao JJ, Vial G, Bravard A, Lefai E, Durand A, Durand C, Chauvin MA, Laugerette F, Debard C, Michalski MC, Laville M, Vidal H, Rieusset J. Insulin resistance is associated with MCP1-mediated macrophage accumulation in skeletal muscle in mice and humans. PLoS One 2014; 9:e110653. [PMID: 25337938 PMCID: PMC4206428 DOI: 10.1371/journal.pone.0110653] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 09/23/2014] [Indexed: 01/21/2023] Open
Abstract
Inflammation is now recognized as a major factor contributing to type 2 diabetes (T2D). However, while the mechanisms and consequences associated with white adipose tissue inflammation are well described, very little is known concerning the situation in skeletal muscle. The aim of this study was to investigate, in vitro and in vivo, how skeletal muscle inflammation develops and how in turn it modulates local and systemic insulin sensitivity in different mice models of T2D and in humans, focusing on the role of the chemokine MCP1. Here, we found that skeletal muscle inflammation and macrophage markers are increased and associated with insulin resistance in mice models and humans. In addition, we demonstrated that intra-muscular TNFα expression is exclusively restricted to the population of intramuscular leukocytes and that the chemokine MCP1 was associated with skeletal muscle inflammatory markers in these models. Furthermore, we demonstrated that exposure of C2C12 myotubes to palmitate elevated the production of the chemokine MCP1 and that the muscle-specific overexpression of MCP1 in transgenic mice induced the local recruitment of macrophages and altered local insulin sensitivity. Overall our study demonstrates that skeletal muscle inflammation is clearly increased in the context of T2D in each one of the models we investigated, which is likely consecutive to the lipotoxic environment generated by peripheral insulin resistance, further increasing MCP1 expression in muscle. Consequently, our results suggest that MCP1-mediated skeletal muscle macrophages recruitment plays a role in the etiology of T2D.
Collapse
Affiliation(s)
- David Patsouris
- Institut National de la santé et de la recherche médicale, Unité Mixte de Recherche 1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine Charles Merieux Lyon-Sud, Lyon, France
- * E-mail:
| | - Jingwei-Ji Cao
- Institut National de la santé et de la recherche médicale, Unité Mixte de Recherche 1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine Charles Merieux Lyon-Sud, Lyon, France
| | - Guillaume Vial
- Institut National de la santé et de la recherche médicale, Unité Mixte de Recherche 1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine Charles Merieux Lyon-Sud, Lyon, France
| | - Amelie Bravard
- Institut National de la santé et de la recherche médicale, Unité Mixte de Recherche 1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine Charles Merieux Lyon-Sud, Lyon, France
| | - Etienne Lefai
- Institut National de la santé et de la recherche médicale, Unité Mixte de Recherche 1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine Charles Merieux Lyon-Sud, Lyon, France
- Centre de Recherche en Nutrition Humaine, Rhône-Alpes, Center for European Nutrition, Safety and Health, Pierre- Bénite, France
| | - Annie Durand
- Institut National de la santé et de la recherche médicale, Unité Mixte de Recherche 1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine Charles Merieux Lyon-Sud, Lyon, France
| | - Christine Durand
- Institut National de la santé et de la recherche médicale, Unité Mixte de Recherche 1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine Charles Merieux Lyon-Sud, Lyon, France
| | - Marie-Agnés Chauvin
- Institut National de la santé et de la recherche médicale, Unité Mixte de Recherche 1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine Charles Merieux Lyon-Sud, Lyon, France
| | - Fabienne Laugerette
- Institut National de la santé et de la recherche médicale, Unité Mixte de Recherche 1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine Charles Merieux Lyon-Sud, Lyon, France
| | - Cyrille Debard
- Institut National de la santé et de la recherche médicale, Unité Mixte de Recherche 1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine Charles Merieux Lyon-Sud, Lyon, France
| | - Marie-Caroline Michalski
- Institut National de la santé et de la recherche médicale, Unité Mixte de Recherche 1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine Charles Merieux Lyon-Sud, Lyon, France
- Centre de Recherche en Nutrition Humaine, Rhône-Alpes, Center for European Nutrition, Safety and Health, Pierre- Bénite, France
| | - Martine Laville
- Institut National de la santé et de la recherche médicale, Unité Mixte de Recherche 1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine Charles Merieux Lyon-Sud, Lyon, France
- Centre de Recherche en Nutrition Humaine, Rhône-Alpes, Center for European Nutrition, Safety and Health, Pierre- Bénite, France
- Hospices civils de Lyon, Service de Nutrition et Diabétologie, Pierre- Bénite, France
| | - Hubert Vidal
- Institut National de la santé et de la recherche médicale, Unité Mixte de Recherche 1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine Charles Merieux Lyon-Sud, Lyon, France
- Centre de Recherche en Nutrition Humaine, Rhône-Alpes, Center for European Nutrition, Safety and Health, Pierre- Bénite, France
| | - Jennifer Rieusset
- Institut National de la santé et de la recherche médicale, Unité Mixte de Recherche 1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine Charles Merieux Lyon-Sud, Lyon, France
- Centre de Recherche en Nutrition Humaine, Rhône-Alpes, Center for European Nutrition, Safety and Health, Pierre- Bénite, France
| |
Collapse
|
34
|
Wang Z, Lee Y, Eun JS, Bae EJ. Inhibition of adipocyte inflammation and macrophage chemotaxis by butein. Eur J Pharmacol 2014; 738:40-8. [DOI: 10.1016/j.ejphar.2014.05.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/01/2014] [Accepted: 05/14/2014] [Indexed: 01/27/2023]
|
35
|
Abstract
The musculoskeletal system is a complex organ comprised of the skeletal bones, skeletal muscles, tendons, ligaments, cartilage, joints, and other connective tissue that physically and mechanically interact to provide animals and humans with the essential ability of locomotion. This mechanical interaction is undoubtedly essential for much of the diverse shape and forms observed in vertebrates and even in invertebrates with rudimentary musculoskeletal systems such as fish. It makes sense from a historical point of view that the mechanical theories of musculoskeletal development have had tremendous influence of our understanding of biology, because these relationships are clear and palpable. Less visible to the naked eye or even to the microscope is the biochemical interaction among the individual players of the musculoskeletal system. It was only in recent years that we have begun to appreciate that beyond this mechanical coupling of muscle and bones, these 2 tissues function at a higher level through crosstalk signaling mechanisms that are important for the function of the concomitant tissue. Our brief review attempts to present some of the key concepts of these new concepts and is outline to present muscles and bones as secretory/endocrine organs, the evidence for mutual genetic and tissue interactions, pathophysiological examples of crosstalk, and the exciting new directions for this promising field of research aimed at understanding the biochemical/molecular coupling of these 2 intimately associated tissues.
Collapse
Affiliation(s)
- Marco Brotto
- Muscle Biology Research Group-MUBIG, UMKC School of Nursing & Health Studies and School of Medicine, 2464 Charlotte Street, Kansas City, MO, 64108, USA,
| | | |
Collapse
|
36
|
Abstract
The complexity of cell interactions with their microenvironment and their ability to communicate at the autocrine, paracrine, and endocrine levels has gradually but significantly evolved in the last three decades. The musculoskeletal system has been historically recognized to be governed by a relationship of proximity and function, chiefly dictated by mechanical forces and the work of gravity itself. In this review article, we first provide a historical overview of the biomechanical theory of bone- muscle interactions. Next, we expand to detail the significant evolution in our understanding of the function of bones and muscles as secretory organs. Then, we review and discuss new evidence in support of a biochemical interaction between these two tissues. We then propose that these two models of interaction are complementary and intertwined providing for a new frontier for the investigation of how bone-muscle cross talk could be fully explored for the targeting of new therapies for musculoskeletal diseases, particularly the twin conditions of aging, osteoporosis and sarcopenia. In the last section, we explore the bone-muscle cross talk in the context of their interactions with other tissues and the global impact of these multi-tissue interactions on chronic diseases.
Collapse
Affiliation(s)
- Janalee Isaacson
- Muscle Biology Research Group-MUBIG, School of Nursing and Health Studies, University of Missouri-Kansas City (UMKC), 2464 Charlotte St, Kansas City, MO 64108, USA; Nursing Program, Johnson County Community College, Overland Park, KS 66210, USA
| | - Marco Brotto
- Muscle Biology Research Group-MUBIG, School of Nursing and Health Studies, University of Missouri-Kansas City (UMKC), 2464 Charlotte St, Kansas City, MO 64108, USA; School of Medicine, UMKC, Kansas City, MO, USA; School of Pharmacy, UMKC, Kansas City, MO, USA
| |
Collapse
|
37
|
Komolka K, Albrecht E, Wimmers K, Michal JJ, Maak S. Molecular heterogeneities of adipose depots - potential effects on adipose-muscle cross-talk in humans, mice and farm animals. J Genomics 2014; 2:31-44. [PMID: 25057322 PMCID: PMC4105427 DOI: 10.7150/jgen.5260] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adipose tissue is considered as a major endocrine organ that secretes numerous proteins called adipokines. The heterogeneous nature of adipose tissue in different parts of the body suggests respective heterogeneity of proteomes and secretomes. This review consolidates knowledge from recent studies targeting the diversity of different adipose depots affecting the pattern of secreted adipokines and discusses potential consequences for the cross-talk between adipose and skeletal muscle in humans, rodent models and farm animals. Special attention is paid to muscle-associated fat depots like inter- and intramuscular fat that become focus of attention in the context of the rather new notion of skeletal muscle as a major endocrine organ. Understanding the complexity of communication between adipocytes and skeletal muscle cells will allow developing strategies for improvement of human health and for sustainable production of high quality meat.
Collapse
Affiliation(s)
- Katrin Komolka
- 1. Research Unit Muscle Biology and Growth, Leibniz-Institute for Farm Animal Biology (FBN), W.-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Elke Albrecht
- 1. Research Unit Muscle Biology and Growth, Leibniz-Institute for Farm Animal Biology (FBN), W.-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Klaus Wimmers
- 2. Research Unit Molecular Biology, Leibniz-Institute for Farm Animal Biology (FBN), W.-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Jennifer J Michal
- 3. Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Steffen Maak
- 1. Research Unit Muscle Biology and Growth, Leibniz-Institute for Farm Animal Biology (FBN), W.-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| |
Collapse
|
38
|
Demontis F, Piccirillo R, Goldberg AL, Perrimon N. The influence of skeletal muscle on systemic aging and lifespan. Aging Cell 2013; 12:943-9. [PMID: 23802635 DOI: 10.1111/acel.12126] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2013] [Indexed: 01/02/2023] Open
Abstract
Epidemiological studies in humans suggest that skeletal muscle aging is a risk factor for the development of several age-related diseases such as metabolic syndrome, cancer, Alzheimer's and Parkinson's disease. Here, we review recent studies in mammals and Drosophila highlighting how nutrient- and stress-sensing in skeletal muscle can influence lifespan and overall aging of the organism. In addition to exercise and indirect effects of muscle metabolism, growing evidence suggests that muscle-derived growth factors and cytokines, known as myokines, modulate systemic physiology. Myokines may influence the progression of age-related diseases and contribute to the intertissue communication that underlies systemic aging.
Collapse
Affiliation(s)
- Fabio Demontis
- Department of Genetics; Harvard Medical School; Boston MA 02115 USA
- Division of Developmental Biology; Department of Developmental Neurobiology; St. Jude Children's Research Hospital; Memphis TN 38105 USA
| | - Rosanna Piccirillo
- Department of Cell Biology; Harvard Medical School; Boston MA 02115 USA
- Department of Oncology; IRCCS - Mario Negri Institute for Pharmacological Research; Milano Italy
| | | | - Norbert Perrimon
- Department of Genetics; Harvard Medical School; Boston MA 02115 USA
- Howard Hughes Medical Institute; Harvard Medical School; Boston MA 02115 USA
| |
Collapse
|
39
|
IL-6 indirectly modulates the induction of glyceroneogenic enzymes in adipose tissue during exercise. PLoS One 2012; 7:e41719. [PMID: 22844518 PMCID: PMC3402468 DOI: 10.1371/journal.pone.0041719] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/27/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Glyceroneogenesis is an important step in the control of fatty acid re-esterification with PEPCK and PDK4 being identified as key enzymes in this process. We have previously shown that glyceroneogenic enzymes such as PDK4 are rapidly induced in white adipose tissue during exercise. Recent studies have suggested that IL-6 regulates adipose tissue metabolism and gene expression during exercise. Interestingly, IL-6 has been reported to directly decrease PEPCK expression. The purpose of this investigation was to determine the role of IL-6 in modulating the effects of exercise on the expression of glyceroneogenic enzymes in mouse adipose tissue. We hypothesized that the exercise-mediated induction of PDK4 and PEPCK would be greater in adipose tissue from IL-6 deficient mice compared to wild type controls. METHODOLOGY AND PRINCIPLE FINDINGS Treatment of cultured epididymal adipose tissue (eWAT) with IL-6 (150 ng/ml) increased the phosphorylation of AMPK, ACC and STAT3 and induced SOCS3 mRNA levels while decreasing PEPCK and PDK4 mRNA. AICAR decreased the expression of PDK4 and PEPCK. The activation of AMPK by IL-6 was independent of increases in lipolysis. An acute bout of treadmill running (15 meters/minute, 5% incline, 90 minutes) did not induce SOCS3 or increase phosphorylation of STAT3 in eWAT, indicating that IL-6 signalling was not activated. Exercise-induced increases in PEPCK and PDK4 mRNA expression were attenuated in eWAT from IL-6(-/-) mice in parallel with a greater relative increase in AMPK phosphorylation compared to exercised WT mice. These changes occurred independent of alterations in beta-adrenergic signalling in adipose tissue from IL-6(-/-) mice. CONCLUSIONS AND SIGNIFICANCE Our findings question the role of IL-6 signalling in adipose tissue during exercise and suggest an indirect effect of this cytokine in the regulation of adipose tissue gene expression during exercise.
Collapse
|
40
|
Abstract
Cytokines and other peptides are secreted from skeletal muscles in response to exercise and function as hormones either locally within the muscle or by targeting distant organs. Such proteins are recognized as myokines, with the prototype myokine being IL-6. Several studies have established a role of these muscle-derived factors as important contributors of the beneficial effects of exercise, and the myokines are central to our understanding of the cross talk during and after exercise between skeletal muscles and other organs. In a study into the mechanisms of a newly defined myokine, CXCL-1, we found that CXCL-1 overexpression increases muscular fatty acid oxidation with concomitant attenuation of diet-induced fat accumulation in the adipose tissue. Clearly this study adds to the concept of myokines playing an important role in mediating the whole-body adaptive effects of exercise through the regulation of skeletal muscle metabolism. Yet, myokines also contribute to whole-body metabolism by directly signaling to distant organs, regulating metabolic processes in liver and adipose tissue. Thus accumulating data shows that myokines play an important role in restoring a healthy cellular environment, reducing low-grade inflammation and thereby preventing metabolic related diseases like insulin resistance and cancer.
Collapse
|